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ABSTRACT 

 

Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery 

disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left 

untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle 

damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF).  

Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful 

for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and 

potentially misclassified during manual interpretation and/or when analyzed by traditional 

algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep 
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learning techniques are favored over conventional machine learning techniques, due to the 

automatic feature extraction and selection processes involved. This paper highlights various deep 

learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF 

conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long 

Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. 

A 16-layer LSTM model was developed in our study and validated using 10-fold cross-validation. 

A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a 

useful diagnostic tool in hospitals for the classification of abnormal ECG signals.   

 

 

Keywords – Cardiovascular diseases; coronary artery disease; myocardial infarction; congestive 

heart failure; deep learning; 10-fold validation; convolutional neural network; long short-term 

memory.   
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1. Introduction 

 

Cardiovascular disease (CVD) is the leading cause of death globally. In 2012, 17.5 million deaths 

attributable to CVD were reported worldwide, accounting for 31% of all deaths. Of these, 

approximately 7.4 million deaths were due to coronary artery disease (CAD) [1]. In 2013, it was 

reported that 1 in every 7 Americans died due to CAD [2]. CAD is primarily the result of 

atherosclerosis, in which fibrofatty plaques develop and thicken within the wall of the coronary 

arteries, leading to stenosis of the coronary lumen [3-5]. CAD that is undiagnosed and/or 

untreated may progress and lead to complications. Composed of lipids contained within a 

luminal surface fibrous cap, an advanced or “vulnerable” atherosclerotic plaque can rupture 

suddenly. The contents spill into the coronary lumen, precipitating acute thrombosis, luminal 

occlusion and interruption of myocardial blood flow, which results in acute myocardial infarction 

(MI).  [8, 9]. The resultant MI induces chronic adverse cardiac remodeling that potentially leads 

to the development of congestive heart failure (CHF). Hence, timely diagnosis of CAD and MI is 

imperative; otherwise left ventricular function may become impaired. The electrocardiographic 

(ECG) signal is typically altered in established MI. In contrast, ECG perturbations in early CAD 

may be subtle and are easily missed and/or misinterpreted [6]. Clinically, the ECG is the most 

commonly used diagnostic tool for CAD because it is non-invasive and inexpensive. As ECG 

signals possess small amplitudes and short durations, measured in millivolts and milliseconds  

respectively, interpretation of these signals may suffer from wide inter- and intra-observer 

variabilities [7]. Automated diagnostic systems utilizing machine learning techniques may 

overcome these limitations [36]. Traditional machine learning techniques involve manual 

extraction and selection of features, which are cumbersome. In contrast, deep learning systems 

automatically extract and select significant features, and are the preferred method used in extant 

disease diagnosis applications [37-40]. In this paper, the characterization of three cardiac 

abnormalities (CAD, MI, CHF) using deep learning algorithms is discussed. Figures 1-4 depict 

the typical ECG signals (the isolated ECGs may not show classical patterns) in normal, MI, CAD, 

and CHF subjects. Conventional machine learning techniques have been used for the detection 

of MI[43-44,51-53,54], CAD[55-58, 61-63] and CHF[59]. These methods are laborious and require 

the extraction of best performing features manually to obtain the highest performance. Hence, 

the deep learning algorithms were used in this work.  
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2. Deep learning 

 

Deep learning is a subset of machine learning in which a large dataset is often used to train the 

network. Significant features are created through each successive concealed layer of neurons as 

the network learns the input data. The Artificial Neural Network (ANN) is built upon several 

concealed layers, delivering a deep structure. The ANN is the most basic algorithm in deep 

learning, wherein synthetic neurons are the very essence of the neural network [10]. The neurons 

are connected with weights, in which the weighted sum is computed once data have been sent to 

the input layer. The bias from each neuron is subsequently added to the weighted sum of inputs. 

The activation function determines the activation of a neuron. Once a neuron is activated, it passes 

Figure 1: Normal ECG signal. Figure 2: Typical MI ECG signal. 

Figure 3: Typical CAD ECG signal. Figure 4: Typical CHF ECG signal. 
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information to other neurons in the successive layers, until the penultimate layer. Once a neuron 

activated in the output layer tallies with the input digit, the weights and biases are continually 

adjusted to ensure that the network is well-trained [11].  

 

 The Convolutional neural network (CNN) is a type of deep learning model that is 

commonly used in image and data analyses, as well as for classification of disease. It comprises 

three main layers: input, hidden, and output layers. Some models contain more layers, including 

non-convolutional layers. The hidden layers, known as the convolutional layers, form the heart 

of the CNN model. Different sized kernels are used in the convolutional layer to deduce the input, 

after which various feature maps are concatenated for analysis. The features that are created are 

used for classification in the successive layers [12]. The deeper the layers, the better the kernels 

become at detecting or classifying data. CNN is trained using the backpropagation algorithm [13], 

with the weights continually adjusted to reduce errors for optimum training performance.  

 

 Long Short-Term Memory (LSTM) is another model commonly utilized for the 

classification of physiological signals [14]. LSTM is a gated architecture that comprises blocks of 

memory cells, through which signals flow. It encompasses three gates:  input, forget, and output 

gates. These gates control input activations into memory cells, reset the cells’ memory, and control 

output flow into the network [15]. Mapping from an input x is calculated to form an output y by 

computing the unit activations of the network. In the network, the symbols t, t-1, t+1 denote the 

present, previous, and successive block values, respectively, while h and y represent the cell state 

and output values, respectively. The model works by retaining crucial information of previous 

states and building upon them. LSTM models are expedient for automatic feature extraction, as 

shown in earlier studies [16].  

 

 The autoencoder uses an unsupervised algorithm to train the network. The encoders are 

arranged together to form a deeper network. Three main steps are employed to train the model. 

First, a series of encoders are trained layer-by-layer using unsupervised data. Second, the last 

layer is trained with supervised data. Finally, the backpropagation algorithm is incorporated for 

refining the whole network [17]. In the first step, coding and decoding steps are applied. 

Unlabeled inputs are encoded and the inputs are reconstructed accurately. During the coding and 

decoding phases, identical weights are used to encode the feature and reconstruct the output. The 
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loss function calculates the information lost during input construction. A reconstruction with 

minimal loss value is almost identical to the original input [18].  

 

Table 1a summarizes studies that involve deep learning for the detection of MI (2-class). 

Strodthoff et al. [19] built a CNN network for the classification of MI. Ten-fold cross-validation 

was employed to evaluate the system performance. High specificity and sensitivity values of 

89.7% and 93.3% were obtained, respectively. Reasat et al. [20] developed a CNN network and 

extracted 84 features from the filters. The developed model was tested on one patient and trained 

on 81 patients. Metric scores were used to evaluate the performance of the model, yielding an 

accuracy of 84.54%. Application of a geometric separability index and Euclidean distance 

revealed that the extracted features showed good discriminating power. Feng et al. [21] 

developed an architecture comprising CNN and LSTM models. After the signals were pre-

processed, oversampling was used to balance the healthy data. Ten-fold validation was employed 

during training of the model to evaluate its robustness.  An accuracy of 95.5% was achieved with 

an F1 score of 96.8%. Diker et al. [22] combined ANN, Recursive Feature Eliminator (RFE), and 

kNN (k-nearest neighbor) classifiers after extracting a total of eleven statistical and structural 

features. Ten-fold validation was used to evaluate the proposed system, yielding an accuracy of 

80.6%. Acharya et al. [24] developed an eleven-layer deep learning model and used two datasets 

to train and validate it. One dataset was denoised, while noise was retained in the other dataset. 

The signals were segmented and normalized before being input to the network. Ten-fold 

validation was used to assess the system performance, wherein relatively high accuracies of 

93.5% and 95.2% were obtained for signals with and without noise, respectively. Lui et al. [25] 

combined CNN and LSTM models, and developed a classifier to distinguish MI from normal 

ECG signals. One layer of the CNN model was replaced by a LSTM layer, causing the 

classification sensitivity to improve by 28% compared with using only the CNN model. The 

developed system was evaluated using 10-fold validation, achieving high sensitivity and 

specificity values of 92.4% and 97.7%, respectively. Kora et al. [26] employed the improved Bat 

algorithm (IBA) for feature extraction after the signals were pre-processed. The significant 

features were then input to the Scalar Conjugate Gradient Neural Network (SCG NN), k-NN, and 

SVM classifiers. The results were compared with that of the Levenberg-Marquardt Neural 

Network (LMNN). The proposed technique of using the Bat algorithm coupled with LMNN 

outperformed the other classifiers, achieving the highest accuracy of 98.9%. Safdaraian et al. [27] 

compared the performance of the Naïve Bayes, Probabilistic Neural Network (PNN), and k-NN 
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classifiers and ANN and Multilayer Perceptron (MLP) Neural Networks with T-wave and total 

integral features. The Naïve Bayes classifier outperformed the other classifiers with an accuracy 

of 94.7% for the classification of MI, while PNN demonstrated to classify and localize MI most 

accurately, yielding an accuracy of 76.7%. Baloglu et al.[36] generated a 10-layer CNN model for 

the classification of 12-lead ECG signals. 70% of the data was used for training, 15% for validation, 

and another 15% for testing of the model. High classification results of 99.8% were obtained for 

both leads V4 and V5. Han et al.[49] explored using the multi-lead residual neural network 

coupled with a feature fusion technique with 12 lead ECG recordings. Five-fold cross validation 

was used to validate the system. A high classification accuracy of 99.92% and F1 score of 99.94% 

were achieved with the intra-patient scheme. Liu et al.[50] developed a hybrid network 

comprising CNN coupled with bidirectional long short-term memory models (BLSTM). Class-

based 5-fold validation was used to evaluate the proposed system, which achieved a high 

accuracy of 99.90% with the intra-patient strategy.  

 

Table 1b summarizes studies that involve deep learning for the detection of CAD (2 -class system). 

Acharya et al. [28] developed two 11-layer CNN networks for the classification of normal and 

CAD ECG signals. Net 1 and Net 2 were used to classify ECG signals of 2- and 5-second duration, 

respectively. Ten-fold cross-validation was employed to assess the performance of both 

architectures. High accuracies of 95.0% and 95.1% were obtained for Nets 1 and 2, respectively. 

Tan et al. [29] built an 8-layer deep learning model comprising CNN and LSTM networks. Non-

subject and subject specific validations were employed to evaluate the proposed technique, 

wherein 10% of the data was used for training, 90% for testing, and 15 subjects’ data were used 

for training and the rest for testing. A high classification accuracy of 99.9% was achieved with the 

blindfold technique. A deep neural network based on the MLP architecture was developed by 

Miao et al. [30], wherein the ECG signals were input. The system’s performance was evaluated 

using a diagnostic accuracy value computed based on positive, false positive, true negative, and 

false negative values during training. An accuracy of 83.7% was yielded. Altan et al. [31] exploited 

the Deep Belief Network, which was used to classify the signals after features were extracted from 

short-term ECG signals using the Hilbert transform. Ten-fold validation was used to evaluate the 

performance of the model, achieving a high accuracy of 98.1%. Caliskan et al. [32] developed a 

classification system comprising two autoencoders coupled with the Softmax classifier. The 

developed system was used to classify signals in four different datasets, and its performance was 

compared against other classifiers including k-NN, SVM, Naïve Bayes, and Random forest. Ten-
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fold validation was used for evaluation. Compared with the other methods, the proposed system 

achieved the highest accuracy in each dataset, with the highest accuracy of 92.2% in the 

Switzerland dataset. Similar deep learning methods have also been used for arrhythmia detection. 

Oh et al. [45] developed a CNN-LSTM model and fed the acquired signals to it. 10-fold cross 

validation was used to assess the performance of the model.  A high accuracy of 98.10% was 

achieved for the classification of ECG signals to detect arrhythmia. Gao et al.[46] employed the 

LSTM model with focal loss, after pre-processing, for arrhythmia classification. 10% of the data 

was used for testing, while 90% and 10% of the remaining data were used for training and 

validation, respectively. The highest accuracy of 99.26% was achieved with the denoised data, as 

compared to data with noise. Yildirim et al.[47] investigated the LSTM network coupled with 

deep coded features, which yielded a high classification accuracy of over 99% for the detection of 

arrhythmia. Pawiak et al.[48] computed the power spectral density to intensify ECG signal 

features. These features were then input to the developed deep genetic ensemble of classifiers. 

Ten-fold validation was used to evaluate the performance of the system, which achieved a high 

accuracy of 99.37%. Acharya et al.[62] fed the acquired signals to the developed 11-layered CNN 

model. The performance of the model was evaluated using 10-fold cross validation, yielding an 

accuracy of 93.18%.  

 

Table 1c summarizes studies that involve deep learning for the detection of CHF (2-class). Masetic 

et al. [23], extracted the Autoregressive (AR) Burg parameters from the signals and classified them 

using five classifiers: k-NN, SVM, random forest, ANN, and C4.5 decision tree classifiers. Ten-

fold cross validation was used to evaluate the performances of the different classifiers. Random 

forest was reported to achieve the highest accuracy of 100%. Acharya et al. [33] developed an 11-

layer CNN network and tested its performance using four different datasets. Standard 10-fold 

validation was utilized to evaluate the performance of the architecture. A highest accuracy of 

99.0% was obtained for dataset B, which was the largest. Kwon et al. [34] employed a deep-

learning algorithm for ECG-based diagnosis of heart failure (DEHF) and compared its 

performance with the logistic regression (LR) and random forest (RF) classifiers. The area under 

the receiver operating characteristic (AUROC) was used to gauge performance, yielding a higher 

value of 0.843 for the detection of heart failure with reduced ejection fraction, compared with 

AUROC values of 0.800 and 0.807 for LR and RF classifiers, respectively. Khade et al. [35] 

developed a system combining SVM and CNN. ECG signals were subjected to the SVM classifier 

coupled with the Boosted Decision Tree for classification of the type of heart failure. Ten-fold 
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validation was used to validate the system, achieving an accuracy of 84.0%. CNN was employed 

to determine the severity of heart failure, achieving an accuracy of 88.3%.  

 

 

Table 1a: Summarized studies involving deep learning for normal versus MI detection using ECG signals(2-class). 

 

Authors 

 

Techniques 

 

Number of participants 

 

Results 

Safdarian et al. 

[27], 2014. 

• ANN with RBF function 

• T-wave and total integral features 

• K-NN 

• PNN 

• MLP 

• Naïve Bayes 

MI: 290 patients Classification of MI 

Naïve Bayes; Accuracy: 

94.74% 

Classification and 

localisation of MI 

PNN; Accuracy: 76.67% 

 

 

Kora et al. [26], 

2015 

• Improved Bat algorithm 

• SVM classifier 

• k-NN classifier 

• LMNN 

• SCGNN 

Normal: 52 healthy 

MI: 148 patients 

IBA + k-NN 

Accuracy: 65.1% 

IBA + SVM 

Accuracy: 76.74% 

IBA + SCGNN 

Accuracy: 87.90% 

IBA + LMNN 

Accuracy: 98.90% 

Acharya et al. 

[24], 2017 

• 1-dimensional CNN network 

• Daubechies wavelet (6 mother wavelet) 

• 10-fold cross-validation 

Normal: 52 healthy 

MI: 148 patients 

Accuracy with noise: 

93.53% 

Accuracy without noise: 

95.22% 

 

Diker et al.[22], 

2017 

• RFE, k-NN, ANN classifiers 

• 10-fold cross-validation 

 

Normal: 52 healthy 

MI: 148 patients 

Accuracy: 80.60% 

Sensitivity: 86.58% 

Specificity: 64.71% 

 

 

 

Reasat et al.[20], 

2018 

 

• CNN architecture 

• Geometric separability index 

• Euclidian distance 

Normal: 52 healthy 

MI: 148 patients 

Accuracy: 84.54% 

Sensitivity: 85.33% 

Specificity: 84.09% 
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Lui et al. [25], 

2018 

• CNN + LSTM Network 

• 10-fold cross-validation 

 

Normal: 52 healthy 

MI: 148 patients 

Positive predictive 

value: 97.20%% 

Sensitivity: 92.40% 

Specificity: 97.70% 

F1 score: 94.60% 

Strodthoff et al. 

[19], 2019 

 

• CNN network 

• 10-fold cross-validation 

Normal: 52 healthy 

MI: 127 patients 
Sensitivity: 93% 

Specificity: 89.7% 

Feng et al.[21], 

2019 

 

• 16-layer CNN coupled with LSTM 

network 

• Wavelet transform 

• 10-fold cross-validation 

Normal: 52 healthy 

MI: 148 patients 

Accuracy: 95.54% 

Sensitivity: 98.2% 

Specificity: 86.5% 

F1 score: 96.8% 

Baloglu et al. 

[36], 2019 

• 10-layer CNN model 

• 12 leads 

 

Normal: 52 healthy 

MI: 148 patients 

Accuracy: 99.78% 

 

 

Han et al.[49], 

2019 

• Multi-lead residual neural network 

• Fusion of features  

• 5-fold validation 

Normal: 52 healthy(80 

recordings) 

MI: 112 patients( 113 

recordings) 

Accuracy: 99.92% 

F1 score: 99.94% 

 

Liu et al.[50], 

2019 

• CNN combined with BLSTM 

• Class-based 5-fold cross-validation 

 

Normal: 52 healthy 

MI: 148 patients 

Intra patient strategy 

Accuracy: 99.90% 

Sensitivity: 99.97% 

Specificity: 99.54% 

 

 

 

Table 1b: Summarized studies involving deep learning for normal versus CAD detection using ECG signals (2 

class). 

 

Authors 

 

Techniques 

 

Number of participants 

 

Results 

Acharya et al. 

[28], 2017 

• 11-layer CNN 

• Net 1 

• Net 2 

• 10-fold validation 

Normal: 40 healthy 

CAD: 7 patients 

Net 1 

Accuracy: 94.95% 

Sensitivity: 93.72% 

Specificity: 95.18% 

Net 2 

Accuracy: 95.11% 
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Sensitivity: 91.13% 

Specificity: 95.88% 

Altan et al. [31], 

2017 

• Deep Belief Network 

• Hilbert-Huang transform 

• 10-fold validation 

Normal: 25 healthy 

CAD: 60 patients 

Accuracy: 98.05% 

Sensitivity: 98.88% 

Specificity: 96.02% 

 

Caliskan et al. 

[32], 2017 

• Autoencoders + Softmax classifier 

• 4 datasets 

• 10-fold validation 

CAD: 303 patients Switzerland dataset 

Accuracy: 92.20% 

 

Tan et al. [29], 

2018 

• 8-layer LSTM + CNN network 

• Blindfold technique 

• Non-subject specific, subject-specific 

Normal: 40 healthy 

CAD: 7 patients 
 

Accuracy: 99.85% 

Miao et al. [30], 

2018 

• DNN based on deeper multilayer 

perceptron 

• Diagnostic accuracy 

Coronary heart disease: 

303 patients 

Accuracy: 83.67% 

Sensitivity: 93.51% 

Specificity: 72.86% 

 

Oh et al.[45], 

2018 

• CNN-LSTM  

• 10-fold cross-validation 

48 recordings from 47 

subjects(arrhythmia) 

Accuracy: 98.10% 

Sensitivity: 97.50% 

Specificity: 98.70% 

 

Acharya et 

al.[60], 2018 

• 11 layered CNN model 

• 10-fold validation 

105 signals(arrhythmia) Accuracy: 93.18% 

Sensitivity: 95.32% 

Specificity: 91.04% 

 

Gao et al[46], 

2019 
• LSTM with focal loss 

93371 ECG 

beats(arrhythmia) 

Highest accuracy of 

99.26% for denoised 

data. 

Yildirim et 

al[47], 2019 

• LSTM 

• Deep coded features 

100 022 signals(5 beat 

type, arrhythmia) 
Accuracy: > 99% 

Pawiak et 

al.[48], 2019 

• Deep genetic ensemble of classifiers 

• Spectral power density 

• 10-fold cross-validation 

29 subjects(744 segments, 

arrhythmia) 

Accuracy: 99.37% 

Sensitivity: 94.62% 

Specificity: 99.66% 

 

Table 1c: Summarized studies involving deep learning for normal versus CHF detection  using ECG signals (2 

class) 
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Authors 

 

Techniques 

 

Number of participants 

 

Results 

Masetic et al. 

[23], 2016 

• Random forest, SVM, ANN, k-NN, C4.5 

decision tree classifiers 

• AR Burg features 

 

Normal: 13 healthy 

CHF: 15 patients 

Random forest 

 

Accuracy: 100% 

Acharya et al. 

[33], 2019 

• 11-layer CNN 

• 4 datasets 

• 10-fold validation 

 

Dataset A 

Normal: 70 308 data 

CHF: 30 000 data 

 

Dataset B 

Normal: 110 000 data 

CHF: 30 000 data 

 

Dataset C 

Normal: 30 000 data 

CHF: 30 000 data 

 

Dataset D 

Normal: 30 000 data 

CHF: 30 000 data 

Dataset B 

Accuracy: 98.97% 

Sensitivity: 99.01% 

Specificity: 98.87% 

 

 

 

Kwon et al. [34], 

2019 

• DEHF algorithm 

• Logistic regression classifier 

• Random Forest classifier 

 

Normal: 19 836 patients 

CHF: 1391 HFrEF, 1538 

HFmrEF patients 
AUROC of DEHF: 0.843 

Khade et al. [35], 

2019 

• CNN 

• Boosted Decision Tree 

• SVM classifier 

• 10-fold validation 

CHF: 10 801 patients Classification accuracy 

using SVM: 84% 

 

Heart failure severity 

measurement accuracy 

using CNN: 88.30% 

 

Present study (4 

class)  

• Detection of normal, MI, CAD and 

CHF 

• CNN coupled with LSTM 

• 10-fold validation 

 

Normal: 92 

CAD: 7 

MI: 148 

CHF: 15 

Accuracy: 98.51% 

Sensitivity: 99.30% 

Specificity: 97.89% 

Positive predictive 

value: 97.33% 
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3. Methodology 

3.1 Data used  

 

Lead II ECG signals employed in this study were acquired from healthy subjects and patients 

from four databases. Signals from 92 normal subjects, 7 CAD patients, 148 MI patients, and 15 

CHF patients were obtained from the PTB Diagnostic ECG and Fantasia Databases, St. Petersburg 

Institute of Cardiological Technics 12-lead Arrhythmia Database, PTB Diagnostic ECG Database, 

and BIDMC Congestive Heart Failure Databases, respectively. Signals from the St. Petersburg 

and Fantasia databases were up-sampled to 1000Hz to match the sampling frequency. The signals 

were segmented so that each segment consisted of a 2-second (2000 sample) window length. A 

total of 150,268 segments were used in this study. Table 2 details the breakdown of segments for 

each class. 

 

Table 2: Number of segments for each class. 
Class Number of segments 

Normal  4 703(PTB) + 80 000(Fantasia) 

MI 20 265 

CAD 15 300 

CHF 30 000 

 

3.2 CNN-LSTM deep learning architecture 

 

Batch sizes of 10 and 60 epochs were used to develop the 16-layer CNN-LSTM model. Adam 

optimization parameters [42] exhibited a learning rate of 0.001. To improve generalization, 

dropout was applied to layers 14 and 16, with a dropout rate of 0.5. Bias was not introduced at 

the convolution layers, and weighted loss was employed for countering the class imbalance. The 

parameter details of different layers used to build the model are shown in Table 3. After the 

signals were input to the network, max pooling was employed after the convolution layers in 

every instance, in order to extract the optimal features for classification. Ten-fold cross-validation 

[41] was then incorporated to evaluate the performance of the developed model, whereby 80% of 

the training data was employed for training and 20% for validation. Figure 5 presents the CNN-

LSTM architecture, and its details are provided in Table 3. Each convolution layer was used to 

extract features from input signals to form feature maps for the subsequent layer. Max pooling 

layers were added each time after the convolution layers to sieve out the top features. The 

dropout layer was added to improve the generalization of features.  
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Table 3: Details of our developed model. 

 

Layers  Type of layer No. of neurons 

(output layer) 

Kernel size  No. of filters Stride  

1 1d-convolution  1981 x 3 20 x 1 3 1 

2 max-pooling  990 x 3 - - 2 

3 1d-convolution  981 x 6 10 x 1 6 1 

4 max-pooling  490 x 6 - - 2 

5 1d-convolution  486 x 6 5 x 1 6 1 

6 max-pooling  243 x 6 - - 2 

7 1d-convolution  239 x 5 5 x 1 6 1 

8 max-pooling  119 x 6 - - 2 

9 1d-convolution 110 x 6 10 x 1 6 1 

10 max-pooling  55 x 6 - - - 

11 LSTM  10 - - - 

12 dense 8 - - - 

13 dropout 8 - - - 

14 dense 8 - - - 

15 dropout 8 - - - 

16 dense 4 - - - 

 

 

 

4. Results and Discussion 

 

High classification accuracy, specificity, sensitivity, and positive predictive values of 98.51%, 

97.89%, 99.30%, 97.33%, respectively, were obtained with the proposed deep learning model. 

Figure 5: Developed CNN-LSTM architecture. 
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Figure 6 depicts the accuracy of the network in terms of the accuracy against epoch plots. It is 

notable that the accuracy of the training set converges with that of the validation set, which 

implies that the developed model is robust. Figure 7 presents the confusion matrix result based 

on classification. It is also apparent that the CNN-LSTM model is highly accurate in classifying 

the signals, as indicated by the low miscalculation rates of 0.02%, 0.02%, 0.03%, and 0.01%, 

respectively, for categorizing normal, MI, CAD, and CHF signals.  

 

 
 

 

 

Figure 6: Accuracy against varying epoch plot for CNN-LSTM model.  

Figure 7: Confusion matrix of the classified signals.  
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In an earlier study, Acharya et al. [43] investigated the use of the Discrete Wavelet Transform, 

Empirical Mode Decomposition, and Discrete Cosine Transform methods for the automated 

detection of CAD and MI on ECGs. In another study, Acharya et al. [44] studied the contourlet 

and shearlet transforms of ECGs for the classification of CAD, MI, and CHF. These two prior 

studies were foundational for the current study.  From Table 1, it is observed that the CNN 

algorithm has been employed predominantly for the classification of normal versus MI, CAD of 

CHF ECG signals. Ten-fold validation is commonly used to assess the models.  Apart from using 

CNN alone, Tan et al. [29], Feng et al. [21], and Liu et al. [25] also employed LSTM coupled with 

CNN models, portraying this combined approach to be the next best deep learning model. 

Accordingly, the CNN-LSTM model was exploited in this study and 10-fold validation was used 

to gauge the performance of our model. The classification accuracy obtained from our model is 

higher  compared with the results of Feng et al. [21]; and the sensitivity and specificity values 

achieved from our model are also higher than Lui et al. [25], owing to the larger data size used in 

our study compared with these other studies. Although Tan et al. [29] achieved a higher 

classification accuracy of 99.9%, only 47 subjects were studied. In our study, we used a larger data 

size, and  obtained a higher accuracy compared with most studies, for instance, Acharya et al. 

[28],  Altan et al. [31], Feng et al. [21],  Reasat et al. [20], Xu et al. [23], Diker et al. [22] and Kora et 

al. [26], which employed other deep learning algorithms and small data sizes. Notably, while the 

studies in Table 1 all depict two-class results, ours is the first to discuss four-class results, which 

showed high classification accuracy. Our developed model attests to be robust in the classification 

of normal, CAD, MI, and CHF signals. Additionally, the developed system can be implemented 

in a wearable device (wireless patch) to enable monitoring of ECG signals for patient 

classification. The device would obtain the signals from a patient, which would be input to the 

developed deep learning model for classification. This model would be maintained on the cloud 

through the hospital server. Hence the diagnosis results would be available to the clinician 

through the hospital server within minutes. The developed system exhibits both advantages and 

disadvantages: 

 

Advantages 

I. A high classification accuracy of 98.5% was achieved despite using signals with noise. 

II. The system established in this study is powerful as it has been validated using 10-fold. 

III. The entire data (large data) from PhysioNet was used. 
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IV. With the developed model, three cardiac abnormalities can be detected. 

 

Disadvantages 

I. Training of the model is time-consuming.  

II. Sizeable data is needed to train and test the model.  

III. Only a small data size of 7 was used to represent CAD patients.  

 

5. Future work 

 

In future work, we intend to develop a deep learning model that is better able to detect early 

stages of CAD, so that incident MI and CHF events can be averted. This would allow room for 

earlier diagnosis and timely treatment.  

 

6. Conclusion 

 

Cardiovascular diseases are the primary cause of death globally. When CAD is not identified 

during diagnostic testing, the disease can later manifest as MI and CHF. Cost-effective ECGs can 

be used to screen for CAD, so that treatment can be initiated to avert MI and CHF events. 

Application of deep learning algorithms to ECG interpretation can mitigate the pitfalls brought 

about by implementation of conventional machine learning algorithms. A 16-layer CNN-LSTM 

model was efficaciously used to classify  CAD, MI, and CHF signals in our study, with a high 

precision rate of 98.5%. Ten-fold cross-validation provided confirmatory evidence as to the 

robustness of our proposed system. Hence it has the potential to be used as a diagnostic screening 

tool for CAD, which can lessen the workload of healthcare professionals. In the future, a deep 

learning model to detect early stages of CAD shall be developed.  
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