
Content-aware Location Inference and Misinformation in Online Social Networks

AJAO, Oluwaseun

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/25593/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/25593/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

CONTENT-AWARE LOCATION

INFERENCE AND

MISINFORMATION IN ONLINE

SOCIAL NETWORKS

submitted by

Oluwaseun Ajao

for the degree of

Doctor of Philosophy

of the

Department of Computing

Sheffield Hallam University

October, 2019

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

prior written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Oluwaseun Ajao

ABSTRACT

Location inference is of potential use in the area of cybercrime prevention and mis-

information detection. Inferring locations from user texts in Online Social Networks

(OSN) is a non-trivial and challenging problem with regards to public safety. This work

proposes LOCINFER - a novel non-uniform grid-based approach for location inference

from Twitter messages using Quadtree spatial partitions. The proposed algorithm

uses natural language processing (NLP) for semantic understanding and incorporates

hybrid similarity measures for feature vector extraction and dimensionality reduction.

LOCINFER addresses the sparsity problem which may be associated with training data

following a biased clustering approach where densely populated regions within the data

are partitioned into larger grids. The clustered grids are then classified using a logistic

regression model. The proposed method performed better than the state-of-the art in

grid-based content-only location inference by more than 150km in Average Error Dis-

tance (AED) and almost 300km in Median Error Distance (MED). It also performed

better than by 24% in terms of accuracy at 161km. It was 400km better in prediction

for MED and 250km better in terms of AED.

Also proposed is SENTDETECT - a technique that detects and classifies fake news

messages from Twitter posts using extensive experiments with machine learning and

deep learning models including those without prior knowledge of the domain. Follow-

ing a text-only approach, SENTDETECT utilises an additional feature of the word

sentiments alongside the original text of the messages. Incorporating these engineered

features into the feature vector, provides an enrichment of the vector space prior to

the deep learning classification task which utilised a Hierarchical Attention Networks

(HAN) in pre-trained word embedding.

An emotional word ratio (EMORATIO) was deduced following the discovery of a pos-

itive relationship between negative emotional words and fake news posts. Finally, the

work aimed to perform automatic detection of misinformation posts and rumors. A

lot of work has been done in the area of detecting the truthfulness or veracity of posts

from OSN messages. This work presents a novel feature-augmented approach using

both text and sentiments in enriching features used during prediction. The end result

performed better by up to 40% in Recall and F-Measure over the state of the art on

benchmark misinformation PHEME dataset which relied on textual features only. The

blend of location inference with misinformation detection provides an effective tool

in the fight against vices on social media such as curtailing hate speech propagation,

cyberbullying and fake news posts.

i

Dedicated to my darling wife Abolaji.

ii

ACKNOWLEDGEMENTS

I would like to profoundly acknowledge the exceptional commitment of my two super-

visors; Dr Deepayan Bhowmik and Dr Shahrzad Zargari. Their guidance and insight

provided the much needed encouragement for achieving success on the PhD journey.

I deeply appreciate the support which I enjoyed from my dear wife Abolaji, my lovely

daughters Ayomide, Esther and Daniella. I would forever be grateful for their under-

standing during the many long hours devoted to completing this work.

I recognise the support of my parents Mr and Mrs David Adekitan Ajao. The con-

tributions and words of encouragement received from Engr and Dr (Mrs) Sangoyomi

from the start of my postgraduate studies until the very end is priceless and most

appreciated.

iii

Publications

The following are the list of articles published during the PhD research project

Journal Publications

Two papers were published peer-reviewed journals in the course of the PhD research

and they are given below.

• Ajao, O., Hong, J., and Liu, W. (2015). A survey of location inference techniques

on Twitter. Journal of Information Science, 41(6), 855-864.

• Gough A., Hunter, R. F., Ajao, O., Jurek, A., McKeown, G., Hong, J., ... and

Kee, F. (2017). Tweet for behavior change: using social media for the dissem-

ination of public health messages. JMIR public health and surveillance, 3(1),

e14..

Conference Publications

Three peer-reviewed conference articles were published during the PhD research and

they are given below.

• Ajao, O., Bhowmik, D., and Zargari, S. (2018, July). Fake news identification on

twitter with hybrid cnn and rnn models. In Proceedings of the 9th International

Conference on Social Media and Society (pp. 226-230). ACM.

• Ajao, O., Bhowmik, D., and Zargari, S. (2019, April). Sentiment aware fake news

detection on online social networks. In ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2507-

2511). IEEE.

• Ajao, O., Bhowmik, D., and Zargari, S. (2018, August). Content-aware tweet

location inference using quadtree spatial partitioning and jaccard-cosine word

embedding. In 2018 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (ASONAM) (pp. 1116-1123). IEEE.

iv

Contents

List of Figures xiii

List of Tables xvii

Acronyms xix

Statement of Originality xix

1 Introduction 1

1.1 Location Inference . 1

1.2 Misinformation Detection . 3

1.3 Aims and Objectives . 5

1.4 Methodology . 6

1.4.1 Location Inference . 6

1.4.2 Misinformation Detection . 6

1.5 Datasets Used . 7

1.5.1 UTGEO-Small Dataset . 7

1.5.2 GEOTEXT Dataset . 7

v

1.6 Thesis Layout . 8

1.7 Contributions to New Knowledge . 9

2 Literature Review 11

2.1 State-of-the-art in Location inference . 11

2.2 Types of location on Twitter . 11

2.3 Spatial features and indicators . 12

2.3.1 Message Context . 12

2.3.2 Social Networks . 14

2.3.3 User Profiles . 14

2.3.4 Geotags . 15

2.3.5 Third Party Sources . 15

2.3.6 Time Zones . 15

2.3.7 Web Snippets . 16

2.4 Methods of inferring locations on Twitter 16

2.4.1 Natural Language Processing (NLP) Techniques 17

2.4.2 Gazetteers . 17

2.4.3 Probabilistic and Machine Learning Techniques 18

2.4.4 Multinomial Naive Bayes . 19

2.4.5 Logistic Regression . 19

2.4.6 Neural Networks . 20

vi

2.4.7 Decision Trees . 21

2.4.8 Random Forests . 21

2.5 Data Partitioning with Quadtrees . 22

2.6 Location Inference Applications in Public Health 22

2.7 Location Inference Applications in Cyberbullying 23

2.8 Location Inference Applications in Crisis and Disaster Management . . 23

2.9 Tweet Gathering and Analysis . 24

2.9.1 Tweet Corpus . 24

2.9.2 Results and Metrics . 25

2.10 Precision, Recall and F-Measure . 26

2.11 Calculating Error Distance . 28

2.11.1 Average Error Distance . 29

2.11.2 Median Error Distance . 29

2.11.3 Distance-Based Accuracy . 29

2.12 State of the Art in Misinformation Detection 30

2.13 Definition of Fake News . 31

2.14 Related Works in Misinformation Detection 31

2.14.1 Text-Based Fake News Detection 33

2.14.2 Text Sentiment Analysis . 33

2.14.3 Machine Learning Algorithms . 34

vii

2.14.4 Classification Models . 34

2.14.5 Deep Learning Models . 34

2.15 Discussion . 35

3 Content Aware Tweet Location Inference using Quadtree Spatial Par-

titioning 37

3.1 Introduction . 38

3.2 Methodology . 42

3.2.1 Uniform Grid Clustering versus Discriminate Partitioning Tech-

nique . 43

3.2.2 Text Preprocessing . 44

3.2.3 Converting Clean Tweets to Word Vectors 45

3.2.4 Feature Vector Creation using NLP 48

3.2.5 Sparsity of Tweets and Quadtree 50

3.2.6 LOCINFER and Quadtree Data Partitioning 52

3.2.7 Tweet based bias removal . 53

3.2.8 Training of Location Classifier 53

3.2.9 Data . 54

3.3 Results and Discussions . 54

3.3.1 Experimental Results and Discussion 54

3.3.2 Comparison of Classifier Performance 55

3.3.3 Behaviours of the LOGIT and MNB Classifiers 56

viii

3.4 Performance of the Classifiers on Various Datasets and Splitting Criterion 56

3.4.1 Performance of LOGIT Classifier on UTGEO-Small Dataset . . . 57

3.4.2 Performance of LOGIT Classifier on GEOTEXT Dataset 57

3.4.3 Performance of MNB Classifier on UTGEO-Small Dataset 58

3.4.4 Performance of MNB Classifier on GEOTEXT Dataset 59

4 Fake News Identification on Twitter with Text - content only 65

4.1 Introduction . 65

4.1.1 Background of the Problem . 67

4.1.2 Spatio-temporal awareness of fake news stories 67

4.1.3 Research Questions . 68

4.1.4 Problem Definition . 68

4.2 Methodology . 68

4.2.1 The Deep learning Architectures 69

4.2.2 Frameworks and equipment Hardware 71

4.2.3 About the Dataset . 71

4.2.4 Description of the PHEME Rumor-Non Rumor Dataset 73

4.2.5 Recurrent Neural Network RNNs 73

4.2.6 Incorporating Convolutional Neural Network 76

4.2.7 Selection of Training Parameters 76

4.2.8 Batch Size . 76

ix

4.2.9 Number of Epochs . 77

4.2.10 Optimization Parameters . 77

4.2.11 Learning Rate . 77

4.2.12 Network weight initialization . 77

4.2.13 Neuron activation function . 78

4.2.14 Dropout regularization . 78

4.2.15 Number of neurons in the hidden layer 79

4.3 Evaluation, Results and Discussions . 79

4.3.1 Improvements through Feature Engineering from Sentiments . . 80

5 Sentiment Aware Fake News Detection in Online Social Networks 81

5.1 Introduction . 81

5.2 Methodology . 82

5.2.1 Sentiment-Aware Misinformation 82

5.2.2 Machine Learning and Deep Learning Classification 85

5.3 Results and Discussions . 86

5.3.1 Dataset . 86

5.3.2 Discussion . 87

6 Conclusions and Future Work 89

6.1 Location Inference . 89

x

6.2 Improvements over existing state-of-the-art location inference methods . 90

6.3 Critical Analysis of LOCINFER technique 90

6.4 Misinformation Detection . 91

6.5 Critical Analysis of SENTDETECT technique 93

6.6 Combining Fake news detection with location inference 93

7 References 95

Appendices 107

A Quadtree Location Inference Codes 108

B Python Codes for Fake News Detection - Text only 137

C Python Codes for Fake News Detection - Text with sentiments /

emotions 147

D PHEME Rumor Non-Rumor Dataset 181

E UTGEO (Small) and GEOTEXT Datasets 183

F A Tweet in JSON Format 185

G Typical Tweet Variables 189

xi

xii

List of Figures

1.1 Snapshot of PHEME Non-Rumor Tweet Sample 4

1.2 Snapshot of a PHEME Rumour Tweet Sample 4

1.3 Snapshot of UTGEO-Small Dataset . 8

1.4 Snapshot of GEOTEXT Dataset . 8

2.1 Types of Locations inferred on Twitter 12

2.2 Indicators of user location . 13

2.3 Main categories of location inference techniques 18

2.4 Spatial partitioning method illustrating decomposition and equivalent

Quadtree representation of an object . 22

2.5 Two Class Prediction Outcomes . 27

3.1 Functional diagram illustrating the tweets location inference task. 43

3.2 Methods of Word Embedding in Natural Language Processing 45

3.3 Skip Gram Model Architecture for Word2Vec 46

3.4 Basic Skip Gram Input-Output Illustration 47

xiii

3.5 SkipGram Sentence Example . 48

3.6 Geo-located US Tweets captured in the simulation dataset 50

3.7 US cities with population over 5,000. 50

3.8 Interaction between precision and log of uniform grid counts 52

3.9 Geo-located US Tweets partitioned with LOCINFER Quadtree algorithm 53

3.10 Combined Performance of the LOGIT Classifier on UTGEO dataset vari-

ants . 58

3.11 Combined Performance of the LOGIT Classifier on GEOTEXT dataset

variants . 59

3.12 Combined Performance of the MNB Classifier on UTGEO dataset variants 60

3.13 Combined Performance of the MNB Classifier on GEOTEXT dataset

variants . 63

4.1 Tweet allegedly sent by the Syrian Electronic Army from hacked Twitter

account of Associated Press . 66

4.2 Architecture of the LSTM Model . 70

4.3 Architecture of the combined LSTM-CNN Model 72

4.4 Wordcloud visualisation of the Charlie Hebdo Incident 73

4.5 Wordcloud visualisation of the Ferguson 74

4.6 Wordcloud visualisation of the GermanWings Crash 74

4.7 Wordcloud visualisation of the Ottawa Shooting 75

4.8 Wordcloud visualisation of the Sydney Siege 75

4.9 Avoiding over-fitting using Dropout technique Illustration 78

xiv

5.1 Schematic Diagram of Text Rumor Classifier 83

5.2 Word Cloud of Charlie Hebdo Tweets 84

xv

xvi

List of Tables

1.1 Distribution of PHEME Rumour-Non Rumor Dataset 5

2.1 Datasets and collection periods of some works 25

2.2 Confusion Matrix . 28

2.3 Improvement in granularity levels over the past 5 years 29

3.1 Methods and Outcomes from Related Works in Twitter Location Inference 41

3.2 Grids of Message Geotags . 44

3.3 Text Cleaning and Pre-Processing Steps 61

3.4 Quadtree-based classification showing Error Distance and Compute Time

for two different classifiers on GeoText Dataset 62

3.5 Quadtree-based classification showing Error Distance and Compute Time

for two different classifiers on UTGeo-small Dataset 62

3.6 Our Method and other Grid-Based Results 63

3.7 Minimum Suggested Grid Sizes to achieve good Precision 63

4.1 Most circulated and engaging fake news stories on Facebook in 2016 . . 67

xvii

4.2 Table of values for 3 different proposed deep learning methods in fake

news detection . 80

5.1 Emotion ratio in rumor and non-rumor Tweets 85

5.2 Summary Statistics of Dataset . 86

5.3 Range of Classifier Results after Emotional Analysis 87

5.4 Combined features (subset with image-only Tweets) 87

G.1 Typical Tweet Variables and Components 190

xviii

xix

Acronyms

Acronym Description

ACC@d Distance-based Accuracy

AED Average Error Distance

API Appication Program Interface

BILOU Beginning the Inside and the Last tokens of multi-token en-

tities as well as Unit-length entities

CBOW Continuous Bag of Words

CNN Convolutional Neural Network

CRF Conditional Random Field

ESN Echo State Networks

F-M F-Measure

GPS Global Positioning System

HAN Hierarchical Attention Neural Network

LDA Latent Dirichlet Allocation

LIWC Linguistic Inquiry and Word Count

LOGIT Logistic Regression

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

LSTM Long Short Term Memory

MED Median Error Distance

MNB Multinomial Naive Bayes

NER Named Entity Recognition

NLP Natural Language Processing

NLTK Natural Language Toolkit

OOV Out-of-Vocabulary

OSN Online Social Networks

POI Point of Interest

POS Part of Speech

PRE Precision

REC Recall

RELU Rectifier Linear Unit

REST Representational State Transfer

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SVM Support Vector Machines

TF-IDF Term Frequency-Inverse Document Frequency

URL Uniform resource Locator

XG-Boost Extreme Gradient Boosting

xx

Statement of Originality

The research conducted within the scope of this thesis produced the following novel and

unique contributions towards a content-aware location inference and misinformation in

Online Social Networks:

• improvement over the state-of-the-art in grid-based content-only location infer-

ence method (LOCINFER) using a Quadtree clustering in Jaccard-Cosine Simi-

larity Measures for Natural language Processing

• an emotional ratio index (EMORATIO) of the negative to positive words used in

messages posted to Online Social Networks

• a sentiment-aware misinformation classifier (SENTDETECT) that used an addi-

tional feature from a derived emotional index

xxi

xxii

Chapter 1

Introduction

1.1 Location Inference

The ability to accurately profile the location of social media users comes with immense

benefits to service providers and consumers themselves (Kinsella et al., 2011). It is

advantageous to have all the necessary meta-data from tweets, micro-blogs or gener-

ally in online social networks. However in the event they are unavailable it would be

necessary to infer them. This continues to be a well-explored research domain (Mah-

mud et al., 2014). The dilemma of correctly identifying the authors location combined

with the unique language of microblogs such as Twitter, Facebook and Foursquare has

brought with it some challenges that were not associated with structured texts and

online blogs, forums and conventional online media. Twitter now has more than 300

million monthly active users who on a daily basis generate over 500 million conversa-

tions popularly referred to as tweets which are text messages consisting of a maximum

of 140 characters. The limited space requires brevity in writing, giving rise to an infor-

mal dictionary of words only used within the social media space. In addition, writing

on Twitter tends to have lots of non-standard abbreviations, typographical errors, use

of emoticons, irony, sarcasms and trending topics referred to as hashtags. Such un-

conventional, unstructured texts are regarded as noise as standard Natural Language

Processing (NLP) tools do not handle such well (Ritter et al., 2011), leading to an

interesting challenge in tweet content analysis. Location inference on Twitter can be

used to identify offenders engaging in bullying of other online users via social media

also known as cyberbullying. Also Twitter has been known to be a good platform for

detecting the outbreaks of diseases and natural disasters. The ability to accurately

infer the location of affected users can save lives and help in crisis management. It has

1

been shown in McGee et al. (2013) that Twitter serves as a platform for building social

relationships and is utilitarian for information purposes. In the former, users having a

bidirectional following relationship (allowing the followers public posts to be continu-

ally displayed on the followers news feed) called friends. In the latter, a unidirectional

following relationship exists where a user may only follow another influential user they

are interested in. However, the followee may choose not to reciprocate the gesture thus

being a unidirectional relationship. This is more common with corporations, celebrities,

public figures and politicians who may have a significantly larger number of followers

and just a handful of friends. Twitter users have the option to disclose their city level

location which should normally be their primary residence. Text may be input within

a location field as part of their Twitter user account registration. In reality, less than

14% of users accurately complete this field. In Hecht et al. (2011), it is discovered that

34% of Twitter users gave false or fictitious location names. Because this is an optional,

free text field, Twitter does not regulate or enforce what their users can input. Also,

to enhance the experience of its users, Twitter allows inclusion of location coordinates

as metadata to tweets. This is called geotagging; the current location of the user can

be included in tweets sent from mobile devices. Geotagged messages can give an ac-

curate estimate of the current location of the user or the origin of a particular tweet

up to the nearest kilometre. Similarly, even though virtually all recently manufactured

smartphones now come with a GPS, less than 0.5% of Twitter users turn on the lo-

cation function of their smartphones due to concerns over privacy (Li et al., 2012),

cyber bullying and stalking. Other users switch off location services to conserve power

and prevent their batteries from running out quickly (Lin et al., 2010). Various works

have employed diverse kinds of spatial features to infer the location of online users

including use of metadata information such as time of post (Li et al., 2011). Some have

used only the content of the tweets (Chandra et al., 2011)(Chang et al., 2012)(Cheng

et al., 2010). The others have looked at the social network relationship amongst users

(Abrol & Khan, 2010). The user account information has also given useful insights

for this purpose (Backstrom et al., 2010)(Bouillot et al., 2012), while some have fol-

lowed a hybrid approach (Jurgens, 2013). There is also a growing trend for the use of

location-based social networks (Ikawa et al., 2012; Li & Sun, 2014; Schulz et al., 2013).

However most works observed still tend to include the message text as a key input for

their study and techniques. Techniques have ranged from Natural Language Processing

including Named Entity Recognition (NER), Parts of Speech (POS) tagging (Lingad

et al., 2013), machine learning and probabilistic methods (Li et al., 2012) as well as

gazetteers and location databases (Takhteyev et al., 2012). Results achieved by the

various works are diverse and have been shown to be getting higher granularity levels

with average error distances of less than 1 km (Li & Sun, 2014).

2

1.2 Misinformation Detection

This project also aimed to determine the veracity of a set of tweets based on the content

of their messages without prior knowledge of the news domain. Subsequently, this work

went further to establish the presence of emotional signals in Misinformation posts -

deriving an EMORATIO index used for predicting rumor and non-rumor messages

posted to Online Social Networks. The Rumor-Non Rumor dataset is an established

benchmark dataset which was created by the PHEME research group1. This team of

researchers are also working in the area of rumor and fake news detection and have

made the tweets collected publicly available. 2. This dataset consists of Twitter posts

about five (5) global events namely:

• Charlie Hebdo shooting: two brothers forced their way into the offices of the

French satirical weekly newspaper Charlie Hebdo in Paris, killing 11 people and

wounding 11 more, on January 7, 2015. 3

• Ferguson unrest: citizens of Ferguson in Michigan, USA, protested after the fatal

shooting of an 18-year-old African American, Michael Brown, by a white police

officer Darren Wilson on August 9, 2014. 4

• Germanwings plane crash: a passenger plane from Barcelona to Dusseldorf crashed

in the French Alps on March 24, 2015, killing all passengers and crew. The plane

was ultimately found to have been deliberately crashed by the co-pilot of the

plane, Andreas Lubitz. 5

• Ottawa shooting: shootings occurred on Ottawas Parliament Hill in Canada,

resulting in the death of a Canadian soldier on October 22, 2014. 6

• Sydney siege: a gunman held hostage ten customers and eight employees of a

Lindt chocolate cafe located at Martin Place in Sydney, Australia, on December

15, 2014. 7

The PHEME dataset is stored in JSON (Java Script Object Notation) file format which

consisted of the 5800 tweets and their respective interactions to the source messages.

1https://www.pheme.eu
2https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
3https://www.bbc.co.uk/news/world-europe-30708237
4https://www.bbc.co.uk/news/world-us-canada-30193354
5https://www.nytimes.com/news-event/germanwings-flight-9525-crash
6https://www.cbc.ca/news/politics/ottawa-shooting-a-day-of-chaos-leaves-soldier-gunman-dead-

1.2808710
7https://www.theguardian.com/australia-news/2014/dec/20/sydney-siege-timeline-how-a-day-

and-night-of-terror-unfolded-at-the-lindt-cafe

3

https://www.pheme.eu
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://www.bbc.co.uk/news/world-europe-30708237
https://www.bbc.co.uk/news/world-us-canada-30193354
https://www.nytimes.com/news-event/germanwings-flight-9525-crash
https://www.cbc.ca/news/politics/ottawa-shooting-a-day-of-chaos-leaves-soldier-gunman-dead-1.2808710
https://www.cbc.ca/news/politics/ottawa-shooting-a-day-of-chaos-leaves-soldier-gunman-dead-1.2808710
https://www.theguardian.com/australia-news/2014/dec/20/sydney-siege-timeline-how-a-day-and-night-of-terror-unfolded-at-the-lindt-cafe
https://www.theguardian.com/australia-news/2014/dec/20/sydney-siege-timeline-how-a-day-and-night-of-terror-unfolded-at-the-lindt-cafe

The breakdown of the distribution of the messages in terms of the rumor tweets and

non-rumor tweets is given in Table 1.1. An example JSON record within the dataset

is given in Appendix F. The variables and components of the dataset is presented in

Appendix G. A typical tweet has almost 200 variables. For this work, only the ’text’

variable or column was used being the actual words of the post as this is a content-only

approach while the binary classes were ’rumor’ and ’non-rumor’ which was coded as

one and zero respectively in the classification task.

Snapshots of actual non-rumor and rumor tweets from the PHEME dataset are pre-

sented in Figure 1.1 and Figure 1.2 respectively.

Figure 1.1: Snapshot of PHEME Non-Rumor Tweet Sample

Figure 1.2: Snapshot of a PHEME Rumour Tweet Sample

4

Table 1.1: Distribution of PHEME Rumour-Non Rumor Dataset
RNR CH Distribution FG Distribution GW Distribution OT Distribution SS Distribution

Rumors 458 22% 284 25% 238 51% 470 53% 522 43%

Non-Rumors 1621 78% 859 75% 231 49% 420 47% 699 57%

TOTALS 2079 100%% 1143 100% 469 100% 890 100% 1221 100%

KEY

CH - Charlie Hebdo Shooting

FG - Ferguson Shooting

GW - Germanwings Crash

OT - Ottawa Shooting

SS - Sydney Siege

RNR - Rumor - Non Rumor Distribution

1.3 Aims and Objectives

This work aims to solve the problem of location inference on Twitter using a content-

only approach. Also, it addresses the detection of fake news message from text as well

as the consideration of sentiment-awareness that influences the dissemination of fake

news messages.

The objectives set out in location inference was to improve on the state-of-the-art in

grid-based content-only approach using a Quadtree clustering in Jaccard-Cosine Simi-

larity Measures for Natural language Processing. The use of a discriminative clustering

technique of the training dataset ensure that the density of some regions are well cap-

tured and considered in determining the size of the data partitions. In other words, the

denser the geotagged area of tweets, the smaller the size of the associated grid labels

assigned to the tweets from that region. Similarly, the smaller or more sparse the data

from a region, the larger the size of the grid labels.

In the detection of fake news and rumors, their origin may largely be dependent on the

location of the authors of these messages. Such unconfirmed messages could have far

reaching political and socio-economic impact if their origins is not accurately checked

and resolved.

In fulfilling the aim of misinformation detection, this work also introduces an emotional

ratio index (EMORATIO) of the negative to positive words used in messages posted

to Online Social Networks. The objective followed a sentiment-aware misinformation

5

classifier that used an additional feature from a derived emotional index addressing the

limitations associated with using a text-only approach in misinformation detection.

1.4 Methodology

1.4.1 Location Inference

The approach followed in this thesis is content-only approach. Using only the messages

posted by the users onto social media without any meta-data from the tweets. This

approach was considered as there are instances when the location of users may need to

intuitively decided without additional information. This includes the automatic detec-

tion of user location from content in real-time posts made onto online social networks.

This approach is much harder and non-trivial. As information and features used by

the classifier comes solely from the text of the messages.

To achieve this an approach which was introduced in Section 1.3 is taken in two parts.

The first part is the discriminate clustering of the data using a Quadtree partitioning

technique. This method considers the geo-distribution of the training data before it is

fed into the model. This addresses the sparse nature of the words such that more sparse

locations would have bigger cluster and conversely more dense locations would have

smaller clusters. The second part is the use of a classifier with hybrid word-embedding.

A combination of the Jaccard similarity technique was first applied followed by the

Cosine Similarity technique. This resulted in the reduction of the dimensionality of

the created word vectors as well as the improvement in the classification task over the

state-of-the-art in content-only grid-based location inference in online social networks.

1.4.2 Misinformation Detection

The this task was done in two parts; the first was intuitively detecting rumor posts

without any feature engineering. The second was a feature augmented approach that

involved the detection of emotion signals in the messages. Subsequently these derived

emotional indexes served as features to enhance the performance of the misinformation

classifier. The first part included the use of three algorithms namely: the Long-Short

Term Memory (LSTM) Recurrent Neural Network (RNN), the second is the LSTM

with dropout regularization and the third is the hybrid of the LSTM with Convolutional

Neural Network (CNN) in one dimensional (1d) convolution. All three methods were

6

applied onto the PHEME Rumor-Non Rumor dataset.

1.5 Datasets Used

In the conduct of the experiments for this research three different datasets were adopted

for location inference and misinformation detection. These are briefly listed below:

• UTGEO(Small)(Roller et al., 2012) - Location Inference. Due to the large size

this dataset it is not published in this thesis. However, the link to access the

dataset is given in Appendix E

• GEOTEXT(Eisenstein et al., 2010) - Location Inference. Similarly, due to the

large size this dataset it is not published in this thesis. However, the link to

access the dataset is given in Appendix E

• PHEME Rumor NON-Rumor Dataset(Zubiaga et al., 2016) - Fake News Detec-

tion. The repository to access the PHEME dataset is given in Appendix D

1.5.1 UTGEO-Small Dataset

This dataset was used in the works done by Roller et al. (2012) which included more

than 670,000 tweets generated by a randomly selected group of 10,000 users. It is a

subset dataset from a larger UTGEO-Large dataset which is made of 38 million tweets

from. 449,000 users. The scaled down subset version of UTGeo-Small was chosen

because it enables good comparison with the GEOTEXT dataset on the same models

and algorithm. UTGEO-Small and GEOTEXT have fairly similar sizes. This avoids a

bias and gives a fair reporting of the evaluation metrics. The structure of the UTGEO

dataset which is labeled with geotags is given as username, geocoordinate0 (latitude),

geocoordinate1 (longitude) and text which is the actual tweet message posted by the

users. Snapshot of the UTEO-Small records is shown in Figure 1.3.

1.5.2 GEOTEXT Dataset

This corpus was created and used by Eisenstein et al. (2010). The dataset comprised

of 377,616 messages gathered from more than 9,000 Twitter users based in the United

7

Figure 1.3: Snapshot of UTGEO-Small Dataset

Figure 1.4: Snapshot of GEOTEXT Dataset

States. It was collected in one week of March 2010. It contained the text, and geolo-

cation of tweets. The users could not be directly identified and were anonymised. The

structure of the GEOTEXT dataset is also similar to the UTGEO-small dataset which

is also labeled with geotags but has anonymised usernames with latitudes, longitudes

and message texts. Snapshot of the GEOTEXT records is shown in Figure 1.4.

1.6 Thesis Layout

The state-of-the-art in the field of location inference is introduced in the Literature

Review Chapter 2, surveying the the most relevant and up-to date in location inference

Related literature in fake news and misinformation detection in online social networks

is presented in Chapter 2.

Chapter 3 which is a contribution chapter on text-only location inference examines

a grid-based content-only approach assuming the absence of other spatial clues or

indicators.

Chapter 4 looks at the detection of fake messages and rumors also following a text-only

approach, without prior knowledge of the topic domain, and the application of machine

learning techniques for the classification task.

8

Chapter 5 builds on the work done in Chapter 4. In this chapter, a separate emotional

ratio feature was introduced to the word vector and included in the classification task.

This further helped improve the performance thus achieving a 5% improvement in accu-

racy and further significant improvements in terms of precision, recall and f-measures.

Summary findings, conclusion and future work are presented in Chapter 6

1.7 Contributions to New Knowledge

The expected contributions to new knowledge in this work includes:

• improvement over the state-of-the-art in grid-based content-only location in-

ference method using a Quadtree clustering in Jaccard-Cosine Similarity Mea-

sures for Natural language Processing. Technique and method proposed is called

LOCINFER

• an emotional ratio index (EMORATIO) of the negative to positive words used in

messages posted to Online Social Networks

• a sentiment-aware misinformation classifier that includes an additional feature

from a derived emotional index alongside the text within OSN messages. Tech-

nique and method proposed is called SENTDETECT

At the time of writing this dissertation, the results achieved in this work outperforms

the state of the art in content-aware grid-only location inference and fake news identifi-

cation from text in online social networks. Such results and the contributions achieved

is hoped would be useful in the fight and curtailing the spread of fake news in micro-

blogs such as Twitter and Facebook.

9

10

Chapter 2

Literature Review

2.1 State-of-the-art in Location inference

The increasing popularity of the social networking service, Twitter, has made it more

involved in day-to-day communications, strengthening social relationships and infor-

mation dissemination. Conversations on Twitter are now being explored as indicators

within early warning systems to alert of imminent natural disasters such earthquakes

and aid prompt emergency responses to crime. Producers are privileged to have lim-

itless access to market perception from consumer comments on social media and Mi-

croblogs. Targeted advertising can be made more effective based on user profile in-

formation such as demography, interests and location. While these applications have

proven beneficial, the ability to effectively infer the location of Twitter users has even

more immense value. However, accurately identifying where a message originated from

or authors location remains a challenge thus essentially driving research in that re-

gard. In this chapter,a range of techniques were examined which infer the location of

Twitter users from inception to state-of-the-art. We find significant improvements over

time in the granularity levels and better accuracy with results driven by refinements

to algorithms and inclusion of more spatial features.

2.2 Types of location on Twitter

Initial works in the field of location inference made no differentiation between the

home residence of a Twitter user and their current location. It is observed that some

11

Figure 2.1: Types of Locations inferred on Twitter

authors had earlier referred to it as User Location (Abrol & Khan, 2010; Chandra et al.,

2011; Gonzalez et al., 2011) assuming the geotagged location of the tweet to be the

user location. Hecht et al. (2011) infers the home residence of the user to be already

contained within the location field provided as part of the user account information.

(Ikawa et al., 2013) cites the fact that it was possible to tweet about a particular location

and not be in that location at the time. It illustrates the concept of space and time.

Li & Sun (2014) examines the concept of determining Points Of Interests (POI) with a

temporal awareness of the past, present and future as mentioned in the message text.

Ikawa et al. (2013) also defines 4 distinct location types on Twitter, namely, locations

directly mentioned in the message text, focused locations i.e. described by the message

context, users current location (from where a tweet was sent) and their location profile

which can be a combination of their current, previous home locations and other places

they frequently visit . A diagrammatic illustration of locations inferred on Twitter is

given in Figure 2.1.

2.3 Spatial features and indicators

As illustrated in Figure 2.2, diverse indicator types that help to infer the location of

Twitter users have been employed over the years and we shall look at them in more

detail.

2.3.1 Message Context

Twitter message text forms the backbone of most research within the field of loca-

tion inference as this helps understand the context of the messages themselves. The

challenges associated with tweet text processing can be very much linked to the un-

structured format of those messages as opposed to online articles and blogs that have

12

Figure 2.2: Indicators of user location

more content and follow conventional grammatical and semantic usage. These include

abbreviations and more so non-standard ones as there is no precise rule of writing on

the social media platform. Because most of tweets are sent via mobile devices their

users have a large leeway for typos and brevity. An instance would be the abbreviation

for the United Kingdom which could be UK, GB, GBR or GR8 Britain. Li & Sun

(2014) uses the Brown clustering to handle Out-Of-Vocabulary (OOV) words. While

Cheng et al. (2010) uses the Jaccard coefficient to resolve and accommodate similar

words. Ikawa et al. (2012) uses cosine similarity to match actual location with a list of

keywords. A good content analysis approach would take into consideration all possible

instances of the location entities being expressed within the message. It is important

to note that even when locations are identified within the messages, it cannot be auto-

matically inferred as the user location or even the tweet location (Ikawa et al., 2012).

A good example would be where a tweet contained the city name Belfast; however it

may not necessarily imply the author was based in Belfast or that the tweet was even

sent from Belfast. Some works have used the URL links within the body of the text

as spatial indicators for inferring the location of the users. Schulz et al. (2013) uses

these links to infer the country level location by inputting the corresponding domain

server IP addresses into the InfoDB database - a free online query service that matches

geographical location with IP addresses and domain names. The most successful tech-

niques have employed use of the message content alongside one or two other features

to have a robust output.

In this work, location inference follows a hybrid approach of both NLP and machine

learning, however only the text of the messages are considered as spatial cues for

determining the location of the users on Twitter. There is an assumption that Points

of Interest and context in which the words were used would be intuitively recognised

by the machine learning model. Also, the natural language processing approach using

a hybrid of similarity measures would remove redundancy within the word vectors used

in the text classification task, this also handles Out-of-Vocabulary occurrences across

messages posted by the users for detecting their location.

13

2.3.2 Social Networks

The followers of a user have been shown to be a good indicator of their home residence.

While reciprocal following relationship can provide evidence of strong user connections,

other indicators can include regular exchange of messages or frequent mention of each

others names within messages. Jurgens (2013); McGee et al. (2013, 2011) have shown

that two users are likely to communicate frequently if they reside within the same city

and vice versa. Li et al. (2012) mentions the possibility of having multiple location

profiles based on the users offline social relationships with other users. According to

Li et al. (2012) the more influential a user is, the higher the diversity of their followers

and friends would be from around the world. Abrol & Khan (2010) shows that the

network of a user would be optimal for inferring location up to the third depth.

2.3.3 User Profiles

The account information given at the point of registering a Twitter user account can

give very useful insight into their location allowing advertisers to accurately target their

customers. It can also help emergency services and first responders to immediately

locate the scene of a crisis or disaster or to help track down potential offenders in

cyber bullying crimes. Usually the location field follows a free text format enabling the

users to manually type in their city name. It would normally be in the City or State

granularity level such as Glasgow, Scotland. However, instances of less conventional

phrases such as the The Big Apple or even meaningless expressions such as Bieber Town

make it difficult for conventional Natural Language Processing (NLP) and machine

learning algorithms to effectively extract the location entities and in some instances

are likely to give misleading results. The users website or personal web page could also

be listed on the account information and would normally hold useful information. This

would be so in particular if the website listed by the user was hosted by a provider

resident within their home country and with possibly city-level information, if they

resided in the same city. However, there is the possibility of hosting their website in

one geographical location and living elsewhere. For instance a user based in the US

might had initially signed up for web hosting with a provider based in the US but if

they relocated to say, Australia but had not switched service providers. This would

mean that their web domain and server IP address would still be indexed to their

former country of residence which is the United States whereas they currently reside

in Australia.

14

2.3.4 Geotags

Most smartphones are now equipped with the Global Positioning System (GPS) func-

tion as a standard feature and working with this, geo-satellites are able to accurately

pinpoint the users geographical location i.e. latitudes and longitudes coordinates. This

would usually be an optional feature for users to enable due to their privacy concern

and it has been found that less than 0.5% turn on their location services (Li et al.,

2012) making this a challenging feat. This indicator is very useful where the user is

mobile and frequently updates their location profile. Jurgens (2013) uses Vincenty’s

geometric median - an estimate well applied to the field of Geography and land sur-

veying (Vincenty, 1975). The formula was used to estimate the location of a Twitter

user using their last 5 geotagged tweets that occurred within a 15km radius, as shown

in Equation 2.1. m is the geometric median while L is their GPS location with latitude

x and longitude y.

m = argminxεL
∑
yεL

Distance(x, y) (2.1)

2.3.5 Third Party Sources

The popularity of location-based social media sites has enabled means of interaction also

referred to as Geo-social networking. Foursquare and Yelp are good examples of these

sites offering companies, small businesses and restaurants the opportunity of registering

on their directory which gets such businesses enlisted as part of a geographic database.

Online users are able to find the location of a place of interest, say a restaurant in

Belfast, simply by searching their online directory. Previous visitors to these locations

are able to leave reviews and comments about these places called check-ins. Foursquare

allows its users to connect their Twitter accounts to Foursquare posts which are usually

geotagged thus allowing to infer their location from a Foursquare message post even

though they have not disclosed their location on Twitter (Li & Sun, 2014).

2.3.6 Time Zones

Tweets metadata usually contain a timestamp of the message and the time zone as

captured by the Twitter API. This is a useful feature that can allow the inference of

the location to at least country-level granularity (Mahmud et al., 2014). This would

15

be quite useful where there is limited and sparse location information within the body

of the message text.

2.3.7 Web Snippets

Li et al. (2011) addresses the sparsity problem of tweets in locating points of interests

by employing webpage snippets. Rae et al. (2012) searches Wikipedia to get structured

information about places to complement tweets about Points of Interests (PoIs).

2.4 Methods of inferring locations on Twitter

Diverse approaches and techniques have been used in the past and are currently being

employed to better improve the accuracy of location inference methodologies and al-

gorithms. This burgeoning field lends techniques ranging from several fields of study

involving machine learning, statistics, probability, natural language processing to geo-

graphical information systems and surveying. Diverse methods have achieved varying

levels of success; in any case the effectiveness and granularity levels achieved by these

methods continue to improve rapidly. However, the informal nature of the social me-

dia platform as well as unique language of expression brings with it some challenges

in trying to properly deduce the meaning and context of these conversations. They

contain frequent use of emoticons, sarcasms, hashtags, abbreviations and typographi-

cal errors. This leads to the need for robust methods and algorithms that will factor

that into its input. In the analysis of text messages, names of places mentioned could

be ambiguous. For example the word Washington could refer to the state or a place

bearing the same name within the District of Columbia both in the United States.

Washington DC and Washington State are 3,000 miles apart. The process of trying to

disambiguate place names is called toponym resolution. It becomes more complicated

when noun types could have similar names; for example, a person could also be called

Washington. Techniques used in location inference can be broadly grouped into three

categories namely natural language processing, machine learning and use of location

databases or gazetteers as shown in Figure 2.3.

16

2.4.1 Natural Language Processing (NLP) Techniques

Natural processing methods applied include the named entity recognition which could

be either segment-based or word-based representation (Li & Sun, 2014) with the for-

mer showing more effectiveness in recognising entities within tweets and the widely

used tool for this technique is the StanfordNER. Gelernter & Mushegian (2011) found

that use of the StanfordNER on social media texts did not accurately detect entities

including location names, especially if they were unusually abbreviated thus having

a high probability of type I error (false negatives). However, Lingad et al. (2013)

retrained four NER tools namely StanfordNER, OpenNLP, TwitterNLP and Yahoo!

Placemaker on 2,878 disaster-related tweets applying a 10-fold cross validation and

found the retrained StanfordNER to have the highest F-measure of 0.9. In Hinduja &

Patchin (2010) a hybrid approach was adopted where location entities were extracted

and parsed into a gazetteer to accurately geocode the place names mentioned in the

tweets. The conditional random field (CRF) technique is recommended for handling

complex dependencies within phrases and sentences. The University of Illinois at Ur-

bana Champaign NETagger (Ratinov & Roth, 2009) has also been well used to date.

NLP techniques often tend to be applied with probabilistic tools such as multinomial

Bayesian and generative probability models. It requires training data and may be com-

plex to apply. However, it allows the development of sophisticated algorithms that suit

the users needs. It has also been shown to have a quicker processing time. Another

benefit of using NLP is its flexibility in identifying unconventional words (which is

quite common on Twitter) as similarity checks between words can be done in order to

identify entities listed within a keyword list (Ikawa et al., 2012).

2.4.2 Gazetteers

Gazetteers and Geographical Databases are also well applied to the study and some

tools used include the United States board on geographic names popularly called GeoN-

ames1, GeoNet2 and the US census TIGER Gazetteers3. Some works have also used

a hybrid of the earlier mentioned techniques. For example Paradesi (2011) proposed a

system for inferring the current location of a Twitter user using the PipePOS tagger

and the USGS location database to resolve ambiguous location names. Gazetteers are

easy to implement (Schulz et al., 2013). Also they do not require training data but

there is a challenge of slow processing speed. Abrol & Khan (2010) show that varying

1http://geonames.usgs.gov
2http://www.geonet.org.nz
3http://www.census.gov/geo/maps-data/data/gazetteer.html

17

http://geonames.usgs.gov
http://www.geonet.org.nz
http://www.census.gov/geo/maps-data/data/gazetteer.html

Figure 2.3: Main categories of location inference techniques

the size of their Twitter dataset by increasing the depth of friends/followers relation-

ship has no impact on the time taken to compute and detect the location of a tweeter

using the gazetteer method. This can be especially frustrating in databases with very

large dataset. Thus there also exists the challenge of toponym resolution and matching

of words with the location database to cater for the abbreviations and unconventional

writing style on Twitter and in most cases location names which are found in messages

but do not exactly match the database thus are discarded and could lead to a type I

error (false negative). This would be synonymous to an error asserting that the user lo-

cation being estimated was absent or not found in the database of possible geographical

locations.

2.4.3 Probabilistic and Machine Learning Techniques

Techniques for the detection of location of Twitter users have also been adopted from

data mining and machine learning techniques. These methods have been shown to be

good methods of clustering Twitter users locations (Pennacchiotti & Popescu, 2011).

Techniques used have included k-nearest neighbour, fuzzy matching (Abrol & Khan,

2010), Naives Bayes, probabilistic clusters, Markov chain models. Ryoo & Moon (2014)

used a probabilistic model that incorporated the local words used by users while users

who had not mentioned sufficient local words had their location inferred from the local

words of their friends network. Also, in Chandra et al. (2011); Chang et al. (2012);

Cheng et al. (2010) location was inferred from probabilistic distribution of users local

words. (Backstrom et al., 2010; Li et al., 2012) use a probabilistic algorithm based

on friends relationship. Jurgens (2013) uses a graph-based approach applying label

propagation to predict location from that of other users in their network. Eisenstein

et al. (2010) develop geographic and topic models adopting Mean Field Variational

inference and Kullback-Leiber divergence. Hecht et al. (2011) proposes a Naives Bayes

model classifier. Ikawa et al. (2012) learns the patterns of location based services from

past messages to predict current location. Kinsella et al. (2011) developed language

models using Bayesian inversion. Li & Sun (2014) used a CRF classifier to identify

points of interest (PoIs) incorporating four classes i.e. lexical, grammatical, geograph-

18

ical and BILOU schema features. In Li et al. (2012) a model that considered both the

tweeting and following relationships was used. Ratinov & Roth (2009) looked at dy-

namically weighted ensemble method to create a combination of Naives Bayes, Naives

Bayes Multinomial and Heuristic classifiers that can predict user location at all levels

of granularity.

2.4.4 Multinomial Naive Bayes

This is quite popular with discrete probability distributions such as word counts in text

classification (Han et al., 2011) . They are straight forward to implement. Using the

default blackbox settings in the Scikit Learn 4 having alpha value at 1 and learn class

prior probabilities; they were also adjusted according to the classes within the dataset

- all being the default settings on the sklearn MNB classifier. With a multinomial

event model, samples (feature vectors) represent the frequencies with which certain

events have been generated by a multinomial (p1, ..., pn) where pi is the probability

that event i occurs (or K such multinomials in the multiclass case). A feature vector

X = (x1, ..., xn) is then a histogram, with xi counting the number of times event i was

observed in a particular instance. This is the event model typically used for document

classification, with events representing the occurrence of a word in a single document

(Witten et al., 2016). The likelihood of observing a histogram x is given by:

p(x|Ck) =
(
∑

i xi)!∏
i xi!

∏
i

pkxii (2.2)

2.4.5 Logistic Regression

Also known as the Maximum Entropy or Logit classifier is a regression model where the

dependent variable(s) are categorical (Han et al., 2011); The default blackbox settings

in the Scikit Learn classifier 5. Theoretically, Logistic Regression is defined as the log-

likelihood of the Linear Regression model (Witten et al., 2016). Thus in the generalized

additive form consider a set of independent variables X1, X2, ..., Xp predicting a likely

outcome (Y) with fj(f1, f2, ..., fp) unspecified smooth functions where α is the intercept

and µ(X) represents the probability of the response variable P (Y = 1) . Then the

4https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.

MultinomialNB.html
5https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html

19

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

logistic regression model is given in Equation 2.3

log

(
µ(X)

1− µ(X)

)
= α+ f1(X1) + f2(X2) + ...+ fp(Xp) (2.3)

In the experiments the Logit classifier outperformed all the classifiers in terms of pre-

cision, accuracy and recall. To avoid over-fitting, the L2-penalty also called Lasso

regularization (James et al., 2013) was used as it is more robust for handling large

number of features 6 and handles sparse data well; A phenomena that is quite common

with geo-located Twitter data sets. There was no implementation of dual or primal

formulation as the number of samples far exceeded the number of the features in the

task. A balanced class scaling was applied to handle the L2 penalty. The maximum

number of iterations was set at 100, being the default settings for the Scikit Learn

machine learning classifier that was used.

2.4.6 Neural Networks

The artificial neural network (ANN) model was also considered with the multilayer

perceptron (MLP) architecture aiming for higher predictability (Cheng & Titterington,

1994). The model adopted for the evaluation follows equation 2.4

vk = gk(ϕk(x, vk)) (2.4)

vk denotes the output from the kth hidden layer of the ANN where k = 1, 2, ...,M ,

for a single output y = f(φ(v, w)). In expressing y as a function of x with parameters

M + 1 sets of weights v1, v2, ...vM , w this becomes a non-linear regression problem

The default settings for ANN implementation in scikit learn 7 were used. The number

of neurons was 100 for two hidden layers using the rectified linear unit (ReLu) activation

function which returns for any function f(x) = max(0, x) (Glorot et al., 2011). Due

to the large size of the data the stochastic gradient-based approach as a solver for the

weight optimization and used the L2 penalty as the regularization term parameter.

The maximum number of iterations was 200.

6https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
7https://scikit-learn.org/stable/modules/neural_networks_supervised.html

20

https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://scikit-learn.org/stable/modules/neural_networks_supervised.html

2.4.7 Decision Trees

In addition, decision trees (Han et al., 2011) was used, with a mean square error (MSE)

criterion and chose the best split at each node. A maximum depth was not specified but

continued to expand the nodes until all leaves of the tree are pure and only one sample

remained on an internal node. All features were considered when looking for the best

split of the tree nodes. while decision trees tend to be handling outliers and missing

values in the input space, they have poor predictive power and unable to extract linear

combinations of features. The default settings for Decision Trees implementation in

scikit learn 8 were used.

Mathematically, let the data at node m be represented by Q. For each candidate split

θ = (j, tm) consisting of a feature j and threshold tm the data is likewise separated into

two subsets at each split of the node and the parameters that minimizes the impurity

at m

θ = argminθG(Q, θ) (2.5)

2.4.8 Random Forests

Also the performance was examined using the ensemble method of Random Forest.

This involved constructing an ensemble of 10 random decision trees in the ’forest’ as

estimators (Breiman, 2001) (Han et al., 2011). The Gini impurity was instead of

the Information Gain Criterion. The limit of the maximum feature size equal to the

square root value of the number of features. The default settings for Random Forest

implementation in scikit learn 9 were used.

Given t trees created in random subspaces, a discriminant function is needed to combine

their classification of a test point. For a point x, let vj(x) be the terminal node that x

is assigned to when it descends down tree Tj (j = 1, 2, , t) Given this, let the posterior

probability that x belongs to class c(c = 1, 2, , n) be denoted by P (c|vj(x))

8https://scikit-learn.org/stable/modules/tree.html
9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

21

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

2.5 Data Partitioning with Quadtrees

A Quadtree is a hierarchical data structure and partitioning technique for efficiently

organizes data in a pre-defined discriminative manner (Samet, 1984). A Quadtree

illustration is given in Figure 2.4. For example given an object is first decomposed into

four quadrants or nodes; numbered 1,2,3 and 4. Nodes 2 and 3 are further split based on

spatial interest (population density in this work) into 4 leaves each as they had not been

fully decomposed until pure nodes were obtained. Quadtrees effectively handle spatial

querying of geographic data (Samet et al., 1984) and proven applications in the areas of

collision detection and image processing (Mehta & Sahni, 2004). LOCINFER employed

the method because in the area of location inference application of the algorithm would

be to query the location of users around a predefined radius or some location of interest

such as a geo-political region. This method fulfills this requirement and as such within

a conventional database ultimately support searches, insertions and deletions within

the parent and leaf nodes of the dataset. Another advantage that the Quadtree method

has over uniform grids is also the time saved in implementation as the nodes with little

or no data points can be easily dropped from the query.

Figure 2.4: Spatial partitioning method illustrating decomposition and equivalent
Quadtree representation of an object

2.6 Location Inference Applications in Public Health

The early detection of an epidemic outbreak is hinged upon a surveillance system that

effectively captures the prevalence of syndromic conditions expressed by a population

of interest. Paul & Dredze (2011) shows there exists a positive relationship between

tweet mentions of disease symptoms and public health data. Syndromic data gathered

22

from tweets would be of immense benefit if spotted on time as an interesting pattern or

anomaly and better still, if the precision of the location or the part(s) within the entire

population is known or accurately inferred. Thus, Twitter user locations inferred and

known on time could help forestall the spread of a deadly disease outbreak thereby

saving lives. It will also ultimately save money as it would cost less to administer and

treat infected patients if the disease is contained in its early stages of manifestation.

2.7 Location Inference Applications in Cyberbullying

There are increasing reports of stalking and cyberbullying where people are being

verbally assaulted and at times sexually harassed by people they may or may not know.

In most cases the users would veil themselves with anonymous user accounts with the

belief that they cannot be identified. This continues to remain a challenge for police

and law enforcement, proving to be even more difficult to produce sufficient evidence to

prosecute such offenders in the court of law thus even more sophisticated technological

methods such as cryptography are being applied (Burmester et al., 2005). There are

cases that have led to the eventual suicide of their victims as well as the demise of

offenders themselves (Hinduja & Patchin, 2010). This has prompted a lot of privacy

concerns and raises questions as to how safe online social communication is. Tri & Jung

(2015) extended the Hyperlink-Induced Topic Search (HITS) algorithm to identify and

rank the relationships existing between a set of keywords (tags) and a set of location-

aware content such as videos and photos on Flickr. This further illustrates the need

to accurately map topics and conversations to related location resources within the

broader social media space.

2.8 Location Inference Applications in Crisis and Disaster

Management

Also, potential applications of this would be better public enlightenment as to what

level of information they should disclose online if they want to remain anonymous

because their location could be implicitly inferred from other means such as content of

their tweet messages, relationship with other users and their account information just to

mention a few. While some Twitter users would like to switch on the location services of

their smart phones, there is the limitation of mobile device battery life thus some only

enable the GPS function once in a while. However in event of a natural disaster such

23

as an earthquake or a Tsunami, Twitter users may switch on this service (MacEachren

et al., 2011) to support emergency rescue efforts. TEDAS is a system developed in

Li et al. (2012) for the identification of crime and disaster related event (CDE) tweets

while extracting the location from such messages from the users past tweets as well as

their friend networks using a rule-based classifier. It is expected that future work would

look at ways of further improving the granularity levels of locations inferred on Twitter.

Better algorithms would imply fewer friend network and information are then required

to infer locations accurately. Sakaki et al. (2010) applied semantic information gathered

from tweets to develop a system that detects and provides early warning alerting its

users of an earthquake occurring in a location. The location accuracy of such a system

is crucial for first responders and for emergency medical services to formulate effective

evacuation strategies. Streamlining the detection in these locations would mean a more

efficient and effective earthquake detection system.

2.9 Tweet Gathering and Analysis

Tweets made public are usually accessible in the online domain method and can be

retrieved using the Twitter REST API10 while live updates on individual or multiple

users can be extracted as required in real-time using its streaming API. This acces-

sibility makes Twitter a powerful tool in the gathering and analysis of public views

allowing its users to become social sensors within the population.

2.9.1 Tweet Corpus

Corpus sizes of tweets gathered have varied from relatively small datasets of under

62,000 tweets (Hecht et al., 2011) to as large as 615 million tweets (Ryoo & Moon,

2014). Table 2.1 Time span of the data collected was usually in the range of few weeks

to a couple of months. On the one hand, the REST API is also useful for the collection

of specific user tweets allowing for the backtracking of their timeline to gather their

most recent 3,200 tweets. At the time of writing this thesis, the Twitter search API

allows the collection of tweets by defined keywords or around a specified location name

or coordinates (geotagged messages) for tweets posted up to the previous 6-9 days.

On the other hand, the streaming API that collects the messages as they are being

broadcast would only be able to receive 1% of the Firehose. Twitter data partners such

10http://dev.twitter.com/overview/documentation

24

http://dev.twitter.com/overview/documentation

Table 2.1: Datasets and collection periods of some works
Reference Corpus Size Period Covered Duration (Months)

Bouillot et al. (2012) 2,495,000 Jan 11 May 11 5

Eisenstein et al. (2010) 380,000 Mar 10 1

Hecht et al. (2011) 62,000 Apr 10 May 10 2

Jurgens (2013) 47,700,000 Apr 12 Nov 12 8

Li & Sun (2014) 4,330,000 Jun 10 1

Mahmud et al. (2012) 1,524,000 Jul 11 Aug 11 2

McGee et al. (2013) 100,000,000 Jun 10 1

Ikawa et al. (2013) 20,000,000 Apr 11 1

Ryoo & Moon (2014) 615,000,000 Jun 10 Apr 11 13

Schulz et al. (2013) 80,000,000 Sep 11 Feb 12 6

as GNIP11 or Datasift12 provide a premium service that supplies messages covering a

longer duration as well as 100% access to the Firehose.

Another means of gathering Twitter data for training and testing location inference

algorithms would be from other researchers within the field. An example is the Social

Network Analytics Platform13 (SNAP) provided via open access by Stanford University.

It includes large tweet corpuses and social networking data which can be used for graph

analysis.

2.9.2 Results and Metrics

The results achieved by various works have significantly improved over time with re-

gards to increased accuracy and granularity levels. This has been largely driven by

refinements to algorithms and inclusion of more spatial features. In the same vein, the

effectiveness of spatial features and/or accuracy of the algorithms required to achieve

finer granularity levels increase progressively for time zones, country, region, city and

post codes respectively. For example a more accurate prediction method would be re-

quired to estimate a Twitter users home postal code as opposed to one that infers their

country of residence. Several other metrics have been presented to compare the perfor-

mance and results of the methods with one another. They include accuracy within a

specified range say 10 km, error distance - Average Error Distance (AED) and Median

Error Distance (MED). To validate the effectiveness of the location inference methods

against other baselines, the k-fold cross validation of accuracy has been well utilized

while other metrics used in evaluating the geolocation classifier performance include

11http://www.gnip.com
12http://www.datasift.com
13http://snap.stanford.edu/snap

25

http://www.gnip.com
http://www.datasift.com
http://snap.stanford.edu/snap

Precision as given in Equation 2.6, Recall shown in Equation 2.7 and F-measure, which

is the harmonic mean of Precision and Recall as given in Equation 2.8.

2.10 Precision, Recall and F-Measure

There are certain metrics used in evaluating the performance of location inference

techniques. They include: Precision, Recall and F-Measure (Witten et al., 2016).

Formulae for their calculations is given in Equation 2.6, Equation 2.7 and Equation 2.8

respectively.

From the equations, the following terms are explained. True Positives (TP): These are

correct classifications made by the location inference technique. The classifier correctly

identifies a tweet comes from a particular location grid or class.

True Negatives (TN): These are also correct classifications made by the location infer-

ence technique. Similarly, the classifier correctly identifies a tweet does not comes from

a particular location grid or class.

False Positive (FP): This occurs when the location is incorrectly predicted as yes (or

positive) within the class or location grid when it is actually negative or not from that

class.

False Negative (FN) occurs when the location is incorrectly predicted as negative when

it is actually positive or within the class or location grid.

The relationships between TP, TN, FP and FN. Also, all possible prediction outcomes

is illustrated in Figure 2.5

These class metrics used in location inference can be defined as follows:

Accuracy: This is the simple ratio of the correctly predicted locations to the total

number of tweets within either of the (GEOTEXT or UTGEO) datasets.

Precision: This is the ratio of the correctly predicted positive observations to the total

predicted positive observations.

This is the ratio of the correctly inferred locations (positive observations) to the total

26

Figure 2.5: Two Class Prediction Outcomes

inferred positive observations

Recall (Sensitivity): This is the ratio of correctly predicted positive observations to all

the observations in the actual class

FMeasure: This is the weighted average of the Precision and the Recall evaluation

metrics

AL: Actual Location IL: Inferred Location

• True Positive(TP): IL=Yes, AL=Yes

• True Positive(TP): IL=Yes, AL=Yes

• False Negative(FN): IL=No, AL=Yes

• True Negative(TN): IL=No, AL=No

Precision =
TruePositives

(TruePositives+ FalsePositives)
(2.6)

Recall =
TruePositives

(TruePositives+ FalseNegatives)
(2.7)

F −Measure =
2 ∗ Precision ∗Recall
(Precision+Recall)

(2.8)

The confusion matrix of the actual location grid versus the inferred location grid is

27

given in Table 2.2. It can be seen from Table 2.3 the growing trend of finer grained

location inference on Twitter. Over time, accuracy levels and granularity of results

have continued to improve starting from 2010 when inference was only precise to the

city-level. This resulted from the fact that location was inferred solely on the basis

of the tweet content without giving consideration to other information such as web

links, friend the user profile and other metadata associated with the message, however

with the subsequent adoption of spatial features such as user check-ins gathered from

location-based services including Foursquare, accuracy has improved significantly sub-

sequently (Ryoo & Moon, 2014) achieving a 60% accuracy within a 10km. This is a

remarkable improvement as opposed to a performance of 51% accuracy over a 160km

radius recorded by Cheng et al. (2010).

2.11 Calculating Error Distance

The concept of location inference on Twitter is such that given a set of geo-tagged

tweets Ti = {t1, t2, ..., tN} with ground truth location of ActualLoci and a predicted

location ExpectedLoci. The classifiers performance are also evaluated in terms of the

Average Error Distance (AED), Median Error Distance (MED) and Distance-Based

Accuracy which is usually within a radius of 100 miles which is equivalent to 161

kilometers. The lower the error distance, the better the performance of the classifier.

In calculating the error distance (in km) between the predicted and actual location the

Haversine formula (Shumaker & Sinnott, 1984) (Laylavi et al., 2016) was applied. Also

known as the Great Circle Distance between any two geo-coordinates on the earth’s

surface assuming an spherical shape of the Earth. This method was chosen as was

found suitable and stable in determining the distance estimation of several diverse and

closely located geo-coordinate pairs.

Table 2.2: Confusion Matrix

Inferred Location Grid
TRUE FALSE

Actual Location Grid
TRUE True Positive False Negative
FALSE False Positive True Negative

28

Table 2.3: Improvement in granularity levels over the past 5 years
Ref Year Technique ACC(%) Coverage Location Type

Cheng et al. (2010) 2010 Probabilistic (ML) 51.00 160km User location

Tri & Jung (2015) 2010 Geographic topic model (NLP) 24.00 State level Home location

Kinsella et al. (2011) 2011 Language models 13.90 Zip code level Tweet location

Kinsella et al. (2011) 2011 Language models 29.80 Town level Tweet location

Chang et al. (2012) 2012 Gaussian Mixture models & MLE (ML) 49.90 160km Home location

Li et al. (2012) 2012 Probabilistic (ML) 62.30 160km Home location

Ikawa et al. (2012) 2012 Machine learning 20.00 10km Tweet location

Sadilek et al. (2012) 2012 Dynamic Bayesian Networks 57.00 0.1km Home location

Schulz et al. (2013) 2013 Gazetteer 37.00 10km Tweet location

Mahmud et al. (2012) 2014 Probabilistic (ML) 60.00 10km Users location

2.11.1 Average Error Distance

The average error distance (AED) measures the arithmetic average error of predictions

for the messages within the dataset, however it should be noted that this metric can

be easily skewed by large ranges of values within the dataset and would particularly

be unreliable if there where a presence of an anomaly in the training of the classifier.

The AED for the classifier is given in Equation 2.9.

AED =
1

N

N∑
i=1

({|ActualLoci − ExpectedLoci|}) . (2.9)

2.11.2 Median Error Distance

The median error distance (MED) overcomes the limitation of the AED by considering

only the error values close to the median. The errors are sorted in ascending order

prior to the estimation of the Median value. This was found to be most reliable and

gives a truer indication of the performance. This is represented in Equation 2.10.

MED = MedianDistance{|ActualLoci, ExpectedLoci|}. (2.10)

2.11.3 Distance-Based Accuracy

Accuracy levels at a set distance and more specifically around a distance d is a renowned

benchmark and this was applied. It is estimated as the ratio of correctly predicted

location with an error margin less than d = 161km compared to the entire tweets count

29

of N. Equation for distance-based accuracy is given

ACC@161 =
N∑
i=1

{|ActualLoci − ExpectedLoci|} ≤ 161km

N
(2.11)

2.12 State of the Art in Misinformation Detection

The Merriam Webster Online Dictionary (multi-element approach to location inference

of twitter: A case for emergency response, mer) states Fake News as ’News reports that

are intentionally false or misleading’. In this work, Fake News in online social media is

defined as ’any story circulated, shared or propagated which cannot be authenticated.’

Thus, going by these definitions, it is posited that Fake News can also include rumors,

clickbait, propaganda, satire and parody as the truthfulness of the stories could often

times be unverifiable. Several methods have been aimed in the recent past to identify

and tackle the problem of fake news. These could be broadly categorised into:

• Content-based: Text (linguistics(Hardalov et al., 2016)); Media (images(Gupta

et al., 2013), GIFs and video) and URLs

• User-based: activity tracking (bots and spam (Ferrara et al., 2016)); bio infor-

mation (registration age(Castillo et al., 2011)); opposing views of other online

users(Jin et al., 2016)

• Metadata-based: GPS Geotags, device source, Followers and Friends Network(Tacchini

et al., 2017)

Tambuscio et al. (2015) proposed a model for tracking the spread of hoaxes using the

four parameters; spreading rate, gullibility, probability to verify a hoax and forgetting

one’s current belief. Many organisations now employ social media accounts on Twitter,

Facebook and Instagram for announcement of corporate information such as earnings

report and new product releases. Thus consumers, investors and other stake holders

take these news messages as seriously as they would for any other mass media (Kaplan

& Haenlein, 2010). Other reasons that fake news has been widely proliferated include

for humour, or just to get their readers to click on sponsored content on their websites

also referred to as ‘clickbait‘. This is aimed at unethically driving up their advertising

revenues.

30

2.13 Definition of Fake News

Fake News is defined by Shu et al. (2017) as a news article that is intentionally and

verifiably false. While (Stroud, Stroud) refers to it as intentionally false information or

propaganda published under the guise of being authentic”. Thus, for the purpose of the

project; manually or hand-labeled examples will serve as ground information to cross

check the veracity of the stance class of the tweets being classified by MISDETECT

algorithm. Fake News is synonymous with rumors as they are found to be some form

of false information also. However, according to Zubiaga et al. (2018), rumors are

circulating items of information whose veracity status cannot be verified at the time

they were posted. Further stating that, unlike Fake News, which is always false, rumors

cannot be verified at the time they were posted. It can be implied that every fake news

then starts off as a rumor. However, not all rumors are fake news as some may be

confirmed subsequently as being true. For the purpose of analysis and dataset used for

the illustration of methods and techniques adopted for this study, it will be assumed

that rumor stories eventually are fake news stories.

It is noteworthy that fake and false information spreads much quicker and deeper than

true information. Vosoughi et al. (2018) found 126,000 messages spread by almost 3

million people and found that fake news diffused up to 100,000 people while the truth

only reached 1,000 people. This is in multiples of more than a hundred. Hence, its

not a surprise that people tend to promote false information online and in some cases

the use of social bots. Kumar & Shah (2018) identified that lone wolves spread their

message faster by creating fake accounts which express the same opinion in multiple

ways to help propagate their message faster. A more effective way of achieving this

by using social botnets that retweet and share the same messages indiscriminately to

gain popularity and achieve greater spread and coverage.

2.14 Related Works in Misinformation Detection

The work on fake news detection have been initially reviewed by several authors often

referring to it the past as ‘rumors‘ not until recently in 2016, during the US presidential

elections the phrase became popular with the elected president Donald Trump, Twitter

only contains or allows their users to communicate with 140 characters on its platform

hence there is only so much that they can say to other people. However those that prop-

agate fake news, rumors and questionable posts have been found to incorporate other

mediums to make their messages go ’viral’ as was seen in the aftermath of Hurricane

31

Sandy, Gupta et al. (2013) used a Decision Tree classifier to distinguish between fake

and real images posted about fake news events Neural networks are a form of machine

learning method that found to exhibit high accuracy and Precision in the clustering

and classification of text (Ma et al., 2016). Also it showed effectiveness in the prompt

detection of spatio-temporal trends in the content propagation on social media. In this

approach, it was combined with the efficiency of the recurrent neural networks (RNN)

in the detection and semantic interpretation of images. Although this hybrid approach

in semantic interpretation of text and images is not new (Karpathy & Fei-Fei, 2015)

(Wang et al., 2016), at the time of writing this thesis, this is the first attempt involving

the use of a hybrid approach in the detection of the origin and propagation of fake

news posts.

Kwon et al. (2013) identified and utilised three hand crafted feature types associated

with rumor classification including (1) Temporal features - how tweet propagates from

one time window to another. (2) Structural Features - how the influence or followership

of posters affect other posts. (3) Linguistic Features - sentiment categories of words.

Previous work done by Gupta et al. (2013) achieved 97% accuracy in detecting fake

images from tweets posted during the Hurricane Sandy disaster in the United States

They performed a characterization analysis, to understand the temporal, social repu-

tation and influence patterns for the spread of fake images by examining more than

10,000 images posted on Twitter during the incident. They used two broad types of

features in the detection of fake images posted during the event. These include 7 user-

based features such as age of the user account, followers size and the follower-followee

ratio. Also they deduced 18 tweet-based features such as tweet length, retweet count,

presence of emoticons and exclamation marks.

Aggarwal et al. (2012) had identified 4 certain features based on URLs, WHOIs, content

and followers networks of tweets associated with the phishing tweets which usually

are a problem similar to fake and non-credible tweets but in their case also has the

potential to cause significant financial harm illegally to someone who clicked on the

links associated with these ‘phishing‘ messages

Yardi et al. (2009) developed three feature types for spam detection on Twitter; which

includes searches for URLs, matching of username patterns and detection of keywords

from supposedly spam messages. O’Donovan et al. (2012) identified the most useful

indicators of credible and non-credible tweets as URLs, mentions, retweets and tweet

lengths. Other works on the credibility and veracity identification on Twitter include

Gupta et al. (2014) that developed a framework and real-time assessment system for

32

validating authors content on Twitter as they are being posted. Their approach assigns

a graduated credibility score or rank to each tweet as they are posted live on the social

network platform.

2.14.1 Text-Based Fake News Detection

It would be shown subsequently in Chapter 4 of this thesis, that fake news can be

detected using the text-only approach without prior knowledge of the topic domain. It

is worth noting that fake and false information spreads much quicker and deeper than

true information. Vosoughi et al. (2018) has so far created the largest rumour dataset of

126,000 messages spread by almost 3 million people and found that fake news diffused

up to 100,000 people while the truth only reached 1,000 people. Kumar et al. (2018)

identified that ‘lone wolves spread their message faster by creating fake accounts which

express the same opinion in multiple ways to help propagate their message faster. A

more effective way of achieving this by using social botnets - that re-tweet and share

the same messages indiscriminately to gain popularity and achieve greater spread and

coverage. In this chapter, the aim was to explore other semantic and multi-modal signal

for misinformation in online social networks.

A conditional random field (CRF) was used by Zubiaga et al. (2016) for text based

rumor detection on the PHEME dataset. Chapter 4 of this thesis looks at a hybrid of

recurrent neural networks and convolutional neural networks to show that fake news

and rumors could be predicted achieving high accuracy without prior knowledge of the

topic domain and no feature engineering. Ruchansky et al. (2017) also used a text-based

approach for fake news detection but considered the test, response and clustering of

user features determined by support vector decomposition and integrated into a hybrid

model.

2.14.2 Text Sentiment Analysis

Sentiment analysis also known as opinion mining seeks to understand the effective

meaning of sentences and phrases. It assigns levels of classification to declarations made

by the authors; also referred to as “polarity”. It could be as simple as binary levels

such as positive and negative or sometimes neutral level of classification. Similar tools

and methods were employed by Baccianella et al. (2010) that used a weak supervised,

semi-supervised and random-walk step to create lexicons and bag-of-words sentiments.

Similarly, in O’Connor et al. (2010) using moving average of text sentiment scores over

33

a period, established that negative and positive sentiments extracted from users on

Twitter are true reflections of voters’ confidence and approval ratings of the President.

While sentiment analysis from text goes beyond polarity it could also include the

determination of the emotional state of the authors such as angry, anxious, depressed

and excited. Some sentiment dictionaries exist to help in the achievement of this task

such as Miller (1995) and Hu & Liu (2004). Sentiment analysis from text such as

Twitter and blogs are well researched topic areas. However, at the time of writing

this thesis, this is the first time emotions and sentiment analysis would be examined

in the context of fake news detection in OSN. For the scope of the current work, the

sentiment analysis of the text was limited to the negative (false/rumour) and positive

(true/non-rumor) polarities of keywords from the text messages.

2.14.3 Machine Learning Algorithms

A range of machine learning algorithms were utilised in the classification and clustering

of the data used for the prediction of fake news. The detection of the occurrence of

a fake news can draw strengths from a probabilistic learning approach (Conroy et al.,

2015) where the models using examples or a training dataset are able to learn about

patterns and build a model which can predict an occurrence from a testing dataset

based on these previous examples shown to the model.

2.14.4 Classification Models

Machine Learning-based classification has more to do with prediction unlike clustering

which has to do with finding out groups and associations within datasets. Examples

include Support Vector Machine (SVM) (Tong & Koller, 2001), Logistic Regression

(LOGIT) (Pregibonet al. , 1981), Multinomial Naive Bayes (MNB)(McCallum et al.,

1998), Decision Trees(Quinlan, 1987), Random Forests (Breiman, 2001) and Artificial

Neural Networks (ANN) (Braspenning et al., 1995).

2.14.5 Deep Learning Models

Deep learning models stem from the Artificial Neural networks (LeCun et al., 2015),

however they include the use of multiple layers for the training of the model and often

times generate better prediction with larger datasets (Goodfellow et al., 2016). Differ-

34

ent architectures have been proposed for Deep Learning and they include - Recurrent

Neural Networks (RNN) (Mikolov et al., 2010) and Convolutional Neural Networks

(CNN) which was initially developed and applied to image classification (Krizhevsky

et al., 2012). CNN have been successfully applied to text classification (Kim, 2014)

and Hierarchical Attention Neural Network (Yang et al., 2016). Deep learning models

used in this work include the RNN, CNN and HAN.

2.15 Discussion

Location inference can be applied to many areas and its applications include cyber-

bullying prevention, disaster management and in public health event prediction. The

importance and popularity of location-based social networking services continues to

grow as billions of videos are being uploaded daily and shared worldwide on Twitter

and other social networking platforms. It has been reviewed in this chapter that there

has been improvement in granularity level of inference of user locations often achieved

achieving better results where hybrid techniques are adopted. This work improves

on the performance of previously done work, proposing a grid-based content-only lo-

cation inference technique would be adopted. This approach addresses the sparsity

problem associated with various other machine learning techniques. The inclusion of

the similarity measure processing of the tweets removes redundancy and would help in

dimensionality reduction of the feature vector. In addition the task of misinformation

detection would greatly benefit from the findings of the work done in Chapter 5 and in

Chapter 3 on location inference - As this could be applied in the detecting the origin

and geolocation of users who spread misinformation posts.

The various metrics adopted in location inference include the use of Precision, Recall,

F-Measure, Average Error Distance (AED) and Median Error Distance (MED). Types

of spatial clues in OSN messages include URLs, text, Points of Interests, location

field, IP addresses, friends network and time zones. while third party sources such as

Foursquare allow the tracking of users with links to other OSN services such as Twitter.

35

36

Chapter 3

Content Aware Tweet Location

Inference using Quadtree Spatial

Partitioning

Inferring locations from user texts on social media platforms is a non-trivial but chal-

lenging problem relating public safety. This work proposes LOCINFER - a novel

non-uniform grid-based approach for location inference from Twitter messages using

Quadtree spatial partitions. The proposed algorithm uses Natural Language Process-

ing (NLP) for semantic understanding and incorporates Cosine similarity and Jaccard

similarity measures for feature vector extraction and dimensionality reduction. Twit-

ter was chosen as the experimental social media platform due to its popularity and

effectiveness for the dissemination of news and stories about recent events happening

around the world. This approach is the first of its kind to make location inference

from tweets using Quadtree spatial partitions and NLP, in hybrid word-vector rep-

resentations. The proposed algorithm achieved significant classification accuracy and

outperformed state-of-the-art grid-based content-only location inference methods by

up to 24% in correctly predicting tweet locations within a 161km radius and by 300km

in median error distance on benchmark dataset.

37

3.1 Introduction

The task of inferring users’ locations on Twitter as well as most social media platforms

is non-trivial spurring the interests of many researchers in the field of artificial intel-

ligence, computer science and behavioural sciences alike for almost a decade. Studies

show that only less than 2% of Twitter users disclose or geotag the location of tweets

(Leetaru et al., 2013) (Li et al., 2012) due to fears of being tracked by online predators

thus preserving their personal safety or by advertisers that use cookies to continually

send them often times unsolicited product advertisements that have been personalised

to their tracked location. Some social media sites even offer tailored location-based ser-

vices such as Snapchat offering a new addition called SnapMap1 where one can track

the location of friends using the App and even know the status of their current activity

including if they are sleeping or in ridding a car or shopping. These information are

quite private and the users may not even be aware they have provided such information

which could lead to stalking and posing threats especially for children (Field, 2017).

However location tracking of the online users also has benefits relating public safety

and security.

The growing threat of online crimes ranging from messages focused at propagating

hatred, to cyberbullying and spread of fake news and false information for the purpose

of promoting malicious selfish intentions; personal or political gains have continued to

cause governments, corporate organisations and individuals cause for concern. Social

media is a good tool for the promotion of information but the fact that it is uncensored

- stemming from the notion of freedom of speech which obtains in most democracies

tend to be abused. It is crucial that law enforcement bodies are able to track down

the location of these offenders and the origin of these messages to curtail their spread

before they begin to ‘infect‘ the behaviours and actions of other online users.

The large footprint of Twitter makes it an important marketplace for advertisers to

reach their consumers, and serve as projection platforms for the government to its

citizens. Knowledge of users who interact on Twitter may be quite useful for organi-

sations that render these services. There exist third party domains and other sources

such as knowledge bases. These sources amongst others are useful for estimating user

locations (Ajao et al., 2015). However, they may be unreliable and insufficient for ef-

fectively estimating the location of users. This brings the need to infer locations from

transmitted messages solely based on the content alongside other relevant metadata in-

formation captured with the tweets such as user description and time zone information

1www.snapchat.com

38

www.snapchat.com

etc.

In this chapter, there’s a proposal for a novel non-uniform grid-based approach for

location inference from Twitter messages combining quadtree spatial partitions and

semantic understanding using Natural Language Processing (NLP). The contributions

made in this chapter is given as follows.

• A discriminative grid-based approach for the determination of tweet locations

based on the content,

• A Quadtree spatial indexing technique for inferring locations based on variable

nodes,

• A NLP based hybrid word embedding model consisting of Cosine and Jaccard

similarity measures (Huang, 2008) for dimensionality reduction in the feature

vector, and representation (Christopher et al., 2008).

• Improvement in city-level grid-based location inference based solely on the content

of Twitter messages.

Location inference also referred to in literature as Geolocation Prediction has enjoyed

a fair amount of research interests by several authors working within the space. A few

works have been written on the inference of location of Twitter users. The one most

related to this work is (Cheng et al., 2010) where the authors estimated user locations

solely based on the content of their messages using supervised classification. The work

extracted local words from the messages of users with the assumption that users from

specific geographic locations would normally use words that are local to that geographic

location. For example the word howdy which is hello in English would be considered

to be more frequently used in the US state of Texas. However, the authors did not

actively seek out to recognise entities such the names of people, places and organisation

within twitter messages as part of their location inference technique unlike the proposal

in this chapter. It should be noted that some of such local words they identified could

also be geo-entities, for instance their probabilistic method identified the word ucsb to

show a peak distribution around the state of California as this was the abbreviation

for the University of California located in the city of Santa Barbara.

Location inference and privacy of geo-spatial data have always been an area of concern.

Krumm (Krumm, 2007) examined the identification of users from web search data

and was able to successfully identify their locations to the granularity level of home

addresses from GPS data. This is possible due to the very high degree of correctness

39

that GPS data typically offers. However, the availability of location information is

not always guaranteed which introduce additional challenges. The proposed approach

aims to address this issue by inferring the user’s locations to a city-level accuracy by

analysing users texts available from social media. Privacy continues to be an emerging

area of research discussion with people choosing to hide their online identities to keep

an anonymous profile from other users and in some cases for the safety and the fear

of being trolled online by cyberbullies especially in the social media and Twitter in

particular. (Han et al., 2016)

Han et al. (Han et al., 2014) used words referred as Location Indicative Words (LIWs)

and provided a spatial clue to indicate the whereabouts of the users. It was proposed

that users were more likely to be successful in preserving their privacy if they refrain

from mentioning these LIWs in their online conversations and also to actively delete

location meta data from their online footprint. This seems far from being realistic as

users are most likely to be tracked by the social media platforms who passively collect

and retain time-stamped information such as time-zones and IP addresses of their users,

Most of these meta data is then made available to the public via the Twitter API and

can be linked it to the users who created them. Other work done in the field can be

found in (Ikawa et al., 2012) that proposed a method which learns association from

locations and keywords from previous user messages to predict subsequent messages.

The challenge with this method is that to effectively train a location classifier the past

tweets of a user would have to be collected and analysed and may be prove to be

technically unfeasible because at the moment the Twitter REST API only allows the

retrieval of the last 3200 messages of any user. Secondly there is the possibility that

users can relocate over time from one city to another or even from one country and time

zone to another. Thus online themes and conversations that they tweet about today

may be different tomorrow. Our approach is not user-specific and relies on word-usage

and geo-entities associated with locations.

Jurgens (Jurgens, 2013) applied label propagation of location assignments to the knowl-

edge of locations. The work relied on the friends connections also known as their ego

network locations including self-reported ones found in the free-text fields of the user

profiles. Compton et al. (Compton et al., 2014) inferred location from the friends

network with known locations. Their work presented the largest dataset utilised till

date for the training and testing of their location inference classifier accounting for

tweets captured from over 100 million Twitter users. Chang et al. (Chang et al., 2012)

used Gaussian mixture models and Maximum Likelihood Estimation (MLE) which is

purely content-based in addition to the use of local words distribution within messages.

Mahmud et al. (Mahmud et al., 2014) used an ensemble of statistical and heuristic

40

classifiers. Their approach also followed a hybrid of both tweet content and social net-

work profile information including the friends networks. Chapter 2 gave an insight into

a range of clues for estimating user locations in addition to the message content. They

outlined three various locations that had been inferred in on Twitter including tweeting

location, user home residence and message context that have mentions or references to

certain geographical locations or points of interests. Various partitioning algorithms

are proposed in the literature to infer Tweet locations including k-dimensional trees

(Roller et al., 2012; Wing & Baldridge, 2014) or uniform grids (Hulden et al., 2015;

Wing & Baldridge, 2011). A further breakdown of reported results from related works

is presented in Table 3.1.

Table 3.1: Methods and Outcomes from Related Works in Twitter Location Inference
Author Input Method Technique ACC(%) Radius

Cheng et al. (Cheng et al., 2010) content words Probabilistic(ML) 51 160km

Eisenstein et al. (Eisenstein et al., 2010) content geo-topic Geo-Topic Model 24 State

Wing et al. (Wing & Baldridge, 2011) content locations Grid-based(Uniform) - -

Kinsella et al. (Kinsella et al., 2011) content locations Language Models 13.9 Zip Code

Kinsella et al. (Kinsella et al., 2011) content locations Language Models 29.8 Town

Ikawa et al. (Ikawa et al., 2012) content words ML classification 20-60 10-30km

Chang et al. (Chang et al., 2012) content words GMM & MLE 49.9 160km

Roller et al. (Roller et al., 2012) content locations Grid-based(kd-tree) 34.6 160km

Li et al(Li et al., 2012) content,
network

hybrid Probabilistic(ML) 66 160km

Schulz et al. (Schulz et al., 2013) content,
context

hybrid Gazetteer - -

Compton et al. (Compton et al., 2014) Network closeness Network 80

Mahmud et al. (Mahmud et al., 2014) content,
context

locations Ensemble classifiers 58 city-level

Wing et al. (Wing & Baldridge, 2014) content locations Grid-based(kd-tree) 90.2 160km

Ryoo & Moon(Ryoo & Moon, 2014) content words Location services 56.7 10km

Hulden et al. (Hulden et al., 2015) content words Grid-based(Uniform) - -

Han et al. (Han et al., 2016) content words Neural Net 40.9 -

It is posited that the task of location inference from tweets and other sources which

involves the use of text, relies on natural language processing models and machine

learning techniques to understand the semantics. There are over 500 million messages

sent by Twitter users each day2. Thus, it is humanly impossible to manually sift

through the contents of these messages and make meaning of them. NLP models such

as word embedding and pattern recognition capabilities of machine learning models are

useful in the identification of patterns (Zhong et al., 2012) within the text. This helps

in machine understanding of the human language and drawing insights suitable for the

process. NLP methods applied in this chapter includes the use of the continuous bag

of word (CBOW) model (Mikolov et al., 2013) for embedding the words into vectors.

Additionally, Jaccard similarity and Cosine distance of word vectors (Cha, 2007; Huang,

2www.twitter.com

41

www.twitter.com

2008) was computed for feature extraction and word dimensionality reduction to get

prediction-relevant text. At the time of writing this thesis LOCINFER is the first

to use Quadtree spatial indexes in combination with NLP for content-aware location

prediction on Twitter.

(Cha et al., 2015) used sparse coding and dictionary learning (PCA whitening, feature

augmentation and voting-based grid selection). While in terms of predicting Twitter

locations in real-time (Yamaguchi et al., 2014) proposed a solution that constantly

infers location of users from the social stream. (Zheng et al., 2017) categorised location

inference into the prediction of user home locations, tweet locations and the mentioned

locations.

The task of location inference from tweets and more specifically the method that relies

on the use of text bears a lot of similarity from Natural Language Processing (NLP)

techniques. Considering the vast amounts of messages being posted onto Twitter each

day, it is humanly impossible to sift through the contents of these messages and make

meaning of them. However, machine learning models are useful in the identification

of patterns thus helping in the understanding of the human language and drawing

insights suitable for the process. Hence the adoption of NLP techniques proves in-

valuable for this procedure. However, when applying NLP methods caution has to be

exercised this is due to the fact that tweets do not necessarily imply the exact same

resemblance to text found in blogs and corporate or news websites. There is an air

of informality on social media openly embracing the use of abbreviations, sarcasm,

irony and non-conventional text such as emojis and emoticons. These tend to mislead

machine learning classifiers and constitutes as noise in the task of training or testing

the algorithms. Also, the brevity of standard Twitter messages only constitute of 140

characters each thus limiting the user expressions. Some users especially government

and corporate accounts have found a way around this brevity by breaking down a sin-

gle message into multiple tweets e.g. a lengthy message with 700 characters can be

transmitted in 3 parts and sent as 1/3, 2/3 and 3/3 etc.

3.2 Methodology

LOCINFER proposes a new grid-based approach for location inference from Twitter

messages using quadtree spatial partitions. The proposed algorithm incorporates Co-

sine similarity and Jaccard similarity measures for NLP-based feature vector extraction

and dimensionality reduction. The summary of the illustration of the approach towards

42

content-based location inference by LOCINFER is given in Figure 3.1 and described in

detail in this section.

A functional block diagram of the proposed algorithm is depicted in Figure 3.1.

Figure 3.1: Functional diagram illustrating the tweets location inference task.

3.2.1 Uniform Grid Clustering versus Discriminate Partitioning Tech-

nique

In the determining of the location of the tweets, following a supervised machine learning

approach, classes or labels need to be created for the classifier. These classes would be

the location targets in the prediction task. Although all the tweets would be geotagged

as part of the training and testing data input into the classifier. The geotag of each

tweet may be different and also the varaince of the location of each tweet may not be

uniform. For example, tweets collected from users in the united States may be across

the entire continental which would be quite a large spread.

Another important need for having labels of some sort is that it helps improve classifi-

cation accuracy. For example, if 670,000 geotagged tweets are collected in one corpora,

such as in the case of the GEOTEXT dataset. Trying to predict the location of all the

10,000 users which sent these messages would be practically impossible as the number

of labels would have been too much for the classifier. This would be extremely com-

putationally expensive to run in terms of the time and computing power required to

execute this task.

However, by simply dividing the plotted geotags into ’regions’ or ’grids’ following a

row-major ordering, it would help create clusters of location labels. An illustration of

the uniform grid approach is shown in Table 3.2. This is the most naive form of tweet

clustering aimed at being used as prediction targets or labels for location inference

classifiers. They include clusters of uniform squares of 4x4, 8x8, 16x16, 32x32. The

lattices named A, B, C and D respectively each have grids that contained individual

tweets having their geotags of latitudes and longitudes fall into the derived polygon.

The more the number of grids created, the higher the degree of granularity, accuracy

and detail required of the classifier. For example, very large grid sizes as in Lattice A

with only 16 grids could be prediction to the level of a timezone such as East Coast or

43

Table 3.2: Grids of Message Geotags
4 × 4 Lattice (A) 8 × 8 Lattice (B) 16 × 16 Lattice (C) 32 × 32 Lattice (D)

G1 G2 ... G4 G1 G2 ... G8 G1 G2 ... G16 G1 G2 ... G32

G5 G6 ... G8 GG9 G10 ... G16 G17 G18 ... G32 G33 G34 ... G64

.

.

.

G12 G13 ... G16 GG57 G58 ... G64 G241 G242 ... G256 G993 G994 ... G1024

the West Coast. In this case, not much precision is required of the classification task.

Similarly, very small sized grids applied on the same US dataset as seen in Lattice D

(1,024 grids) could give a higher level of precision and granularity to as much as the

post code level.

While a finer grained cluster of training data could aid the classifier to give more precise

prediction, there is a major restriction that could hinder the achievement of this. The

main challenge is the tweet geo-sparsity problem. As it is seen that the tweets collected

have close similarity to the demographic population of the united states cities of under

5000 people. The tweet distribution aligns with the demographic spread of the United

States. For example, there are more tweets collected around New York as opposed to

Seattle. This is because the former is more densely populated than the latter. Thus it

is expected that more users and messages would be sent from around New York than

from Seattle.

In this instance, the application of a uniform grid approach to the map would mean

tweets sent from the east coast are going to have a lot of tweets while those from the

west may even have empty or very few thereby creating an unfair class imbalance. To

address this challenge, a discriminate partitioning technique is required which would

introduce a bias in determining non-uniform sizes of the grids based on their density.

The proposed discriminate technique is the Quadtree approach.

3.2.2 Text Preprocessing

As the first step in the processing pipeline, perform text pre-processing was done. In

the various datasets the words serves as the features while the grids served as the

labels for each of the tweets. Normally a tweet would contain 140 characters (from

November 2017 this is now extended to 280 characters). However there was a need

to perform feature reduction to obtain only words relevant in determining the geo-

spatial properties of the words. This includes text cleaning and character processing

44

Figure 3.2: Methods of Word Embedding in Natural Language Processing

such as, a) removal of duplicate tweets, blank tweets, URLs/hyper-links, user-names,

stop-words and numbers; b) normalisation of words; c) word stemming; d) handling

punctuations or e) tokenisation. Description of these preprocessing techniques are

collated in Table 3.3.

3.2.3 Converting Clean Tweets to Word Vectors

A neural word embedding model called word2vec was adopted for converting the word

tokens extracted from the clean pre-processed tweets into numerical form (vectors)

serving as input for the machine learning classifiers. This was chosen as it has achieved

recent success in word embedding for text mining and natural language processing tasks.

The ability of Word2Vec to perform algebraic operations and vector additions makes it

suitable in representing words in dimensions as well as the context in which they have

been used. Using such approach, allows the discrete state in which words normally

occur be better understood by examining the transitional probabilities between these

states. This implies that not only can similar-looking words be identified, also the

context in which they have been used can be discovered. This provides a form of

similarity discovery based on word usage in the vocabulary. This intuitive function that

makes it quite useful also in deep learning models such as Recurrent Neural Networks

(RNNs). For the purpose of this work, two similarity functions which exist in word2vec

were harnessed in building the word vectors; namely the Jaccard Similarity measure

and Cosine Similarity. The former looks at how identical any two sets of word tokens

are while the latter measures the angular distance between the word vectors. Similarity

scores for both functions range between 0 and 1.

Word2Vec has the potential to use either of two types of approach to predict or compare

45

Figure 3.3: Skip Gram Model Architecture for Word2Vec

target words namely, the continuous bag of words (CBOW) which uses context to

predict the current word or the continuous skip gram predicts surrounding words given

the current word. The latter has been found to be more effective in learning word vector

representations in unstructured text (Mikolov et al., 2013) (Mikolov et al., 2013). Thus

the continuous skip-gram approach is the one used in this work. The skip gram model

architecture is given in Figure 3.3. This illustrates how a typical word tokens from the

tweets would be converted into vectors by the architecture.

The basic illustration of the skip-gram input-output operation in Word2Vec is given in

Figure 3.4. The input is the center word while the context words are the prediction

targets. Given W is an array of words, selecting a sliding window size of 2 words, if

W(i) is the input (center word), then W(i-2), W(i-1), W(i+1), and W(i+2) will be the

context words.

An example of word prediction from a sentence is given in Figure 3.5

The variables in the diagram are explained formally and thus; Given V unique word

tokens in the tweet corpus, x Input layer N Number of neurons in the hidden layer of

neural network W Weights between input layer and hidden layer h Hidden layer W’

46

Figure 3.4: Basic Skip Gram Input-Output Illustration

47

Figure 3.5: SkipGram Sentence Example

Weights between hidden layer and output layer y A softmax output layer

3.2.4 Feature Vector Creation using NLP

The proposed work incorporates natural language processing methods in creating the

feature vector. This includes Word Embedding, where the words are converted to num-

bers in order to process them effectively (Mikolov et al., 2013) and forming the vector

representation of those words. There are two broad categories of word embeddings

namely, a) frequency-based and b) prediction-based word embeddings as seen in Fig-

ure 3.2. Available models for word embedding include the continuous bag-of-words

CBOW model (Zhang et al., 2010), Word2vec model (Mikolov et al., 2013) and Glove

model (Pennington et al., 2014). Prediction based word embedding techniques such as

word2vec are proved to be the state-of-the-art technique and have the advantages over

deterministic methods such as conventional bag-of-words or count vectors. These also

have the ability to incorporate neural networks improves their performance compared

to their predecessors. For LOCINFER the word2vec model proposed by (Mikolov et al.,

2013) was adopted.

The NLP-based text processing for feature vector creation includes following three

48

central steps:

Calculation of linear vector: Linear vector calculations are implemented on feature

vectors using word2vec. An example of this is King - Man + Woman = Queen. This is

inherent in the fact that once words are converted into vectors they lend themselves to

algebraic and mathematical operations thus revealing the association and relationships

that exist between them. In the above example the gender is the relationship between

them.

Identification of synonyms used in the messages: Words that have the same seman-

tic meaning are given the same representation. In essence it looks out for word syn-

onyms avoids redundancy and significantly reduces the size of the feature vector and

computing time. For example the two sentences S1 = {That is a small thing} and S2

= {That is a little thing} will be considered the same, thus improving the effectiveness

of their respective word-vector representation.

Determination of similarity threshold: Similarity thresholds can be specified where

the distance between the feature vectors is measured with the cosine similarity and

Jaccard similarity functions (described in Eq. (3.1) and Eq. (3.2) respectively). In

this regard, words that have similar syntactic appearance but were however mis-spelt,

exaggerated or abbreviated would be recognised and given the same representation

within the vector space. This can be achieved by the cosine function to compare their

similarity with the English language dictionary. For example, Yeeeees is equivalent to

Yes or Gooooood is recognised as Good.

In order to measure the closeness between the word feature vectors two types of simi-

larity measures (Huang, 2008) were used namely, a) Cosine similarity and b) Jaccard

similarity as described below. Considering two non-zero vectors, p and q, each having

component values 1, 2, ...n, their cosine similarity (Simc(p, q)) is calculated in Equation

3.2 and Equation 3.1 respectively.

Simc(p, q) =
p.q

||p|| ||q||
=

n∑
i=1

pi.qi√
n∑
i=1

p2i

√
n∑
i=1

q2i

(3.1)

49

Figure 3.6: Geo-located US Tweets captured in the simulation dataset

Figure 3.7: US cities with population over 5,000.

For the same vectors the Jaccard similarity (Simj(p, q)) is calculated by:

Simj(p, q) =
|p ∩ q|
|p ∪ q|

. (3.2)

3.2.5 Sparsity of Tweets and Quadtree

To perform exploratory data analysis and investigate how the simulation dataset of

730,000 geotagged tweets was spatially distributed in terms of their geographical rep-

resentation, there was a need to plot the actual latitudes and longitudes of these tweets

50

onto the map of the United States. Since the Twitter API had the geographical bound-

ary box setting restricted to the continent of the United States at the time of the data

collection. Using the GGPLOT2 library in R programming language 3, the graphical

plot of the tweets onto the map of the United States is illustrated in Figure 3.6.

Similarly, Figure 3.7 which was also created using GGPLOT2 in R, show the plot of

US cities with a population density of 5000 or more. The figures used were for the

United States Census Bureau at the 2010 US census (Agency, 2013). Each point on

the plot are equally represented as long as the city was recorded to have a population

that exceeded 5000 people. This approach follows a similar method which was adopted

by Cheng et al. (2010).

Comparing Figure 3.6 and Figure 3.7, it can be seen that the tweeting geo-locations

bear close resemblance to actual population demographies, showing similar density

patterns. Considering that the continental United States has a total geographic area

of 6,110,264 square miles (Agency, 2013), it should be noted that this challenge with

the dataset is due to the geographical outlay of the country as some areas were more

inhabited than others. Thus tweets were considered to have a sparse distribution in

some areas. As such when the map was uniformly split into grid sizes (Gi), as depicted

in Table 3.2, some grids contained too little dataset to be used for training the classifier

while some other grids contained too much tweets. This presented a major limitation

in the estimation of location of the users using a uniform grid approach.

Evaluation results in terms of uniform grid classification precision on the simulation

dataset presented in Figure 3.8 shows the strong correlation between the number of

tweets within each of the grids namely 4x4, 8x8, 16x16 and 32x32 all done using the

uniform spatial partitioning method illustrated in Table 3.2. The precision value was

plot against each of the 4 split grids. There was a direct relationship between the log-

value of the counts of observations each uniformly partitioned grid and their precision.

This implies the presence of a bias favouring highly populated grids while the less

populated ones got lower precision.

Following this observation, LOCINFER was used to cluster the dataset in a biased

manner now dependent on the counts of observations within each grid. This created

more effective labeled training dataset for the classifiers. In contrast to using a uni-

form splitting approach, Quadtrees being hierarchical spatial data structures (Mehta

& Sahni, 2004) offer a solution that dynamically addresses the sparsity problem by

discriminatively splitting denser parts of the map into smaller grids while the more

3https://www.rdocumentation.org/packages/ggplot2/

51

https://www.rdocumentation.org/packages/ggplot2/

0 2 4 6 8 10 12 14 16
0

1
P

re
c
is

io
n

Uniform Grids - 4x4

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
Uniform Grids - 8x8

0 20 40 60 80 100 120 140

Grids

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

0 20 40 60 80 100 120 140

Grids

0.0

0.2

0.4

0.6

0.8

1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L
o
g

C
o
u

n
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Uniform Grids - 16x16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L
o
g

C
o
u

n
t

Uniform Grids - 32x32

Precision LogCount

Figure 3.8: Interaction between precision and log of uniform grid counts

sparsely distributed parts would then be captured in larger grids.

3.2.6 LOCINFER and Quadtree Data Partitioning

LOCINFER implementation considered a variable resolution constraint which can be

adjusted. As a result, it addresses the bias mentioned earlier in Section 3.2.7. For

empirical purposes and during the decomposition process, the maximum number of

points in each grid was set in multiples of 5000, i.e., 10000, 15000, 20000 etc. It

can be seen in Figure 3.9 As the dataset is now more fairly split across more grids it

was observed significant correlation between the log values of the grid counts as well as

improvement in the level of accuracy, Average Error Distance (AED) and Median Error

Distance (MED) which are further described in Section 3.3. The rationale for choosing

these sizes was based on previous experimental trials done with random sample sizes.

52

3.2.7 Tweet based bias removal

In addition to the Quadtree partitioning, a population based bias removal technique

was adopted. The geo-spatial visualisation of the US tweets in Figure 3.6 indicates more

visible activities towards the North East of the country; this bears a true resemblance

of Figure 3.7 which illustrates the population of the United States (US Census Bureau,

2016) as discussed earlier. This implies that there is a bias favoring a larger count size

as opposed to less dense grids. This is clearly a problem due to the sparse distribution

of the tweets and as seen from the geographical map, tweets on the East coast (around

New York etc tend to have normally a larger population density and thus more user

tweets are included in the training data for this purpose). In order to further remove

this bias a weighted measurements of the outcome and incorporated this within the

measurement metric to be further discussed in Section 3.3 was used in Figure 3.9 was

generated using LOCINFER Quadtree structure.

Figure 3.9: Geo-located US Tweets partitioned with LOCINFER Quadtree algorithm

3.2.8 Training of Location Classifier

The task of content-based location inference can be interpreted a classification prob-

lem. A number of machine learning classifiers (Han et al., 2011) were examined in-

cluding the Logistic Regression (Maximum Entropy), Random Forests, Decision trees,

Artificial Neural Networks and the Multinomial Naive Bayes (MNB) classifier for su-

pervised classification of more than 730,000 messages geotagged to the continental

United States. These served as preliminary investigation before the training on base-

line datasets namely GEOTEXT(Eisenstein et al., 2010) and UTGEO-Small(Roller

et al., 2012) indicates better performances by Multinomial Naive Bayes and Logistic

Regression which are also commonly used in similar dataset by other researchers. This

subsection briefly revisited these two classifier before reporting the results. In the

53

classification, the words served as the features while the grids served as the labels or

predicted results of the task. In training and testing the classifier, 75% of the data was

randomly split into training while the rest 25% used for testing.

3.2.9 Data

The benchmark datasets used include the UTGEO-Small Dataset(Roller et al., 2012);

This consists of 670,000 geolocated twitter messages from the continental united states.

This was collected and used as part of the training the model. Also the GEOTEXT

dataset of (Eisenstein et al., 2010) sufficient for the evaluation of the two MNB and

Logistic Regression models. This one was also comprised of geolocated twitter messages

of approximately 380,000 messages collected from twitter. Both datasets form the

baseline datasets for comparison with the LOCINFER technique.

3.3 Results and Discussions

This section describes the measurement metrics that were used for evaluation of the

LOCINFER technique, the results and related discussions.

3.3.1 Experimental Results and Discussion

The summary performance of LOCINFER, measured against various metrics such as

average error distance (AED) as calculated in Eq. (2.9), median error distance (MED)

and predicted accuracy to the nearest 161km from Eq. (2.10) and Eq. (2.11) respectively

are shown in Table 3.6. A detailed breakdown of each of the classifiers (MNB) and

(Logit) for both GEOTEXT datasets is given in Table 3.4 while that of the UTGEO-

Small dataset is given in Table 3.5.

On the GEOTEXT dataset from Table 3.4 LOCINFER achieved significant improve-

ments as the grid counts reduces from 20,000 all the way to 5,000 tweets in all three

metrics specifically MED of 39.15km, AED of 598.44km and 59.47km performing bet-

ter than methods that had been applied on the same dataset (Eisenstein et al., 2010),

(Wing & Baldridge, 2011), performing better than (Hulden et al., 2015) by more than

150km in AED and almost 300km in MED Similarly, from Table 3.5 and 3.6 LOCIN-

FER performed better than (Roller et al., 2012) by 24% in terms of ACC@161, more

54

400km better prediction for median error distance and over 250km more accurate av-

erage error distance.This implies that it was unable to go beyond the maximum grid

size and a granularity level finer than 5000 tweets as this could be lead to overfitting

of the training data.

In terms of the computing time to execute both methods using LOCINFER algorithm,

it was seen from Table 3.4 and Table 3.5 that on both datasets the MNB was quicker to

implement in terms of the processing time than the Logit which took a little bit longer as

it was more computationally expensive. The implementation of both machine learning

classification was done on Windows i7 desktop processor. The difference in processing

time can be seen in Table 3.5 and Table 3.4. On average about 20 minutes longer to

execute. While LOCINFER performs better on all metrics namely AED, MED and

ACC@ 161, it should be noted that the AED is less influenced by anomalous values in

the training dataset as it relies on median values. However, MED should be given more

consideration over the AED as the latter can be affected by a range of very low and

very high error distances thus not giving a fair assessment of the classifier performance.

This work also shows the performances of the method with and without considering

demographic biases as discussed in 3.2.7. It is evident the performance has improved

significantly while bias was removed using a weighting parameter that is proportional

to the demographic distribution. Finally LOCINFER was compared with other grid-

based methods in Table 3.6. The result indicates that LOCINFER outperformed the

existing grid-based location inference techniques on Twitter. Showing significantly

better results in terms of AED, MED and Accuracy at an error distance of 161km

radius.

3.3.2 Comparison of Classifier Performance

Evaluating the performances of the two classifiers and how well they adapt to grid

sizes, From the table of the optimal grid values, it can see that the LOGIT classifier

does a better job than the MNB classifier in terms of achieving higher precision from

less populated grids even as low as 300 tweets in a grid for the 5k partition. This

performance is consistent across both datasets of UTGEO and GEOTEXT.

55

3.3.3 Behaviours of the LOGIT and MNB Classifiers

For the LOGIT classifier, a general trend that can be observed from the 4 sets of

quadtree graphs plotted in quadruples; at that the onset, there is an inverse relation-

ship between the precision and recall. It is observed that irrespective of the classifier

used, provided the level of true positives (TP) stays constant, as the population of

the clustering grids increases, then the following happens based on the expressions in

equation (1): - False Positives also increase leading to lower Precision (bad) - False

Negatives decrease leading to higher Recall (good)

The MNB classifier tend to follow more the trend of Precision, Recall and FMeasure

right from small to large grid sizes. This is a contrast to the LOGIT classifier. As the

grid counts further increases, an equilibrium point is reached. At this point, precision,

recall and F-measure seem to reach a close value for all of the three metrics. These

points is denoted with vertical red lines in graphs of Figure 3.10, 3.11, 3.12 and 3.13.

3.4 Performance of the Classifiers on Various Datasets

and Splitting Criterion

In evaluating the performance of the classifiers, there was a comparison of how the

various grid clusters/sizes of 20000 tweets (20k), 15000 tweets (15k), 10000 tweets

(10k) and 5000 tweets (5k) influenced the various metrics of precision, recall and F-

Measure. These performances were also evaluated against the two benchmark datasets

- namely the UTGEO-Small and GEOTEXT datasets respectively. The results of these

evaluations are plotted in 4 graphs (Figure 3.10, Figure 3.11, Figure 3.12 and Figure

3.13).

The black dotted line on each graph is the tweet count within each grid. For purposes

of clarity, the clustered dataset has been sorted by grid size in ascending order such

that the metrics of smaller grids are plotted first on the graph which leads to a positive

slope as the grid counts are plotted as black dots on each of the graphs. Precision,

Recall and F-measure metrics are represented as dashed blue, dashed orange and solid

green lines respectively. Each graph has two Y-axes; one on the left and the other on

the right; one of the vertical axes is for the grid counts while the other axis is a measure

of the Precision, Recall or F-Measure; this metric value would range from 0 to 1. The

dashed red vertical lines represent the region of convergence of the three metric values.

While the x-axis denotes the labels of each grid.

56

Also, it can be observed that the corresponding regions of convergence vary from one

classifier/dataset to another. Further discussions about each of these graphs and their

findings are presented in subsequent sections. A maximum splitting value for the

algorithm was set. This implies that by the generic nature of Quadtrees, no minimum

grid count would be set. Thus, some grids could have very few tweet counts relative to

other grids under the same split criterion

Generally, it can be seen from all the four charts that the larger the specified tweet

counts per grid, the fewer the number of grids that the data is clustered into. On the

UTGEO-Small dataset as shown in Figure 3.10 and Figure 3.12, setting a criterion

of 5k splits the dataset into approximately 420 grids, 10k resulted into 200 grids, 15k

produced 150 grids and 20k gave 115 grids. While the splits of the GEOTEXT dataset

illustrated in Figure 3.11 and Figure 3.13 shows the approximate number of grids to

be 250, 120, 80 and 60 under 5k, 10k, 15k and 20k split criterion respectively.

3.4.1 Performance of LOGIT Classifier on UTGEO-Small Dataset

Figure 3.10 presents the performance of the LOGIT classifier on the UTGEO dataset

under each of the four splitting criterion of 5k, 10k, 15k and 20k respectively. Smaller

grids tend to give unreliable results this is evident by the large disparity between the

precision, recall and measure. For these grids, precision appeared to be quite high; in

some instances as high as 1 while the values of recall and f-measure for the predicting

the same grids were quite close to zero. However, as the grid sizes increased from left to

right on the graph, it can be seen that the large disparity between the metrics tended

to get smaller, leading to points of convergence where grid sizes ranged from 2500 to

3500 tweets. These converging points were around Grid labels G380, G170, G135 and

G95 for 5k, 10k, 15k and 20k splits respectively. As expected, the smaller the splitting

criterion, the smaller the grid size at the point of convergence for example around 4000

tweets for the 4k criterion in grid G380 and around 14000 tweets for the 20k splitting

criterion in grid G95.

3.4.2 Performance of LOGIT Classifier on GEOTEXT Dataset

Figure 3.11 presents the performance of the LOGIT classifier on the GEOTEXT dataset

under each of the four splitting criterion of 5k, 10k, 15k and 20k respectively. Also,

initially on the left hand side of the graph, the smaller grids were plotted first with

their metrics and grid sizes, again very high fluctuations at the start which gradually

57

Figure 3.10: Combined Performance of the LOGIT Classifier on UTGEO dataset vari-
ants

settles around grid counts of 3500(G230), 8000(G110), 12000(G70) and 13000(G50) for

split criterion of 5k, 10k, 15k and 20k respectively.

3.4.3 Performance of MNB Classifier on UTGEO-Small Dataset

Similarly, Figure 3.12 presents the performance of the MNB classifier on the UTGEO

dataset under each of the four splitting criterion of 5k, 10k, 15k and 20k respectively.

The disparity and divergence between all three metrics was quite high around the small

grids but as they increased in size, it would be seen that the convergence and more

reliable estimates was achieved around G380, G180, G140 and G100 for grid sizes of

4000, 8000, 12000 and 15000 tweets respectively.

58

Figure 3.11: Combined Performance of the LOGIT Classifier on GEOTEXT dataset
variants

3.4.4 Performance of MNB Classifier on GEOTEXT Dataset

Figure 3.13 presents the performance of the MNB classifier on the GEOTEXT dataset

under each of the four splitting criterion of 5k, 10k, 15k and 20k respectively. Points

of convergence in this instance was around G240, G118, G70 and G55 for grid counts

of 4000, 9000, 12000 and 15000 tweets respectively.

59

Figure 3.12: Combined Performance of the MNB Classifier on UTGEO dataset variants

60

Table 3.3: Text Cleaning and Pre-Processing Steps

TASK DESCRIPTION

Duplicate
Tweets

it was discovered that some tweets were unnecessary being posted,
leading to multiple instances of the same features but with pre-
dictive significance. They tended to be more like spam messages
hence removed from the data set

Blank
Tweets

There is also no benefit to the classifier where tweets have no
content or characters in them and no sort of text processing can
be on the messages even if the tweets contain location metadata
and are geotagged

URLs and
Hyperlinks

With regular expressions this ensures that only words remain in
the analysis of the messages. Although URLs may be unique to
each message and can sometimes be used to decipher web sources
of message text and embedded images, these were removed from
the training and testing corpus as its raw form distort the per-
formance of the classifier models

Usernames These are generally mentions of other users with the @ prefix
aimed at quoting, retweeting or replying their messages. As these
only bring into repetition their names and have no location cor-
relation or significance hence their exclusion from the refined text
corpora

Tokenisation strip white spaces as well as the splitting of words into ’tokens’ to
handle each tokenized word as a feature in the classification task

Word Nor-
malisation

As conversations on social media tend to appear in all forms of
capitals and lower case characters it is essential to avoid redun-
dancy; This ensures words are not unnecessarily repeated within
the vector space. For example the word ’Miami’ will be trans-
formed into ’miami’

Stopwords These would be words that are commonly used in the English lan-
guage vocabulary and have no significant impact on the geospatial
identification of the messages or their authors. Such words would
have such a frequent occurrence such that the sensitivity and ac-
curacy of the classifier is hindered and not effective. Example
words include This, his, the etc.

Word Stem-
ming

It was found necessary to shorten words all still aimed at feature
reduction and vector space optimisation. For example words such
as ’sudden’ and ’suddenly’ are stemmed to ’sudden’

Punctuations As part of cleaning up the text, punctuation, special and non-
ASCII characters such as emojis and emoticons are cleaned out
of the corpus

Numbers As the scope of the task is strictly a word-based approach, num-
bers were not found useful in the training as they were removed
from the corpora

61

Table 3.4: Quadtree-based classification showing Error Distance and Compute Time
for two different classifiers on GeoText Dataset

Grid Med-ED Avg-ED ACC@161 Time
Count (km) (km) (mins)

Logit - GeoText dataset

20,000 143.98 571.39 51.72 68

15,000 125.73 700.76 53.84 70

10,000 129.18 620.81 52.04 73

5,000 39.15 598.44 59.47 79

MNB - GeoText dataset

20,000 411.22 721.11 38.57 58

15,000 1009.82 579.44 41.61 58

10,000 279.78 876.67 30.76 58

5,000 400.62 853.33 42.57 58

Table 3.5: Quadtree-based classification showing Error Distance and Compute Time
for two different classifiers on UTGeo-small Dataset

Grid Med-ED Avg-ED ACC@161 Time
Count (km) (km) (mins)

Logit - UTGeo-small dataset

20,000 249.45 833.10 43.70 78

15,000 124.44 651.81 54.75 78

10,000 92.86 618.07 57.30 79

5,000 45.00 600.79 60.24 81

MNB - UTGeo-small dataset

20,000 665.31 1093.45 30.20 71

15,000 449.78 907.65 40.07 71

10,000 418.08 828.13 42.56 71

5,000 380.76 855.64 43.76 71

62

Table 3.6: Our Method and other Grid-Based Results

Author Method AED MED ACC@161

GeoText dataset

Eisenstein et al. (Eisenstein et al., 2010) Topic Models 900 494 24

Wing et al. (Wing & Baldridge, 2011) Uniform 967 479 N/A

Hulden et al. (Hulden et al., 2015) Uniform 764.8 357.2 N/A

Our Quadtree 598.44 39.15 59.47

UTGeo-small dataset

Roller et al. (Roller et al., 2012) kd-tree 860.0 463.0 34.6

Our Quadtree 600.79 45.00 60.24

Table 3.7: Minimum Suggested Grid Sizes to achieve good Precision
GRID Logit Geotext Logit UTGeo MNB Geotext MNB - UTGeo

20K 895 522 1771 719

15K 534 484 1771 1337

10K 562 484 2011 1492

5K 650 299 1436 1105

Figure 3.13: Combined Performance of the MNB Classifier on GEOTEXT dataset
variants

63

64

Chapter 4

Fake News Identification on

Twitter with Text - content only

The problem associated with the propagation of fake news continues to grow at an

alarming scale. This trend has generated much interest from politics to academia and

industry alike. The misinformation detection technique (MISDETECT) that detects

and classifies fake news messages from Twitter posts using a hybrid of convolutional

neural networks and long-short term recurrent neural network models. It is reported

in this work that using this deep learning approach achieves an 82% accuracy. Intu-

itively identifying relevant features associated with fake news stories without previous

knowledge of topic domain.

4.1 Introduction

The growing influence experience by the propaganda of fake news author is now cause

for concern for all walks of life. Election results are argued on some occasions to have

been manipulated through the circulation of unfounded and some time doctored stories

on social media including microblogs such as Twitter. All over the world, the growing

influence of fake news is felt on daily basis from politics to education and financial

markets. This has continually become a cause of concern for politicians and citizens

alike. The impact could also be severe. On April 23rd 2013 the Twitter account of

the news agency, Associated Press which had almost 2 million followers at the time

was hacked. The following message was sent ”Breaking Two Explosions in the White

65

Figure 4.1: Tweet allegedly sent by the Syrian Electronic Army from hacked Twitter
account of Associated Press

House and Barack Obama is injured.” shown in Figure 4.1. This message led to a flash

crash on the New York Stock Exchange where more than 140 points was shaved off the

Dow Jones Industrial Average translating to investors losing 136 billion dollars on the

Standard & Poors Index in two minutes (Keller, 2013). It would be interesting and

indeed beneficial if the origin of messages could be verified and filtered where the fake

messages were separated from authentic ones. The information that people listen to

and share in social media is largely influenced by the social circles and relationships

they form online (Leskovec & Mcauley, 2012). Accurately tracking the spread of fake

messages and especially news content would be of interest to researchers, politicians,

citizens as well as individuals all around the world. This can be achieved by using

effective and relevant ‘social sensor tools‘ (Schifferes et al., 2014). This need is more

so important in countries that have trusted and embraced technology as part of their

electoral process and thus adopted e-voting. Ceron et al. (2014) found in France and

Italy even though internet users may not accurately represent the demographics of the

entire population, opinions on social media and mass surveys of citizens are correlated

as they are both found to be largely influenced by external factors such as news stories

from newspapers, TV and ultimately on social media.

In addition, there’s a growing and alarming use of social media for anti-social be-

haviours such as cyberbullying, hate propaganda, crime and for the radicalisation and

recruitment of individuals into terrorism organisations such as ISIS (Ferrara, 2015). A

study by Burgess et al. (2012) into the top 50 most retweeted stories with pictures of

the Hurricane Sandy disaster found that less than 25% were real while the rest were

either fake or from unsubstantiated sources. Facebook announced the use of ‘filters‘ for

66

Table 4.1: Most circulated and engaging fake news stories on Facebook in 2016
S/N Fake News Headlines Category

1 Obama Signs Executive Order Banning The Pledge Of Allegiance In Schools Nationwide Politics

2 Woman arrested for defecating on boss’ desk after winning the lottery Crime

3 Pope Francis Shocks World, Endorses Donald Trump for President, Releases Statement Politics

4 Trump Offering Free One-Way Tickets to Africa & Mexico for Those Who Wanna Leave America Politics

5 Cinnamon Roll Can Explodes Inside Man’s Butt During Shoplifting Incident Crime

6 Florida man dies in meth-lab explosion after lighting farts on fire Crime

7 FBI Agent Suspected in Hillary Email Leaks Found Dead in Apparent Murder-Suicide Politics

8 RAGE AGAINST THE MACHINE To Reunite And Release Anti Donald Trump Album Politics

9 Police Find 19 White Female Bodies In Freezers With ”Black Lives Matter” Carved Into Skin Crime

10 ISIS Leader Calls for American Muslim Voters to Support Hillary Clinton Politics

removing hoaxes and fake news from the news feed on the world’s largest social media

platform especially in Germany (BBC, 2017) This was prior to the presidential elec-

tions in the country. The development followed concerns that the spread of fake news

on the platform might have helped Donald Trump win the US presidential elections

held in 2016 (Solon, 2016) According to the social media site, (Silverman, 2016) 46%

of the top fake news stories circulated on Facebook was about US politics and election.

Table 4.1 gives detail of the top ranking news stories that was circulated on Facebook

in year 2016.

4.1.1 Background of the Problem

Misinformation and fake news is growing at an alarming rate on the Media - social and

conventional media, print and electronic. The work of detecting the veracity a message

in Online Social Networks (OSN) remains a problem that poses a lot of interest to

academic research, industry and global citizens. To appropriately address the domain,

there’s a definition of the subject, the aims, objectives and contributions of the study

were set. Afterwards, some tools and dataset to be used are introduced.

4.1.2 Spatio-temporal awareness of fake news stories

The concept of fake news detection can also be considered in a spatio-temporal aware-

ness. Its common for there to be different types of fake news stories. They could have

been partially reported having half-truths of the actual events that have occurred or

be total misinformation where the actual sequence of events that have been altered to

suit a particular agenda or motive of the promoter. While it may be generally assumed

that fake news is the spread of false information. There’s a need to be mindful that

there could be varying dynamics with respect to the location and the time that the

67

news is considered fake. However this currently out of the scope of this work.

4.1.3 Research Questions

In this work the following are the research questions aimed to be answered:

• Given tweets about a news item or story, is it possible to determine their truth

or authenticity based on the content of the messages

• Can semantic features or linguistic characteristics associated with a fake news

story on Twitter be automatically identified without prior knowledge of the do-

main or news topic?

4.1.4 Problem Definition

Given a set of tweets collected in a corpus. Its assumed that the veracity of some

examples is used infer some which are unknown. A model is trained based on the

veracity of the known examples while the veracity of the unknown is determined from

the weights assigned to the trained model.

4.2 Methodology

The approach of this work involves the automatic identification of features within

Twitter post without prior knowledge of the subject domain or topic of discussion using

the application of a hybrid deep learning model of LSTM and CNN models. This work

posits that since the use of deep learning models enables automatic feature extraction;

the dependencies amongst the words in fake messages can be identified automatically

(Ma et al., 2016) without expressly defining them in the network. The knowledge of

the news topic or domain being discussed would not be necessary to achieve the feat

of fake news detection

68

4.2.1 The Deep learning Architectures

Deep learning models such as Convolutional Neural Networks (CNN) (Yang et al.,

2018) and Recurrent Neural Networks (RNN) (Ma et al., 2016) are good for text and

image classification with recent architectures aimed at being simple, fast and accurate.

This attribute helps in the determination of fake news veracity as the models could

implement faster and with little or no feature engineering required. As the fully con-

nected hidden layers of the AI algorithms intuitively search for related features in the

words or inputs of the model.

This work implemented three deep neural network variants. The models applied to

train the PHEME dataset include:

• Long-Short Term (LSTM) recurrent neural network (RNN) was adopted for the

sequence classification of the data. The LSTM (Greff et al., 2017) remains a pop-

ular method for the deep learning classification involving text since when they

first appeared 20 years ago (Hochreiter & Schmidhuber, 1997).The architecture

for the plain LSTM model is shown in Figure 4.2. From the diagrammatic il-

lustration, it consisted of the input or embedding layer which accepts the word

tokens as vectors and these are passed on to the LSTM layer where the sequential

classification is done. A sequence length of 100 was used. There is an additional

hidden layer called the Dense layer provides an extra level abstraction before this

is passed on to the output layer. the binary outputs of this layer is either Fake

or not Fake.

• LSTM - RNN with dropout regularization (Srivastava et al., 2014) layers between

the word embedding layer and the LSTM layer to avoid over-fitting to the train-

ing dataset. Following this approach, randomly selected and dropped weights

amounting to 20% gate-specific dropouts of neurons in the LSTM layer.

• LSTM with convolutional neural networks (CNN) (Karpathy & Fei-Fei, 2015)

immediately after the word embedding layer of the model it was further included

a 1d CNN and a max pooling layer to reduce dimensionality of the input layer

while preserving the depth and avoid over-fitting of the training data. This

also helps in reducing computational time and resources in the training of the

model. The overall aim is to ultimately improve model prediction accuracy.

The architecture for the LSTM-CNN model is shown in Figure4.3. From the

diagrammatic illustration, it consisted of the input layer which accepts the word

features and these are passed on to the one dimensional CNN layer then LSTM

69

Figure 4.2: Architecture of the LSTM Model
70

layer. Outputs of the LSTM layer is then passed on to the Dense layer which is

then passed on to the output layer.

CNNs have been widely usually used for the classification of image data and in

computer vision. However, they have also shown success in text classification and

NLP1. In place of image pixels from computer vision then the use of the word

tokens would serves as input where each row of the vector matrix represents a

word token. The work utilizes this convolution power of the CNN for use in text

classification of content-aware misinformation detection.

4.2.2 Frameworks and equipment Hardware

The experiments were conducted over using an Intel i7 desktop processor. The time

taken for the processing runs were recorded and compared for each of the deep learning

algorithms. The program was written in Python programming language and the Keras
2 library of Python was adopted this was due to it’s ease of processing and available

functions for various deep learning tasks including CNN and RNN models.

4.2.3 About the Dataset

The dataset consisted of approximately 5800 tweets centered on five rumor stories. The

tweets were collected and used in the works by Zubiaga et al. (2016). These stories

were being consisted of original tweets and they were labeled as rumor and non-rumors.

The events were widely reported in online, print and conventional electronic media such

radio and Television at the time of occurrence:

• CharlieHebdo

• SydneySiege

• Ottawa Shooting

• Germanwings-Crash

• Ferguson

1http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

?source=post_page-----98c86a0dd361----------------------
2https://keras.io/

71

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/?source=post_page-----98c86a0dd361----------------------
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/?source=post_page-----98c86a0dd361----------------------
https://keras.io/

Figure 4.3: Architecture of the combined LSTM-CNN Model
72

Figure 4.4: Wordcloud visualisation of the Charlie Hebdo Incident

This work applied ten-fold cross validation on the entire dataset of 5800 tweets and

performed padding of the tweets i.e. adding zeros to the tweets for uniform inclusion

in the feature vector for analysis and processing.

4.2.4 Description of the PHEME Rumor-Non Rumor Dataset

In the determination of the veracity of fake news stories, the Rumor-Non Rumor dataset

was examined. To perform initial exploratory data analysis of the dataset, below is the

exploratory analysis of the dataset. Highlighting wordcloud visualisations of the dataset

for Charlie Hebdo. At this stage, the word clouds are not used in the classification but

only to view the word frequency usage in the data. Figure 4.4, Ferguson Figure 4.5,

Germanwings Figure 4.6, Ottawa Figure 4.7 and Sydney Siege Figure 4.8.

4.2.5 Recurrent Neural Network RNNs

This type of Neural network has been shown to be effective in time and sequence based

predictions (Ma et al., 2015). Twitter posts can be likened to events that occur in time

where the intervals between the retweet of one user to another is contained within a

time window and treated in sequential modes.(Kwon et al., 2013) Rumours have been

examined in the context of varying time windows (Kwon et al., 2017)

Recurrent Neural Networks were initially limited by the problem associated with the

adjustment of weights over time. Several methods have been adopted in solving the

73

Figure 4.5: Wordcloud visualisation of the Ferguson

Figure 4.6: Wordcloud visualisation of the GermanWings Crash

74

Figure 4.7: Wordcloud visualisation of the Ottawa Shooting

Figure 4.8: Wordcloud visualisation of the Sydney Siege

75

vanishing gradient problem but can largely be categorized into two types namely the

exploding gradient and the vanishing gradient. Solutions adopted for the earlier include

truncated back propagation, penalties and gradient clipping (these solve the exploding

gradient problem) while this problem has been resolved using dynamic weight initializa-

tions, the echo state networks (ESN) and Long-Short Term Memory (LSTMs). LSTMs

will be the main focus of this work as they preserve the memory from the last phase

and incorporate this in the prediction task of the neural network model. Weights are

the long term memories of the neural network.

4.2.6 Incorporating Convolutional Neural Network

Another popular model is the convolutional neural network (CNN) which has been

well known for their application in image processing as well as their use in text min-

ing(Hsu et al., 2017). It is posited that addition of the hybrid method would improve

performance of the model and give much better results for the content based fake news

detection. However, the hybrid implementation for this work so far involves a text-only

approach.

4.2.7 Selection of Training Parameters

The following Hyper-parameters were optimized using a grid search approach and op-

timal values derived for the following batch size, epochs, learning rates, activation

function and dropout regularization rate which is set at 20%.

4.2.8 Batch Size

This is the number of training examples included in one forward or back-propagation.

It is recommended by (Goodfellow et al., 2016) that the batch size of power of 2

between 32-256 would produce optimal performance in the training and development

of a conventional neural network. Thus 64 tweets (data rows) were used as the batch

size in the model.

76

4.2.9 Number of Epochs

This is equivalent to a forward pass or backward pass of the training examples. It is

recommended that 50 epochs consistent with the size of the dataset would be sufficient.

This value implied that all the examples in the training dataset were examined 50 times

to sufficiently train the model. Epoch sizes for deep learning models are usually set in

multiples of 50 (Goodfellow et al., 2016)

4.2.10 Optimization Parameters

There are optimization parameters such as the Stochastic Gradient Descent (SGD)

(Ruder, 2016) alongside other models Mini Batch Gradient Descent (RMSProp), Mo-

mentum, Adagrad, Adadelta, Adaptive Momentum (Adam), Adamax and Nesterov-

accelerated Adaptive Moment Estimation (Nadam). Adam which is a combination of

the RMSProp and Momentum (Kingma & Ba, 2014), being an adaptive learning rate

optimization algorithm is suggested to be a reasonable optimization parameter for the

task (Goodfellow et al., 2016)

4.2.11 Learning Rate

The learning rate was recommended to be optimal at 0.001 as this is also the suggested

learning rate for the ADAM optimization parameter (Kingma & Ba, 2014). This value

allowed the convergence of the training parameters in good time and efficiently. If the

learning rate was too low the time taken for the gradient descent to converge would be

too long and other hand a very large value would result in overshooting the minimum

loss function and convergence impossible. Thus an ideal optimal learning rate enabled

us to strike a balance between training time and accuracy of the model.

4.2.12 Network weight initialization

A network initialization (also referred to as the Xavier initialization (Glorot & Bengio,

2010)) of zero was recommended . This value ensured that the gradients were not too

little or too steep for the training learning process of the network. They ensure uniform

levels of distributions of the neuron activations within the model having a zero mean

and an optimal variance.

77

Figure 4.9: Avoiding over-fitting using Dropout technique Illustration

4.2.13 Neuron activation function

To determine the activation thresholds of each nodes, the Rectified Linear Unit (ReLU)

(Glorot et al., 2011) activation function was adopted within the hidden layers of the

neural network. This is a well used, simple and effective function 3. To map the input

to the output via the activation node, the Sigmoid function was used due to the binary

classification of fake and not fake outcomes as the output.

4.2.14 Dropout regularization

For dropping out neurons from LSTM layer it was found from literature 4 that 20%

dropout rate was suitable. This was achieved by randomly changing values of the pre-

defined proportion of nodes within the deep neural network to zero. Thereby enhancing

a fair use of other features within the network and preventing overfitting (Srivastava

et al., 2014) in the MISDETECT algorithm. The illustration is given in Figure 4.9

3https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
4https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/

78

https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/

4.2.15 Number of neurons in the hidden layer

As applicable to all neural networks, the number of neurons in the input layer is equiva-

lent to the number of feature types or variables within the data. The approach followed

in this work is a text-only approach only the text column of the PHEME dataset was

used in training and testing the deep learning model. According to (Heaton, 2008) the

optimal size of the hidden layer is usually between the size of the input and size of the

output layers.

4.3 Evaluation, Results and Discussions

The deep learning LSTM model intuitively achieves an 82% accuracy on the classifi-

cation task in the detection fake news posts without prior domain knowledge of the

topics being discussed.

So far in the experiments completed it is revealed that the plain vanilla LSTM model

achieved the best performance in terms of Precision, Recall, F-measure and having an

accuracy of 82% as shown in Table 4.2. On the other hand, the LSTM method with

a dropout regularization performed the least in terms of the metrics adopted. This

is likely to be as a result of under fitting of the model and the lack of a sufficient

training data and examples within the network which would have negatively impacted

the performance of the model and thus becoming counter-productive instead of helping

improve model gain and efficiency. Another reason for the low performance of the

dropout regularisation would be the depth of the network since the network is relatively

shallow, the drop-out layer is quite close to the input and output layers of the model;

this could severely degrade the performance of the method. An alternative to improve

model performance could be through Batch Normalisation (Ioffe & Szegedy, 2015)

where the input values in the layers have a mean activation of zero and standard

deviation of one as in a standard normal distribution, this is beyond the scope of this

current work.

The LSTM-CNN hybrid did not perform as badly as the dropout regularisation model

having 74% accuracy and an FMeasure of 39.70%. However due to insufficient training

examples for the neural network model led to negative appreciation against the plain-

vanilla LSTM model.

The precision of 68% achieved by the state of the art on the PHEME dataset by Zubiaga

79

Table 4.2: Table of values for 3 different proposed deep learning methods in fake news
detection

Technique ACC PRE REC F-M

LSTM 82.29 44.35 40.55 40.59

LSTMDrop 73.78 39.67 29.71 30.93

LSTM-CNN 80.38 43.94 39.53 39.70

et al. (2016) was still higher than the results obtained so far. However, it was expected

that the inclusion of more training data from the reactions to the original twitter posts

there will be more significant improvement in model performance.

4.3.1 Improvements through Feature Engineering from Sentiments

Improving the performance of the model could be achieved through the inclusion of

more features. The low precision recorded from the words-only approach could be

further boosted by considering other signals or features that were embedded within the

context of the words usage. Using this approach the appearance of the words would be

considered alongside the ways in which they were used. This would be a more detailed

and involved approach where the meaning of the words are now being considered. The

use of machines to understand text and their context have been previously used in

field such as sentiment analysis - where polarity could be assigned to text ranging

from ’negative’ for bad and ’positive’ for good. As tweets are posted in text, a use of

emotions or sentiments extracted from the messages could prove helpful in determining

the veracity of the posts, providing additional features that would enable and enrich

the classifier performance.

80

Chapter 5

Sentiment Aware Fake News

Detection in Online Social

Networks

5.1 Introduction

Messages posted to Online Social Networks (OSN) cause a recent stir due to the in-

tended spread of fake news or rumor. In this work, the aim was to understand and

analyse the characteristics of fake news especially in relation to sentiments, to determine

the automatic detection of fake news and rumors. Based on empirical observation, this

work proposes a hypothesis that there exists a relation between a fake message/rumour

and the sentiment of the texts posted online. The hypothesis of this work is verified

by comparing with the state-of-the-art baseline text-only fake news detection methods

that do not consider sentiments. This work performed experiments on standard Twit-

ter fake news dataset and show good improvements in detecting fake news/rumor. This

techniques proposed at the time of this writing this thesis is the first that considers

sentiment awareness, in the task of fake news detection.

In the task of detecting fake news in social media it is beneficial if all features associated

with each message type are properly identified and utilised. Twitter posts with images

offer more impression and influence over text only tweets. A Twitter message has

been shown to have a lifespan of as little as less than one day and up to a 70 day

span depending on the type of content and URL being shared (Wu et al., 2011). This

81

implies that except a message goes viral where it infects other users - leading to more

engagements such as retweets, it normally tends to be short lived thus over-ridden by

other posts before the end of the day. To create more engagements, often images are

used which may not even be related to the post nor be true images of the event.

Previous work has shown that deception and false statements can be detected from

the writing style of the authors or linguistics and sometimes be used to infer their

personalities (Pennebaker & King, 1999). Some authors have shown from face-to-face

interview transcriptions that liars can even be detected as they tell complex stories,

make fewer self-references -to disassociate themselves from the story, and tend to have

more frequent use of negative emotion words as a sign of guilt (Newman et al., 2003).

Therefore, it is logical to consider emotions within the posted texts as a cue in rela-

tion to spreading fake news and rumour. The approach of this work is different as it

looks the emotional context of the words used in online social networks. It proposes a

hypothesis that there exists a relation between a fake message or rumour and the emo-

tion or sentiment of the texts posted online. The proposed hypothesis is proven on a

standard benchmark PHEME Rumor Non-Rumor dataset presented in Appendix D by

comparing with the state-of-the-art (Zubiaga et al., 2016) baseline text-only fake news

detection methods that does not consider these emotional words but rather relying on

the text only. The overall flow of SENTDETECT algorithm is shown in Figure 5.1.

The contribution in this chapter is an emotional ratio feature infused as part of the

word vectors prior to input into the deep learning classifier. Thus a sentiment-aware

classifier called SENTDETECT is proposed.

• proposing a relationship that exists between fake news messages and emotional

words used in the message text, and

• improvement in fake news detection and prediction following a sentiment-aware

classification .

5.2 Methodology

5.2.1 Sentiment-Aware Misinformation

This work presents an hypothesis that there exists a relationship between a fake message

or rumour and the sentiment of the texts posted online. Authors of misinformation

82

Figure 5.1: Schematic Diagram of Text Rumor Classifier

posts have been found to conceal their emotions by use of negative emotional words

as a sign of guilt in their communication (Newman et al., 2003). Also could be that

negative emotions tend to spread fast and thus become mechanisms with which these

author convey their messages.

This work posited that sentiment may place a role in determination of the class of a

tweet as a rumor or non-rumor. It is observed that such characteristics by analyzing

the benchmark data (Zubiaga et al., 2016) using world cloud visualization after text

cleaning. Example of wordclouds from the Charlie Hebdo event is shown in Figure 5.2.

Therefore a sentiment analysis is proposed to be performed on each of the event corpus

with a focus on the sentiment scoring function using Linguistic Word Count appli-

cation’s (LIWC) (Tausczik & Pennebaker, 2010) psychological and linguistic analytic

capabilities. Our sentiment analysis rely on an emotional ratio score as calculated

below:

emoratio =
count of negative emotional words

count of positive emotional words
(5.1)

In order to check if there was any level of significance between the two types of tweets

(rumor and non-rumor), there was a calculation of the t-statistic:

t =
X̄1 − X̄2√(

(N1−1)s21+(N2−1)s22
N1+N2−2

)(
1
N1

+ 1
N2

) , (5.2)

and the Null Hypothesis:

H0 : u1 − u2 = 0, (5.3)

where u1 is the mean of rumor corpus and u2 is the mean of non-rumor corpus of

83

Figure 5.2: Word Cloud of Charlie Hebdo Tweets

the data. The initial assumption (Ho) is there’s no difference between the average

sentiment scores of the two populations i.e. rumors N1 and non-rumors N2 each having

means X̄1 and X̄2 respectively.

In the analysis, the Treatment 1 was considered as the emoratio of rumor tweets of

the 5 classes of events, N1 = 5, average across the groups given as X̄1 = 3.74, and

variance of s21 = 3.15. Similarly Treatment 2 is the emoratio values of Non-Rumor

events with N2 = 5, X̄2 = 1.65 and s22 = 0.48. Thus the T-value calculation computed

from Equation 5.2 is given as t = 2.45058 is greater than the p-value is 0.01995 (at

0.05 level of significance). It implies that the the null hypothesis H0, would be rejected

i.e., there’s significant difference in the mean of the sentiment scores of the two types

of tweets.

Table 5.1 show the initial findings derived from LIWC application. The last column

of the table with the title Emotion Ratio could be considered as being equivalent to

Equation 5.1.

as part of the input features used in the classification. Overview of the proposed

algorithm and description of the algorithm are shown in Figure 5.1 and Algorithm 1,

respectively. Results for various Machine learning and deep learning classifiers are

also presented in Table 5.3. Given the proof that there is a strong significance and

association between tweets spread as false rumors and Sentiment Analysis. The task is

to develop a machine learning classifier that factors the sentiment score of each tweet

corpus in determining the weights used in the prediction model.This is achieved using

the emotional ratio as describer earlier.

84

Table 5.1: Emotion ratio in rumor and non-rumor Tweets

Corpus Word LIWC Positive LIWC Negative Emotion
Count Emotion Emotion Ratio

Rumors

Charlie 7054 0.82 4.34 5.29

Ferguson 5512 0.71 2.38 3.35

Germanwings 3895 0.41 2.31 5.63

Ottawashoot 7721 1.17 3.67 3.14

Sydneysiege 8250 0.81 1.03 1.27

Non Rumors

Charlie 26004 2.52 5.78 2.29

Ferguson 14208 1.63 2.94 1.8

Germanwings 3689 0.73 1.68 2.3

Ottawashoot 6719 3.17 2.68 0.85

Sydneysiege 11874 2.7 2.73 1.01

5.2.2 Machine Learning and Deep Learning Classification

An initial classification of the labeled dataset was done using a series of machine learn-

ing algorithms: logistic regression (LOGIT), support vector machines (SVM), decision

trees, random forest and extreme gradient boosting (XG-Boost). This work includes

the implementation of the long short term memory (LSTM) recurrent neural network

implementation with hierarchical attention networks (HAN). This work examined the

benefits of using varied word embeddings as pre-trained language models for the input

layer of the HAN model. The pre-trained word vectors by (Pennington et al., 2014)

was used this included the Wikipedia 2014 Gigaword5 collection which was pre-trained

on six billion word tokens and the Twitter collection which was pre-trained on 2 bil-

lion tweets with 27 billion tokens; both in sizes of 100 dimensions. Both LSTM-HAN

models were trained with an epoch size of 50, while a batch size of 64 was found to be

optimal and learning rate was set at 10%.

85

Input: TweetCorpus, PosemoLexicon, NegemoLexicon;
Extract top k words; Extract relevant words for each k;
Extract negative emotion words;
Extract positive emotion words;
repeat

Input: Receive next relevant tweets;
Calculate emoratio;
Extract word features from tweets into vector;
Append the emoratio to the word feature vector;
repeat

until all tweets have been appended ;
Parse feature vector into classifier;

until end of sequence;
Output: y1 Predicted label of tweet - Rumor or Non-Rumor ;

Algorithm 1: Rumor Classifier Algorithm

Table 5.2: Summary Statistics of Dataset

Name of Event Event Date Size With Images

Charlie Hebdo 7th Mar 2015 2,058 1,087

Ferguson 9th Aug 2014 1,142 4390

Germanwings 24th Mar 2015 468 213

OttawaShoot 22nd Oct 2014 886 301

SydneySiege 15th Dec 2014 1,211 509

TOTAL 5,765 2,600

5.3 Results and Discussions

5.3.1 Dataset

This work used the PHEME (Zubiaga et al., 2016) labeled Twitter dataset, The corpora

consists of 5800 tweets about 5 notable world events widely reported in the electronic,

print and conventional news media. They occurred at various times between August

2014 and March 2015. The statistic about these news stories is presented in Table 5.2.

All items were hand labeled by journalists. About 45% of the dataset had images and

only these were further selected for further enriching the feature set in terms of the

embedded texts.

86

Table 5.3: Range of Classifier Results after Emotional Analysis

Classifier Accuracy Precision Recall F-M

LOGIT 0.84 0.84 0.84 0.84

SVM-Linear 0.86 0.86 0.86 0.86

Decision Trees 0.77 0.77 0.77 0.77

Random Forest 0.85 0.85 0.85 0.85

XG-Boost 0.84 0.83 0.84 0.83

LSTM HAN(Wiki) 0.85 0.86 0.81 0.84

LSTM HAN(Twitt) 0.86 0.86 0.82 0.84

Baseline (Ajao et al., 2018) 0.82 0.82 0.44 0.44

Baseline (Zubiaga et al., 2016) N/A N/A 0.68 0.55

5.3.2 Discussion

The emotional ratio of negative to positive words is computed in Table 5.1. Our sta-

tistical test shows that the rumor dataset were significantly different in terms of being

more negative sentiments and adverse emotional words from the emotional lexicon (Hu

& Liu, 2004). This is further proven in the fake news classifier models where the focus

on using emotional words in the classification feature set gave better results over the

state of the art which used the same dataset shown in Chapter 4 and (Zubiaga et al.,

2016). Specifically as shown from Table 5.3. SVM and HAN model with Twitter pre-

trained word embedding performed best with 86% for sentiment-aware text only rumor

detection. Also, SENTDETECT results comprises of four variants of the classification

feature set; the features from words within the text (TX), the emotional ratio (ER)

and use of additional features (AD) including counts of uppercase words, exclama-

tion marks, positive and negative emoticons, user mentions, hashtags and quotations.

Table 5.4: Combined features (subset with image-only Tweets)

Classifier ER+TX AD+TX ER+AD+TX

LOGIT 0.84 0.82 0.83

SVM 0.89 0.81 0.80

Decision Tree 0.77 0.81 0.81

Random Forest 0.85 0.86 0.85

Grad Boosting 0.85 0.85 0.85

XG-Boost 0.83 0.82 0.83

87

Table 5.4 gives summary results in terms of accuracy for these feature combination

types. However, considering only the 2600 tweets that had images in Table 5.4 i.e.

column (ER+TX) shows that there’s a further 3% improvement to 89% when there’s a

combination of the text with the emotional ratio if they contained an embedded image

within the message. This further strengthens the impact of images in conveying rumors

in online social networks. However, these additional features (AD) did not improve the

performance of the models.

88

Chapter 6

Conclusions and Future Work

6.1 Location Inference

This thesis proposed a new non-uniform Quadtree content-only approach called LOCIN-

FER for location inference from Twitter messages. The proposed algorithm uses natural

language processing for semantic understanding and incorporates Cosine similarity and

Jaccard similarity measures for feature vector extraction and dimensionality reduction.

The result of the grid classification shows good improvement over the existing state-

of-the-art grid based approaches in city-level location inference on existing benchmark

dataset of the GEOTEXT and UTGEO-Small Twitter corpuses. 60% of tweets are

accurately predicted within an error distance of 161km (100 miles radius). The results

show the effectiveness of the LOCINFER Quadtree technique in combination with a

Logistic regression classification model which outperforms other grid-based methods in

location inference. Future work could look the location prediction in real-time from

live Twitter data streams and possibly linking with other location-based networks and

for other geographical regions of the world. There is also a potential application in

helping to address online social media issues such as fake news detection and tracking

the origin of online malicious content-based messages.

A more efficient grid-based content-only classifier LOCINFER was was implemented

with a Logistic Regression and Multinomial Naive Bayes classifiers. The Logistic Re-

gression Model version of this technique performed best. It showed significant progress

in addressing the sparsity problem associated with disparately distributed tweets. The

clustering approach along with a hybrid word embedding model allowed a outper-

formed state-of-the art grid-based content-only location inference methods by up to

89

24% in correctly predicting tweet locations within a 161km radius and by 300km in

median error distance on benchmark datasets - UTGEO (small) and the GEOTEXT

datasets (Appendix E).

6.2 Improvements over existing state-of-the-art location

inference methods

The location inference approach followed in the work presented in this thesis is a

grid-based content-only approach. At the time of writing this thesis, the state-of-

the-art which applied this technique on the GEOTEXT dataset is given by (Hulden

et al., 2015) with AED and MED of 765km and 357km respectively. While on the

UTGEO-Small dataset is (Roller et al., 2012) with AED of 860km and MED of 463km.

This work improves on the previous work done by (Hulden et al., 2015) and (Roller

et al., 2012) by incorporating the hybrid word embedding in the determination of the

word vectors - combining the Jaccard Similarity and cosine similarity approach for the

reduction of the word vectors dimensionality. Thus, the difference between this work

and these existing works is a content-only discriminate grid-based location inference

with hybrid word embedding classifier. The variant in natural language processing

the text incorporated in this work resulted in an improvement in the performance

achieving 598km/600km AED and 39km/45km MED for the GEOTEXT and UTGEO-

Small datasets respectively. This performance represents a lower MED than the most

effective state-of-the-art methods by up to 300km and 400km on the GEOTEXT and

UTGEO-Small benchmark datasets respectively.

6.3 Critical Analysis of LOCINFER technique

While better results than the state-of-the-art were presented by the approach followed

in implementing LOCINFER. It should be noted that one of the reasons the location

inference classifier did well was due to sufficient benchmark data which consisted of

hundreds of thousands of training examples. Similarly, posts of the users included had

tweeted often such that the classifier could detect a pattern in terms of their linguistic

word used in relation with their geolocation labels. These grid patterns gave an ideal

cluster for the algorithm to afterwards estimate their locations up to some level of

accuracy. However, in the instance where a user had only tweeted once, it’s very unlike

that their location could be efficiently determined by LOCINFER only without the use

90

of other spatial indicators such as timezones, IP addresses, free-text profile information

and their friends spatial network. The use of a multi-spatial indicator approach for

fine-grained location determination is not captured within the scope of this current

work. Also, the tweets used where only English language tweets thus, it would be

interesting to see how this could be translated to other non-English language tweets

and geo-locations.

6.4 Misinformation Detection

Two other contributions of this thesis is to present content-based approach for the de-

tection of the origin of fake news messages considering only the words of the authors.

Using a sentiment-aware approach classifier called SENTDETECT, it was found that

the sentiments of the authors words helped in determining the veracity of the tweets;

as more negative sentiments were more associated with rumor messages. An emotional

ratio EMORATIO was derived which takes into account the ratio of negative words to

that of positive words was also created to achieve better results on a sentiment-aware

classifier. Results obtained running the proposed methods on the PHEME dataset

(Appendix D) showed a significant improvement by up to 5% in the task of fake news

detection. The study aimed to detect the veracity of posts on Twitter. A good ap-

plication of this would help law enforcement agencies in curtailing the spread and

propaganda of such messages having negative implications and consequences for the

believers of these messages. The earlier these messages are checked and stopped the

better the chances of preventing them go ‘viral‘.

For the future, using images posted to online social networks for misinformation detec-

tion is bright considering the advancements in the facial recognition, object detection

and convolutional neural networks coupled with adversarial neural networks. The ex-

traction of embedded text in images, coupled with visual emotional analysis could be

prospective domains that enhance the misinformation detection AI models. Also, the

consideration of spatio-temporal awareness where fake images from past events have

been added to recent messages - could bring an interesting dimension into the research

problem. Finally, the recent upsurge in the proliferation of fake videos using easily

accessible AI tools specifically - Generative Adversarial Networks (GANs) has led to

people with limited skills in video editing producing compelling fakes. The power of

videos and images frames in motivating individuals online is quite significant. Thus it

would be expected that these would present interesting research challenges in the years

to come.

91

The presented approach MISDETECT using the LSTM-only achieved an 82% accuracy

performance beating the state of the art on the PHEME Dataset. It could be interesting

to see the incorporation of fake image disambiguation which is found in these tweets;

usually aimed at making the author’s posts go viral. The approach gives a boost in

the achievement of a higher performance while not requiring a large amount of training

data typically associated with deep learning models. Future work could progressively

examine the inference of the tweet geo-locations and origin of the authors of these

fake news items who propagate them. It would be interesting if also the training data

required in this task was relatively smaller such that fake news items can be quickly

detected and located in a small amount of time saving computational resources and

time. This feat would better aid the task of tracking the origin and location fake

Twitter posts especially in real-time detection.

Deep learning models such as CNN and RNN often require much larger datasets as well

as in some cases multiple layers of neural networks for the effective training of their

models. In this case there was a fairly smaller dataset of 5800 tweets. In ongoing and

future work the reaction of other users (retweets and replies) to these messages via the

Twitter API would be in in the magnitude of hundreds of thousands with the aim of

enriching the size of the training dataset thus improving the robustness of the model

performance. Also to help draw more actionable insights for the propagation of these

messages from one user to another and how they react; specifically if they embraced

or refrained from becoming evangelists and promoters of these messages to other users

on the platform.

This work proposed a new hypothesis that the use of emotional words is beneficial

in sentiment-aware misinformation detection. This was support by proposing a novel

sentiment-aware fake new detection algorithm and show improvement on a benchmark

dataset over state-of-the-art algorithm that does not consider sentiment. The terrain

of fake news and it’s detection remains a actively researched topic because it continues

to evolve rapidly and yet to be fully understood. This gap presents opportunities for

progressive work to be done in the area. Additional sources of sentiment extracted from,

e.g., images, embedded text in the image and other visual media such as animations

(GIFs) and videos may enhance model performance and is considered as future work.

92

6.5 Critical Analysis of SENTDETECT technique

It is worth mentioning that in an ideal experimental setting - similar to the one used

in this study, there would be sufficient labeled training examples of fake and non-fake

misinformation posts or rumors. This is not usually the case in a real life scenario.

A more specifically challenging task could be where the the veracity or authenticity

of these tweets needed to determined in real-time and automatically. In this case,

there would be tweets which could have very few or no meaningful characters included.

Another limitation with the proposed approach was that other non-text characters such

as emojis, emoticons and GIFs could be sent by the users. All these were not captured

or considered in the proposed approach presented in SENTDETECT. As it is current

out of the scope of this work, it is hoped that this would be implemented in future

work.

6.6 Combining Fake news detection with location infer-

ence

The blend of the fields of misinformation detection with location inference of user

posts, presents a great opportunity in fighting cybercrimes, cyberbullying, curtailing

the spread of malicious information as well as hate propaganda messages in online social

networks. Law enforcement agencies and authorities can make the best of this approach

to check the rise of such unwanted behaviours within the social media space. While

location inference presents great opportunities in the detection of disasters emergen-

cies, there is a possibility for the detection of misinformation posts such as fake news

and rumors. Location inference presents an opportunity to track their origin hereby

complementing the detection of the instance of such posts when they have been created

and circulated.

93

94

Chapter 7

References

Fake news - political scandal words.

Abrol, S. & Khan, L. (2010). Tweethood: Agglomerative clustering on fuzzy k-closest

friends with variable depth for location mining. In Social Computing (SocialCom),

2010 IEEE Second International Conference on, (pp. 153–160). IEEE.

Agency, C. I. (2013). The world factbook: United states. https://www.

cia.gov/library/publications/the-world-factbook/geos/us.html. Accessed:

2016/12/05.

Aggarwal, A., Rajadesingan, A., & Kumaraguru, P. (2012). Phishari: automatic real-

time phishing detection on twitter. In eCrime Researchers Summit (eCrime), 2012,

(pp. 1–12). IEEE.

Ajao, O., Bhowmik, D., & Zargari, S. (2018). Fake news identification on twitter with

hybrid cnn and rnn models. In 9th Int’l Conference on Social Media & Society.

Copenhagen (July 18), number Jul 2018.

Ajao, O., Hong, J., & Liu, W. (2015). A survey of location inference techniques on

twitter. Journal of Information Science, 41 (6), 855–864.

Baccianella, S., Esuli, A., & Sebastiani, F. (2010). Sentiwordnet 3.0: an enhanced

lexical resource for sentiment analysis and opinion mining. In Lrec, volume 10, (pp.

2200–2204).

Backstrom, L., Sun, E., & Marlow, C. (2010). Find me if you can: improving geo-

graphical prediction with social and spatial proximity. In Proceedings of the 19th

international conference on World wide web, (pp. 61–70). ACM.

95

https://www.cia.gov/library/publications/the-world-factbook/geos/us.html
https://www.cia.gov/library/publications/the-world-factbook/geos/us.html

BBC (2017). Facebook to tackle fake news in germany 2017.

Bouillot, F., Poncelet, P., & Roche, M. (2012). How and why exploit tweet’s loca-

tion information? In AGILE’2012: 15th International Conference on Geographic

Information Science, (pp. N–A).

Braspenning, P. J., Thuijsman, F., & Weijters, A. J. M. M. (1995). Artificial neural

networks: an introduction to ANN theory and practice, volume 931. Springer Science

& Business Media.

Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5–32.

Burgess, J., Vis, F., & Bruns, A. (2012). Hurricane sandy: The most tweeted pictures.

The Guardian Data Blog, November, 6.

Burmester, M., Henry, P., & Kermes, L. S. (2005). Tracking cyberstalkers: a crypto-

graphic approach. ACM SIGCAS Computers and Society, 35 (3), 2.

Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. In

Proceedings of the 20th international conference on World wide web, (pp. 675–684).

ACM.

Ceron, A., Curini, L., Iacus, S. M., & Porro, G. (2014). Every tweet counts? how

sentiment analysis of social media can improve our knowledge of citizens’ political

preferences with an application to italy and france. New Media & Society, 16 (2),

340–358.

Cha, M., Gwon, Y., & Kung, H. (2015). Twitter geolocation and regional classification

via sparse coding. In Proceedings of the 9th International Conference on Weblogs

and Social Media (ICWSM 2015), (pp. 582–585).

Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between

probability density functions. City, 1 (2), 1.

Chandra, S., Khan, L., & Muhaya, F. B. (2011). Estimating twitter user location

using social interactions–a content based approach. In Privacy, Security, Risk and

Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing

(SocialCom), 2011 IEEE Third International Conference on, (pp. 838–843). IEEE.

Chang, H.-w., Lee, D., Eltaher, M., & Lee, J. (2012). @ phillies tweeting from philly?

predicting twitter user locations with spatial word usage. In Proceedings of the

2012 International Conference on Advances in Social Networks Analysis and Mining

(ASONAM 2012), (pp. 111–118). IEEE Computer Society.

Cheng, B. & Titterington, D. M. (1994). Neural networks: A review from a statistical

perspective. Statistical science, 2–30.

96

Cheng, Z., Caverlee, J., & Lee, K. (2010). You are where you tweet: a content-based

approach to geo-locating twitter users. In Proceedings of the 19th ACM international

conference on Information and knowledge management, (pp. 759–768). ACM.

Christopher, D. M., Prabhakar, R., & Hinrich, S. (2008). Introduction to information

retrieval. Cambridge University Press.

Compton, R., Jurgens, D., & Allen, D. (2014). Geotagging one hundred million twitter

accounts with total variation minimization. In Big Data (Big Data), 2014 IEEE

International Conference on, (pp. 393–401). IEEE.

Conroy, N. J., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection:

Methods for finding fake news. Proceedings of the Association for Information Science

and Technology, 52 (1), 1–4.

Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P. (2010). A latent variable

model for geographic lexical variation. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, (pp. 1277–1287). Association for

Computational Linguistics.

Ferrara, E. (2015). Manipulation and abuse on social media by emilio ferrara with

ching-man au yeung as coordinator. ACM SIGWEB Newsletter, (Spring), 4.

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of

social bots. Communications of the ACM, 59 (7), 96–104.

Field, M. (2017). Police issue child safety warning over snapchat maps update that

reveals users’ locations.

Gelernter, J. & Mushegian, N. (2011). Geo-parsing messages from microtext. Trans-

actions in GIS, 15 (6), 753–773.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-

ward neural networks. In Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, (pp. 249–256).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence and

Statistics, (pp. 315–323).

Gonzalez, R., Cuevas, R., Cuevas, A., & Guerrero, C. (2011). Where are my followers?

understanding the locality effect in twitter. arXiv preprint arXiv:1105.3682.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

97

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., & Schmidhuber, J. (2017).

Lstm: A search space odyssey. IEEE transactions on neural networks and learning

systems, 28 (10), 2222–2232.

Gupta, A., Kumaraguru, P., Castillo, C., & Meier, P. (2014). Tweetcred: Real-time

credibility assessment of content on twitter. In International Conference on Social

Informatics, (pp. 228–243). Springer.

Gupta, A., Lamba, H., Kumaraguru, P., & Joshi, A. (2013). Faking sandy: character-

izing and identifying fake images on twitter during hurricane sandy. In Proceedings

of the 22nd international conference on World Wide Web, (pp. 729–736). ACM.

Han, B., Cook, P., & Baldwin, T. (2014). Text-based twitter user geolocation predic-

tion. Journal of Artificial Intelligence Research, 49, 451–500.

Han, B., Rahimi, A., Derczynski, L., & Baldwin, T. (2016). Twitter geolocation predic-

tion shared task of the 2016 workshop on noisy user-generated text. In Proceedings

of the W-NUT Workshop.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Hardalov, M., Koychev, I., & Nakov, P. (2016). In search of credible news. In Interna-

tional Conference on Artificial Intelligence: Methodology, Systems, and Applications,

(pp. 172–180). Springer.

Heaton, J. (2008). Introduction to neural networks with Java. Heaton Research, Inc.

Hecht, B., Hong, L., Suh, B., & Chi, E. H. (2011). Tweets from justin bieber’s heart:

the dynamics of the location field in user profiles. In Proceedings of the SIGCHI

conference on human factors in computing systems, (pp. 237–246). ACM.

Hinduja, S. & Patchin, J. W. (2010). Bullying, cyberbullying, and suicide. Archives of

suicide research, 14 (3), 206–221.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computa-

tion, 9 (8), 1735–1780.

Hsu, S. T., Moon, C., Jones, P., & Samatova, N. (2017). A hybrid cnn-rnn alignment

model for phrase-aware sentence classification. In Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics: Volume

2, Short Papers, volume 2, (pp. 443–449).

Hu, M. & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and data

mining, (pp. 168–177). ACM.

98

Huang, A. (2008). Similarity measures for text document clustering. In Proceedings of

the sixth new zealand computer science research student conference (NZCSRSC2008),

Christchurch, New Zealand, (pp. 49–56).

Hulden, M., Silfverberg, M., & Francom, J. (2015). Kernel density estimation for

text-based geolocation.

Ikawa, Y., Enoki, M., & Tatsubori, M. (2012). Location inference using microblog

messages. In Proceedings of the 21st International Conference on World Wide Web,

(pp. 687–690). ACM.

Ikawa, Y., Vukovic, M., Rogstadius, J., & Murakami, A. (2013). Location-based insights

from the social web. In Proceedings of the 22nd international conference on World

Wide Web, (pp. 1013–1016). ACM.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International conference on machine learning,

(pp. 448–456).

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning, volume 112. Springer.

Jin, Z., Cao, J., Zhang, Y., & Luo, J. (2016). News verification by exploiting conflicting

social viewpoints in microblogs. In AAAI, (pp. 2972–2978).

Jurgens, D. (2013). That’s what friends are for: Inferring location in online social

media platforms based on social relationships. ICWSM, 13 (13), 273–282.

Kaplan, A. M. & Haenlein, M. (2010). Users of the world, unite! the challenges and

opportunities of social media. Business horizons, 53 (1), 59–68.

Karpathy, A. & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating

image descriptions. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, (pp. 3128–3137).

Keller, J. (2013). A fake ap tweet sinks the dow for an instant. Bloomberg Businessweek.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kinsella, S., Murdock, V., & O’Hare, N. (2011). I’m eating a sandwich in glasgow:

modeling locations with tweets. In Proceedings of the 3rd international workshop on

Search and mining user-generated contents, (pp. 61–68). ACM.

99

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, (pp. 1097–1105).

Krumm, J. (2007). Inference attacks on location tracks. In International Conference

on Pervasive Computing, (pp. 127–143). Springer.

Kumar, S., Jiang, M., Jung, T., Luo, R. J., & Leskovec, J. (2018). Mis2: Misinfor-

mation and misbehavior mining on the web. In Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining, (pp. 799–800). ACM.

Kumar, S. & Shah, N. (2018). False information on web and social media: A survey.

arXiv preprint arXiv:1804.08559.

Kwon, S., Cha, M., & Jung, K. (2017). Rumor detection over varying time windows.

PloS one, 12 (1), e0168344.

Kwon, S., Cha, M., Jung, K., Chen, W., & Wang, Y. (2013). Prominent features of

rumor propagation in online social media. In Data Mining (ICDM), 2013 IEEE 13th

International Conference on, (pp. 1103–1108). IEEE.

Laylavi, F., Rajabifard, A., & Kalantari, M. (2016). A multi-element approach to

location inference of twitter: A case for emergency response. ISPRS International

Journal of Geo-Information, 5 (5), 56.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553), 436.

Leetaru, K., Wang, S., Cao, G., Padmanabhan, A., & Shook, E. (2013). Mapping the

global twitter heartbeat: The geography of twitter. First Monday, 18 (5).

Leskovec, J. & Mcauley, J. J. (2012). Learning to discover social circles in ego networks.

In Advances in neural information processing systems, (pp. 539–547).

Li, C. & Sun, A. (2014). Fine-grained location extraction from tweets with tempo-

ral awareness. In Proceedings of the 37th international ACM SIGIR conference on

Research & development in information retrieval, (pp. 43–52). ACM.

Li, R., Lei, K. H., Khadiwala, R., & Chang, K. C.-C. (2012). Tedas: A twitter-based

event detection and analysis system. In Data engineering (icde), 2012 ieee 28th

international conference on, (pp. 1273–1276). IEEE.

Li, R., Wang, S., & Chang, K. C.-C. (2012). Multiple location profiling for users and

relationships from social network and content. Proceedings of the VLDB Endowment,

5 (11), 1603–1614.

100

Li, R., Wang, S., Deng, H., Wang, R., & Chang, K. C.-C. (2012). Towards social user

profiling: unified and discriminative influence model for inferring home locations.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining, (pp. 1023–1031). ACM.

Li, W., Serdyukov, P., de Vries, A. P., Eickhoff, C., & Larson, M. (2011). The where in

the tweet. In Proceedings of the 20th ACM international conference on Information

and knowledge management, (pp. 2473–2476). ACM.

Lin, K., Kansal, A., Lymberopoulos, D., & Zhao, F. (2010). Energy-accuracy trade-

off for continuous mobile device location. In Proceedings of the 8th international

conference on Mobile systems, applications, and services, (pp. 285–298). ACM.

Lingad, J., Karimi, S., & Yin, J. (2013). Location extraction from disaster-related

microblogs. In Proceedings of the 22nd international conference on world wide web,

(pp. 1017–1020). ACM.

Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K.-F., & Cha, M. (2016).

Detecting rumors from microblogs with recurrent neural networks. In IJCAI, (pp.

3818–3824).

Ma, J., Gao, W., Wei, Z., Lu, Y., & Wong, K.-F. (2015). Detect rumors using time

series of social context information on microblogging websites. In Proceedings of the

24th ACM International on Conference on Information and Knowledge Management,

(pp. 1751–1754). ACM.

MacEachren, A. M., Jaiswal, A., Robinson, A. C., Pezanowski, S., Savelyev, A., Mitra,

P., Zhang, X., & Blanford, J. (2011). Senseplace2: Geotwitter analytics support for

situational awareness. In Visual Analytics Science and Technology (VAST), 2011

IEEE Conference on, (pp. 181–190). IEEE.

Mahmud, J., Nichols, J., & Drews, C. (2012). Where is this tweet from? inferring

home locations of twitter users. ICWSM, 12, 511–514.

Mahmud, J., Nichols, J., & Drews, C. (2014). Home location identification of twitter

users. ACM Transactions on Intelligent Systems and Technology (TIST), 5 (3), 47.

McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive bayes

text classification. In AAAI-98 workshop on learning for text categorization, volume

752, (pp. 41–48). Citeseer.

McGee, J., Caverlee, J., & Cheng, Z. (2013). Location prediction in social media

based on tie strength. In Proceedings of the 22nd ACM international conference on

Information & Knowledge Management, (pp. 459–468). ACM.

101

McGee, J., Caverlee, J. A., & Cheng, Z. (2011). A geographic study of tie strength in

social media. In Proceedings of the 20th ACM international conference on Informa-

tion and knowledge management, (pp. 2333–2336). ACM.

Mehta, D. P. & Sahni, S. (2004). Handbook of data structures and applications. CRC

Press.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Re-

current neural network based language model. In Eleventh annual conference of the

international speech communication association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in

neural information processing systems, (pp. 3111–3119).

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the

ACM, 38 (11), 39–41.

Newman, M. L., Pennebaker, J. W., Berry, D. S., & Richards, J. M. (2003). Lying

words: Predicting deception from linguistic styles. Personality and social psychology

bulletin, 29 (5), 665–675.

O’Connor, B., Balasubramanyan, R., Routledge, B. R., Smith, N. A., et al. (2010).

From tweets to polls: Linking text sentiment to public opinion time series. Icwsm,

11 (122-129), 1–2.

O’Donovan, J., Kang, B., Meyer, G., Hollerer, T., & Adalii, S. (2012). Credibility

in context: An analysis of feature distributions in twitter. In Privacy, Security,

Risk and Trust (PASSAT), 2012 international conference on and 2012 international

confernece on social computing (SocialCom), (pp. 293–301). IEEE.

Paradesi, S. M. (2011). Geotagging tweets using their content. In FLAIRS conference.

Paul, M. J. & Dredze, M. (2011). You are what you tweet: Analyzing twitter for public

health. Icwsm, 20, 265–272.

Pennacchiotti, M. & Popescu, A.-M. (2011). A machine learning approach to twitter

user classification. Icwsm, 11 (1), 281–288.

Pennebaker, J. W. & King, L. A. (1999). Linguistic styles: Language use as an indi-

vidual difference. 77 (6), 1296.

102

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word

representation. In EMNLP, volume 14, (pp. 1532–1543).

Pregibon, D. et al. (1981). Logistic regression diagnostics. The Annals of Statistics,

9 (4), 705–724.

Quinlan, J. R. (1987). Simplifying decision trees. International journal of man-machine

studies, 27 (3), 221–234.

Rae, A., Murdock, V., Popescu, A., & Bouchard, H. (2012). Mining the web for

points of interest. In Proceedings of the 35th international ACM SIGIR conference

on Research and development in information retrieval, (pp. 711–720). ACM.

Ratinov, L. & Roth, D. (2009). Design challenges and misconceptions in named entity

recognition. In Proceedings of the Thirteenth Conference on Computational Natural

Language Learning, (pp. 147–155). Association for Computational Linguistics.

Ritter, A., Clark, S., Etzioni, O., et al. (2011). Named entity recognition in tweets: an

experimental study. In Proceedings of the conference on empirical methods in natural

language processing, (pp. 1524–1534). Association for Computational Linguistics.

Roller, S., Speriosu, M., Rallapalli, S., Wing, B., & Baldridge, J. (2012). Supervised

text-based geolocation using language models on an adaptive grid. In Proceedings

of the 2012 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, (pp. 1500–1510). Association for

Computational Linguistics.

Ruchansky, N., Seo, S., & Liu, Y. (2017). Csi: A hybrid deep model for fake news

detection.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

Ryoo, K. & Moon, S. (2014). Inferring twitter user locations with 10 km accuracy. In

Proceedings of the 23rd International Conference on World Wide Web, (pp. 643–648).

ACM.

Sadilek, A., Kautz, H., & Bigham, J. P. (2012). Finding your friends and following

them to where you are. In Proceedings of the fifth ACM international conference on

Web search and data mining, (pp. 723–732). ACM.

Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes twitter users: real-

time event detection by social sensors. In Proceedings of the 19th international con-

ference on World wide web, (pp. 851–860). ACM.

103

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Com-

puting Surveys (CSUR), 16 (2), 187–260.

Samet, H., Rosenfeld, A., Shaffer, C. A., & Webber, R. E. (1984). A geographic

information system using quadtrees. Pattern Recognition, 17 (6), 647–656.

Schifferes, S., Newman, N., Thurman, N., Corney, D., Göker, A., & Martin, C. (2014).

Identifying and verifying news through social media: Developing a user-centred tool

for professional journalists. Digital Journalism, 2 (3), 406–418.

Schulz, A., Hadjakos, A., Paulheim, H., Nachtwey, J., & Mühlhäuser, M. (2013). A

multi-indicator approach for geolocalization of tweets. In ICWSM, (pp. 573–582).

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social

media: A data mining perspective. ACM SIGKDD Explorations Newsletter, 19 (1),

22–36.

Shumaker, B. & Sinnott, R. (1984). Astronomical computing: 1. computing under the

open sky. 2. virtues of the haversine. Sky and telescope, 68, 158–159.

Silverman, C. (2016). Here are 50 of the biggest fake news hits on facebook from 2016.

BuzzFeed, https://www. buzzfeed. com/craigsilverman/top-fake-news-of-2016.

Solon, O. (2016). Facebook’s failure: Did fake news and polarized politics get trump

elected. The Guardian, 10.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15 (1), 1929–1958.

Stroud, F. fake news.

Tacchini, E., Ballarin, G., Della Vedova, M. L., Moret, S., & de Alfaro, L. (2017).

Some like it hoax: Automated fake news detection in social networks. arXiv preprint

arXiv:1704.07506.

Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of twitter networks.

Social networks, 34 (1), 73–81.

Tambuscio, M., Ruffo, G., Flammini, A., & Menczer, F. (2015). Fact-checking effect on

viral hoaxes: A model of misinformation spread in social networks. In Proceedings

of the 24th International Conference on World Wide Web, (pp. 977–982). ACM.

Tausczik, Y. R. & Pennebaker, J. W. (2010). The psychological meaning of words: Liwc

and computerized text analysis methods. Journal of language and social psychology,

29 (1), 24–54.

104

Tong, S. & Koller, D. (2001). Support vector machine active learning with applications

to text classification. Journal of machine learning research, 2 (Nov), 45–66.

Tri, N. T. & Jung, J. J. (2015). Exploiting geotagged resources to spatial ranking

by extending hits algorithm. Computer Science and Information Systems, 12 (1),

185–201.

US Census Bureau, P. D. (2016). Annual estimates of resident population change

for incorporated places of 50,000 or more in 2014, ranked by percent change: July

1, 2014 to july 1, 2015. http://factfinder.census.gov/faces/tableservices/

jsf/pages/productview.xhtml?src=bkmk. Accessed: 2016/12/05.

Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with

application of nested equations. Survey review, 23 (176), 88–93.

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online.

Science, 359 (6380), 1146–1151.

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). Cnn-rnn: A

unified framework for multi-label image classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, (pp. 2285–2294).

Wing, B. & Baldridge, J. (2014). Hierarchical discriminative classification for text-

based geolocation. In EMNLP, (pp. 336–348).

Wing, B. P. & Baldridge, J. (2011). Simple supervised document geolocation with

geodesic grids. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies-Volume 1, (pp. 955–964).

Association for Computational Linguistics.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann.

Wu, S., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Who says what to whom

on twitter. In Proceedings of the 20th international conference on World wide web,

(pp. 705–714). ACM.

Yamaguchi, Y., Amagasa, T., Kitagawa, H., & Ikawa, Y. (2014). Online user location

inference exploiting spatiotemporal correlations in social streams. In Proceedings of

the 23rd ACM International Conference on Conference on Information and Knowl-

edge Management, (pp. 1139–1148). ACM.

Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., & Yu, P. S. (2018). Ti-cnn: Convolu-

tional neural networks for fake news detection. arXiv preprint arXiv:1806.00749.

105

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical atten-

tion networks for document classification. In Proceedings of the 2016 conference of

the North American chapter of the association for computational linguistics: human

language technologies, (pp. 1480–1489).

Yardi, S., Romero, D., Schoenebeck, G., et al. (2009). Detecting spam in a twitter

network. First Monday, 15 (1).

Zhang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: a

statistical framework. International Journal of Machine Learning and Cybernetics,

1 (1-4), 43–52.

Zheng, X., Han, J., & Sun, A. (2017). A survey of location prediction on twitter. arXiv

preprint arXiv:1705.03172.

Zhong, N., Li, Y., & Wu, S.-T. (2012). Effective pattern discovery for text mining.

IEEE transactions on knowledge and data engineering, 24 (1), 30–44.

Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., & Procter, R. (2018). Detection and

resolution of rumours in social media: A survey. ACM Computing Surveys (CSUR),

51 (2), 32.

Zubiaga, A., Liakata, M., & Procter, R. (2016). Learning reporting dynamics during

breaking news for rumour detection in social media. arXiv preprint arXiv:1610.07363.

106

Appendices

107

Appendix A

Quadtree Location Inference

Codes

This section contains the source Python codes used in the implementation of the

methods and techniques for the grid-based quadtree content-only location inference

with hybrid word embeddings. The python libraries used include: Scikit Learn (www.

scikit-learn.org) Word2Vec by (Mikolov et al 2013) GeoPy (https://geopy.readthedocs.

io/en/stable/) Matplotlib (https://matplotlib.org/) Pandas (https://pandas.

pydata.org/) Numpy (https://numpy.org/) NLTK Tool Kit (http://www.nltk.

org/)

”””

This is the main module of the project. It contains the entry point

CLI function of the application .

”””

import sys

import numpy as np

import preprocess

import classify

import cluster

#import draw

import settings

import pandas as pd

import joblib

108

www.scikit-learn.org
www.scikit-learn.org
https://geopy.readthedocs.io/en/stable/
https://geopy.readthedocs.io/en/stable/
https://matplotlib.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://numpy.org/
http://www.nltk.org/
http://www.nltk.org/

from geopy.distance import great circle

from matplotlib import pyplot as plt

from sklearn.cross validation import train test split

from sklearn.metrics import roc curve, auc

from sklearn.preprocessing import label binarize

from sklearn.multiclass import OneVsRestClassifier

from sklearn.linear model import LogisticRegression

from sklearn.metrics import cohen kappa score

from scipy import interp, sparse

def cluster (input filename) :

return cluster.by grid(input filename, settings .CLUSTER.

OUTPUT FILENAME,

map bounds=settings.MAP.BOUNDS, by depth=settings

.CLUSTER.BY DEPTH)

def learn(input filename, centroids , distance) :

prepare the data

corpus, labels = preprocess.read corpus(input filename)

embedder = classify.TextEmbedder(distance)

corpus, labels = embedder(corpus, labels)

split data and learn the model

X, y = corpus, labels

X train, X test, y train , y test = train test split (X, y,

test size =settings.

CLASSIFY.TEST SIZE

,

random state=settings.

CLASSIFY.

RANDOM SEED)

tfidf = preprocess.Vectorizer()

logreg = classify . learn(tfidf . fit (X train), y train)

predict labels

X transformed = tfidf.transform(X)

y pred = logreg.predict(X transformed)

109

sparse.save npz(settings .ROC.XINPUT, X transformed)

del X transformed

X test transformed = tfidf .transform(X test)

del tfidf

y test pred = logreg.predict(X test transformed)

accuracy, = classify . test (logreg , X test transformed, y test)

kappa = cohen kappa score(y test, y test pred)

save data for the roc curve

y.to csv(settings .ROC.YINPUT, sep=’\t’, header=True)

save predicted labels

original df = preprocess.read dataframe(input filename)

text = original df [settings .CSV.INPUT.TEXT]

actual latitude = original df [settings .CSV.OUTPUT.ACTUAL LATITUDE]

actual longitude = original df [settings .CSV.OUTPUT.

ACTUAL LONGITUDE]

y pred = pd.Series(y pred, name=settings.CSV.OUTPUT.PREDICTED GRID)

predicted latitude = pd.Series(

[centroids [grid][settings .CSV.INPUT.LATITUDE] for grid in y pred],

name=settings.CSV.OUTPUT.PREDICTED LATITUDE

)

predicted longitude = pd.Series(

[centroids [grid][settings .CSV.INPUT.LONGITUDE] for grid in y pred],

name=settings.CSV.OUTPUT.PREDICTED LONGITUDE

)

error = pd.Series(

list (map(lambda x, y: round(great circle(x, y).kilometers, 2),

zip(actual latitude , actual longitude) , zip(

predicted latitude , predicted longitude)

)) ,

name=settings.CSV.OUTPUT.ERROR

)

dataframe = pd.concat([text,

actual latitude ,

actual longitude ,

110

predicted latitude ,

predicted longitude ,

error ,

labels ,

y pred], axis=1)

output filename = settings.CLASSIFY.OUTPUT FILENAME

dataframe.to csv(output filename, sep=’\t’, header=True)

return accuracy, kappa, (y test, y test pred)

def visualize (coords, y values , tree , map bounds, output filename):

draw.draw result(coords, y values , tree , max depth=tree.height,

map bounds=map bounds)

plt . savefig (output filename, format=’svg’, dpi=2000)

print(”Map file:”, output filename)

def roc(X, y):

Binarize the output

y = label binarize (y, classes =sorted(y.unique()))

n classes = y.shape[1]

shuffle and split training and test sets

X train, X test, y train , y test = train test split (X, y,

test size =settings.

CLASSIFY.TEST SIZE

,

random state=settings.

CLASSIFY.

RANDOM SEED)

Learn to predict each class against the other

classifier = OneVsRestClassifier(LogisticRegression())

y score = classifier . fit (X train, y train) . decision function (X test)

Compute ROC curve and ROC area for each class

fpr = dict()

tpr = dict()

111

roc auc = dict()

for i in range(n classes):

fpr [i], tpr[i], = roc curve(y test [:, i], y score [:, i])

roc auc[i] = auc(fpr[i], tpr[i])

Compute micro−average ROC curve and ROC area

fpr [”micro”], tpr[”micro”], = roc curve(y test . ravel () , y score . ravel ())

roc auc[”micro”] = auc(fpr[”micro”], tpr[”micro”])

First aggregate all false positive rates

all fpr = np.unique(np.concatenate([fpr[i] for i in range(n classes)]))

Then interpolate all ROC curves at this points

mean tpr = np.zeros like(all fpr)

for i in range(n classes):

mean tpr += interp(all fpr, fpr [i], tpr[i])

Finally average it and compute AUC

mean tpr /= n classes

fpr [”macro”] = all fpr

tpr[”macro”] = mean tpr

roc auc[”macro”] = auc(fpr[”macro”], tpr[”macro”])

Plot all ROC curves

plt . figure ()

plt .plot(fpr [”micro”], tpr[”micro”],

label=’micro−average ROC curve (area = {0:0.2f})’
’ ’ .format(roc auc[”micro”]),

color=’deeppink’, linestyle =’:’ , linewidth=4)

plt .plot ([0, 1], [0, 1], ’k−−’, lw=2)

plt .xlim ([0.0, 1.0])

plt .ylim ([0.0, 1.05])

plt . xlabel(’False Positive Rate’)

plt . ylabel(’True Positive Rate’)

plt . title (’Receiver operating characteristic example’)

plt .legend(loc=”lower right”)

output filename = settings.CLASSIFY.ROC FILENAME

112

plt . savefig (output filename, format=’svg’, dpi=2000)

print(”ROC file:”, output filename)

def cli () :

”””

The entry point function.

”””

from datetime import datetime

start = datetime.now()

command = sys.argv[1]

if command == ’cluster’:

input filename = sys.argv[2]

cluster corpus by geocoordinates

coords, tree , centroids = cluster(input filename)

serialize results

joblib .dump(coords, settings.CLUSTER.COORDS FILENAME)

joblib .dump(tree, settings.CLUSTER.TREE FILENAME)

joblib .dump(centroids, settings.CLUSTER.CENTROIDS FILENAME)

elif command == ’classify’:

learn model and predict geolabels by text content

coords = joblib.load(settings .CLUSTER.COORDS FILENAME)

tree = joblib.load(settings .CLUSTER.TREE FILENAME)

centroids = joblib.load(settings .CLUSTER.CENTROIDS FILENAME)

accuracy, kappa, y values = learn(settings .CLUSTER.

OUTPUT FILENAME,

centroids ,

settings .CLASSIFY.DISTANCE)

print(”k−fold CV accuracy:”, accuracy)

print(”Cohen Kappa score:”, kappa)

draw a map

visualize(coords, y values , tree ,

113

settings .MAP.BOUNDS, settings.MAP.OUTPUT FILENAME)

elif command == ’roc’:

X = sparse.load npz(settings.ROC.XINPUT)

y = pd.Series.from csv(settings .ROC.YINPUT, sep=’\t’, header=0)

roc(X, y)

else:

print(’Wrong command:’, command)

time elapsed = datetime.now() − start

print(’Time elpased (hh:mm:ss.ms) {}’.format(time elapsed))

if name == ” main ”:

cli ()

%−−

%−−

”””

This module is aimed to cluster tweets location based on its content into grids .

”””

from future import print function

import itertools

import numpy as np

import pandas as pd

import settings

import preprocess

def get bounds(coords):

”””

Return a bounding box coordinates for a collection of points from dataframe.

”””

return ((coords.min()[settings.CSV.INPUT.LATITUDE],

coords.max()[settings.CSV.INPUT.LATITUDE]),

(coords.min()[settings.CSV.INPUT.LONGITUDE],

114

coords.max()[settings.CSV.INPUT.LONGITUDE]))

def in bounds(dataframe, bounds):

”””

Return the dataframe of the points that are in the map bounding box.

”””

precision = 1e−5

return dataframe.query(settings.CSV.INPUT.LATITUDE + ’>=’ + str(bounds

[0][0] − precision)) \
.query(settings .CSV.INPUT.LATITUDE + ’<=’ + str(bounds

[0][1] + precision)) \
.query(settings .CSV.INPUT.LONGITUDE + ’>=’ + str(

bounds[1][0] − precision)) \
.query(settings .CSV.INPUT.LONGITUDE + ’<=’ + str(

bounds[1][1] + precision))

def to cells (coords, bounding box, pattern):

”””

Split a dataframe with geocoordinates into four cells .

”””

batches = []

cells = []

((lat 0 , lat n) , (lon 0, lon n)) = bounding box

lats = np.linspace(lat 0 , lat n , pattern + 1)

lons = np.linspace(lon 0, lon n, pattern + 1)

cells = list(itertools .product(

zip(lats [:], lats [1:]) ,

zip(lons [:], lons [1:])

))

batches = [in bounds(coords, cell) for cell in cells]

return batches, cells

stop criteria

115

def stop by depth(self ,) :

return self.depth >= self.max depth

def stop by point number(self, coords):

return len(coords) <= self.max per grid

def to dec(number, base):

”””

Convert a number to decimal from ’base’

”””

assert type(number) is list

return sum([(int(v) ∗ base∗∗i) for i, v in enumerate(number[::−1])])

class QuadTree:

”””Quad−tree class which recursively subdivide the space into quadrants”””

def init (self , coords, depth=0,

max per grid=settings.CLUSTER.MAXIMUM PER GRID,

max depth=settings.CLUSTER.MAXIMUM DEPTH,

pattern=settings.CLUSTER.PATTERN,

bounds=None, stop criteria=None):

coords = coords.sort values ([settings .CSV.INPUT.LATITUDE, settings.

CSV.INPUT.LONGITUDE])

self . children = []

self .coords = pd.DataFrame([])

self .bounds = get bounds(coords) if not bounds else bounds

self .depth = depth

self .max depth = max depth

self .max per grid = max per grid

self . stop criteria = stop criteria

self .pattern = pattern

self .height = self .depth

stop if no point anymore

if len(coords) == 0:

return

116

stop by chosen criteria

if stop criteria (self , coords):

self .coords = coords

return

else:

batches, cells = to cells (coords, self .bounds, pattern)

for batch, cell in zip(batches, cells) :

self . children .append(QuadTree(

batch, depth=depth + 1, bounds=cell, stop criteria=

stop criteria, pattern=pattern))

calculation the height of the whole tree

self .height = max(self.height, max(child.height for child in self . children)

)

def assign labels (self , grid labels , centroids , path):

”””

DFS procudure to assign labels to every point .

”””

if len(self .coords) > 0:

class id = ”G” + str(to dec(path, self.pattern ∗∗ 2))

for key in self .coords.index:

grid labels [key] = class id

centroids [class id] = self .coords.mean()

else:

for i , child in enumerate(self.children):

child . assign labels (grid labels , centroids , path + [i])

def by grid(input filename, output filename, map bounds, by depth):

”””

The entry point of the module.

”””

dataframe = preprocess.read dataframe(input filename)

117

fliter points that are not in the bounds

dataframe = in bounds(dataframe, map bounds)

coords = dataframe[[settings.CSV.INPUT.LATITUDE, settings.CSV.INPUT.

LONGITUDE]]

stop criteria = stop by depth if by depth else stop by point number

tree = QuadTree(coords, stop criteria=stop criteria)

write output csv file

centroids = {}
grid labels = {key: None for key in list(dataframe.index)}
tree . assign labels (grid labels , centroids , [])

label values = [grid labels [key] for key in dataframe.index]

dataframe[settings .CSV.OUTPUT.ACTUAL GRID] = label values

output dataframe = \
dataframe.loc [:, (settings .CSV.INPUT.TEXT,

settings .CSV.INPUT.LATITUDE,

settings .CSV.INPUT.LONGITUDE,

settings .CSV.OUTPUT.ACTUAL GRID)]

output dataframe = output dataframe.rename(index=str, columns={
settings .CSV.INPUT.LATITUDE: settings.CSV.OUTPUT.

ACTUAL LATITUDE,

settings .CSV.INPUT.LONGITUDE: settings.CSV.OUTPUT.

ACTUAL LONGITUDE

})
output dataframe.to csv(output filename, sep=’\t’, header=True)

return coords, tree, centroids

if name == ” main ”:

raise RuntimeError(”This module is not supposed to be called.”)

%−−

%−−

”””

This module is aimed to classify and predict tweets label based on its content.

”””

118

from future import print function

import os

import joblib

import numpy as np

from sklearn.naive bayes import MultinomialNB

from sklearn import tree

from sklearn.linear model import LogisticRegression

from sklearn.model selection import cross val score

from sklearn import metrics

from gensim.models import word2vec

from ctypes import cdll, POINTER, c uint64, c size t, c double

import settings

jaccard lib = None

def jaccard(x, y):

”””

Generalized Jaccard index of similarity

”””

xdata p = x.ctypes.data as(POINTER(c double))

ydata p = y.ctypes.data as(POINTER(c double))

return jaccard lib.jaccard(xdata p, ydata p, len(x))

def normalize(model):

”””

Normalize word embeddings

”””

result = {}
for word in model.wv.vocab:

result [word] = model.wv[word] + abs(min(model.wv[word]))

return result

class TextEmbedder:

119

”””

Word2Vec embedding for tweet words, and reducing the dictionary

”””

def init (self , distance) :

self .distance = distance

self .model = None

self .normalized wv = None

def call (self , corpus, labels) :

”””

Reduce total count of words used in corpus by testing their

word2vec embeddings on high similarity

”””

self .model = self. embed(corpus)

self .normalized wv = normalize(self.model)

corpus = self . dimreduce(corpus)

return corpus, labels

def embed(self, corpus):

”””

Create word2vec embeddings for words from the corpus

”””

model = word2vec.Word2Vec(corpus,

min count=settings.CLASSIFY.

W2V MIN COUNT,

size=settings.CLASSIFY.W2V SIZE,

window=settings.CLASSIFY.W2V WINDOW,

workers=settings.CLASSIFY.W2V WORKERS)

model.save(settings .CLASSIFY.W2V FILENAME)

return model

def replace condition (self , word, synonim):

”””

Create a boolean condition of word replacement

”””

cosin sim = self .model.similarity(word, synonim)

jaccard sim = jaccard(self .normalized wv[word], self .normalized wv[

120

synonim])

if self .distance == settings.CLASSIFY.COSINE:

condition = cosin sim >= settings.CLASSIFY.COSINE THRESHOLD

elif self .distance == settings.CLASSIFY.JACCARD:

condition = jaccard sim >= settings.CLASSIFY.

JACCARD THRESHOLD

else:

condition = cosin sim >= settings.CLASSIFY.COSINE THRESHOLD

and \
jaccard sim >= settings.CLASSIFY.JACCARD THRESHOLD

condition = condition and self.model.wv.vocab[synonim].count > self.model.

wv.vocab[word].count

return condition

def most similar(self , word):

”””

Find a most similar word for a given word

”””

if self .distance == settings.CLASSIFY.JACCARD:

synonim, = min([(x, jaccard(self .normalized wv[word], self .

normalized wv[x])) for x in self .model.wv.vocab],

key = lambda x: x[1])

else:

synonim, = self .model.wv.most similar(word)[0]

return synonim

def dimreduce(self , corpus):

”””

Replace similar words by their synonyms

”””

to replace = {}
for word in self .model.wv.vocab:

synonim = self. most similar(word)

if self . replace condition (word, synonim):

to replace [word] = synonim

121

for i in range(len(corpus)):

corpus[i] = [to replace [word]

if word in to replace else word for word in corpus[i]]

save fixed words

with open(”dictionary.txt”, ’w’) as g:

print(”\n”.join(”{}\t{}”.format(k, v)

for k, v in to replace .items()) , file =g)

print(”Words eliminating:”, len(self .model.wv.vocab), ”−>”,

len(self .model.wv.vocab) − len(to replace))

return corpus

def learn(X, y):

”””

Learn logit model to predict labels by vectorized corpus

”””

with open(’ylog.txt’, ’w’) as ylog:

print(y, file =ylog)

with open(’Xlog.txt’, ’w’) as xlog:

print(X, file=xlog)

Fit Logistic Regression model to the dataset

logreg = MultinomialNB()

#logreg = LogisticRegression()

#logreg = tree. DecisionTreeClassifier (random state=0, max depth=10)

logreg . fit (X, y)

save the logit model

joblib .dump(logreg, settings.CLASSIFY.LOGIT FILENAME)

return logreg

def test(logreg , X, y):

”””

Test accuracy of prediction

122

”””

Applying k−Fold Cross Validation

accuracies = cross val score (

estimator=logreg,

X=X, y=y,

cv=settings.CLASSIFY.CROSS VALID K)

with open(settings.CLASSIFY.CV ACCURACY FILENAME, ’w’) as output:

print(accuracies.mean(), file=output)

calculate accuracy of class predictions

pre rec fm = metrics. classification report (y, logreg .predict(X))

with open(settings.CLASSIFY.F1 FILENAME, ’w’) as output:

print(pre rec fm, file =output)

return accuracies.mean(), pre rec fm

def find lib (directory : str, prefix : str) −> str:

for f in os. listdir (directory) :

fullname = os.path.join(directory , f)

if os.path. isfile (fullname) and f.startswith(prefix) and f.endswith(”so”):

return fullname

raise ValueError(”Library ’%s’ not found” % prefix)

if name == ” main ”:

raise RuntimeError(”This module is not supposed to be called.”)

else:

libdir = os.path.dirname(os.path.abspath(file))

jaccard lib = cdll .LoadLibrary(find lib(libdir , ”jaccard”))

jaccard lib .jaccard.argtypes = [POINTER(c double), POINTER(c double),

c size t]

jaccard lib .jaccard.restype = c double

%−−

%−−

123

#This module does text pre−processing of the tweets

”””

I/O functions

”””

import re

import pandas as pd

import nltk

import settings

import joblib

import csv

from sklearn.feature extraction .text import TfidfVectorizer, \
TfidfTransformer, \
CountVectorizer

def get stop words():

”””

Setup nltk on import

”””

nltk.download(’stopwords’)

return set(nltk.corpus.stopwords.words(’english’))

STOP WORDS = get stop words()

def read dataframe(input filename):

”””

Read a csv file as pandas dataframe.

”””

with open(input filename, ’r’) :

return pd.read csv(input filename, sep=’\t’, quoting=csv.QUOTE NONE)

def tokenize(tweet):

”””

Split a tweet text into tokens, and remove stop words

”””

124

tweet = re.sub(r”http\S+”, ””, tweet)

tokens = re. findall (r ’\w+’, tweet.lower())

tokens = [token for token in tokens if not token in STOP WORDS]

return tokens if len(tokens) > 1 else tokens ∗ 2

def read corpus(input filename):

”””

Read and preprocess tweet dataset .

”””

dataset = read dataframe(input filename)

dataset[settings .CSV.OUTPUT.TEXT] = dataset[settings.CSV.OUTPUT.

TEXT].apply(

tokenize)

return dataset[settings.CSV.OUTPUT.TEXT], dataset[settings.CSV.OUTPUT.

ACTUAL GRID]

class Vectorizer :

”””

Vectorize corpus by transforming into TF−IDF matrix

”””

def init (self) :

self .vocabulary = None

def load vocabulary(self) :

self .vocabulary = joblib.load(settings .CLASSIFY.TFIDF FILENAME)

def join words(self , corpus):

return [’ ’ . join(tokens for tokens in tweet) for tweet in corpus]

def fit (self , corpus):

”””

Fit and transform new data to TF−IDF matrix

”””

vectorizer = CountVectorizer(decode error=”replace”, min df=1)

corpus = self . join words(corpus)

vec train = vectorizer . fit transform (corpus)

125

save vocabulary

self .vocabulary = vectorizer.vocabulary

joblib .dump(vectorizer.vocabulary , settings .CLASSIFY.

TFIDF FILENAME)

return vec train

def transform(self , corpus):

”””

Transform to TF−IDF matrix using only word vocabulary of previous fit

”””

transformer = TfidfTransformer()

if not self .vocabulary:

self . load vocabulary()

loaded vec = CountVectorizer(decode error=”replace”,

vocabulary=self.vocabulary)

corpus = self . join words(corpus)

return transformer.fit transform(loaded vec. fit transform (corpus))

%−−

%−−

#This module contains the Python requirements for running the codes

numpy==1.13.1

pandas==0.20.3

gensim==2.3.0

geopy==1.11.0

joblib==0.11

nltk==3.2.4

scikit learn ==0.19.0

cycler==0.10.0

matplotlib==2.0.2

olefile ==0.44

Pillow==4.2.1

pyparsing==2.2.0

python−dateutil==2.6.1

126

pytz==2017.2

scipy==0.19.1

six==1.10.0

%−−

%−−

#This module contains all the settings for the running the software

”””

Settings and constant values of the project .

”””

from bunch import Bunch

Geographic map parameters

MAP = Bunch({

Including Alaska

#’BOUNDS’: ((5.49955, 83.162102), (−167.27641, −52.23304)),

Only continetal part of the USA

’BOUNDS’: ((20, 50), (−127, −64)),

Output map colors

’WATER COLOR’: ’#9db8d3’,

’LAND COLOR’: ’#f8f7f0’,

’OUTPUT FILENAME’: ’map.svg’,

’TRAIN COLOR’: ’gray’,

’FALSE COLOR’: ’r’,

’TRUE COLOR’: ’g’,

’BOUNDS COLOR’: ’b’,

})

Quadtree clustering parameters

CLUSTER = Bunch({
Change this boolean value to use maximum−depth stop criteria

127

’BY DEPTH’: True,

Cell pattern for splitting (i .e. 2x2 for value of 2)

’PATTERN’: 2,

’MAXIMUM PER GRID’: 5000,

’MAXIMUM DEPTH’: 4,

’OUTPUT FILENAME’: ’clustered.csv’,

’COORDS FILENAME’: ’coords.dat’,

’TREE FILENAME’: ’tree.dat’,

’CENTROIDS FILENAME’: ’centroids.dat’,

})

Word2Vec and logit parameters

CLASSIFY = Bunch({
’W2V FILENAME’: ’w2v.dat’,

’TFIDF FILENAME’: ’vocabulary.dat’,

’LOGIT FILENAME’: ’logit.dat’,

’CV ACCURACY FILENAME’: ’accuracy.txt’,

’F1 FILENAME’: ’pre rec fm.txt’,

’ROC FILENAME’: ’roc.svg’,

’OUTPUT FILENAME’: ’predicted.csv’,

Word2Vec learning paramters

’W2V MIN COUNT’: 1,

’W2V SIZE’: 200,

’W2V WINDOW’: 3,

’W2V WORKERS’: 4,

Change this to use only cosine distance as criteria

of words similarity

#’DISTANCE’: ’cosine’,

#’DISTANCE’: ’jaccard’,

’DISTANCE’: ’hybrid’,

possible DISTNACE values: cosine, jaccard, hybrid

’COSINE’: ’cosine’,

’JACCARD’: ’jaccard’,

128

’HYBRID’: ’hybrid’,

Similarity thresholds for words eliminating

’COSINE THRESHOLD’: 0.99,

’JACCARD THRESHOLD’: 0.95,

Size of test part for logit learning

’TEST SIZE’: 0.2,

’CROSS VALID K’: 3,

’RANDOM SEED’: 42

})

CSV input/output file column naming convention

CSV = Bunch({
’INPUT’ : Bunch({

’INDEX’: ’index tweet’,

’TEXT’: ’text’,

’LATITUDE’: ’geocoordinate0’,

’LONGITUDE’: ’geocoordinate1’,

}),

’OUTPUT’ : Bunch({
’INDEX’: ’index tweet’,

’TEXT’: ’text’,

’ACTUAL GRID’: ’ActualGrid’,

’PREDICTED GRID’: ’PredictedGrid’,

’ACTUAL LATITUDE’: ’ActualLatitude’,

’ACTUAL LONGITUDE’: ’ActualLongitude’,

’PREDICTED LATITUDE’: ’PredictedLatitude’,

’PREDICTED LONGITUDE’: ’PredictedLongitude’,

’ERROR’: ’GreatCircle(km)’

})
})

ROC = Bunch({

129

’XINPUT’: ’roc x.npz’,

’YINPUT’: ’roc y.csv’,

})
%==================================

%==================================

Description and READ ME file for running the application

This project is aimed at predicting tweet geolocation by its contents only.

Clustering

1. At the beginning it performs quadtree clustering of tweets by their latitude

and longitude coordinates.

2. Every tweet gets a grid label , which is a unique label of tree node it was

clustered in.

Reducing words space dimensionality

3. Then the dictionary of the words used in all tweets is embedded by word2vec

CBOW model.

4. Embedded word vectors are used to determine words similarity using cosine

distance, or combination of cosine distance and generalized jaccard similarity .

5. Most similar words from the step 3 are eliminated by replacing them to their

synonims.

Learning model to predict location

6. Reduced tweets are embedded using TF−IDF model.

7. Vectors from the previous step are used in learning logit regression for predict

grid labels from the step 1.

130

Visualisation

8. Origin and predicted geocoordinates are used to draw tweet points on the map.

9. Origin (from clustering stage) and predicted (from learning + testing stage)

grid labels are used to colorize tweet points. Green and red points correspond

to correct and incorrect label predictions respectively .

Settings

You can tune clustering, embedding, learning stages by changing following

parameters in ‘‘‘ settings .py ‘‘‘:

− ‘‘‘ settings .CLUSTER.BY DEPTH‘‘‘ [Boolean]: use maximum−depth as stop

condition of quadtree clustering

− ‘‘‘ settings .CLUSTER.PATTERN’‘‘‘ [Int]: cell pattern for splitting step. Every

split node will contains (Pattern x Pattern) number of child nodes.

− ‘‘‘ settings .CLUSTER.MAXIMUM PER GRID‘‘‘ [Int]: maximum tweets per grid

allowed (if default criteria is used)

− ‘‘‘ settings .CLUSTER.MAXIMUM DEPTH‘‘‘ [Int]: maximum tree depth allowed

(if BY DEPTH criteria is used)

− ‘‘‘ settings .CLASSIFY.USE HYBRID‘‘‘ [Boolean]: use both cosine and

generalized jaccard similarity thresholds of word similarity as condition for

eliminating similar words

− ‘‘‘ settings .CLASSIFY.∗ THRESHOLD‘‘‘ [Float]: similarity threshold for cosine/

generalized jaccard distance, used in words eliminating stage

− ‘‘‘ settings .CLASSIFY.W2V∗‘‘‘: word2vec CBOW parameters. See gensim

word2vec documentation for more detailed description.

Usage

Input csv format must be formatted as following, using tab as separate character:

131

‘‘‘

index tweet text geocoordinate0 geocoordinate1

...

‘‘‘

When geocoordinate0, geocoordinate1 are latitude, longitude respectively .

To install the application via pip (you may want to do this under virtualenv):

‘‘‘

pip −e install .

‘‘‘

Run the application using ‘tweetmap‘ command:

‘‘‘

tweetmap cluster INPUT FILE

tweetmap classify

tweetmap roc

‘‘‘

%===================

%===================

”””

#Module for drawing tweets and quadtree on the map.

”””

import numpy as np

from mpl toolkits.basemap import Basemap

from matplotlib import pyplot as plt

import settings

def draw bounds(bmap, tree, max depth):

”””

Draw a proper bounding rectangle of quadtree on basemap

”””

bounds lons = [tree.bounds [1][0], tree .bounds [1][0],

tree .bounds [1][1], tree .bounds [1][1], tree .bounds [1][0]]

bounds lats = [tree .bounds [0][0], tree .bounds [0][1],

tree .bounds [0][1], tree .bounds [0][0], tree .bounds [0][0]]

132

bmap.plot(bounds lons, bounds lats, linewidth=0.2,

color=settings.MAP.BOUNDS COLOR, zorder=3)

if not tree . children or tree .depth >= max depth:

return

else :

for child in tree . children :

draw bounds(bmap, child, max depth)

def draw result(coords, labels , tree , max depth, map bounds):

”””

Draw a geographic map and the resulting tree with tweets on it.

”””

bmap = Basemap(projection=’cyl’, llcrnrlon=map bounds[1][0], llcrnrlat=

map bounds[0][0],

urcrnrlon=map bounds[1][1], urcrnrlat=map bounds[0][1],

resolution=’l’)

draw continents, countries, states

bmap.drawcoastlines()

bmap.drawcountries(linewidth=1.5)

bmap.fillcontinents (

color=settings.MAP.LAND COLOR, lake color=settings.MAP.

WATER COLOR)

bmap.drawmapboundary(fill color=settings.MAP.WATER COLOR)

y test , y pred = labels

draw tweet points

dataframe = coords.join(y pred == y test)

test df = dataframe.dropna()

train df = dataframe.ix[dataframe[settings.CSV.OUTPUT.ACTUAL GRID].

isnull().nonzero()]

train points = np.array([point for , point in train df . iterrows()])

true df = test df . loc [test df [settings .CSV.OUTPUT.ACTUAL GRID] ==

True]

false df = test df . loc [test df [settings .CSV.OUTPUT.ACTUAL GRID] ==

133

False]

true points = np.array([point for , point in true df . iterrows()])

false points = np.array([point for , point in false df . iterrows()])

handle 0 = bmap.scatter(train points [:, 1], train points [:, 0],

marker=’o’, color=settings.MAP.TRAIN COLOR, zorder=2, s

=0.5)

handle 1 = bmap.scatter(false points [:, 1], false points [:, 0],

marker=’o’, color=settings.MAP.FALSE COLOR, zorder=2, s=1)

handle 2 = bmap.scatter(true points[:, 1], true points [:, 0],

marker=’o’, color=settings.MAP.TRUE COLOR, zorder=2, s=1)

plt . xlabel(’ ’)

plt . ylabel(’ ’)

plt . title (’ ’)

plt .legend((handle 0, handle 1, handle 2),

(’Train points’ , ’False prediction ’ , ’True prediction’) ,

ncol=3, loc=8)

draw quadtree regions layout

draw bounds(bmap, tree, max depth)

%==

%==

#include <cstddef>

#include <vector>

#include <iostream>

typedef double num t;

double jaccard(const num t∗ x val, const num t∗ y val, const size t len)

{
std :: vector<num t> x(x val, x val + len);

std :: vector<num t> y(y val, y val + len);

num t minsum = 0, maxsum = 0;

134

for (size t i = 0; i < len; ++i)

{
minsum += std::min(x[i], y[i]) ;

maxsum += std::max(x[i], y[i]);

}
return minsum / maxsum;

}

extern ”C” {
double jaccard(const num t∗ x val, const num t∗ y val, const size t len)

{
return jaccard(x val , y val , len) ;

}
}

int main()

{
std :: vector<double> x = {1.0, 2.0, 3.0, 4.0, 5.0};
std :: vector<double> y = {3.0, 1.0, 2.0, 5.0, 4.0};
std :: cout << jaccard(&x[0], &y[0], 5) << std::endl;

return 0;

}

135

136

Appendix B

Python Codes for Fake News

Detection - Text only

This section contains the source codes and algorithms used in the implementation of

the methods and techniques for the Fake News detection using text only.

The python libraries used include: Keras (https://keras.io/) Scikit Learn (www.

scikit-learn.org) Pandas (https://pandas.pydata.org/) Numpy (https://numpy.

org/)

LSTM classification model of the Rumor−non Rumor Dataset

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers.embeddings import Embedding

from keras.preprocessing import sequence

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad sequences

import tensorflow as tf

from metrics import precision

from metrics import recall

from metrics import fmeasure

from sklearn.model selection import StratifiedKFold

import keras.backend as k

137

https://keras.io/
www.scikit-learn.org
www.scikit-learn.org
https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/

fix random seed for reproducibility

seed = 0

np.random.seed(seed)

Importing the training set

data set = pd.read csv(’RNR.tsv’, delimiter = ’\t’ , quoting = 3, header = None)

X = data set.iloc [:, 1]

Y = data set.iloc [:, 6]

tokenize the training texts and make it sequential

top words = 50

tokenizer = Tokenizer(num words=top words)

tokenizer . fit on texts (X)

sequences train = tokenizer.texts to sequences(X)

tokenize the testing texts and make it sequential

tokenizer . fit on texts (X)

sequences test = tokenizer.texts to sequences(X)

#word index train = tokenizer.word index train

#print(’Found %s unique tokens.’ % len(word index train))

Y = Y.values.reshape(2600,)

print(Y.shape)

truncate and pad input sequences

max tweet length = 300

X = sequence.pad sequences(sequences train, maxlen=max tweet length)

define 10−fold cross validation test harness

kfold = StratifiedKFold(n splits=10, shuffle=True, random state=seed)

cvscores = []

for train , test in kfold . split (X, Y):

create the model

embedding vector length = 32

model = Sequential()

load the dataset with word embedding but only keep the top n words, zero the

rest

model.add(Embedding(top words, embedding vector length, input length=

138

max tweet length))

model.add(LSTM(100))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’accuracy

’,precision,recall , fmeasure])

print(model.summary())

model.fit (X[train], Y[train], epochs=50, batch size=64)

Final evaluation of the model

scores = model.evaluate(X[test], Y[test], verbose=0)

print(”Accuracy: %.2f%%” % (scores[1]∗100))

print(”Precision: %.2f%%” % (scores[2]∗100))

print(”Recall: %.2f%%” % (scores[3]∗100))

print(”Fmeasure: %.2f%%” % (scores[4]∗100))

print(scores)

cvscores .append(scores[1] ∗ 100)

print(”%.2f%% (+/− %.2f%%)” % (np.mean(cvscores), np.std(cvscores)))

k. clear session ()

%−−

%−−

LSTM classification model with CNN of the Rumor−non Rumor Dataset

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.layers.embeddings import Embedding

from keras.preprocessing import sequence

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad sequences

import tensorflow as tf

from metrics import precision

from metrics import recall

from metrics import fmeasure

139

from sklearn.model selection import StratifiedKFold

import keras.backend as k

fix random seed for reproducibility

seed = 0

np.random.seed(seed)

Importing the training set

data set = pd.read csv(’RNR.tsv’, delimiter = ’\t’ , quoting = 3, header = None)

X = data set.iloc [:, 1]

Y = data set.iloc [:, 6]

tokenize the training texts and make it sequential

top words = 50

tokenizer = Tokenizer(num words=top words)

tokenizer . fit on texts (X)

sequences train = tokenizer.texts to sequences(X)

tokenize the testing texts and make it sequential

tokenizer . fit on texts (X)

sequences test = tokenizer.texts to sequences(X)

#word index train = tokenizer.word index train

#print(’Found %s unique tokens.’ % len(word index train))

Y = Y.values.reshape(2600,)

print(Y.shape)

truncate and pad input sequences

max tweet length = 300

X = sequence.pad sequences(sequences train, maxlen=max tweet length)

define 10−fold cross validation test harness

kfold = StratifiedKFold(n splits=10, shuffle=True, random state=seed)

cvscores = []

for train , test in kfold . split (X, Y):

create the model

embedding vector length = 32

model = Sequential()

load the dataset with word embedding but only keep the top n words, zero the

rest

140

model.add(Embedding(top words, embedding vector length, input length=

max tweet length))

include the conolution and maxpooling layers

model.add(Conv1D(filters=32, kernel size=3, padding=’same’, activation=’relu’))

model.add(MaxPooling1D(pool size=2))

model.add(LSTM(100))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’accuracy

’, precision, recall ,fmeasure])

print(model.summary())

model.fit (X[train], Y[train], epochs=50, batch size=64)

Final evaluation of the model

scores = model.evaluate(X[test], Y[test], verbose=0)

print(”Accuracy: %.2f%%” % (scores[1]∗100))

print(”Precision: %.2f%%” % (scores[2]∗100))

print(”Recall: %.2f%%” % (scores[3]∗100))

print(”Fmeasure: %.2f%%” % (scores[4]∗100))

print(scores)

cvscores .append(scores[1] ∗ 100)

print(”%.2f%% (+/− %.2f%%)” % (np.mean(cvscores), np.std(cvscores)))

%−−

%−−

LSTM classification model with Dropout Regularization of the Rumor−non Rumor

Dataset

import numpy as np

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

from keras.layers.embeddings import Embedding

from keras.preprocessing import sequence

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad sequences

import tensorflow as tf

141

from metrics import precision

from metrics import recall

from metrics import fmeasure

from sklearn.model selection import StratifiedKFold

import keras.backend as k

fix random seed for reproducibility

seed = 0

np.random.seed(seed)

Importing the training set

data set = pd.read csv(’RNR.tsv’, delimiter = ’\t’ , quoting = 3, header = None)

X = data set.iloc [:, 1]

Y = data set.iloc [:, 6]

tokenize the training texts and make it sequential

top words = 50

tokenizer = Tokenizer(num words=top words)

tokenizer . fit on texts (X)

sequences train = tokenizer.texts to sequences(X)

tokenize the testing texts and make it sequential

tokenizer . fit on texts (X)

sequences test = tokenizer.texts to sequences(X)

#word index train = tokenizer.word index train

#print(’Found %s unique tokens.’ % len(word index train))

Y = Y.values.reshape(2600,)

print(Y.shape)

truncate and pad input sequences

max tweet length = 300

X = sequence.pad sequences(sequences train, maxlen=max tweet length)

define 10−fold cross validation test harness

kfold = StratifiedKFold(n splits=10, shuffle=True, random state=seed)

cvscores = []

for train , test in kfold . split (X, Y):

create the model

embedding vector length = 32

142

model = Sequential()

load the dataset with word embedding but only keep the top n words, zero the

rest

model.add(Embedding(top words, embedding vector length, input length=

max tweet length))

include a dropout layer

model.add(Dropout(0.2))

model.add(LSTM(100))

model.add(Dropout(0.2))

model.add(Dense(1, activation=’sigmoid’))

model.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’accuracy

’,precision,recall , fmeasure])

print(model.summary())

model.fit (X[train], Y[train], epochs=50, batch size=64)

Final evaluation of the model

scores = model.evaluate(X[test], Y[test], verbose=0)

print(”Accuracy: %.2f%%” % (scores[1]∗100))

print(”Precision: %.2f%%” % (scores[2]∗100))

print(”Recall: %.2f%%” % (scores[3]∗100))

print(”Fmeasure: %.2f%%” % (scores[4]∗100))

print(scores)

cvscores .append(scores[1] ∗ 100)

print(”%.2f%% (+/− %.2f%%)” % (np.mean(cvscores), np.std(cvscores)))

k. clear session ()

%−−

%−−

import keras.backend as K

def precision(y true, y pred):

”””Precision metric.

Only computes a batch−wise average of precision.

Computes the precision, a metric for multi−label classification of

how many selected items are relevant.

143

”””

true positives = K.sum(K.round(K.clip(y true ∗ y pred, 0, 1)))

predicted positives = K.sum(K.round(K.clip(y pred, 0, 1)))

precision = true positives / (predicted positives + K.epsilon())

return precision

def recall (y true, y pred):

”””Recall metric.

Only computes a batch−wise average of recall.

Computes the recall, a metric for multi−label classification of

how many relevant items are selected.

”””

true positives = K.sum(K.round(K.clip(y true ∗ y pred, 0, 1)))

possible positives = K.sum(K.round(K.clip(y true, 0, 1)))

recall = true positives / (possible positives + K.epsilon())

return recall

def fbeta score(y true, y pred, beta=1):

”””Computes the F score.

The F score is the weighted harmonic mean of precision and recall.

Here it is only computed as a batch−wise average, not globally .

This is useful for multi−label classification , where input samples can be

classified as sets of labels . By only using accuracy (precision) a model

would achieve a perfect score by simply assigning every class to every

input. In order to avoid this , a metric should penalize incorrect class

assignments as well (recall). The F−beta score (ranged from 0.0 to 1.0)

computes this, as a weighted mean of the proportion of correct class

assignments vs. the proportion of incorrect class assignments.

With beta = 1, this is equivalent to a F−measure. With beta < 1, assigning

correct classes becomes more important, and with beta > 1 the metric is

instead weighted towards penalizing incorrect class assignments.

”””

144

if beta < 0:

raise ValueError(’The lowest choosable beta is zero (only precision) . ’)

If there are no true positives , fix the F score at 0 like sklearn .

if K.sum(K.round(K.clip(y true, 0, 1))) == 0:

return 0

p = precision(y true, y pred)

r = recall(y true, y pred)

bb = beta ∗∗ 2

fbeta score = (1 + bb) ∗ (p ∗ r) / (bb ∗ p + r + K.epsilon())

return fbeta score

def fmeasure(y true, y pred):

”””Computes the f−measure, the harmonic mean of precision and recall.

Here it is only computed as a batch−wise average, not globally .

”””

return fbeta score(y true, y pred, beta=1)

%−−

%−−

145

146

Appendix C

Python Codes for Fake News

Detection - Text with sentiments

/ emotions

This section contains the source Python codes and algorithms used in the implemen-

tation of the methods and techniques for the Fake News detection using text with

sentiments. It also includes topic modelling methods adopted (LSA and LDA).

The python libraries used include: Keras (https://keras.io/) Scikit Learn (www.

scikit-learn.org) Pandas (https://pandas.pydata.org/) Numpy (https://numpy.

org/) Gensim (https://radimrehurek.com/gensim/) GloVe (Pennington (2014), https:

//nlp.stanford.edu/projects/glove/) Bing-Liu Opinion Lexicon (Liu 2012) Hier-

archical Attention Networks(Yang et al 2016)

{
” cells ”: [

{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”Topic Modelling and Sentiment Classification using ML/DL methods\n”,

”−−−\n”,

”Author − Oluwaseun Ajao #”

]

},

147

https://keras.io/
www.scikit-learn.org
www.scikit-learn.org
https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/
https://radimrehurek.com/gensim/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”### Load the required libraries”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:08:49.807417Z”,

”start time”: ”2018−10−05T10:06:46.143970Z”

}
},
”outputs”: [],

”source”: [

”import os\n”,

”import csv\n”,

”import sys\n”,

”\n”,

”\n”,

”import numpy as np\n”,

”import pandas as pd\n”,

”from string import punctuation\n”,

”\n”,

”# XgBoost\n”,

”import xgboost\n”,

”from xgboost import XGBClassifier\n”,

”\n”,

”# Logistics Regression\n”,

”from sklearn.linear model import LogisticRegression\n”,

”# SVM\n”,

”from sklearn.svm import SVC\n”,

”# Decision Tree and Random Forest\n”,

”from sklearn.tree import DecisionTreeClassifier\n”,

”from sklearn.ensemble import RandomForestClassifier,

GradientBoostingClassifier, AdaBoostClassifier\n”,

148

”from sklearn.metrics import confusion matrix,accuracy score, precision score ,

classification report \n”,

”\n”,

”from keras.models import Sequential\n”,

”from keras. layers import Dense\n”,

”from keras. layers import LSTM\n”,

”from keras. layers .embeddings import Embedding\n”,

”from keras.preprocessing import sequence\n”,

”from keras.preprocessing.text import Tokenizer\n”,

”from keras.preprocessing.sequence import pad sequences\n”,

”from keras. utils import to categorical\n”,

”from keras. layers import (Input, Dense, Embedding, LSTM, Flatten, \n”,

” SpatialDropout1D, MaxPooling1D, Concatenate, \n”,

” Conv1D, Dropout, BatchNormalization, Activation)\n”

,

”from keras.callbacks import ModelCheckpoint\n”,

”from keras.optimizers import Adam, SGD, Nadam\n”,

”\n”,

”\n”,

”import tensorflow as tf\n”,

”from sklearn.model selection import StratifiedKFold\n”,

”import keras.backend as k\n”,

”# For sentiment analysis\n”,

”from textblob import TextBlob\n”,

”import itertools\n”,

”from sklearn import metrics\n”,

”from sklearn. cross validation import train test split \n”,

”\n”,

”# fix random seed for reproducibility\n”,

”seed = 0\n”,

”np.random.seed(seed)\n”,

”import matplotlib.pyplot as plt\n”,

”plt .switch backend(’agg’)\n”,

”plt . style .use(’bmh’)\n”,

”# For text processing\n”,

”import gensim\n”,

”from gensim.utils import simple preprocess\n”,

”from gensim.parsing.preprocessing import STOPWORDS\n”,

”from nltk.stem import WordNetLemmatizer, SnowballStemmer\n”,

149

”from nltk.stem.porter import ∗\n”,

”\n”,

”import nltk\n”,

”#nltk.download(’wordnet’)\n”,

”# TF−IDF\n”,

”from gensim import corpora, models\n”,

”%matplotlib inline\n”,

”# Define Helper Functions\n”,

”import keras.backend as K”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”## Define Helper Functions”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:08:57.203349Z”,

”start time”: ”2018−10−05T10:08:57.182286Z”

}
},
”outputs”: [],

”source”: [

”print(\”Defining Helper Functions\”)\n”,

”\n”,

”def precision (y true, y pred):\n”,

” true positives = K.sum(K.round(K.clip(y true ∗ y pred, 0, 1)))\n”,

” predicted positives = K.sum(K.round(K.clip(y pred, 0, 1)))\n”,

” precision = true positives / (predicted positives + K.epsilon())\n”,

” return precision\n”,

” \n”,

”def recall (y true, y pred):\n”,

” true positives = K.sum(K.round(K.clip(y true ∗ y pred, 0, 1)))\n”,

150

” possible positives = K.sum(K.round(K.clip(y true, 0, 1)))\n”,

” recall = true positives / (possible positives + K.epsilon())\n”,

” return recall \n”,

” \n”,

”def fbeta score (y true, y pred, beta=1):\n”,

” if beta < 0:\n”,

” raise ValueError(’The lowest choosable beta is zero (only precision)

.’) \n”,

”\n”,

” # If there are no true positives , fix the F score at 0 like sklearn.\n”,

” if K.sum(K.round(K.clip(y true, 0, 1))) == 0:\n”,

” return 0\n”,

” \n”,

” p = precision(y true, y pred)\n”,

” r = recall(y true, y pred)\n”,

” bb = beta ∗∗ 2\n”,

” fbeta score = (1 + bb) ∗ (p ∗ r) / (bb ∗ p + r + K.epsilon())\n”,

” return fbeta score\n”,

” \n”,

”def fmeasure(y true, y pred):\n”,

” return fbeta score (y true, y pred, beta=1)\n”,

”\n”,

”def lemmatize stemming(text):\n”,

” return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos=’v’))\n”,

”\n”,

”def preprocess(text):\n”,

” result = []\n”,

” for token in gensim.utils .simple preprocess(text):\n”,

” if token not in gensim.parsing.preprocessing.STOPWORDS and len(

token) > 3:\n”,

” result .append(token)\n”,

” return result”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {

151

”end time”: ”2018−10−05T10:13:28.494097Z”,

”start time”: ”2018−10−05T10:13:28.414117Z”

}
},
”outputs”: [],

”source”: [

”filename = ’dataset.txt’\n”,

”print(\” Initiating Topic Modelling\”)\n”,

”# Topic Modelling\n”,

”\n”,

”new posts = []\n”,

”df = pd.read csv(filename, sep=’\\t’, header=None)\n”,

”label = df. iloc [:,1]\ n”,

”# Import the dataset\n”,

”with open(filename, ’r ’, encoding=’utf−8’) as f:\n”,

” posts = csv.reader(f)\n”,

” #posts = [x.lower() for x in posts]\n”,

” #posts.pop(0)\n”,

” for row in posts:\n”,

” new posts.append(row[0])”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:13:45.233006Z”,

”start time”: ”2018−10−05T10:13:44.561177Z”

}
},
”outputs”: [],

”source”: [

”filename = ’dataset.txt’\n”,

”print(\” Initiating Topic Modelling\”)\n”,

”# Topic Modelling\n”,

”new posts = []\n”,

”#Import the dataset\n”,

”with open(filename, ’r ’, encoding=’utf−8’) as f:\n”,

152

” posts = csv.reader(f)\n”,

” #posts = [x.lower() for x in posts]\n”,

” #posts.pop(0)\n”,

” for row in posts:\n”,

” new posts.append(row[0])\n”,

”\n”,

”stemmer = SnowballStemmer(’english’)\n”,

”doc sample = new posts[1000]\n”,

”\n”,

”# Bag of words on the dataset\n”,

”processed docs = map(preprocess, new posts)\n”,

”dictionary = gensim.corpora.Dictionary(processed docs)\n”,

”count = 0\n”,

”for k, v in dictionary . iteritems () :\n”,

” #print(k, v)\n”,

” count += 1\n”,

” if count > 5:\n”,

” break\n”,

”\n”,

”dictionary. filter extremes (no below=15, no above=0.5, keep n=100000)\n”,

”bow corpus = [dictionary.doc2bow(doc) for doc in processed docs]\n”,

”\n”,

”\n”,

” tfidf = models.TfidfModel(bow corpus)\n”,

” corpus tfidf = tfidf [bow corpus]\n”,

”lda model = gensim.models.LdaMulticore(bow corpus, num topics=10, id2word

=dictionary, passes=2, workers=2)\n”,

”\n”,

”with open(’lda output.txt ’, ’w’) as f :\n”,

” for idx, topic in lda model.print topics(−1):\n”,

” f .write (’Topic:’ + str(idx) + ’\\n’)\n”,

” f .write (’Words: ’ + topic + ’\\n’)\n”,

” print (’Topic: {} \\nWords: {}’.format(idx, topic))”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {

153

”ExecuteTime”: {
”end time”: ”2018−10−05T10:21:33.745828Z”,

”start time”: ”2018−10−05T10:21:17.388142Z”

}
},
”outputs”: [],

”source”: [

”print(\”Visualizaing Topic using PyLDAvis\”)\n”,

”import pyLDAvis.gensim\n”,

”from gensim.models import LdaModel\n”,

”pyLDAvis.enable notebook()\n”,

”\n”,

”import pyLDAvis\n”,

”import pyLDAvis.sklearn\n”,

”from sklearn. feature extraction .text import CountVectorizer\n”,

”from sklearn.decomposition import LatentDirichletAllocation\n”,

” tf vectorizer = CountVectorizer(strip accents = ’unicode’,stop words = ’

english ’, lowercase = True,token pattern = r’\\b[a−zA−Z]{3,}\\b’,max df =

0.5,min df = 10)\n”,

”dtm tf = tf vectorizer . fit transform (new posts)\n”,

” lda tf = LatentDirichletAllocation(n components=20, learning method=’online

’)\n”,

” lda tf . fit (dtm tf)\n”,

”vis data = pyLDAvis.sklearn.prepare(lda tf, dtm tf, tf vectorizer)\n”,

”pyLDAvis.display(vis data)\n”,

”\n”,

”print(\”Topic Modelling Completed\”)\n”,

”print()\n”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”### Feature Engineering and Classifiation”

]

},
{
” cell type ”: ”code”,

154

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:24:04.193496Z”,

”start time”: ”2018−10−05T10:23:49.223395Z”

}
},
”outputs”: [],

”source”: [

”print(\”Creating Features and Labels for Fake News Classfication\”)\n”,

”print()\n”,

”path = os.path.join(filename)\n”,

”data set = pd.read csv(path, delimiter = ’\\t ’, quoting = 3, header = None)\
n”,

”\n”,

”print(\”Extracting Emoratio using Bing Lui Lexicon\”)\n”,

”try:\n”,

” new post = open(filename, encoding=’ISO−8859−1’).read()\n”,

” new posts=new post.split(’\\n’)\n”,

” \n”,

” pos sent = open(\”positive−words.txt\”, encoding=’ISO−8859−1’).read()\
n”,

” positive words=pos sent.split (’\\n’)\n”,

” positive counts=[]\n”,

” \n”,

” neg sent = open(’negative−words.txt’, encoding=’ISO−8859−1’).read()\n”,

” negative words=neg sent.split(’\\n’)\n”,

” negative counts=[]\n”,

”\n”,

”except IOException as e:\n”,

” print (’ File(s) not found’)\n”,

” sys. exit (1)\n”,

”\n”,

” \n”,

”for tweet in new posts:\n”,

” positive counter=0\n”,

” negative counter=0\n”,

”\n”,

” tweet processed=tweet.lower()\n”,

155

” \n”,

” for p in list (punctuation):\n”,

” tweet processed=tweet processed.replace(p ,’’)\n”,

”\n”,

” words=tweet processed.split(’ ’)\n”,

” word count=len(words)\n”,

” for word in words:\n”,

” if word in positive words:\n”,

” positive counter=positive counter+1\n”,

” elif word in negative words:\n”,

” negative counter=negative counter+1\n”,

” \n”,

” positive counts .append(positive counter/word count)\n”,

” negative counts.append(negative counter/word count)\n”,

” \n”,

”negative count = negative counts\n”,

”positive count = []\n”,

”for item in positive counts :\n”,

” if item == 0:\n”,

” item = 1\n”,

” positive count .append(item)\n”,

”emoratio = np.divide(negative count , positive count)\n”,

”print(emoratio)\n”,

”\n”,

” labels = {’emoratio’: emoratio}\n”,

” labels df = pd.DataFrame(labels , columns = [’emoratio’])\n”,

” labels df ”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:25:02.087287Z”,

”start time”: ”2018−10−05T10:25:02.071291Z”

}
},
”outputs”: [],

156

”source”: [

”#labels df [’ fake ’] = np.where(labels df[’emoratio’]<=1, 0, 1)\n”,

”\n”,

”X = data set.iloc [:, 0]\n”,

”X = labels df.emoratio\n”,

”\n”,

”print(X.head(10))\n”,

”print(X .head(10))\n”,

”\n”,

”print(X.shape, X .shape)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:25:41.521965Z”,

”start time”: ”2018−10−05T10:25:40.267524Z”

}
},
”outputs”: [],

”source”: [

”# tokenize the training texts and make it sequential\n”,

”top words = 500\n”,

”tokenizer = Tokenizer(num words=top words)\n”,

”tokenizer . fit on texts (X)\n”,

”sequences train = tokenizer.texts to sequences(X)\n”,

”# tokenize the testing texts and make it sequential\n”,

”tokenizer . fit on texts (X)\n”,

”sequences test = tokenizer.texts to sequences(X)\n”,

”#word index train = tokenizer.word index train\n”,

”Y = label.values.reshape(X.shape[0],)\n”,

”\n”,

”print(\”Shape of Features : \” , X.shape)\n”,

”print(\”Shape of Labels : \”, Y.shape)”

]

},
{

157

” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:26:03.701397Z”,

”start time”: ”2018−10−05T10:26:02.748489Z”

}
},
”outputs”: [],

”source”: [

”from sklearn. feature extraction .text import TfidfVectorizer as tfidf \n”,

”from nltk.corpus import stopwords\n”,

”stopword= set(stopwords.words(’english’))\n”,

”# using TfIdf to make words as features by making word vectors\n”,

”#vectorizer= tfidf(stop words= stopword) \n”,

”#X = vectorizer.fit transform(X)\n”,

”vectorizer = tfidf (max features = 2000) \n”,

”vectorizer . fit (X) \n”,

”X = vectorizer.transform(X)\n”,

”\n”,

”print(\”Features Shape : \”, X.shape)\n”,

”print(\”Label Shape : \”, Y.shape)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:30:15.618293Z”,

”start time”: ”2018−10−05T10:30:15.606298Z”

}
},
”outputs”: [],

”source”: [

”print(\”Shape of Feature Matrix before adding Emoratio\”, X.shape)\n”,

”from scipy.sparse import hstack\n”,

”X = hstack((X ,np.array(X)[:,None]))\n”,

”print(\”Shape of Feature Matrix after adding Emoratio\”, X.shape)”

158

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”### Define Helper Function for Machine learing Modelling”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:32:21.105494Z”,

”start time”: ”2018−10−05T10:32:21.061506Z”

},
”collapsed”: true

},
”outputs”: [],

”source”: [

”def plot confusion matrix(cm, classes = [’Negative’, ’ Positive ’],\ n”,

” normalize=False,\n”,

” title =’Confusion matrix’,\n”,

” cmap=plt.cm.Blues):\n”,

” if normalize:\n”,

” cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]\n”,

” print(\”Normalized confusion matrix\”)\n”,

” else :\n”,

” print (’Confusion matrix, without normalization’)\n”,

” plt .imshow(cm, interpolation=’nearest’, cmap=cmap)\n”,

” plt . title (title)\n”,

” plt .colorbar()\n”,

” tick marks = np.arange(len(classes))\n”,

” plt . xticks(tick marks, classes , rotation=45)\n”,

” plt . yticks(tick marks, classes)\n”,

”\n”,

” fmt = ’.2f ’ if normalize else ’d’\n”,

” thresh = cm.max() / 2.\n”,

159

” for i , j in itertools .product(range(cm.shape[0]), range(cm.shape[1])):\n”,

” plt . text(j , i , format(cm[i, j], fmt),\n”,

” horizontalalignment=\”center\”,\n”,

” color=\”white\” if cm[i, j] > thresh else \”black\”)\n”,

”\n”,

” plt . tight layout ()\n”,

” plt . ylabel (’True label ’)\n”,

” plt . xlabel (’Predicted label ’) \n”,

” \n”,

”def plot roc curve(y test , y pred proba):\n”,

” fpr , tpr, thresholds =metrics.roc curve(y test , y pred proba[:, 1])\n”,

” roc auc = metrics.auc(fpr, tpr)\n”,

” plt . figure (figsize =(15,7))\n”,

” plt .plot(fpr , tpr, label=’ROC curve (area = %0.3f)’ % roc auc)\n”,

” plt .plot ([0, 1], [0, 1], ’k−−’)\n”,

” plt .xlim ([0.0, 1.0]) \n”,

” plt .ylim ([0.0, 1.0]) \n”,

” plt . xlabel (’ False Positive Rate or (1 − Specificity) ’)\n”,

” plt . ylabel (’True Positive Rate or (Sensitivity) ’)\n”,

” plt . title (’Receiver Operating Characteristic’)\n”,

” plt .legend(loc=\”lower right\”)\n”,

” plt .show()\n”,

”\t\n”,

”def plot roc curve nn(y test , y pred proba):\n”,

” fpr , tpr, thresholds =metrics.roc curve(y test , y pred proba)\n”,

” roc auc = metrics.auc(fpr, tpr)\n”,

” plt . figure (figsize =(15,7))\n”,

” plt .plot(fpr , tpr, label=’ROC curve (area = %0.3f)’ % roc auc)\n”,

” plt .plot ([0, 1], [0, 1], ’k−−’)\n”,

” plt .xlim ([0.0, 1.0]) \n”,

” plt .ylim ([0.0, 1.0]) \n”,

” plt . xlabel (’ False Positive Rate or (1 − Specificity) ’)\n”,

” plt . ylabel (’True Positive Rate or (Sensitivity) ’)\n”,

” plt . title (’Receiver Operating Characteristic’)\n”,

” plt .legend(loc=\”lower right\”)\n”,

” plt .show()\n”,

”\t\n”,

”\t\n”,

” \n”,

160

”def fit model(model, model name):\n”,

” print(\” Initiating Model...\”)\n”,

” print(model name)\n”,

” print(\”\”)\n”,

” print (’ Fitting on Training Data ...’) \n”,

” model.fit (X train, y train)\n”,

” print (’Model Trained... Predicting on Test Data ...’) \n”,

” train preds = model.predict(X train)\n”,

” test preds = model.predict(X test)\n”,

” train accuracy = accuracy score(y train, train preds)\n”,

” test accuracy = accuracy score(test preds, y test)\n”,

” \n”,

” print (’Train accuracy :’, train accuracy)\n”,

” print (’Test accuracy :’, test accuracy)\n”,

”\n”,

” # Confusion Matrix\n”,

” cm = confusion matrix(y test, test preds)\n”,

” print(\”Confusion Matrix\”)\n”,

” print(\”\\n\”)\n”,

” print(cm)\n”,

” \n”,

” # Precision/Recall/F1−Score\n”,

” print(\” Classification Report\”)\n”,

” print(\”\\n\”)\n”,

” print(classification report (y test , test preds , target names=[’Non−
Rumour’, ’Rumour’]))\n”,

”\n”,

” plot confusion matrix(cm, classes = [’Non−Rumour’, ’Rumour’],\n”,

” normalize=False,\n”,

” title =’Confusion matrix’,\n”,

” cmap=plt.cm.Blues)\n”,

” \n”,

”\n”,

” # ROC Curve\n”,

” print(\”ROC(AUC) Curve\”)\n”,

” print(\”\\n\”)\n”,

” test pred proba = model.predict proba(X test)\n”,

” plot roc curve(y test , test pred proba)\n”,

” print

161

(\”−−\”)

\n”,

” \n”,

”def fit model nn(model, model name):\n”,

” print(\” Initiating Model...\”)\n”,

” print(model name)\n”,

” print(\”\”)\n”,

” print (’ Fitting on Training Data ...’) \n”,

” history = model.fit(X train, y train , epochs=1, batch size=64,

validation data=(X test, y test), verbose = 2)\n”,

” print (’Model Trained... Predicting on Test Data ...’) \n”,

” train preds = model.predict classes(X train)\n”,

” test preds = model.predict classes(X test)\n”,

” train accuracy = accuracy score(y train, train preds)\n”,

” test accuracy = accuracy score(test preds, y test)\n”,

” \n”,

” print (’Train accuracy :’, train accuracy)\n”,

” print (’Test accuracy :’, test accuracy)\n”,

”\n”,

” # Confusion Matrix\n”,

” cm = confusion matrix(y test, test preds)\n”,

” print(\”Confusion Matrix\”)\n”,

” print(\”\\n\”)\n”,

” print(cm)\n”,

” \n”,

” # Precision/Recall/F1−Score\n”,

” print(\” Classification Report\”)\n”,

” print(\”\\n\”)\n”,

” print(classification report (y test , test preds , target names=[’Non−
Rumour’, ’Rumour’]))\n”,

”\n”,

” plot confusion matrix(cm, classes = [’Non−Rumour’, ’Rumour’],\n”,

” normalize=False,\n”,

” title =’Confusion matrix’,\n”,

” cmap=plt.cm.Blues)\n”,

” \n”,

”\n”,

” # ROC Curve\n”,

” print(\”ROC(AUC) Curve\”)\n”,

162

” print(\”\\n\”)\n”,

” test pred proba = model.predict(X test)\n”,

” plot roc curve nn(y test , test pred proba)\n”,

” # Model History\n”,

” print(\”Model History\”)\n”,

” plot history (history)\n”,

” print

(\”−−\”)

\n”,

”\n”,

” \n”,

”def plot history (history):\n”,

” loss list = [s for s in history . history .keys() if ’ loss ’ in s and ’val ’

not in s]\n”,

” val loss list = [s for s in history . history .keys() if ’ loss ’ in s and ’val

’ in s]\n”,

” acc list = [s for s in history . history .keys() if ’acc’ in s and ’val ’ not

in s]\n”,

” val acc list = [s for s in history . history .keys() if ’acc’ in s and ’val ’

in s]\n”,

” \n”,

” if len(loss list) == 0:\n”,

” print (’Loss is missing in history ’)\n”,

” return \n”,

” \n”,

” ## As loss always exists\n”,

” epochs = range(1,len(history.history [loss list [0]]) + 1)\n”,

” \n”,

” ## Loss\n”,

” plt . figure (1)\n”,

” for l in loss list :\n”,

” plt .plot(epochs, history . history [l], ’b ’, label=’Training loss (’ +

str(str (format(history.history [l][−1],’.5 f ’))+’)’))\n”,

” for l in val loss list :\n”,

” plt .plot(epochs, history . history [l], ’g ’, label=’Validation loss (’ +

str(str (format(history.history [l][−1],’.5 f ’))+’)’))\n”,

” \n”,

” plt . title (’Loss’)\n”,

” plt . xlabel (’Epochs’)\n”,

163

” plt . ylabel (’Loss’)\n”,

” plt .legend()\n”,

” \n”,

” ## Accuracy\n”,

” plt . figure (2)\n”,

” for l in acc list :\n”,

” plt .plot(epochs, history . history [l], ’b ’, label=’Training accuracy (’

+ str(format(history.history [l][−1],’.5 f ’))+’)’)\n”,

” for l in val acc list : \n”,

” plt .plot(epochs, history . history [l], ’g ’, label=’Validation accuracy

(’ + str(format(history.history [l][−1],’.5 f ’))+’)’)\n”,

”\n”,

” plt . title (’Accuracy’)\n”,

” plt . xlabel (’Epochs’)\n”,

” plt . ylabel (’Accuracy’)\n”,

” plt .legend()\n”,

” plt .show()”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”# Train Test Split\n”,

”X train, X test, y train , y test = train test split (X,Y, test size = 0.3)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”ExecuteTime”: {
”end time”: ”2018−10−05T10:33:36.390199Z”,

”start time”: ”2018−10−05T10:32:25.903025Z”

}

164

},
”outputs”: [],

”source”: [

”model logreg = LogisticRegression()\n”,

”model svm linear = SVC(kernel=’linear’, probability=True)\n”,

”model svm radial = SVC(kernel=’rbf’, probability=True, gamma=0.1, C = 10)

\n”,

”model svm poly = SVC(kernel=’poly’, probability=True, gamma=0.1, C = 10,

degree=3)\n”,

”model dt = DecisionTreeClassifier()\n”,

”model rf = RandomForestClassifier(n estimators=500)\n”,

”model xgb = XGBClassifier(colsample bytree = .6, max depth = 10, subsample

=.7,n estimators = 500,n jobs=4)\n”,

”\n”,

”fit model(model= model logreg, model name=’Logistic Regression’)\n”,

”fit model(model= model svm linear, model name=’Support Vector Machine

with linear kernel’)\n”,

”fit model(model= model svm radial, model name=’Support Vector Machine

with Radial kernel’)\n”,

”fit model(model= model svm poly, model name=’Support Vector Machine with

Polynomial kernel’)\n”,

”fit model(model= model dt, model name=’Decision Tree Classifier’)\n”,

”fit model(model= model rf, model name=’Random Forest Classifier’)\n”,

”fit model(model= model xgb, model name=’Xtreme Boosting Classifier’)”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”## Neural Networks”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},

165

”outputs”: [],

”source”: [

”# Define Embedding\n”,

”embedding vector length = 32”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”import os\n”,

”os.chdir (’/home/paperspace/ImageSentimentAnalysis/’)\n”,

”embeddings index = dict()\n”,

”f = open(’glove.6B.100d.txt’)\n”,

”for line in f :\n”,

” values = line. split ()\n”,

” word = values[0]\n”,

” coefs = np.asarray(values [1:], dtype=’float32’)\n”,

” embeddings index[word] = coefs\n”,

”f . close ()”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”vocabulary size = X.shape[1]\n”,

”embedding matrix = np.zeros((vocabulary size, 100))\n”,

”for word, index in tokenizer .word index.items():\n”,

” if index > vocabulary size − 1:\n”,

” break\n”,

166

” else :\n”,

” embedding vector = embeddings index.get(word)\n”,

” if embedding vector is not None:\n”,

” embedding matrix[index] = embedding vector”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”## create model\n”,

”model glove = Sequential()\n”,

”model glove.add(Embedding(vocabulary size, 100, input length=X.shape[1],

weights=[embedding matrix], trainable=False))\n”,

”model glove.add(Dropout(0.2))\n”,

”model glove.add(Conv1D(64, 5, activation=’relu’))\n”,

”model glove.add(MaxPooling1D(pool size=4))\n”,

”model glove.add(LSTM(100))\n”,

”model glove.add(Dense(1, activation=’sigmoid’))\n”,

”model glove.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’

accuracy’,precision, recall , fmeasure])”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”print(model glove.summary())”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

167

”metadata”: {},
”outputs”: [],

”source”: [

”fit model nn(model = model glove, model name = \”LSTM−CNN Model with

Dropout and Pre−trained Features\”)”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”## Model 2”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”################################\n”,

”# LSTM−CNN Model with Dropout #\n”,

”################################\n”,

”\n”,

”model=Sequential()\n”,

”model.add(Embedding(X.shape[1], 100, input length=X.shape[1], weights=[

embedding matrix], trainable=False))\n”,

”model.add(LSTM(128, dropout=0.3, recurrent dropout=0.3, return sequences=

True))\n”,

”model.add(LSTM(64, dropout=0.3, recurrent dropout=0.3, return sequences=

True))\n”,

”model.add(SpatialDropout1D(0.2))\n”,

”model.add(Conv1D(64, kernel size=3, padding=’same’, activation=’relu’))\n”,

”model.add(MaxPooling1D(pool size=2))\n”,

”model.add(Conv1D(32, kernel size=3, padding=’same’, activation=’relu’))\n”,

”model.add(MaxPooling1D(pool size=2))\n”,

”model.add(Flatten())\n”,

”#Dense/Output\n”,

”model.add(Dense(16))\n”,

168

”model.add(Dense(8))\n”,

”model.add(Dense(1,activation=’sigmoid’))\n”,

”model.compile(loss=’binary crossentropy’, optimizer=’sgd’, metrics=[’accuracy

’, precision , recall , fmeasure])\n”,

”print(model.summary())\n”,

”\n”,

”fit model nn(model = model, model name = \”LSTM−CNN Model with

Dropout\”)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”#####################\n”,

”# LSTM − CNN Model #\n”,

”#####################\n”,

”\n”,

”model = Sequential()\n”,

”model.add(Embedding(X.shape[1], embedding vector length, input length=X.

shape[1]))\n”,

”model.add(SpatialDropout1D(0.2))\n”,

”model.add(Conv1D(64, kernel size=3, padding=’same’, activation=’relu’))\n”,

”model.add(MaxPooling1D(pool size=2))\n”,

”model.add(Conv1D(128, kernel size=3, padding=’same’, activation=’relu’))\n”,

”model.add(MaxPooling1D(pool size=2))\n”,

”model.add(Flatten())\n”,

”model.add(Dense(1, activation=’sigmoid’))\n”,

”model.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’

accuracy’,precision, recall , fmeasure])\n”,

”print(model.summary())\n”,

”\n”,

”fit model nn(model = model, model name = \”LSTM − CNN Model without

Dropout\”)”

]

},
{

169

” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”##################### \n”,

”# Simple LSTM Model #\n”,

”#####################\n”,

”\n”,

”model = Sequential()\n”,

”model.add(Embedding(X.shape[1], embedding vector length, input length=X.

shape[1])) \n”,

”model.add(LSTM(100))\n”,

”model.add(Dense(1, activation=’sigmoid’))\n”,

”model.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’

accuracy’,precision, recall , fmeasure])\n”,

”print(model.summary())\n”,

”\n”,

”fit model nn(model = model, model name = \”Simple LSTM Model\”) \n”,

”#k.clear session()”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”−−−”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”Trying the next step − HAN”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},

170

”source”: [

”# HAN”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”MAX SENT LENGTH = 200\n”,

”MAX SENTS = 15\n”,

”MAX NB WORDS = 20000\n”,

”EMBEDDING DIM = 100\n”,

”VALIDATION SPLIT = 0.3”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”from bs4 import BeautifulSoup\n”,

”import nltk\n”,

”from nltk import tokenize\n”,

”def clean str (string):\n”,

” string = re.sub(r\”\\\\\”, \”\”, string)\n”,

” string = re.sub(r\”\\’\”, \”\”, string)\n”,

” string = re.sub(r\”\\\”\”, \”\”, string)\n”,

” return string . strip () .lower()\n”,

”\n”,

”reviews = []\n”,

”labels = []\n”,

”texts = []\n”,

171

”df.columns = [’message’, ’ class ’]\n”,

”macronum=sorted(set(df[’class’]))\n”,

”macro to id = dict((note, number) for number, note in enumerate(macronum))\
n”,

”\n”,

”def fun(i):\n”,

” return macro to id[i]\n”,

”\n”,

”df [’ class ’]=df [’ class ’]. apply(fun)\n”,

”\n”,

”for i in range(df.message.shape[0]):\n”,

” text = BeautifulSoup(df.message[i])\n”,

” text=clean str(str (text . get text () .encode()).lower())\n”,

” texts .append(text)\n”,

” sentences = tokenize.sent tokenize(text)\n”,

” reviews.append(sentences)\n”,

”\n”,

”for i in df [’ class ’]:\ n”,

” labels .append(i)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”from keras.preprocessing.text import Tokenizer,text to word sequence\n”,

”tokenizer = Tokenizer(num words=MAX NB WORDS)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},

172

”outputs”: [],

”source”: [

”tokenizer . fit on texts (texts)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”data = np.zeros((len(texts) , MAX SENTS, MAX SENT LENGTH), dtype=’

int32’)\n”,

”\n”,

”for i , sentences in enumerate(reviews):\n”,

” for j , sent in enumerate(sentences):\n”,

” if j< MAX SENTS:\n”,

” wordTokens = text to word sequence(sent)\n”,

” k=0\n”,

” for , word in enumerate(wordTokens):\n”,

” if k<MAX SENT LENGTH and tokenizer.word index[word]<

MAX NB WORDS:\n”,

” data[i , j ,k] = tokenizer.word index[word]\n”,

” k=k+1”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”word index = tokenizer.word index\n”,

”print (’No. of %s unique tokens.’ % len(word index))”

]

},
{

173

” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”scrolled”: true

},
”outputs”: [],

”source”: [

”labels = to categorical (np.asarray(labels))\n”,

”print (’Shape of data tensor :’, data.shape)\n”,

”print (’Shape of label tensor :’, labels .shape)\n”,

”\n”,

”\n”,

”indices = np.arange(data.shape[0])\n”,

”np.random.shuffle(indices)\n”,

”data = data[indices]\n”,

”labels = labels[indices]\n”,

”nb validation samples = int(VALIDATION SPLIT ∗ data.shape[0])”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”print(\”Shape of Feature Matrix before adding Emoratio\”, data.shape)\n”,

”\n”,

”data = np.concatenate((data, \n”,

” np.broadcast to(np.array(X) [:, None, None], data.shape

[:−1] + (1,))) , \n”,

” axis = −1)\n”,

”\n”,

”print(\”Shape of Feature Matrix after adding Emoratio\”, data .shape)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {

174

”collapsed”: true

},
”outputs”: [],

”source”: [

”x train = data[:−nb validation samples]\n”,

”y train = labels[:−nb validation samples]\n”,

”x val = data[−nb validation samples:]\n”,

”y val = labels[−nb validation samples:]”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”embeddings index = {}\n”,

”f = open(’/home/paperspace/ImageSentimentAnalysis/glove.6B.100d.txt’,

encoding=’utf8’)\n”,

”for line in f :\n”,

” values = line. split ()\n”,

” word = values[0]\n”,

” coefs = np.asarray(values [1:], dtype=’float32’)\n”,

” embeddings index[word] = coefs\n”,

”f . close ()\n”,

”\n”,

”print (’Total %s word vectors.’ % len(embeddings index))”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”embedding matrix = np.random.random((len(word index) + 1,

EMBEDDING DIM))\n”,

175

”for word, i in word index.items():\n”,

” embedding vector = embeddings index.get(word)\n”,

” if embedding vector is not None:\n”,

” # words not found in embedding index will be all−zeros.\n”,

” embedding matrix[i] = embedding vector\n”,

”\n”,

”embedding layer = Embedding(len(word index) + 1,\n”,

” EMBEDDING DIM,\n”,

” weights=[embedding matrix],\n”,

” input length=MAX SENT LENGTH,\n”,

” trainable=True)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”scrolled”: true

},
”outputs”: [],

”source”: [

”from keras.preprocessing.text import Tokenizer,text to word sequence\n”,

”from keras.preprocessing.sequence import pad sequences\n”,

”from keras. utils . np utils import to categorical\n”,

”from keras. layers import Embedding\n”,

”from keras. layers import Dense, Input, Flatten\n”,

”from keras. layers import Conv1D, MaxPooling1D, Embedding, Dropout, LSTM

, GRU, Bidirectional, TimeDistributed\n”,

”from keras.models import Model\n”,

”from keras.callbacks import ModelCheckpoint\n”,

”import matplotlib.pyplot as plt\n”,

”plt .switch backend(’agg’)\n”,

”from keras import backend as K\n”,

”from keras.engine.topology import Layer, InputSpec\n”,

”from keras import initializers \n”,

”%matplotlib inline\n”,

”\n”,

”sentence input = Input(shape=(MAX SENT LENGTH+1,), dtype=’int32’)\n”,

”embedded sequences = embedding layer(sentence input)\n”,

176

”l lstm = Bidirectional(LSTM(100))(embedded sequences)\n”,

”sentEncoder = Model(sentence input, l lstm)\n”,

”\n”,

”review input = Input(shape=(MAX SENTS,MAX SENT LENGTH), dtype=’

int32’)\n”,

”review encoder = TimeDistributed(sentEncoder)(review input)\n”,

” l lstm sent = Bidirectional(LSTM(100))(review encoder)\n”,

”preds = Dense(len(macronum), activation=’softmax’)(l lstm sent)\n”,

”model = Model(review input, preds)\n”,

”\n”,

”model.compile(loss=’categorical crossentropy ’,\n”,

” optimizer=’rmsprop’,\n”,

” metrics=[’acc ’]) \n”,

”\n”,

”print(\”Hierachical LSTM\”)\n”,

”model.summary()”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {},
”outputs”: [],

”source”: [

”cp=ModelCheckpoint(’model han .hdf5’,monitor=’val acc’,verbose=1,

save best only=True)\n”,

”history=model.fit(x train , y train , validation data=(x val, y val),\n”,

” epochs=100, batch size=64,callbacks=[cp])”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”fig1 = plt. figure ()\n”,

177

”plt .plot(history . history [’ loss ’],’ r ’, linewidth=3.0)\n”,

”plt .plot(history . history [’ val loss ’],’ b ’, linewidth=3.0)\n”,

”plt .legend ([’ Training loss ’, ’Validation Loss ’], fontsize =18)\n”,

”plt . xlabel (’Epochs ’, fontsize =16)\n”,

”plt . ylabel (’Loss ’, fontsize =16)\n”,

”plt . title (’Loss Curves :HAN’,fontsize=16)\n”,

”fig1 . savefig (’ loss han.png’)\n”,

”plt .show()”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”fig2=plt.figure ()\n”,

”plt .plot(history . history [’ acc ’],’ r ’, linewidth=3.0)\n”,

”plt .plot(history . history [’ val acc ’],’ b ’, linewidth=3.0)\n”,

”plt .legend ([’ Training Accuracy’, ’Validation Accuracy’], fontsize =18)\n”,

”plt . xlabel (’Epochs ’, fontsize =16)\n”,

”plt . ylabel (’Accuracy’, fontsize=16)\n”,

”plt . title (’Accuracy Curves : HAN’,fontsize=16)\n”,

”fig2 . savefig (’accuracy han.png’)\n”,

”plt .show()”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”import pydot\n”,

”from keras. utils . vis utils import plot model\n”,

178

”plot model(model, to file =’han model.png’, show shapes=True,

show layer names=True)”

]

},
{
” cell type ”: ”code”,

”execution count”: null ,

”metadata”: {
”collapsed”: true

},
”outputs”: [],

”source”: [

”from PIL import Image\n”,

”display(Image.open(’han model.png’))”

]

},
{
” cell type ”: ”markdown”,

”metadata”: {},
”source”: [

”−−−”

]

}
],

”metadata”: {
”kernelspec”: {
”display name”: ”Python 3”,

”language”: ”python”,

”name”: ”python3”

},
”language info”: {
”codemirror mode”: {
”name”: ”ipython”,

”version”: 3

},
” file extension ”: ”.py”,

”mimetype”: ”text/x−python”,

”name”: ”python”,

”nbconvert exporter”: ”python”,

179

”pygments lexer”: ”ipython3”,

”version”: ”3.6.3”

},
”notify time”: ”5”

},
”nbformat”: 4,

”nbformat minor”: 2

}

180

Appendix D

PHEME Rumor Non-Rumor

Dataset

The initial PHEME dataset given in JSON format by Zubiaga et al. (2016) and is

publicly available in .

https:// figshare .com/articles/PHEME dataset of rumours and non−rumours

/4010619

The URL link is an online repository to download the PHEME dataset used in this

work after the dataset was converted to a tab-delimited format

https://drive .google.com/open?id=1E5rKCvOCMDsH432BtOEOPjAro7HSR5KO

181

182

Appendix E

UTGEO (Small) and GEOTEXT

Datasets

This is the download link to access the UTGEO−Small dataset

https://drive .google.com/file/d/14qLdOdBnsQbL HD5M7ydhCX0cSrYoFpY/view?

usp=sharing

This is the download link to access the GEOTEXT dataset

https://drive .google.com/file/d/16−l−BPZalynK4W2ps−N6ahQLzp4Tyt9w/view?

usp=sharing

183

184

Appendix F

A Tweet in JSON Format

{
”contributors”: null ,

”truncated”: false ,

”text”:”Now 10 dead in a shooting there today RT \”@BBCDanielS: Charlie

Hebdo became well known for publishing the Muhammed cartoons two years

ago\u201d”,

” in reply to status id ”:552784600502915072,

”id”:552785249420447745,

”favorite count” :0,

”source”:”
Twitter for iPhone”,

”retweeted”: false ,

”coordinates”:null ,

” entities ”:{
”symbols”:[

],

”user mentions”:[

{
”id”:331658004,

”indices” :[

42,

53

],

” id str ”:”331658004”,

185

”screen name”:”BBCDanielS”,

”name”:”Daniel Sandford”

}
],

”hashtags”:[

],

”urls” :[

]

},
”in reply to screen name”:”BBCDanielS”,

” id str ”:”552785249420447745”,

”retweet count”:0,

” in reply to user id ”:331658004,

”favorited”: false ,

”user”:{
” follow request sent ”: false ,

”profile use background image”:true,

” profile text color ”:”333333”,

” default profile image ”: false ,

”id”:18370911,

”profile background image url https”:”https://pbs.twimg.com/

profile background images/578554964/clrvcuc60cp6ce3hqosb.jpeg”,

” verified ”: false ,

” profile location ”: null ,

” profile image url https ”:”https://pbs.twimg.com/profile images

/378800000320937958/abf98da1430f224cbea0c75c027a178c normal.jpeg”,

” profile sidebar fill color ”:”DDEEF6”,

” entities ”:{
”description”:{

”urls” :[

]

}
},
”followers count”:4671,

” profile sidebar border color ”:”C0DEED”,

” id str ”:”18370911”,

186

”profile background color”:”C0DEED”,

” listed count”:118,

” is translation enabled ”: false ,

” utc offset ”:−21600,

”statuses count”:5064,

”description”:” agricultural commodity options/futures trader in CBOT corn

options pit, student of markets, former meat marketer, renewable energy

supporter, duke blue devil”,

”friends count”:4954,

”location”:”Chicago”,

” profile link color ”:”0084B4”,

” profile image url ”:”http://pbs.twimg.com/profile images

/378800000320937958/abf98da1430f224cbea0c75c027a178c normal.jpeg”,

”following”: false ,

”geo enabled”: false ,

” profile banner url ”:”https://pbs.twimg.com/profile banners

/18370911/1398141023”,

”profile background image url”:”http://pbs.twimg.com/

profile background images/578554964/clrvcuc60cp6ce3hqosb.jpeg”,

”name”:”Rob Levy”,

”lang”:”en”,

” profile background tile ”: false ,

”favourites count”:300,

”screen name”:”robbylevy”,

” notifications ”: false ,

”url”: null ,

”created at”:”Thu Dec 25 05:12:43 +0000 2008”,

”contributors enabled”: false ,

”time zone”:”Central Time (US & Canada)”,

”protected”: false ,

” default profile ”: false ,

” is translator ”: false

},
”geo”:null ,

” in reply to user id str ”:”331658004”,

”lang”:”en”,

”created at”:”Wed Jan 07 11:14:08 +0000 2015”,

” in reply to status id str ”:”552784600502915072”,

”place”:null

187

}

188

Appendix G

Typical Tweet Variables

189

T
a
b

le
G

.1
:

T
y
p

ic
al

T
w

ee
t

V
ar

ia
b

le
s

an
d

C
om

p
on

en
ts

1
id

21
en

ti
ti

es
u
se

r
m

en
ti

on
s1

id
st

r
41

en
ti

ti
es

h
as

h
ta

gs
3t

ex
t

6
1

en
ti

ti
es

m
ed

ia
0
si

ze
sm

ed
iu

m
h

81
u
se

rd
ef

a
u
lt

p
ro

fi
le

im
ag

e

2
co

n
tr

ib
u
to

rs
22

en
ti

ti
es

u
se

r
m

en
ti

on
s1

sc
re

en
n
am

e
42

en
ti

ti
es

h
as

h
ta

gs
4i

n
d
ic

es
0

6
2

en
ti

ti
es

m
ed

ia
0
si

ze
sm

ed
iu

m
re

si
ze

82
u
se

ri
d

3
tr

u
n
ca

te
d

23
en

ti
ti

es
u
se

r
m

en
ti

on
s1

n
am

e
43

en
ti

ti
es

h
as

h
ta

gs
4i

n
d
ic

es
1

6
3

en
ti

ti
es

m
ed

ia
0
si

ze
sm

ed
iu

m
w

83
u
se

rp
ro

fi
le

b
a
ck

g
ro

u
n
d

im
ag

e
u
rl

h
tt

p
s

4
te

x
t

24
en

ti
ti

es
u
se

r
m

en
ti

on
s2

id
44

en
ti

ti
es

h
as

h
ta

gs
4t

ex
t

6
4

en
ti

ti
es

m
ed

ia
0
si

ze
st

h
u
m

b
h

84
u
se

rv
er

ifi
ed

5
in

re
p
ly

to
st

at
u
s

id
25

en
ti

ti
es

u
se

r
m

en
ti

on
s2

in
d
ic

es
0

45
en

ti
ti

es
u
rl

s0
u
rl

6
5

en
ti

ti
es

m
ed

ia
0
si

ze
st

h
u
m

b
re

si
ze

85
u
se

rp
ro

fi
le

te
x
t

co
lo

r

6
id

26
en

ti
ti

es
u
se

r
m

en
ti

on
s2

in
d
ic

es
1

46
en

ti
ti

es
u
rl

s0
in

d
ic

es
0

6
6

en
ti

ti
es

m
ed

ia
0
si

ze
st

h
u
m

b
w

86
u
se

rp
ro

fi
le

im
ag

e
u
rl

h
tt

p
s

7
fa

vo
ri

te
co

u
n
t

27
en

ti
ti

es
u
se

r
m

en
ti

on
s2

id
st

r
47

en
ti

ti
es

u
rl

s0
in

d
ic

es
1

6
7

en
ti

ti
es

m
ed

ia
0
in

d
ic

es
0

87
u
se

rp
ro

fi
le

si
d
eb

ar
fi
ll

co
lo

r

8
so

u
rc

e
28

en
ti

ti
es

u
se

r
m

en
ti

on
s2

sc
re

en
n
am

e
48

en
ti

ti
es

u
rl

s0
ex

p
an

d
ed

u
rl

6
8

en
ti

ti
es

m
ed

ia
0
in

d
ic

es
1

88
u
se

re
n
ti

ti
es

u
rl

u
rl

s0
u
rl

9
re

tw
ee

te
d

29
en

ti
ti

es
u
se

r
m

en
ti

on
s2

n
am

e
49

en
ti

ti
es

u
rl

s0
d
is

p
la

y
u
rl

6
9

en
ti

ti
es

m
ed

ia
0
ty

p
e

89
u
se

re
n
ti

ti
es

u
rl

u
rl

s0
in

d
ic

es
0

10
co

or
d
in

at
es

30
en

ti
ti

es
h
as

h
ta

gs
0i

n
d
ic

es
0

50
en

ti
ti

es
m

ed
ia

0e
x
p
a
n
d
ed

u
rl

7
0

en
ti

ti
es

m
ed

ia
0
id

90
u
se

re
n
ti

ti
es

u
rl

u
rl

s0
in

d
ic

es
1

11
en

ti
ti

es
sy

m
b

o
ls

31
en

ti
ti

es
h
as

h
ta

gs
0i

n
d
ic

es
1

51
en

ti
ti

es
m

ed
ia

0d
is

p
la

y
u
rl

7
1

en
ti

ti
es

m
ed

ia
0
m

ed
ia

u
rl

91
u
se

re
n
ti

ti
es

u
rl

u
rl

s0
ex

p
an

d
ed

u
rl

12
en

ti
ti

es
u
se

r
m

en
ti

on
s0

id
32

en
ti

ti
es

h
as

h
ta

gs
0t

ex
t

52
en

ti
ti

es
m

ed
ia

0u
rl

7
2

en
ti

ti
es

m
ed

ia
0
so

u
rc

e
st

a
tu

s
id

st
r

92
u
se

re
n
ti

ti
es

u
rl

u
rl

s0
d
is

p
la

y
u
rl

13
en

ti
ti

es
u
se

r
m

en
ti

on
s0

in
d
ic

es
0

33
en

ti
ti

es
h
as

h
ta

gs
1i

n
d
ic

es
0

53
en

ti
ti

es
m

ed
ia

0m
ed

ia
u
rl

h
tt

p
s

7
3

en
ti

ti
es

m
ed

ia
0
so

u
rc

e
st

a
tu

s
id

93
u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s0
u
rl

14
en

ti
ti

es
u
se

r
m

en
ti

on
s0

in
d
ic

es
1

34
en

ti
ti

es
h
as

h
ta

gs
1i

n
d
ic

es
1

54
en

ti
ti

es
m

ed
ia

0i
d

st
r

7
4

in
re

p
ly

to
sc

re
en

n
a
m

e
94

u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s0
in

d
ic

es
0

15
en

ti
ti

es
u
se

r
m

en
ti

on
s0

id
st

r
35

en
ti

ti
es

h
as

h
ta

gs
1t

ex
t

55
en

ti
ti

es
m

ed
ia

0s
iz

es
sm

al
lh

7
5

id
st

r
95

u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s0
in

d
ic

es
1

16
en

ti
ti

es
u
se

r
m

en
ti

on
s0

sc
re

en
n
am

e
36

en
ti

ti
es

h
as

h
ta

gs
2i

n
d
ic

es
0

56
en

ti
ti

es
m

ed
ia

0s
iz

es
sm

al
lr

es
iz

e
7
6

re
tw

ee
t

co
u
n
t

96
u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s0
ex

p
a
n
d
ed

u
rl

17
en

ti
ti

es
u
se

r
m

en
ti

on
s0

n
am

e
37

en
ti

ti
es

h
as

h
ta

gs
2i

n
d
ic

es
1

57
en

ti
ti

es
m

ed
ia

0s
iz

es
sm

al
lw

7
7

in
re

p
ly

to
u
se

r
id

97
u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s0
d
is

p
la

y
u
rl

18
en

ti
ti

es
u
se

r
m

en
ti

on
s1

id
38

en
ti

ti
es

h
as

h
ta

gs
2t

ex
t

58
en

ti
ti

es
m

ed
ia

0s
iz

es
la

rg
eh

7
8

fa
vo

ri
te

d
98

u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s1
u
rl

19
en

ti
ti

es
u
se

r
m

en
ti

on
s1

in
d
ic

es
0

39
en

ti
ti

es
h
as

h
ta

gs
3i

n
d
ic

es
0

59
en

ti
ti

es
m

ed
ia

0s
iz

es
la

rg
er

es
iz

e
7
9

u
se

rf
ol

lo
w

re
q
u
es

t
se

n
t

99
u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s1
in

d
ic

es
0

20
en

ti
ti

es
u
se

r
m

en
ti

on
s1

in
d
ic

es
1

40
en

ti
ti

es
h
as

h
ta

gs
3i

n
d
ic

es
1

60
en

ti
ti

es
m

ed
ia

0s
iz

es
la

rg
ew

8
0

u
se

rp
ro

fi
le

u
se

b
ac

k
gr

o
u
n
d

im
ag

e
10

0
u
se

re
n
ti

ti
es

d
es

cr
ip

ti
o
n
u
rl

s1
in

d
ic

es
1

190

	List of Figures
	List of Tables
	Acronyms
	Statement of Originality
	Introduction
	Location Inference
	Misinformation Detection
	Aims and Objectives
	Methodology
	Location Inference
	Misinformation Detection

	Datasets Used
	UTGEO-Small Dataset
	GEOTEXT Dataset

	Thesis Layout
	Contributions to New Knowledge

	Literature Review
	State-of-the-art in Location inference
	Types of location on Twitter
	Spatial features and indicators
	Message Context
	Social Networks
	User Profiles
	Geotags
	Third Party Sources
	Time Zones
	Web Snippets

	Methods of inferring locations on Twitter
	Natural Language Processing (NLP) Techniques
	Gazetteers
	Probabilistic and Machine Learning Techniques
	Multinomial Naive Bayes
	Logistic Regression
	Neural Networks
	Decision Trees
	Random Forests

	Data Partitioning with Quadtrees
	Location Inference Applications in Public Health
	Location Inference Applications in Cyberbullying
	Location Inference Applications in Crisis and Disaster Management
	Tweet Gathering and Analysis
	Tweet Corpus
	Results and Metrics

	Precision, Recall and F-Measure
	Calculating Error Distance
	Average Error Distance
	Median Error Distance
	Distance-Based Accuracy

	State of the Art in Misinformation Detection
	Definition of Fake News
	Related Works in Misinformation Detection
	Text-Based Fake News Detection
	Text Sentiment Analysis
	Machine Learning Algorithms
	Classification Models
	Deep Learning Models

	Discussion

	Content Aware Tweet Location Inference using Quadtree Spatial Partitioning
	Introduction
	Methodology
	Uniform Grid Clustering versus Discriminate Partitioning Technique
	Text Preprocessing
	Converting Clean Tweets to Word Vectors
	Feature Vector Creation using NLP
	Sparsity of Tweets and Quadtree
	LOCINFER and Quadtree Data Partitioning
	Tweet based bias removal
	Training of Location Classifier
	Data

	Results and Discussions
	Experimental Results and Discussion
	Comparison of Classifier Performance
	Behaviours of the LOGIT and MNB Classifiers

	Performance of the Classifiers on Various Datasets and Splitting Criterion
	Performance of LOGIT Classifier on UTGEO-Small Dataset
	Performance of LOGIT Classifier on GEOTEXT Dataset
	Performance of MNB Classifier on UTGEO-Small Dataset
	Performance of MNB Classifier on GEOTEXT Dataset

	Fake News Identification on Twitter with Text - content only
	Introduction
	Background of the Problem
	Spatio-temporal awareness of fake news stories
	Research Questions
	Problem Definition

	Methodology
	The Deep learning Architectures
	Frameworks and equipment Hardware
	About the Dataset
	Description of the PHEME Rumor-Non Rumor Dataset
	Recurrent Neural Network RNNs
	Incorporating Convolutional Neural Network
	Selection of Training Parameters
	Batch Size
	Number of Epochs
	Optimization Parameters
	Learning Rate
	Network weight initialization
	Neuron activation function
	Dropout regularization
	Number of neurons in the hidden layer

	Evaluation, Results and Discussions
	Improvements through Feature Engineering from Sentiments

	Sentiment Aware Fake News Detection in Online Social Networks
	Introduction
	Methodology
	Sentiment-Aware Misinformation
	Machine Learning and Deep Learning Classification

	Results and Discussions
	Dataset
	Discussion

	Conclusions and Future Work
	Location Inference
	Improvements over existing state-of-the-art location inference methods
	Critical Analysis of LOCINFER technique
	Misinformation Detection
	Critical Analysis of SENTDETECT technique
	Combining Fake news detection with location inference

	References
	Appendices
	Quadtree Location Inference Codes
	Python Codes for Fake News Detection - Text only
	Python Codes for Fake News Detection - Text with sentiments / emotions
	PHEME Rumor Non-Rumor Dataset
	UTGEO (Small) and GEOTEXT Datasets
	A Tweet in JSON Format
	Typical Tweet Variables

