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Abstract 

The corrosion of reinforcement in concrete, whether conventional or pre-

stressed, remains a significant cause for the loss of durability of reinforced 

concrete structures. Corrosion costs the UK economy between 3% to 4% of 

Gross National Product. This is, in turn, has resulted in the development of 

greatly enhanced methods of remediation and life extension. One possible 

approach is to use Cathodic Protection (CP) to control further deterioration. CP 

of reinforcing steel in concrete structures has proved to be effective for 

preventing or controlling corrosion and been used successfully for over 25 

years. CP is able to stop corrosion in a reliable and economical way where the 

environment has caused reinforcement corrosion and subsequent concrete 

damage. However, concerns exist about the ability of CP to avert deterioration 

in pre-stressed structures due to hydrogen generation and subsequent 

embrittlement of the tendons. This research investigates the performance of 

pre-stressed steel tendon exposed to an impressed current cathodic protection 

(ICCP) at varying potentials on a long-term basis to establish its effect on 

strength and establish optimised criteria for CP that can be safely applied to 

deteriorated pre-stressed structures. 

 

Twelve timber moulds were manufactured for applying the pre-stressing 

technique to test specimens. Tendons measuring 5.4mm diameter were 

selected in both the galvanised and ungalvanised state. Two levels of pre-

stressing have been investigated, namely low level (300-400 MPa) and high 

level (800-1200 MPa). Three different degrees of corrosion Stage I, II and III 

with  target losses of cross-sectional of 0-1 %, 2-4 % and 4-7 % respectively, 

were employed to replicate in-situ conditions. The actual degree of corrosion 

was verified gravimetrically by weighing the tendons both before and after 

testing. The tendons were pre-stressed in two types of electrolyte, namely a 

saline solution and a sand/cement mortar representing mortar. Upon completion 

of the corrosion phase using an anodic impressed current method, Impressed 

Current Cathodic Protection (ICCP) was applied to the tendons at two levels of 

polarization, normal protection (ICCP-N) in the range of -650 to -750 mV vs 

Ag/AgCI/ 0.5M KCI and over protection (ICCP-O) ranging between -850 to -

1300 mV vs Ag/AgCI/ 0.5M KCI for an extended period to both ungalvanised 



 

iv 

and galvanised pre-stressed steel tendons, to investigate its effect. The 

potentials of the pre-stressed steel tendon and potential decay resulting from 

the application of ICCP were monitored and analysed. The strain in the tendons 

was also monitored throughout the corrosion and ICCP phases to establish pre-

stress losses. Finally, the mechanical properties were investigated and the 

tendon surfaces and fracture modes inspected using an Infinite Focus 

Microscope (IFM) and Scanning Electronic Microscope (SEM). 

 

The results confirmed that accelerated corrosion is a reliable technique for 

generating the corrosion of steel. ICCP can be used in the corroded pre-

stressed tendons as the long-term application shows there is no significant 

effect on the surface or damage of the both types of tendons with low or high 

levels of pre-stress. There has been a long term loss in service stress which 

due to corrosion, due to ICCP or a combination of both. From the results, the 

loss is more likely to be corrosion induced rather than ICCP. A higher degree of 

corrosion leads to a higher loss in pre-stress in highly pre-stressed tendons, 

which is an additional loss that should be accounted for at the design stage. 
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Notation 

The great majority of the symbols listed below are essentially those used in the 

current British Practice. Less frequently used symbols and symbols which have 

different meanings in different contexts are defined where they are used. 

 

A  atomic weight of iron (56 gram/mol) 

γ  density of metal (7.86 g/cm3) 

F  Faraday’s constant (96,500 Coulombs) 

Z   valence of iron which is (2) 

a  tendon surface area before corrosion (cm2) 

Φ  nominal perimeter of the tendon (mm) 

I  electric current (A) 

t  time (sec) 

i  corrosion current density (A/cm2) 

R  metal section loss per year 

T  the period of corrosion after initiation (year) 

   weight loss due to corrosion in (g) 

   material loss 

2RT/D (%) degree of corrosion (%) 

V  applied voltage (mV) 

DVM  digital voltage meter 

E  potential drop of tendon 

   the strain in microstrain  

   datum frequency of the VWSG (Hz).  

   subsequent frequency of the VWSG (Hz).  

CP  Cathodic Protection 

ICCP  Impressed Current Cathodic Protection 

ICCP-N Impressed Current Cathodic Protection-Normal Protection 

ICCP-O Impressed Current Cathodic Protection-Over Protection 

D1  mean diameter of tendon before corrosion 

D2  mean diameter of tendon before corrosion 

Δd1  actual diameter loss of tendon 

Δd2  theoretical weight loss of tendon 

%Δd  percent error in diameter reduction 



1F

2F
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W1  weight of tendon before corrosion 

W2  weight of tendon after corrosion 

Δw1  weight loss of tendon 

Δw2  theoretical weight loss of tendon 

%Δw  percent error in weight loss 
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1 Introduction and Thesis Outline 

1.1  Introduction 

In most environments concrete provides steel with a relatively high degree of 

protection against corrosion and, in turn, the steel is an excellent source of 

reinforcement for the concrete. The concrete produces a protective passivating 

film on the surface of the steel. This passive film is created by the high alkalinity 

of the concrete. Typically, the pH of the concrete is approximately 13 [1]. 

Concrete reinforced with steel is a durable construction product and should 

provide many years of maintenance-free use if properly designed and 

constructed. However, there are a significant number of cases where problems 

have occurred due to the corrosion of the steel reinforcement in the structures 

due to poor design and workmanship and as a result of exposure to aggressive 

environments, for example, motorway bridges, car parks and marine structures. 

Pre-stressed steel can also corrode in a similar way to conventional reinforced 

concrete.  

 

Cathodic Protection (CP) has been successfully used to mitigate corrosion by 

providing protection to buried and submerged metallic structures for almost two 

hundred years [2]. More recently, the method has been successfully applied to 

reinforced concrete. However, there is some concern about applying CP on pre-

stressed tendons due to the risk of hydrogen embrittlement which may lead to 

premature rupture. 

 

Due to the compression of concrete in pre-stressed concrete structures, 

cracking is better controlled as well as allowing a reduction of the cross-

sectional area of a member, thus offering an extended range of options for 

many types of structures including bridges and buildings. Pre-stressed concrete 

tanks are used in water treatment and distribution systems, waste water 

collection and treatment systems and storm water management. Other 

applications include liquefied natural gas (LNG) containment structures and 

bunds, large industrial process tanks and bulk storage tanks (Figure  1.1) 
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Figure 1.1 Some of the applications of pre-stress concrete structures 

A particular type of structure which will benefit from the research are bund walls. 

These provide secondary containment in the event of a rupture of holding tanks 

(Figure  1.2). These are constructed using the ‘Preload’ system, where high 

tensile tendons are wound under tension around the walls to provide support to 

the structure. The tendons are then sprayed with gunite to provide a durable, 

smooth finish.  
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Figure 1.2 LNG bund wall 

The bund walls can be up to 20m high and 60m-70m in diameter. 

Circumferential bands are equispaced throughout its height and recessed some 

80 mm into the outer face of a 500 mm thick wall. Each band can be 500 mm 

deep in elevation and, depending on its position, can contain between 240 and 

380 small diameter galvanized steel wires each stressed to 1.5 metric tonnes 

[3].  

The basis of the Preload system of design and construction of pre-stressed 

concrete circular structures is the Preload stressing machine or wire winder, 

developed around 1943 for the purpose of applying large quantities of stressed 

high tensile steel wire to circular structures in a rapid and efficient manner 

(Figure  1.3). 
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Figure 1.3 Preload system of bund wall 

The United Kingdom, along with many other nations, is now facing growing 

concenrs with regard to the safety of these structures. Corrosion of the wire 

tendons has become an issue (Figure  1.4) and an assessment of their residual 

strength, in addition to proposing new methods for strengthening and increasing 

their service life, is required.  

 

Cathodic protection of steel in concrete is a well-established and proven 

technique. It mitigates the steel corrosion process, eliminating the danger of 

further cracking and spalling and enabling the structure to reach its full design 

life. CP has been successfully employed on both new and existing reinforced 

concrete currently suffering, or at future risk, of steel corrosion. In many cases, 

CP provides the most practical and cost effective medium to long term solution 

to deal with the corrosion problem [4]. In this research, the key to a successful 

outcome is to ensure that the Impressed Current Cathodic Protection (ICCP) 

operates in a manner which reduces the risk of hydrogen embrittlement for 

certain sensitive grades (where the ultimate tensile strength is high with grade 
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270 and tensile strength about 1800MPa [5]) of pre-stressed steel under 

tension.  

 

 

Figure 1.4 Corrosion on preloaded tendon in a bund Wall 

1.2  Aims of the research 

This research study will develop a better understanding of applying ICCP to pre-

stressed concrete structures by monitoring an extended application of ICCP 

with the aim of optimising the design criteria to avoid further damage to the 

tendons. Previous researchers have stated their concerns about applying ICCP 

on pre-stressed concrete structures due to the potential risks of hydrogen 

embrittlement. However, there is no clear evidence that ICCP causes failure of 

pre-stressed concrete structures. In addition, the contribution of this research is 

to determine where ICCP can be safely applied to pre-stressed concrete 

structures which will significantly aid their management to ensure they can 

remain in-service and increasing their service life. 

1.3  Scope of study 

In order to fulfil the aims of the research, a carefully designed scope of work has 

been adopted and is as follows: 

 Develop a pre-stressing mould to enable different tensioning stresses to 

be applied to the tendons in the laboratory 

 Select suitable strain measuring techniques for monitoring strains in the 

pre-stressing system throughout the test process 
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 Develop an experimental plan to include test variables such as the degree 

of corrosion, levels of pre-stress in the tendon, type of steel 

(galvanised/ungalvanised) and different CP potentials 

 Apply an accelerated corrosion technique to induce corrosion in the 

tendon and monitor strain throughout 

 Apply CP to the tendons as required by the experimental plan and monitor 

strains 

 Investigate the effect of applied impressed current cathodic protection 

(ICCP) with different potentials on ungalvanised and galvanised tendons 

1.4  Thesis outline 

This thesis is divided into eight chapters, including this introductory Chapter 1. 

 

Chapter 2 presents a detailed literature review of the corrosion of reinforcement 

and pre-stressing steel in concrete and associated repair techniques. It includes 

the principles, process, causes and influence of corrosion on the steel in 

concrete structures. It also discusses the repair techniques available to treat the 

corroded reinforcement and, in particular, the application of cathodic protection. 

 

Chapter 3 introduces the preliminary experimental works, including materials, 

test equipment and laboratory work to confirm that the pre-stressing technique 

and strain monitoring in the tendons has worked successfully. It is also 

necessary to validate the accelerated corrosion method and employ ICCP in 

such a manner that a range of potentials can be applied to the tendons.  

 

Chapter 4 provides a detailed experimental programme, appropriate to study 

the behaviour of pre-stressed tendons under the effects of applied ICCP, both 

normal and overprotection, with different levels of service pre-stress. It includes 

details of the materials used and the experimental procedures and techniques.  

 

Chapter 5 investigates the effect of accelerated corrosion on the pre-stressed 

tendons. A total 12 timber moulds were manufactured to act as a pre-stressing 

rig with dimensions 200mm x 95mm x 675mm. The cast mortar samples, 

representing gunite, measured 100mm x 90mmm x 320mm. Samples of Batch 

1 to 4 were subjected to corrosion with three different degrees, Stage I (0-1 %), 

Stage II (2-4 %) and Stage III (4-7 %). During generation of the corrosion, the 
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loss of stresses were monitored. After applying the different pre-degrees of 

corrosion, the weight loss and diameter loss of exposed tendons were 

determined.  

 

Chapter 6 describes the application of ICCP with normal protection (-650mV to -

750mV, ICCP-N). The losses of applied service stress during the application of 

ICCP-N were calculated. The potentials and potential decays of tendons were 

also recorded. The results were assessed with respect to loss of applied stress, 

mechanical properties, embrittlement ratios and fracture modes using different 

assessment techniques. The potential decays of the steel met recognised ICCP 

standards. 

 

Chapter 7 describes the application of ICCP with over protection (-800mV to -

1300mV, ICCP-O). The losses of applied service stress during the application of 

ICCP-O were calculated. The potentials and potential decays of tendons were 

also recorded. The results were assessed with respect to loss of applied stress, 

mechanical properties, embrittlement ratios and fracture modes using different 

assessment techniques. Comparisons have been made between the application 

of ICCP-N and ICCP-O. 

 

Chapter 8 provides a summary of the key conclusions for the thesis and 

recommendations for further research, followed by references and appendixes. 
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2 Literature Review 

2.1  Introduction 

The first documented wrapped high-strength wire in a continuous spiral on the 

exterior of cylindrical concrete tanks was in 1942. A similar design has been 

used in the construction of large liquefied natural gas (LNG) bund walls, and in 

years past, some were used for the storage of low-level radioactive materials 

[6]. Durability, however, has become an issue due to corrosion of the tendons. 

Similar issues have been reported for tanks belonging to water companies. 

In general, corrosion is caused by the damaging attack of chloride ions 

penetrating by diffusion (and/or alternative penetration mechanisms) from the 

environment, by incorporation into the concrete mixture, by carbonation of the 

concrete cover, or their combination [7]. It is suggested that losses in the 

structural performance of concrete members with corroded reinforcement are 

caused by three factors, namely, reduction within the effective cross-sectional 

area of concrete due to cracking in the cover zone, losses in the mechanical 

performance of reinforcement due to the reduction in their cross-sectional area 

and losses in the bond of concrete with reinforcements [8].  

2.2  Pre-stressed concrete principles 

Pre-stressed concrete is a particular form of reinforced concrete. Pre-stressing 

involves the application of an initial compressive load on a structure to reduce 

or eliminate the internal tensile forces and, thereby, control or eliminate 

cracking. The initial compressive load is imposed and sustained by highly 

tensioned steel reinforcement reacting on the concrete. With cracking reduced 

or eliminated, a pre-stressed section is considerably stiffer than the equivalent 

(usually cracked) reinforced section. Pre-stressing may also impose internal 

forces which are of opposite sign to the external loads and may therefore 

significantly reduce or even eliminate deflection. The use of high-strength steel 

is, therefore, not only an advantage to pre-stressed concrete, it is a necessity. 

Pre-stressing results in lighter members, longer spans, and an increase in the 

economical range of application of reinforced concrete. [9].  
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Pre-stressing steel, used for pre-tensioned (tensioning the steel before casting 

the concrete) or post-tensioned (tensioning the steel after casting and 

hardening the concrete) structures, can be in the form of wires, strands, or bars. 

The main requirement for these products is a high value of the yield strength 

(Figure  2.1) [10]. The strength of pre-stressing steel may vary according to the 

production technology, the metallurgical composition, and the geometry.  

 

 

Figure 2.1 Examples of stress-strain curves for reinforcing and pre-stressing 

steels [10] 

Compared to reinforcing steel, much higher strength levels must be obtained, 

and thus higher levels of carbon are used. In order to obtain high yield strength 

values, tendons can be cold worked, hot rolled, or quenched and tempered 

(Table  2.1) [10]. 

The following sections investigate the various deterioration mechanisms which 

influence the performance of steel in concrete, irrespective of whether it is 

conventional reinforcing steel or pre-stressed steel. 
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Table 2.1 Different types of pre-stressing steel [10] 

Type Shape, surface Diameter Anchorage System Strength Class  Production  

  (mm)  (MPa) (tonne/year) 
      

Cold deformed Round-smooth 4-12.2 Wedge or button heads 1570-1860* 1,000,000 

Wire Round-profiled 5-5.5    

Strand Round-smooth (7wires) 9.3-15.5  1700-2060*  

Hot rolled Round-smooth 26-36  1030-1230 50,000 (Germany, UK) 

Bar Round-ribbed 26.5-36    

Quenched and 

tempered wire 

Round-smooth 6-14  1570 5,000 (Germany, UK) 

Round-ribbed 5-14    

Oval-ribbed 40-120    

* In Germany max. 1770MPa. 
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2.3  Deterioration of reinforced concrete structure 

The concrete rarely deteriorates due to one isolated cause, and concrete can 

suffer from various mechanisms of deterioration [11]. Environmental species 

such as chloride salts, oxygen, moisture or carbon dioxide can penetrate the 

concrete cover and can eventually lead to corrosion of embedded steel 

reinforcement. As the steel corrodes, apart from the resulting loss in its cross-

sectional area, the corrosion products expand in volume causing cracking, rust 

staining and spalling of the concrete cover zone [12]. Reinforced concrete is 

usually durable and cost effective, which has resulted in its widespread use for 

the construction. However, it has become increasingly apparent that attack by 

aggressive agents such as chloride ions, leading to corrosion of embedded 

steel, may cause a structure to deteriorate prematurely. The corrosion of 

reinforcing steel due to chloride transport in concrete structures in marine 

environments has received increasing attention in recent years because of its 

widespread occurrence and the high cost of repair [13]. 

The detrimental role that corrosion of embedded steel rebars plays in the 

service life of reinforced concrete is well documented, costing the United 

Kingdom an estimated £550m per annum. The problem is also widespread 

overseas, i.e. it has been reported that corrosion costs in the United States 

alone are estimated to be close to $300 billion a year, or approximately 3.2% of 

the United States gross domestic product [14]. The US Federal Highway 

Administration published a report in 2001 that stated the estimated cost of 

corrosion of highway bridges was between $6.43 and $10.15 billion. This 

problem drains resources in both the public and private sectors. Implementation 

of solutions is needed, both in the design of structures resistant to corrosion and 

the rehabilitation of structures suffering the effects of corrosion. 

2.3.1  Deterioration stages 

The majority of reinforced concrete performs satisfactory if designed, 

constructed and maintained correctly. They may only suffer from minor issues 

throughout their lifespan. A minority of structures do, however, suffer more 

serious durability issues as a result of a combination of environmental, design 

and construction [15].  
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The state of corrosion of steel in concrete may be expected to change as a 

function of time. Corrosion process has three distinct stages, namely 

depassivation, propagation and final state as shown in Figure  2.2 [16]. 

Depassivation is the loss of oxide (passive) layer over the rebar, which is 

initially formed due to the high alkalinity of concrete. The process of 

depassivation takes an initiation period, tp, which is the time from construction to 

the time of initiation of corrosion (depassivation). 

The propagation phase starts from the time of depassivation, tp, to the final 

state, is reached at a critical time, tcr, at which corrosion would produce spalling 

of concrete cover or cracking through the whole of concrete cover. During the 

propagation period, i.e. corrosion period, tcor, which begins at the moment of 

depassivation, the rebar corrosion is usually assumed to be in a steady state, 

as indicated by a straight line in Figure  2.2. The critical time, tcr, as defined 

above can be expressed as [16]: 

 

tcr  =  tp  +  tcor                         (2.1) 

 

 

Figure 2.2 The stages of corrosion of steel in concrete [16] 
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2.3.2  Factors influencing rates of deterioration 

Concrete provides a highly alkaline environment (generally pH > 13) [17], 

created by the hydroxides of sodium, potassium and calcium released during 

the various hydration reactions. In addition, the concrete acts as a physical 

obstacle to most of the substances which will cause degradation of the 

reinforcement. The steel remains passive and any small breaks in the stable 

protective oxide film are soon repaired. However, if the alkalinity of the concrete 

surrounding the reinforcement is reduced, for example by reaction with 

atmospheric carbon dioxide (carbonation), or if de-passivating chloride ions are 

made available at the surface of the steel then corrosion may occurr. As a result 

of corrosion initiation, the loss of steel section and spalling of cover occurs. The 

rate of deterioration can be effected by the depth of the concrete cover, if the 

depth is inadequate the concrete can be exposed to high corrosion risk. 

Cracked cover due to large shrinkage and movement cracks can be direct 

consequences of corrosion. Presence of chloride ions can be another vital 

factor causing corrosion of reinforcement. Chloride can be induced to the 

concrete either during the mixing of concrete or after casting the concrete from 

an external source like sea water. When chloride ions have reached the 

reinforcement in adequate amounts, they break down the oxide layer that is 

normally maintained by the alkaline environment and protects the steel. Carbon 

dioxide present in the atmosphere combines with moisture in the concrete to 

form carbonic acid. This reacts with the calcium hydroxide and other alkaline 

hydroxides in the pore water resulting in a reduction in the alkalinity of the 

concrete [15]. 

 

Corrosion of embedded reinforcement is the most common cause of 

deterioration of reinforced concrete (RC) structures and a major economic cost 

for maintenance of national infrastructures. This will affect the residual capacity 

of the RC structures and, therefore, is of concern to those who are in charge of 

ensuring safe operation of concrete structures [18]. 

There is a large amount of literature on the corrosion of reinforcement which is 

mainly focused on corrosion induced cover cracking, corrosion prevention and 

repair of corrosion damaged structures. In the recent years, researchers have 

studied the effect of corrosion on residual capacity and mechanical properties of 

reinforcing bars. In most previous studies researchers have used accelerated 
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corrosion techniques on embedded steel in concrete to generate the corrosion 

procedure in the laboratory environment as well as taking reinforcing bar 

samples from corroded bridges. A key aspect that almost all these researchers 

agree on is that the corrosion does not change the fundamental mechanical 

properties of reinforcing steel such as modulus of elasticity; however, non-

symmetrical pitting corrosion along the bar can change the load-extension 

response of reinforcement in a tension test [18]. 

 

The basic problem associated with the deterioration of reinforced concrete due 

to corrosion is not that the reinforcing itself is reduced in mechanical strength, 

rather that the products of corrosion exert stresses inside the concrete that 

cannot be supported by the limited plastic deformation of the concrete, and 

therefore the concrete cracks. This leads to a weakening of the bond and 

anchorage between concrete and reinforcement which directly affects the 

serviceability and ultimate strength of concrete elements within a structure [19]. 

Degradation processes and causes of deterioration of reinforced concrete can 

be classified and summarized in Figure  2.3 [10]. 

 

 

Figure 2.3 Causes of deterioration of reinforced concrete structures [10] 
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2.4  Corrosion mechanisms 

2.4.1  Definition of corrosion 

ASTM terminology (G 15) defines corrosion as “the chemical or electrochemical 

reaction between a material, usually a metal, and its environment that produces 

a deterioration of the material and its properties.” For steel embedded in 

concrete, corrosion results in the formation of rust which has at least two to four 

times the volume of the original steel and none of its beneficial mechanical 

properties. Corrosion can also produce pits or holes on the surface of 

reinforcing steel, reducing strength capacity as a result of the reduced cross-

sectional area [20]. 

Corrosion, typically defined as the deterioration of metals through the combined 

actions of oxygen, other metals, and salts, has a major impact on industrial 

economies. But despite the damage it does, and the seriousness of the issue in 

economic terms, awareness of ways corrosion can be controlled is often less 

well understood [21]. 

2.4.2  Principle of corrosion 

In its simplest form, the corrosion process can be described by two metals in an 

electrolyte, joined by a conductive metal path to permit electrons to pass from 

anode to cathode.  

In reality, when a metal corrodes, anodic and cathodic areas can be formed on 

a single surface in contact with the aggressive aqueous environment. As a 

result, corrosion can occur at a large number of sites over the surface of the 

metal. The reactions occurring at the anodic and cathodic sites can be 

represented as follows: 

 

Anode: 

M →  M2+  + 2e- (metal dissolves)   (2.2) 

Metal  →  metal ion + electrons 

 

Cathode: 

In well aerated neutral and alkaline environments,    ( 2.3) 

Oxygen +  water + electrons → Hydroxyl ion 
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In some cases especially in acidic conditions, or in the absence of oxygen, the 

following reactions can occur: 

 

2H3O
+  + 2e-  → H2O + H2 (gas)     (2.4) 

      (acidic conditions) 

2H2O   + 2e- → 2OH- + H2 (gas)           (2.5) 

     (neutral conditions) 

 

Dissolved metal ions react with hydroxyl ions to form corrosion products. 

Production of hydrogen at the cathode can lead to failure in some materials, 

e.g. high strength low alloy steels, due to hydrogen embrittlement in areas that 

are stressed [22]. 

2.5  Forms of corrosion 

Corrosion can be categorized in several ways. These can be due to the nature 

of the appearance of the damage, mechanism of attack, nature of the 

application and preventive methods [23]. One of the earliest classification of 

corrosion was by Fontana [24]. He categorized corrosion into eight forms. More 

recently, others [23], [25] have categorized corrosion into thirteen forms. 

However, for the purpose of this study it is sufficient to categorise corrosion as 

either general or localised, as discussed below. Table  2.2 describes examples 

of corrosion of steel in concrete [22]. 

Table 2.2 Examples of corrosion of steel in concrete [22] 

Forms of corrosion Description 

General  Carbonation induced corrosion and spalling 

Pitting Chloride ion induced localised corrosion due to de-icing 

salts 

Crevice Under-film corrosion of organically coated reinforcement 

Bimetallic Interaction between dissimilar metals (e.g. conventional 

and stainless steel) 
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2.5.1  General Corrosion 

This form of corrosion results in a uniform attack of the steel surface, often 

resulting in an 'orange peel' effect. The rate of penetration due to general 

corrosion is less than that of more localised forms of corrosion, such as pitting 

or crevice, though it often results in a greater degree of rust generation and 

staining. For most commonly available materials, 'typical' corrosion rates are 

readily obtainable and can be used to determine the expected life of the 

unprotected material in a specific environment where contamination of product 

or aesthetics are not an important consideration. Other than changing the 

specified materials, it is difficult to design against general corrosion. As a result, 

coating or cathodic protection (CP) techniques may have to be employed in 

order to prevent this form of corrosion [22]. 

General corrosion is also commonly referred to as uniform corrosion. It is 

defined as a chemical or electrochemical reaction that takes place along the 

entire or a large part of the surface of a metal that is exposed to a corrosive 

environment, resulting in the loss of metal and, potentially, eventual failure [24]. 

2.5.2  Localised corrosion 

 Pitting corrosion 2.5.2.1

Pitting corrosion is a form of localised corrosion and is defined as ‘cavities or 

holes with the surface diameter about the same or smaller than the depth’ [24]. 

These holes may be small or large in diameter, but they are usually small in 

most cases. Pitting is considered to be potentially more dangerous than uniform 

corrosion because it is more difficult to detect, predict, and design against. 

Pitting corrosion occurs when discrete areas of a material undergo rapid attack 

while most of the adjacent surface remains virtually unaffected [25]. 

  Galvanic Corrosion or Bimetallic Corrosion 2.5.2.2

Galvanic corrosion takes place when dissimilar metallic materials are brought 

into contact with one another in the presence of an electrolyte. The potential 

difference between the two metals produces electron flow between them [24], 

[25]. 
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2.6  Corrosion of steel in concrete 

2.6.1  Introduction 

Corrosion of steel in concrete was first reported in marine structures and 

chemical manufacturing plants [17]. Corrosion of steel reinforcement is a major 

problem influencing the long-term performance of reinforced concrete 

structures. Within the presence of chloride, the steel protective passive layer is 

locally destroyed and unprotected steel areas dissolve. The formation of 

corrosion products (rust) involves a considerable volume increase, i.e. the 

volume of corrosion products is greater than that of original steel bar. Therefore, 

expansive stresses are induced around corroded steel bars causing possible 

cracking, spalling of concrete cover and loss of bond between steel/concrete, 

and therefore reducing the serviceability of concrete structures [26]. 

Concrete, in general, provides protection to steel reinforcement because of two 

reasons, (a) concrete provides a highly alkaline environment to steel 

reinforcement which passivates the steel surface and, hence, prevents it from 

corrosion, and (b) concrete helps prevents the ingress of corrosion species, like 

oxygen, chloride ions, carbon dioxide and water, in low water-cement ratio 

concrete [27].    

Once the alkaline environment is destroyed, the protective oxide layer on the 

steel surface is destroyed and corrosion initiates. The formation of protective 

oxide layers and their breakdown is shown in Figure  2.4. The protective oxide 

layers that developed are either Fe2O3 or Fe3O4, both are stable in concrete. 

The most stable layer in concrete is Fe2O3 written as γ-FeOOH that it is the 

hydrated form of Fe2O3. [27]. 

 

 

Figure 2.4 Breakdown of the protective passive film on a steel bar in concrete 

[27] 
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In the case of carbonation, the reinforcement is subject to general corrosion 

while chloride ions can initiate the pitting form of attack. 

2.6.2  Corrosion process 

The corrosion process of steel in concrete is a function of many variables such 

as the steel surface, concrete properties, and the environment in which the 

concrete is used [28]. It is a chemical reaction involving the transfer of charge 

(electrons) from one specie to another. For an electrochemical reaction to occur 

(in the absence of an external electrical source) there must be two half-cell 

reactions: one capable of producing electrons (the anodic reaction) and one 

capable of consuming electrons (the cathodic reaction) [29]. The surface of the 

corroding steel functions as a mixed electrode that is a composite of anodes 

and cathodes electrically connected through the body of steel itself, upon which 

coupled anodic and cathodic reactions take place. Concrete pore water 

functions as an aqueous medium, i.e., a complex electrolyte [16].  

 

Under this condition and in the presence of oxygen and water, positively 

charged ferrous ions dissolve into the pore solution according to the anodic 

reaction [30]: 

 

Fe  Fe2+ + 2e-          (2.6) 

 

The electrons produced by this reaction are conducted through the steel to 

neighbouring regions where oxygen is reduced according to the cathodic 

reaction: 

 

O2 + 2H2O+ 4e-  4OH-        (2.7) 

 

To complete the circuit of charge movement, hydroxide ions migrate from 

the cathode to the anode to produce ferrous hydroxide, Fe(OH)2 (2.8). 

 

Fe2+ + 2OH-  Fe(OH)2        (2.8) 
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In the presence of further oxygen and moisture, Fe(OH)2 is then converted to 

rust according to equations (2.9) . 

 

4Fe(OH)2 + O2 + 2H2O  2Fe2O3.H2O (rust) + 4H2O    (2.9) 

 

Theses process are summarised in Figure  2.5. The anodic reaction represents 

the dissolution of the metal. The flux of ions and electrons respectively can be 

taken as a measure of the corrosion rate. This can be given as mass lost per 

unit of time and area, as a reduction of the thickness per unit of time or as 

current density (current per unit of area) [31]. 

 

Four conditions must exist for corrosion to occur:  

 An anode (corroding) and a cathode (protected) component 

 An electrical potential between the anode and the cathode 

 The anode and cathode must be immersed in an electrolyte, which is an 

electrically conductive fluid 

 The anode and cathode must be connected by a metal path of low 

resistance 

 

 

Figure 2.5 Schematic illustration of the corrosion of reinforcement steel in 

concrete [16], [29] 
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Based on Faraday's Law, the magnitude of the corrosion current is a direct 

measure of the rate of corrosion of the steel. Thus, corrosion current 

(determined per unit area of reinforcement) of 1 A/m2 is equivalent to an 

average oxidation or dissolution of 1.16 mm per year from the surface of the 

steel. Faraday's Law and its application are described in Section 3.5.1. As in 

any other electrical circuit, the corrosion current is limited by the resistance of 

the circuit. In this case, the important factor is the electrical resistance of the 

concrete.  

While the electrical resistance of the concrete is one of the factors controlling 

how fast corrosion can occur (i.e. the reaction kinetics), the parameters 

determining whether or not corrosion is actually possible (the reaction 

thermodynamics) are the pH of the concrete pore solution and the 

electrochemical potential existing at the steel surface. One can determine 

theoretically whether or not the reactions are thermodynamically possible and 

values of E as a function of pH for which the above reactions are in equilibrium 

can easily be calculated and are available in graphical form as illustrated in 

Figure  2.6 [32]. 

 

Figure 2.6 Potential-pH equilibrium diagram of iron in aqueous solutions [32] 
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From the diagram of the equilibrium phases of iron in aqueous solutions as a 

function of pH and electrochemical potential, at pH 13.5, iron is in equilibrium 

with Fe3O4 at E = -1125 mV SCE (saturated calomel electrode), equivalent to -

881 mV SHE (standard hydrogen electrode), point "C" in Figure  2.6. At 

potentials lower than this, iron is the stable phase and, therefore, corrosion 

cannot occur. At higher values of the potential, Fe3O4 or Fe2O3 is the stable 

phase and corrosion (or oxidation) can occur. In theory, the more positive the 

potential, the higher will be the corrosion rate. However, at high pH (>9) in the 

presence of O2, the oxide forms a passive film on the surface of the iron. This 

film acts as a protective coating but is not completely protective. Thus, corrosion 

is not stopped but the rate of corrosion is reduced to an insignificant level. The 

second effect of this passive film is that there is no unique value of the corrosion 

potential. Its highest possible value is determined by the equilibrium potential of 

O2, the dashed line in Figure  2.6. In aerated concrete of pH 13.5, the highest 

potential of the steel would thus be +175 mV SCE (point "B" in Figure  2.6). The 

lowest potential at which the passive film has been experimentally found to be 

stable at this pH is -594 mV SCE. In practice, the steel can adopt any potential 

within this range and still be passivated depending on the O2 concentration [29], 

[32]. 

2.6.3  Corrosion of pre-stressing steel in concrete 

As far as corrosion behaviour is concerned, pre-stressing steel needs to be 

distinguished from reinforcing steel with regard to hydrogen embrittlement, 

since it only affects the former; this has been illustrated in the above sections. In 

noncarbonated and chloride-free concrete, the passivity of low-alloyed steels is 

not influenced appreciably by their composition, structure or surface conditions. 

Therefore, the usual thermal or mechanical treatments or the roughness of the 

surface of the rebars have negligible influence on their corrosion behaviour. 

Even the presence of magnetite scale that often covers the surface of the bars, 

which can cause dangerous localized attack on steel in contact with neutral 

solutions (such as fresh water or seawater), is not dangerous in concrete. In 

fact, noncarbonated and chloride-free concrete passivates all the surface of the 

steel. If adherent oxide films are present, they do not create problems. If the 

oxide layer contains chlorides, because for example, it is formed in a marine 

environment, it must be removed completely because it can hinder passivation. 
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Once the steel becomes active due to carbonation of concrete or chloride 

penetration, the influence of chemical composition, microstructure and surface 

finishing is still of secondary importance, because kinetic control of the 

corrosive process is of the ohmic type, or dependent on oxygen diffusion and 

thus on characteristics of the concrete (and in particular its moisture content) 

rather than on those of the metal. Nevertheless, it was shown that the 

susceptibility of steel to pitting corrosion in chloride-contaminated concrete may 

be slightly affected by the surface condition of the steel [10]. 

For many pre-stressed structures exposed to marine environment and de-icing 

salts, attack by chloride ion is the chief factor that causes corrosion of steel 

bars. Durability failures of pre-stressed structures caused by chloride 

contamination are happening continuously all over the world [33]. Offshore 

structures, piers, dams, docks or harbours are also attacked by chlorides from 

seawater especially in the tidal, splash and spray water zones [34]. Figure  2.7 

and Figure  2.8 show the corrosion of pre-stressed steel wires. 

 

  

(a) (b) 

Figure 2.7 (a) Corrosion of Pre-stressing Wires [35] (b) Corroded wires of a strand from 

a simulated tendon [36] 

 

Figure 2.8 Severe corrosion and minimal rust staining on pre-stressing wires [37] 
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Forms of corrosion are discussed in Section 2.5, The most common types of 

corrosion that affect pre-stressing steels are uniform corrosion, localized or 

pitting corrosion and stress corrosion. Hydrogen embrittlement had for some 

time been considered as a separate type. However, now it is being considered 

as a variation of stress corrosion. Brittle fracture of pre-stressing steel by either 

stress corrosion or hydrogen embrittlement is especially dangerous and of 

grave concern to engineers and designers. Fretting corrosion is another type 

that is becoming of increasing concern. Other types of corrosion are crevice 

corrosion and stray current corrosion [33]. 

 Stress corrosion cracking  2.6.3.1

Stress corrosion cracking (SCC) is a type of highly localized corrosion that 

produces cracking as a result of the simultaneous presence of corrosion and 

tensile stress. This phenomenon is of importance because it can occur at 

stresses within the range of design stresses. Although many mechanisms have 

been postulated, none completely explains the phenomenon of stress corrosion 

cracking. The process of corrosion produces a discontinuity on the surface of 

the metal (a pit), thus providing a stress raiser. Stress corrosion cracks have 

often been observed to originate at the base of a pit (Figure  2.9). Once a crack 

has started, there is a large stress concentration at the tip of the crack, with 

subsequent crack propagation. Cracks propagate either along grain boundaries 

(intergranular) or on slip planes within the crystal lattice (transgranular) 

(Figure  2.10). Eventually, these cracks can cause sufficient reduction in cross 

section to precipitate a brittle failure [33]. The chemical reactions of corrosion 

should be considered as described in Section 2.6. 

Pitting corrosion of steel usually is readily recognised. Individual shallow pits, 

and in later stages, deep and sometimes connected pits can be seen with the 

eye. Pitting corrosion starts when the passive oxide film breaks down in a 

chloride-rich environment. Once the passive film is breached, an 

electrochemical cell becomes active. Iron goes into solution in the more anodic 

bottom of the pit, diffuses toward the top, and oxidizes to iron oxide. The 

concentration of the iron chloride solution in a pit can increase as the pit 

deepens. Pitting can penetrate deep into the steel, creating a situation where 

the steel could fail [38]. 

 
 



 

25 

  

(a) (b) 

Figure 2.9 Pitted PT wires with (a) grout [Cl-] 0.80 wt% cement, pit depth 0.12 

mm, and no physical grout deficiency and (b) grout [Cl-] 2.00 wt% cement, pit 

depth 0.46 mm and a grout void [36] 

 

 

Figure 2.10 Stress corrosion cracking in a corrosion pit on steel [39] 

In concrete structures, the medium is mostly alkaline and acid solutions are 

limited to exceptions. Nevertheless, in natural environments the pitting induced 

SCC can take place (Figure  2.11). In pre-stressed construction carbonation of 

concrete and mortar as well as chloride contamination are responsible for local 

corrosion attack. 

Crevice corrosion and pitting corrosion are problems in practice and they are 

well documented in the literature [40]. Several methods have been used to 

measure the pitting potential, such as potentiostatic methods, potentiokinetic 

methods, galvanostatic methods, etc.[40], [41]. 
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Figure  2.11 Pitting induced stress corrosion cracking [42] 

Fracture of high-strength steel due to SCC normally takes place in three stages 

(Figure  2.12): (i) a first stage of incubation or crack initiation; (ii) a second stage 

of slow (subcritical) propagation of cracks; (iii) a third stage of fast propagation, 

which occurs when some critical conditions are reached and suddenly leads to 

failure [10] 

 

Figure 2.12 Sequence of phenomena that lead to the initiation and propagation 

of hydrogen induced cracks and subsequent failure in two materials (A and B) 

with different fracture toughness (dcr = critical flaw size; ti = incubation time, tr = 

time of failure) [10] 

The hydrogen affects the microstructure and the stability of passive films. It has 

been found that hydrogen increases the disorder of passive films, and 

consequently the pitting susceptibility. In addition, hydrogen-induced drop of 
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breakdown potential facilitates the initiation of pitting, and increases the pitting 

density and growth rate [43]. 

 Hydrogen Embrittlement 2.6.3.2

Hydrogen embrittlement (HE) cracking of steel under stress occurs when atomic 

hydrogen penetrates into the metal structure, where it recombines to hydrogen 

molecules, producing an internal pressure in the metal. Absorption of atomic 

hydrogen by the pre-stressing steel usually occurs by cathodic charging, which 

happens in a corrosive environment when the steel is electrically coupled to a 

more anodic metal, for example, zinc coating. The atomic hydrogen may be 

formed by the corrosion process itself or as a result of some manufacturing 

operation, such as pickling. Cracking of the metal may be initiated as a result of 

the internal pressure developed by the hydrogen molecules causing tensile 

stress, or in combination with a critical external tensile stress. Atomic hydrogen 

may enter the metal over an extended period of time. Rupture due to hydrogen 

embrittlement has occurred several years after installation [33]. 

 

 

Figure 2.13 Brittle fracture of pre-stressing wire [37] 

In sensitive steels the hydrogen under the effect of mechanical stresses can 

create pre-cracks in critical structural areas such as grain boundaries. These 

cracks may grow and result in material fracture. Special conditions have to exist 

to activate the formation of adsorbable hydrogen atoms [42]. SCC and the 
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subsequent failure of steel (Figure  2.13) and construction may occur if the 

protection is not guaranteed from the beginning as a result of poor 

workmanship, or it is lost because of deterioration of the construction in the 

course of the time, or the pre-stressing reinforcement is pre-damaged during 

handling. Also, an application of unsuitable materials for pre-stressing steel, 

injection mortar or concrete can alone or in combination with other factors 

favour SCC. 
 

 

Figure 2.14 Fracture surface of a pre-stressing bar that failed due to hydrogen 

embrittlement [10] 

The use of galvanized steel tendons in pre-stressing structures is normally 

restricted to the external application of non-adherent type. The reason for this 

limitation is the possibility of failure due to the risk of hydrogen embrittlement of 

the bare steel that can arise when loaded galvanized tendons or wires are in 

direct contact with high alkaline cement based materials. However, there is 

insufficient evidence to this restriction that claims for a deeper investigation [44]. 

For example, the pre-stressing steel in the bund walls highlighted in Chapter 1 

was galvanised and this research project will investigate their performance with 

respect to hydrogen embrittlement. Figure  2.14 shows the fracture surface of a 

pre-stressing steel that failed due to hydrogen embrittlement.  

Despite the major technical importance of hydrogen embrittlement, and the 

significant of research work on the subject, the mechanism of hydrogen 

embrittlement remains uncertain. In considering hydrogen embrittlement 

mechanisms, it is important to recognise the concentration of hydrogen in the 

steel, as matrix concentrations are very low, typically of the order of one atom of 

hydrogen for every 106 iron atoms. It can be difficult to understand how such 
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small amounts of hydrogen can modify fracture properties. Details of HE are 

given in ref. [45].  

2.7  Cathodic Protection 

2.7.1  Historical foundation of cathodic protection 

Cathodic protection was first applied by Sir Humphry Davy in 1824 to reduce 

the corrosion of the copper sheathed hulls of warships by attaching anodes of a 

less noble metal than the copper itself [73]. After Davy’s discovery, Faraday 

examined the corrosion of cast iron in sea water and found that it corrodes 

faster near the water surface than deeper down. In 1834 he discovered the 

quantitative connection between corrosion weight loss and electric current. With 

this discovery he laid the scientific foundation of electrolysis and cathodic 

protection. In the 1890s, one of the first practical applications of impressed 

current cathodic protection was made by Thomas Edison, when he developed a 

system to protect ship hulls. Impressed current CP was developed as a 

practical way of reducing corrosion with the invention of DC generators and 

efficient storage batteries allowing initial applications were to underground 

structures from around 1910 [46]. During the 1920s, steel pipelines in North 

America were treated with CP and its success led to its popularity and 

diversification of its application. In 1959, the use of ICCP in reinforced concrete 

was trialled by Richard Stratfull who applied ICCP to a bridge deck suffering 

from chloride-induced corrosion. Thereafter, its application in reinforced 

concrete became more widespread [47], [48]. This extended to buildings, 

tunnels, marine structures and substructures throughout the USA and Europe in 

the 1980s [49]. Existing damage to the concrete must be repaired before a CP 

system can be installed, though the extensiveness of repair is much less than 

what is required for repair-only cases [49].  

2.7.2  Theoretical basis for cathodic protection 

CP provides external electrons to the steel to be protected by introducing a new 

anode into the system. The steel becomes the cathode and further aggressive 

corrosion is prevented or reduced [50]. Cathodic protection is a unique 

technique of corrosion protection amongst all other methods as it mitigates 

corrosion and it is possible to stop corrosion completely. CP works on the basic 

principle where electrons are supplied from an external anode to the metal 
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intended for protection, transforming it into the cathode (negatively polarised). In 

other words, electrons from an external anode substitute for the electrons that 

would have otherwise been lost from the oxidation of the metal through the 

anodic reaction, thus preventing corrosion. 

The mechanism of ICCP works on the application of an external direct current 

which polarizes the surface of the metal to be protected to the thermodynamic 

potential of the anode, i.e. the surface reaches equipotential with the anode. As 

a result, corrosion current is prevented from flowing, thus stopping the metal 

from corroding [51]. More detailed theoretical explanation of cathodic protection 

is given in [52]. 

2.7.3  Methods of Applying Cathodic Protection 

There are essentially two methods of applying cathodic protection, namely the 

galvanic sacrificial anode cathodic protection (SACP) and the impressed current 

cathodic protection (ICCP) technique. Both systems have an anode, a 

continuous electrolyte between the anode to the element being protected and 

an external wire connection system. ICCP systems typically require a constant 

low direct current (DC) power supply to each independently controlled anodic 

zone [53]. This DC power source is normally from an electrical grid or 

generators for more remote locations, both of which are usually unsustainable 

sources of energy [54]. 

 Galvanic or sacrificial anode cathodic protection 2.7.3.1

The sacrificial anode technique uses the natural potential difference that exists 

between the structure and a second metal in the same environment to provide 

the driving voltage. No power source is employed. Moreover, the dissolution of 

the second metal, that is, the sacrificial anode, provides the source of electrons 

for cathodic polarization of the structure. Thus, while the impressed-current 

anode may be more noble or more base than the protected structure because 

the power source forces it to act as an anode, the sacrificial anode must be 

spontaneously anodic to the structure, that is, be more negative in the galvanic 

series for the given environment. Thus, in principle, zinc, aluminum, or 

magnesium could be used to protect steel, and iron to protect copper. Figure 8 

illustrates the use of a sacrificial anode for cathodic protection [52]. Compared 

to ICCP, galvanic systems have the advantage of being independent to external 
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electric power and are less liable to cause interaction on adjacent structures 

[65]. However, the SACP anode lifespan tends to be shorter than ICCP, as the 

material is eaten-away. While a low driving voltage may be undesirable for most 

reinforced concrete structures, it is a safer choice for pre-stressed structures. 

As low resistivity is a requirement for effective galvanic protection [67], the main 

limitation of this type of cathodic protection for use with reinforcement is the 

relatively high resistance of the cover concrete. SACP systems provide a low 

current, limiting its effectiveness in high resistance environments. These 

systems are often used on oil platforms for both concrete and steel structures 

below water [67]. 

 

Figure 2.15 Schematic diagram of cathodic protection using sacrificial anodes 

[55] 

 Impressed current cathodic protection 2.7.3.2

Impressed current systems are the most commonly used for reinforced concrete 

[53], [56]–[62]. ICCP is used where electrolyte resistivity is high and galvanic 

anodes cannot economically deliver enough current to provide protection. 

Figure  2.16 illustrates the use of an external power supply to provide the 

cathodic polarization of the structure. The circuit comprises the power source, 

an auxiliary or impressed current electrode, the corrosive solution, and the 

structure to be protected. The power source drives a positive current from the 

impressed current electrode through the corrosive solution and onto the 

structure. The structure is thereby cathodically polarized (its potential is 

lowered), and the positive current returns through the circuit to the power 

supply. Thus, to achieve cathodic protection, the impressed current electrode 
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and the structure must be in both electrolytic and electronic contact. The power 

supply is usually a transformer/rectifier that converts AC power to DC [52]. 

 

Figure 2.16 Schematic diagram of cathodic protection using the impressed-

current technique [55] 

Impressed current installations are able to supply a relatively large current, 

providing high DC driving voltages which, unlike SACP, allow them to be used 

in most types of electrolytes. Also unlike SACP, Impressed current systems can 

provide a flexible current output that can accommodate changes in the structure 

being protected [63]. ICCP is employed widely in the repair of reinforced 

concrete structures suffering from corrosion but it has only rarely been 

considered for pre-stressed concrete structures. This is for two reasons. The 

first is that in general pre-stressed construction is not as conventional reinforced 

concrete and is consequently in a better condition. This, however, will not be the 

case permanently. There are pre-stressed concrete elements that are beginning 

to show evidence of corrosion, spalling and delamination [35]. The second 

concern is with regards to the risk of hydrogen embrittlement which can result in 

brittle failure of a tendon [64], [65]. The steel becomes brittle due to the 

absorption of hydrogen so inducing stress corrosion cracking and leading to 

premature failure of the steel. This effect occurs on high strength stressed steel 

tendons such as pre-stressed or post-tensioned tendons. 
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2.7.4  Anode selection 

Anodes for SACP systems are made from less noble material than the steel 

being protected and are consumed preferentially to create the cathodic 

protection current [66]. Typical materials used are zinc, aluminium or 

magnesium. These metals are often alloyed to improve the long-term 

performance and dissolution characteristics, for example Aluminium-Zinc-

Indium. Zinc and its alloys are the most commonly used for reinforcement in 

concrete structures [67]. The main drawback is “passivation” of zinc in this 

environment which creates an oxide layer on the surface that changes its 

potential. Therefore, zinc alloys may be used instead to reduce the formation of 

this layer. For reinforced structures sacrificial anodes can be a zinc mesh and 

overlay, or a zinc sheet attached to the concrete using a conductive gel or flame 

sprayed zinc [49]. Aluminium and magnesium and their alloys are used less 

regularly as their oxides and corrosion products can attack the concrete [67]. 

However, examples exist where they have been used successfully [68]. 

Examples of anodes used for ICCP include magnetite, carbonaceous materials 

(graphite), high silicon iron, lead/lead oxide, lead alloys and platinised materials 

such as titanium [69] which can provide relatively large protection currents 

without compromising durability [49]. 

The most common and reliable ICCP anode is the activated titanium expanded 

mesh with a surface coating of mixed metal oxides and covered with a 

cementitious overlay [49]. The mixed metal oxide coating acts as the anode 

while the titanium provides a stable base material [70]. Titanium conductors are 

spot welded at regular intervals to facilitate the connection to the current source 

[80]. Although titanium mesh/overlay systems are costly and heavy, they are 

robust with a life expectancy of over 25 years [49]. This type has a high 

tolerance for external moisture so surface preparation is very important to 

ensure good cover provided. 

2.7.5  Electrolysis 

As a result of the electrical potential difference between the anode and the 

cathode, water is reduced to hydroxide ions at the reinforcement. After the 

available oxygen has been consumed according to reaction (2.7), the cathodic 

reaction produces hydroxide and hydrogen gas. At the external anode, water or 

hydroxide is oxidised to oxygen and hydrogen ions respectively. These 
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reactions are referred to as electrolysis, which results in a pH increase at the 

reinforcement, and this is the most important process for realkalisation [71]. 

The rate of oxygen reduction is determined by the rate of diffusion of oxygen in 

concrete whereas the water reduction reaction is controlled by the kinetics of 

the charge transfer process [72]. The reactions lead to an increase in alkalinity 

at the cathode, restoring and maintaining steel passivation. 

The primary anodic reaction for sacrificial anodes is spontaneous and involves 

ionisation of the metal. In neutral or alkaline solutions the metal cation will be 

unstable and become hydrolysed. Anodic reactions for impressed current 

systems are widely held to be the generation of oxygen, water and chlorine gas 

with the overall effect of lowering the local pH. In neutral solutions oxygen is 

evolved and in alkaline solutions, water also evolved as follows:  

 

2 H2O  4 H+ + O2 + 4 e-                  ( 2.9) 

 

4 OH- 
 2 H2O + O2 + 4 e-                  ( 2.10) 

 

Chlorine evolution is possible at inert electrodes at relatively small 

concentrations of chloride ions [73]: 

 

2 Cl-  Cl2 + 2e-                   ( 2.11) 

 

The anode material directly influences the reactions occurring and these are 

likely to change with time as the environment adjacent to the anode varies. This 

may be due to reaction products inculcating secondary reactions or due to 

external factors such as variation in temperature and moisture. Concrete in 

contact with the anode may become dehydrated as water is consumed and 

calcium silicates and aluminates may become unstable in the less alkaline 

conditions, resulting in a deterioration of the anode/concrete interface. In 

addition, corrosion of the anode material may occur due to the development of 

an aggressive operating environment. These factors have often been ignored 

by other workers when considering the long term durability of CP systems. 

Accelerated and long-term testing of CP systems has confirmed that production 

of some anodic products leads to acidification at anode/concrete interfaces with 

subsequent local modifications to cement paste [74], [75]. 
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2.7.6  Design criteria for CP 

The main effect of applying cathodic protection is to polarise the steel, i.e. drive 

the potential of the steel to more negative values. Consequently, measurement 

of this change is the most common method used to determine the effectiveness 

of cathodic protection. The secondary effects of cathodic protection include 

repelling chloride ions from the steel surface and increasing the pH local to the 

steel. These factors result in a reduction in the corrosive conditions and hence a 

reduction in the corrosion rate and can be used in assessing the effectiveness 

of cathodic protection. As indicated in Section 2.6.3.2, one aspect of cathodic 

protection applied to pre-stressed concrete structures is the risk of hydrogen 

embrittlement. High-strength steel (used in pre-stressing) can be susceptible to 

hydrogen embrittlement; however, the overall risk is also dependent on the 

levels of tensile stress in the component, the environment (in particular pH) and 

the degree of polarisation of the steel (i.e. potential). It is worth noting that the 

absolute protection potential for steel in concrete is rarely achieved and so it 

could be considered that the risk of reaching the hydrogen evolution potential is 

low. NACE State-of-the-art gives report (01102 Criteria for Cathodic Protection 

of Pre-stressed Concrete Structures [76]) guidance on how to assess the 

susceptibility of the pre-stressing systems of a particular structure to the risk of 

hydrogen embrittlement [48]. 

It is recommended that commissioning of CP systems should start at a low level 

of current density for the initial part of the commissioning period to avoid any 

adverse effects on the anode durability. Intermediate tests can be then carried 

out, typically 14 days after energising, to determine what adjustments are 

needed to satisfy the operating criteria. The international standard for cathodic 

protection of steel in concrete, item 8.6 (BS EN ISO 12696:2016) [77] states: for 

any structure, any representative steel in concrete location shall meet any one 

of the following criteria : 

 

 An “Instantaneous (or Instant) OFF” potential more negative than −720 mV 

with respect to Ag/AgCl/0,5 M KCl; or 

 A potential decay over a maximum of 24h of at least 100mV from 

"Instantaneous OFF”; or 

 A potential decay over an extended period (typically 24 h or longer) of at 

least 150 mV from the instant off subject to a continuing decay and the 
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use of reference electrodes (not potential decay probes) for the 

measurement extended beyond 24 h.  

 

The decay is independent of the nature of the reference electrode used or any 

variation in its absolute potential in the long term. Historically it has been 

common to use a decay period of 4 hours although it should be noted that other 

intervals (such as 24 hours) might be suitable depending on the nature of the 

structure and surrounding environment. When current is applied to the anode 

system there will be an associated error in potential measured between the 

reference electrode and the steel termed the IR drop. The current must 

therefore first be switched off to obtain the true fully polarised potential of the 

steel, termed the instant-off potential. However, the steel will depolarise shortly 

after with a characteristic exponential decay curve as illustrated in Figure  2.17. 

 

 

Figure 2.17 Potential decay curve [78] 

In order to obtain an accurate measurement of decay, the instant-off potential 

must be measured within a very short time window, typically 0.1 to 0.4 seconds 

after the current is switched off. The reinforcement will continue to depolarise 

and the potential decay is measured after a period of 4 hours (or other suitable 

intervals) from switch off. The accurate measurement of the instant-off potential 

is essential to determine the value of potential decay. 
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A further requirement of the operating criteria is that no instant-off potential 

more negative than -1100mV with respect to Ag/AgCl/0.5MKCl is permitted, to 

avoid the possibility of hydrogen evolution which may cause embrittlement of 

sensitive steels. 

However, it is most unlikely that these levels of potential will be reached in a 

properly operated system. The performance monitoring should thus be 

designed to ensure that the steel is polarised to the correct level of potential to 

achieve protection, but not excessively so [78]. However, this project will 

investigate this claim further and a range of instant-off potentials will be used for 

protecting the pre-stressing steel. Therefore, three factors must be taken into 

account when controlling CP system [47] : 

1. There must be sufficient current to overwhelm the anodic reactions and 

stop or severely reduce the corrosion rate. 

2. The current must stay as low as possible to minimise the acidification 

around the anode and the attack of the anode for those that are consumed 

by the anodic reactions. 

3. The steel should not exceed the hydrogen evolution potential, especially 

for pre-stressed steel to avoid hydrogen embrittlement. 

2.7.7  Reference electrode (Half-Cell) 

Reference electrode is the potential difference between any metal and its 

surrounding electrolyte. This variation is referred to as polarization. The 

potential difference is also dependent on the types of chemical reaction 

occurring at the metal surface. The metal/electrolyte potential difference may be 

measured using a reference electrode. Since the measured potential difference 

will also depend on the type of reference electrode which is used the type of 

reference electrode should always be stated [79]. Reference electrodes are 

used to measure the potential of the reinforcing steel and can be either 

embedded in the concrete permanently or can be portable/surface mounted for 

application to the external concrete face, as follows [48]: 

 Surface-mounted reference electrodes are normally double-junction 

silver/silver chloride/potassium chloride (Ag/AgCl/0.5M KCl) reference 

electrodes.  
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 Embedded reference electrodes are normally double-junction silver/silver 

chloride/ potassium chloride (Ag/AgCl/0.5M KCl) or manganese 

dioxide/sodium hydroxide (Mn02/NaOH). 

 Other embedded probes, not strictly reference electrodes but considered 

suitable for at least potential decay measurements, are sometimes used, 

typically graphite and activated titanium. These have the advantage of 

projected longer life than the true reference electrodes [48]. 

However, the preferred reference electrode for site use is the silver/silver 

chloride/potassium chloride (SSC) electrode. This requires less maintenance, is 

more reliable and less prone to leaking than the copper/copper sulfate 

electrode, which is still quite widely used. SSC electrodes must not be allowed 

to dry out or they risk being irreversibly damaged [80]. 

2.7.8  Hydrogen embrittlement 

Hydrogen embrittlement in the tendon was discussed in Section  2.6.3.2. 

However, this Section discusses the influence of ICCP on the tendon. Failures 

of pre-stressing wires due to HE as a consequence of cathodic polarization has 

not been reported. Cathodic polarization of pre-stressing wires in concrete 

structures may occur as a result of stray currents and/or of cathodic protection. 

It has been indicated that hydrogen evolution occurs on steel in a simulated 

concrete environment at a potential of about -1.17 V (SCE) [81]. It is now 

reasonably well established that cathodic protection of normal reinforcing steels, 

designed and operated to the International Standards now published, presents 

little risk of hydrogen embrittlement. Cathodic protection of pre-stressed 

elements requires particular care and rigour in design and operation [48]. High 

strength steels and steels subjected to high stress levels may be adversely 

affected by hydrogen and may either embrittle or crack. Care is, therefore, 

needed in both material selection and design in order to minimize such possible 

harmful effects [79]. 

2.8  Conclusion of review 

From the review of the literature concerning the corroded reinforced concrete, 

corrosion is one of the main causes of deterioration. The corrosion has a 

detrimental effect on the durability of reinforced concrete structures and is 

reduces the structures service life. However, the steel can resist corrosion if the 
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conditions such as alkalinity of the surrounding concrete, adequate cover to 

reinforcement, good quality of concrete, the bond between the steel and 

concrete and attention to the environment during the construction are provided.  

The steel in pre-stressed concrete can corrode just like that in conventionally 

reinforced concrete. Once corrosion occurs on the steel, there is a need to 

control. Cathodic protection (CP) has proved particularly effective for preventing 

corrosion in conventionally reinforced concrete structures at risk of corrosion as 

the result of carbonation or chlorides but has been actively avoided for pre-

stressed structures. The main concern regarding the use of CP with pre-

stressed steel has been the possible generation of hydrogen as a result of over-

protection and the associated risks of hydrogen embrittlement (HE) of the steel 

tendons. 

As structures containing pre-stressed elements age, the risk of corrosion related 

damage increases along with the need for effective methods of remediation. 

While the majority of pre-stressed post-tensioned structures are unsuitable for 

CP because of the presence of a metal or polymer duct, the majority of pre-cast 

pre-stressed components such as bridge beams and deck slabs are at least 

capable of being protected provided concerns about HE can be dealt with 

effectively. Similarly, pre-load structures, generally tanks or bunds that are 

constructed from pre-cast elements then strengthened with a tensioned strand 

laid into a groove and encased in gunite, would benefit from the application of 

CP provided the HE concerns can be addressed. 

By understanding the effect of ICCP on pre-stressed high strength ungalvanised 

and galvanised tendons as used in such components, and optimising the 

criteria for protecting them with CP, it will be possible to develop safe and 

effective methods of remediation with a greatly reduced need for break-out and 

possible release of pre-stress. This research is therefore directed at generating 

the necessary information to permit such a repair strategy to be assessed and 

developed. 
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 Preliminary Experimental Works Chapter 3 -

3 Preliminary Experimental Works 

3.1  Introduction 

Twelve pre-stressing timber moulds were developed for use in the project. 

These had a dual purpose (i) to act as shuttering to restrain the mortar (gunite); 

(ii) to enable the tendons to be pre-stressed. A preliminary test was conducted 

on one tendon pre-stressed in one mould using different types of strain gauges 

the aim is to select a suitable strain gauge technique with enough strain 

capacity. The main aim of the strain measuring was to enable the strain, and 

hence the stress, to be monitored throughout the test i.e. during the pre-

stressing, the accelerated corrosion of the tendon and the application of the 

ICCP. After several trials with modifications and adjustments as necessary, 

preliminary tests including corrosion and ICCP on a tendon were performed.  

3.2  Aims and Objectives 

The aim of these laboratory-based preliminary tests was to confirm that the pre-

stressing technique and strain monitoring in the tendons worked successfully; 

validate the accelerated corrosion method and to perform ICCP so that a range 

of potentials could be applied to the tendon. This included over and under 

protecting the tendon by varying the potential applied to the tendons. 

3.3  Preliminary Experimental Programme 

The experimental works were carried out in The Construction Materials 

Laboratory at Sheffield Hallam University. Different variables were considered in 

the test schedule and these included the degree of corrosion in the tendons, 

their levels of pre-stress and type of tendon (galvanised or ungalvanised) 

(Table  3.1). Referring to Table  3.1, three series are given, labelled 1, 2 and 3 

representing the galvanised and ungalvanised tendons (Col. 1). The electrolyte 

is either a saline solution (3% by weight sodium chloride) or a sand/cement 

mortar representing gunite (Col. 2). Each tendon is given a unique code e.g. S-

U-L-I-1 based on Electrolyte (solution or mortar) -Type of tendon (Galvanised or 

Ungalvanised) - Pre-stress level (Low or High) -Degree of Corrosion (Stage I or 

Stage II or Stage III) - Sample Number (1) (Col. 3). The type of tendons studied 

(galvanised or ungalvanised) is given in Col.4. The level of pre-load (pre-stress) 
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in the tendons normally used on site is about 1000 N/mm2. It was considered 

that not all tendons in-situ may be exposed to the same levels of pre-stress 

after long service conditions resulting in losses and corrosion. Therefore, these 

tests included a high level of pre-stress (800-1200N/mm2), and a low level (300-

400 N/mm2) target pre-stress (Col.5).  

Table 3.1 Preliminary Experimental Test Program 

Series 
Type of 
Electrolyte 

Test Code 
Tendon Type 

Target 
Stress 

Corrosion 
Degree 

ICCP 

 (MPa) Stage mV 

(1) (2) (3) (4) (5) (6) (7) 

1 Solution S-U-L-I-1 Un-Galvanized Low I  

  
S-U-L-II-2 

 
Low II 

Over-

protection 

  
S-U-L-III-3 

 
Low III 

Over-

protection 

  
S-U-H-I-1 

 
High I  

  
S-U-H-II-2 

 
High II 

Over-

protection 

  
S-U-H-III-3 

 
High III 

Over-

protection 

2 Solution S-G-H-III-1 Galvanized High II  

3 Mortar M-U-L-I-1 Un-Galvanized Low I  

  
M-U-H-II-2 

 
Low II  

  
M-U-L-III-3 

 
Low III  

  
M-U-H-I-1 

 
High I  

  
M-U-H-II-2 

 
High II  

  
M-U-H-III-3 

 
High III  

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level 

of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 MPa), I- Stage I degree of 

corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of 

corrosion (4-7 %), 1, 2, 3-Sample numbers.  

 

The corrosion current density was kept constant at 1 mA/cm2 to enable 

corrosion to be conducted in a reasonable time. Three different degrees of 

accelerated corrosion were considered, namely Stage I (0-1%), Stage II (2-4%) 

and Stage III (4-7%), loss of cross-sectional area (Col. 6). These stages 

correspond to those which are typically used when conducting on-site 

inspections where corrosion is present in pre-load structures. One galvanised 

specimen was subjected to both accelerations of corrosion and ICCP (S-G-H-

III-1). In addition, four specimens were exposed to corrosion followed by ICCP, 

overprotection (-950 to -1200mV) (col. 7), conducted in solution electrolyte. 
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3.4  Selection of strain gauges and determination of slippage 

A number of tests were carried out in order to identify suitable strain gauges 

that can work within the range of the target stress of the tendon. Two different 

DEMEC mechanical strain gauges of 100mm and 200mm length were used 

along with two vibrating wire (VW) strain gauges 89mm and 150mm length as 

shown in Figure  3.1 (a) and (b). 

 

 

 

 

(a) Placing DEMEC pins (100mm) and 

VW strain gauge (89mm) on the tendon 

 (b) Taking reading of both DEMEC  

mechanical strain and VW strain gauges 

Figure 3.1 Placing and taking readings of both DEMEC and VW strain gauges 

Several pilot tests on pre-stressed tendons were conducted with the aim being 

to optimise the pre-tensioning technique and to determine the slippage of the 

applied stress in the tendon (Table 3.2). Slippage is a loss in pre-stress when 

the loading apparatus is removed to transfer the load to wedges, this is 

explained more in next the chapter. The results of the slippage investigation are 

given in Table 3.2. Different pre-tensioning stresses were applied to determine 

losses upon transfer of load to the wedges. The specimen identification is given 

in Col. 1, the corresponding load is given in Col. 2 and resulting stress, σ, is 

given in Col. 3, obtained from σ = (E) (ε) where E is the elastic modulus and ε is 

the strain as measured during loading. The actual load after releasing the 

tensioning force is given in Col. 4 and this was repeated four times for each 

specimen. This load is averaged in Col. 5. The average stress after release of 

the pump is given in Col. 6 and averaged in Col. 7. The loss in load due to 

slippage is given in Col. 8 and this is averaged in Col. 9 for each of the four 

specimens. The average loss in stress due to slippage is then calculated in Col. 

10. 
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Table 3.2 Calculating tendon slippage using load cell 

Test 
No.  

Force before releasing the 
pump pressure 

Force after releasing the pump pressure 
Slippage 
(kN)  

Average 
Slippage 
(kN)  

Average Slippage 
Stress  
(MPa)  Reading 

(kN) 
Stress 
(MPa) 

Reading 
(kN) 

Ave. 
Reading 
(kN) 

Stress 
(MPa) 

Ave. 
Stress 
(MPa) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

A 14.7 641.86 10.34 10.30 451.48 450.06 4.36 4.39 191.79 

      10.33 451.04 4.37 

      10.30 449.73 4.40 

      10.26 447.99 4.44 

B 19.5 851.44 14.55 14.45 635.31 630.94 4.95 5.05 220.50 

      14.50 633.12 5.00 

      14.38 627.88 5.12 

      14.37 627.45 5.13 

C 22.9 999.90 17.89 17.77 781.14 775.90 5.01 5.13 223.99 

      17.75 775.03 5.15 

      17.73 774.16 5.17 

      17.71 773.28 5.19 

D 27.9 1218.22 20.23 20.04 883.32 875.13 7.67 7.857 343.08 

      20.20 882.01 7.70 

      20.15 879.82 7.75 

      19.59 855.37 8.31 
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Figure  3.2 shows the required applied force to reach the target stress and its 

slippage. This slippage is increment with the increase of applied pre-tensioning 

forces. The force, F, allowing for slippage can be obtained from the equation 

F=0.0288 σ shown on Figure  3.2. The target stress 600, 800, 1000 and 1200 

MPa corresponds to allowable forces for slippage of 17.28, 23.04, 28.80 and 

34.56 kN. 

 

Figure 3.2 Slippage compensation with increasing applied pre-tensioning force 

3.5  Accelerating corrosion of the tendon 

Preliminary tests were conducted before commencing the research programme 

to validate the accelerated corrosion technique. 

3.5.1  Faraday's Law 

The relationship between corrosion current density and the weight of metal lost 

due to corrosion was determined by applying Faraday's Law (Equation 3.1): 

 

                 Equation 3.1 

where: 

 = weight loss due to corrosion in (g), 

A = atomic weight of iron (56 g), 

FZ

tIA
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I = electrical current in (A), 

t = time in (sec.), 

Z = valence of iron which is 2, 

F = Faraday's constant (96 500 coulombs). 

 

The metal weight loss due to corrosion can also be expressed as: 

 

                 Equation 3.2 

where: 

a = tendon surface area before corrosion (cm2), 

 = material cross sectional loss (cm), 

 = density of material (7.86 g/cm3). 

 

The corrosion current can be expressed as: 

 

I = i ×a                  Equation 3.3 

 

where: 

i = corrosion current density (Amp/cm2). 

a = tendon surface area before corrosion (cm2) 

 

Therefore, combining Equations 3.1, 3.2 and 3.3 gives: 

 

               Equation 3.4 

Therefore,  

                  Equation 3.5 

R is defined as the metal section loss per year (cm/year) 

 

Substituting known values, in which t=365 days, into Equation 3.5 and 

simplifying gives: 

  a

FZ

taiA

FZ

tIA
a









 

FZ

tiA
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           Equation  3.6 

 

For a corrosion rate (i) of 1 (mA/cm2), R equals 1.165 (cm/year) (from Equation 

3.6). If, as in a reinforced concrete structure, the period of corrosion after 

initiation is t' years, then 

 

Metal loss after t' years = R×t (cm)            Equation 3.7 

 

Therefore, percent reduction in rebar diameter after (t') years is 

                Equation 3.8 

 

The expression [2×R×(t/D)]%, which represents a reduction in rebar diameter 

due to corrosion over t' years, is also defined as the degree of reinforcement 

corrosion [82]. For the purpose of this study the degree of corrosion                

m= [2×R×(t/D)]%. 

 

Table  3.3 shows the parameters of the tendons under test and Table  3.4 shows 

the corrosion design criteria for the same specimens. Table  3.5 shows the 

strains in the tendons which are converted to stresses by applying  = E ε 

where E is taken as 220 GPa. The preliminary results indicate that there is a 

loss in pre-stress due to corrosion and also the loss of pre-stress increased as 

the degree of corrosion increased.  

Figure  3.3 (a) and (b) shows the appearance over time of the galvanized tendon 

after completion of corrosion and before inducing the ICCP. The galvanized 

steel tendon after one day exposed to corrosion was covered with a white zinc 

corrosion product [Figure  3.3 (b)] and ferrous rust was spread widely in the 

specimens after completion of corrosion on day 3 [Figure  3.3 (c)]. Figure  3.4 

and Figure  3.5 show a reduction in service stress of the ungalvanised tendon 

over the entire test period for target pre-stresses Low and High levels 

respectively. At Stage I degree of corrosion, stage I losses are very similar, 

while there is a greater difference in loss of pre-stress due to stage II corrosion. 

This indicates that the loss in service stress is more dependent on the degree of 

(cm/year)   1165
96500286.7
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corrosion and less dependent on the initial pre-stress in the tendon. The 0% 

tendons, although not subjected to corrosion, also suffer a reduction in pre-

stress, perhaps as a result of compression in the timber moulds or relaxation. 

Extra care was taken to ensure all tendons were stable before the 

commencement of the accelerated corrosion process. 

 

 

(a) Before start of corrosion 

 

(b) After one day of corrosion, 

tendon covered by white zinc 

corrosion products 

 

(c) After completion of corrosion 

(degree of corrosion: Stage II) and 

before removing corrosion 

substance of ferrous rust 

 

(d) After completion of corrosion 

and removing corrosion substance 

Figure 3.3 Appearance of tendon throughout the corrosion period 
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Table 3.3 Tendon test parameters 

Test 

ID 

Tendon 

Type 

Tendon 

Diameter 

Tendon 

Length 

Tendon 

Corroded 

Length 

Target 

Stress 

Solution 
Corrosion 

Degree 

Current 

Density Comments Water 
Sodium 

Chloride 

G/U** (cm) (cm) (cm) (MPa) (litre) (g) Stage (mA/cm2) 

S-G-H-II G 0.54 140 32 H 1000 30 II 1  

S-U-L-I U 0.54 140 30.7 L 1000 30 I 1 Control 

1-U-L-II U 0.54 140 30.7 L 1000 30 II 1  

1-U-L-III U 0.54 140 30.7 L 1000 30 II 1  

1-U-H-I U 0.54 140 30.7 H 1000 30 I 1 Control 

1-U-H-II U 0.54 140 30.7 H 1000 30 II 1  

1-U-H-III U 0.54 140 30.7 H 1000 30 II 1  

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 

MPa), I- Stage I degree of corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of corrosion (4-7 %), 1, 2, 3-Sample numbers. 
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Table 3.4 Corrosion design criteria 

Test 

ID* 

Tendon 

Type 

Applied 

Stress 

Targest 

Corrosion 

Degree 

Current  

Duration of 

Accelerated 

Corrosion  

Tendon weight 
Weight Lost 

 Comments 
Before 

Corrosion 

After 

Corrosion 

G/U** (MPa) Stage (mA/tendon) (days) (g) (g) (g) (%) 

S-G-H-II G 658.27 I 54.29 2.54 260.79 248.07 12.72 4.88  

S-U-L-I U 384.84 I 0 0 261.67 261.20 0.47 0.00 Control 

1-U-L-II U 453.26 II 52.08 2.54 267.63 256.24 11.39 4.26  

1-U-L-III U 442.71 III 52.08 5.08 251.00 235.62 15.38 6.13  

1-U-H-I U 1295.82 I 0 0 266.62 266.50 0.12 0.00 Control 

1-U-H-II U 1150.71 II 52.08 2.54 259.29 248.62 10.67 4.12  

1-U-H-III U 1139.89 III 52.08 5.08 260.06 244.73 15.33 5.89  

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 

MPa), I- Stage I degree of corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of corrosion (4-7 %), 1, 2, 3-Sample numbers. 
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Table 3.5 Actual strain and stress in the tendons  

Days 

Tendon 

S-G-H-III-1 

Tendon 

S-U-L-I-1 

Tendon 

1-U-L-II-2 

Tendon 

1-U-L-III-3 
Comments 

Strain Stress Strain Stress Strain Stress Strain Stress 

() (MPa) () (MPa) () (MPa) () (MPa) 

1 2992.14 658.27 1749.28 384.84 2060.29 453.26 2012.30 442.71  

2 2994.81 658.86 1733.30 381.33 2021.17 444.66 1966.30 432.59  

3 2965.64 652.44 1712.84 376.82 1979.58 435.51 1917.39 421.83  

4 2925.10 643.52 1681.56 369.94 1926.04 423.73 1843.01 405.46  

5 - - 1665.62 366.44 1908.28 419.82 1802.57 396.57  

6 - - 1647.61 362.47 1886.34 414.99 1753.54 385.78  

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 

MPa), I- Stage I degree of corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of corrosion (4-7 %), 1, 2, 3-Sample numbers. 
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Table 3.6 Stress and strain in the tendons 

Days 

Tendon 

U-H-I-1 

Tendon 

U-H-II-2 

Tendon 

U-H-III-3 
Comments 

Strain Stress Strain Stress Strain Stress 

() (MPa) () (MPa) () (MPa) 

1 5890.09 1295.82 5230.52 1150.71 5181.34 1139.89  

2 6034.66 1327.63 5159.01 1134.98 5086.19 1118.96  

3 6437.22 1416.19 5093.92 1120.66 5004.73 1101.04  

4 6036.63 1328.06 4989.59 1097.71 4848.47 1066.66  

5 6453.09 1419.68 4873.62 1072.20 4803.36 1056.74  

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 

MPa), I- Stage I degree of corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of corrosion (4-7 %), 1, 2, 3-Sample numbers. 
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Figure 3.4 Gross loss in tendon with low pre-stress over the test period 

 

 

Figure 3.5 Gross loss in tendon with high pre-stress over the test period 

 

 



 

53 

3.6  Optimisation of ICCP  

A test was initially conducted on one pre-stressed galvanised tendon (S-G-H-II) 

to evaluate its operation (Figure  3.6) and Table  3.7 shows the tendon 

parameters. Table  3.4 and Table 3.7 provide details of the test.  

 

 

Figure 3.6 Hydrogen just being generated on tendon S-G-H-II-1 

Table 3.7 Pilot CP test in a saline solution 

Specimen ID Electrolyte 
Surface Area Applied Voltage 

(cm2) (V) 

S-G-H-II-1 
NaCI (3%) and 

Ca(OH)2 (4%) 
54.29 2.53 

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level 

of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 MPa), I- Stage I degree of 

corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of 

corrosion (4-7 %), 1, 2, 3-Sample numbers. 

 

After completing ICCP and removing the tendon from the mould, it was 

observed that a passivating layer had formed around the surface along the 

length of the tendon exposed to the electrolyte. This confirms the effectiveness 

of ICCP in protecting the tendon from corrosion and its contribution to 

preserving the alkalinity of the electrolyte around the tendon. The pH was kept 

constant at around 12 during the test period. Table  3.8 shows that the applied 

stress stays fairly constant over the period of the test at around 611 MPa while 

Gas bubbles just started 
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potentials ON and Off fluctuated slightly perhaps due to the difficulties in 

measuring to millivolts using a hand-held DVM. Using the reference electrode 

types Silver/Silver Chloride (Ag/AgCI/KCI 0.5M SSC) and digital voltage meter 

(DVM), the instant-off was adjusted just to generate hydrogen from the 

beginning of the test. Figure  3.7 shows that the current passing through the 

tendon increased at the beginning of the test period reach to 244mA and then 

started to reduce as the test period increased, while the voltage stayed constant 

through the same period of the test (2.53V). This variation in current is 

attributed to the passivating layer on the surface of the tendon that prevented 

the oxygen ingress into the tendon over the time. After completing the ICCP, the 

tendon was cleaned with a solution of 5% di-ammonium hydrogen citrate and 

reweighed to calculate the weight loss from the corrosion period. Table  3.4 

shows that the weight loss of galvanised tendon was 4.87%, higher than the 

Stage II target so closer monitoring is required in the main tests to ensure the 

actual is closer to the target loss in corrosion. 

 

 

Figure 3.7 Applied current and voltage versus test period 
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Table 3.8 Test results of the ICCP application 

Day 

Strain Stress 
Initial 

Potential 

Potential 

ON 

Instant 

OFF 
Voltage Current 

Applied 

Current 

Density 

Mould Strain 

pH 

Temperature 

() (MPa) (mV) (mV) (mV) (V) (mA) (mA/cm2) 
1 

() 

2 

() 
( C) 

1 2285 599.24 -812 -1284 -1130 2.58 90 1.66 56.91 37.94 12.45 15.1 

2 2295 611.63   -1328 -1180 2.53 200 3.68 37.94 -5.42 12.64 21.3 

3 2293 609.15   -1396 -1195 2.53 244 4.49 -5.42 -21.68 12.72 20 

4 2295 611.63   -1424 -1200 2.53 207 3.81 18.97 18.97 12.57 20.9 

5 2295 611.63   -1328 -1175 2.53 182 3.35 8.13 5.42 12.45 20.5 

6 2295 611.63   -1260 -1160 2.53 151 2.78 21.68 5.42 12.34 20.3 

7 2292 607.91   -1242 -1165 2.53 140 2.58 27.1 5.42 12.27 20.3 
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3.7  Concluding remarks 

Based on the preliminary tests, the methodology was shown to work 

successfully. This includes procuring all the materials and equipment required 

for the whole project. A total of 12 pre-stressing moulds were manufactured, 

several tests on pre-stressed tendons were conducted to quantify the slippage, 

validate the accelerated corrosion technique and determine that ICCP can be 

successfully applied.  

3.7.1  Loss in stress-due to slippage 

A simple equation was developed which will determine the increase in pre-

stress to be applied beyond the low (300-400MPa) and high (800-1200MPa) 

targets to ensure the final stress is as required. It is too much to expect that all 

final pre-stresses will be exactly as planned but a pre-stress in the range ±5% 

will suffice. 

3.7.2  Effect of corrosion on the tendon 

A unique outcome of the work will be the ability to relate the degree of corrosion 

to a loss in pre-stress. The preliminary research has shown that a higher degree 

of corrosion leads to a higher loss in pre-stress. The work to date considered 

only three levels of corrosion Stage I (0-1%), Stage II (2-4%) and Stage III (4-

7%) and two levels pre-stress low (300-400MPa) and high (800-1200MPa) 

3.7.3  Effect of Impressed Current Cathodic Protection (ICCP) on the 

tendon 

The application of ICCP shows that there is no change in the applied stress 

through the test period of ICCP. Although a potential of -1400mV was applied, 

more than the stated limits in international standards, there was no visual 

damage to the tendon. However, the tendon is yet to be tested to determine if 

there has been a decrease in ultimate tensile strength (UTS). This is likely due 

to the loss in cross-sectional area as a result of corrosion but it is only when it is 

compared to an uncorroded, ICCP applied tendon can a true influence be 

established.  

The next chapter will describe the materials need and explain the methodology 

that was employed with more details for the purpose of this research work. 
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 Experimental Methodology Chapter 4 -

4 Experimental Methodology 

4.1  Introduction 

Deterioration of reinforced concrete can take many forms; the most obvious is 

the change in appearance caused by corrosion of the reinforcement. Many 

studies have shown that corrosion of reinforcement is the single most common 

source of damage and it is usually clear that low quality concrete, inadequate 

cover to the reinforcement or the presence of impurities (and sometimes all 

three) is the prime cause. Much of the deterioration of concrete can only occur 

in the presence of water since aggressive agents will penetrate concrete and 

react harmfully with the cement paste only when dissolved in water [83]. This 

problem has been investigated in many organisations such as the Corrosion 

Prevention Association (CPA), the National Association of Corrosion Engineers 

(NACE), Institute of Corrosion, The Concrete Society, and American Concrete 

Institute (ACI) through their publications and several international conferences. 

 

The economic factor is a very important motivation for much of the current 

research in corrosion. Losses sustained by industry and by governments 

amount to many billions of dollars annually, approximately $ 276 billion in the 

United States, or 3.1% of the Gross Domestic Product (GDP), according to a 

recent study [51]. It has been estimated that about 25 – 30% of this total could 

be avoided if currently available corrosion technology were effectively applied. 

Studies of the cost of corrosion to Australia, Great Britain, Japan, and other 

countries have also been carried out. In each country studied, the cost of 

corrosion is approximately 3 – 4 % of the Gross National Product [51]. As a 

result, as civil infrastructure is age, owners have to spend an increasing 

percentage of their budgets on rehabilitation (or replacement) of existing 

concrete structures. Thus, there is obviously a strong financial incentive to 

extend the service life of existing structures [84]. Impressed Current Cathodic 

Protection (ICCP) technique is a system that can prevent further corrosion and 

extend the service life of the structure. However, using this technique in pre-

stressed concrete is still limited due to concerns about hydrogen embrittlement 

in the tendon. 
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The aim of this research, therefore, is to determine the effect of applying 

cathodic protection to pre-stressed steel tendons. It will be applied as both 

normal and over protection when the tendon is subjected to varying degrees of 

corrosion. This chapter describes the materials, methods, and analytical 

techniques used for the purpose of this research work taking into consideration 

the output of the preliminary experimental works. 

4.2  Objectives of investigation 

The principle objectives of the experimental work are to: 

 validate and develop the pre-stressing technique using vibrating wire strain 

gauge (VWSG), to apply the target force and monitor the strain 

 develop an effective technique for accelerating corrosion of pre-stressed 

tendons in concrete 

 study the behaviour of pre-stressed tendons under the effect of applied 

impressed current cathodic protection (ICCP), both normal and 

overprotection, with different levels of service pre-stress and with 

unstressed tendons 

 develop a better understanding of the effect of ICCP on pre-stressed 

tendons in terms of mechanical properties 

 investigate the effect of different degrees of corrosion on different levels of 

applied service pre-stress for ungalvanised and galvanised tendons 

4.3  Details of the experimental programme 

The Construction Materials laboratory at Sheffield Hallam University was used 

to carry out the investigations. Different batches of specimens were tested to 

fulfill the objectives of the research. Referring to Table 4.1, Batch R refers to the 

as-received tendons and used as control samples for comparison with the other 

batches. Batch 1 investigated the influence of applied ICCP overprotection on 

the ungalvanised tendons pre-tensioned to various levels of service stress, 

conducted in a saline electrolyte and exposed to different stages of corrosion. 

Batch 2 investigated the influence of applied ICCP normal protection on the 

ungalvanised tendons tensioned to low and high levels of service pre-stress 

embedded in mortar/gunite electrolyte and exposed to different stages of 

corrosion. Batch 3 investigated the influence of applied ICCP overprotection on 

the ungalvanised tendons tensioned to low and high levels of service pre-stress 
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in a mortar/gunite electrolyte and exposed to different stages of corrosion. 

Batch 4 investigated the influence of applied ICCP normal and overprotection 

on the galvanised tendons tensioned to high levels of service pre-stress and 

placed in a mortar/gunite electrolyte and exposed to different stages of 

corrosion. Batch 5 investigated the influence of applied ICCP overprotection on 

unstressed ungalvanised and galvanised tendons in a saline electrolyte. A total 

of 31 specimens (Table 4.1) were tested. 

Mortar prisms made of sand, cement and water with length of 575 mm and with 

a cross-section of 90 mm deep and 100 mm wide were used in the 

investigation. Prisms were cast using timber moulds. Each mortar prisms was 

reinforced with one high tensile tendon of 5.4 mm diameter.  
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Table 4.1 Detailed Experimental Programme 

No. Batches 
Type of 
Electrolyte 
  

Tendon 
Type  

Target Stress 
Corrosion 
Degree Test Code  Applied Processes 

(MPa) Stage 

1 R   U     U-R-1   

2          U-R-2   

3          U-R-3   

4     G     G-R-1   

5     
 

    G-R-2   

6          G-R-3   

7          G-R-4   

8          G-R-5   

1 1 Solution U Low I S-U-L-I-1 Pre-stressing 

2        II S-U-L-II-O-2 Pre-stressing + Corrosion + ICCP (Over) 

3        III S-U-L-III-O-3 Pre-stressing + Corrosion + ICCP (Over) 

4      High I S-U-H-I-1 Pre-stressing 

5        II S-U-H-II-O-2 Pre-stressing + Corrosion + ICCP (Over) 

6        III S-U-H-III-O-3 Pre-stressing + Corrosion + ICCP (Over) 

7 
 

Solution G High I S-G-H-II-O-1   

8 2 Mortar U Low II M-U-L-X-1 Pre-stressing 

9        III M-U-L-II-N-2 Pre-stressing + Corrosion + ICCP(Normal) 

10        III M-U-L-III-N-3 Pre-stressing + Corrosion + ICCP(Normal) 

11      High I M-U-H-X-1 Pre-stressing 

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 

MPa), I- Stage I degree of corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of corrosion (4-7 %), N-Normal protection, O-

Overprotection, X&X1-No corrosion and No CP, 1, 2, 3-Sample numbers. 
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Table 4.1 Experimental Programme - Cont. 

No. Batches 
Type of 
Electrolyte 
  

Tendon 
Type  

Target Stress 
Corrosion 
Degree Test Code  Applied Processes 

(MPa) Stages 

12        II M-U-H-II-N-2 Pre-stressing + Corrosion + ICCP(Normal) 

13        III M-U-H-III-N-3 Pre-stressing + Corrosion + ICCP(Normal) 

14 3 Mortar U Low I M-U-L-X1-1 Pre-stressing + Casting 

15        II M-U-L-II-O-2 Pre-stressing + Corrosion + ICCP (Over) 

16        III M-U-L-III-O-3 Pre-stressing + Corrosion + ICCP (Over) 

17      High I M-U-H-X1-1 Pre-stressing + Casting 

18        II M-U-H-II-O-2 Pre-stressing + Corrosion + ICCP (Over) 

19        III M-U-H-III-O-3 Pre-stressing + Corrosion + ICCP (Over) 

20 4 Mortar G High I M-G-H-X-1 Pre-stressing + Casting  

21        II M-G-H-II-N-1 Pre-stressing + Corrosion + ICCP(Normal) 

22        III M-G-H-III-N-3 Pre-stressing + Corrosion + ICCP(Normal) 

23      High I M-G-H-X1-1 Pre-stressing + Casting 

24        II M-G-H-II-O-2 Pre-stressing + Corrosion + ICCP (Over) 

25        III M-G-H-III-O-3 Pre-stressing + Corrosion + ICCP (Over) 

26 5 Solution G  Unstressed   S-G-O-1 ICCP (Over) 

27          S-G-O-1 ICCP (Over) 

28          S-G-O-3 ICCP (Over) 

29     U     S-U-O-1 ICCP (Over) 

30          S-U-O-2 ICCP (Over) 

31          S-U-O-3 ICCP (Over) 

Key: U-Ungalvanised, G-Galvanised, S-Solution electrolyte, M-Mortar electrolyte, H-High level of pre-stress (800-1200 MPa), L-Low level of pre-stress (300-400 

MPa), I- Stage I degree of corrosion Stage I (0-1 %), II-Stage II degree of corrosion (2-4 %), III-Stage III degree of corrosion (4-7 %), N-Normal protection, O-

Overprotection, X&X1-No corrosion and No CP, 1, 2, 3-Sample numbers. 



 

62 

4.4  Preparation of moulds 

A total of 12 timber moulds/pre-stress beds were designed, manufactured and 

developed as shown in Figure  4.1. The timber mould was fastened to a plywood 

or wisa-form base and was used: 

 pre-load the tendon 

 provide formwork for the cast gunite/mortar or space for the solution in a 

plastic tray 

 conduct accelerated corrosion 

 conduct cathodic protection  

A sketch of the complete pre-stressing apparatus is shown in Figure 4.2. 

 

 

Figure 4.1 Timber mould on a wisa-form base 

4.5  Preparation and pre-stressing system 

The main components of the test system are as follows (Figure  4.2 and 

Figure  4.3):  

 a hollow cylinder to apply the load (Enerpac RCH 121) and a hand pump 

as described in Section 4.10.6 

 a vibrating wire strain gauge on the tendon and connected to a laptop to 

monitor the stress in the tendons as described in Section 4.10.5 

 wedges to grip the tendons during pre-loading and bond testing (PAUL 

Grips F24B-16 Bayonet)  

 mild steel end plates to spread the load and prevent piercing of the timber 

mould during loading  
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 drilled M16 mild steel bolts at either end, through which the tendons 

passed, and threaded into the end plates to facilitate releasing of the pre-

load  

 a thrust bearing inserted at the bolt head at the loading end to prevent 

damage to the tendon/mortar bond during the release of load 

 a data logger to record and log the strain readings from the strain gauges 
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Figure 4.2 Pre-stressing set-up 
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Figure 4.3 Pre-stressing system in operation 

In order to remove the loading apparatus for use on the subsequent mould, 

wedges were used at either end to maintain the pre-load in the tendon. Losses 

due to slippage were minimised by inserting U shaped washers between the 

end plate and wedge at the loading end. Washers ranged from 0.5mm to 4mm 

in thickness and were combined to give a thickness appropriate to the gap to be 

filled (Figure  4.4). 

 

 

Figure 4.4 Wedges and U shape washers to minimise the slippage losses 
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The target stress was exceeded by approximately 5 MPa to allow for the losses, 

based on trials conducted with the load cell in place and monitoring the drop-off 

in load (Figure  4.5 (a) and (b)). The preliminary work enabled the target pre-

stress to the more accurately determined due to a better understanding of 

slippage losses within this pre-stressing system (Section  3.7.1) 

 

  

(a) Load cell (b) Pre-stressing in progress 

Figure 4.5 Trial test using load cell to determine the losses 

4.6  Electrochemical Techniques 

4.6.1  Potential inspection technique 

In order for the corrosion process to take a place, there must be differences in 

potential; anodic and cathodic surface zones of the steel must be connected 

electrically. A flow of electrons and ions between them must be possible. The 

electrolytic connection is represented by the saline solution or damp mortar. A 

digital voltmeter (DVM) is used to measure the potential between the anodes 

(the tendons) and the cathode (mixed metal oxide) in both solution and mortar 

electrolyte.  

4.6.2  Half-cell potential 

The main purpose of the half-cell method is to measure the actual potential of 

the tendon. The components of the system are a reference electrode, DVM and 

connecting cables. The negative lead of DVM is connected to the reference 

electrode whereas the positive lead is connected to the tendon. With a suitable 

scale of DVM the reading of potential can be taken (Figure  4.6). Since the test 
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involves both a solution and a mortar as the electrolyte, extra preparation is 

required when dealing with the mortar due to the higher resistance.  

The mortar surface, an overlaying material, or both must be pre-wetted to 

decrease the electrical resistance of the circuit. A test to determine the need for 

pre-wetting may be conducted as follows:  

The half-cell to be placed on the surface of the mortar and the DVM to be 

observed for one of the following conditions:  

1. The measured value of the half-cell potential does not change or fluctuate 

with time.  

2. The measured value of the half-cell potential changes or fluctuates with time.  

If Condition 1 is observed, pre-wetting the concrete surface is not necessary. 

However, if Condition 2 is observed, pre-wetting is required for an amount of 

time such that the voltage reading is stable (± 0.02 V) when observed for at 

least 5 mins. If pre-wetting cannot obtain Condition 1, either the electrical 

resistance of the circuit is too great to obtain valid half-cell potential 

measurements of the steel. However, the previous testing by the research team 

has shown that Condition 1 can be met. If the mortar is saturated, the 

availability of oxygen to the steel is restricted. This will cause the tendon to 

show more negative values of half-cell potential. Potentials in the range -600 

mV to -900 mV versus an SSC reference electrode may be detected, but the 

associated risk of corrosion is very low as there is not enough oxygen for 

corrosion to proceed [80]. Positive readings, if obtained, generally indicate a 

poor connection with the steel, insufficient moisture in the concrete or the 

presence of stray currents and should not be considered valid [85]. 

 

 

Figure 4.6 Schematic diagram of half-cell circuit 

+ - 

DVM  

Connecting 

cables  Half-Cell 

Tendon 

Electrolyte (solution or mortar)  

0 0 0 
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4.6.3  Experimental Procedure 

Corrosion of steel in concrete usually takes several years to be initiated, which 

is too long for laboratory studies. Thus, laboratory acceleration of corrosion 

process is necessary [86]. There are some significant differences between 

accelerated corrosion by impressed anodic current and naturally occurring 

corrosion [87]. 

Impressed anodic current has been used widely to accelerate the corrosion of 

steel in concrete. This method has been selected for this study on the basis of 

being relatively fast and the amount of corrosion generated can be calculated 

from the current passed using Faraday's Law. A constant current density of 1 

mA/cm2 was adopted in this investigation. The total required current for each 

degree of corrosion was determined and applied to the pre-stressed tendon 

surface. The current density was kept constant throughout. This current density 

was previously adopted in earlier experiments and was found to provide an 

appropriate level of corrosion within a reasonable timescale. Using specialist 

equipment in the laboratory in order to verify the corrosion, the polarity of the 

current was such that the tendon served as the anode and mesh of titanium 

which was placed in the bottom of a plastic box retaining the electrolyte solution 

served as the cathode. The schematic drawing of the arrangement is shown in 

Figure  4.7. The electrolyte was a solution of water and 3% by weight Sodium 

Chloride (NaCl). Since there was no protective layer surrounding the tendon, 

there is no initiation time, i.e. corrosion occurred immediately after the current 

flow. 
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(1) tendon (anode) (4) electrolyte - 

solution/mortar 

(7) DC cables 

(2) titanium mesh (cathode) (5) plastic box (8) DC power supply 

(3) vibrating wire strain 

gauge 

(6) timber mould  

Figure 4.7 The schematic diagram of acceleration corrosion test 

 Design of accelerated corrosion in the tendon 4.6.3.1

There are a number of techniques that may be used to accelerate the corrosion 

of steel in concrete. These include chloride diffusion, salt spray, wet-dry cycling 

in salt water and impressed anodic current. In this research work the impressed 

anodic current technique was selected and used on the basis of being relatively 

fast and quantifiable, based on the current passed. Despite this, the method 

offers the significant advantages of repeatability and control of the experimental 

procedure. After exposing the specimens to different levels of pre-stress 

according to the planned programme as shown in Table  4.1, the tendon 

specimens were immersed in either mortar or saline solution in a plastic 

container. The solution contained 1 litre of water with 3% NaCl for accelerated 

corrosion. Based on Faraday's Law, the degree of corrosion (as a percentage of 

reduction in reinforcing bar diameter) is defined by the expression (2Rt'/D)x100 

percent, where R is the rate of corrosion in mm/year, D is the tendon bar 

diameter in mm, and t' is the time in years after corrosion initiation (see Section 

3.9.1).  

The tendon in each specimen was subjected to general corrosion by applying 

an anodic impressed current provided by a DC power supply. Three different 

percentages of corrosion were selected, Stage I (control), Stage II and Stage III. 
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Applying a unit degree of corrosion, m = 1%, Equation 3.8 was used to 

determine the time taken to achieve Stages II and III degree of corrosion: 

 

2 𝑥 𝑅 𝑥 𝑡′

𝐷
=

𝑚

100
→ 𝑅 =

𝑚 𝑥 𝐷

2(100)𝑡′
=

𝑚 𝑥 𝐷

200 𝑥 𝑡′
= 1165𝑖 → 𝑡′ =  

𝑚 𝑥 𝐷

200 (1165 𝑥 𝑖)
 

 

                   Equation 4.1 

 

Substituting, m= 3%, i=1mA/cm2 and D=0.54cm into Equation 4.1 gives: 

 

𝑡′ =
3 𝑥 0.54 

200 (1.165)
= 0.00695 𝑦𝑒𝑎𝑟𝑠 = 2.536 𝑑𝑎𝑦𝑠 = 60.8 ℎ𝑜𝑢𝑟𝑠   

                   Equation 4.2 

 

The length of tendon surrounded by the solution is 30.7cm. The total surface 

area, a, of the tendon is: a = x D x L = 16.578 cm2 

 

Therefore, the current required for 3% degree of corrosion per tendon is 

obtained from: 

 

I = i x a = 1 x 16.578  per specimen                      Equation  4.3 

 

Applying the same procedure above for 6% degree of corrosion, the time 

required to achieve 6% degree of corrosion is 0.0139 years, 5.08 days or 

121.81 hours. The current remains constant at 52.08 mA. 

 

The degree of corrosion was measured both as gravimetric weight loss and 

reduction in the diameter of the tendons. With regards to the gravimetric weight 

loss method, the tendon was weighted before the specimens were corroded. A 

predefined degree of corrosion was applied to the tendons over a specified 

period of time. Upon completion of the corrosion period, the tendons were 

removed from the solution or mortar, cleaned by di-Ammonium hydrogen citrate 

and with a wire brush and re–weighed. The percentage loss in weight was 

subsequently calculated which present the actual degree of corrosion. The 
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second method to determine the percentage of corrosion was similarly 

performed, except that the average rebar diameter both before and after 

corrosion was measured and the loss was determined from a reduction in the 

diameter. 

4.7  Impressed Current Cathodic Protection (ICCP) 

A cathodic protection system comprises a number of basic components which 

include the following and a schematic illustration of the cathodic protection 

system is given in Figure  4.8: 

 Titanium mesh acts as the anode 

 Tendon acts as the cathode 

 DC Power supply and rectifier 

 Solution or gunite as the electrolyte 

 Cabling to carry the system power and the monitoring signals 

 Reference electrode (SSC) 

 Digital voltage meter (DVM) 

 Data Logger to record the strain readings 

 Data logger software and laptop 

 

 
 

(1) tendon (cathode) (4) reference electrode (7) DC cables 

(2) titanium mesh (anode) (5) timber mould (8) DVM 

(3) vibrating wire strain 

gauge 

(6) electrolyte - 

solution/mortar 

(9) DC power 

supply 

Figure 4.8 Schematic diagram of ICCP set-up 

The positive terminal of a direct current power source is connected to a 

conductive material of titanium mesh (anode). The negative terminal is 

connected to the tendon (cathode) and a DC power supply is applied. This 
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causes a flow of electrons from the anode through the solution/gunite to the 

tendon. The ICCP system was operated in the Construction Materials 

Laboratory with a relatively stable environment of average 20C temperature 

and humidity of 60% ±5% (Figure  4.9).  

 

 

Figure 4.9 ICCP Components 

4.7.1  Design of ICCP for corrosion control 

Preliminary tests were carried out before commencing the formal research 

programme to confirm the reliability of the ICCP technique. The aim of ICCP is 

not only to protect the steel, but also determine if and when hydrogen is 

generated and its effect on the tendon. For this purpose, a high potential (-1.4V) 

was applied which exceeds the normal potential of -950mV. After completing 

the accelerated corrosion process by achieving the required period to reach to 

the target degree of corrosion, the ICCP process is commenced. Constituents 

comprising of one litre of water, 3% of sodium chloride (NaCl) and 3gm of 

calcium hydroxide (Ca(OH)2) were added to the plastic box to act as the 

electrolyte (Figure  4.10). The purpose of adding the calcium hydroxide is to 

maintain the pH at about 12 and this level of pH was recorded and maintained 

during the period of the test. The temperature was also recorded throughout the 

ICCP period. The tendon was connected to the negative terminal of the DC to 

act as a cathode and the titanium mesh connected to the positive terminal of the 

DC to act as an anode. Before starting the test, a datum reading of potential 
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was taken. The voltage and the current were adjusted so hydrogen was 

generated and once reached, the voltage is kept constantly at 2.54 V giving an 

instant-off potential of -812 mV. The test process and monitoring is conducted in 

accordance with BS EN ISO 12696:2016 [77] and with the Concrete Society 

Technical Report No.73 [48], including instant-off to confirm that ICCP was 

being achieved. The strain of the galvanised tendon was taken from the 

beginning of the test until the completion of ICCP test. After completion of ICCP, 

the galvanised tendon was removed, reweighed and the percentage of metal 

lost was calculated.  

 

 

Figure 4.10 ICCP test in progress 

4.8  Hydrogen test 

The inert gas fusion and thermal conductivity methods are widely used for 

quantitative determination of hydrogen (H) in metals. A portion of sample is 

heated to 3000°C in an electrode furnace. Firstly, the sample is placed in a gas 

inert environment (He) and current is passed through the graphite crucible 

producing enough heat to melt the sample. The different gases produced are 

separated in the separation column and H2 is measured by a thermal 

conductivity cell by comparing the conductivity of a pure inert gas with the 

sample conductivity (Figure  4.11) 
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Figure 4.11 Hydrogen test machine 

4.9  Materials 

4.9.1  Tendon  

Galvanised and un-galvanised smooth pre-stressing tendons, with a length of 

1.4 m and 5.4 mm in diameter are used in this research. Tendons were 

obtained from Bridon International Ltd, UK. According to the technical 

information provided by the supplier, the tendon supplied was the king wire of a 

seven wire strand. The method of manufacture for the galvanised version is 

12.0mm drawn to 7.9mm, hot dip galvanised and then drawn to 5.4mm. The 

uncoated tendon is 12.0mm drawn direct down to 5.4mm. The ultimate tensile 

strength (UTS) is approximately 1800MPa. The chemical composition of the 

tendon, for both galvanised and ungalvanised (V micro alloyed rod) is given in 

Table  4.2. 
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Table 4.2 Composition of galvanised and ungalvanised tendons 

Material Galvanised (%) Un-Galvanised (%) 

Carbon 0.89 0.88 

Silicon 0.24 0.26 

Manganese 0.68 0.66 

Phosphorous 0.009 0.013 

Sulphur 0.015 0.014 

Chromium 0.016 0.11 

Molybdenum 0.003 0.01 

Nickel 0.018 0.04 

Aluminium 0.001 0.002 

Copper 0.012 0.05 

Nitrogen 0.006 0.004 

Lead 0.001  

Tin 0.002 0.004 

Vanadium 0.077 0.002 

Titanium 0.00  

4.9.2  MMO Titanium Mesh 

The Mixed Metal Oxide (MMO) titanium mesh type 170 Anode Ribbon Mesh 

was obtained from CORRPRO Companies Europe Limited, Adam Street, 

Bowesfield Lane, Stockton-on-Tees, UK. The titanium mesh is used as the 

cathode to induce corrosion and as an anode, its intended purpose, in ICCP 

applications. The specification of the MMO titanium mesh is shown in Table  4.3. 

For the purpose of this research the short term current density applied to the 

anode exceeded the recommended limits but did not have a detrimental effect 

on its ability to achieve overprotection of the tendons. 

4.9.3  Cement 

CEM II/A-L 32.5 N Portland -limestone cement which conforms to BS EN 197-

1:2011 was used for gunite specimens. It was manufactured by Castle and 

supplied by The Builders Centre Ltd, Sheffield. 

4.9.4  Aggregates 

Coarse sharp sand (50% passing a 600 m sieve) was used for mortar 

specimens. It was supplied by The Builders Centre Ltd, Sheffield. 
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4.9.5  Sodium Chloride 

Sodium chloride was obtained from Fisher Scientific UK. It was added to the 

solution and gunite mix at 3.5% by weight of both solution and cement.  

 

Table 4.3 Specification of MMO titanium mesh 

Performance specifications  

Current Rating @ 110 mA/sq.m 

(10mA/sq.ft)  

5.3mA/m (1.61 mA/ft) 

Expected life (NACE standard TM02944-

94)  

75 years 

Catalyst  Mixed Metal Oxide 

Maximum anode concrete interface current 

density 

 

FHWA limit 110mA/sq.m (10mA/sq.ft) 

Short-term limit  220mA/sq.m (20 mA/sq.ft) 

Dimensions  

Width 20mm (0.79”) 

Coil length 76m (250ft) 

Actual anode surface per unit length of 

anode  

0.050sq.m/m(0.165sq.ft/ft) 

Expanded thickness 1.30 mm (0.051”) 

Diamond dimensions  2.5mmx4.6mmx0.6mm 

Shipping weight per coil  2.8 kg (6.1 lbs) 

Substrate  

Composition  Titanium, Grade 1 per ASTM B265 

Coefficient of thermal expansion  8.7 x 10-5/Deg K 

(0.0000048/in/in/Deg K) 

Thermal conductivity @ 20 Deg C  15.6 W/sq.m-DegK (9.0) 

BTU/hr/sq.ft/Deg F./ft 

Electrical resistivity  0.000056 ohm-cm (0.000022 ohm-in 

Modulus of elasticity  105 GPa (14,900,000 PSI) minimum 

Tensile strength  245 MPa (35,000 PSI) minimum 

Yield strength  175 MPa (25,000 PSI) minimum 

Elongation  24% minimum 

Resistance lengthwise  0.25 ohm/m (0.076 ohm/ft) 

Current distributor resistance lengthwise  0.049 ohm/m (0.015 ohm/ft) 
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4.9.6  Calcium Hydroxide 

Calcium hydroxide was obtained from Fisher Scientific UK. It was added to the 

solution to eliminate the generation of chlorine gas as a result of the 

electrochemical reactions and to maintain a pH of 12 and above. 

4.9.7  Di-ammonium Hydrogen Citrate 

Di-Ammonium hydrogen citrate, extra pure, was obtained from Fisher Scientific 

UK. It was used to clean the tendon before and after completion of corrosion 

and ICCP process from the rust. Cleaning the tendon after testing is to allow the 

actual degree of corrosion to be established. A 5% solution was used.  

4.10  Apparatus 

4.10.1 DC Power Supply 

A DC power supply system (Figure  4.12), has been used to accelerate 

corrosion on the tendon and apply ICCP. The positive terminal is connected to 

the anode (tendon) and negative to the cathode for corrosion. This is reversed 

for the ICCP, the tendon is the cathode and the MMO titanium the anode. 

 

 

Figure 4.12 DC Multi-Channel Power Supply 

4.10.2 Reference Electrode (half-cell) 

Different reference electrodes are available for measuring the potential and it is 

important to know which are being used as the type has a huge bearing on 

results. Table  4.4 shows the different types with comments.  
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Table 4.4 Reference electrodes for measurement and calibration  

Reference electrode Comments Potential  

(mV vs 

SHE) 

Standard hydrogen electrode 

(SHE) 

Absolute standard for potentials 

against which all electrodes are 

quoted. Specialist laboratory 

only. 

0 

Saturated copper/copper 

sulfate 

(CSE) 

Traditional and robust but liable 

to leakage that could stain and 

damage concrete. 

-320 

Silver/silver chloride 

(1M KCl) (SSC) 

Originally for laboratory use, 

newer polymer body gel-filled 

version popular for site use. 

-220 

Saturated mercury/mercury 

chloride 

(calomel) (SCE) 

Practical laboratory standard for 

calibrating electrodes before use 

on site. Potential mercury 

hazard. 

-200 

 

In this research, reference electrode types Silver/Silver Chloride Ag/AgCI/ 0.5M 

KCI Type WE100 (Figure  4.13) were used to measure the potential of the 

tendon in both solution and mortar. It was inserted in the solution or applied to 

the mortar face. It was supplied by Silvion Limited, UK. 

 
 

 

Figure 4.13 Reference electrode 
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4.10.3 Digital Voltage Meter 

The digital voltmeter (DVM) used in the investigation (Figure  4.14) has high 

input impedance so that current flowing through the reference electrode does 

not cause disturbance or affect its potential. It is manufactured by Omegaette. 

 

 

Figure 4.14 Digital voltmeter 

The voltmeter has a different range of resolution. The potential drop along the 

cable from the reinforcing steel to the voltmeter was less than 0.1 mV when 

measured between two previously calibrated reference electrodes. 

4.10.4 Data Logger 

A dataTaker DT85 is used to record the test results. The dataTaker DT85’s dual 

channel configuration allows up to 32 isolated channel inputs to be used in 

many combinations (Figure  4.15). 

 

Figure 4.15 Data logger Type 85D 
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4.10.5 Strain Gauges 

Different strain gauges were used to measure the strain in the pre-stressing 

system during the tensioning process. A digital DEMEC with 300mm gauge 

length was used to measure the strain (compression) in the timber pre-stressing 

moulds during tensioning of the tendon. This would enable any losses in pre-

stress to be attributed to the tendon and not a contraction of the mould. Two 

types of vibrating wires gauges were used and supplied by Geosense to 

continuously measure the strain in the tendon in the stressed state. Strain 

gauge with a gauge length of 89mm and a strain range of 3000 microstrain was 

used where lower strains were expected (low level of pre-stress). Where higher 

strains were expected (High level of pre-stress), a vibrating wire strain gauge 

with a gauge length of 150mm was used, this had a capacity of 6000 

microstrain () (Figure  4.16). Specifications of both 89mm and 150mm strain 

gauges are given in Table  4.5. 

  

(a) (b) 

Figure 4.16 (a) Demec digital strain gauge, (b) Digital vibrating wire strain 

gauge 

Table 4.5 Geosense VW Strain Gauges Specifications 

Model VWS-2000 VWS-2010 

Gauge length (mm) 150 89 

Overall Length (mm) 156 95 

Resolution () 1 1 

Strain range () 6000 3000 

Accuracy ±0.1 to ±0.5% FS ±0.1 to ±0.5% FS 

Nonlinearity <0.5% FS <0.5% FS 

Temperature (C) -20°C to +80°C -20°C to +80°C 

Frequency Range () 850-1550 900-2000 
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4.10.6 Hydraulic Jack 

A hydraulic jack RCH-121 with 12 tons capacity was supplied by Apex Hydraulic 

in the UK. It was used to apply different pre-determined tensioning loads to the 

tendons. It has a hollow centre allowing the tendon to pass through it, thereby 

enabling a load to be applied. A hand-pump was used to pressurise the cylinder 

(Figure  4.17). 

 

 

Figure 4.17 Hydraulic hollow cylinder Jack 

4.10.7 Load Cell 

Load measurements were taken by means of a 10Te (100 kN) load cell 

connected to a signal amplifier with low pass filter which in turn was connected 

to a load cell power supply and laptop (See Figure  4.5 (a)). The amplifier was 

calibrated to ensure a direct reading of the applied load on the laptop, with an 

accuracy of 0.1 kN. 

4.11  Analytical Methodology 

4.11.1 Scanning Electronic Microscopy (SEM) 

Fracture surface of the galvanised and ungalvanised specimens was 

investigated using the scanning electron microscope (SEM) type Quanta 650 

(Figure  4.18). The system is equipped with FEI's "MAPS" software which allows 

for the automated acquisition of large area high-resolution images, and the 

Oxford Instruments. The Quanta FEG Scanning Electron Microscope (SEM) 

produces enlarged images of a variety of specimens, achieving magnifications 
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of over 100000x providing high resolution imaging in a digital format. This 

analytical tool provides exceptional depth of field, minimal specimen preparation 

and the ability to combine the technique with X-ray microanalysis. The Quanta 

FEG has 3 operating vacuum modes to deal with different types of sample. High 

Vacuum (HiVac) is the conventional operating mode associated with all 

scanning electron microscopes. The two other application modes are Low 

Vacuum (LowVac) and ESEM. In these modes the column is under high 

vacuum and the specimen chamber is at a high pressure range of 0.1 to 30 Torr 

(15 to 4000 Pa) [88].  

 

 

Figure 4.18 Scanning Electronic Microscopy (SEM) 

 Principle of SEM  4.11.1.1

Four main components combine to produce the images from the sample: an 

electron gun, a demagnification unit, a scan unit and a detection unit 

(Figure  4.19). The electron gun, which is the source emitter, produces electrons 

within a small spatial volume with a small angular spread and a selectable 

energy. This beam enters the demagnification unit, consisting of several 

electron lenses, and exits to arrive at the specimen surface with a much smaller 

diameter than that produced by the gun. 
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Electrons striking the specimen react with the atoms of the sample surface and 

produce three types of signals: X-rays, electrons, and photons. The main 

detector system picks up the electrons, amplifies them and converts them into 

electrical voltage, which is sent to the Monitor to control the intensity of the 

scanning spot. The scan generator signal, fed to the deflection system of the 

Monitor, moves the beam in a raster pattern over the specimen area. The 

electrical voltage changes as it rasters, which provides serial information of the 

specimen surface. This signal, modulated by the one from the detection system, 

produces the onscreen image.  

 

 

Figure 4.19 SEM principle schematic diagram [88] 

The images obtained show the shape of the fracture after a tensile test was 

conducted to the tendons. The shape of fracture is compared to samples tested 

before and after the application of cathodic protection to study the effect of any 

hydrogen evolution or damage in the tendon. 

Figure  4.20 (a) and (b) shows the cutting of the sample to fit with the sample 

holder and the SEM's chamber using the cutting machine type Delta Abrasimet 

made by Buehler.  
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(a) Cutting machine  (b) Cutting sample of tendon 

Figure 4.20 Cutting SEM samples 

Samples are subsequently cleaned from dust using Dust-Off and placed on the 

aluminum holder stub using a double sticky carbon film (Figure  4.21).  

 

 

Figure 4.21 Aluminium holder with a double sticky carbon film 

Several settings of SEM images trials were investigated to obtain the optimum 

resolution of the images and to standardize the setting for all images taken 

(Figure  4.6). 

Table 4.6 Settings for SEM images 

Image  Spot Det HV WD Magnification Scale 

   (kV) (mm)  (μm) 

Fracture 6 ETD 30 10mm 75 2000 

Centre of fracture 6 ETD 30 10mm 500 400 

Edge of fracture 4 ETD 30 10mm 1000 200 
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4.11.2  X-Ray Diffraction (XRD)  

Sedimentation due to the reaction occurring during application of accelerated 

corrosion within the solution electrolyte on galvanised and ungalvanised 

specimens were investigated using the XRD as presented in Figure  4.22 (a) 

and (b). In addition, corrosion products on galvanised and ungalvanised 

specimens were investigated also using the XRD. This investigation applied 

when completing corrosion and ICCP tests, samples of corrosion products were 

taken and investigated.  

 

 

 

 

(a) XRD Instrument (b) Sample preparation 

Figure 4.22 X-Ray Diffraction (XRD) 

4.11.3 Infinite Focus Microscope (IFM) 

Using a 3D micro coordinate measurement machine by Alicona, surface images 

before and after removing the corrosion products were taken. Surface integrity 

analysis is performed using Infinite Focus Microscope (IFM) Figure 4.23 (a) and 

(b). The Infinite Focus Microscope (IFM) is an optical 3D measurement device 

which allows the acquisition of datasets at a high depth of focus. First a stack of 

n images from the lowest to the highest plane of the surface features is 

acquired. Then the positions in the stack are determined where each image 
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point is best in focus. This leads to an overall sharp image and to a 

reconstruction of the surface, where a height value exists for each point on a 

ground plane. The IFM method allows capturing images with a lateral resolution 

down to 400 nm and a vertical resolution down to 20 nm [89]. The IFM 3.5 

software version was used for the measurements. With a high magnification 

X50, roughness of the surface on both galvanised and ungalvanized tendons 

were measured. Corrosion pit widths were measured and comparisons with 

different stages of corrosion were made. 

 

 

 

 

(a)  (b) 

Figure 4.23 Infinite Focus Measurement (IFM) (a), taking image (b) 

4.11.4 Tensile Test  

Tensile Testing of tendons is a destructive test process that provides 

information about the mechanical properties including ultimate tensile strength, 

yield strength and ductility of the material. ESH600 Machine with load capacity 

600 kN and an Epsilon Extensometer (50mm) were used. All tests were 

conducted in the Construction Materials Laboratory with a relatively stable 

environment of average 20C temperature and humidity of 60% ±5%. Tensile 

tests were conducted in accordance with industry standards and specifications 

BS EN ISO 6892-1:2016, Metallic Materials-Tensile testing, tensile test methods 

[90].  

Material strength testing, using the tensile or tension test method, involves 

applying two phases of an increasing load to a test specimen up to the point of 

failure. The process creates a stress/strain curve showing how the material 

reacts throughout the tensile test. The data generated during tensile testing is 

used to determine mechanical properties of tendons and provides elastic 
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modulus, percent elongation and includes the following quantitative 

measurements: 

 Tensile strength, also known as Ultimate Tensile Strength (UTS), is the 

maximum tensile stress carried by the specimen, defined as the maximum 

load divided by the original cross-sectional area of the test sample. 

 Yield strength is the stress at which time permanent (plastic) deformation 

or yielding is observed to begin. 

 Ductility measurements are typically elongation, defined as the strain at, or 

after, the point of fracture, and reduction of area after the fracture of the 

test sample. 

The test sample is securely held by top and bottom grips attached to the tensile 

or universal testing machine. During the tension test, the grips are moved apart 

at a constant rate to pull and stretch the specimen. The force on the specimen 

and its displacement is continuously monitored and plotted on a stress-strain 

curve until failure. 

 

The measurements, tensile strength, proof strength and elongation, were 

calculated after the tensile test specimen has broken. The test specimen is put 

back together to measure the final length, then this measurement is compared 

to the pre-test or original length to obtain elongation. The original cross section 

measurement is also compared to the final cross section to obtain the reduction 

in area. 

 Procedure of Tensile Test 4.11.4.1

The following procedure was adopted in ensuring that the data recorded from 

tensile test specimens was taken in an organised and consistent manner. 

1. Hold the sample in two developed clamps and securely held by top and 

bottom grips. 

2. Before loading the specimens in the ESH600 machine, the computer system 

connected to the machine was set up by inputting the necessary information of 

gauge length, diameter and parallel length of the specimen. The computer 

system was then prepared to record data and output necessary load-deflection 

graphs. 

3. The specimens were loaded into the ESH600 machine, and a tensile test was 

performed. The data was recorded electronically in text files and the stress-
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strain curve was shown on the computer screen as a visual representation. 

Figure  4.24 shows both shield ESH600 tensile machine and extensometer used 

to conduct the tensile test. 

 

 

 

 

(a) Tensile test machine  (b) Extensometer 

Figure 4.24 Tensile test machine ESH600 and extensometer 

4.11.5 Compressive strength 

Compressive strength tests to BS 1881 Part 4: Section 2: 1970 "Tests for 

compressive strength of test cubes" were carried out to ensure that mortar 

specimens complied with the mix design parameters. Compression test 

machine type Avery-Denison, Model 7226/D/T/85248 CAP 3000 was used for 

this purpose. Three 100 mm standard test cubes were cast for each batch, 

demoulded at 24 hours and stored underwater before testing at 28 days. Each 

cube was surface dried, weighed and then tested to failure (Figure  4.25). 

 

 

 

 

Compressive Test Machine  Cube under compression 

Figure 4.25 Compressive test machine 
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4.11.6 Visual examination 

Information regarding physical changes or signs of deterioration was obtained 

from visual examinations. Optical binocular microscopy was used to enhance 

observations and images were recorded using an attached camera. Greater 

depth of field and magnification were achieved by scanning electron 

microscopy. 
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 Effect of accelerated corrosion on the applied service stress in Chapter 5 -
the tendon 

5 Effect of accelerated corrosion on the applied service 

 stress in tendons 

5.1  Introduction 

Reinforced and pre-stressed concrete represents a very successful combination 

of materials, not only from a mechanical point of view but also from a chemical 

perspective, because the hydrated cement is able to provide excellent 

protection against steel corrosion [91]. Corrosion occurs when metals react with 

their elements in their environment [92]. Corrosion in the presence of water 

occurs by an electrochemical mechanism [93].  

One of the major causes of damage to reinforced concrete (RC) structures is 

the corrosion of steel in the concrete. There has been considerable research on 

the effect of corrosion on the performance of RC members. Corrosion of steel in 

concrete is an electrochemical process which can take a long time to develop 

naturally. Due to the protective nature of concrete, it takes a reasonably long 

time for initiation and progress of reinforcement corrosion even in the case of 

severe corrosive exposure conditions [94]. Due to time limitations in laboratory 

investigations, accelerated corrosion of steel in concrete has been used to 

simulate natural corrosion within a manageable timescale. There are different 

techniques such as wet and dry cycling and anodic impressed current, the latter 

is particularly used because of its relative speed. An impressed D.C. current is 

passed to the reinforcing steel acting as an anode [95], [96]. The reinforced 

steel is corroded, the extent being proportional to the quantity of current passed 

as defined by Faraday's Law [24], [82], [97]. The relationship between the 

applied D.C. current, time, and the degree of corrosion with the applied service 

stress in pretension tendons has not been fully investigated. This chapter will 

examine the effect of these variabls on the performance of the pre-tensioned 

tendon.  

5.2  The objectives of the tests 

The test programme was selected to: 

 investigate and measure the parameters of accelerated corrosion 

techniques 
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 investigate the loss of applied pre-stress during the corrosion period 

 observe any change on the surface of the electrolyte 

5.3  Anodic impressed current technique 

An anodic impressed current technique has been selected for this study, to 

accelerate the corrosion of steel in mortar on the basis of reducing the duration 

to achieve the required level of corrosion [98]. This method was found to be 

extremely effective at rapidly initiating the corrosion of steel when compared to 

the natural corrosion initiation of steel in concrete which can be several years 

[99]. The other advantage of this technique is that the amount of corrosion 

generated can be calculated from the current passed using Faraday's Law. The 

principle of this technique has been described in Sections  3.5,  4.6.3 

and  4.6.3.1. There are some differences that can be found between accelerated 

corrosion by impressed anodic current and naturally occurring corrosion. In 

terms of the latter, both the cathodic and anodic reactions take place at the 

reinforcement surface, while in the former, the reinforcement is forced to 

operate solely as an anode while an external steel electrode acts as the 

cathode, remote from the reinforcement. In the case of the mechanism of 

corrosion product formation, with natural corrosion, Fe2+ released from the 

anodic sites on the reinforcement, combines with OH- from the cathodic reaction 

and corrosion products form at the steel/concrete interface. The volume of the 

corrosion products is greater than the original metal. The surrounding concrete, 

therefore, can develop cracks when the volume of corrosion products at the 

interface exceeds a critical value [87]. In the case of accelerated corrosion, Fe2+ 

from the reinforcement combines with free OH- within the concrete pore solution 

to form the corrosion product Fe(OH) 2, which may reduce the pH of the pore 

solution. Once all the free OH- at the interface has combined with Fe2+ to form 

Fe(OH) 2, this process will progress further within the concrete cover zone 

where alkalinity remains high. Consequently, the formation of the corrosion 

product Fe(OH) 2 tends to move outward from the steel-concrete interface with 

rust staining occurring more quickly than for natural corrosion [87].  
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5.4  Experimental Works 

5.4.1  Test programme 

As shown in Table  4.1, the detailed experimental programme and to the 

research work, the specimens have been divided into 4 batches. Each batch 

has parameters in terms of type of the tendon, level of pre-stress, degree of 

corrosion and a control specimen representing Stage I corrosion as shown in 

Table  5.1. The objective of generating different degree of corrosion is to 

replicate the site problem and to investigate its effect on the applied service 

stress and to apply the cathodic protection.  

Table 5.1 Tests programme 

Batch Test code 
Target degree of corrosion 

Stage 

1 S-U-L-I-1 I 

 S-U-L-II-O-2 II 

 S-U-L-III-O-3 III 

 S-U-H-I-1 I 

 S-U-H-II-O-2 II 

 S-U-H-III-O-3 III 

2 M-U-L-X-1 I 

 M-U-L-II-N-2 II 

 M-U-L-III-N-3 III 

 M-U-H-X-1 I 

 M-U-H-II-N-2 II 

 M-U-H-III-N-3 III 

3 M-U-L-X1-1 I 

 M-U-L-II-O-2 II 

 M-U-L-III-O-3 III 

 M-U-H-X1-1 I 

 M-U-H-II-O-2 II 

 M-U-H-III-O-3 III 

4 M-G-H-X-1 I 

 M-G-H-II-N-1 II 

 M-G-H-III-N-3 III 

 M-G-H-X1-1 I 

 M-G-H-II-O-2 II 

 M-G-H-III-O-3 III 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 



 

93 

5.4.2  Tests in saline electrolyte 

For the purpose of the test, batch one, plastic boxes with internal dimensions 

320 mm length, 80 mm width and 60 mm depth were employed to contain the 

saline solution. Two holes were made in each end face of the box to allow the 

tendon to pass through with tight filling bungs to prevent any leakage as shown 

in Figure  5.1. The saline solution consisted of water and 5 % by weight sodium 

chloride (NaCl) in order to promote the corrosion of the tendon. 

 

 

Plastic box in a prestressing timber mould with test ongoing 

  

Plastic box with drilled end to allow 

the tendon go through 

Drilled Plastic box ready to use 

Figure 5.1 Test set-up for saline electrolyte 
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5.4.3  Test in mortar electrolyte 

When in service, preload pre-stressing tendons commonly protected with gunite 

(shotcrete). The gunite was replicated in the laboratory as a mortar and a 

number of trials were conducted to ensure that the mortar has similar 

performance criteria to that used on-site. 

Figure  5.2 shows the design of specimens for the experimental work, each of 

320mm length with a rectangular cross-section of 90 mm depth and 100 mm 

width. Each specimen was reinforced by a pre-stressed galvanised or 

ungalvanised tendon, 5.4mm diameter with UTS of around 1800MPa.  

 

 

Figure 5.2 Specimens dimension (mm) 

 Mortar mix design and casting 5.4.3.1

It was determined that the mortar normally used in-situ is approximately Grade 

35 N/mm2 with a cement content of about 340 kg/m3. This mix was replicated in 

the laboratory to ensure it was appropriately moist to replicate the gunite 

applied mortar used on site. The mortar mix was designed to have high 

workability and achieve an average 28 day cube strength in accordance with BS 

EN 12390-3: 2009 of over 35 MPa. The mortar mix proportion was cement: 

sand: water of 1:3:0.4. The sand was oven dried at 100°C for 24 hours to 

eliminate the free water content and then maintained in a dry condition prior to 

use. The sand and cement were dry mixed in a mechanical mixer for about one 

minute before adding water gradually. In order to incorporate any residual dry 

material sticking to the mixer surface, a further hand mixing of the wet mix was 

carried out. The wet mix was then cast into the timber moulds in layers and 

each layer was carefully compacted by a vibrating poker, Figure  5.3 (a-c). After 

casting, the timber moulds were covered with polyethylene sheets and cured in 

the laboratory. The cast moulds were then kept moist by spraying water at 20°C 
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for a further 27 days (28 days in total). Cube specimens were cast for each mix 

and tested for compressive strength in accordance with BS EN 12390-3: 2009. 

Cubes were tested at 1, 14, and 28 days age as  shown in Figure  5.3. 

 

   

(a) Casting the mortar in the mould (b) Placing MMO mesh 

  

  

(c) Casting cubes (d) Testing cubes 

Figure 5.3 Casting the mortar and testing the cubes 

The density of the concrete mixes and their compressive strengths at 28 days 

are given in Table  5.2. 

It is important that all moulds in the same group were cast carefully to ensure 

the same quality and strength. Therefore, the procedure of drying aggregates, 

mixing, casting and curing was carried out with great care. Cubes were cast at 

the same time as casting of the moulds to ensure that they represented the 

compressive strength of the corresponding moulds. 

 

 

 

 

 

 

MMO mesh inserted 

into the mortar  

MMO mesh inserted 

into the mortar  
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Table 5.2 Compressive strength of mortar at 28 days 

Sample ID 
Cube 

ID 

Weight 
Crushing 

load 
Density 

Compressive 

strength 

Mean 

compressive 

strength 

(g) (kN) (Kg/m3) (MPa)  (MPa)  

M-U-L-X-1 

M-U-L-II-N-2 

M-U-L-III-N-3 

M-U-L-X-1 

M-U-L-II-N-2 

M-U-L-III-N-3 

A 2140 

 

442 

 

2140 44 46 

B 2150 470 2150 

 

47  

M-U-L-X1-1 

M-U-L-II-O-2 

M-U-L-III-O-3 

M-U-H-X1-1 

M-U-H-II-O-2 

M-U-H-III-O-3 

A** 870 245 2062 44 45 

B** 870 260 2062 46  

M-G-H-X-1 

M-G-H-II-N-2 

M-G-H-III-N-3 

M-G-H-X1-1 

M-G-H-II-O-2 

M-G-H-III-O-3 

100 2096 355 2096 35 35 

* Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

** Cube size 75 x 75 x75mm, the remainder is 100 x 100 x 100mm 

5.4.4 Pre-tensioning and installing strain gauges 

Twelve pre-stressing timber moulds were manufactured with external 

dimensions 675x200x100mm as shown in Figure  4.2. Six have been used for 

each batch. The timber mould was fastened to a plywood (WISA-Form) base 

and was used to pre-load the tendon, providing formwork for conducting 

accelerated corrosion and later applying ICCP in tendons immersed in a saline 

solution and embedded mortar electrolytes. A hollow cylinder/pre-stressing jack, 

hand pump, wedges, washers and anchorage were used for pre-stressing the 

tendon to different level of pre-stress, Figure  5.4.  
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Figure 5.4 Pre-stressing System (a) mould; (b) strain gauge; (c) laptop; (d) data 

logger; (e) hydraulic jack connected to hand pump 

Ungalvanised and galvanised tendons used were king wires from a 15.7mm, 

seven strand stay cable measured around 5.4mm diameter with a length of 

1.4m. The ultimate strength is approximately 1800MPa.  

 

The strain in the tendons was measured using vibrating wire strain gauges 

(VWSG) firmly attached to the tendons. The change in microstrain ( ) was 

obtained by subtracting the initial strain from subsequent strains as shown in 

Eq. 5.1, then the applied service stress was obtained by multiplying the strain 

by the modulus of elasticity (E=220 GPa) as given in Table  5.3: 

 

 (Gauge Factor x Batch Factor)            Equation 5.1 

 

where: 

 = the strain change in microstrain  

 = datum frequency of the VWSG (Hz).  

 = subsequent frequency of the VWSG (Hz).  

The Gauge Factor and Batch Factors are constants provided by the supplier (if 

applicable). 

 

Table  5.3 shows the applied service stress. This included tendons subjected to 

a low target pre-stress (300-400MPa) and high target pre-stress (800-
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1200MPa) in a saline solution and mortar. The tendons are allowed to relax for 

up to two days before the mortar is cast. The set-up is shown in Figure  5.4. 

Table 5.3 Convert obtained strain to applied service stress for tendons 

Batch Test Code 

Strain 

gauge 

F1 Target 

F2 

Actual 

F2 

Strain Actual 

stress 

mm Hz Hz Hz  MPa 

1 S-U-L-I-1 89 1004 1599 1608 1894 407 

 S-U-L-II-O-2 89 973 1580 1642 2100 452 

 S-U-L-III-O-3 89 1163 1703 1751 2057 442 

 S-U-H-I-1 150 952 1561 1597 5990 1289 

 S-U-H-II-O-2 150 952 1586 1590 5626 1210 

 S-U-H-III-O-3 150 952 1586 1590 5626 1210 

2 M-U-L-X-1 150 974 1232 1217.29 1959 421 

 M-U-L-II-N-2 89 1063 1613 1608.02 1747 376 

 M-U-L-III-N-3 150 999 1238 1235.06 1921 413 

 M-U-H-X-1 150 1020 1595 1577.99 5282 1136 

 M-U-H-II-N-2 150 953 1568 1551.48 5461 1175 

 M-U-H-III-N-3 150 981 1645 1584.71 5636 1213 

3 M-U-L-X1-1 89 1029 1652 1565.04 1669 359 

 M-U-L-II-O-2 89 1088 1670 1625.52 1751 377 

 M-U-L-III-O-3 89 1042 1640 1637.36 1915 412 

 M-U-H-X1-1 150 987 1640 1637.6 6222 1339 

 M-U-H-II-O-2 150 975 1680 1678.24 6798 1463 

 M-U-H-III-O-3 150 952 1610 1602.13 6050 1302 

4 M-G-H-X-1 150 961 1440 1440 4225 882 

 M-G-H-II-N-1 89 1073 2149 2149 4161 869 

 M-G-H-III-N-3 150 979 1535 1535 5093 1063 

 M-G-H-X1-1 150 1021 2117 2117 4128 862 

 M-G-H-II-O-2 150 1029 2244 2244 4773 997 

 M-G-H-III-O-3 150 1074 2173 2173 4283 894 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 
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5.5  Accelerated corrosion process 

As discussed in Chapter 4, Section 4.6.3.1, the impressed anodic current 

technique was selected and used to accelerate the corrosion of the tendons in 

the samples. After installing the strain gauges and pre-tensioning of the tendons 

was done, the specimens were ready for exposure to the corrosion. For the 

purpose of the research work, the specimens have been divided into 4 batches. 

A constant current density of 1 mA/cm2 was adopted based on the experience 

of previous research, and three different stages of corrosion Stage I (0-1%), 

Stage II (2-4%) and Stage III (4-7%) was conducted.  

 

This method was selected for this study on the basis of being relatively fast and 

the amount of corrosion generated can be calculated from the current passed 

using Faraday's Law as discussed in Section 3.5.1.  

 

Details are given in Table  5.4. Specimens of batches 1 to 4 were subjected to 

three different pre-degree of corrosion as is commonly used for inspection of 

actual structures, Stage I (0-1%), Stage II ( 2-4%) and Stage III (4-7%) 

respectively. Stage I (0-1%) was considered as a control specimen for each 

batch and was not corroded, therefore effectively 0%. 
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Table 5.4 Corrosion of tendon - test programme 

Batch Test Code 

Length 

of one 

tendon 

Target 

degree of 

corrosion 

(m) 

Corrosion 

Rate (i) 
Applied 

Current 

(I) 

Corrosion 

Duration 

  (cm) (%) (mA/cm2) (mA) (Hrs) 

1 S-U-L-I-1 32 0 - - - 

 S-U-L-II-O-2 32 3 1 54.28 60.90 

 S-U-L-III-O-3 32 6 1 54.28 121.81 

 S-U-H-I-1 32 0 - - - 

 S-U-H-II-O-2 32 3 1 54.28 60.90 

 S-U-H-III-O-3 32 6 1 54.28 121.81 

2 M-U-L-X-1 32 0 - - - 

 M-U-L-II-N-2 32 3 1 54.28 60.90 

 M-U-L-III-N-3 32 6 1 54.28 121.81 

 M-U-H-X-1 32 0 - - - 

 M-U-H-II-N-2 32 3 1 54.28 60.90 

 M-U-H-III-N-3 32 6 1 54.28 121.81 

3 M-U-L-X1-1 32 0 - - - 

 M-U-L-II-O-2 32 3 1 54.28 60.90 

 M-U-L-III-O-3 32 6 1 54.28 121.81 

 M-U-H-X1-1 32 0 -   

 M-U-H-II-O-2 32 3 1 54.28 60.90 

 M-U-H-III-O-3 32 6 1 54.28 121.81 

4 M-G-H-X-1 32 0 - - - 

 M-G-H-II-N-1 32 3 1 54.28 60.90 

 M-G-H-III-N-3 32 6 1 54.28 121.81 

 M-G-H-X1-1 32 0 - - - 

 M-G-H-II-O-2 32 3  54.28 60.90 

 M-G-H-III-O-3 32 6  54.28 121.81 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

5.5.1 Corrosion of tendons in saline solution 

Figure 5.5 shows galvanised tendons in a saline solution ready for generating 

corrosion using the accelerated corrosion technique after completion of pre-

stressing stage. Figure 5.6 shows Batch 1 of the specimens under accelerated 
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corrosion. MMO Ti mesh was connected to the negative terminal of a D.C 

power supply, working as the cathode, while the pre-stressed tendon was 

connected to the positive terminal of D.C power supply and corroded. The 

corrosion process took place in a plastic box containing 3.5% NaCI solution by 

weight. The solution level in the box was adjusted to ensure adequate 

submersion of the tendon, but to also allow sufficient oxygen availability for the 

corrosion processes to occur freely on the anodic tendon. Figure 5.7 shows 

Batch 1 under accelerated corrosion. 

 

Figure 5.5 Batch 1 with pre-stressed tendons ready for accelerated corrosion 

 

Figure 5.6 Batch 1 specimens under accelerated corrosion 

The degree of corrosion was measured both as gravimetric weight loss and 

reduction in the diameter of the tendons. With regards to the gravimetric weight 
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loss method, the tendon was weighted before the specimens were corroded. 

Upon completion of the corrosion period, the tendons were removed from the 

solution, cleaned with a di-ammonium hydrogen citrate and re–weighed. The 

percentage loss in weight was subsequently calculated. 

The tendon in each specimen was subjected to general corrosion by applying 

an anodic impressed current provided by the DC power supply to achieve a 

different corrosion degree as detailed in Section  5.4.1.  

 

  

Batch 1 Specimens generating hydrogen 

during accelerated corrosion 

Figure 5.7 Batch 1 specimens under accelerated corrosion 

5.5.2  Corrosion of tendons in mortar 

After pre-stressing stage, the moulds were cast with mortar as shown in 

Figure  5.8 (a) & (b). 

  

(a) Pre-stressing moulds and cubes 

ready for casting 

(b) Specimens were casted with 

mortar 

Figure 5.8 Specimens and cubes ready for casting 

MMO Ti mesh was embedded into the mortar during casting to ensure a good 

conductivity and was connected to the negative terminal of a D.C power supply, 
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working as the cathode while the pre-stressed tendon was connected to the 

positive terminal of D.C power supply, Figure  5.9.  

 

 

Figure 5.9 Schematic diagram shows the test set-up for one batch 

 

The current density and corrosion period were adjusted for each specimen to 

give the required degree of corrosion. The current supplied to each beam was 

checked daily and any drift was corrected. A current density of 1 mA/cm2 was 

used to simulate general corrosion. This current density has been successfully 

employed in Chapter 4 and in other previous research, and allows the required 

level of corrosion to be achieved within a reasonable timescale. This method 

produces a uniformly distributed or 'general' form of corrosion. Naturally 

occurring corrosion tends to be less uniform, therefore decreasing the likelihood 

of bond loss occurring along the entire anchorage length. 

The duration of corrosion was calculated by Faraday's Law (Section 5.5). Three 

different stages of corrosion were selected Stage I (0-1 % control), Stage II (2-4 

%) and Stage III (4-7 %). For all specimens, the applied current was fixed 

(54.28 mA, Equation 5.8) and corrosion period was adjusted (Equation 5.5) to 

give the required degree of corrosion (e.g. 20.23 hours for 1 %, 60.90 hours for 

3 % and 121.81 hours for 6 %) Figure  5.10.  
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Figure 5.10 Set of specimens under accelerated corrosion - Batch 2 

5.6  Results and discussion 

5.6.1  Visual observation 

 Corrosion of tendons in a saline solution 5.6.1.1

Figure  5.11 shows Batch 1 specimen under accelerated corrosion and each 

sample was monitored daily during the test in terms of changes in applied 

service stress via the VWSG data logger and visual inspection for any change 

in the saline solution. The first sign of corrosion was yellow/brown (rust) staining 

on the surface of solution which was observed after a few hours (Figure  5.12 

(a)). It was also observed after 24 hours that the colour of the corrosion on the 

solution surface changed first to a darker brown then to black (Figure  5.12 (b)). 

It was also observed that hydrogen on titanium was generated, as would be 

expected due to hydrolysis of water. Regarding the pre-stress in the tendon, it 

was observed that it reduced during the corrosion process; the next section will 

show this in more detail. Having achieved the required degree of corrosion, 

cathodic protection (CP) was applied to specimens and monitored. Upon 

completion of the CP, the tendons were removed and reweighed to determine 

the weight loss and hence, the actual degree of corrosion. 
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Figure 5.11 Specimens under accelerated corrosion 

 

  

(a) Yellow to brown rust colour in the 

solution 

(b) Dark brown and black colour in the 

solution 

Figure 5.12 Corrosion of the tendons in the saline solution and colour changes 

 Corrosion of tendons in mortar 5.6.1.2

The progress of corrosion of each sample was monitored daily. As accelerated 

corrosion was induced in the tendons, most specimens in batches 2, 3, 4 and 5 

a longitudinal crack was observed on the surface of the mortar where the stage 

III of corrosion was applied. It was observed that longitudinal cracks appeared 

on the surface of mortar along the pre-stressed tendon (Figure 5.13).  
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Stage I (0-1 %) Stage II (2-4 %) Stage III (4-7 %) 

Figure 5.13 Cracks at each stage of corrosion during accelerated corrosion 

process 

These cracks were located along the tendon. Table  5.5 shows the maximum 

crack width associated with each stage of corrosion, measured to the nearest 

0.05 mm by means of a crack-measuring microscope. There is no cracking up 

to Stage II (2-4 %), while a clearly visible crack occurred when the degree of 

corrosion increased Stage III (4-7 %), indicating that a threshold stage had been 

passed. 

Table 5.5 Maximum crack width at each stage of corrosion during accelerated 

corrosion process 

Corrosion 

stages 

Stage I (0-1%) Stage II (2-4%) Stage III (4-6%) 

Along 

anode 

(tendon) 

 Along 

anode 

(tendon) 

 Along 

anode 

(tendon) 

 

Crack width 

(mm) 
0.00  0.00  0.50  

 

The first sign of corrosion was rust staining on the surface of mortar which was 

observed after a few days for the specimens with Stage III corrosion. 

5.6.2  Surface condition of the corroded tendons  

 Visual inspection using digital camera 5.6.2.1

The corroded tendon was retrieved from each specimen after the accelerated 

corrosion test and application of ICCP were completed. Each tendon was 

cleaned to remove the corrosion products by immersing a 10 % diammonium 

hydrogen citrate solution for 48 hours, in order to remove the corrosion products 

Figure  5.14.  
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Figure 5.14 Removal of corrosion products with di-ammonium hydrogen citrate 

solution 

After drying in the laboratory air, any remaining corrosion products were 

removed using a fine glass fibre brush. The surface of the corroded tendon was 

then examined to analyse the extent and type of corrosion. The corroded 

surface of the tendon after cleaning is shown in Figure  5.15 to Figure  5.18, 

images were taken by digital camera (Canon EOS 5D Mark2).  
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S-U-L-I-O-1 S-U-L-II-O-2 S-U-L-III-O-3 S-U-H-I-O-1 S-U-H-II-O-2 S-U-H-III-O-3 

      

Figure 5.15 Surface of tendon after corrosion - Batch 1 

 

M-U-L-I-N-1 M-U-L-II-N-2 M-U-L-III-N-3 M-U-L-I-O-1 M-U-L-II-O-2 M-U-L-III-O-3 

      

Figure 5.16 Surface of tendon after corrosion - Batch 2 
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M-U-H-I-N-1 M-U-H-II-N-2 M-U-H-III-N-3 M-U-H-I-O-1 M-U-H-II-O-2 M-U-H-III-O-3 

      

Figure 5.17 Surface of tendon after corrosion - Batch 3 

 

M-G-H-I-N-1 M-G-H-II-N-2 M-G-H-III-N-3 M-G-H-I-O-1 M-G-H-II-O-2 M-G-H-III-O-3 

      

Figure 5.18 Surface of tendon after corrosion - Batch 4 
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The visual inspection of the tendon surface condition indicates that localised 

corrosion appeared more clearly defined at higher degrees of pre-corrosion 

than for the lower degrees of pre-corrosion, as described in Table  5.6. 

Table 5.6 Characteristics of tendon corrosion 

Batch Test Code Characteristics of Corrosion 

1 S-U-L-I-1 No corrosion was found. 

 S-U-L-II-O-2 General corrosion, some small localised corrosion 

 S-U-L-III-O-3 General corrosion, some localised corrosion 

 S-U-H-I-1 No corrosion was found. 

 S-U-H-II-O-2 General corrosion, some small localised corrosion 

 S-U-H-III-O-3 General corrosion, some localised corrosion 

2 M-U-L-X-1 No corrosion was found. 

 M-U-L-II-N-2 General corrosion, some small localised corrosion 

 M-U-L-III-N-3 General corrosion, some localised corrosion 

 M-U-H-X-1 No corrosion was found. 

 M-U-H-II-N-2 General corrosion, some small localised corrosion 

 M-U-H-III-N-3 General corrosion, some localised corrosion 

3 M-U-L-X1-1 No corrosion was found. 

 M-U-L-II-O-2 General corrosion, some small localised corrosion 

 M-U-L-III-O-3 General corrosion, some localised corrosion 

 M-U-H-X1-1 No corrosion was found. 

 M-U-H-II-O-2 General corrosion, some small localised corrosion 

 M-U-H-III-O-3 General corrosion, some localised corrosion 

4 M-G-H-X-1 No corrosion was found. 

 M-G-H-II-N-1 General corrosion, some small localised corrosion 

 M-G-H-III-N-3 General corrosion, some localised corrosion 

 M-G-H-X1-1 No corrosion was found. 

 M-G-H-II-O-2 General corrosion, some small localised corrosion 

 M-G-H-III-O-3 General corrosion, some localised corrosion 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 
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 Infinite focus microscope (IFM) 5.6.2.2

After completing both accelerated corrosion and the application of ICCP tests, 

the corroded surface of the tendons was examined by infinite focus microscope 

(IFM) as shown in Figure  5.19. The procedure is described in section  4.11.3.  

 

 

Figure 5.19 Specimen under surface investigation by IFM 

The imaging of the surface of the tendon, together with measurement of the 

depth (Z), pit dimensions and roughness were carried out by an Alicona Infinite 

Focus Microscope. To determine the depth (Z), two different measurement 

points were selected from the surface profile data, one on the highest point on 

the surface and the other one on the lowest point on the bare surface of the 

tendon [100]. Random pits on the tendon were selected for pit dimension 

measurements. A profile path was drawn on the image of the pits to calculate 

the value of its diameter. Surface profile was derived from the same profile path 

to determine the depth of the pits. Profile roughness measurement of surfaces 

conforms to EN ISO 4387 and 4288. The images for specimens were taken with 

vertical resolution 10.18μm and lateral resolution 7.82μm.  

Table  5.7 shows the depth of the corrosion products, pits depth and surface 

roughness. 
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Table 5.7 IFM results 

Batch Test Code 

diameter 

before 

corrosion 

Depth Z 

 

Pitting depth Roughness 

Average 

(Ra) 

  mm μm μm μm 

(1) (2) (3) (4) (5) (6) 

1 S-U-L-I-1 5.35 18.6 - 1.2 

 S-U-L-II-O-2 5.35 23.9 18-20.1-22 3.9 

 S-U-L-III-O-3 5.36 37.4 15-18-20-35 7.2 

 S-U-H-I-1 5.35 16.4 - 1.6 

 S-U-H-II-O-2 5.35 59.4 20-25 4.21 

 S-U-H-III-O-3 5.33 57.3 15-27.23 5.3 

2 M-U-L-I-1 5.28 14.41 - 1.4 

 M-U-L-II-N-2 5.34 35.92 35-40-74.81 2.45 

 M-U-L-III-N-3 5.34 30.47 24-30.84-45.81 3.24 

 M-U-H-X-1 5.29 3.41  - 0.5 

 M-U-H-II-N-2 5.34 114.36 84.04-93.72-100.99 1.67 

 M-U-H-III-N-3 5.32 85.45 40-107.55 7.817 

3 M-U-L-I-1 5.35 9.8  - 1.05 

 M-U-L-II-O-2 5.35 55.34 62.84-56.421-30.98 4.56 

 M-U-L-III-O-3 5.36 47.7 27.37-48.39-63.38 10.23 

 M-U-H-X1-1 5.36 9.05  - 0.5 

 M-U-H-II-O-2 5.36 46.15 5.92-25.46 1.0 

 M-U-H-III-O-3 5.36 60.38 19.33-88.32-154.77-

506.3 

1.4 

4 M-G-H-X-1 5.39 4.71  - 1.10 

 M-G-H-II-N-1 5.40 68.79 93.03-62.95-50.38-

77.45 

6.98 

 M-G-H-III-N-3 5.39 70.58 61.64-49.24-50.78-

63.79-31.62 

8.14 

 M-G-H-X1-1 5.40 8.97  - 1.65 

 M-G-H-II-O-2 5.39 56.47 62.79-61.22-53.05-

56.96 

1.53 

 M-G-H-III-O-3 5.40 58.78  6.17 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

 

Batch 1 

From Table  5.7, the original diameter of the tendons is shown in Column 3. The 

difference between high and low points in the profile (Z) is presented in Column 

4. This difference is in the range 16.4 to 59.4 μm. It means that the surface of 

the tendons was affected by accelerated corrosion. The difference between in 
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pitting depth is in the range 15 to 27 μm. Moreover, the range of the average 

roughness (Ra) in this batch is between 1.78 to 4.72 μm.  

 

Batch 2 

The difference between high and low point in the profile (Z) is presented in 

Table  5.7- Column 4. This difference is in the range (Z) 3.416 to 85.45 μm. The 

difference between in pitting depth is in the range 30.84 to 107.55 μm. The 

range of the average roughness in this batch is between 0.5 to 7.817 μm.  

 

Batch 3 

The difference between high and low point in the profile (Z) is presented in 

Table  5.7 - Column 4. This difference is in the range (Z) 9.8 to 60.38 μm. The 

difference between in pitting depth is in the range 5.92 to 506.3 μm. The range 

of the average roughness in this batch is between 1.05 to 10.23 μm. 

 

Batch 4 

Table  5.7 - Column 4 shows the difference between measurement and 

reference lines in the profile (Z). This difference is in the range 4.71 to 70.58 

μm. The pitting depth is in the range 31.62 to 93.03 μm. The range of the 

average roughness in this batch is between 1.10 to 8.14 μm. 

 

From the above, the corrosion of the tendons in all batches were variable due to 

the combination of general corrosion (as assumed) and localised corrosion 

appearing along the surface of the tendon. The high measurements in both 

depth Z and roughness of the surface of tendon are related to the degree of 

corrosion; means more corrosion induced a high depth Z and roughness were 

measured. 

 

5.6.3  X-ray Diffraction (XRD) 

Corrosion products have been investigated using X-Ray Diffraction (XRD). XRD 

measures are performed on dry samples under Laboratory conditions (T=20° c 

and RH = 50%). The results show that the main components of the corrosion 

products on the surface of tendons are Iron (III) oxide-hydroxide FeO(OH) 

which ranged between 35% to 75% and Iron (II,III) oxide Fe3O4 ranged between 

25% to 65%. 
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5.6.4  Diameter and weight loss 

Table  5.8 to Table  5.11 show the diameter and weight loss measured by both 

gravimetric weight loss and reduction in the diameter of the tendons as 

described in Section  4.6.3.1. The identification of tendon in each specimen is 

presented in Col. 1. The length of the corroded tendon was 320mm (Col. 2), 

three degrees of corrosion were investigated, Stage I (0-1 %), Stage II (2-4 %) 

and Stage III (4-7 %) as shown in Col. 3. Actual degree of corrosion is 

stipulated in Col. 4. Two reference methods were chosen to monitor the 

accelerated corrosion process and as described as follows: 

 

Method I (reduction in tendon diameter) involved measuring the reduction in 

tendon diameter. The diameter of the tendon was measured before corrosion 

acceleration numerous locations along the bar and the average diameter was 

calculated (D1), Col. 5 (see appendix 1). At the end of the accelerated corrosion 

period, the tendons were removed from the electrolyte (Solution or Mortar), the 

corrosion products were cleaned using a solution of 10% diammonium 

hydrogen citrate and a soft wire brush. The diameter was re–measured as 

before and the average diameter was determined (D2), Col. 6 (see appendix 1). 

The reduction of corroded tendon diameter is the difference between the 

diameter of tendon before and after corrosion (Δd1), Col.7. The reduction of the 

diameter of the corroded tendons was calculated as follows: 

 

Δd1 = D1 - D2                  Equation 5.2 

 

The difference between measured diameter loss and theoretical diameter loss 

(%ΔD Col. 9) is calculated as follows, in which Δd2, Col. 8, is the theoretical 

diameter loss, calculated by Faraday's Law. 

 

%∆𝑑 =
∆𝐷1−∆𝐷2

∆𝐷1
 × 100%             Equation 5.3 

 

Method II (reduction weight loss - gravimetric method) takes into account the 

gravimetric weight loss from the bar after corrosion. The weight of tendon was 

measured before acceleration of corrosion (W1), Col. 10. After completing the 

accelerated corrosion, the tendons tendons were brushed, cleaned and 
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immersed in a 10% diammonium hydrogen citrate (C6H14N2O7) for 48 hours to 

remove the corrosion products. The tendons were dried and then re-weighed 

(W2), Col. 11. The difference between measured weights (Δw1), Col. 12, was 

calculated as follows: 

 

∆𝑤1 = 𝑊1 − 𝑊2               Equation 5.4 

The difference between the measured weight loss and theoretical weight loss 

(%Δw Col.14) is calculated as follows: 

 

%∆𝑤 =
∆𝑤1− ∆𝑤2

∆𝑤2
               Equation 5.5 

 

In which Δw2, Col. 13, is theoretical weight loss of tendon, calculated based on 

Faraday's Law (Equation 3.1).  

The actual degree of corrosion is calculated as: 

 

2 (𝑅𝑇)1

𝐷
 (%).              Equation 5.6 

 

In which (RT)1 in cm, is actual metal loss after T(years): 

 

(RT)1 = 𝛿1                      Equation  5.7 

 

Referring to Equation 3.2, where 𝛿1 (cm) is actual metal section loss and Δw1 is 

the measured weight loss, gives: 

 

𝛿1 =
∆𝑤1

𝑎.𝛾
                 Equation 5.8 

 

Combination of Equation 5.13, 5.14 and 5.15, the actual degree of corrosion 

can be calculated as: 

 

2 𝑥 
∆𝑤1

𝑎 .𝛾.𝐷
 (%)               Equation 5.9 
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Similarly, the theoretical degree of corrosion can be calculated as: 

 

2 𝑥 
∆𝑤2

𝑎 .𝛾.𝐷
 (%)             Equation 5.10 

The actual degree of corrosion of steel is calculated by its gravimetric weight 

loss. For Batch 1 (Table  5.8) shows the difference between measured diameter 

loss and theoretical diameter loss is calculated by Equation 5.10 and is in the 

range 123% to 259% (Table  5.8 - Col. 9). The very high difference is due to the 

theoretical calculation being for general corrosion whereas the experimental 

values include localised corrosion [101]. The actual degree of corrosion of steel 

is calculated by its gravimetric weight loss using Equation 5.16 (Col. 4). The 

difference between measured weight loss and theoretical weight loss is 

calculated by Equation 5.12 and presented in Table  5.8 (Col. 14). This 

difference is in the range 0.3% to 39%. It means that the measured weight loss 

was higher than the theoretical weight loss. This is attributed to the difference 

between experimental and theoretical weight loss basing on Faraday's Law. 

The theoretical weight loss calculated from Faraday's law is general corrosion 

while in practice there is some localised corrosion. Moreover, the current 

density in the theoretical calculation is constant while it fluctuates during the 

test, although it was monitored and adjusted to the constant value daily [101].  

 

For Batch 2 (Table  5.9) the difference between measured diameter loss and 

theoretical diameter loss is in the range 22% to 165% (Table  5.9 - Col. 9). The 

reasons for these differences are the same as Batch 1. The difference between 

measured weight loss and theoretical weight loss is in the range -32% to 33% 

(Table  5.9 - Col. 9). The reason of negative percentage loss is the measured 

weight loss is smaller than the theoretical weight loss due the applied current 

dropping during the test whereas the calculation based on Faraday's law uses a 

higher value.  

 

For Batch 3 (Table  5.10) the difference between measured diameter loss and 

theoretical diameter loss is in the range 9% to 172% (Table  5.10 - Col. 9). The 

reasons for these differences are the same as Batch 1. The difference between 

measured weight loss and theoretical weight loss is in the range -32% to 32% 
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(Table  5.10 - Col. 9). The reason for a negative percentage loss is the 

measured weight loss is smaller than the theoretical weight loss due the applied 

current dropping during the test whereas the calculation based on Faraday's 

Law uses a higher value. 

 

For Batch 4 (Table  5.11) the difference between measured diameter loss and 

theoretical diameter loss is in the range 36% to 130% (Table  5.11 - Col. 9). The 

difference between measured weight loss and theoretical weight loss is in the 

range -32% to 16% (Table  5.11 - Col. 9). The reasons for these differences are 

the same as for Batch 1 and Batch 3. 

 

Table  5.8 to Table  5.11 show that diameter loss is not a reliable method of 

measuring the actual degree of corrosion in practice because of the significant 

difference between the measured reduction in tendon bar diameters and the 

target degree of corrosion. This is due to the fact that it is difficult to measure 

accurately the diameter of the tendons both before, and especially after, the 

corrosion period. Also, the diameter of the steel bars is not perfectly circular 

hence this exaggerates the error even more. Furthermore, the reduction in 

diameter varied along the tendon due to the combination of general and 

localised corrosion appearing along the tendon bar. Method II (gravimetric 

weight loss) is a reliable method since the different between the target corrosion 

and the percentage of weight loss is not that significant. Therefore, in this 

research, the gravimetric weight loss method was employed as a means of 

monitoring the actual degree of corrosion. 
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Table 5.8 Mass and diameter loss of Batch 1 

Test code 

Tendon 

corroded 

length 

Stage of 

Corrosion 

Actual 

degree of 

corrosion 

Method I 

Reduction in tendon diameter 

Method II 

Weight loss 

D1 D2 Δd1 Δd2 Difference 

%Δd 

W1 W2 Δw1 Δw2 Difference 

%Δw 

(mm) Stage (%) (mm) (mm) (mm) (mm) (%) (g) (g) (g)  (%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

S-U-L-X-1 320 I  0.00 5.35 5.23 0.12 0.00 0 261.67 261.42 0.25 0.00 0 

S-U-L-II-O-2 320 II  4.16 5.35 5.10 0.25 0.08 207 267.63 262.93 4.70 3.39 39 

S-U-L-III-O-3 320 III 8.25 5.36 4.83 0.53 0.16 229 251.00 241.65 9.35 6.80 38 

S-U-H-X1-1 320 I 0.00 5.35 5.27 0.08 0.00 0 266.62 266.26 0.36 0.00 0 

S-U-H-II-O-2 320 II 3.85 5.35 5.06 0.29 0.08 257 259.29 254.94 4.35 3.39 28 

S-U-H-III-O-3 320 III 6.23 5.33 4.98 0.36 0.16 123 260.06 253.06 7.00 6.74 3 

 

(5) Mean diameter of tendon before corrosion (10) Weight of tendon before corrosion 

(6) Mean diameter of tendon before corrosion (11) Weight of tendon after corrosion 

(7) Actual diameter loss of tendon (12) Weight loss of tendon 

(8) Theoretical weight loss of tendon (13) Theoretical weight loss of tendon 

(9) Percent error in diameter reduction (14) Percent error in weight loss 

 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers. 
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Table 5.9 Mass and diameter loss of Batch 2 

Test code 

Tendon 

corroded 

length 

Stage of 

Corrosion 

Actual 

degree of 

corrosion 

Method I 

Reduction in tendon diameter 

Method II 

Weight loss 

D1 D2 Δd1 Δd2 Difference 

%Δd 

W1 W2 Δw1 Δw2 Difference 

%Δw 

(mm) Stage (%) (mm) (mm) (mm) (mm) (%) (g) (g) (g)  (%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

M-U-L-X-1 320 I  0.00 5.28 5.29 -0.01 0.00 0 261.30 260.80 0.50 0.00 0 

M-U-L-II-N-2 320 II  3.98 5.34 5.13 0.21 0.08 165 260.29 255.81 4.48 3.37 33 

M-U-L-III-N-3 320 III 5.32 5.34 5.11 0.23 0.16 45 256.64 250.64 6.00 6.76 -11 

M-U-H-X-1 320 I 0.00 5.35 5.30 0.05 0.00 0 262.10 261.88 0.22 0.00 0 

M-U-H-II-N-2 320 II 2.25 5.35 5.19 0.16 0.08 97 265.80 263.25 2.55 3.39 -25 

M-U-H-III-N-3 320 III 4.05 5.36 5.17 0.20 0.16 22 266.86 262.25 4.61 6.82 -32 

 

(5) Mean diameter of tendon before corrosion (10) Weight of tendon before corrosion 

(6) Mean diameter of tendon before corrosion (11) Weight of tendon after corrosion 

(7) Actual diameter loss of tendon (12) Weight loss of tendon 

(8) Theoretical weight loss of tendon (13) Theoretical weight loss of tendon 

(9) Percent error in diameter reduction (14) Percent error in weight loss 

 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers. 
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Table 5.10 Mass and diameter loss of Batch 3 

Test code 

Tendon 

corroded 

length 

Stage of 

Corrosion 

Actual 

degree of 

corrosion 

Method I 

Reduction in tendon diameter 

Method II 

Weight loss 

D1 D2 Δd1 Δd2 Difference 

%Δd 

W1 W2 Δw1 Δw2 Difference 

%Δw 

(mm) Stage (%) (mm) (mm) (mm) (mm) (%) (g) (g) (g)  (%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

M-U-L-X1-1 320 I  0.00 5.29 5.28 0.01 0.00 0 258.66 257.78 0.88 0.00 0 

M-U-L-II-O-2 320 II  3.96 5.34 5.12 0.22 0.08 172 256.29 251.83 4.46 3.38 32 

M-U-L-III-O-3 320 III 6.52 5.32 5.06 0.26 0.16 60 256.39 249.09 7.30 6.70 9 

M-U-H-X1-1 320 I 0.00 5.36 5.33 0.03 0.00 0 257.23 256.99 0.24 0.00 0 

M-U-H-II-O-2 320 II 2.06 5.36 5.19 0.17 0.08 106 252.35 250.01 2.34 3.40 -31 

M-U-H-III-O-3 320 III 4.03 5.36 5.19 0.18 0.16 9 254.63 250.05 4.58 6.81 -32 

 

(5) Mean diameter of tendon before corrosion (10) Weight of tendon before corrosion 

(6) Mean diameter of tendon before corrosion (11) Weight of tendon after corrosion 

(7) Actual diameter loss of tendon (12) Weight loss of tendon 

(8) Theoretical weight loss of tendon (13) Theoretical weight loss of tendon 

(9) Percent error in diameter reduction (14) Percent error in weight loss 

 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers. 
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Table 5.11 Mass and diameter loss of Batch 4 

Test code 

Tendon 

corroded 

length 

Stage of 

Corrosion 

Actual 

degree of 

corrosion 

Method I 

Reduction in tendon diameter 

Method II 

Weight loss 

D1 D2 Δd1 Δd2 Difference 

%Δd 

W1 W2 Δw1 Δw2 Difference 

%Δw 

(mm) Stage (%) (mm) (mm) (mm) (mm) (%) (g) (g) (g)  (%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

M-G-H-X1-1 320 I  0.00 5.39 5.33 0.06 0.00 0 261.29 261.69 -0.40 0.00 0 

M-G-H-II-N-1 320 II  3.48 5.40 5.21 0.19 0.08 130 263.85 259.85 4.00 3.45 16 

M-G-H-III-N-3 320 III 4.36 5.39 5.16 0.23 0.16 41 267.51 262.5 5.01 6.88 -27 

M-G-H-X1-1 320 I 0.00 5.40 5.31 0.09 0.00 0 271.53 271.94 -0.41 0.00 0 

M-G-H-II-O-2 320 II 3.40 5.39 5.22 0.17 0.08 108 267.45 263.54 3.91 3.44 13 

M-G-H-III-O-3 320 III 4.10 5.40 5.18 0.22 0.16 36 262.71 257.99 4.72 6.90 -32 

 

(5) Mean diameter of tendon before corrosion (10) Weight of tendon before corrosion 

(6) Mean diameter of tendon before corrosion (11) Weight of tendon after corrosion 

(7) Actual diameter loss of tendon (12) Weight loss of tendon 

(8) Theoretical weight loss of tendon (13) Theoretical weight loss of tendon 

(9) Percent error in diameter reduction (14) Percent error in weight loss 

 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers. 
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5.6.5  Loss in service stress 

The arrangements for calculating the slippage and describing the tendon pre-

tensioning technique was described in Sections  3.4 and  5.4.4 respectively. The 

accelerated corrosion technique is also described in Sections  3.5 and  5.5 for 

inducing corrosion in the tendons. Table  5.3 shows the actual applied stress on 

the tendons and Table  5.12 shows the corrosion design criteria for the same 

specimens.  

Table 5.12 Corrosion design criteria 

Batch Test Code 

Actual 

Stress 

Target 

Degree of 

Corrosion  

Applied 

Current 

Corrosion 

Duration 

Actual 

Degree of 

Corrosion 

(MPa) Stage (mA) (Hrs) (%) 

1 S-U-L-X1-1 407 I - - 0 

 S-U-L-II-O-2 452 II 54.28 60.90 4.16 

 S-U-L-III-O-3 442 III 54.28 121.81 8.25 

 S-U-H-X1-1 1289 I - - 0.32 

 S-U-H-II-O-2 1210 II 54.28 60.90 3.85 

 S-U-H-III-O-3 1210 III 54.28 121.81 6.23 

2 M-U-L-X-1 421 I - - 0 

 M-U-L-II-N-2 376 II 54.28 60.90 3.98 

 M-U-L-III-N-3 413 III 54.28 121.81 5.32 

 M-U-H-X-1 1136 I - - 0 

 M-U-H-II-N-2 1175 II 54.28 60.90 2.25 

 M-U-H-III-N-3 1213 III 54.28 121.81 4.05 

3 M-U-L-X1-1 359 I - - 0 

 M-U-L-II-O-2 377 II 54.28 60.90 3.96 

 M-U-L-III-O-3 412 III 54.28 121.81 6.52 

 M-U-H-X1-1 1339 I   0 

 M-U-H-II-O-2 1463 II 54.28 60.90 2.06 

 M-U-H-III-O-3 1302 III 54.28 121.81 4.03 

4 M-G-H-X-1 882 I - - 0 

 M-G-H-II-N-1 869 II 54.28 60.90 3.48 

 M-G-H-III-N-3 1063 III 54.28 121.81 4.36 

 M-G-H-X1-1 862 I - - 0 

 M-G-H-II-O-2 997 II 54.28 60.90 3.40 

 M-G-H-III-O-3 894 III 54.28 121.81 4.10 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 
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The reading from the strain gauges were recorded by a data logger every 15 

minutes. The strains were converted to stresses by applying  = E , where E = 

220 GPa. Table  5.13 shows the variation in stress during the accelerated 

corrosion period.  

Table 5.13 Variation in stress in the tendons during accelerated corrosion 

Batch Test Code 

Initial 

Stress 

Stress (MPa) 

Days      

(MPa) 1 2 3 4 5 6 

1 S-U-L-X1-1 407 376 373 368 362 358 354 

 S-U-L-II-O-2 452 443 435 426 414 411 406 

 S-U-L-III-O-3 443 433 423 412 396 388 377 

 S-U-H-X1-1 1289 1254 1242 1232 1218 1208 1199 

 S-U-H-II-O-2 1210 1126 1110 1096 1074 1066 1057 

 S-U-H-III-O-3 1210 1120 1099 1082 1052 1040 1021 

2 M-U-L-X-1 421 417 417 417 419 420 420 

 M-U-L-II-N-2 376 332 332 331 331 331 331 

 M-U-L-III-N-3 413 442 437 432 433 432 430 

 M-U-H-X-1 1136 1126 1124 1119 1123 1127 1127 

 M-U-H-II-N-2 1175 1174 1169 1161 1165 1169 1167 

 M-U-H-III-N-3 1213 1211 1198 1186 1186 1178 1164 

3 M-U-L-X1-1 359 340 340 339 339 339 340 

 M-U-L-II-O-2 377 369 367 364 363 363 363 

 M-U-L-III-O-3 412 430 428 424 419 407 407 

 M-U-H-X1-1 1339 1192 1189 1186 1184 1185 1188 

 M-U-H-II-O-2 1463 1339 1325 1318 1314 1314 1313 

 M-U-H-III-O-3 1302 1024 1008 1003 996 994 997 

4 M-G-H-X-1 882 699 705 702 702 702 704 

 M-G-H-II-N-1 869 678 685 686 690 691 693 

 M-G-H-III-N-3 1063 678 676 669 668 668 669 

 M-G-H-X1-1 862 873 874 873 873 873 874 

 M-G-H-II-O-2 997 850 836 835 834 833 833 

 M-G-H-III-O-3 894 805 791 788 786 785 784 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

 

The data presented in Table  5.13 are shown graphically in Figure  5.20 to 

Figure  5.23 to illustrate the performance of the tendons during the corrosion 

period.  
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 Influence of accelerated corrosion on pre-stress - Batch 1 5.6.5.1

Figure  5.20 compares the loss in pre-stress of the tendons with the different 

degrees of corrosion, Stage I (0-1 %), Stage II (2-4 %) and Stage III (4-7 %) at 

the low pre-stress level (300-400 N/mm2, approximately 30% Ultimate Tensile 

Strength of the tendon, UTS). Figure  5.21 shows the net loss in pre-stress due 

to corrosion of Stage II and Stage III where the loss in pre-stress from the 

control Stage I specimen is subtracted from the corroded specimens with the 

same level of pre-stress, 30% UTS.  

 

 

Figure 5.20 Gross loss in tendon pre-stress over corrosion period (30% UTS) 
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Figure 5.21 Net loss in tendon pre-stress over corrosion time (30% UTS) 

 

Similarly for the target pre-stress, High Level (800-1200MPa), Figure  5.22 

compares the loss in pre-stress of the tendons with the different degree of 

corrosion, Stage I, Stage II and Stage III over the corrosion period.  

 

 

Figure 5.22 Gross loss in tendon pre-stress over corrosion time (80% UTS) 



 

126 

Figure  5.23 shows the net loss in pre-stress due to corrosion Stage II and Stage 

III. Again, the net losses in pre-stress are obtained by subtracting the control 

(Stage I) stress from the stress measured during the corrosion phase. 

 

 

Figure 5.23 Net loss in tendon pre-stress over corrosion period (80% UTS) 

5.6.4.1.1 Summary of loss in tendon service stress (Batch 1) 

The results indicate that there is a loss in pre-stress due to corrosion as a result 

of the loss in cross sectional area of the tendons. In addition, the loss of pre-

stress increased as the degree of corrosion increased. It is evident that there 

are smaller variations to the strain profiles for the 30% UTS pre-stressed 

tendons compared to the 80% UTS. This is particularly noticeable as the degree 

of corrosion increases from Stage I (control) to Stage II and Stage III. 

Figure  5.24 shows losses in pre-stress in tendons with target pre-stress of 30% 

UTS and 80% UTS. At Stage II degree of corrosion, Stage II losses are very 

similar, while Figure  5.25 indicates that there is a greater difference in loss of 

pre-stress due corrosion Stage III. This indicates that the loss in pre-stress is 

more dependent on the degree of corrosion and less dependent on the initial 

pre-stress in the tendon.  
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Figure 5.24 Loss in pre-stress due to corrosion Stage II 

 

 

Figure 5.25 Loss in pre-stress due to corrosion Stage III 
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Table 5.14 Residual service stress due to corrosion 

Corrosion 

Stage 

Residual Stress (MPa) 

Target Service Stress 30% UTS Target Service Stress 80% UTS 

(%) (MPa) (MPa) 

I -22   -55   

II -37   -69   

III -56   -99   
 

The results shown in Table  5.14 are plotted in Figure  5.26. It is apparent that as 

the degree of corrosion increases from Stage II through to Stage III, there is an 

increase in loss of pre-stress for both the highly stressed tendon (80% UTS) 

and the tendons exhibiting a pre-stress of 30% UTS. However, the decrease in 

loss in stress is slightly more pronounced for the 80% UTS specimens. This 

indicates that tendons subjected to higher degrees of corrosion will suffer higher 

losses which should be accounted for at the design stage as an additional loss. 

The tendons exposed to Stage I corrosion, although not subjected to corrosion, 

do suffer a reduction in pre-stress, perhaps as a result of compression in the 

timber moulds or relaxation (this has been accounted for in the net losses in 

Stage II and III). 

 

Figure 5.26 Relationship between degree of corrosion and different levels of 

pre-stress 



 

129 

 Influence of accelerated corrosion on pre-stress - Batch 2 & 3 5.6.5.2

In this section, results of Batch 2 and Batch 3 are presented together as these 

two batches have the same parameters in terms of tendon type and corrosion 

criteria. The data presented in Table  5.13 are shown graphically in Figure  5.27 

to Figure  5.33 to better understand the performance of the tendons. Figure  5.27 

compares the gross loss in pre-stress of the tendons with the different degrees 

of corrosion, Stage I (0-1 %), Stage II (2-4 %) and Stage III (4-7 %) at a low 

level of applied pre-stress (300-400 N/mm2), 30% Ultimate Tensile Strength 

(UTS). Similarly, Figure  5.28 shows the gross loss in pre-stress due to corrosion 

of Stages I, II and III for Batch 3. 

 

Figure 5.27 Gross loss in tendon pre-stress during corrosion period (30% UTS) 

- Batch 2 
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Figure 5.28 Gross loss in tendon pre-stress during corrosion period (30% UTS) 

- Batch 3 

Both Figure  5.29 and Figure  5.30 show the comparison in the gross loss in pre-

stress of the tendons with the different degrees of corrosion Stage I (0-1 %), 

Stage II (2-4 %) and Stage III (4-7 %) at a High Level of pre-stress (800-1200 

N/mm2), 80% Ultimate Tensile Strength (UTS). 

 

Figure 5.29 Gross loss in tendon pre-stress during corrosion period (80% UTS) 

- Batch 2 
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Figure 5.30 Gross loss in tendon pre-stress during corrosion period (80% UTS) 

- Batch 3 

Figure  5.31 shows the average loss in pre-stress due to corrosion Stages II and 

Stage III (Batches 2 & 3) for target stress 80% UTS. 

 

Figure 5.31 Average loss in tendon pre-stress during corrosion period (80% 

UTS) - Batch 2 & 3 
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5.6.4.2.1 Summary of loss in tendon service stress (Batches 2 & 3) 

The results indicate that there is a loss in pre-stress due to corrosion. It is also 

evident that the loss of pre-stress increased as the degree of corrosion 

increased. Figure  5.32 shows the average losses in pre-stress in tendons with 

target pre-stress of 30% UTS and 80% UTS. At Stage II degree of corrosion, 

Stage II losses are not similar, the loss in stress in High Level (80%) is more 

than the loss in Low Level (30%), whereas Figure  5.33 indicates that there is a 

greater difference in loss of pre-stress due to corrosion Stage III. This indicates 

that the loss in pre-stress is more dependent on the degree of corrosion and 

less dependent on the initial pre-stress in the tendon. These results again show 

the same behaviour of the tendons in Batch 1 over the accelerated corrosion 

period. 

 

Figure 5.32 Average loss in pre-stress due to corrosion Stage II - Batch 2 & 3 
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Figure 5.33 Average loss in pre-stress due to corrosion Stage III - Batches 2 & 3 

Table 5.15 Residual service stress due to corrosion (Bath 2 & 3) 

 Corrosion 

stage 

Residual stress (MPa) 

 Target Service Stress 30% 

UTS 

Target Service Stress 80% 

UTS 

 Batch 2 Batch 3 Average Batch 2 Batch 3 Average 

  (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

Before 

Corrosion 

I 417 340 379 1126 1193 1159 

II 332 370 351 1174 1339 1257 

III 442 431 437 1211 1024 1118 

After 

Corrosion 

I 420 340 380 1127 1188 1157 

II 331 363 347 1167 1313 1240 

III 430 407 418 1164 997 1081 

 

The average results of the residual applied stress shown in Table  5.15 are 

plotted in Figure  5.34. The percentage of degree of corrosion represents the 

average of the each corrosion Stage, degree of corrosion 0 % represents Stage 

I, 3 % of corrosion represents Stage II and 6 % degree of corrosion represents 

Stage III. It is apparent that there is a greater decrease in pre-stress for 80% 

UTS than 30% UTS. There is also a larger divergence as the corrosion stage 

increases (Stage I-III) for 80% UTS compared to 30% UTS. 
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Figure 5.34 Relationship between degree of corrosion and different levels of 

pre-stress - Batches 2 & 3 

 Batch 4 5.6.5.3

In this section, Batch 4 is divided into two groups, Group 1 represents the three 

first specimens relating to Normal ICCP and the other three relate to 

Overprotection ICCP (Group 2). This division is due to the variation in the 

applied service stress and to give a better understanding of the behaviour of the 

tendons in each group (Table  5.16).  
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Table 5.16 Batch 4 galvanised tendons 

Batch Test Code Group 

Initial 

Stress 

Stress (MPa) 

Days 

(MPa) 61 62 63 64 65 66 

4 M-G-H-X-1 1 882 699 705 702 702 702 704 

 M-G-H-II-N-1 1 869 678 685 686 690 691 693 

 M-G-H-III-N-3 1 1063 678 676 669 668 668 669 

 M-G-H-X1-1 2 862 873 874 873 873 873 874 

 M-G-H-II-O-2 2 997 850 836 835 834 833 833 

 M-G-H-III-O-3 2 894 805 791 788 786 785 784 

Key: G-Galvanised, M-Mortar electrolyte, H-High level of pre-stress (800-1200MPa), I-Degree of 

corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage 

III (4-7%), O-Overprotection, X and X1-no corrosion and no ICCP, 1, 2, 3-Sample numbers. 

 

The Batch 4 data presented in Table  5.16 are shown graphically in Figure  5.35 

to Figure  5.38 to better understand the performance of the tendons. Figure  5.35 

compares the gross loss in pre-stress for Group 1 tendons with the different 

degrees of corrosion Stage I (0-1 %), Stage II (2-4 %) and Stage III (2-3 %) at a 

High Level of pre-stress (800-1200 N/mm2), 80% (UTS). Similarly, Figure  5.36 

shows the gross loss in pre-stress due to corrosion Stages I, II and III for Batch 

4, Group 2.  

Figure  5.37 and Figure  5.38 show the net loss in pre-stress due to corrosion of 

Stage II and Stage III (Batches 2 & 3) for target stress 80% UTS for Groups 1 

and 2 respectively. 
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Figure 5.35 Gross loss in tendon pre-stress during corrosion period (80% UTS) 

- Batch 4, Group 1 

 

Figure 5.36 Gross loss in tendon pre-stress during corrosion period (80% UTS) 

- Batch 4, Group 2 
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Figure 5.37 Net loss in tendon pre-stress during corrosion period (80% UTS) - 

Batch 4, Group 1 

 

Figure 5.38 Net loss in tendon pre-stress during corrosion period (80% UTS) - 

Batch 4, Group 2 
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5.6.4.3.1 Summary of loss in tendon service stress (Batch 4) 

The results indicate that there is a loss in pre-stress due to corrosion and also 

the loss of pre-stress increased as the degree of corrosion increased. The 

results of residual applied stress shown in Table  5.17 were plotted in 

Figure  5.39 and show a loss in pre-stress increase as the degree of corrosion 

increases. This indicates that the loss in pre-stress is more dependent on the 

degree of corrosion and less dependent on the initial pre-stress in the tendon. 

These results again show the same behaviour of the tendons in Batch 1 over 

the corrosion process period.  

Table 5.17 Residual service stress due to corrosion Batch 4 

 Corrosion stage Residual stress (MPa) 

 Target Service Stress 80% UTS 

 (%) (MPa)   

Before 

Corrosion  

I 874   

II 850   

III 805   

After 

Corrosion  

I 874   

II 833   

III 784   
 

 

Figure 5.39 Relationship between degree of corrosion and the loss in pre-stress 

(80% UTS) 
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 Comparison in loss of service stress between galvanised and 5.6.5.4

ungalvanised tendons 

From the above results of the loss in pre-stress over the corrosion test period 

for both galvanised and ungalvanised with the High Level of pre-stress, 

Figure  5.40 and Figure  5.41 show a comparison in the reduction in pre-stress of 

the ungalvanised and galvanised tendons with the different degree of corrosion 

Stage II and Stage III respectively. The loss in stress for both galvanised and 

ungalvanised with Stage I degree of corrosion exhibited a negligible change in 

pre-stress, therefore can be omitted. Both Figure  5.40 and Figure  5.41 show 

that the decline of ungalvanised pre-stress profile is more pronounced than the 

galvanised pre-stress profile. It can be seen that the loss in pre-stress in the 

ungalvanised tendons in both corrosion Stages II and III decline more than the 

loss in stress profile of the galvanised tendons. It is also noticeable that the 

different losses in pre-stress in galvanised and ungalvanised tendons with 

target stress 80 % UTS at Stage II degree of corrosion are broadly similar, while 

Figure  5.41 indicates that there is a large difference in loss of pre-stress 

resulting from Stage III corrosion. This indicates that the loss in pre-stress is 

more dependent on the degree of corrosion and less dependent on the initial 

pre-stress in the tendon. 

 

Figure 5.40 Net loss in galvanised and ungalvanised tendon pre-stress during 

corrosion period (Stage II) 
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Figure 5.41 Net loss in galvanised and ungalvanised tendone pre-stress during 

corrosion period (Stage III) 

The changes in pre-stress due to increasing corrosion are shown in Figure  5.42. 

The results show that the loss in pre-stress in the ungalvanised tendon with a 

High Level of pre-stress (80% UTS) declines more than the loss in pre-stress of 

the galvanised tendon. The decline in the loss in pre-stress for the galvanised 

tendon is recorded as 7MPa for Stage II corrosion and 21 MPa for Stage III 

corrosion. Similarly, a decline in the loss in pre-stress of ungalvanised tendon is 

recorded as 16 MPa for Stage II corrosion and 37 MPa for Stage III corrosion. 

Therefore, the change in the loss of pre-stress approximately doubles with the 

ungalvanised tendon compared with galvanised tendons. 
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Figure 5.42 Relationship between degree of corrosion and the average loss in 

pre-stress in galvanised and ungalvanised tendon (80% UTS) 

5.7   Conclusions 

In light of the findings reported in this chapter, the following conclusions can be 

made: 

 The anodic impressed current method was a practical method of 

generating and accelerating corrosion of both galvanised and 

ungalvanised pre-stressed tendons in the laboratory within a short 

timescale. 

 The appearance of the corrosion products in a saline solution was yellow, 

brown and black. In mortar it was seen as rust staining, followed by 

longitudinal cracking in the mortar surface, especially when a high degree 

of corrosion was induced.  

 For the galvanised tendons, the accelerated corrosion resulted in a loss of 

the zinc layer and the corrosion of the underlying steel.  

 A corrosion current density of 1 mA/cm2 was sufficient for inducing 

accelerated corrosion in all the specimens. 

 Localised corrosion was observed on the corroded tendons along with 

general corrosion. 
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 The gravimetric (weight loss) method is preferable for measuring the 

actual degree of corrosion. 

 Higher roughness characteristics were evident on the surface of the 

tendons at higher degrees of corrosion. 

 A higher degree of corrosion leads to a higher loss in pre-stress in highly 

pre-stressed tendons which is an additional loss that should be considered 

for at the design stage. 

 Loss in pre-stress in ungalvanised tendons with in both Stages I and II 

degree of corrosion is higher than the loss in pre-stressed galvanised 

tendon. 
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 Effect of Cathodic protection on tendon - Normal Protection Chapter 6 -

6 Effect of Cathodic protection on steel tendons 

  - Normal Protection 

6.1  Introduction 

Cathodic protection (CP) is a technique to control the corrosion of a metal 

surface by making it the cathode of an electrochemical cell. The simplest 

method to apply CP is by connecting the metal to be protected with another 

more easily corroded metal to act as the anode of the electrochemical cell [102]. 

Cathodic protection (CP) has been known for about 170 years. Primarily it has 

been used for protection of ordinary structural steel in soil and seawater, more 

seldom (and under special conditions) for steel exposed to fresh water. The 

application of this technology has increased considerably in recent decades and 

used for many reinforced concrete structures [103]. 

Cathodic protection can also reduce corrosion by minimizing the difference in 

potential between the anode and cathode. This is achieved by applying a 

current to the structure to be protected from some outside source. When 

enough current is applied, the whole structure will be at one potential; thus, 

anodic sites will not exist. Cathodic protection is commonly used on many types 

of structures, such as pipelines, underground storage tanks, locks, and ship 

hulls [103]. 

 

The protection potential and current density required to polarise any metal 

structure to this potential are the main factors affecting any cathodic protection 

system. Problems can occur in any cathodic protection system when the 

applied current density is not optimised. Too high an applied current density 

may be a problem because it can lead to cathodic over-protection which can be 

destructive to the protected metal structure, for example, due to hydrogen 

embrittlement of high strength steels; also the cost for running such a system is 

too high. Conversely, too low a value of applied current density can lead to 

corrosion [104]. 

 

Many corrosion engineers and technicians did not recognize that pre-stressing 

tendon, as a high tensile steel, was susceptible to hydrogen embrittlement (HE). 
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Unfortunately, HE of the pre-stressing wire from excessive CP appeared to 

have caused isolated ruptures. The most negative polarization (instant current-

off) potential on one line was –1,265 mV CSE, with rupture adjacent to an 

anode bed 12 months after CP activation. On the other, it was –1,330 mV with 

rupture occurring 18 years after activation. This pipeline was in an area of 

frequent lightning [105]. 

 

The steel in pre-stressed concrete can corrode in a similar manner in 

conventionally reinforced concrete. Cathodic protection can provide a method of 

controlling the corrosion in pre-stressed concrete structures after appropriate 

system design consideration [35]. Several techniques have been used 

successfully to apply CP to reinforced concrete structures. These techniques 

include impressed-current CP (ICCP) systems and galvanic or 'sacrificial' anode 

systems [106]. However, the selection of an appropriate CP anode system is a 

major consideration, whether for galvanic or impressed current applications. A 

mixed metal oxide (MMO) coated titanium mesh ribbon is used as an anode in 

the ICCP systems in this research work.  

 

In the light of the above and for the purpose of this research with taking the 

consideration of the effect of ICCP on high tensile steel with 1800MPa UTS, two 

scenarios for protection using impressed current were proposed and 

investigated, ICCP-Normal protection (ICCP-N) with an applied potential of -650 

to -750 mV vs Ag/AgCl/KCl 0.5M (SSC) and ICCP-Overprotection (ICCP-O) 

with and applied potential of -850 to -1300mV vs SSC. This chapter will 

investigate the effect of applying ICCP with Normal potential in both levels of 

pre-stressed galvanised and ungalvanised tendons, Low Level (300-400 MPa) 

and High Level (800-1200 MPa), exposed to three stages of corrosion I (0-1 %) 

, II (2-4 %) , and III (4-7 %).  

6.2  The objectives of the tests 

The objectives of this chapter are to investigate the following: 

 Determine the loss of applied service stress during the period of the 

application of  ICCP-N 
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 Apply ICCP-N and monitor its criteria in terms of the applied potential to 

the tendon, potential shift, instant off and potential decay according to the 

related standards 

 Identify any effects of the application of ICCP-N on the surface of tendons 

 Investigate the mechanical properties of the tendons 

 Investigate the type and form of fracture of the tendons 

6.3  Impressed Current Cathodic Protection (ICCP) 

Traditionally, CP exist as two types: galvanic and impressed current, although a 

third (a combination of the two) known as a hybrid system is also occasionally 

employed. ICCP of atmospherically exposed steel reinforced concrete 

structures has been used since the 1970s and it is a proven technique which is 

able to arrest ongoing corrosion and induce and sustain steel passivity [60]. The 

main principle of cathodic protection is applying an impressed current to induce 

negative steel polarisation [77] and, drive the steel potentials more negative 

than -850 mV (SCE), where the anodic reactions are thermodynamically 

restrained. Under these conditions the steel will be immune to corrosion [60]. 

For conventional buried structures protected by this method the anodes are 

installed in the soil around the structure to be protected and the DC power is 

supplied to the anodes through buried wires [107].  

 

The main difference between galvanic and impressed current systems is that 

the galvanic system relies on the difference in potential naturally generated 

between the anode and the structure; whereas the impressed current system 

uses an external power source to drive the currents shown in Figure  4.8. The 

external power source was traditionally a rectifier that converts ordinary AC 

power to DC although more efficient and reliable DC sources are now available. 

The current is carried in the external circuitry as electrons, free electrons do not 

exist in an electrolyte solution; therefore, the current must be carried by 

positively and negatively charged ions. The current flows through the electrolyte 

solution, equal to that in the external circuit (Figure  6.1). 
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Figure 6.1 Schematic diagram of the principle of ICCP 

Positively charged ions carrying the current electrochemical reactions at the 

electrodes are responsible for the mechanism of cathodic protection and for the 

transfer of charges from electron to ions at the electrode surface. Impressed 

current means that a current is impressed between the buried structure and an 

anode. 

 

Concrete is a highly heterogeneous porous material consisting of coarse and 

fine aggregates bound by hydrated cement paste. The resistivity of concrete, 

which can reach up to 20,000 Ωcm is very high when compared to other media 

(for eg: seawater has a resistivity of 30Ωcm) [108]. ICCP is widely used in 

concrete as it can deliver relatively high voltages compared to galvanic 

protection using, for example, surface-mounted anodes. As for any ICCP 

application, the protected metal and anode both need to be in contact through a 

common electrolytic medium to allow the passage and distribution of current 

and charges. Despite concrete having a high electrical resistance, it is able to 

pass charges through it due to the presence of pore solution which acts as the 

electrolyte. The basic components of an ICCP system in reinforced concrete 

has been described in Chapter 4 Section  4.7. The steel reinforcement is 

connected to the negative terminal of a power supply whereas the positive 

terminal is connected to the anode material. A real system in practical 

applications will normally include a number of other components such as 

electronic control units, junction boxes and monitoring equipment. 

DC Power supply 

-ve 
ions 

+ve 
ions 

Current Electrons 

Anode 

Pre-stressed tendon - Cathode 
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6.3.1  Anode 

A number of different anode types are used for ICCP systems. The choice of 

the anode is made according to circumstances and requirements, keeping in 

mind factors such as performance, costs, operating life, resilience/durability and 

ease of installation. Anodic materials can be broadly divided into consumable 

(eg: zinc and aluminium), semi-consumable (eg: graphite and silicon cast iron) 

and inert (eg: platinized titanium and mixed metal oxide [MMO] Titanium) 

anodes, with each type differing in their consumption rates. The anode used for 

ICCP application was MMO titanium mesh type 170 Anode Ribbon Mesh, see 

Section 4.9.2 and Table  4.3. The anode was mechanically connected to an 

electrical wire and was positioned below the concrete surface while pouring 

concrete. For ICCP application, the anode was connected to the positive 

terminal of a DC power source, with the tendon connected to the negative 

terminal.  

6.3.2  Current density requirement 

The current required for cathodic protection depends upon the metal being 

protected and the environment and the potential required to achieve adequate 

protection as demonstrated by recognised criteria. To achieve the protection 

potentials, current must flow from the anode to the structure being protected. 

The amount of current required to protect a given structure is proportional to the 

area of the structure that is exposed to the electrolyte. Therefore, current 

requirements are usually given as current densities in units of amperes or 

milliamperes (0.001 amperes) per square meter (or foot) of the exposed surface 

[109]. However, typical values of current densities used in practical scenarios 

(10-30mA/m2) do not cause loss of bond-strength to an extent that would cause 

concern. The reduction in bond-strength is attributed to the softening effects of 

concrete caused by the formation of soluble silicates near the steel resulting 

from the interaction of alkali hydroxides formed by cations (such as K+ and 

Na+) with calcium silicate hydrate in cement [56]. 

6.3.3  ICCP with hydrogen embrittlement 

ICCP can lead to hydrogen embrittlement of steel reinforcement in concrete, 

notably high strength pre-stressed steel, given that it is sufficiently cathodically 

polarized to very negative values. For steel in concrete, the predominant 
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cathodic reaction is normally the reduction of O2, however, a second cathodic 

reaction may occur involving the reduction of water, provided the potential is 

lowered below the hydrogen potential [110]: 

H2O + e- → Hads + OH-                   6.1) 

The adsorbed hydrogen atoms can further react to produce hydrogen gas or 

may dissolve into the metal: 

Hads + HHads → H2         ( 6.2) 

Hads → Hdis           ( 6.3) 

Although the hydrogen potential is not fixed on account of its dependency on a 

number of variables, a potential more positive than -900mV is generally 

regarded to have a low risk of hydrogen embrittlement for pre-stressed steel in 

concrete [50]. The atomic hydrogen formed can either combine to form 

hydrogen gas or can ingress into the steel and can adversely influence its 

mechanical properties and lead to brittle fracture, with higher-strength steel 

being more susceptible to this form of failure [110]. The mechanism of hydrogen 

embrittlement was discussed in Section 2.6.3.2. In this chapter, the potential 

applied is less negative than -950mV vs Ag/AgCl/KCl 0.5M and, the purpose is 

to understand the behaviour of the tendon under normal protection.  

6.4  Experimental Work 

To have a better understanding of the behaviour of the pre-corroded tendons 

with two levels of pre-stress (Low and High), an extended period test approach 

was adopted. Four Batches were tested with ICCP after accelerated corrosion 

was applied and before demoulding the specimens. For the purpose of the 

research and in terms of the application of ICCP, the specimens were divided 

into two main categories for applying ICCP, one Normal-protection where the 

applied potential ranged between -650 to -750 mV (SSC), the other Over-

protection where the applied potential ranged between -850 to -1300 mV (SSC). 

These ranges selected were based on the practical application of the ICCP. For 

this chapter, the performance of the pre-corroded tendons under ICCP-N were 

investigated (Table  6.1).  
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Table 6.1 Test programme 

Batch Test Code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Application 

 (%) 

2 M-U-L-X-1 I 0 None and uncorroded - Control 

 M-U-L-II-N-2 II 3.98 ICCP (Normal-Protection) 

 M-U-L-III-N-3 III 5.32 ICCP (Normal-Protection) 

 M-U-H-X-1 I 0 None and uncorroded - Control 

 M-U-H-II-N-2 II 2.25 ICCP (Normal-Protection) 

 M-U-H-III-N-3 III 4.05 ICCP (Normal-Protection) 

4 M-G-H-X-1 I 0 None and uncorroded - Control 

 M-G-H-II-N-2 II 3.48 ICCP (Normal-Protection) 

 M-G-H-III-N-3 III 4.36 ICCP (Normal-Protection) 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

 

Batch 2 investigated the effect of applying ICCP-N on ungalvanised tendons 

with low and high levels of pre-stress embedded in mortar, while Batch 4 

investigated the effect of applying ICCP-N on galvanised tendons with high level 

of pre-stress embedded in mortar. Table  6.2 shows the overall period of the 

application of ICCP Normal-protection in the tendons. 
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Table 6.2 ICCP Normal-protection  

Batch Test Code 

Degree of 

Corrosion (Stage) 

Actual Degree 

of Corrosion 

ICCP 

Period 

 

 (%) days hours 

2 M-U-L-X-1 I 0 367 8808 

 M-U-L-II-N-2 II 3.98 367 8808 

 M-U-L-III-N-3 III 5.32 367 8808 

 M-U-X1-1 I 0 553 13272 

 M-U-H-II-N-2 II 2.25 553 13272 

 M-U-H-III-N-3 III 4.05 553 13272 

4 M-G-X-1 I 0 137 3288 

 M-G-H-II-N-2 II 3.48 137 3288 

 M-G-H-III-N-3 III 4.36 137 3288 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

6.4.1  Specimen design, mortar mix, pre-tensioning and accelerated 

corrosion 

ICCP-N was applied to the pre-corroded specimens shown in Table  6.2. The 

specimen dimensions and mortar mix are described in Section  5.4.3. The 

compressive strength of the mortar for each Batch is also presented in 

Table  5.2, in Section 5.4.3.1. The pre-tensioning procedures and different level 

of applied service stress are described in Section  5.4.4. The corrosion process 

has been described in Section  5.5, where MMO Ti mesh was connected to the 

negative terminal of a D.C power supply, working as the cathode while the 

tendons were connected to the positive terminal of the D.C power supply and 

corrosion took place in both a saline solution containing 3.5% NaCI and mortar. 

The moisture of the mortar was maintained by water spraying on a daily basis. 

The current and potential were also recorded on a daily basis. For the purpose 

of the research, two identical wooden supports were manufactured in order to 

store additional specimens, as shown in Figure  6.2.  
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Wooden supports in position Mortar casting 

Figure 6.2 Wooden supports to facilitate storage of specimens 

6.4.2  Application of impressed current cathodic protection (ICCP) 

ICCP was applied for each specimen by connecting the pre-stressed tendon to 

the negative terminal and the mixed metal oxide (MMO) titanium mesh ribbon 

anode to the positive terminal of a D.C power supply. The length of each tendon 

exposed to ICCP-N is 32 cm. The principle of ICCP systems for reinforced 

concrete structures has previously been described in Chapter 4, Section  4.7. 

The system includes the following components: 

 DC power supply (traditionally a transformer rectifier system) 

 Inert anode (MMO Ti mesh ribbon) 

 Cathode system - the tendon bars 

 Electrolyte - the mortar 

 DC wiring between the anode, tendon (cathode), power supply and fitting 

 Monitoring probes, reference electrode type Ag/AgCl/KCl 0.5M 

 Digital voltage meter (DVM) 

 Data Logger - to record the strain readings during the application of ICCP 

 Monitoring and control system, often remotely operable 

An ICCP system for reinforced mortar has been established for analysing the 

distribution of protective potential and current. In this study, the DC power 

supply was a CPI manual power system, supplied by Cathodic Protection 

International Aps. The ICCP system was operated in the Construction Materials 

Laboratory, which ensured a stable environment of average 20°C and humidity 

of 60% ±5% (Figure  6.3) (a-c). Following installation of all the components of 

the ICCP, each system was connected to the power and monitoring equipment 

and powered up. In general there are two methods of controlling ICCP systems. 

One is that the output voltage is kept constant and the current is allowed to alter 

Wooden 

Frame 
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in order to maintain the set potential. The other method is to fix the current and 

allow the potential to float. In this research, the commonly employed former 

system of fixed potential was employed.  

 

 

(a) General view 

  

(b) Normal protection with low level of pre-stressed tendons 

  

(c) Normal protection with high level of pre-stresses tendons 

Figure 6.3 Setup of specimens under application of ICCP-Normal protection 
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6.4.3  Design criteria 

As discussed in Section  6.4.2, the first method, where the potential is kept 

constant and the current is allowed to float, was adopted. It is recommended 

that commissioning of the ICCP system should start at a low level of current 

density for the initial part of the commissioning period to avoid any adverse 

effects on the anode durability. Tests can be then carried out to determine what 

adjustments are needed to satisfy the operating criteria. The topic of using a 

standard criterion to assess the achievement of adequate protection by ICCP 

has been the subject of considerable debate. A number of different criteria have 

been proposed, various criteria for ensuring satisfactory protection of the 

reinforcement have been considered for reinforced structures. The major 

international institutions and standards including National Association of 

Corrosion Engineers (NACE) [111], [112], International Standard Organisation 

(ISO) [113], British Standards and European Standards [114], [115] and 

Australian Standards [116] publish criteria to be used for ensuring cathodic 

protection of metallic structures. Companies working in the oil, gas and water 

industries also publish their own standards (e.g. Shell). The degree of 

complexity between the standards varies considerably from a blanket approach 

of specifying the minimum protection potential to detailing minimum and 

maximum protection potentials and corrosion potentials under particular 

environmental conditions. The NACE recommended criteria are: 

 Polarization to a potential of -850 mV vs copper/copper sulfate reference 

electrode 

 A minimum of 100 mV polarization (determined by depolarisation/decay) 

 Voltage shift by 300 mV 

 A voltage at least equal to that corresponding to the beginning of the linear 

segment (Tafel segment) of an E-Logi curve 

 Measurement of a net protective current (ensuring current flow in single 

direction from electrolyte to structure) 

The current NACE Standard SP 0169-2007 [117] Section 6 emphasies the 

following CP criteria [118]: 

 -850 mV vs. saturated copper/copper sulphate reference electrode (CSE) 

with CP current applied, or -850 mV on-potential considering voltage drops 

(IR) 
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 -850 mV off-potential or polarized potential 

 100 mV cathodic polarization. 

Although the above criteria were applicable for steel buried in soil, similar 

criteria have been adopted for reinforced concrete. BS EN 12696 [77] for 

atmospherically exposed reinforced concrete structures has specified the 

following criteria: 

 An instant-off potential (measured between 0.1s and 1s after switching the 

DC circuit open) more negative than -720mV with respect to 

Ag/AgCl/0.5MKCl. 

 A potential decay over a maximum of 24h of at least 100mV from instant-

off. 

 A potential decay over an extended period (typically 24h or longer) of at 

least 150mV from the instant-off subject to a continuing decay and the use 

of reference electrodes (not potential decay sensors) for the measurement 

extended beyond 24 hours. 

The criterion of (100 to 150 mV) potential shift is the most widely recognised 

criterion to ensure adequate protection from a CP system. This criterion 

specifies that when the CP system is switched off, the instant-off potential (Eoff) 

measured at a time between 0.1 and 1 second and the potential after a certain 

period of time, e.g. 4 to 24 hours should be between -100 and -150mV. 

Therefore, in this research, this criterion was adopted as a means of monitoring 

and ensuring the effectiveness of the applied ICCP system. 

6.4.4  Polarisation and Depolarisation Criteria 

According to NACE SP0290, the requirement is for a minimum polarisation of 

100 mV from native potentials, or 100 mV depolarisation from an “Instant Off” 

potential (Eoff) reading. The term “Instant Off” reading is typically read between 

0.1 and 1.0 seconds after the DC power supply is interrupted. Readings at 

times less than 0.1 seconds often include spurious components that have 

nothing to do with the CP. After more than one second, the apparent 

depolarisation will be understated. Figure  6.4 provides a stylised diagram. 

Starting on the left with the base potential before CP is applied the polarisation 

is shown, whereby the steel potential is polarised in a negative, cathodic 

direction. About midway, the power supply is turned off and the potential shifts 

in a positive direction. The area between ‘CP Off’ and ‘Instant Off’ include IR 
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error and reactive transients resulting from interrupting the CP current. A point 

between 0.1 and 1 second is the true start of the depolarisation [119] . 

All normally encountered electrolytes are resistive. That being the case, Ohm’s 

Law, E = IR, tells us that when CP current (I) passes through the electrolyte (R) 

a voltage is produced (E). When the CP system is turned off, there can be 

reactive transients that occur from the collapsing magnetic field that surrounds 

the wires and rebars carrying the CP current. There can also be capacitive 

transients. Errors from CP current-generated IR and interruption transient 

currents must be addressed when measuring the corrosion potentials of 

embedded rebar and when applying DC corrosion rate test methods such as 

LPR techniques. 

 

Figure 6.4 Polarization-Depolarisation [119] 

Accurate measurements of rebar corrosion potentials should only reflect the 

potential across the rebar-concrete interface and not include these transient 

voltages. For reinforced concrete structures the transients are no longer a factor 

after 0.1 to 1.0 seconds.  

6.5  Results and discussion 

6.5.1  Visual observation 

Daily observation and data (Volts, Amps, Potential and ‘Instant-off’ steel 

potential) were recorded during the full period of applying ICCP-N. For 

ungalvanised tendons (Batch 2) for both Low and High levels of pre-stress, 

small yellow spots appeared on the surface of the mortar around the connection 



 

156 

of anode location as shown in Figure  6.5 (a-c) and Figure  6.6 (a-c). At the time 

corresponding to a current of 13mA applied to the MMO mesh anode, a 

gaseous and yellow liquid deposit appeared around the mesh. Concrete Society 

Technical Report No. 73 states that due to the electrochemical reactions, acid 

and oxygen is generated during operation at the surface of anodic commonly 

used for the cathodic protection of reinforced concrete. It has been stated that 

some anodes may also generate chloride depending on the environment [48]. 

Therefore, the yellow discharge observed at the MMO Ti anode and concrete 

interface is believed to result from acid generation [120]. In the case of the 

galvanised tendons (Batch 4), there was no sign of yellow spots (Figure  6.7). 
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(a) General view 

  

(b) Specimen M-U-L-II-N-2 (c) Specimen M-U-L-III-N-3 

Figure 6.5 Yellow spots on the mortar surface for ungalvanised tendons with 

Low Level of pre-stress 

 

 

 

Yellow spot Yellow spot 
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(a) General view 

  

(b) Specimen M-UG-H-II-N-2 (c) Specimen M-UG-H-III-N-3 

Figure 6.6 Yellow spots on the mortar surface for ungalvanised tendons with 

High Level of pre-stress 
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(a) General view 

  

(b) Specimen M-G-H-II-N-2 (c) Specimen M-G-H-III-N-3 

Figure 6.7 No yellow spots on the mortar surface for galvanised tendons with 

High Level of pre-stress 

6.5.2   Infinite Focus Microscope (IFM) 

After completing the application of the cathodic protection, the pre-load was 

released at one end by turning the mild steel bolt and thereby relieving the 

stress in the tendon. The stress was released in a controlled manner by 

gripping the wedge with a vice-grip to prevent rotational bond failure of the 

tendon in the gunite and subsequently dis-engaging the bolt sufficiently to leave 

a gap (~10mm) between the head of the bolt and wedge. 

The surface of the tendons was examined by Infinite Focus Microscope (IFM). 

The procedure is described in Chapter 4, Section  4.11.3. Figure  6.8 shows the 
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microstructure of the tendon surface using IFM with 5x magnification for 

ungalvanized tendons with Low Level of pre-stress with different degrees of 

corrosion. Figure  6.8 (a) represents the tendon before removing corrosion 

products and Figure  6.8 (b) shows the tendons after removing the corrosion 

products. It was found that the colour of the corrosion products on the surface of 

the tendons after applying ICCP-N was brown as shown in specimens M-U-L-II-

N-2 (Figure  6.8 (a)) and M-U-L-III-N-3 (Figure  6.8 (a)). Specimen M-U-L-II-O-2 

(Figure  6.8(b)) shows the damage to the steel caused by corrosion and this was 

assessed by profiling the pits on the surface of the tendon after the removal of 

the corrosion products. The presence of pitting corrosion indicates that the 

current was not distributed equally due to changes in the applied potential. The 

dimension of pitting was given in Chapter 5. On the other hand, pitting corrosion 

was virtually absent on the surface of specimen M-U-L-III-N-3 (Figure  6.8 (b)), 

showing that no apparent pitting was formed on the surface of the tendon. This 

damage is more related to the application of accelerated corrosion techniques 

rather than the application of ICCP-N. 
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Figure 6.8 Microstructure of ungalvanized tendons surface 

(a) 

(a) 

(b) 

(a) 

(b) 



 

161 

Figure  6.9 shows the microstructure of the tendon surface using IFM with 5x 

magnification for ungalvanised tendons with High Level of pre-stress and 

different degrees of corrosion. Figure  6.9 (a) represents the tendon before 

removing the corrosion products and Figure  6.9 (b) shows the tendons after 

removing the corrosion products. In this batch the colour of the corrosion 

products on the surface of the charged tendons after application of the ICCP-N 

appears pink due to the lighting used to illuminate the image. Specimens 

showed no apparent pitting was formed on the surface of the tendons and more 

uniform corrosion was observed. Again, there is no apparent effect on the 

surface of the tendons due to the application of ICCP-N. 
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Figure 6.9 Microstructure of ungalvanized tendons surface with High Level of 

pre-stress 

For the galvanised tendons with High Level of pre-stress, there is damage on 

the surface of the tendon caused by corrosion and there is pitting along the 

length as shown in Specimen M-G-H-II-N-2, (Figure  6.10 (b)) (shown by a red 

dashed area). Specimen M-G-H-III-N-3, (Figure  6.10 (b)) shows a damage on 

the surface of the tendon. This damage is caused by corrosion rather than the 

application of ICCP-N. 
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(b) 



 

162 

M
-G

-H
- 

X
-1

 

N
o

 C
o
rr

. 

N
o

 

IC
C

P
  

 

M
-G

-H
-I

I-
N

-2
 

B
e

fo
re

 

re
m

o
v
in

g
 

C
o

rr
. 

P
ro

d
u

c
ts

 

 
A

ft
e

r 

re
m

o
v
in

g
 

C
o

rr
. 

P
ro

d
u

c
ts

 

 

M
-G

-H
-I

II
-N

-3
 

B
e

fo
re

 

re
m

o
v
in

g
 

C
o

rr
. 

P
ro

d
u

c
ts

 

 

A
ft

e
r 

re
m

o
v
in

g
 

C
o

rr
. 

P
ro

d
u

c
ts

 

 

Figure 6.10 Microstructure of galvanised tendons surface with High Level of 

pre-stress 

6.5.3   Potential  

Table  6.3 shows the rest potential (Ecorr vs Ag/AgCl) of the tendon when no 

cathodic protection was applied. The rest potential of the tendon ranged from -

513mV to -670mV (Ag/AgCl).  
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Table 6.3 Potential before applying ICCP-N (Rest Potential) 

Batch Test Code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

Rest Potential before 

applying ICCP  

(Ag/AgCl/KCl 0.5M) 

   (%) Negative (mV) 

2 M-U-L-I-N-1 I 0 _ 

 M-U-L-II-N-2 II 3.98 -602 

 M-U-L-III-N-3 III 5.32 -581 

 M-U-H-I-1 I 0 _ 

 M-U-H-II-N-2 II 2.25 -513 

 M-U-H-III-N-3 III 4.05 -570 

4 M-G-H-I-1 I 0 _ 

 M-G-H-II-N-2 II 3.48 -670 

 M-G-H-III-N-3 III 4.36 -570 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

 

The power supply was switched on and the voltage adjusted until the steel 

potential reached the target negative potential -650 to -750mV for ICCP-N, then 

the "Eon" potentials were recorded as shown in Figure  6.11 and Figure  6.12 for 

ungalvanised tendons with Low Level and High Level of pre-stress respectively. 

As can be seen from these two figures, the potential started highly negative 

then decreased before stabilising at approximately 1000mV below the steel 

potential. This drop is due to the resistance of the mortar decreasing and also 

the cathode (pre-stressed tendon) becoming charged with more electrons. 

Figure  6.13 shows the 'ON' potential with time for galvanised tendons with High 

Level of pre-stress tendons. As can be seen, the initial potential is much more 

negative than for the ungalvanised due to the resistance of the galvanised 

tendons.  
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Figure 6.11 "ON" potential of ungalvanised tendons during applying ICCP-

Normal Protection, 30% UTS 

 

 

Figure 6.12 "ON" potential of ungalvanised tendons during applying ICCP-

Normal Protection, 80% UTS 
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Figure 6.13 "ON" potential of galvanised tendons during applying ICCP-Normal 

Protection, 80% UTS 

6.5.4  Monitoring of Condition and Performance 

During the overall period of applying ICCP-N to the tendons, some specimens 

were protected for 553 days. The following routine investigations and monitoring 

were carried out and the surveys and results are recorded on suitably designed 

data sheets for each task: 

 Monitoring and checking the wire connections of the ICCP system. 

 Visual check of each DC power supply. 

 Measuring of applied current (range 4 - 32 mA) and voltage (range 1.62 - 

4 V). 

 Recording potential using surface reference electrodes (Ag/AgCl/KCl 

0.5M).  

 Applying depolarisation (Instant-Off) for each reading and potential decay 

for 24 hours in two to three month intervals. 

 Checking and taking readings of the applied service stress via a 

datalogger.  

 Close visual inspection to the surface of the mortar and record any 

change. 
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 Instant-Off (Eoff) potential 6.5.4.1

The Instant-Off (Eoff) which is the potential of the tendons during the application 

of ICCP-N was recorded. Figure  6.14 and Figure  6.15 show the potential of the 

ungalvanised tendons with Low and High levels of pre-stress. Figure  6.16 

shows the potential of the galvanised tendons with High level of pre-stress.  
 

 

Figure 6.14 Instant-Off potential of ungalvanised tendons, 30% UTS 

 

Figure 6.15 Instant-Off potential of ungalvanised tendons, 80% UTS 
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Figure 6.16 Instant-Off potential of galvanised tendon, 80% UTS 

The ICCP-N was applied for a period of 8,808 hours for the ungalvanised 

tendon with Low Level pre-stress, 553 days for the ungalvanised tendons with 

High Level pre-stress tendons and 137 days for the galvanised tendons with 

High Level of pre-stress. The general trend of the ungalvanised tendon potential 

(Instant-Off) for both Low Level and High Level pre-stress with Stage I and II 

corrosion are the same. After around 150 days the potential became less 

negative and more steady as shown in Figure  6.14 and Figure  6.15. However, 

for the galvanised tendons, Figure  6.16, the potential stays at around the same 

level for 100 days and then becomes slightly less negative for the tendon with 

Stage II corrosion and more noble for the specimen with Stage III corrosion. 

This is due to less moisture in the specimen giving the mortar more resistance, 

thus the potential reached -530 mV vs SSC. 

  Effectiveness of ICCP-Potential decay (-100mV) 6.5.4.2

Based on CP criteria, the potential decay or the potential shift (ΔEoff) is the 

difference between instant-off (Eoff) and the potential after 4 to 24 hours. This 

potential decay was monitored, recorded and plotted in Figure  6.17 for 

ungalvanised tendons and Figure  6.18 for galvanised tendons.  
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Figure 6.17 Potential decay of ungalvanised tendons 

 

Figure 6.18 Potential decay of galvanised tendons 

The effectiveness of ICCP-N was examined by conducting a potential decay 

test, with the ICCP-N interrupted for 24 hours before it was switched on again. 

Based on the data collected, the potential decays were more than 100mV after 

4 hours for all monitoring events. According to the Concrete Society Technical 
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Report No 73, this demonstrates that an adequate level of cathodic protection 

has been achieved. 

6.5.5  Effect of ICCP-N on the applied service stress 

Surface wire vibrating strain gauges were installed on each tendon and 

changes in the applied service stress were monitored and recorded by a data 

logger. This is a long-term test to investigate the effect of ICCP-N on the 

performance of the tendons in terms of applied service stress and to measure 

any loss due to that effect. To calculate the contraction in the timber moulds for 

specimens with High Level of pre-stress, DEMEC pips were fixed to the top of 

the two-parallel longitudinal side faces (575x50x95 mm) at a gage length 

200mm as shown in Figure 6.19, and the contraction in the timber mould was 

measured using a 200mm strain gauge and the average strain is determined 

(Table 6.4). This strain is considered in the calculation of the total loss of the 

service stress as shown in Table 6.5 which shows the service stress from the 

start of the ICCP-N to its completion. 

  

Placing DEMEC pips at 200mm 

Figure 6.19 DEMEC pips placing for contraction measurements 

Table 6.4 Timber mould contraction (microstrain) 

Mould ID Total Strain 

 Face 1 Face 2 

Mould 1 268 474 

Mould 2 339 229 

Mould 3 229 134 

Mould 4 363 434 

Mould 5 435 55 

Mould 6 577 861 

Overall Average  367 

Two DEMEC pips 

placed on each side 
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Table 6.5 Effect of ICCP-N on the applied service stress 

Batch Test code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Period 

Service Stress 

 

Start Finish Loss  

   (%) (hrs) (MPa) (MPa) (MPa) (%) 

2 M-U-L-X-N-1 I 0 8808 424 366 58 14 

 M-U-L-II-N-2 II 3.98 8808 330 319 11 3 

 M-U-L-III-N-3 III 5.32 8808 436 424 12 3 

 M-U-H-X-1 I 0 13272 1131 1000 131 12 

 M-U-H-II-N-2 II 2.25 13272 1170 917 252 22 

 M-U-H-III-N-3 III 4.05 13272 1163 881 283 24 

4 M-G-H-X-1 I 0 3288 712 502 133 19 

 M-G-H-II-N-2 II 3.48 3288 700 560 63 9 

 M-G-H-III-N-3 III 4.36 3288 671 497 97 14 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

 

These data were plotted in Figure  6.20, Figure  6.21 and Figure  6.22 for the 

ungalvanised tendons and Figure  6.23 for the galvanised tendon. For the 

ungalvanised tendons, Figure  6.20 compares the gross loss in pre-stress of the 

tendons with the different corrosion Stages I (0-1 %), II (2-4 %) and III (4-7 %) 

and with Low Level of pre-stress over the period of ICCP-N application. Overall, 

the trend of the loss of stress of the tendon with Stage II degree of corrosion 

remains stable over the application of ICCP-N period with a total loss of just 3%, 

while the other gross loss for both tendons with Stages I and III degrees of 

corrosion have the same trend which started quite stable for 145 days then 

dropped gradually for 100 days to reach 350 MPa. Subsequently, both gross 

loss in tendons remain stable again to the end with a total stress loss 3 to 14 % 

for the tendons with Stage I and Stage II corrosion respectively.  

 

For the ungalvanised tendons with High Level of pre-stress, shown in 

Figure  6.21, the gross loss has gradually decreased over the total period for all 

three tendons. The total loss ranged in between 12 to 24%, this loss is more 

than the loss in tendons with Low Level of pre-stress, a comparison is given in 

Figure  6.22. For galvanised tendons with High Level of pre-stress, Figure  6.23 
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compares the gross loss in pre-stress of the tendons with the different corrosion 

Stages I, II and III over time. The results clearly indicate that there is a loss in 

pre-stress of the galvanised tendon over the entire test period. This loss in the 

service stress of the tendons have the same trend, decreased gradually at the 

start and then remaining quite stable. The total loss ranged between 9 to 19%, 

this percentage of pre-stress loss is more than the percentage loss of 

ungalvanised pre-stressed tendon, which was 3 to 14%. The Stage I tendons, 

although not subjected to corrosion or ICCP-N, do suffer a reduction in pre-

stress, perhaps as a result of compression in the timber moulds, relaxation or 

the laboratory environment. 

 

 

Figure 6.20 Service stress in the ungalvanised tendons over the ICCP-N period,  

Batch 2 (30% UTS) 
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Figure 6.21 Service stress in the ungalvanised tendons over the ICCP-N period, 

Batch 2 (80% UTS) 

 

Figure 6.22 Service stress in the ungalvanised tendons over the ICCP-N period, 

Batch 2 (30% & 80% UTS) 
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Figure 6.23 Service stress in pre-stressed galvanised tendon over the ICCP-N 

period, Batch 4 (80% UTS) 

 

Table  5.6 shows the residual service stress in both the ungalvanised and 

galvanised tendons under the effect of ICCP-N. The loss of service stress is 

plotted in Figure  6.24. The results show that as the degree of corrosion 

increases from Stage I through to Stage II, there is a more rapid loss of pre-

stress for the High Level stressed ungalvanised tendons from 131 MPa to 253 

MPa. In the galvanised tendons the loss is not as a severe with only 60 MPa 

being lost during Stage II corrosion and 98 MPa during Stage III. This indicates 

that the galvanised tendons under ICCP-N application have a different 

behaviour than the ungalvanised tendons. Also it was noticed that the degree of 

corrosion has an impact on the loss of stress particularly in the ungalvanised 

tendon, this means that the tendons subjected to higher degrees of corrosion 

will suffer higher losses which should be accounted for at the design stage as 

an additional loss.  
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Table 6.6 Residual service stress in the pre-corroded tendons under the effect 

of ICCP 

Corrosion 

Stage 

Residual Stress (MPa) 

Target Service Stress 80% UTS 

Ungalvanised  Galvanised 

 Start ICCP Finish ICCP Start ICCP Finish ICCP 

 (MPa) (MPa) (MPa) (MPa) 

I 1131 1000 712 579 

II 1170 917 700 637 

III 1163 881 671 573 

 

 

Figure 6.24 Relationship between Stages of corrosion and the loss in service 

stress in ungalvanised and galvanised tendons (80% UTS) during the ICCP-N 

period 

6.5.6  Effect of ICCP-N on the mechanical properties of the tendon  

Tensile tests were conducted on both the ungalvanised and galvanised tendons 

after ICCP-N was applied for 3288 and 13272 hours respectively. The chemical 

compositions of both the ungalvanised and galvanised tendons are presented in 

Table  4.2. Samples of the as-received tendons were randomly selected and 

tested using a tensile test machine (ESH600). The tensile tests were conducted 



 

175 

in accordance with BS EN ISO 6892-1:2016 [90]. Subsequently, the mechanical 

properties of the tendons were determined. The mechanical properties of the 

as-received tendons are presented in Table  6.7. These mechanical properties 

were used to compare with the properties of those tendons which were exposed 

to pre-corrosion and ICCP-N application. The mechanical properties of the 

tested tendons are described in Table  6.8.  

Table 6.7 Tensile properties of the as-received tendons 

Tendon 

Type 

Test 

Code 

Mean 

Original 

diameter 

Proof 

Strength  

Tensile 

Strength 

Young's 

Modulus 

Elon-

gation 

Breaking 

Strength 

(mm) (MPa) (MPa) (GPa) (%) (MPa) 

G
a

lv
a

n
is

e
d
 

U-R-1 5.33 1761 1990 214 2.22 1517 

U-R-2 5.31 1725 1978 212 1.10 1472 

U-R-3 5.32 1723 1982 217 2.20 1546 

U-R-4 5.32 1718 1970 216 4.90 1524 

U-R-5 5.30 1673 1978 216 2.50 1541 

Average 5.32 1720 1979 215 2.58 1520 

U
n

g
a

lv
a

n
is

e
d

 

G-R-1 5.34 1683 1941 208 2.00 1557 

G-R-2 5.35 1690 1946 211 2.00 1641 

G-R-3 5.34 1680 1952 207 3.00 1572 

G-R-4 5.38 1652 1939 212 3.00 1558 

Average 5.35 1676 1945 209 2.50 1582 

Key: U-Ungalvanised, G-Galvanised, R- As-Received, 1-5 Sample Numbers 

 

Stress-strain curves were determined from three samples for each type of 

tendon as shown in Figure  6.25 for ungalvanised as-received tendons and 

Figure  6.26 for galvanised as-received tendons. The elastic and plastic stages 

are clearly shown and the mechanical properties are almost identical for each 

type of tendon. These stress-strain curves indicate that the tendons are a 

ductile steel with high tensile strength.  
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Figure 6.25 Stress-Strain curve for as-received ungalvanised tendons 

 

Figure 6.26 Stress-Strain curve for as-received galvanised tendons 

After completing the tensile tests, all mechanical properties were recorded and 

images of the fracture modes were obtained as shown in Figure  6.27 (a-f). 

These images show a cup-cone failure mode which is characteristic of ductile 

steel. 
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(a) Ungalvanised tendon, UG-R-1 (b) Galvanised tendon, G-R-1 

  

(c) Ungalvanised tendon, UG-R-2 (d) Galvanised Tendon, G-R-2 

 
 

(e) Ungalvanised tendon, UG-R-3 (f) Galvanised Tendon, G-R-3 

Figure 6.27 Fracture modes for ungalvanised and galvanised as-received 

tendons 

Figure 6.28 (a-d) shows the different location of the tendon failures and was 

named Bottom Edge (close or at the grip), Upper middle (between top grip and 

the middle), Lower middle (between bottom edge and the middle) and Middle 

(within the gauge length). 
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(a) Edge failure (b) Upper middle failure 

  

(c) Bottom edge failure (d) Middle failure 

Figure 6.28 Location of failure mode 
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Table 6.8 Mechanical properties of the tendons after applying CP-Normal Protection 

Batch Test Code 

Target 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Period 

Mean 

original 

diameter 

Ultimate 

Tensile 

Strength  

UTS 

Proof 

Stren-

gth 

Elong

-ation 

Necking Young's 

Modulus 

Tough

-ness 

(X106) 

Failure 

location 

 
(%) (hours) (mm) (MPa) (MPa) (%) (mm2) (MPa) J/m3  

2 M-U-L-X-1 I 0 8808 5.28 1989 1733 2.50 33.00 213 125 T-edge 

 M-U-L-II-N-2 II 3.98 8808 5.34 1968 1688 2.60 29.00 220 100 Middle 

 M-U-L-III-N-3 III 5.32 8808 5.34 1963 1734 1.50 23.00 216 70 U-middle 

 M-U-H-X-1 I 0 13272 5.35 1974 1745 2.00 27.00 212 95 B-edge 

 M-U-H-II-N-2 II 2.25 13272 5.35 1989 1726 3.50 29.00 210 110 U-middle 

 M-U-H-III-N-3 III 4.05 13272 5.36 1937 1747 2.50 32.00 205 69 U-middle 

4 M-G-H-X-1 I 0 3288 5.39 1930 1668 2.74 31.00 208 100 Middle 

 M-G-H-II-N-2 II 3.48 3288 5.40 1953 1720 3.55 29.00 213 75 U-middle 

 M-G-H-III-N-3 III 4.36 3288 5.39 1952 1693 3.50 30.00 212 74 Middle 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers, T-edge - Top edge, B-edge - Bottom edge, U-middle - 

Upper middle, L-middle - Lower middle. 
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 Summary and Discussion 6.5.6.1

Table  6.9 provides a summary for Young's Modulus and 0.2% proof strength, 

while Table  6.10 compares the UTS and elongation. As can be seen from the 

obtained results, there is no significant difference in mechanical properties for 

either type of tendon. However, the elongation in both types of tendon 

(Table  6.10) has been affected by ICCP-N as there is difference compared with 

the as-received specimens as will be discussed as follows: 

 

Stress-Strain Curves 

According to the obtained results and associated figures (Figure  6.29 to 

Figure  6.35), the stress–strain curve of both the ungalvanised and galvanised 

tendons show elasto-plastic deformation before fracture. This is a typically 

ductile steel failure. The stress-strain relationship for the as-received 

ungalvanised and galvanised tendons are given in Figure  6.25 and Figure  6.26 

respectively. As seen in these figures, the stress-strain relationship is similar for 

both ungalvanised and galvanised tendons. The modulus of elasticity, yield 

strength and ultimate tensile strengths were similar. However, the stress-strain 

relationship for the tendons exposed to pre-corrosion and ICCP-Normal 

protection show slightly different behaviour in terms of elongation and 

toughness. These stress–strain curves of the tendon show a decrease in 

ductility (Figure  6.29 to Figure  6.32). The calculations of Young's modulus, 0.2% 

proof strength, ultimate tensile strength, elongation and toughness based on the 

BS EN ISO 6892-1:2016 [90]. 

 

Young's Modulus  

It can be seen in the figures relating to stress-strain (Figure  6.25 to Figure  6.35) 

for the as-received and tested tendons that the Young's Modulus is similar. For 

Batch 2, Young's Modules ranged between 210 to 220 MPa and for Batch 4 

was ranged between 208 to 213 MPa. ICCP-N appears to have no effect in the 

elastic stage properties of these tendons. 

 

0.2% Proof Strength 

Proof strength of both the ungalvanised and galvanised tendons was not 

affected by ICCP-Normal application. As can be seen from Figure  6.29, there is 
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a slight decrease in yield strength with the ungalvanised tendon with Low Level 

pre-stress and Stage II corrosion by 2% (32 MPa) but there is no significant 

variation in the proof strength for the remaining ungalvanised tendons exposed 

to ICCP-N. For galvanised tendons there is a slight increase in proof strength 

with High Level pre-stress and Stage II corrosion by 3% (44 MPa). There is no 

significant variation in the proof strength for the remaining the galvanised 

tendons exposed to ICCP-N, as shown in Figure  6.32. 

 

Ultimate Tensile Strength 

The tensile strength variation between ungalvanised and galvanised tendons 

exposed to the ICCP-N is very limited. There was no significant reduction in 

tensile strength for either type of tendon. The tensile strength losses for both 

types did not exceed 1% for all tendons except a single ungalvanised specimen 

with High Level pre-stress and Stage III corrosion where decreased by 2 % UTS 

(42 MPa). 

 

Elongation 

Based on the results obtained, the elongation ratio is shown in Figure  6.29 to 

Figure  6.34. These figures demonstrated that both ungalvanised and galvanised 

tendons exposed to pre-corrosion show a variation in elongation behaviour 

under ICCP-N. The elongation ratios difference for ungalvanised tendons are in 

the range 1.5 to 3.5 % but comparing to the as-received tendons the range is 

increases to between 3.3 to 42 %. However, for galvanised tendons, the 

elongation ratios are higher. It is in the range 2.7 to 3.6 % compared with the 

as-received galvanised tendons where the range is increased by between 10 to 

42 %. According to these results, elongation capacity of ungalvanised tendons 

is lower than galvanised tendons .  

 

Toughness 

The ability of a metal to deform plastically and to absorb energy in the process 

before fracture is termed toughness. The fracture energy of materials is defined 

by the toughness concept [121]. The toughness values of the ungalvanised and 

galvanised tendons used in these experimental studies are given in Table  6.10. 

According to the test results, the toughness values of both types of tendons 

decreased after ICCP-N application in the range 69 to 95 x 106 J/m3 for 
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ungalvanised and 75 x 106 J/m3 for galvanised. This decrease is in the range 3 

to 9% and between 26 to 0% for ungalvanised and galvanised tendons 

respectively compared with the toughness of the as-received tendons. 

Although, the toughness values decreased in both type of tendons, both types 

still behave as ductile steels. 
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Table 6.9 Summary of mechanical properties (Young's modulus, 0.2% Proof strength and Ultimate tensile strength) 

Batch Test code 

Young's Modulus 0.2% Proof Strength   Ultimate Tensile Strength (UTS) 

Tested 
Tendons 

As-
received 
Ave. * 

 Difference 
Tested 
Tendons 

As-
received 
Ave. * 

 Difference 
Tested 
Tendons 

As-
received 
Ave. * 

 Difference 

(MPa) (MPa) 
(MP
a) 

(%) (MPa) (MPa) (MPa) (%) (MPa) (MPa) (MPa) (%) 

2 M-U-L-X-1 213 215 -2 -1 1733 1720 13 1 1989 1980 9 0 

 M-U-L-II-N-2 220 215 5 2 1688 1720 -32 -2 1968 1980 -12 -1 

 M-U-L-III-N-3 216 215 1 0 1734 1720 14 1 1964 1980 -16 -1 

 M-U-H-X-1 212 215 -3 -1 1745 1720 25 1 1974 1980 -6 0 

 M-U-H-II-N-2 210 215 -5 -2 1726 1720 6 0 1990 1980 10 1 

 M-U-H-III-N-3 205 215 -10 -5 1747 1720 27 2 1937 1980 -42 -2 

4 M-G-H-X-1 208 210 -1 -1 1668 1676 -8 0 1930 1945 -15 -1 

 M-G-H-II-N-2 213 210 3 2 1720 1676 44 3 1953 1945 9 0 

 M-G-H-III-N-3 213 210 3 1 1693 1676 17 1 1952 1945 7 0 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of 

corrosion Stage I (0-1%), II-Degree of corrosion Stage I (2%), III-Degree of corrosion Stage I (2-3%), N-Normal protection, O-Overprotection, X&X1-No corrosion 

and NO CP, 1, 2, 3-Sample numbers. 

* Average of as-received tendons results 
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Table 6.10 Summary of mechanical properties (Elongation, Toughness and Ductility) 

Batch Test code 

Elongation Toughness Ductility 

Tested 
Tendons 

As-
received 
Ave. * 

 Difference 
Tested 
Tendon
s 

 As-
received 
Ave. * 

 Difference 
Tested 
Tendons 

As-
received 
Ave * 

 Difference 

(%) (%) (%) (%) 
(J/m3) 
x106 

(J/m3) 
x106 

(J/m3)
x106 

(%) (%) (%) (%) (%) 

2 M-U-L-X-1 2.5 2.6 -0.1 -3.3 125 98 28 28 6.0 4.73 1.3 27.0 

 M-U-L-II-N-2 2.6 2.6 0.0 0 100 98 3 3 4.7 4.73 0.0 -0.5 

 M-U-L-III-N-3 1.5 2.6 -1.1 -42.0 70 98 -28 -28 3.3 4.73 -1.4 -30.2 

 M-U-H-X-1 2.0 2.6 -0.6 -22.6 95 98 -3 -3 4.5 4.73 -0.2 -4.8 

 M-U-H-II-N-2 3.5 2.6 0.9 35.4 110 98 13 13 5.3 4.73 0.5 11.1 

 M-U-H-III-N-3 2.5 2.6 -0.1 -3.3 69 98 -29 -29 3.2 4.73 -1.5 -32.3 

4 M-G-H-X-1 2.7 2.5 0.2 9.6 100 100 0 0 4.8 5.41 -0.7 -12.2 

 M-G-H-II-N-2 3.6 2.5 1.1 42.0 75 100 -25 -25 3.6 5.41 -1.9 -34.4 

 M-G-H-III-N-3 3.5 2.5 1.0 40.0 74 100 -26 -26 3.5 5.41 -1.9 -35.3 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of 

corrosion Stage I (0-1%), II-Degree of corrosion Stage I (2%), III-Degree of corrosion Stage I (2-3%), N-Normal protection, O-Overprotection, X&X1-No corrosion 

and NO CP, 1, 2, 3-Sample numbers. 

* Average of as-received tendons results 
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Figure 6.29 Stress-strain curves for the ungalvanised tendons, ICCP-N, 30% UTS 

 

 

Figure 6.30 Stress-strain curves for the ungalvanised tendons, ICCP-N, 80% UTS 
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Figure 6.31 Comparison of stress-strain curves for all ungalvanised tendons, 

ICCP-N, 30% & 80% UTS 

 

 

Figure 6.32 Comparison stress-strain curves for galvanised tendons, ICCP-N, 

80% UTS 
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Figure 6.33 Comparison between ungalvanised and galvanised stress-strain 

curves, ICCP-N, 80% UTS, Stage I corrosion 

 

 

Figure 6.34 Comparison between ungalvanised and galvanised stress-strain 

curves, CP-N, 80% UTS, Stage II corrosion 
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Figure 6.35 Comparison between ungalvanised and galvanised stress-strain 

curves, ICCP-N, 80% UTS, Stage III corrosion 

Ductility 

Ductility measures the amount of plastic deformation (strain) to the fracture. 

Figure  6.36 shows the measurement of the ductility, where a line parallel to the 

elastic slope is drawn from the fracture point to intersect the x-axis, thereby 

giving the value of ductility. Table  6.10 shows the values of ductility for different 

types of tendons with different level of stress and degree of corrosion. 

Comparison has been made with the ductility of the as-received samples to 

investigate the effect of ICCP-N. Results show that the ductility percentage 

decreased after applying the ICCP-N in the range 0.5 to 32 % for the 

ungalvanised tendons with Low Level and High Level of pre-stress and between 

12 to 35 % for galvanised tendons with High Level of pre-stress. It was also 

observed that the decrease of ductility is greater with specimens exposed with 

Stage III corrosion for ungalvanised and galvanised tendons. This indicates that 

both types of tendon with Stage III corrosion were affected by the degree of 

corrosion and the application of ICCP-N. This reduction in ductility for both 

types of tendon appears to be caused by additional corrosion rather than the 

application of ICCP-N as previously observed elsewhere [122].  
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Figure 6.36 Ductility measurement 

  Fracture surface and hydrogen embrittlement 6.5.6.2

In order to evaluate the susceptibility to hydrogen embrittlement, embrittlement 

an ratio (𝐼𝑥) was defined as follows [123]: 

𝐼𝑥 =  (𝑋𝑎𝑖𝑟 − 𝑋𝑐𝑎𝑡ℎ𝑜𝑑𝑒) 𝑋𝑎𝑖𝑟 × 100⁄            Equation 6.4 

Where: 

X: mechanical property 

Ix: embrittlement ratio of mechanical property "x" 

air: mechanical property with no polarisation 

cathode: mechanical property under polarisation 

For Equation (6.4), a high embrittlement ratio indicates a high influence of 

hydrogen as previously determined elsewhere [123].  
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Figure 6.37 Relationship between normal CP potential and hydrogen 

embrittlement ratio, Low Level pre-stress and, ungalvanised tendons 

 

Figure 6.38 Relationship between normal CP potential and hydrogen 

embrittlement ratio, High Level pre-stress and, ungalvanised tendons 
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Figure 6.39 Relationship between normal CP potential and hydrogen 

embrittlement ratio, High Level pre-stress and, galvanised tendons 

 

The embrittlement ratios of ultimate tensile strength and 0.2% proof strength in 

Figure  6.37 to Figure  6.39 have very similar trends. This indicates that hydrogen 

has little or no effect on both ultimate strength and proof strength. The 

embrittlement ratio of all mechanical properties was low for the ungalvanised 

tendon with Low Level of pre-stress and Stage I corrosion as shown in 

Figure  6.37. However, in both ungalvanised and galvanised tendons with High 

Level of pre-stress and Stage I corrosion, embrittlement ratios were slightly 

greater. At higher degrees of corrosion, the absolute ratio of elongation, 

reduction in area and breaking strength became high for ungalvanized tendons 

with Low Level of pre-stress, while with high degree of corrosion they were 

increased. However, for galvanised tendons with High Level of pre-stress the 

ratio was less for breaking strength and increased more for elongation. An 

increase in ratio of elongation indicates high susceptibility to hydrogen [124].  

 

In order to investigate further, the fractured specimens were removed from the 

test machine and cleaned by dust removal to produce a clean fracture surface. 

Fracture surfaces were observed at different magnifications using the scanning 

electron microscope (SEM) to investigate the failure mechanism under tensile 
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loading and to investigate any possible influence of hydrogen embrittlement. 

The SEM was used to examine the surface characteristics and evaluate the 

metallurgical information including the analysis of the phase microstructure. The 

SEM operating principle was described in Chapter 4 Section  4.11.1.1 and the 

settings, including magnifications for each type of images of the SEM is listed in 

Table  4.6. To investigate the hydrogen effect on the fracture mode, the 

microstructure and the fracture mode were compared between the Control 

tendon (As-received tendon with zero pre-stress, corrosion and ICCP) and pre-

stressed tendons exposed to the three stages of corrosion (I, II and III) and to 

ICCP-Normal protection (ICCP-N) in the range of potential of -650 to -750mV vs 

SSC. Hydrogen was introduced in these tendons through cathodic charging by 

applying a current to the target potential (Normal protection -650 to -750mV 

SSC). Figure  6.40 (a-f) shows the fracture modes of the as-received 

ungalvanised tendons and Figure  6.41 (a-f) shows the fracture modes of the as-

received galvanised tendons.  

Referring to From Figure  6.40 (f) it is apparent that the tendons exhibited a 

failure resembling a partial cup and cone type fracture, which is a typical feature 

of ductile failure. Similarly, Figure  6.41 (f) shows the same fracture mechanism. 

For ungalvanised tendons, Figure  6.40 (d) obtained under powerful 

magnification, shows depressions or dimples, while Figure  6.40 (e) also shows 

small dimples (identified by yellow dashed circles). These fracture mechanisms 

are caused by a coalescence of pores, supporting that the fracture is ductile 

[125]. 

For the galvanised tendon, Figure  6.41 (d) shows dimples (identified by yellow 

dashed circles) and shows a quasi-cleavage fracture (identified by a red dashed 

circle) [126]. The microstructure in Figure  6.41 (e) shows dimples and small 

dimples. These fractures again indicate that the fracture mechanism is ductile 

[125], [126]. 
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Ungalvanised as-received tendon - the 
whole fracture surface (Face A) 

Ungalvanised as-received tendon - the 
microstructure at the centre (Face A) 

  

Ungalvanised as-received tendon - the 
whole fracture surface (Face A) 

Ungalvanised as received tendon - the 
microstructure at the centre (Face B) 

 

 

Ungalvanised as-received tendon - the 
microstructure at the edge of the tendon 

(Face B) 
Fracture mode with necking stage 

Figure 6.40 SEM micrographs and images showing the fracture mode of the  

as-received ungalvanised tendon 

(a) 

(d) (c) 

(b) 

(f) 

D2 

D1 

(e) 
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Galvanised as received tendon - the 
whole fracture surface (Face A) 

Galvanised as-received tendon - the 
microstructure at the centre (Face A) 

  

Galvanised as-received tendon - the 

whole fracture surface (Face B) 

Galvanised as-received tendon - the 
microstructure at the centre (Face B) 

 

 

Galvanised as-received tendon - the 
microstructure at the edge of the tendon 

(Face B) 

Fracture mode with necking stage 

Figure 6.41 SEM micrographs and images showing the fracture mode of the  

as-received galvanised tendon 

D2 

D1 

(a) 

(e) 

(d) (c) 

(b) 

(f) 
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For the Batch 2, ungalvanised tendons with Low level of pre-stress as shown in 

Figure  6.42 (a-c), Figure  6.43 (a-c) and Figure  6.44 9 (a-c) all samples at 

different corrosion stages show cup-cone character and necking. Under 

powerful magnification, the dimples are present in the microstructure which 

indicates that the fracture surfaces were purely ductile. 

 

 

(a) M-U-L-I-N-1 

Fracture cup-cone type 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.42 SEM images for ungalvanised tendon (M-U-L-I-N-1), 30% UTS 
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(a) M-U-L-II-N-2 

Fracture with cup-cone type 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.43 SEM images for ungalvanised tendon (M-U-L-I-N-2), 30% UTS 

 

(a) M-U-L-III-N-3 

Fracture with partial cup-cone type 

  

(b) The whole fracture surface (c) The microstructure at centre 

 Figure 6.44 SEM images for ungalvanised tendon (M-U-L-III-N-3), 30% UTS 
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For Batch 2, ungalvanised with High Level of pre-stress, as shown in 

Figure  6.45 (a), Figure  6.46 (a) and Figure  6.47 (a) all fractures are cup-cone 

type. The microstructures show both small dimples and large, deep dimples 

(identified by red arrows) for specimen M-U-H-II-N-2 (Figure  6.46 (c)) and 

specimen SM-U-H-III-N-3 (Figure  6.47 (c)) and coalescence and connection of 

dimples on the fracture surface (red dashed area). 

 

 

(a) M-U-H-I-N-1 

Fracture cup-cone type 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.45 SEM images for ungalvanised tendon (M-U-H-I-N-1), 80% UTS 
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(a) M-U-H-II-N-2 

Fracture cup-cone type 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.46 SEM images for ungalvanised tendon (M-U-H-II-N-2), 80% UTS 

 

(a) M-U-H-III-N-3 

Fracture with partial cup-cone type 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.47 SEM images for ungalvanised tendon (M-U-H-III-N-3), 80% UTS 
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For Batch 4, galvanised tendons with High Level of pre-stress, as shown in 

Figure  6.49, Figure  6.50 and Figure  6.51, the fracture modes for specimens M-

G-H-I-N-1 (Figure  6.49 (a-c)) and M-G-H-II-N-2 (Figure  6.50 (a-c)) are cup-cone 

in character while specimen M-G-H-III-N-3 (Figure  6.51 (a)) exhibited brittle and 

shear (identified by white arrow) type fracture mode (Figure  6.51 (b) [127]. The 

microstructures show dimples in all of them and in addition specimen M-G-H-III-

N-3 (Figure  6.51 (c)) shows a mixture of ductile (identified by yellow circle) and 

brittle (identified by red boxes) modes of fracture [125], [127]. 

 

In the light of the above, there is no damage to the steel due to the application 

of ICCP-N. This can be seen from the type of fracture modes. The only severe 

damage has been observed in specimen M-G-H-III-N-3 (Figure  6.51), but this 

damage is more likely caused by corrosion as shown in Figure  6.48, where the 

roughness (Ra) is 6.17 μm (Table  5.7) and mass loss is 4.1% (Table  5.11). 

Therefore, ICCP-N has had little or no effect on the pre-stresses tendons. 

Comparison is made between ICCP-N and ICCP-O in Chapter 7.  

 

 

Figure 6.48 IFM image (50X magnification, 1mm length, 6x2 image) for 

specimen M-G-H-III-3 
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(a) M-G-H-I-N-1 

Fracture cup-cone type 

 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.49 SEM images for galvanised tendon (M-G-H-I-N-1), 80% UTS 

 

(a) M-G-H-II-N-2 

Fracture of near cup-cone type 

 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.50 SEM images for galvanised tendon (M-G-H-II-N-2), 80% UTS 
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(a) M-G-H-III-N-3 

Shear type fracture 

 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 6.51 SEM images for galvanised tendon (M-G-H-III-N-3), 80% UTS 

6.5.7  Conclusion  

 Small yellow spots appeared on the surface of the mortar around the 

connection of anode location in the ungalvanised tendon, while in the case 

of the galvanised tendons there is no sign of yellow spots.  

 The ICCP was applied for an extended period of 13,272 hours for 

ungalvanised and 3,288 hours for galvanised tendons. When the 

application of the cathodic protection-Normal protection (ICCP-N) system 

was interrupted for 24 hours, the potential decays were more than 100mV 

after 4 hours for all tendons, demonstrating that an adequate level of 

protection has been achieved. 

 The results clearly indicate that there is a loss in pre-stress in both the 

ungalvanised and galvanised tendons over the entire test period. It was 

also observed that the degree of corrosion has an impact on the loss of 

stress particularly in the ungalvanised tendons. This indicates that the 

ungalvanised tendons subjected to higher degrees of corrosion will suffer 

higher losses which should be accounted for as an additional loss which 

may be counteracted by adding more tendons at the design stage. This 
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loss of service stress can be from combination of degree of corrosion and 

the application of ICCP-N. 

 Overall, there was no significant effect of ICCP-N on the strength of the 

tested tendons. The ultimate tensile strength and the 0.2% proof strength 

for all tendons in each type of tendon were similar. Typically the design 

safety factor is set to a maximum level of stress at approximately ⅔ proof 

strength for structural engineering components. Although the ductility has 

been reduced by the application of the ICCP-N, the fracture occurred after 

reaching the ultimate strength in each type of tendon. 

 The embrittlement ratio indicates that hydrogen generated by ICCP-N has 

no effect on either ultimate or proof strengths for either tendon types. 

However, for galvanised tendon with High Level of prestress, the ratio was 

less for breaking strength and increased more for elongation.  

 All as-received specimens exhibited a ductile fracture with necking and 

cup and cone fracture surface. SEM images of the fracture surface of the 

ungalvanised tendons indicates that ductile mode failures occurred, while 

the galvanised tendon showed that two failures occurred with, one by a 

ductile mode and the other a combination of ductile and brittle. 
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 Effect of Cathodic protection on steel tendons Overprotection Chapter 7 -

 

7 Effect of Cathodic Protection on Steel Tendons 

  - Over Protection 

7.1  Introduction 

In Chapter 6, Section  6.1, the importance of applying ICCP for controlling or 

mitigating the corrosion of the steel and improving the environment surrounding 

the steel has been discussed. Two regimes were introduced in this research 

work regarding the effect of ICCP in pre-stressed tendons. The first scenario 

applied ICCP with potentials as recommended by most of the standards, named 

normal protection (ICCP-N). The other scenario purposely applied ICCP over 

the threshold with a potential (Instant-Off) range between -850 to -1300mV vs 

SSC, named here as ICCP overprotection (ICCP-O), in order to have a better 

understanding of the effect of ICCP in pre-stressed tendons in terms of loss in 

service stress, mechanical properties and the concern of the risk of hydrogen 

embrittlement. Hydrogen can be electrochemically generated for a long period 

and, absorbed by the steel under a high level of stress. To get a better 

understanding of the behaviour of the tendon, this chapter will examine and 

discuss the effects of ICCP-O on the pre-stressed tendons. In addition, one 

batch of samples included unstressed tendons and non-corroded, both 

galvanised and ungalvanised, and were exposed to cathodic protection (CP) 

with a high potential ranging between -1000 to -1200mV vs SSC.  

7.2  The objectives of the tests 

The purpose of the planned tests is to investigate the following parameters as a 

result of applying ICCP overprotection (ICCP-O): 

 Observe changes on the surface of the mortar 

 Determine the loss of applied service stress 

 Investigate the surface of the tendons 

 Identify the criteria in terms of the applied potential, potential shift, instant 

off and potential decay in accordance with design criteria 

 Investigate the mechanical properties of the tendons with regards to the 

strength and risk of Hydrogen embrittlement  

 Analyse the type and form of fracture modes of the tendons 
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In addition, comparison between the application of ICCP-N and ICCP-O are 

made. 

7.3  Impressed Current Cathodic Protection (ICCP) 

The principle of the ICCP was described in Chapter 4, Section  4.7 and the 

components of the ICCP system was also described in Chapter 6, Section  6.3.  

7.4  Experimental works 

To have a better understanding of the effect of ICCP-O on the pre-corroded 

tendons with different degree of corrosion and with Low and High Level of pre-

stress, a long period test approach was adopted. Three Batches were tested 

under ICCP-O after accelerated corrosion was applied and before dismantling 

the moulds. Batch 3 investigated the effect of ICCP-O on the ungalvanised 

tendon with both Low Level and High Level of pre-stressed embedded tendons 

and Batch 4 investigated the effect of ICCP-O on galvanised tendons with High 

Level of pre-stress. For the purpose of the research, an additional batch was 

introduced, Batch 5 for both types of tendons (galvanised and ungalvanised) 

which were neither stressed nor corroded and submerged in a saline solution of 

3.5% NaCl. This was done to purposefully apply a high potential of ICCP-O in 

the range between -850 to -1300mV vs Ag/AgCl (Table  7.1).  

Table 7.1 Test Programme 

Batch Test Code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Application 

   (%)  

3 M-U-L-X1-1 I 0.0 None and uncorroded - Control 

 M-U-L-II-O-2 II 3.9 ICCP - Overprotection 

 M-U-L-III-O-3 III 6.5 ICCP - Overprotection 

 M-U-H-X1-1 I 0.0 None and uncorroded - Control 

 M-U-H-II-O-2 II 2.0 ICCP - Overprotection 

 M-U-H-III-O-3 III 4.0 ICCP - Overprotection 

4 M-G-H-X1-1 I 0.0 None and uncorroded - Control 

 M-G-H-II-O-2 II 3.4 ICCP - Overprotection 

 M-G-H-III-O-3 III 4.1 ICCP - Overprotection 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 
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Table 7.1 (cont.) Test Programme 

Batch Test Code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Application 

   (%)  

5 5-UG-O-1 N/A N/A ICCP - Overprotection 

 5-UG-O-2 N/A N/A ICCP - Overprotection 

 5-UG-O-3 N/A N/A ICCP - Overprotection 

 5-G-O-1 N/A N/A ICCP - Overprotection 

 5-G-O-2 N/A N/A ICCP - Overprotection 

 5-G-O-3 N/A N/A ICCP - Overprotection 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

Table 7.2 shows the overall period of the application of ICCP overprotection in 

tendons. 

Table 7.2 ICCP Overprotection  

Batch Test code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Period 

 

   (%) (days) (hours) 

3 M-U-L-X1-1 I 0.0 221 5304 

 M-U-L-II-O-2 II 3.9 221 5304 

 M-U-L-III-O-3 III 6.5 221 5304 

 M-U-H-X1-1 I 0.0 221 5304 

 M-U-H-II-O-2 II 2.0 221 5304 

 M-U-H-III-O-3 III 4.0 221 5304 

4 M-G-H-X1-1 I 0.0 137 3288 

 M-G-H-II-O-2 II 3.4 137 3288 

 M-G-H-III-O-3 III 4.1 137 3288 

5 5-UG-O-1 N/A N/A 488 11712 

 5-UG-O-2 N/A N/A 488 11712 

 5-UG-O-3 N/A N/A 488 11712 

 5-G-O-1 N/A N/A 488 11712 

 5-G-O-2 N/A N/A 488 11712 

 5-G-O-3 N/A N/A 488 11712 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 
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7.4.1  Specimens design, mortar mix, pre-tensioning and accelerated 

corrosion 

ICCP-O was applied to the pre-corroded specimens as stipulated in Table  7.2. 

The specimen's dimensions and mortar mix are described in Section  5.4.3. The 

compressive strength of the mortar for each batch is also presented in Table  5.2 

in Section 5.4.3.1. The pre-tensioning procedures and different levels of applied 

service stress are described in Section  5.4.4. The corrosion process has been 

described in Section  5.5, where mixed metal oxide (MMO) titanium mesh ribbon 

was connected to the negative terminal of a D.C power supply, working as the 

cathode while the tendons were connected to the positive terminal of a D.C 

power supply. Corrosion took place in both a saline solution containing 3.5% 

NaCl and mortar without adding sodium chloride. The samples were kept moist 

by spraying water on a daily basis. The current and potential were monitored 

and recorded on a daily basis.  

 

  

(a) Specimens pre-stressed & ready for 

casting 

(b) Specimens cast 

Figure 7.1 ICCP-O specimens pre-stressed and cast 

7.4.2  Application of impressed current cathodic protection (ICCP) 

The application of ICCP has been previously described in Chapter 6, 

Section  6.4.2. A DC power supply with high DC Voltage (60V) was used to 

provide a high potential. Due to the requirements of the laboratory in terms of 

safety, the connections of the wires were protected by a plastic tube 

(Figure  7.3). Two types of DC power supply were provided to generate the 

necessary voltage for the target potential. One type was used for the pre-

stressed tendons (Figure  7.2 (a)) and the other one was a CPI manual power 
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system, supplied by Cathodic Protection International Aps., for the non stressed 

tendons within the saline solution (Figure  7.2 (b)). The method used for applying 

ICCP-O is the same method used in applying ICCP-N, where the current is 

allowed to float until the target potential is obtained and then maintained at a 

constant value.  

 

  

(a) DC power supply (b) CPI manual power system 

Figure 7.2 Power supplies to generate the target potential 

Figure  7.3 (a, b ,c, d and e) shows the test set-up for the pre-stressed and pre-

corroded ungalvanised and galvanised specimens, while Figure  7.4 (a, b, and c) 

shows the test set-up for unstressed ungalvanised and galvanised specimens. 
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(a) Test set-up 
 

  

(b) Ungalvanised with Low Level of pre-

stress under ICCP-O 

(c) Ungalvanised with High Level of pre-

stress under ICCP-O 

  

(d) Test set-up (e) Galvanised tendons with High Level 

of pre-stress under ICCP-O 

Figure 7.3 Set-up of specimens under the application of ICCP overprotection 

Plastic tube for 

safety reasons 
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(a) Test Set-up using CPI power supply system 

 

  

(a) Unstressed ungalvanised tendons (b) Unstressed galvanised tendons 

Figure 7.4 Set-up of unstressed Ugalvanised & Galvanised tendons under 

application of ICCP-O 

7.4.3  Design criteria 

For the purpose of the test, the applied potential was more than the practical 

recommended limits and the criteria stated in Section   6.4.3 were adopted.  

7.4.4  Polarization and Depolarization Criteria 

The effectiveness of the application of ICCP-O was determined by interrupting 

the rectifier (DC) between 0.1 to 1.0 seconds to take ‘Instant Off’ readings. The 

polarisation and depolarisation principle and criteria were discussed in 

Section  6.4.4. 
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7.5  Results and discussion 

7.5.1  Visual observation 

Daily observation and data (Volts, Amps, Potential and Instant-Off steel 

potential) were recorded during the overall period of applying ICCP-O. For 

ungalvanised tendons (Batch 3) for Low Level of pre-stress with Stage II and 

Stage III corrosion, yellow spots appeared on the surface of the mortar on the 

opposite side to the connection, above the anode location. The spot size is 

about 5 cm long and 1.5 cm wide as shown in Figure  7.5 (a-c) The spot area 

remained as described until the end of the test.  

 

For ungalvanised tendons (Batch 3) for High Level of pre-stress with Stage II 

corrosion, yellow spots appeared on the surface of the mortar along the anodic 

zone about 5 cm long and 1 cm wide, this spot increased in size, the length 

reached 10 cm long and 1.5 cm wide after 411 days of applying ICCP-O as 

shown in Figure  7.6 (b-e). For the tendon with Stage III corrosion, it was noticed 

that the spot increased in length to about 14 cm long and 1.5 cm wide after 165 

days of applying ICCP-O. This spot further increased along the whole length of 

the anode after 411 days of applying ICCP-O. In general, the size of the yellow 

spot in the tendons with High Level of pre-stress is greater than in the tendons 

with Low Level of pre-stress. These yellow spots appear to have occurred due 

to acid generation from the lack of mortar cover for the experimental tests. In 

practice, the tendon is embedded within the concrete with sufficient cover to 

provide protection to the anode material. 

 

Figure  7.7 (b-e) shows the yellow spots for the galvanised tendons (Batch 4). 

Overall, the size and shape of the yellow spot remained the same for both 

degrees of corrosion at Stage II and Stage III. For the tendon with Stage II 

corrosion, the spot was 3 cm long and 1 cm wide and for the tendon with Stage 

III corrosion, the spot was distributed along the anode in different sizes, 

(Figure  7.7 (b, e)). The area for both remained approximately the same until the 

end of the test. 
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(a) Test Set-up 
 

  

(b) ICCP-O after 176 days, Stage II Corr. (c) ICCP-O after 176 days, Stage III Corr. 

  

(d) ICCP-O after 245 days, Stage II Corr. (e) ICCP-O after 245 days, Stage III Corr. 

Figure 7.5 Yellow spots on the mortar surface for ungalvanised tendons with 

Low Level of pre-stress 

 

Yellow spot 

 

Yellow spot 
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(a) Test Set-up 
 

  

(b) ICCP-O after 165 days, Stage II Corr. (c) CCP-O after 165 days, Stage III Corr. 

  

(d) ICCP-O after 411 days, Stage II Corr. (e) CCP-O after 411 days, Stage III Corr. 

Figure 7.6 Yellow spots on the mortar surface for ungalvanised tendons with 

High Level of pre-stress 
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(a) Test Set-up 

  

(b) ICCP-O after 132 days, Stage II Corr. (c) ICCP-O after 132 days, Stage III 

Corr. 

  

(d) ICCP-O after 154 days, Stage II Corr. (e) ICCP-O after 154 days, Stage III 

Corr. 

Figure 7.7 Yellow spots on the mortar surface for galvanised tendons with High 

Level of pre-stress 

 

Yellow spot 
Yellow spot 
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7.5.2  Infinite Focus Microscope (IFM) 

After completing the application of ICCP-Overprotection, the surface of the 

tendons were examined using Infinite Focus Microscopy (IFM). The principle of 

the IFM was discussed in Chapter 4, Section  4.11.3. Figure  7.8 shows the 

microstructure of the tendon surface using IFM with magnification 5X for 

ungalvanized tendons with Low Level of pre-stress with different degrees of 

corrosion. The (a) samples is represents the tendon before removing corrosion 

products and (b) samples show the tendons after removing the corrosion 

products. It was found that the colour of the corrosion products on the surface of 

the charged tendons after applying ICCP-O was a black colour, this formed in 

the absence of oxygen with water providing the source of hydrogen as shown in 

specimens M-U-L-II-O-2 (Figure  7.8 (a)) and M-U-L-III-O-3 (Figure  7.8 (a)). 

Specimen M-U-L-II-O-2 (Figure  7.8 (b)) shows the damage to the steel caused 

by corrosion and this was assessed by profiling the pits on the surface of the 

tendon after the removal of the corrosion products. The presence of pitting 

corrosion indicates that the current was not distributed equally due to changes 

in the applied potential. The dimension of pitting was given in Chapter 5. On the 

other hand, pitting corrosion was virtually absent on the surface of specimen M-

U-L-III-O-3 (Figure 7.8 (b)), showing that no apparent pitting was formed on the 

surface of the tendon.  
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Figure  7.8 Microstructure of ungalvanized tendon surface 
 

(a) 

(b) 
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Figure 7.8 (cont.) Microstructure of ungalvanized tendon surface 

 

Figure  7.9 shows the microstructure of the tendon surface using IFM with 

magnification 5X for ungalvanized tendons with High Level of pre-stress with 

different degrees of corrosion. In this batch the colour of the corrosion products 

on the surface of the charged tendons after application of the ICCP-O was less 

black in colour. Specimens showed no apparent pitting on the surface of the 

tendons, more uniform corrosion was observed. Specimen M-U-L-III-O-3 

(Figure 7.9 (b)), showed no apparent pitting but there is damage due to 

corrosion on the surface (identified by yellow dashed rectangle). 
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Figure  7.9 Microstructure of ungalvanized tendon surface with High Level of 

pre-stress 

For the galvanised tendons with High level of pre-stress, there is damage on the 

surface of the tendon caused by corrosion and there is pitting along the length 

(a) 

(b) 

(b) 

(a) 

(a) 

(b) 
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as shown in specimen M-G-H-II-O-2 (Figure  7.10 (b)). Specimen M-G-H-III-O-3 

(Figure  7.10 (b)) shows a small group of pits (identified by red dashed area). 

This damage is either due to corrosion or application of ICCP-O or both. 
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Figure 7.10 Microstructure of galvanized tendon surface with High Level of pre-

stress 

For Batch 5 samples as shown in Figure 7.11, there is no visible damage on the 

surface of both type of tendons due to the application of ICCP-O only. 
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Figure  7.11 Microstructure of ungalvanised & galvanized tendon surface 

(a) 

(a) 

(b) 

(b)   
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Figure 7.11 (cont.) Microstructure of ungalvanised & galvanized tendon surface 

7.5.3  Potential 

The rest potential Ecorr vs SSC of the tendons when no cathodic protection was 

applied is shown in Table  7.3. Potential of the tendons ranged between -513mV 

to -670mV vs SSC.  

Table 7.3 Potential before applying ICCP-O (Rest Potential) 

Batch Test Code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

Rest Potential before 

applying ICCP-O 

(Ag/AgCl/KCl 0.5M) 

   (%) (-mV) 

3 M-U-L-X1-1 I 0.0 NA 

 M-U-L-II-O-2 II 3.9 500 

 M-U-L-III-O-3 III 6.5 580 

 M-U-H-X1-1 I 0.0 NA 

 M-U-H-II-O-2 II 2.0 470 

 M-U-H-III-O-3 III 4.0 470 

4 M-G-H-X1-1 I 0.0 NA 

 M-G-H-II-O-2 II 3.4 450 

 M-G-H-III-O-3 III 4.1 425 

5 5-UG-O-1 N/A N/A 525 

 5-UG-O-2 N/A N/A 525 

 5-UG-O-3 N/A N/A 525 

 5-G-O-1 N/A N/A 503 

 5-G-O-2 N/A N/A 503 

 5-G-O-3 N/A N/A 503 
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The aim was to generate more negative potentials than the recommended 

potential limit identified by various standards. The voltage was adjusted until the 

steel potential was somewhere between -850 to -1400mV. The voltage was 

then maintained constant at 60V for the specimens with mortar electrolyte and 

at 8V for unstressed specimens in the saline solution (3% NaCl) and the 

potentials "Eon" were recorded.  

Overall, for pre-stressed ungalvanised and galvanised tendons, the required 

potential gradually becomes more negative throughout the period of the test. It 

was also noted that the required potential for tendons with Stage II corrosion 

was more negative than the potential for tendons with Stage III corrosion. It is 

shown in Figure  7.12 and Figure  7.13 for ungalvanised tendons with Low Level 

and High Level pre-stress respectively, that the potential shifts more negative 

up to about 100 days to reach the target steel potential, then becomes more 

stable giving a potential difference from the start in the range -4,000 to -15,000 

mV for Low Level of pre-stress with Stage II and Stage III corrosion 

respectively. The potential in the ungalvanised tendons with High Level of pre-

stress is more negative and ranged between 7,000 to 9,300mV for Stage II and 

Stage III corrosion respectively.  

Figure  7.14 shows the required potential for the galvanised tendons. This 

required potential is more negative than the potential for ungalvanised tendons. 

This is because the zinc's natural potential is much more negative than the steel 

(Figure  7.15), in addition the mortar provides resistance as well. As can be seen 

in Figure  7.14, the start potential in the galvanised tendon is higher than the 

ungalvanised tendons due to the higher natural potential of the galvanising zinc. 

Figure  7.15 shows the different behaviour of the required potential for the 

unstressed tendon, which remain relatively stable over the test period. This is 

apparently due to the tendon not being exposed to both stress and corrosion, 

plus the electrolyte is a saline solution where the resistance is very low.  
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Figure 7.12 "ON" potential of ungalvanised tendon during application of ICCP-

Overprotection, 30% UTS 

 

 

Figure 7.13 "ON" potential of ungalvanised tendon during application of ICCP-

Overprotection, 80% UTS 
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Figure 7.14 "ON" potential of galvanised tendon during application of ICCP-

Overprotection, 80% UTS 

 

 

Figure 7.15 "ON" potential of un-stressed galvanised & ungalvanised tendons 

during application of ICCP-Overprotection 
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7.5.4  Monitoring of Condition and Performance 

During the overall period of application of ICCP-O to the tendons, specimens 

had ICCP-O applied for up to 11,712 hours (488 days). The following monitoring 

was carried out and the results were recorded for each task: 

 Monitoring and checking the wire connections of the ICCP system. 

 Visually checking each DC power supply. 

 Measuring of applied current (range 14 - 38 mA) and voltage (range 56 - 

60mV). 

 Recording potential using surface reference electrodes (Ag/AgCl/KCl 

0.5M).  

 Applying depolarisation (Instant-Off) for each reading and potential decay 

for 24 hours in two to three month intervals. 

 Checking and taking reading of the applied service stress via strain 

gauges and a datalogger.  

 Conducting close visual inspections of the surface of the mortar and 

recording any change. 

 Instant-Off (Eoff) potential 7.5.4.1

The Instant-Off (Eoff) value which provides the potential of the tendons during 

the application of ICCP were recorded. Figure  7.16 and  Figure  7.17 show the 

potential of the ungalvanised tendons with Low Level and High Level of pre-

stress respectively. Figure  7.18 shows the potential of the galvanised tendons 

with High Level of pre-stress, while Figure  7.19 shows the potential of 

unstressed galvanised and ungalvanised tendons. 
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Figure 7.16 Instant-Off potential of ungalvanised tendons, 30% UTS 

 

 

Figure 7.17 Instant-Off potential of ungalvanised tendons, 80% UTS 
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Figure 7.18 Instant-Off potential of galvanised tendons, 80% UTS 

 

 

Figure 7.19 Instant-Off potential of Un-stressed galvanised tendons, 80% UTS 

The ICCP-O was applied for a period of 5304 hrs (221 days) for the 

ungalvanised tendons with both Low Level and High Level of pre-stress, 3288 

hrs (137 days) for the galvanised tendons with High Level of pre-stress and 

11712 hrs (488 days) for unstressed galvanised tendons. The general trend of 
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the ungalvanised tendon potentials (Instant-Off) for both Low Level and High 

Level pre-stress with Stage I and II corrosion are similar. After 50 days the 

potential became less negative and relatively more steady as shown in 

Figure  7.16 and Figure  7.17. However, the potential for both levels of pre-stress 

is slightly less negative for the tendons with Stage II corrosion than for the 

potential of the tendons with Stage III corrosion. For galvanised tendons the 

potential remains steady for most of the test period as shown in Figure  7.18. For 

the unstressed tendons, although the potential of the galvanised tendon 

decreased negatively to about 30 days, the general trend for both types of 

tendon are the same. It was noticed that the potential of the unstressed 

galvanised tendon is more negative than ungalvanised tendon as shown in 

Figure  7.19.  

 Potential decay (-100mV) 7.5.4.2

Based on the CP criteria discussed in Section  6.4.3, the potential decay or the 

potential shift (ΔEoff) is the difference between instant-off (Eoff) and the potential 

after 4 to 24 hours. This potential decay was monitored, recorded and as there 

was no significant variation with time, a representative example is plotted in 

Figure  7.20 for ungalvanised tendons, Figure  7.21 for galvanised tendons and 

Figure  7.22 for unstressed galvanised and ungalvanised tendons. 

 

Figure 7.20 Potential decay of ungalvanised tendons 
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Figure 7.21 Potential decay of galvanised tendons 

 

Figure 7.22 Potential decay of unstressed galvanised & ungalvanised tendons 

 

The effectiveness of ICCP-O was confirmed by potential decay, the ICCP-O 

was interrupted for 24 hours before it was run again. Based on the data 

collected, the potential decays were greater than 100mV after 4 hours for all 

monitoring events (see Figure  7.20 to 7.22). According to the Concrete Society 
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Technical Report No.73, this demonstrates that an adequate level of protection 

has been achieved.  

7.5.5   Effect of ICCP-O on the applied service stress 

Chapter 5, Section 5.4.4 showed the setup of the vibrating wire strain gauges 

installed on each tendon to monitor changes in the applied service stress due to 

the application of ICCP-N. For this Chapter, the aim is to observe the behaviour 

of the tendons under the ICCP-O over a long period of time. To calculate the 

contraction in the timber moulds for specimens with High Level of pre-stress, 

DEMEC pins were placed on the top of the two-parallel longitudinal side faces 

(575x50x95 mm) at a gauge length 200mm as shown in Figure 7.23. The 

contraction in the timber mould was measured using a 200 mm strain gauge 

and the average strain determined (Table 7.4). This strain is taken into account 

in the calculation of the total loss of the service stress as shown in  

Table 7.5 which shows the loss of service stress for ICCP-O throughout the 

monitoring period. 

  

Figure 7.23 Monitoring contraction of timber moulds 

Table 7.4 The average timber mould contraction (strain) 

Mould ID Total microstrain 

 Face 1 Face 2 

Mould 1 268 474 

Mould 2 339 229 

Mould 3 229 134 

Mould 4 363 434 

Mould 5 435 55 

Mould 6 577 861 

Overall Average  367 

Two DEMEC pips 

placed on each side 
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Table 7.5 Effect of ICCP-O on the applied service stress 

Batch Test code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree 

of 

Corrosion 

ICCP 

Period 

Service Stress 

 

Start Finish Loss  

   (%) (hrs) (MPa) (MPa) (MPa) (%) 

3 M-U-L-X1-1 I 0.00 5304 340 329 12 2 

 M-U-L-II-O-2 II 3.96 5304 362 338 24 7 

 M-U-L-III-O-3 III 6.52 5304 404 377 27 7 

 M-U-H-X1-1 I 0.00 5304 1192 1153 39 3 

 M-U-H-II-O-2 II 2.06 5304 1305 989 316 24 

 M-U-H-III-O-3 III 4.03 5304 991 863 128 13 

4 M-G-H-X1-1 I 0.00 3288 875 842 33 4 

 M-G-H-II-O-2 II 3.40 3288 832 718 114 14 

 M-G-H-III-O-3 III 4.10 3288 783 694 89 11 

5 5-UG-O-1 N/A N/A 11712 N/A    

 5-UG-O-2 N/A N/A 11712 N/A    

 5-UG-O-3 N/A N/A 11712 N/A    

 5-G-O-1 N/A N/A 11712 N/A    

 5-G-O-2 N/A N/A 11712 N/A    

 5-G-O-3 N/A N/A 11712 N/A    

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level 

of pre-stress (800-1200MPa), L-Low level of pre-stress (300-400MPa), I-Degree of corrosion 

Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), 

N-Normal protection, O-Overprotection, X and X1-no corrosion and no ICCP, R-As-received 

samples, 1, 2, 3-Sample numbers. 

 

These data are plotted in Figure  7.24, Figure  7.25 and Figure  7.26 for the 

ungalvanised tendons, Figure  7.27 for the galvanised tendon. For the 

ungalvanised tendons, and after 119 days from the completion of pre-stressing 

and accelerating corrosion, Figure  7.24 compares the gross loss in pre-stress of 

the tendons with the different stages of corrosion, Stage I (0-1%), II (2-4%) and 

III (4-7%) and with Low Level of pre-stress over the period of application of 

ICCP-O. The presented results is results presented after Overall, the gross loss 

trend of stress in the tendon with Stage I corrosion remains stable over the 

ICCP-O period with a total loss of just 2%, while the gross loss for tendons with 

Stages II and III degrees of corrosion have the same trend which started 
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relatively stable for the first 40 days or so and then dropped gradually for 10 

days to reach 325 MPa. Following this, the gross loss in tendons remain roughly 

stable to the end of the monitoring period with a total stress loss of 7 % for the 

both tendons with Stage II and Stage III corrosion.  

For the ungalvanised tendon with High Level of pre-stress, overall, the gross 

loss has gradually decreased over the total period for both tendons as shown in 

Figure  7.25. The total stress loss ranged between 3 to 24%, this loss is more 

than the loss in tendons with Low Level of pre-stress (Figure  7.26). However, 

the gross losses in stress for the tendon with Stage I degree of corrosion is less 

at 3% (39 MPa). For galvanised tendons with High Level of pre-stress, 

Figure  7.27 compares the gross loss in pre-stress with the different stages of 

corrosion Stages I, II and III over time. The results indicate that there is a loss in 

pre-stress of the galvanised tendons over the entire test period. These losses 

have the same trend, decreasing gradually over the whole test period and 

ranging between 4 to 14%. This percentage of pre-stress loss is less than the 

percentage loss for the ungalvanised pre-stressed tendons. 

 

 

Figure 7.24 Service stress in pre-stressed ungalvanised tendon over the    

ICCP-O period, Batch 3 (30% UTS) 
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Figure 7.25 Service stress in pre-stressed ungalvanised tendon over the   

ICCP-O period, Batch 3 (80% UTS) 

 

 

Figure 7.26 Service stress in pre-stressed ungalvanised tendons over the  

ICCP-O period, Batch 3 (30% & 80% UTS) 

 

 



 

230 

 

Figure 7.27 Service stress in pre-stressed galvanised tendons over the ICCP-O 

period, Batch 4 (80% UTS) 

 

Table  7.6 shows a summary of the residual service stress in both the 

ungalvanised and galvanised tendons under the effect of ICCP-O and this is 

plotted in Figure  7.28. The results show that as the degree of corrosion 

increases from Stage I through to Stage II. There is a sharp increase in loss of 

pre-stress for the High Level pre-stressed ungalvanised tendon to 300 MPa, 

while in the galvanised tendon, in general, shows less loss than the 

ungalvanised tendon, the loss increasing to 50 MPa in Stage II of corrosion. 

This indicates that the galvanised tendon behaviour under ICCP-O application 

has a similar trend but lower magnitude compared to the ungalvanised tendon. 

Also it was noticed that the degree of corrosion has impacted in the loss of 

stress particularly in ungalvanised tendon. This means that the tendons 

subjected to higher degrees of corrosion will suffer higher losses which should 

be accounted for at the design stage as an additional loss.  
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Table 7.6 Residual service stress in the pre-corroded tendons under the effect 

of ICCP-O 

Corrosion Stage Residual Stress (MPa) 

Target Service Stress 80% UTS 

Ungalvanised  Galvanised 

 Start ICCP Finish ICCP Start ICCP Finish ICCP 

 (MPa) (MPa) (MPa) (MPa) 

I 1192 1153 875 842 

II 1305 989 832 718 

III 991 863 783 694 

 

 

Figure 7.28 Relationship between stages of corrosion and the loss in service 

stress in the ungalvanised and galvanised tendons (80% UTS) over the ICCP-O 

period 

7.5.6  Effect of ICCP-O on the mechanical properties of the tendon 

Tensile tests were conducted for both the ungalvanised and galvanised tendons 

after ICCP-O was run for 3288 to 5304 hours and 11712 hours for the as-

received samples. The chemical compositions of both ungalvanised and 

galvanised tendons are presented in Table 4.2. Samples of the as-received 

tendons were randomly selected and tested using a tensile test machine 
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(ESH600). The tensile tests were conducted in accordance to BS EN ISO 6892-

1:2016 [63]. Subsequently, the mechanical properties of the tendons were 

determined. The mechanical properties of the as-received tendons are 

presented in Chapter 6, Table 6.6. These mechanical properties of the as-

received tendons were used as a control to compare to those tendons exposed 

with pre-corrosion and ICCP-O application. Stress-Strain curves were plotted 

for three samples of each type of tendon as shown in Figure 6.25 for the 

ungalvanised as-received tendons and Figure 6.26 for the galvanised tendon. 

The mechanical properties of the as-received samples were also discussed in 

Chapter 6, Section 6.5.6. After completing the tensile tests, all mechanical 

properties were recorded and are listed as shown in  

Table 7.7. Figure 7.29 shows the different location of the tendon failures and 

were named edge (close or at the grip), upper middle (between top grip and the 

middle), lower middle (between bottom edge and the middle) and middle 

(between the gauge length). 

 

  

Edge failure Upper middle failure 

  

Lower middle failure Middle failure 

Figure 7.29 Location of failure 
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Table 7.7 Mechanical properties of the tendons after applying ICCP-O 

Batch Test Code 

Degree of 

Corrosion 

(Stage) 

Actual 

Degree of 

Corrosion 

ICCP 

Period 

Mean 

Original 

Diameter 

Ultimate 

Tensile 

Strength  

UTS 

Proof 

Stren-

gth 

Elong

-ation 

Reduc-

tion in 

area 

Young's 

Modulus 

Tough

-ness 

(x106) 

Failure 

Location 

 
(%) (hours) (mm) (MPa) (MPa) (%) (%) (MPa) J/m3  

3 M-U-L-X1-1 I 0.8 5304 5.29 1956 1690 2.5 27 213 104 T-edge 

 M-U-L-II-O-2 II 3.96 5304 5.34 1962 1720 3.5 24 214 80 L-middle 

 M-U-L-III-O-3 III 6.52 5304 5.32 1850 1608 5.5 25 205 49 Middle 

 M-U-H-X1-1 I 0.21 5304 5.36 1972 1750 5.0 21 210 90 B-edge 

 M-U-H-II-O-2 II 2.06 5304 5.36 1998 1785 4.5 36 213 97 L-middle 

 M-U-H-III-O-3 III 4.03 5304 5.36 1897 1736 3.4 29 210 50 U-middle 

4 M-G-H-X1-1 I 0.36 3288 5.40 1926 1671 3.5 31 206 110 L-middle 

 M-G-H-II-O-2 II 3.4 3288 5.39 1959 1733 3.0 23 215 72 T-middle 

 M-G-H-III-O-3 III 4.1 3288 5.40 1857 1651 3.5 29 221 31 Middle 

5 5-UG-O-1 N/A N/A 11712 5.37 1976 1729 3.0 26 215 85 L-middle 

 5-UG-O-2 N/A N/A 11712 5.37 1968 1730 3.0 29 212 85 B-edge 

 5-UG-O-3 N/A N/A 11712 5.38 1997 1741 3.5 29 206 110 U-edge 

 5-G-O-1 N/A N/A 11712 5.33 1937 1665 2.0 19 213 85 L-middle 

 5-G-O-2 N/A N/A 11712 5.33 1966 1650 5.2 30 215 134 Middle 

 5-G-O-3 N/A N/A 11712 5.33 1975 1672. 5.0 31 216 130 L-middle 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers, T-edge - Top edge, B-edge - Bottom edge, U-middle - 

Upper middle, L-middle - Lower middle. 

 

 



 

234 

 Summary and Discussion 7.5.6.1

Table 7.8 provides a summary of the mechanical properties of the investigated 

tendons in comparison to the mechanical properties of the as-received samples 

for Young's Modulus, 0.2% proof strength and ultimate tensile strength.  

Table 7.9 compares the elongation, toughness and ductility for the same 

samples. As can be seen from the results, there is relatively little difference in 

the mechanical properties for either type of tendon. However, the elongation in 

both types of tendons (galvanised and ungalvanised) has been affected by 

ICCP-O. Further discussion is provided in the following sections.  
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Table 7.8 Summary of mechanical properties (Young's modulus, 0.2% Proof strength and Ultimate tensile strength)  

Batch Test Code 

Young's Modulus 0.2% Proof Strength   Ultimate Tensile Strength (UTS) 

Tendon 
As-
received 
Ave. * 

 Difference Tendon 
As-
received 
Ave. * 

 Difference Tendon 
As-
received 
Ave. * 

 Difference 

(MPa) (MPa) 
(MP
a) 

(%) (MPa) (MPa) (MPa) (%) (MPa) (MPa) (MPa) (%) 

3 M-U-L-X1-1 213 215 -2.5 -1.2 1690 1720 -30.0 -1.7 1956 1980 -23.4 -1.2 

 M-U-L-II-O-2 214 215 -1.4 -0.7 1720 1720 0.0 0.0 1963 1980 -17.0 -0.9 

 M-U-L-III-O-3 205 215 -10.7 -5.0 1608 1720 -112.0 -6.5 1850 1980 -129.5 -6.5 

 M-U-H-X1-1 210 215 -5.0 -2.3 1750 1720 30.0 1.7 1972 1980 -7.1 -0.4 

 M-U-H-II-O-2 213 215 -1.9 -0.9 1785 1720 65.0 3.8 1998 1980 18.9 1.0 

 M-U-H-III-O-3 210 215 -5.7 -2.7 1736 1720 16.0 0.9 1897 1980 -82.2 -4.2 

4 M-G-H-X1-1 206 210 -3.6 -1.7 1671 1676 -5.3 -0.3 1926 1945 -18.7 -1.0 

 M-G-H-II-O-2 215 210 5.0 2.4 1733 1676 56.8 3.4 1959 1945 14.6 0.8 

 M-G-H-III-O-3 221 210 11.9 5.7 1651 1676 -25.3 -1.5 1857 1945 -87.6 -4.5 

5 S-UG-O-1 215 215 -0.4 -0.2 1729 1720 9.0 0.5 1976 1980 -3.2 -0.2 

 S-UG-O-2 212 215 -3.7 -1.7 1730 1720 10.0 0.6 1968 1980 -11.6 -0.6 

 S-UG-O-3 206 215 -9.5 -4.4 1741 1720 21.0 1.2 1997 1980 17.6 0.9 

 S-G-O-1 213 210 3.5 1.7 1665 1676 -11.3 -0.7 1937 1945 -7.3 -0.4 

 S-G-O-2 215 210 5.1 2.5 1650 1676 -26.3 -1.6 1966 1945 21.2 1.1 

 S-G-O-3 216 21 6.4 3.1 1672 1676 -4.3 -0.3 1975 1945 30.4 1.6 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers. 

* Average of as-received tendons results. 
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Table 7.9 Summary of mechanical properties (Elongation, Toughness and Ductility) 

Batch Test Code 

Elongation Toughness Ductility 

Tendon 
As-
receive
d Ave. * 

 Difference Tendon 
As-
received 
Ave. * 

 Difference Tendon 
As-
received 
Ave. * 

 Difference 

(%) (%) (%) (%) 
(J/m3) 
x106 

(J/m3) 
x106 

(J/m3)
x106 

(%) (%) (%) (%) (%) 

3 M-U-L-X1-1 2.5 2.6 -0.1 -3.3 104 98 6.5 6.7 4.90 4.7 0.2 3.7 

 M-U-L-II-O-2 3.5 2.6 0.9 35.4 80 98 -17.5 -17.9 3.60 4.7 -1.1 -23.8 

 M-U-L-III-O-3 5.5 2.6 2.9 112.8 49 98 -48.5 -49.7 2.10 4.7 -2.6 -55.6 

 M-U-H-X1-1 5.0 2.6 2.4 93.5 90 98 -7.5 -7.7 4.20 4.7 -0.5 -11.1 

 M-U-H-II-O-2 4.5 2.6 1.9 74.1 98 98 0.0 0.0 4.60 4.7 -0.1 -2.6 

 M-U-H-III-O-3 3.4 2.6 0.8 31.6 50 98 -47.5 -48.7 2.25 4.7 -2.5 -52.4 

4 M-G-H-X1-1 3.5 2.5 1.0 40.0 110 100 10.0 10.0 5.30 5.4 -0.1 -2.0 

 M-G-H-II-O-2 3.0 2.5 0.5 20.0 73 100 -27.5 -27.5 3.40 5.4 -2.0 -37.2 

 M-G-H-III-O-3 3.5 2.5 1.0 40.0 32 100 -68.5 -68.5 1.35 5.4 -4.1 -75.0 

5 5-UG-O-1 3.0 2.6 0.4 16.1 85 98 -12.5 -12.8 3.90 4.7 -0.8 -17.5 

 5-UG-O-2 3.0 2.6 0.4 16.1 85 98 -12.5 -12.8 4.00 4.7 -0.7 -15.3 

 5-UG-O-3 3.5 2.6 0.9 35.4 110 98 12.5 12.8 5.25 4.7 0.5 11.1 

 5-G-O-1 2.0 2.5 -0.5 -20.0 85 100 -15.0 -15.0 4.00 5.4 -1.4 -26.1 

 5-G-O-2 5.21 2.5 2.7 108.4 134 100 33.8 33.8 6.40 5.4 1.0 18.3 

 5-G-O-3 5.0 2.5 2.5 100.0 130 100 30.0 30.0 6.25 5.4 0.8 15.5 

Key: U-Ungalvanised, G-Galvanised, M-Mortar electrolyte, S-Solution electrolyte, H-High level of pre-stress (800-1200MPa), L-Low level of pre-stress (300-

400MPa), I-Degree of corrosion Stage I (0-1%), II-Degree of corrosion Stage II (2-4%), III-Degree of corrosion Stage III (4-7%), N-Normal protection, O-

Overprotection, X and X1-no corrosion and no ICCP, R-As-received samples, 1, 2, 3-Sample numbers. 

* Average of as-received tendons results 
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Stress-Strain Curve 

Based on the results obtained and Figures 7.30 to 7.34, the stress–strain curve 

of both the ungalvanised and galvanised tendons show elasto-plastic 

deformation before fracture. This is typical of ductile steel failure. The stress-

strain relationship for both types of tendons exposed to pre-corrosion and  

ICCP-O have shown no significant change on the mechanical properties in 

terms of modulus of elasticity, 0.2% proof strength and tensile strengths. 

However, there is a slight difference in behaviour in terms of elongation and 

toughness, where a decrease in ductility is evident. The calculations of Young's 

modulus, 0.2% proof strength, ultimate tensile strength, elongation and 

toughness based on the BS EN ISO 6892-1:2016 [90]. 

 

Young's Modulus  

It can be seen in the figures relating to stress-strain (Figures 7.30 to 7.34) for 

the as-received and investigated tendons that the Young's modulus is similar. 

For Batch 3, Young's Modules ranged between 210 to 214 MPa, for Batch 4 

was ranged between 206 to 221 MPa, and for Batch 5 was ranged between 206 

to 216 MPa. ICCP-O, therefore, has little or no effect in the elastic properties of 

these tendons. 

 

0.2% Proof Strength 

It can be seen in Figure  7.30, Figure  7.31, Figure  7.32 and Table  7.8 that there 

is a decrease in proof strength of the ungalvanised tendon with Low Level pre-

stress and Stage II corrosion by 6.51% (112 MPa), while the proof strength with 

High Level pre-stress and Stage II corrosion increased slightly by 3.8 % (65 

MPa) compared to the as-received sample. However, for the remainder of the 

ungalvanised tendons exposed to ICCP-O, there is no significant variation in the 

proof strength. Similarly, for the galvanised tendons there is a slight increase in 

proof strength with High Level pre-stress and Stage II corrosion by 3.4% (57 

MPa) and there is no a significant variation in the proof strength for the rest of 

the galvanised tendons exposed to ICCP-O as shown in Figure  7.33. For the 

un-corroded samples, ICCP-O has no effect on the proof strength as shown in 

Figure  7.34. 

 

 

 

 



 

238 

Ultimate Tensile Strength 

There is generally very little difference in the tensile strengths of the 

ungalvanised and galvanised tendons exposed to the ICCP-O. The tensile 

strength losses in both types of tendons did not exceed 1.2 % for all tendons 

except the ungalvanised specimens with Stage III corrosion with Low Level and 

High Level of pre-stress which decreased by 6.5 % (129 MPa) and 4.2% (82 

MPa) as shown in Figure  7.31 and Figure  7.32 respectively. Similarly, for the 

galvanised tendon with Stage III degree of corrosion with High Level of pre-

stress there is a decrease in ultimate strength. Its magnitude was similar to the 

ungalvanised tendon with the same degree of corrosion. Its loss was 4.5% (88 

MPa). 

 

Elongation 

According to the results, the elongation ratio can be seen in Figures 7.30 to 

7.34. These figures demonstrate that both the ungalvanised and galvanised 

tendons exposed to pre-corrosion show a variation in elongation behaviour 

under ICCP-O. The elongation ratios for ungalvanised tendons are in the range 

2.5 to 4.5 % and compared to the as-received tendons, the range increased to 

between 35 to 74 %. However, for galvanised tendons, the elongation ratios are 

greater in the range 3.5 to 6.5 %. Comparing to the as-received galvanised 

tendons, the range increases to between 40 to 160 %. According to these 

results, the elongation capacity of the ungalvanised tendons is lower than the 

galvanised tendons. 

 

Toughness 

The principle of toughness was described in Chapter 6, Section  6.5.6.1. The 

toughness values of the ungalvanised and galvanised tendons used in the 

experimental studies are given in Table  7.9. According to these results, the 

toughness values of both types of tendons decreased after ICCP-O was applied 

in the range 6.5 to 48.5 x 106 J/m3 for ungalvanised with Low Level and High 

Level of pre-stress and between 10 to 68.5 x 106 J/m3 for galvanised with High 

Level of pre-stress compared with the toughness of as-received tendons.  

This decrease was more noticeable with the specimens exposed to Stage III 

corrosion for both galvanised and ungalvanised. However, for Batch 5 where 

the tendon was exposed to ICCP-O alone, there is only slight variance in 

toughness. Therefore, toughness values decreased in both types of tendons 
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with slightly more in the galvanised tendon. This indicates that the behaviour of 

tendons with Stage III suffered from both degree of corrosion and the 

application of ICCP-O. In addition, the fracture changed from ductile behaviour 

to a mix of ductile and brittle fracture mode, as discussed in the next section. 

 

 

Figure 7.30 Stress-Strain curve for ungalvanised tendons, 30% UTS 

 

 

Figure 7.31 Stress-Strain curve for ungalvanised tendons, 80% UTS 
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Figure 7.32 Stress-Strain curve for galvanised tendons, 80% UTS 

 

 

Figure 7.33 Stress-Strain curve for ungalvanised tendons (unstressed) 
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Figure 7.34 Stress-Strain curve for galvanised tendons (unstressed) 

Ductility 

Ductility definition and its measurement are given in Chapter 6, Section 6.5.6.1. 

Table  7.9 shows the values of ductility for different types of tendons with 

different level of stress and degree of corrosion. Comparison has been made 

with the ductility of the as-received samples to investigate the effect of ICCP-O. 

Results show that the ductility percentage decreased after applying the ICCP-O 

in the range 2.6 to 55.6 % for the ungalvanised tendons with Low Level and 

High Level pre-stress and between 2 to 75 % for galvanised tendons with High 

Level pre-stress. It was also observed that the decrease in ductility is greater for 

specimens exposed to Stage III corrosion for ungalvanised and galvanised 

tendons. For unstressed samples, the reduction in ductility is less than the    

pre-stressed with pre-corroded samples and the reduction was 7 % (average) 

for ungalvanised and no reduction in galvanised tendons. This indicates that the 

two types of tendons with Stage III corrosion suffered are affected by the 

degrees of corrosion and the application of ICCP-O. As the results of the 

application of ICCP-O in unstressed samples suggests, this reduction in ductility 

for both types of tendons was caused by more corrosion rather than the 

application of ICCP-O.  
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 Fracture surface and hydrogen embrittlement 7.5.6.2

To assess the level of hydrogen in the tendons, some samples were 

investigated in Sheffield Assay Laboratory as shown in Table  7.10. The test 

involved slicing the tendons into smaller elements and analysing to establish if 

hydrogen was present. The test method used was inert gas fusion thermal 

conductivity detection. The downside to this test is that the quantity of surface 

area is very small, hence the likelihood of finding hydrogen is low even when 

present. In addition, the tests were carried out 7 days after the end of the ICCP 

application so any hydrogen present may have evaporated. The test results are 

given in Figure  7.10 and show that there is little difference between each 

sample indicating no significant difference between the samples. Further work is 

required to establish whether this approach can be used in practise to establish 

whether hydrogen is present in tendons exposed to ICCP.  

Table 7.10 Hydrogen investigation 

Sample 
Hydrogen 

Method 
(ppm) 

As-received 19 Fusion & Thermal Conduct 

Normal protection 20 Fusion & Thermal Conduct 

Overprotection 18 Fusion & Thermal Conduct 

 

To further investigate the effect of hydrogen in the tendons, embrittlement ratio 

(Ix) was used in order to evaluate the susceptibility to hydrogen embrittlement 

as defined in Equation 6.4.  

 

Overall, the embrittlement ratio at the UTS and 0.2% proof strength in Figures 

7.36 to 7.38 have similar trends with relatively little difference between them. 

This indicates that hydrogen has no significant effect on ultimate strength and 

0.2% proof strength under these conditions. 

 

Necking 

The embrittlement ratio at the necking stage was more for the ungalvanised 

tendon with the High Level of pre-stress and Stage I corrosion as shown in 

Figure  7.36 compared with the Low Level of pre-stress and galvanised tendon. 

This ratio reduces when the degree of corrosion increased to Stage II. This 
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behaviour is reversed for the galvanised tendon with a High Level of pre-stress 

as shown in Figure  7.37. 

 

Breaking strength 

The ratio of breaking strength for ungalvanised tendons is slightly more than in 

the galvanised tendons with a High Level of pre-stress, Figures 7.36 to 7.38.  

 

Ductility 

For ductility, the ratio for both types of tendons with a High Level of pre-stress 

increased as the degree of corrosion increased. This ratio in the galvanised 

tendon (Figure  7.37) is more than the ratio in ungalvanised tendons with a High 

Level of pre-stress (Figure  7.36). The reduction of ductility and the increase of 

the embrittlement ratio are increased as the degree of corrosion is increased. 

This indicates that there is an effect of hydrogen on ductility which is generated 

by ICCP-O and the increase of the degree of corrosion. The results from 

unstressed and uncorroded samples (Figure  7.38 and Figure  7.39) show less 

embrittlement ratio, this shows that the effect of degree of corrosion in this 

condition is more critical than the effect of hydrogen generated by ICCP-O.  

 

 

Figure 7.35 Relationship between overpotential and the hydrogen embrittlement 

ratio, Low Level pre-stress, ungalvanised tendon 
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Figure 7.36 Relationship between over potential and the hydrogen 

embrittlement ratio, High Level pre-stress, ungalvanised tendon, 80% UTS 

 

 

Figure 7.37 Relationship between over potential and the hydrogen 

embrittlement ratio, High Lvel pre-stress, galvanised tendon, 80% UTS 

For both types of unstressed tendons, the embrittlement ratio for ultimate 

strength, 0.2% proof strength and breaking strength are very similar. The ratio 
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for necking in the galvanised tendons is more than in the ungalvanised tendons. 

For ductility, both types of tendons have the same behaviour. 

 

 

Figure 7.38 Relationship between overpotential and the hydrogen embrittlement 

ratio, ungalvanised tendon (Batch 5) 

 

Figure 7.39 Relationship between overpotential and the hydrogen embrittlement 

ratio, galvanised tendon (Batch 5) 
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Employing the same approach adopted in Chapter 6 for ICCP-N, the SEM was 

used to examine the surface characteristics and evaluate the metallurgical 

information including the analysis of the phase microstructure. The principle of 

the SEM was described in Chapter 4, Section  4.11.1.1 and the settings, 

including magnifications of each type of images were listed in Table  4.6. To 

investigate the hydrogen effect on the fracture mode, the microstructure and the 

fracture mode was compared between a control tendon (as-received tendon 

with no pre-stress, corrosion or applied ICCP) and pre-stressed tendons 

exposed to the three stages of corrosion (I, II and III) and to ICCP-O in the 

range of potential -850 to -1300mV vs SSC. Hydrogen was introduced in these 

tendons through cathode charging by applying a current to the target potential. 

The fracture mode of the as-received samples was illustrated and discussed in 

Chapter 6, Figure  6.34 for the ungalvanised tendons and Figure  6.35 for the 

galvanised tendons. 

 

For Batch 3 ungalvanised with the Low Level of pre-stress as shown in 

Figure  7.40 to Figure  7.42, all test specimens at different corrosion stages had 

cup-cone characteristics and necking that were largely indistinguishable. For 

specimen M-U-L-I-O-1 (Figure  7.40 (b, c)), there are small dimples and a shear 

area presented in the whole fracture, indicating that the fracture is more ductile. 

The shear area can be seen more clearly in sample M-U-L-II-O-2 (Figure  7.41 

(b)), although there are small dimples but also a brittle mechanism (identified by 

red dashed square), the fracture is less ductile or mix fracture mode. For 

specimen M-U-L-III-O-3 ( Figure  7.42 (a-c)), the radial cracks appeared with the 

shear area and small dimples, demonstrating the fracture mechanism is a 

mixed fracture mode. 
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(a) M-U-L-I-O-1 

Fracture  

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 7.40 SEM images for ungalvanised tendon (M-U-L-I-O-1), 30% UTS 

 

(a) M-U-L-II-O-2 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.41 SEM images for ungalvanised tendon (M-U-L-II-O-2), 30% UTS 
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(a) M-U-L-III-O-3 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.42 SEM images for ungalvanised tendon (M-U-L-III-O-3), 30% UTS 

Batch 3 ungalvanised with high level of pre-stress as shown in Figure  7.43 (a-c) 

to Figure  7.45 (a-c), all teste samples at different corrosion stages showed 

characteristic cup-cone failure and necking. The shear area and radial fractures 

were evident in the whole fractures, while dimples were not presented in the 

microstructures. This indicates the mechanism of the fracture is less ductile and 

more brittle.  
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(a) M-U-H-I-O-1 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.43 SEM images for ungalvanised tendon (M-U-H-I-O-1), 80% UTS 

 

(a) M-U-H-II-O-2 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.44 SEM images for ungalvanised tendon (M-U-H-II-O-2), 80% UTS 
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(a) M-U-H-III-O-3 

Fracture  

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.45 SEM images for ungalvanised tendon (M-U-H-III-O-3), 80% UTS 

 

For Batch 4 galvanised with High Level of pre-stress as shown in Figure 7.46 to 

Figure 7.48, all test samples at different corrosion stages showed cup-cone 

characteristics and necking. For specimen M-G-H-I-O-1 (Figure 6.46 (b, c)), 

there is a small shear area in the whole fracture surface and there are very 

small dimples evident in the microstructure, indicating a mix of ductile (identified 

by yellow circle) and brittle (identified by red box) mode structure. The shear 

area can be seen more clearly in sample M-G-H-II-O-2 (Figure 7.47 (c, c)), 

although there are small dimples, but also brittle mechanism is evident 

(identified by red dashed square), and the fracture is less ductile or mixed 

fracture mode. For specimen M-U-L-III-O-3 (Figure 7.48 (b, c)), no dimples are 

present and the fracture mechanism is brittle fracture mode. 
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(a) M-G-H-I-O-1 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.46 SEM images for galvanised tendon (M-G-H-I-O-1), 80% UTS 

 

(a) M-G-H-II-O-2 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.47 SEM images for galvanised tendon (M-G-H-II-O-2), 80% UTS 
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(a) M-G-H-III-O-3 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 7.48 SEM images for galvanised tendon (M-G-H-III-O-3), 80% UTS 

 

For Batch 5 ungalvanised with no corrosion and unstressed, as shown in 

Figure  7.49 to Figure  7.51, all test samples showed evidence of cup-cone 

characteristics and necking. Under powerful magnification the dimples, as 

presented in the microstructure images, indicate that the fracture surface was 

ductile. 
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(a) 5-U-O-1 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.49 SEM images for ungalvanised tendon (5-U-O-1), Batch 5 

 

(a) 5-U-O-2 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.50 SEM images for ungalvanised tendon (5-U-O-2), Batch 5 
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(a) 5-U-O-3 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at the centre 

Figure 7.51 SEM images for ungalvanised tendon (5-U-O-3), Batch 5 

For Batch 5 galvanised with no corrosion and unstressed as shown in 

Figure  7.52 to Figure  7.54, although specimen 5-G-O-3 (Figure  7.54 (b, c)) has 

a shear area, cup-cone character and necking were still distinguishable. Under 

powerful magnification the dimples, as presented in the microstructure images, 

indicate that the fracture surfaces were ductile. 
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(a) 5-G-O-1 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 7.52 SEM images for galvanised tendon (5-G-O-1), Batch 5 

 

(a) 5-G-O-2 

Fracture 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 7.53 SEM images for galvanised tendon (5-G-O-2), Batch 5 
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(a) 5-G-O-3 

Combined fracture mode 

  

(b) The whole fracture surface (c) The microstructure at centre 

Figure 7.54 SEM images for galvanised tendon (5-G-O-3), Batch 5 

 

7.5.7  Summary of comparison between the effects of applying cathodic 

protection at normal and overprotection levels 

 The loss in service stress 7.5.7.1

Figure  7.55 compares the loss in service stress in the ungalvanized tendon 

exposed to Stage II and Stage III corrosion and the application of ICCP-N and 

ICCP-O with Low Level and High Level of pre-stress. It can be seen from 

Figure  7.55 that the loss of service stress in ungalvanized tendons with High 

Level of pre-stress is greater than the loss with Low Level of pre-stress, as 

would be expected. The general trend for the loss in ungalvanized tendons with 

High Level of pre-stress under the application of ICCP-O is not consistent with 

the degree of corrosion, where the loss of stress in Stage II corrosion is more 

than in Stage III corrosion. In the ungalvanized tendons with Low Level of pre-

stress, the losses are very small for both the application of ICCP-N and     

ICCP-O, being 14 MPa and 27 MPa respectively. 
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Figure 7.55 Comparison of loss in service stress for ungalvanised tendons (30% 

& 80% UTS) 

Comparing the loss of service stress in galvanized tendons exposed to Stage II 

and Stage III corrosion and the application of ICCP-N and ICCP-O with High 

Level of pre-stress, the loss is lower than that in the ungalvanized tendons 

(Figure  7.55) as shown in Figure  7.56. In addition, there is little difference in the 

loss of stress in either ICCP-N and ICCP-O with the two Stages of Corrosion II 

and III and the loss associated with the control sample is negligible. This loss 

indicates that the effect of ICCP-N and ICCP-O on the galvanised tendons has 

less impact than in the ungalvanized tendon. 
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Figure 7.56 Comparison of loss in service stress for galvanised tendons 

(80%UTS) 

  Mechanical properties  7.5.7.2

A comparison of the mechanical properties for the ungalvanised tendons with 

Low Level and High Level pre-stress is shown in Figure  7.57 to Figure  7.60. 

Figure  7.57 shows the UTS, proof strength, breaking strength and Young's 

Modulus for all ungalvanised samples exposed to ICCP-N and ICCP-O. The 

results of these samples were compared to as-received samples and show that 

for Young's Modulus, proof strength, UTS and the breaking strength, there was 

no effect resulting from the application of ICCP-N & ICCP-O on the 

ungalvanised tendons with a Low Level of pre-stress. In Figure  7.49, shows that 

the trend of ductility for the samples exposed to ICCP-N or ICCP-O as similar, 

and as the degree of corrosion increased, the percentage of ductility decreased. 

However, the reduction in ductility under the application of ICCP-O is greater 

than for ICCP-N. 
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Figure 7.57 Comparison of mechanical properties for ungalvanised tendons with 

low level of pre-stress exposed to ICCP-N & ICCP-O (1) 

 

 

Figure 7.58 Comparison of mechanical properties for ungalvanised tendons with 

a low level of pre-stress exposed to ICCP-N & ICCP-O (2) 

Figure  7.59 compares the UTS, proof strength, breaking strength and Young's 

Modulus for all ungalvanised tendons with High Level of pre-stress for samples 
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exposed to ICCP-N and ICCP-O. In order to investigate and compare the effect 

of the application of ICCP-N and ICCP-O, results of as-received and unstressed 

samples were plotted. It demonstrates that there is no significant effect due to  

ICCP-N and ICCP-O on Young's Modulus, proof strength and UTS of the 

tendons, relative to the as-received samples. However, breaking strength 

shows a different trend with the failure strength generally reduced when the 

degree of corrosion increased, and reduced more with ICCP-O than ICCP-N. 

Figure  7.60 shows the trend of ductility for the samples exposed to ICCP-N or 

ICCP-O and, as the degree of corrosion increased, the percentages of ductility, 

necking and the energy of toughness decreased. It also shows that the 

reduction in ductility and toughness for samples exposed to ICCP-O are greater 

than the samples exposed to ICCP-N. Nevertheless, failure of tendons occurred 

in the plastic stage. 

 

 

Figure 7.59 Comparison of mechanical properties for ungalvanised tendons with 

High Level of pre-stress exposed to ICCP-N & ICCP-O (1) 
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Figure 7.60 Comparison of mechanical properties for ungalvanised tendons with 

High Level of pre-stress exposed to ICCP-N & ICCP-O (2) 

 

Figure  7.61 shows the comparison of UTS, proof strength, breaking strength 

and Young's modulus for all galavanised tendons with High Level of pre-stress 

and exposed to ICCP-N and ICCP-O. Results of as-received and unstressed 

samples are also plotted. For galvanised tendons, Young's Modulus, proof 

strength, UTS and breaking strength have not been affected by the application 

of ICCP-N or ICCP-O relative to the as-received samples. Figure  7.62 shows 

the trend of ductility samples exposed to ICCP-N or ICCP-O and as the degree 

of corrosion increased, the percentages of ductility decreased. It also shows 

that the reduction in ductility and toughness for samples exposed to ICCP-O are 

more than the samples exposed to ICCP-N. It also shows that this reduction 

was greater than for the ungalvanised tendons. Nevertheless, the failure of 

tendons occurred in the plastic stage. 
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Figure 7.61 Comparison of mechanical properties for galvanised tendons with 

High Level of pre-stress exposed to ICCP-N & ICCP-O (1) 

 

 

Figure 7.62 Comparison of mechanical properties for galvanised tendons with 

High Level of pre-stress exposed to ICCP-N & ICCP-O (2) 
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  Embrittlement ratio 7.5.7.3

Figure  7.63 to Figure  7.66 compare the embrittlement ratio for ICCP-N and 

ICCP-O relative to the control samples. A description of the embrittlement ration 

is given in Section  7.5.6.2. Tensile strength and proof strength ratio for all 

samples are close to zero. This indicates that neither tensile strength nor proof 

strength have been affected by hydrogen generated by either ICCP-N or ICCP-

O. The ductility ratio indicates clearly how the tendons responded to the 

generation of hydrogen. However, it also has to be stated that the degree of 

corrosion is a very important factor in the reduction of ductility [122]. 

For the ungalvanised tendons with Low Level of pre-stress, the embrittlement 

ration increased as the degree of corrosion increased for both ICCP-N and 

ICCP-O relative to the control. It also shows that this ratio is greater for the 

application of ICCP-O than ICCP-N (Figure  7.63 and Figure  7.64). However, for 

ungalvanised tendons with High Level pre-stress the embrittlement ratio under 

the application of ICCP-O is lower than for the application of ICCP-N for Stage II 

corrosion (Figure  7.65). For Stage III, the embrittlement ratio increased, notably 

for the application of ICCP-O (Figure  7.66). 

 

 

Figure 7.63 Relationship between polarisation potential and hydrogen 

embrittlement ratio for ungalvanised tendons, Low Level, Stage II 
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Figure 7.64 Relationship between polarisation potential and hydrogen 

embrittlement ratio for ungalvanised tendons, Low Level, Stage III 

 

Figure 7.65 Relationship between polarisation potential and hydrogen 

embrittlement ratio for ungalvanised tendons, High Level, Stage II 
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Figure 7.66 Relationship between polarisation potential and hydrogen 

embrittlement ratio for ungalvanised tendons, High Level, Stage III 

 

For galvanised tendons, generally the embrittlement ratios of all mechanical 

properties have relatively similar behaviour as in the ungalvanised tendons 

(Figure  7.67 and Figure  7.68). It was observed that at Stage III corrosion, the 

ductility ratio became higher than the ratio of ductility for the ungalvanised 

tendons.  

 

Overall, when both ungalvanised and galvanised tendons were polarized 

between -650 to -750 mV, the embrittlement ratio of all mechanical properties 

were smaller compared to polarisation between -850 to -1300mV. Therefore, at 

more negative potentials, the ratio of ductility, necking and breaking strength 

increased. The increase in ratio of ductility may indicate a higher susceptibility 

to hydrogen as a high embrittlement ratio indicates a greater influence by 

hydrogen [123]. 
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Figure 7.67 Relationship between polarisation potential and hydrogen 

embrittlement ratio for galvanised tendons, High Level, Stage II 

 

 

Figure 7.68 Relationship between polarisation potential and hydrogen 

embrittlement ratio for galvanised tendons, High Level, Stage III 
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  Fracture mode 7.5.7.4

In order to have a better understanding of type of fracture for the tested 

samples, Figure  7.69 to Figure  7.72 summarise the fracture modes for both 

types of tendons under the effect of ICCP-N and ICCP-O. For the ungalvanised 

tendons with Low Level pre-stress, the fracture modes show that the shear area 

exists even for the samples that were not exposed to ICCP (identified by white 

arrows). However, the size of the shear area in the peripheral regions is greater 

as the degree of corrosion increased. As was discussed in Chapter 6 and in this 

chapter with respect to fracture mode, dimples can be seen in all fracture 

modes. It is also observed that in the Stage III corrosion, the dimples are fewer, 

and the shear area is greater. This indicates that the fracture is less ductile and 

is a mix of ductile and brittle [125]. Similarly, the control samples also show 

shear areas . This demonstrates that the effect of both ICCP-N or ICCP-O are 

not significant with respect to ungalvanised tendons under these conditions 

(Figure  7.69). 

 

ICCP-N ICCP-O 

  

M-U-L-I-1 Control M-U-L-I-1 Control 

Figure 7.69 Comparison of fracture mode for ungalvanised tendons (30% UTS) 

(a) (b) 
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M-U-L-II-N-2 M-U-L-II-O-2 

  

M-U-L-III-N-3 M-U-L-III-O-3 

Figure 7.69 (cont.) Comparison of fracture mode for ungalvanised tendons 

(30% UTS) 

 

For ungalvanised tendons with High Level of pre-stress (80% of UTS), the 

fracture modes show that the shear area or the damage of the surface of the 

fracture is more with samples exposed to the application of ICCP-O than ICCP-

N, particularly in Stage III corrosion. This shows that the damage not only 

occurred by ICCP-O, it is combined with the degree of corrosion. Stage II 

corrosion does not show similar damage in the surface of the fracture as in 

Stage III although it was exposed to the ICCP-O with the same pre-stress. The 

results confirm the fracture in Stage III corrosion is a mix of ductile and brittle for 

samples exposed to ICCP-N but is less ductile or brittle in the samples exposed 

to ICCP-O (Figure  7.70). 
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ICCP-N ICCP-O 

  

M-U-H-I-1 Control M-U-H-I-1 Control 

  

M-U-H-II-N-2 M-U-H-II-N-2 

  

M-U-H-III-N-3 M-U-H-III-O-3 

Figure 7.70 Comparison of fracture mode for ungalvanised tendons, (80% UTS) 

(a) (b) 
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For galvanised tendons, both ICCP-N and ICCP-O have influenced the fracture 

more than the ungalvanised tendons in Stage II and Stage III corrosion. 

However, the damage is more in ICCP-O than ICCP-N and the degree of 

corrosion also has to be considered as a factor that has influence on the 

damage of the tendons (Figure  7.71). 

 

ICCP-N ICCP-O 

  

M-G-H-I-1 Control M-G-H-I-1 Control 

  

M-G-H-II-N-2 M-G-H-II-O-2 

Figure 7.71 Comparison of fracture mode for galvanised tendons (80% UTS) 

 

(a) (b) 
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M-G-H-III-N-3 M-G-H-III-O-3 

Figure 7.71 (cont.) Comparison of fracture mode for galvanised tendons  

(80% UTS) 

Figure  7.72 compares the fracture modes of the ungalvanised and galvanised 

unstressed samples. These samples were exposed to only ICCP-O (-1000 to -

1300 mV) for a total period of 11,712 hrs (488 days). Shear areas are not seen 

in all the fracture modes as in the two types of pre-stressed tendons 

(Figure  7.70 and Figure  7.71). From this it can be concluded that the level of 

pre-stress has an influence on the degradation of the tendon as well as the 

degree of corrosion.  

Ungalvanised Galvanised 

  

5-UG-O-1 5-G-O-1 

Figure 7.72 Comparison of fracture mode for ungalvanised and galvanised 

tendons (unstressed samples) 
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5-UG-O-1 5-G-O-1 

  

5-UG-O-1 5-G-O-1 

Figure 7.72 (cont.) Comparison of fracture mode for ungalvanised and 

galvanised tendons (unstressed samples) 

7.5.8  Conclusions 

 Conclusion of the effect of ICCP-O on pre-stressed tendons 7.5.8.1

 The ICCP was applied for an extended period of 5,304 hours (221 

days) for ungalvanized tendons, 3,288 hours (221 days) for 

galvanised tendons and 11,712 hours (488 days) for unstressed 

samples. When the ICCP-O system was interrupted for 24 hours, the 

potential decays were more than 100mV after 4 hours for all tendons, 

thus demonstrating that an adequate level of cathodic protection had 

been achieved 
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 The results indicate that there is a loss in pre-stress in both types of 

tendons over the test period. The behaviour of the galvanised tendon 

under ICCP-O application is more stable than the behaviour of the 

ungalvanised tendon in terms of service stress loss. The degree of 

corrosion also has an impact on the loss of pre-stress, particularly in 

ungalvanised tendons, with the tendons subjected to higher degrees 

of corrosion suffering higher losses which may need to be accounted 

for at the design stage as an additional loss. This loss of service 

stress can be from a combination of the degree of corrosion and the 

application of ICCP-O 

 For mechanical properties, overall, there was no significant effect of 

ICCP-O on the strength of the tendons as tested. The UTS and the 

0.2% proof strength in each type of tendon were similar and no 

significant reduction was evident. Typically, the design safety factor 

is set to a maximum level of load, approximately ⅔ proof strength for 

structural engineering components. Although the ductility has been 

reduced by the application of the ICCP-O, the fracture occurred in 

the plastic zone after reaching the UTS in each type of tendon 

 The embrittlement ratios indicate that hydrogen generated by ICCP-

O has no effect on UTS and proof strength for either tendon type. 

However, for the galvanised tendon with High Level of pre-stress, the 

ratio was less for breaking strength and increased more for ductility. 

Notably, increases in the ratio of ductility and necking were apparent 

 Unstressed, hydrogen exposed specimens did not show significant 

change in either mechanical properties or in the characteristics of the 

fracture. Only the galvanised specimens showed a greater shear 

area, and a combination of ductile and brittle fracture modes were 

evident 

 Conclusion of the comparison between the effects of applying 7.5.8.2

cathodic protection normal and overprotection levels 

 The loss of service stress for the two types of tendons with High 

Level of pre-stress is more than the loss in stress for tendons with 

Low Level of pre-stress. Both ICCP-N and ICCP-O have no effect on 

the Young's Modulus, 0.2% proof strength and UTS for either type of 
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pre-stressed tendon. A reduction in ductility was noticed in both types 

of tendons after the application of ICCP-N and ICCP-O. This 

reduction increased as the degree of corrosion increased. The 

fractures show that both ICCP-N and ICCP-O have a mixed type of 

fracture mode at Stage III corrosion. Nevertheless, the unstressed 

samples show less brittleness than the pre-stressed sample. Overall, 

the damage to both types of tendons is not only due to the 

application of ICCP as there are other factors such as the degree of 

corrosion and the level of pre-stress and these appears to have 

greater influence than the application of ICCP 
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 Conclusions and recommendations for future works Chapter 8 -

 

8 Conclusions and Recommendations for Future Work 

8.1  General conclusions 

The important and unique element of this research project is replicating a 

potential site problem in the laboratory by achieving an extended exposure to 

the application of ICCP (488 days). This has developed a better understanding 

of the risks involving in the application of cathodic protection (ICCP) in terms of 

loss of service stress, risk of hydrogen embrittlement (HE) and reduction in the 

strength of pre-stressed ungalvanized and galvanised tendons. The loss of 

service stress, as monitored by vibrating wire strain gauges, was determined by 

the following procedure. Corrosion was generated by an acceleration technique 

and assessed using Faraday's Law. Impressed current cathodic protection was 

applied to samples of tendon at normal and excessive levels (over-protection). 

Mechanical properties were determined by tensile testing. Evaluation of the 

tested specimens was performed by Infinite Focus Microscope (IFM) and 

Scanning Electronic Microscopy (SEM). Embrittlement ratio, supported by inert 

gas fusion thermal conductivity detection, was used to investigate the possible 

effects of hydrogen diffusion for the tested tendons. 

 

A novel finding is that the degree of corrosion and the level of pre-stress appear 

to have more influence on the strength of pre-stressed tendon than the 

application of cathodic protection. Although the ductility has been reduced by 

the application of the ICCP, the fracture occurred after reaching the ultimate 

strength in each type of tested tendon. In addition, the loss of service stress can 

also be from the combination of the degree of corrosion and the application of 

ICCP. Using ICCP-N is more reliable and prevents further corrosion in pre-

stressed concrete structures. However, applying CP over the recommended 

criteria (ICCP-O) in some occasions is a lower risk than perceived, particularly 

in terms of yield and UTS. The research questions have been answered in that 

the application of ICCP on pre-stressed concrete structures can be employed 

with greater confidence. A summary of the significant conclusions drawn from 

this investigation and further research recommendations are given in this 

chapter. 
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8.2  Effect of corrosion on the tendon 

 The anodic impressed current method was a practical method of 

generating and accelerating corrosion of both galvanised and 

ungalvanised pre-stressed tendons in the laboratory within a short 

time period. The extent of corrosion can be calculated based on 

Faraday's Law. 

 The appearance of the corrosion products in a saline solution was 

yellow, brown and black, while in mortar resulted in familiar brown 

rust staining, followed by longitudinal cracking in the mortar surface 

above the tendon where a high degree of corrosion was induced. 

 A corrosion current density of 1 mA/cm2 has been used for inducing 

accelerated corrosion in all experiments. 

 Not only general corrosion was generated by accelerated corrosion 

technique, some localised corrosion was observed on the corroded 

tendons. 

 Using IFM, higher surface roughness was evident on the tendon 

surface as the degree of corrosion increased. Visual inspection did 

not identify cracks on the surface of the tendons. 

 A higher degree of corrosion leads to a higher loss in pre-stress in 

highly pre-stressed tendons which is an additional loss to be 

accounted for at the design stage. 

 Loss in pre-stress in ungalvanised tendons with both Stages I and II 

degree of corrosion is higher than the loss in pre-stressed galvanised 

tendons 

8.3  Effect of Normal Impressed Current Cathodic Protection (ICCP-N) 

on the tendons 

 Small yellow spots, assumed to be as a result of local acidification, 

appeared on the surface of the mortar around the anodic connection 

in the ungalvanised tendon, while in the case of the galvanised 

tendons, there was no sign of yellow spots. 

 The ICCP was applied for an extended period of 13,272 hours for 

ungalvanised and 3,288 hours for galvanised tendons. The ICCP-N 

system was periodically interrupted for 24 hours and the potential 

decays were greater than 100mV after 4 hours for all tendons. This 
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demonstrates that an adequate level of cathodic protection had been 

achieved. 

 The results clearly demonstrate that there is a loss in pre-stress of 

the ungalvanised and galvanised tendons over the entire test period 

due to initial slippage, mould contraction and corrosion. The 

galvanised tendons subject to ICCP-N application show different 

behaviour compared to ungalvanised tendons. Also it was noticed 

that the tendons subjected to higher degrees of corrosion suffer 

higher losses, which should be accounted for at the design stage. 

 There was no a significant effect of ICCP-N on the strength of any of 

the tested tendons. 

 The embrittlement ratio (the ratio of the mechanical properties with 

and without cathodic protection) indicates that hydrogen generated 

by ICCP-N, has no significant effect on either UTS or proof strength 

for both tendon types. However, for galvanised tendons with High 

Level of pre-stress, the ratio was reduced for breaking strength and 

increased for ductility. 

 All as-received specimens had a ductile fracture with necking and 

cup-cone fracture mode. SEM images of the fracture surface of the 

ungalvanised tendons indicates that ductile mode failures occurred, 

while in the galvanised tendons two failures modes occurred, one 

being ductile and the other a combination of ductile and brittle. 

 

8.4  Effect of Overprotection by Impressed Current Cathodic Protection 

(ICCP-O) on the tendons 

 The ICCP was applied for an extended period of 5,304 hours (221 

days) for ungalvanized tendons, 3,288 hours (221 days) for 

galvanised tendons and 11,712 hours (488 days) for unstressed 

samples. When the ICCP-O system was interrupted for 24 hours, the 

potential decays were greater than 100mV after 4 hours for all 

tendons, thus demonstrating that an adequate level of cathodic 

protection had been achieved. 

 The results indicate that there is a loss in pre-stress in both types of 

tendons over the test period. The behaviour of the galvanised tendon 
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under ICCP-O application is more stable than the behaviour of the 

ungalvanised tendon in terms of service stress loss. The degree of 

corrosion also has an impact on the loss of pre-stress, particularly in 

ungalvanised tendons, with the tendons subjected to higher degrees 

of corrosion suffering higher losses which may need to be accounted 

for at the design stage. This loss of service stress can be from a 

combination of the degree of corrosion and the application of ICCP-O 

 With respect to mechanical properties, overall, there was no 

significant effect of ICCP-O on the strength of the tendons as tested. 

The ultimate tensile strength and the 0.2% proof strength in each 

type of tendon were similar and no significant reduction was evident 

that could compromise safety. Usually, the design safety factor is set 

to a maximum level of load, approximately ⅔ proof strength for 

structural engineering components. Although the ductility has been 

reduced by the application of the ICCP-O, the fracture occurred in 

the plastic zone and after reaching the ultimate strength in each type 

of tendon. 

 The embrittlement ratios (the ratio of the mechanical properties with 

and without cathodic protection) indicate that hydrogen generated by 

ICCP-O has no effect on UTS and proof strength for both tendon 

types. However, for the galvanised tendon with High Level of pre-

stress, the ratio was less for breaking strength and increased more 

for ductility. Notably, increases in the ratio of ductility and necking 

were apparent. 

 Unstressed, hydrogen exposed specimens did not show significant 

changes in either mechanical properties or the characteristics of the 

fracture. Only the galvanised specimen showed greater shear area 

and a combination of ductile and brittle fracture modes was evident. 

 The loss of service stress for the two tendon types with High Level of 

pre-stress is greater than the loss in stress for tendons with Low 

Level of pre-stress. Neither ICCP-N nor ICCP-O have any significant 

effect on the Young's Modulus, 0.2% proof strength and UTS for 

either type of pre-stressed tendon. A reduction in ductility was 

observed in both types of tendons after the application of ICCP-N 

and ICCP-O. This reduction increased as the degree of corrosion 
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increased. The fracture modes show that both ICCP-N and ICCP-O 

have a mixed type of fracture mode at Stage III corrosion. 

Nevertheless, the unstressed samples show less brittleness than the 

pre-stressed sample. Overall, the damage to both types of tendons is 

not only due to the application of ICCP as there are other factors 

such as the degree of corrosion and the level of pre-stress and these 

appear to have more influence than the application of ICCP alone. 

 

8.5  Recommendations for further research 

There are several areas of further study that have the possibility to expand the 

findings of this research but could not be pursued during the timescale and 

scope of this project. These are listed below as a series of recommendations: 

 Further investigation is required to establish losses due to corrosion at 

other in-service pre-stresses as would commonly be found in structures. 

Although this could be estimated via interpolation, it will enable more 

accurate design guidance to be developed, linking losses in pre-stress to 

degree of corrosion for all levels of pre-stress. 

 It would be beneficial for more data to be made available from actual 

corroded structures. This will help in the development of a correlation 

between laboratory results and data from existing structures. 

 Further tests are required to be conducted where the specimens are pre-

stressed and exposed to ICCP and compared with the pre-corroded 

specimens. 
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Appendix 1 

Table A1.1 Diameter of steel tendons before and after test completion 

Sample ID  

Diameter (mm) 

Before corrosion After corrosion  

d1 d2 d3 d4 d5 Average d1 d2 d3 d4 d5 Average 

mm mm mm mm mm mm mm mm mm mm mm mm 

U-R-1 5.37 5.35 5.32 5.3 5.3 5.33             

U-R-2 5.36 5.31 5.3 5.3 5.29 5.31             

U-R-3 5.36 5.34 5.31 5.3 5.29 5.32             

U-R-4 5.29 5.31 5.31 5.31 5.36 5.32             

U-R-5 5.27 5.28 5.29 5.3 5.36 5.30             

G-R-1 5.31 5.34 5.34 5.33 5.4 5.34             

G-R-2 5.4 5.36 5.33 5.33 5.32 5.35             

G-R-3 5.39 5.37 5.32 5.33 5.3 5.34             

G-R-4 5.39 5.39 5.33 5.39 5.38 5.38             

G-R-5 5.39 5.38 5.36 5.3 5.4 5.37             

S-U-L-I-1 5.36 5.36 5.37 5.36 5.32 5.35 5.24 5.23 5.22 5.23 5.25 5.23 

S-U-L-II-O-2 5.37 5.32 5.31 5.4 5.34 5.35 5.14 5.11 5.09 5.12 5.05 5.10 

S-U-L-III-O-3 5.37 5.32 5.35 5.37 5.37 5.36 4.76 4.89 4.89 4.8 4.8 4.83 

S-U-H-I-1 5.33 5.32 5.36 5.36 5.37 5.35 5.31 5.3 5.3 5.22 5.2 5.27 

S-U-H-II-O-2 5.37 5.36 5.33 5.36 5.33 5.35 5.08 5.04 5.08 5.03 5.09 5.06 

S-U-H-III-O-3 5.32 5.32 5.36 5.36 5.31 5.33 4.92 4.97 5 5.01 4.99 4.98 

M-U-L-X-1 5.24 5.26 5.3 5.25 5.33 5.28 5.27 5.33 5.26 5.27 5.31 5.29 

M-U-L-II-N-2 5.37 5.33 5.4 5.32 5.27 5.34 5.14 5.13 5.13 5.1 5.13 5.13 

M-U-L-III-N-3 5.43 5.4 5.34 5.3 5.24 5.34 5.13 5.1 5.05 5.09 5.18 5.11 
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Table A1.1 (cont.) Diameter of steel tendons before and after test completion 

Sample ID  

Diameter (mm) 

Before corrosion After corrosion  

d1 d2 d3 d4 d5 Average d1 d2 d3 d4 d5 Average 

mm mm mm mm mm mm mm mm mm mm mm mm 

M-U-L-X1-1 5.24 5.24 5.32 5.3 5.33 5.29 5.27 5.27 5.26 5.26 5.32 5.28 

M-U-L-II-O-2 5.35 5.33 5.34 5.35 5.33 5.34 5.2 5.13 5.13 5.09 5.06 5.12 

M-U-L-III-O-3 5.37 5.34 5.32 5.32 5.25 5.32 5.03 5.08 5.07 5.11 5.03 5.06 

M-U-H-X-1 5.36 5.36 5.36 5.31 5.36 5.35 5.32 5.31 5.3 5.29 5.28 5.30 

M-U-H-II-N-2 5.35 5.36 5.36 5.36 5.32 5.35 5.18 5.19 5.2 5.22 5.17 5.19 

M-U-H-III-N-3 5.39 5.36 5.36 5.35 5.36 5.36 5.17 5.18 5.22 5.14 5.13 5.17 

M-U-H-X1-1 5.36 5.36 5.36 5.35 5.36 5.36 5.32 5.32 5.31 5.37 5.31 5.33 

M-U-H-II-O-2 5.36 5.36 5.35 5.36 5.35 5.36 5.17 5.19 5.2 5.17 5.22 5.19 

M-U-H-III-O-3 5.38 5.36 5.36 5.35 5.36 5.36 5.17 5.19 5.16 5.21 5.2 5.19 

M-G-H-X-1 5.38 5.38 5.39 5.39 5.4 5.39 5.35 5.34 5.33 5.31 5.32 5.33 

M-G-H-II-N-1 5.41 5.4 5.39 5.38 5.4 5.40 5.19 5.23 5.2 5.19 5.24 5.21 

M-G-H-III-N-3 5.38 5.39 5.4 5.4 5.38 5.39 5.13 5.16 5.16 5.16 5.2 5.16 

M-G-H-X1-1 5.41 5.4 5.39 5.39 5.4 5.40 5.29 5.33 5.31 5.28 5.32 5.31 

M-G-H-II-O-2 5.4 5.39 5.39 5.4 5.38 5.39 5.19 5.24 5.24 5.22 5.23 5.22 

M-G-H-III-O-3 5.4 5.39 5.4 5.39 5.41 5.40 5.13 5.16 5.18 5.17 5.25 5.18 

5-UG-O-1 5.32 5.33 5.33 5.34 5.33 5.33 5.3 5.29 5.26 5.28 5.27 5.28 

5-UG-O-2 5.32 5.33 5.32 5.34 5.32 5.33 5.26 5.28 5.3 5.3 5.28 5.28 

5-UG-O-3 5.33 5.34 5.34 5.33 5.32 5.33 5.25 5.25 5.25 5.25 5.26 5.25 

5-G-O-1 5.36 5.37 5.38 5.37 5.39 5.37 5.25 5.26 5.26 5.27 5.28 5.26 

5-G-O-2 5.36 5.37 5.37 5.36 5.38 5.37 5.2 5.19 5.17 5.2 5.21 5.19 

5-G-O-3 5.38 5.39 5.38 5.38 5.39 5.38 5.16 5.17 5.18 5.22 5.19 5.18 
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Appendix 2  

List of Publications, conferences and competitions  

 

 37th Cement and Concrete Science Conference, 11-12 September 2017, 

University College London, conference paper and oral presentation: 

'Corrosion induced losses in pre-stressed tendons' [128]. 

 

 Symposium image competition 2017, awarded as the 2017 research 

image winner in Material Engineering Research Institute (MERI), Sheffield 

Hallam University. 

 

Further papers are currently in preparation. 
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