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Abstract—There has been exponential growth in the use of 

wearable technologies in the last decade with smart watches 

having a large share of the market. Smart watches were primarily 

used for health and fitness purposes but recent years have seen a 

rise in their deployment in other areas. Recent smart watches are 

fitted with sensors with enhanced functionality and capabilities. 

For example, some function as standalone device with the ability 

to create activity logs and transmit data to a secondary device. The 

capability has contributed to their increased usage in recent years 

with researchers focusing on their potential. This paper explores 

the ability to extract physiological data from smart watch 

technology to achieve user authentication. The approach is 

suitable not only because of the capacity for data capture but also 

easy connectivity with other devices – principally the Smartphone. 

For the purpose of this study, heart rate data is captured and 

extracted from 30 subjects continually over an hour. While 

security is the ultimate goal, usability should also be key 

consideration. Most bioelectrical signals like heart rate are non-

stationary time-dependent signals therefore Discrete Wavelet 

Transform (DWT) is employed. DWT decomposes the 

bioelectrical signal into n level sub-bands of detail coefficients and 

approximation coefficients. Biorthogonal Wavelet (bior 4.4) is 

applied to extract features from the four levels of detail coefficents. 

Ten statistical features are extracted from each level of the 

coffecient sub-band.  Classification of each sub-band levels are 

done using a Feedforward neural Network (FF-NN). The 1st, 2nd, 

3rd and 4th levels had an Equal Error Rate (EER) of 17.20%, 

18.17%, 20.93% and 21.83% respectively. To improve the EER, 

fusion of the four level sub-band is applied at the feature level. The 

proposed fusion showed an improved result over the initial result 

with an EER of 11.25%. As a one-off authentication decision, an 

11% EER is not ideal, its use on a continuous basis makes this 

more than feasible in practice.  

  

Keywords—User Authentication, Bioelectrical Signals, Discrete 

Wavelet Transform, Smart Watch, Smart Phone.  

I.  INTRODUCTION   

Authentication is the process of accurately authorizing a 

person to access secured information but it comes with some 

inconvenience on the part of the subject because the subject will 

need to provide the correct credentials to access the information 

[1-4]. Transparent authentication has been proposed as a 

possible improvement over these inconveniences by applying 

biometric modalities in a non-intrusive manner (i.e. the user 

does not explicitly provide the sample, rather the sample is 

captured during a user’s normal device interactions) [5-8]. 

These emerging biometric modalities include gait, body odour, 

ear resonance, lip print and bioelectrical signals [9-12]. The use 

of emerging biometric modalities is on the increase because of 

their advantages with respect to reliability, usability and 

accuracy in a transparent capture mode [13]. Recent research on 

emerging biometrics applying bioelectrical signals have 

focussed more on the use of Electrocardiogram (ECG), 

Electroencephalogram (EEG), Electromyogram (EMG), 

Mechanomyogram (MMG) and Electrooculography (EOG) 

with more emphases on EEG and ECG as shown in the work of 

Faust [14], Mporas [15], Borghini [16], Thomas [17], Suja 

Priyadharsini [18],  Sabow [19], Miramontes [20] and Ito [21].  

The direct involvement of a subject in the authentication 

process brings about usability issues at the point of entry. As 

stated earlier, in as much as security is the major concern in 

designing an authentication system, usability still plays an 

important role in the use of the of the system [3, 4, 22] but it 

comes with its own issues too [6]. The level of trade-off 

between security and usability plays a role in the choice of 

authentication system, a factor worth considering [4, 23, 24]. It 

is also expected that the security mechanism of a computing 

device should be robust and adapt to different environment [25]. 

The application of bioelectrical signals extracted via a smart 

watch for user authentication should improve usability as well 

as convenience due to the non-intrusive nature of the technique 

[26, 27]. In this paper, the authentication system builds the 

subject’s profile by extracting the heart rate through a smart 

watch. Two experiments were conducted; the first experiment 

determined the persistency of the signal pattern of the heart rate 



while the second experiment determined the viability of using 

the signal to authenticate a subject.   

II. BACKGROUND  

Much of the previous research has used bioelectrical signals 

obtained from ECG’s where the signals were extracted from the 

heart beat using specialized devices that were often intrusive in 

nature. Table 1 presents a summary of the studies on ECG 

bioelectrical signals, their methods for feature extraction, 

classification and results.  

  

Table 1. Study showing the use of Electrocardiogram (ECG) for 
authentication  (MF: Morphological Features; LDA: Linear Discriminant  

Analysis; QDM: Quartile Discriminant Measurement; QRS :QRS Detection;  
MD; Mahalanobis Distance; PCA :Principal Component Analysis; KNN; 

Knearest Neighbor; LDA; Linear Discriminant Analysis; WT: Wavelet  
Transform; CC; Correlation Coefficient; ICA: Independent Component  
Analysis; SVM: Support Vector Machine ; LZ: Lempel-Zil; RBF: Radian  

Basis Function)  

Author  Feature 

Extractor  
Classification  

  

No of 

Subj.  
Length  

  

Success rate  

[28]  MF  LDA  29  2 mins.  97 & 98%  

[29]  MF  QDM      100%  

[30]  QRS  MD  10  30 sec.    
[31]  QRS MF 

& PCA  
KNN and 

LDA  
20    94.47% &  

97.8%  
[32]  MF  MD  16  2 min.  100%  
[33]  WT  CC  50  32-51 ms 89% - 95%,  
[34]  QRS  CC  10    99%  

[35]  

  

ICA 

And WT  
SVM  47  20 mins.  98.11 -99.33%  

[36]  MF  LZ  19  10 mins.  100%  
[37]  WT  RBF  16    91%  

[38]  QRS  SVM      99.52%  

  

  

Isreal [28] used the fiducial points from 29 subjects as the 

feature for authentication. The fiducial collection point includes 

the neck and the chest. The neck achieved a result of  82% while 

chest achieved 79%. [29] investigated the possibility of using 

the normalized time-domain features of Electrocardiogram 

(ECG) for improving of identification. The ECG signal is 

measured and extracted between the right and left arm using a 

Biopack MP-150. The first was to measure the ECG during rest 

and the second measurement was when the individual is active. 

The recording is done in 30 seconds on 10 male subjects in two 

sequences. The reading at a normal heart rate using ECG at a 

slow rate is 60 ~ 80 and 120 ~ 140 at a fast rate. For Feature 

Extraction and Classification, after analyzing the sampled data 

sequence of the ECG beat by beat, the characteristic points of 

its waveform of P-wave, QRS complex and T-wave are 

computed as the features for classification of the subjects.  

  

Morphological Features, QRS Detection and Wavelet 

Transform are among the most used feature extraction methods 

listed in Table 1. Each of the methods has advantages and 

disadvantages depending on the type of signal and condition of 

the features were extracted. The morphological features method 

is suitable for ECG feature extraction and is suitable for heart 

rate because this rate varies from one heartbeat to the next [39]. 

This can show variable fiducial points for feature extraction 

which will affect the morphological features. QRS Detection 

has the advantage of efficient extraction of beat-tobeat intervals 

(RR) from long electrocardiogram (ECG) recordings, it is also 

suitable for real-time analysis of large datasets but has a 

disadvantage with regards to its of implementation in software 

as it is difficult to operate it in real time [40]. Wavelet 

Transform is chosen for the feature extraction because it has a 

varying window size, being broad at low frequencies and 

narrow at high frequencies. It is better suited for analysis of 

sudden, transient signal changes [41] and irregular data 

patterns, that is, impulses existing at different time instances 

[42].  From the works discussed earlier, it shows that the most 

used classification method is Neural Network and SVM. The 

two methods have thier own advantage depending on the type 

of bioelectrical signal. Research suggest that neural networks 

can perform better in nonlinear statistical modeling and is an 

alternative to logical regression [43] while SVM performs 

better classification on emotional features which is prevalent in 

EEG signals [44].  

III. EXPERIMENTAL METHODOLOGY  

A. Data Collection and Experimental Design  

Most of the data samples from the previous experiments are 

control samples [28, 30, 34]. While this is ideal some 

experimental studies, a typically highly controlled lab 

environment fails to understand the variance that would be 

exhibited from a real-life data capture. This study investigates 

several areas, the viability of the underlying technology to 

measure the signals successfully, a small-scale study to 

investigate the nature of the signal given a variety of tasks (e.g. 

walking, sitting) and also to determine the feasibility of the 

approach using real-life activity data. This led to the 

development of three experiments:  

1. A technology evaluation of smart watches  

2. An activity based experiment to examine the variability 

in the underlying signal  

3. A real-life data capture to determine the feasibility of 

the approach.  



  

The technology evaluation used three smartwatches Mio 

Fuse, Fitbit, Microsoft Band. A chest-band Polar H7 heart rate 

monitor was used as a reference signal against which the 

smartwatches were compared. To appraise the accuracy of the 

signals extracted from the watches, the extracted heart rate 

signal from a subject wearing all the smart watches and the 

chest band were capture and analyzed. The signal extracted was 

compared again the chest band which is more accurate around 

the chest compared with other parts of the body [40]. An 

android smart phone with a third party application was installed 

on the phone to enable it to store the heart rate signals. The 

extraction from the smartwatch to the phone was via a 

Bluetooth connection. Taking usability into consideration, the 

mobile application and the smartwatch communicates without 

the intervention of the subject when extracting the bioelectrical 

signal. The application starts as the phone comes on and 

establishes a connection with the watch. The heart rate is 

extracted in beat per minute at a rate of 8 samples per second.   

To study the variation of signals from one subject to another 

using the Microsoft band, the heart rate signal was extracted 

from five subjects. A predefined task was given to the five 

subjects to be repeated three times. These tasks included a 

combination of both low and high speed of walking, climbing 

up and down stairs, standing and sitting. The time between the 

three tasks ranged from a day to two days between tasks.   

In the real-life data capture experiment, the aim was to 

develop a unique identifier for each of the 30 subjects by 

extracting features from the heart rate. The subjects were 

recorded for one hour without a predefined task to make it as 

natural as possible. As expected in a real life scenario, the 

possibility of environmental interference like noise (i.e. 

wireless and other Bluetooth connection) is expected. The data 

collected through the Microsoft band faced a number of issues 

including:   

• Disconnection: The Microsoft band sometimes loses 

connection with the phone but with the application 

setting, it can re-establish connection without the 

intervention of the subject. To make up for this, the 

data collection time frame is increased makes room for 

any disconnection gap. The disconnection duration is 

indicated with a ‘Null’ which is deleted in processing 

the data.    

  

• Heart rate acquisition: the heart rate sensor takes some 

time to start recording the heart rate. At this stage the 

heart rate output remains constant and it is indicated 

as “Acquiring” until the band is locked to the app. The 

same remedy for the disconnection is applied to this 

too.  

  

• Sampling Rate: the sampling can be set at 16 Hz, 32Hz 

and 64Hz. Due to android issues, the sampling rate 

setting can return to the default rate at the start of each 

extraction, it can be monitored to make sure the 

sampling rate is right at the beginning of each 

extraction. To solve this, after extraction all signals are 

down-sampled to 8 samples per second.   

  

B. Feature extraction  

The feature extraction algorithm converts bioelectrical 

signal information into sets of feature vectors. The feature 

extraction method should be good enough and should meet 

some properties like repeatability, distinctiveness, quantity, 

accuracy, and efficiency [45]. However, the extraction 

technique will need to be carefully considered taking note of the 

nonstationary nature of bioelectrical signals. There are different 

types of techniques as earlier discussed which include Wavelet 

Transform [46,47,48], Independent Component Analysis [49], 

Morphological Features [31] , Discrete Cosine Transform [50]. 

After investigating the properties of the heart rate signals, the 

Wavelet feature extraction technique is adopted using discreet 

wavelet transforms.  

The use of discreet wavelet transforms is becoming popular 

in the measurement and analysis of time-frequency 

nonstationary signals and the spectral component variation 

[51,52]. It is widely used in feature extraction as in the case of 

Mallat [51], Subasi [53] and Jahankhani [48]. Wavelet 

transform is also useful in processing different types of transient 

signal analysis [54]. It decomposes a signal into a subband of 

wavelet signals which can be implemented with several wavelet 

families. The wavelet families include Biorthogonal, Morlet, 

Symlets, Mexican Hat, Haar, Daubechies, Coiflets, Meyer  [55, 

56]. Wavelet transform is classified into two types, continuous 

wavelet and discrete wavelet transform. Existing literature has 

shown that noise is an issue when processing a signal; this also 

applies to bioelectrical signals. To achieve an acceptable noise 

level in a signal, a filter is applied to increase the SNR. As stated 

earlier, the use of wavelet transform eliminates the direct 

application of a filter in this work because wavelet transform 

decomposition is used to implement noise reduction [57, 58]. 

Discreet wavelet transform decomposition splits the input 

signal into approximation of coefficients and detail coefficients 

[59,54]. This depends on the type of wavelet family used as a 

suitable wavelet can concentrate 90% of the signal energy on 

the decomposed coefficient [58]. The decomposition enables 

http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/cont_wavelets/
http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/cont_wavelets/
http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/cont_wavelets/
http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/wa_discrete/
http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/wa_discrete/
http://zone.ni.com/reference/en-XX/help/371419D-01/lvasptconcepts/wa_discrete/


the signal to be analyzed at the different n levels  [60]. Each n 

level is further decomposed into a high and low frequency 

signal component using a filter bank [54, 61].  

Ten statistical features are extracted from each level of the 

sub-band levels are the Variance, Maximum, Amplitude 

Minimum Amplitude, Maximum Energy, Minimum Energy, 

Standard deviation, Peak2peak, Root mean square level(RMS), 

Mean or Median absolute deviation and Peak magnitude to 

RMS ratio.  

C. Classification  

To classify the features extracted, a Nueral Network (NN) 

is used. The classification evaluation metric calculates the 

Equal Error Rate (EER) using False Acceptance Rate (FAR) 

and False Rejection Rate (FRR).  

• The Equal Error Rate (EER) is the point at which the 

False Acceptance Rate (FAR) and False Rejection Rate  

 (FRR)  meets  also  known  as  Receiver  

operating characteristic (ROC)    

• The False Acceptance Rate (FAR) is the rate at which a 

subject that is legitimate is falsely refuse access to the 

system and   

• The False Rejection Rate (FRR) is the rate at which an 

impostor is accepted as a legitimate subject.  

IV. RESULTS  

From Figure 1 it is observed that the Fitbit, Mio Fuse and 

the Microsoft Band perform consistently with the Polar H7 in 

sequence as shown in Table 2.   

  

  

 
Figure 1. Bioelectrical recording from the Microsoft Band, Fitbit, 

Polar HR & Mio Fuse  

  
Table 2. Fitbit, Mio Fuse and Microsoft Band sensor comparison  

Sensors  Microsoft 

Band  
Mio 

Fuse  
Fitbit  Polar 

H7monitor  
Heart Rate  

Accelerometer 
Pedometer  

Walking Speed  
Calories  
Distance  

Gyroscope  
Magnetometer 

Altimeter  
Ambient Light  
Thermometer  

Ultraviolet  
Light Sensor  

Galvanometer  
Microphone  

X  
X  
X  
X  
X  
X  
X  
X  
-  
X  
X  
X  
X  
X  
X  

X  
-  
X  
-  
X  
X  
-  
-  
-  
-  
-  
-  
-  
-  
-  

X  
X  
-  
X  
-  
X  
-  
-  
X  
-  
-  
-  
-  
-  
X  

X  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  
-  

  

The result of the variability of subjects as illustrated in 

Figure 2 shows that the five subjects have different signals 

amplitude that are not close and subjects can be differentiated 

and shows a potential to use this approach for authentication. 

There are changes depending on the activity carried out by the 

subjects. This shows that different activities affect the heart rate 

pattern therefore there is a need to categories the activities into 

high and low activities for effectivity analyzing the bioelectrical 

signals that will be extracted from the subjects.     

The result from the 30 subjects applying the four sub-band 

classifications are encouraging as illustrated in Figure 3. The 

use of a Neural Network (NN) feed forward classifier achieved 

17.2% EER at the first level which is the best result and 21.8 % 

at the fourth level as the worst. Level 1 and 2 sub-bands have a 

higher score compared to level 3 and 4. This means that level 1 

with the lowest score has 82.8% of all subjects accurately 

identified. The continuous reduction as the level increases does 

not mean that all subjects performed badly at the individual rate.  

 

Figure 2. Bioelectrical signal of 5 subjects showing the pattern variance among the subject   

  

  



 

Figure 3. The EER sub-band classifications of subjects from level 1 to 4.  

From Figure 4 the EER of individual results across the four 

levels of sub-band shows that individual’s performance varies 

depending on the levels therefore fusion of the feature is 

undertaken to improve the result. The fusion is done after 

extracting the feature at various levels. The features are first 

normalized at each level before the fusion is done. The result at 

the fusion level has shown an improved EER of 11.25%.  

 

Figure 4. Showing result of individually performance  

V. DISCUSSION  

  

A close look at the Table 3 shows the performance between 

subjects at the different levels of the sub-band. The best 

individual performance at the first level is subject 5 with an EER 

of 0.6%, best at the second level is subject 4 with EER of 4.1%. 

Subject 20 has the best performance at the third and fourth 

levels with EER’s of 7.9% and 10.6% respectively. This mean 

performance cuts across difference sub-band levels.   

It will be ideal to achieve a system performance of EER 

below 10% for the system which some subjects achieved. The 

performance of individual subjects achieving below the EER of 

10 % cut across all levels.  In level one, subject 1 (9.3%), 5 

(0.6%), 12 (8.9%), 17 (9.2%), 19 (8.3%) and 29 (7.4%) 

achieved less than 10%. Level two results below 10% are 

recorded for subject 4 (4.1%), 10 (8.5%), 28 (9.4%) and 30 

(7.9%). Level three shows subject 4 scoring 8.8% and 10 

scoring 7.9% and level four has none though subject 20 

achieved 10.6% which is closest to the expected mark.    

Table 3. Results of EER of Subjects at different levels of the sub-band  

Subject’s EER result at different levels (%) 
ID  Level ID  Level 

1  2  3  4  1  2  3  4  
1  9.3  24.0  24.6  25.9  16  20.1  12.1  17.9  15.6  
2  20.5  15.7  11.0  14.8  17  9.2  23.0  14.7  16.0  
3  14.0  21.6  15.5  12.9  18  18.6  32.9  21.0  15.4  
4  14.1  4.1  8.8  11.8  19  8.3  20.8  21.1  24.8  
5  0.6  11.0  25.4  12.6  20  15.2  12.2  7.9  10.6  
6  16.3  13.7  20.6  22.8  21  21.4  28.7  26.4  26.9  
7  23.7  16.7  16.4  21.5  22  31.8  20.9  40.7  30.1  
8  16.6  11.8  11.8  17.0  23  39.4  25.1  30.3  36.1  
9  25.8  31.7  40.8  29.0  24  27.7  10.4  14.5  14.8  

10  17.2  8.5  18.3  31.2  25  12.8  17.6  28.3  24.1  
11  22.6  12.4  20.6  25.1  26  12.5  31.0  21.0  25.6  
12  8.9  24.6  29.9  32.3  27  15.5  16.6  19.7  19.1  
13  16.3  22.5  21.8  21.6  28  14.9  9.4  18.5  46.6  
14  23.0  23.0  24.2  17.0  29  7.4  17.7  23.9  22.4  
15  15.6  17.7  19.6  19.2  30  16.7  7.9  12.3  12.1  

  

The use of multiple instance of a biometric can add value to 

the result but it can also have implications depending on the 

dataset [62]. Fusion of biometric is done at different levels, the 

feature extraction level, match score level; and the decision 

level. The fusion of all level sub-bands is done at the feature 

level and the results showed an improved EER of 11.25%. This 

is an improvement of 5.95% which mean 88.75% of all subjects 

were accurately identified as shown in Figure 5.  

  

EER RESULT OF EACH SUBJEECT  

 

 

 

 

 

 

  

 

 
 

 

  

   

   

 

 
 
 

   

 

 

  

Figure 5. Showing classification result of all 4 levels individually  

  

The experiment showed different subjects performed 

differently depending on the sub-band levels and the sub-band 

fusion classifications. Some subjects performed well on both 

while others on only one of the classification. It is expected that 

with the fusion of the sub-band, there should be improvement 

across all subjects but that is not the case. From the result of the 

sub-band fusion, it shows more subjects perform better while 

some unexpectedly did not improve in performance. This is seen 

in subject 3’s performance, there is little change in the sub-band 

fusion classification where they scored 15.02% which is almost 

the same on the 3 level subband results at 15.50%. It has a better 

result at level 4 scoring 12.9% compared to the sub-band fusion 

with 15.02%. The same is for subject 10 with the best result on 

  

Level 1 Level 2 Level 3 Level 4 

EER 17.2 18.2 20.9 21.8 
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level 1 at 8.5% compared to the sub-band fusion at 11.11%. 

Other subjects scoring the best result at level 1 of the sub-band 

level include subject 12 scoring 8.90% compared to sub-band 

fusion scoring 18.13%, subject 13 at 16.3% (sub-band fusion 

17.1%), subject 17 at 9.2% (sub-band fusion 14.18%), subject 

19 at 8.3% (subband fusion 10.73%), subject 21 at 21.4% (sub-

band fusion 24.36%) and subject 26 at 12.5% (sub-band fusion 

14.52 %). The best results at the sub-band level 2 include 

subject 24 at 10.4% and subject 28 at 9.4% compared to the 

scoring at the sub-band fusion at 11.91% and 9.5% respectively. 

At Level 4, only subject 18 recorded their best performances at 

15.4% compare to sub-band fusion at 15.59%. In term of 

individual performance, the fusion of all levels has shown to be 

effective in discrimination of subjects. 60% of individual results 

improved with the fusion introduced. While 40% of the subjects 

scored a better EER at the sub-band level. The best for each of 

them showed that subject 4 scored 8.8%, 12 (8.9%), 17 (9.2%), 

19 (8.3%) at the 1st level, 2nd level have subject 10 scoring 8.5%, 

28 (9.4%). These subjects individually performed below the 

expected 10% of EER. This brings to a total of subjects scoring 

below 10% of EER across the sub-band and the fusion 

classification to about 66%.  

VI. CONCLUSION  

    Over 66% of individuals achieved an EER below 10% across 

the fusion of sub-bands; the performance is promising noting 

that the overall EER performance of the fusion was 11.25%. The 

use of one bioelectrical signal is a limitation to the fact that it is 

affected by aging, emotional factors [63]. Therefore, the use of 

multi-instance, multi-modal or multibioelectrical signals is 

expected to enhance the performance and overcome these 

limitations. The use of the Microsoft band will be beneficial in 

this regard because as stated earlier, the sensors in the Microsoft 

band 2 can extract other bioelectrical signals like skin 

temperature, Galvanize Skin Response (GSR), Heart Rate 

Variability (HRV) and gyroscope and accelerometer for 

orientation. With these available signals on the Microsoft band, 

the system can be improved upon by applying multi-

bioelectrical signals for Transparent User Authentication.   
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