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Developing the Knowledge of Number 
Digits in a child-like Robot 

 

Supplementary Information 

iCub Robot Finger configurations 

 

 
Supplementary Figure 1. The robotic platform and finger representations.  
At the top, the iCub robot. At the bottom, the number representations with the iCub right-hand 

fingers: one, two, three, four and five. Numbers from six to nine are represented with two hands, with 
the right hand fully open, e.g. 6 equals 5 on the right and 1 on the left. In practice, the embodied 
representation is formed by the joint angles from the fingers' motor encoders. For the full sequence, a 
supplementary video of the iCub counting from 1 to 10 is also included. 

Supplementary Comments and Results 

Scenario 1: Learning to process spoken digits while acquiring counting principles 
The simulations in this scenario may be extended by merging the recurrent network model 

presented in1 with the deep convolutional model proposed in this article, it would also be 

possible to capture children’s learning of the ordering of the digits as well, thus capturing the 

stable order principle underlying the natural numbers. 



For this experiment, we can also report that the simple baseline was significantly slower and 

less efficient than all the others. In the case of the two smaller sample sizes, the baseline is 

significantly the worst, and it is not able to achieve the same accuracy even after an 

additional 25 epochs of training. Only in the case of the larger sample size, the simple 

baseline achieved an accuracy better than the others (+0.27%), but only after 22 (median) 

additional epochs of training, i.e. after a total 47 epochs (median). 

Scenario 2: A Longitudinal study of spoken digits recognition in embodied artificial 

agents 

Interestingly, in scenario 2, the control model was significantly more efficient with the 

medium group, where we noted that the control model reached its highest accuracy on the 

training set (highest average was 0.974 with 2788). On the contrary, the control model 

accuracy decreased on larger sets (average accuracy on the training set was around 0.96 with 

27884) despite the mean squared error (MSE) of the predicted random representations 

continued improved for both training and testing. Indeed, the control model achieved a lower 

performance against the simple baseline on the full-sized training set (27884) when the 

average MSE on the testing set was 0.007. This suggests an inverse relationship between the 

two targets, which indicates that generic random representations successfully augmented the 

training only when their prediction was not fully accurate (average testing MSE in the range 

[0.012, 0.026]). This may explain also the quicker learning of the control model with 5576 

examples because the MSE is in the range [0.012, 0.017] during the first 16 epochs. We 

didn't note a similar effect with the embodied models, which have a stable accuracy on the 

training set from 2788 onward and still achieved higher results than the baseline.  

Supplementary Table 1. Student t-test p values for the longitudinal experiment.  

Comparisons are between the model in the first and the second of the header rows. p values smaller 

than 0.05 are in bold. Black is a positive difference, red is negative. 

Training 
examples 
(pre/full) 

Random values Cardinal Numerosity Robot fingers 

Cardinal 
Numerosity 

Robot fingers Baseline Robot 
fingers 

Baseline Baseline 

After Epoch 25 (average of testing after epochs with lowest training loss) 

32/128 0.0166 0.0055 0.5837 0.6894 0.0009 0.0001 

128/512 <0.0001 <0.0001 0.0003 0.6038 <0.0001 <0.0001 

256/1024 <0.0001 0.0004 <0.0001 0.7223 <0.0001 <0.0001 

697/2788 0.3637 0.8279 <0.0001 0.4512 <0.0001 <0.0001 

1394/5576 0.0051 0.0065 <0.0001 0.8645 <0.0001 <0.0001 

3485/13942 0.0073 0.0015 0.7466 0.3488 0.0058 0.0010 

6971/27884 0.0013 0.0098 0.0647 0.5153 0.0843 0.3079 

Final (average of testing after epochs with lowest training loss) 

32/128 0.1315 0.1289 0.1845 0.7927 0.0042 0.0070 

128/512 0.0466 0.0461 <0.0001 0.7388 <0.0001 <0.0001 

256/1024 0.9239 0.6442 <0.0001 0.6890 <0.0001 0.0002 

697/2788 0.6120 0.9784 0.0001 0.6020 0.0001 <0.0001 

1394/5576 0.4495 0.2707 0.0003 0.6918 <0.0001 <0.0001 

3485/13942 0.0116 0.1973 0.5593 0.0805 0.0025 0.0574 

6971/27884 0.0899 0.6294 0.6451 0.2282 0.2201 0.9827 



Supplementary Table 2. Comparison of control conditions. 

Average accuracy rates (Acc) on the test set, with Standard Deviations (SD) and Cohen's d. Accuracy 

rates are highlighted in green when significantly (p<0.05) better than baseline, in bold when  

significantly (p<0.05) better (black) or worse (red) than the pre-trained baseline. The final rows of 

this table show the median epochs when test accuracy was greater than 99% of the baseline’s final 

average accuracy. 

Training 

examples 

Pre-trained  

baseline 

Control Model with Random 

Values 
Baseline 

(pre/full) Acc SD Acc SD d p  Acc SD d p  

After Epoch 1 

32/128 0.1485 0.0231 0.1481 0.0237 -0.015 0.9507 0.1406 0.016 -0.373 0.1195 

128/512 0.2291 0.0331 0.2382 0.0255 0.292 0.2209 0.1901 0.024 -1.267 <0.0001 

256/1024 0.3037 0.0336 0.3011 0.0437 -0.061 0.7960 0.2224 0.026 -2.563 <0.0001 

697/2788 0.5758 0.0468 0.5802 0.0631 0.074 0.7553 0.2967 0.030 -6.727 <0.0001 

1394/5576 0.8293 0.0384 0.8292 0.0213 -0.003 0.9895 0.4159 0.052 -8.569 <0.0001 

3485/13942 0.9176 0.0156 0.9210 0.0094 0.254 0.2859 0.6784 0.036 -8.046 <0.0001 

6971/27884 0.9420 0.0083 0.9384 0.0143 -0.289 0.2270 0.8279 0.028 -5.289 <0.0001 

Final (average of testing after epochs with lowest training loss) 

32/128 0.4054 0.0248 0.4093 0.0268 0.142 0.5599 0.4000 0.028 -0.195 0.4236 

128/512 0.7140 0.0171 0.7213 0.0181 0.392 0.1075 0.6960 0.025 -0.803 0.0014 

256/1024 0.8368 0.0114 0.8487 0.0107 1.015 0.0001 0.8340 0.013 -0.221 0.3649 

697/2788 0.9211 0.0078 0.9230 0.0064 0.257 0.2924 0.9166 0.006 -0.618 0.0123 

1394/5576 0.9452 0.0037 0.9463 0.0039 0.273 0.2590 0.9419 0.005 -0.707 0.0045 

3485/13942 0.9632 0.0024 0.9630 0.0030 -0.073 0.7619 0.9625 0.003 -0.227 0.3496 

6971/27884 0.9712 0.0017 0.9714 0.0017 0.144 0.5590 0.9716 0.002 0.257 0.2996 

Median Epoch when testing accuracy was greater than 99% of the Baseline's Final Average Accuracy 

32/128 49 44 43 
128/512 48 36 45 

256/1024 39 31 46 
697/2788 22 17 34 

1394/5576 17 16 22 
3485/13942 13 13 14 
6971/27884 9 12 14 

 

The pre-trained baseline is comparable to control model, both significantly increased initial 

accuracy, however, this did not always result in a significant improvement with respect to the 

baseline of the final accuracy, where the pre-trained baseline was almost in all cases less 

accurate than the control model, but there was a statistically significant difference only once. 

In general, the pre-trained baseline was also slower; indeed, it reached 99% of the baseline 

final accuracy usually several epochs later than the control model. 

To provide additional information for understanding the meaning of embodied representation 

quantitatively, Supplementary Table 3 presents the correlation matrices between spoken 

digits and the three output representations used in our experiments. In the case of the spoken 

digits, the correlation was calculated between the average spectrograms. In the case of 

cardinal numerosity, the correlation was calculated adding a zero to the end of each vector to 

avoid a division by zero. Otherwise, nine has a standard deviation equal to zero because it is 

represented by a vector of ones only. 

Analysing the correlation coefficients, it could be noted that there are several moderate 

correlations between the spoke digit spectrograms: 1 with 3,7 and 9; 3 with 5 and 9; 5 with 8 

and 9. These correlations make the learning slower because the network will require longer 

training to find the best parameters to differentiate between these digits. The one-hot 

representation will not provide any meaningful feedback, because it represents all the digits 

in the same way with equal correlations among all of them. In contrast, the cardinal 

numerosity and the robot fingers have a very similar correlation profile, where the only 



exception are the two pairs 3-4 and 8-9, with only the latter being significantly different: a 

moderate positive correlation versus a weak negative correlation. However, these two pairs of 

spoken digits have a weak correlation (especially 8-9), therefore, they are not particularly 

difficult to classify. This can explain the similar performance shown by the cardinal 

numerosity and the robot fingers in our experiments. Furthermore, stronger correlations 

between the spectrograms were found for non-adjacent digits, while the cardinal numerosity 

and the robot fingers correlations linearly decrease with their difference. For instance, while 

the spectrograms of 1 and 3 have a moderate correlation with 9, the cardinal numerosity and 

the robot fingers have weak correlations among these digits. This property can help the 

network to better differentiate among these numbers as we have found in our experimental 

results, e.g. see Table 2 and the comments for Scenario 1. 

 
Supplementary Table 3. Correlation matrices.  

Correlation coefficients are between the average spectrograms of spoken digits, the two artificial 

representations (cardinal numerosity and one-hot) and the iCub robot finger positions. Correlations 

are highlighted with different shades (light = moderate, dark = strong) of green (positive) or red 

(negative). Weak correlations are in yellow (positive) or orange (negative). 

  

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 1.000 0.176 0.563 0.389 0.408 0.308 0.545 -0.149 0.617 1.000 0.667 0.509 0.408 0.333 0.272 0.218 0.167 0.111

2 0.176 1.000 0.077 0.250 -0.268 0.179 0.355 0.454 0.029 0.667 1.000 0.764 0.612 0.500 0.408 0.327 0.250 0.167

3 0.563 0.077 1.000 0.421 0.555 0.497 0.338 -0.188 0.664 0.509 0.764 1.000 0.802 0.655 0.535 0.429 0.327 0.218

4 0.389 0.250 0.421 1.000 0.337 0.383 0.462 -0.173 0.423 0.408 0.612 0.802 1.000 0.817 0.667 0.535 0.408 0.272

5 0.408 -0.268 0.555 0.337 1.000 0.318 0.142 -0.578 0.570 0.333 0.500 0.655 0.817 1.000 0.817 0.655 0.500 0.333

6 0.308 0.179 0.497 0.383 0.318 1.000 0.442 -0.200 0.330 0.272 0.408 0.535 0.667 0.817 1.000 0.802 0.612 0.408

7 0.545 0.355 0.338 0.462 0.142 0.442 1.000 -0.118 0.301 0.218 0.327 0.429 0.535 0.655 0.802 1.000 0.764 0.509

8 -0.149 0.454 -0.188 -0.173 -0.578 -0.200 -0.118 1.000 -0.181 0.167 0.250 0.327 0.408 0.500 0.612 0.764 1.000 0.667

9 0.617 0.029 0.664 0.423 0.570 0.330 0.301 -0.181 1.000 0.111 0.167 0.218 0.272 0.333 0.408 0.509 0.667 1.000

1 1.000 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 1.000 0.660 0.489 0.475 0.378 0.295 0.220 0.144 0.145

2 -0.125 1.000 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 0.660 1.000 0.746 0.726 0.578 0.450 0.336 0.219 0.221

3 -0.125 -0.125 1.000 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 0.489 0.746 1.000 0.571 0.774 0.604 0.450 0.293 0.296

4 -0.125 -0.125 -0.125 1.000 -0.125 -0.125 -0.125 -0.125 -0.125 0.475 0.726 0.571 1.000 0.860 0.670 0.501 0.326 0.330

5 -0.125 -0.125 -0.125 -0.125 1.000 -0.125 -0.125 -0.125 -0.125 0.378 0.578 0.774 0.860 1.000 0.779 0.582 0.379 0.383

6 -0.125 -0.125 -0.125 -0.125 -0.125 1.000 -0.125 -0.125 -0.125 0.295 0.450 0.604 0.670 0.779 1.000 0.751 0.489 0.494

7 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 1.000 -0.125 -0.125 0.220 0.336 0.450 0.501 0.582 0.751 1.000 0.657 0.664

8 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 1.000 -0.125 0.144 0.219 0.293 0.326 0.379 0.489 0.657 1.000 -0.128

9 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 1.000 0.145 0.221 0.296 0.330 0.383 0.494 0.664 -0.128 1.000

cardinal numerosity (thermometer)

robot fingersone-hot

Spoken digits (average spectrogram)



Database 

 

Supplementary Figure 2. Examples of Short-Time Fourier Transforms Spectrograms for digits from 
1 to 9.  

Statistical Analysis 
The performance measure is the accuracy rate, which is the number of correctly classified 

digits divided by the total number of spoken digits in the test set, and it was calculated on the 

test set after each training epoch. Tables report the average accuracy rate and the standard 

deviation of 32 independent runs as described in the pseudo-code below. In Figures, the 

graphs present the performance or average differences between models with varying epochs. 

The pseudo-code below describes the procedure to calculate the average accuracy, including 

the best accuracy for the minimum loss. 

For each k ∈ {128,512,1024,2788,13942, 27884}  

For each i ∈ [1,32] 
                     𝑏𝑒𝑠𝑡_𝑒𝑝𝑜𝑐ℎ𝑖 = min (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟_𝑙𝑜𝑠𝑠𝑘,𝑖) 

For each epoch 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑘, 𝑒𝑝𝑜𝑐ℎ) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖∈[1,32](𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖(𝑘, 𝑒𝑝𝑜𝑐ℎ)) 

𝑓𝑖𝑛𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑘) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖∈[1,32](𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖(𝑘, 𝑏𝑒𝑠𝑡_𝑒𝑝𝑜𝑐ℎ𝑖)) 

The best performance in the training history is calculated as the maximum of the average 

accuracies per epoch. The significance of differences was verified with the Student t-test, 

where we considered the differences statistically significant when p<0.05. 

To evaluate the effect size of the differences, we calculated Cohen's d2, which is defined as 

the difference between two means divided by a standard deviation for the data: 

𝑑 =
𝜇1 − 𝜇2

𝑠𝑡𝑑𝑝
 

where 𝜇1 − 𝜇2 is the difference between the two averages (µ) and 𝑠𝑡𝑑𝑝 is the pooled standard 

deviation: 

𝑠𝑡𝑑𝑝 = √
𝑠𝑡𝑑1

2 + 𝑠𝑡𝑑2
2

2
 



This means that if d is 1, the two groups' averages differ by one standard deviation; a d of .5 

means that the two groups' averages differ by half a standard deviation; and so on. Cohen 

suggested that d=0.2 be considered a “small” (trivial) effect size, 0.5 represents a “medium” 

effect size and 0.8 a “large” effect size 2. 
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