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Abstract: We present an open-source kinematic fitting routine designed for low-energy nuclear
physics applications. Although kinematic fitting is commonly used in high-energy particle physics,
it is rarely used in low-energy nuclear physics, despite its effectiveness. A FORTRAN and ROOT C++
version of the FUNKI_FIT kinematic fitting code have been developed and published open access.
The FUNKI_FIT code is universal in the sense that the constraint equations can be easily modified
to suit different experimental set-ups and reactions. Two case studies for the use of this code,
utilising experimental and Monte–Carlo data, are presented: (1) charged-particle spectroscopy using
silicon-strip detectors; (2) charged-particle spectroscopy using active target detectors. The kinematic
fitting routine provides an improvement in resolution in both cases, demonstrating, for the first time,
the applicability of kinematic fitting across a range of nuclear physics applications. The ROOT macro
has been developed in order to easily apply this technique in standard data analysis routines used by
the nuclear physics community.
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1. Introduction

In all nuclear physics experiments, measurements are subject to various uncertainties, both
statistical and systematic. A typical experiment involves a beam of accelerated sub-atomic particles
impinging on a target. Upon a nuclear reaction taking place, radiation is emitted. Such experiments
involve measuring this radiation (charged ions, electrons, neutrons or electromagnetic radiation) and
using it to reconstruct the reaction taking place. Charged ions may be detected using silicon-strip
detectors or gaseous time projection chambers (TPCs) [1–3]. Such devices provide information about
the energies and directions of the particles they detect.

Depending on the experiment, various uncertainties limit the ability to reconstruct these reactions.
These uncertainties can arise from the beam of particles itself. Modern, radioactive beam experiments
can provide intense beams of radioactive isotopes in order to study the behaviour of nuclei far from
stability [4,5]. However, the composition of the beam, its energy and spatial location are sometimes
poorly constrained. Other experimental uncertainties arise from radiation detection. The detector
type and material defines the energy resolution, and the physical size of the detector can limit the
spatial resolution (how well the direction of a particle can be determined). Due to these experimental
limitations, the momenta of the particles reconstructed in the final state, and hence other information
about the nuclear reaction, cannot be known exactly. However, it is possible to significantly improve
this resolution of the measured quantities by applying a process called kinematic fitting, which is
widely used in particle physics [6] but has rarely been used in nuclear spectroscopy [7,8].
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The idea of kinematic fitting is to identify and use physical kinematic constraints of the
experimental system and vary the experimental measurements (energies and directions of the particles)
such that these constraints are matched exactly. In theory, this should correct the experimentally
measured quantities, bringing them closer to their true values. Two such constraints could be the
total energy and vector momentum of a system. If the beam energy and direction is known before a
reaction, along with the reaction Q-value, the sum of the momenta of the particles after the reaction is
constrained, along with the total energy. Such constraints can be used to correct the experimental data.
The more constraints that a system has, the more accurately the measured parameters can be known.
During the kinematic fitting process, the amount that each parameter can move from its initial value
is modulated by its original measurement uncertainty, obtained empirically. This means that poorly
measured parameters can change more easily, and parameters with a small uncertainty do not change
much from their initial values.

Such kinematic fitting routines are commonplace in high-energy physics. They have been used
for several decades and are now routinely built into data analysis programs. The present paper clearly
demonstrates, for the first time, the usefulness of kinematic fitting in the field of low-energy nuclear
physics, across a range of reaction types and detector systems. The aim of this paper is to introduce a
kinematic fitting framework, FUNKI_FIT, which may be utilised by the nuclear physics community
to improve the resolution in a variety of data analyses. We initially provide a brief introduction to
the mathematics of kinematic fitting using Lagrange multipliers and a simple example is given to
demonstrate the method. The FUNKI_FIT code is then introduced and applied to two important case
studies: charged-particle spectroscopy using silicon strip detectors and active target detectors (time
projection chambers).

2. Materials and Methods

Mathematically, kinematic fitting is performed using the method of Lagrange multipliers, where
the difference between the measured parameter values and their true values are minimised subject to
a number of constraint equations, defined by the system being measured. Let α be a column vector
representing a set of parameters such as the true energies and angles of the particles emerging from a
nuclear reaction, (without any experimental uncertainty). If a single event corresponds to measuring n
parameters, then α takes the form

α =


α1

α2

.

.
αn

 . (1)

In an experiment, the parameters are measured as their initial, unconstrained values, contained in
the vector, α0. How well the measured parameters α0, which are subject to an experimental resolution
σ, match the true values α can be quantified by computing the value of χ2 in matrix form as

χ2 = (α− α0)V−1
α0

(α− α0), (2)

where V−1
α0

is the inverse of the covariance matrix. In kinematic fitting, the values of the measured
parameters are changed so that Equation (2) is minimised. This minimisation is subject to a number of
physical constraints. As an example, if a constraint of the system is that all of the parameters must
sum to a constant value, S, then the constraint equation is

H = α1 + α2 ... + αn − S = 0. (3)
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If instead, the parameters are subject to a number of r constraint equations, Hr, then we wish to
minimise χ2 subject to the constraint that

H(α) = 0. (4)

Here, H is a row vector, which contains each of the constraint equations (H1 H2 . . . Hr).
Equation (4) can be expanded around an arbitrary point in the parameter space αA (commonly chosen
as αA = α0) such that

H(α) = 0 ≈ H(α0) +
∂H(αA)

∂α
(α− α0) = d + Dδα, (5)

where δα = (α− α0) and

d =


H1(αA)

H2(αA)

.

.
Hr(αA)

 D =


∂H1
∂α1

∂H1
∂α2

. . . ∂H1
∂αn

∂H2
∂α1

∂H2
∂α2

. . . ∂H2
∂αn

...
...

. . .
...

∂Hr
∂α1

∂Hr
∂α2

. . . ∂Hr
∂αn

 . (6)

In FUNKI_FIT, the D matrix is obtained by numerically differentiating each constraint equation in
the direction of each parameter αi at the unconstrained α0 values. From here, χ2 is minimised subject
to Equation (5) using the method of Lagrange multipliers [9] as

χ2 = (α− α0)V−1
α0

(α− α0) + 2λT(d + Dδα). (7)

Here, λ is a vector of r unknowns. Minimising χ2 with respect to α and λ leads to a solution by
solving the two linear vector equations

V−1
α0

(α− α0) + DTλ = 0 (8)

d + Dδα = 0. (9)

The solution can be found in steps by computing the following matrix multiplications:

VD = (DVα0 DT)−1 (10)

λ = VD(d + Dδα0). (11)

The new, corrected parameters, α may then be computed as

α = α0 −Vα0 DTλ. (12)

The uncertainties on the new parameters are obtained by calculating the new covariance matrix as

Vα = Vα0 −Vα0 DTVDDVα0 . (13)

The correction to the parameters, applied by Equation (12), assumes that the constraint equations
vary linearly with each of the parameters, α. This is because the matrix, D, evaluates the gradient
of H(α) in the direction of each parameter. However, for non-linear constraint equations, as the
parameters are moved away from their initial α0 values, the D matrix will also change. This means
that Equation (12) will undershoot or overshoot the minimising parameter values. Therefore, in order
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to find the solution for non-linear constraints, the solution is computed iteratively until the minimum
χ2 is found. Equation (12) is rewritten in the form

α = α0 − wVα0 DTλ, (14)

where w is a weighting factor, which has a value considerably less than 1. A value of 0.01 was chosen in
the present work. The kinematic fitting procedure is followed a number of times. Each time, the change
in the parameters α is suppressed by w. This allows a gradual convergence towards parameter values
that minimise χ2. The procedure is shown pictorially in Figure 1.

α0	 αmin	 α0	 αmin	

χ2
	

Figure 1. Variation of χ2 due to a hypothetical non-linear constraint equation depending on a
parameter, α. (left) Using the prescription of Equation (12), the solution that minimises χ2 is not
found. (right) Using the iterative method of Equation (14), the minimum is found.

To illustrate the power of kinematic fitting, consider the simple example of measuring the energies
of three particles (E1, E2, E3) MeV. To simplify the problem, their true values for each measurement
are fixed as (4, 9, 16) MeV. However, the parameters are measured with a resolution (σ1, σ2, σ3) =
(0.5, 1, 1) MeV. This simple system has been modelled with a Monte–Carlo simulation. For 10,000 event
measurements, the distribution of measured energies are shown in Figure 2 by the clear histogram. It is
possible to improve the resolution of these parameters through kinematic fitting with two hypothetical
constraint equations. These equations are chosen such that they are satisfied by the true values of
the parameters

E1 + E2 + E3 = Esum = 29 (15)

E2
1 + E2

2 + E2
3 = E2 = 353. (16)

The filled histogram of Figure 2 shows the distribution of measured energies after kinematic fitting
with both one and two constraints. The plot is layered such that the distribution after kinematic fitting
can be seen through the initial distribution. The uncertainties in the newly-calculated parameters
can be easily computed after the fitting process has been performed using Equation (13). For the
single constraint equation, this gives (σ1, σ2, σ3) = (0.471, 0.745, 0.745) MeV, which agrees with the
distributions shown in the left panel of Figure 2.
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Figure 2. The distribution of particle energies before (clear histogram) and after (filled histogram)
kinematic fitting. (left) One constraint (Equation (15)). (right) Two constraints (Equations (15) and (16)).
Here, E3 is best constrained after fitting since its value has a larger effect on Equation (16).

The above mathematics for kinematic fitting have been implemented for use in low energy
nuclear physics using the fast universal kinematic fitting (FUNKI_FIT) code, which has been written
for FORTRAN [10] and ROOT C++ [11]. In addition to the simple example above, the FORTRAN and C++
codes have been tested on two example data sets, and the results are presented next. The first involves
precisely measuring the decay of 12C into three α-particles using a position-sensitive silicon detector
array. The FORTRAN code has been used for this analysis. Secondly, the 10C(α,α) resonant elastic
scattering reaction was explored using the ROOT C++ code. Detailed Monte–Carlo simulations of the
Texas Active Target (TexAT) detector [3,12] were used to model this reaction in Thick Target Inverse
Kinematics (TTIK). In TTIK, a heavy-ion passes through a light gas, allowing the cross-section over a
range of energies to be measured with a single beam energy.

3. Results and Discussion

3.1. Charged-Particle Spectroscopy with Silicon-Strip Detectors

As mentioned in the introduction, it is important to obtain optimum energy and position
resolution in charged-particle spectroscopy experiments. This is of utmost importance in experiments
where the relative momenta of the detected particles are being examined. This has been seen in several
cases relating to Borromean nuclei [13–15].

In reference [15], an upper limit on the branching ratio for direct and sequential decay of the
famous Hoyle state in 12C was measured. This branching ratio is important in astrophysics and
for understanding nuclear structure [16,17]. The set-up used in the experiment is shown in the left
panel of Figure 3. A beam of 40 MeV α-particles, produced by the University of Birmingham MC40
Cyclotron, were directed onto a 100 µg/cm2 natural carbon target. Inelastic scattering of an α-particle
from a 12C nucleus may populate an excited state in carbon. The scattered α-particle was detected
in a ∆E− E telescope set-up of two Micron W1 double-sided silicon strip detectors (DSSDs) (Micron
Semiconductor Ltd., Lancing, UK), one 65 µm-thick and the other 500 µm-thick, placed at 90◦ to
the beam; this permitted particle identification. The energy of this scattered α-particle was used to
calculate the excitation energy of the recoiling 12C, allowing events that populated the Hoyle state to be
identified. Then the three other α-particles, resulting from the decay of an above-threshold excited state
in 12C, were detected in an array of four 500 µm-thick Micron W1 DSSDs. It is the relative momenta of
these three α-particles that allowed the determination of the type of decay.
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Figure 3. (left) Schematic diagram of the experiment used to measure the 3α break-up of 12C.
(right) Pictorial representation of the sequential and direct decays of 12C.

The right panel of Figure 3 shows a pictorial depiction of the break-up of 12C into three α-particles,
in its centre-of-mass frame. In the top sequential decay case, the 12C first emits an α-particle with a fixed
energy, leaving a recoiling 8Be. This 8Be is unbound by 92 keV and later decays into two α-particles.
In the bottom direct decay case, where the three α-particles are emitted from the nucleus simultaneously,
the energy in the decay is shared differently between the three fragments. These two types of decay are
disentangled by examining the relative momenta of the three α-particles. The measured momenta of
the break-up α-particles allowed the 12C recoil momentum to be determined and therefore the energies
of the particles in the centre-of-mass of the decaying 12C could be calculated.

In the published work [15], only events where all three break-up α-particles hit the detectors were
considered. This is because their momenta were precisely measured and therefore a good resolution
was obtained when comparing their relative momenta. However, these type of events make up a small
fraction of the total due to incomplete solid angle coverage. A second, much larger, subset of data that
were not published consists of those events where one of the break-up α-particles misses the detector
array entirely. However, since the beam momentum is known, as are the momenta of the three other
detected α-particles, the vector momentum of the third, undetected α-particle may be calculated as

~Pα4 = ~Pbeam −
3

∑
i=1

~Pαi . (17)

However, this does not permit as good resolution as when all four α-particles are detected directly.
The uncertainties on the energies and polar angles of the three detected α-particles are combined
in Equation (17) meaning that the momentum of the reconstructed α-particle is poorly constrained.
Therefore, even though higher statistics are possible with this larger data set, the energy resolution is
too poor for the data to be useful in analysing the α-particle relative momenta.

The relative momenta of the three α-particles resulting from the decay of 12C may be visualised
using a Dalitz plot [18]. Some Dalitz plots from this data set are shown in Figure 4. In order to produce
these plots, the excitation energy of the decaying 12C was first calculated. This was first done by
calculating the momentum and kinetic energy of the decaying 12C as
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~P12C =
3

∑
i=1

~Pαi (18)

E12C =

∣∣∣~P12C

∣∣∣2
2M12C

. (19)

Then, the 12C excitation energy was calculated as

Ex =
3

∑
i=1

Eαi − E12C −Q. (20)

where Q is the Q-value for the decay (−7.27 MeV). The resulting excitation energy plots are shown in
Figure 5. The data corresponding to where all final state α-particles are detected directly forms the main
plot and the data where one of the α-particles was reconstructed is shown as the inset. As can be seen,
the complete kinematics data show a considerably better excitation energy resolution than when one
particle is reconstructed. A 1.5σ software cut was placed on the Hoyle state peak at ≈7.65 MeV. This
allowed us to focus on decays from the Hoyle state, with some background from higher energy states.

From there, the relative energies of the three break-up α-particles were examined in the 12C
centre-of-mass frame using Dalitz plots. The construction of Dalitz plots is discussed in detail in the
references [14,19]. In short, the symmetric Dalitz plot provides a way to draw three quantities on
a two-dimensional plot, provided that the three quantities sum to a known value. In this example,
the fractional energies of the three α-particles are plotted, meaning that they must sum to unity. Since,
in the sequential decay, the first emitted α-particle carries away a fixed fraction of the decay energy
(≈ 50%), decays of this kind appear on a triangular locus. The direct decay, on the other hand, appears
as a background to this triangle.
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Figure 4. Dalitz plots showing the relative fractional energies of α-particles emitted from 12C.
(a) Complete kinematics data show excellent resolution. (b) The data where one α-particle is
reconstructed. (c) The same data after kinematic fitting was applied.

For reference, the Dalitz plot obtained when all four final state α-particles are detected directly
is shown in Figure 4a. Excellent resolution is obtained and events corresponding to sequential and
direct decay can be clearly distinguished. The Dalitz plot obtained when one of the α-particles is
reconstructed is shown in Figure 4b. This has a relatively poor resolution, meaning that contributions
from sequential and the rare direct decay cannot be easily differentiated. Finally, Figure 4c shows the
same data after kinematic fitting was applied. A significant improvement in the resolution is obtained.
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Figure 5. Excitation spectra of 12C. Main figure: Complete kinematics data. Inset: Data where one
α-particle has been reconstructed. The reconstructed data show a poorer excitation energy resolution.
The difference in populations of the 7.65 MeV 0+2 and 9.64 MeV 3−1 are attributed to differences in the
detector acceptance for each of the two multiplicities.

The FUNKI_FIT.F FORTRAN code [10] was used for the kinematic fitting and utilised two
constraint equations

4

∑
i=1

Ei −Q− Ebeam = 0 (21)

3

∑
i=1

Eαi − E12C −Q− 7.6542 MeV = 0. (22)

where Q = − 7.27 MeV and E12C is calculated as shown in Equations (18) and (19). Equation (21)
provides the constraint that the total energy of the system is conserved during the reaction.
Equation (22) provides the constraint that the three α-particles emerging from 12C have resulted
from the decay of a state with the exact energy of the Hoyle State (7.6542 MeV). Since total momentum
conservation was used to reconstruct the momentum of the missing α-particle, this constraint is already
met so cannot be utilised further in the kinematic fitting.

The width of the Dalitz plot distribution reduced by a factor of ≈ 1.5 through kinematic fitting.
This is demonstrated in the left panel of Figure 6, which shows a particular projection of the Dalitz plot.
To obtain this projection, the Dalitz plots of Figure 4 were folded along each of the lines of symmetry,
defined by the three axes, ε1, ε2 and ε3. After this procedure, the data occupy a single sextant of the
Dalitz plot. The data may then be projected onto the remaining ε axis, in order to examine the width of
the triangular locus. The left panel of Figure 6 shows this projection before and after kinematic fitting,
illustrating the improvement in resolution.
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Figure 6. One-dimensional projections of the Dalitz plots showing the relative fractional energies of
α-particles emitted from 12C. (left) Projections of the Dalitz plots before (red triangles) and after (blue
circles) kinematic fitting. (right) Fits of simulated data to the projected Dalitz plot after kinematic
fitting. The red, solid line shows a 100% sequential decay, and the green, dashed line includes a 0.3%
direct decay contribution.

This improvement means that the relative contributions of sequential and direct decay could
be more clearly constrained. To quantify this, Monte–Carlo simulations of sequential and direct
decay events were generated. Details of the Monte–Carlo code can be found in references [20,21].
To demonstrate how each decay type appears on the Dalitz plot, the simulated sequential and direct
decays (for complete kinematics, high-resolution events) are shown as the folded Dalitz plots in
Figure 7. To evaluate the relative sequential and direct decay contributions, the Monte–Carlo data
were fitted to the experimental data. The right panel of Figure 7 shows the tails of the Dalitz plot (the
area most sensitive to direct decay) for the kinematic fitted data. The solid line shows the simulation of
a 100% sequential decay, which gives a χ2 per degree of freedom of 1.08, close to the 50% confidence
level (C.L.), indicating a good fit. Once the direct decay contribution was increased to 0.2%, the χ2

value increased beyond the 99% C.L. Thus an experimental upper limit of 0.2% was assigned to the
rare direct decay mode. In contrast, the same analysis, applied to the pre-kinematic fitted data with
poorer resolution, obtained an upper limit of 1.4% for the direct decay mode. Thus, the kinematic
fitting improves the sensitivity to the direct decay by almost an order of magnitude.

Dalitz plot analyses are also commonly used when studying the decays of other Borromean
light nuclei, such as the neutron-rich 14Be [13], 18C and 20O [22]. These are predicted to have neutron
halo structures that have previously been investigated through examining the relative energies of the
emitted neutrons. Despite recent neutron detector upgrades, the neutron momenta are notoriously
difficult to measure and could benefit from the presented kinematic fitting routine.
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Figure 7. Folded Dalitz plots of simulated, complete kinematics data. (left) Sequential decay. (right)
Direct decay. Note that the direct decay mechanism was modelled as an equal probabilities decay to
anywhere in the available phase space, corresponding to a uniform filling of the Dalitz plot in the right
panel. The slight non-uniformity of the simulation is due to the detector acceptance.

3.2. Application to TPCs

TPCs have seen a recent boom in their use in nuclear physics experiments [23,24]. One of their
primary areas of application is in the use of the thick target inverse kinematics (TTIK) technique [25].
This involves a beam passing through a gas target medium and losing energy as it does so. This causes
the beam + gas system to sweep out a range of centre-of-mass energies. Therefore, any compound
nucleus reaction inside the gas can have its centre-of-mass energy identified from the interaction
location. In this way, an excitation function can be measured by counting the number of interactions as
the beam passes through the gas.

This works well but there are several limiting factors. Firstly, for beams that are unstable,
and therefore must be created using a recoil separator or the ISOL technique, by the time the beam has
entered the TPC, the beam energy spread can be very large (≈ 5% in the case of a recoil separator).
This has a dramatic effect on the centre-of-mass energy resolution as the vertex location no longer
well-defines the centre-of-mass energy. As an alternative, an accurate energy and angle measurement of
the recoil products of a reaction can be used instead to calculate the centre-of-mass energy. Furthermore,
for a range of situations, the recoil products stop inside the gas and cannot be well measured by an
exterior silicon detector; this also limits the energy resolution. Additionally, the stopping power for
the recoil + gas system may not be well known or prone to systematic differences, which can also
degrade the resolution. A final additional experimental hurdle corresponds to the position resolution
and, therefore, the momentum vector, for light recoil products. For high energy protons, the energy
loss in the TPC region may fall below the threshold for detection and therefore can only be detected
in silicon detectors, which may not be well pixellated.

To rectify this, one can constrain the system by measuring the incoming beam track and the two
recoil product tracks (which have correspondingly large uncertainties) and apply kinematic fitting
constraints to improve the reconstructed energy resolution. Here, the parameters are that of the
momentum for the beam (pb), light (pl) and heavy (ph) recoil products and their corresponding polar
and azimuthal angles (θ, φ) just before/after the interaction with Q-value, Q. The following constraints
can then be applied:
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~pb = ~ph + ~pl (23)

pb
2

2mb
=

ph
2

2mh
+

pl
2

2ml
−Q. (24)

In this way, one can parameterise the energy spread of the incoming beam by setting the initial
pb based on the expected energy loss of the beam to the measured interaction vertex with a variance
given by the beam energy resolution, or by using the position resolution with which one can identify
the reaction vertex. After these parameters have been constrained, the centre-of-mass energy ECM is
then simply:

ECM =
pb

2

2mb

(
mt

mt + mb

)
, (25)

with mt being the mass of the target and mb being the mass of the beam.
It is worth noting that a similar result can be obtained by using a combination of the recoil product

energies and the incoming beam energies without the use of kinematic fitting. However, the kinematic
fitting not only deals with these multiple sources of errors well on an event-by-event basis but also
provides a similar improvement to the angular resolution, which is not possible without the use of this
technique. This angular resolution is particularly important in TTIK and transfer experiments where
the spin information is encoded in the angular dependencies of the measured reactions.

3.3. Simulated TPC Data

In order to benchmark this approach, a Geant4 simulation was used that simulates the detector
response of the TexAT (Texas Active Target) TPC [12]. The detailed simulation includes the full detector
geometry, segmentation of the readout plane, and diffusion of electrons as they drift through the TPC.
The interaction simulated was that of 10C(α, α) elastic scattering. An isolated resonance was simulated
at ECM = 2.5 MeV and the incident 10C was given an energy of exactly 18 MeV upon entering the
chamber, filled with 600 Torr of helium gas. Since the initial energy of the beam is known, the loss of
its energy as it passes through the detector will mean that the population of the 2.5 MeV resonance
will occur at a fixed position in the detector.

The excitation energy resolution is therefore partly defined by the accuracy by which the position
of the interaction point can be determined. The 3D tracks were then reconstructed from the waveforms
generated from the simulation, using the same analysis code that is used to analyse real experimental
data. The segmentation of TexAT is 1.75 × 3.5 mm in the central (beam) region and has 1.75 mm pitch
strips and chains either side of the central region. Therefore, this is indicative of the track resolution
one can achieve.

To find the interaction vertex, the incoming beam and the two recoil tracks were found using a
Hough transform and then fitted using the least-squares distance approach to give the interaction
vertex, the trajectory of the incoming beam and the endpoints of the two recoil particles. This
least-squared approach also included terms to avoid over/underfitting the length of the arms so
that they terminated at the end of the reconstructed tracks. An example of this fit can be seen in
Figure 8. This fit also gives the associated covariance matrices that can be used for the later kinematic
fitting using the ROOT version of FUNKI_FIT [11]. A histogram of vertex positions, calculated for all
simulated events, is shown in Figure 9. An average vertex reconstruction error of 2.5 mm was achieved
along the beam direction corresponding to roughly 250 keV energy resolution (70 keV centre-of-mass
energy resolution).
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Figure 8. XY projection of a simulated 10C(α, α) reaction track in Texas Active Target (TexAT),
reconstructed from a Monte–Carlo generated event where the histogram colour represents the energy
deposited in the Micromegas of TexAT. The magenta line is the fitted incoming track for the beam,
the red line is the fitted light recoil (α) track and the black line is the fitted heavy recoil track (10C).
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Figure 9. Reconstructed vertex positions along the beam direction of 10C(α, α) reaction tracks in TexAT,
reconstructed from Monte–Carlo generated events with no beam energy spread. The main peak can
be clearly be seen and has a width of σ = 2.5 mm. The events away from this peak correspond to
misidentified vertex locations due to the limitations of the TexAT segmentation, vertex fitting and
Hough transform algorithm. They mainly correspond to small-angle scattering events where the light
and heavy recoils are hard to distinguish.
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To obtain an independent measure of the centre-of-mass energy, one must use the energies of
the recoil products, which were determined in the simulated data by measuring the range of the
reaction products in the gas, as determined from the fit. A measurement of the energies from the
ranges has a dramatically worse resolution that via a direct energy measurement with a silicon detector.
The energies and polar angle of each particle (the beam, light α-particle and heavy 12C recoil) are
then used to calculate the vector momenta used in constraint Equations (23) and (24). Despite this
large error in centre-of-mass energy from the recoil products (σ = 175 keV), the kinematic fitting
technique still provides an improvement, which can be seen in Figure 10. This was obtained using the
formulation above in conjunction with the centre-of-mass measurement from the beam which has a
superior energy resolution in this case.

The resolution can be seen to change from σ = 70 keV to σKF = 65 keV. This is consistent with
taking the weighted mean (wi = σ−2

i ) of the centre-of-mass energy resolution from the beam and
the recoil products (σ = 66 keV). Most dramatically, the kinematic fitting technique also improves
the angular resolution where the deviation from the true value can be seen in Figure 11. Kinematic
fitting improves the angular error, σθ, (in the lab frame) from 2.2◦ and 0.7◦ for the light and heavy
recoil respectively to 1.0◦ and 0.4◦. As mentioned, this improvement is essential for the extraction of
spin-parity information in TTIK measurements from R-Matrix theory. The light recoil has a larger
error as it has an overall larger scattering angle. For completeness, although they carry less physical
significance, the uncertainties in the momenta of the beam, light α-particle, and heavy 10C are shown
explicitly in Figures 12–14, since these parameters are used in the constraint equations.

2.2 2.3 2.4 2.5 2.6 2.7 2.8
 (MeV)CME

0

50

100

150

200

250

C
ou

nt
s/

4 
ke

V

Before

After

Figure 10. Centre-of-mass energy as calculated from the energies of the recoil products for a
ECM = 2.5 MeV resonance in the 10C(α, α) channel.
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dramatic improvement in the angular resolution for both the light and heavy products.

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
)1/2Error in momentum (MeV

0

100

200

300

400

500

600

700

800

900

1/
2

C
ou

nt
s/

0.
04

 M
eV

Beam - before

Beam - after

Beam - before

Beam - after
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Figure 13. Uncertainty in the calculated momentum of the light α-particle, in the 10C(α, α) channel,
before and after kinematic fitting.
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Figure 14. Uncertainty in the calculated momentum of the heavy 10C, in the 10C(α, α) channel,
before and after kinematic fitting.

This approach is useful not just in the shown case, where the errors on the particle momenta are
large, but also in situations where the recoil particles are measured in a silicon detector. For detector
configurations that require a large solid-angle coverage of silicon shells, the angular granularity of
these detectors may be very large and therefore there is a large momentum uncertainty. Furthermore,
this case emphasises the situation whereby the beam energy resolution is smaller than that from
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measuring the reaction products. However, this technique is equally applicable in the case of a poor
beam energy resolution, such as when using radioactive beams as discussed above.

4. Discussion

The present study demonstrates, for the first time, the usefulness of kinematic fitting in low energy
nuclear physics across a range of detector technologies, experimental methods, and scientific aims.

In charged-particle spectroscopy using silicon detectors, a significant improvement was seen
in the fractional energy resolution of the α-particles emitted during the decay of 12C. This allowed
the various decay types of 12C to be differentiated more clearly. This success has consequences for
studying the break-up of other Borromean light nuclei such as 9Be. When studying 9Be, typically only
the α-particles resulting from the 9Be→ α + α + n decay are measured. The neutron is undetected
and reconstructed as missing mass. In reference [14], the α-α-n relative energies were examined using
Dalitz plots, with a resolution that could be improved using kinematic fitting. Likewise, the study
of more neutron-rich Borromean nuclei, such as 14Be [13], 18C and 20O [22] may reconstruct missing
neutrons or detect them directly. Such neutron detectors typically have poor energy and position
resolution, so these analyses could be improved using kinematic fitting. With the growing popularity
of radioactive beam facilities, where the behaviour of more neutron-rich nuclei are opened up to
exploration, kinematic fitting could play an important role.

As previously noted, the use of TPCs is increasing in nuclear physics experiments [23,24]. In this
paper, we have demonstrated, for the first time, that one of the primary applications of TPCs, thick
target inverse kinematics (TTIK) measurements, are dramatically improved using kinematic fitting.
We record a modest improvement in the excitation energy resolution and large improvements in
angular resolution. For fitting spectra obtained with TTIK, using the R matrix method, detailed
angular measurements are required in order to constrain the angular momenta of states in the spectra.
Therefore, such improvements in angular resolution are of great significance.
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