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Abstract: In this report, we investigated three stabilization strategies of gold nanoparticles and their
practical application for the visual detection of dipeptidyl peptidase IV (DPP-IV). Citrate-capped
gold nanoparticles (Au NPs) are generally unstable in high-ionic-strength samples. Au NPs are easily
tagged with various proteins and biomolecules rich in amino acids, leading to important biomedical
applications including targeted drug delivery, cellular imaging, and biosensing. The investigated
assays were based on different modes of stabilization, such as the incorporation of polyethylene glycol
(PEG) groups, stabilizer peptide, and bifunctionalization. Although all approaches provided highly
stable Au NP platforms demonstrated by zeta potential measurements and resistance to aggregation
in a high-ionic-strength saline solution, we found that the Au NPs modified with a separate stabilizer
ligand provided the highest stability and was the only platform that demonstrated sensitivity to the
addition of DPP-IV, whilst PEGylated and peptide-stabilized Au NPs showed no significant response.

Keywords: gold nanoparticles; stabilization strategies; colorimetric detection; dipeptidyl peptidase IV

1. Introduction

Colloidal gold nanoparticle (Au NP) solutions used in biological assays need to be stable over
a wide range of ionic strengths. Therefore, it is essential that attention is paid to the choice of
the capping ligands, as these surface bound ligands are responsible for stabilizing NPs against
aggregation and providing the desired NP properties (e.g., hydrophilicity/hydrophobicity, surface
charge, ligand arrangement, chemical reactivity) [1,2]. A general method of stabilizing Au NPs is
the use of electrostatic repulsion between Au NPs, which are modified with charged ligands such as
citrate [3] or triphenylphosphine [4]. However, the stability of electrostatically stabilized Au NPs is
affected by the solution properties, including pH, ionic strength, and temperature [5].

Several approaches have been developed in order to improve the stability of Au NPs under
biological conditions and these generally involve the functionalization of Au NPs with ligands that
provide either steric or electrostatic stabilization, thus imparting stability to the Au NP colloid. One of
the most commonly used approaches involves the modification of the Au NP surface by assembling a
monolayer of peptide-capping ligands [6]. A combinatorial design approach enables the synthesis of
ligands that can enhance the stability of the Au NPs in aqueous media [7]. The design strategy of these
peptides takes into account the ability of certain amino acid residues to self-assemble into a dense layer
that excludes water and a hydrophilic terminus to ensure solubility and stability in water [8]. The aim
of this design approach is to produce ligands that, coupled to the Au NPs, will ensure the ligand is
bound to the particles through the thiol group on the terminal cysteine.
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A different widely applied method is the incorporation of a thiol-containing polyethylene glycol
(dithiol-PEG) moiety into the functional ligand, because of its good solubility, biocompatibility, and
anti-fouling properties, which render NPs resistant to non-specific protein adsorption [9,10]. A number
of workers have utilized functional PEGylated Au NPs in targeted drug delivery and as biosensors in
complex media [11–13]. Dougan and colleagues investigated the effect of using multiple thiol linker
systems on minimizing undesirable aggregation events caused by thiol desorption, resulting in the
loss of function of the probe [14].

Dithiols have also been used because of their higher coupling efficiency to Au NP surfaces,
compared to monothiol, which thus enhances the monolayer stability [15,16]. A number of dithiols
such as dihydrolipoic acid derivatives [9,17] and di- or polythiol PEGs [18,19] have been assessed for
the functionalization of Au NPs in order to impart further stability.

In this report, the effect of incorporating different stabilizer moieties into the assay format was
tested for the colorimetric detection of the DPP-IV enzyme (Scheme 1) —a dipeptidase enzyme of high
clinical importance, especially as a diagnostic and prognostic marker of various inflammatory disorders,
tumors, and hematological malignancies [20,21]—by three distinct methods and was assessed in order
to establish the most stable platform that could be exploited for use in high-ionic-strength media
such as biological fluids. Table 1 displays the complete sequence of the peptide constructs used in
these experiments.
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Table 1. Peptide sequences trialed to enhance gold nanoparticle (Au NP) stability.

Name Sequence Number of Amino Acids

C/G dipeptide Cys-Ala-Leu-Asn-Asn and Gly-Pro-Asp-Cys 5 and 4
GPG-EN-PEG4-LA Gly-Pro-Gly-ethylenediamine-PEG4-lipoamide 3

GPDCALNNC Gly-Pro-Asp-Cys-Ala-Leu-Asn-Asn-Cys 9

These approaches were chosen because they are well established in their use in NP systems and
they have predictable stability properties [5]. The aim of this study was to enhance the stability of
functionalized Au NPs by incorporating stabilizers and to evaluate their effect on DPP-IV detection.
It can be clearly observed that the three selected coating ligands differ in their binding moiety and
amino acid sequence, which implies a difference in the nanoparticle properties depending on the type
of stabilizer used (see Table 2).

Table 2. Summary of ligand and functionalized gold nanoparticle properties.

Ligand Properties

C/G dipeptide GPDCALLNNC GPG-PEG4-LA

Binding Moiety Sulfhydryl Sulfhydryl Disulfide
Molecular Weight 390 (GPDC) 533 (CALNN) 906 706

Nanoparticle Properties

Au@C/G dipeptide Au@GPDCALNNC Au@GPG-PEG4-LA

Diameter (nm) 14.3 ± 1.1 14.0 ± 1.3 13.8 ± 1.5
λmax (∆λmax = λmax − λoriginal) 524.7 (2.9) 524.3 (2.5) 523.5 (1.7)

Hydrated Diameter (nm) 35.4 39.5 38.1
Zeta Potential (mV) −39 ± 3.5 35.9 ± 1.5 −16.5 ± 1.3

2. Experimental Setup

2.1. Materials

All materials were obtained from suppliers as given below and used as received: DPP-IV
enzyme from porcine kidney was purchased from Merck Chemicals (Darmstadt, Germany); hydrogen
tetrachloroaurate (III) (HAuCl4·3H2O), 99.99% pure, and sodium citrate dihydrate (Na3C6H5O7.2H2O),
99% pure, were purchased from Sigma-Aldrich Co. Ltd. (Gillingham, UK) and used without further
purification. GPDC (~95% purity) and GPDCALNNC peptide (>90% purity) were purchased from
Thermo Fisher Scientific GmbH (Frankfurt, Germany). GPG-ethylenediamine-PEG4-lipoamide (95%
pure) was purchased from Cambridge Research Biochemicals (Cambridge, UK). CALNN peptide (90%
pure) was purchased from China peptides (Hangzhou, China).

2.2. Synthesis and Modification of Au NPs with Capping Ligands Preparation

The citrate-stabilized Au NPs were synthesized by using the Grabar method [22]. Briefly, 10 mL
of 38.8 mM sodium citrate dihydrate at 50–60 ◦C were added to 100 mL of 1 mM HAuCl4 under
vigorous stirring at boiling point to form a ruby-red-colored solution after a series of color changes.
The observed color change was caused by the Surface Plasmon Resonance (SPR) of the forming Au
NPs. The solution was cooled to room temperature. The pH was adjusted to 7.4 using 0.5 M NaOH and
the solution was filtered through a 0.22 µm pore diameter Millipore syringe filter to remove unreacted
salts. The filtrate was stored at 4 ◦C until required. All glassware and magnetic stirrer bars used in the
syntheses were thoroughly cleaned in aqua regia (HCl/HNO3 3:1, v/v), rinsed in distilled water, and
oven-dried prior to use.
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2.2.1. CALNN-, GPDC-Bifunctionalized Au NPs (C/G Au NPs)

C/G Au NPs were prepared by the addition of a peptide mixture (CALNN and GPDC) in various
ratios to the solution of Au NPs. GPDC is employed as a functional group which has been evaluated
as substrate for DPP-IV [23]; CALNN is used as a stabilizer because pure GPDC-modified Au NPs
exhibit poor stability under physiological conditions (ionic strength of 50–200 mM). The stability
of C/G-Au NPs is increased by increasing the molar ratio of CALNN to GPDC in the peptide
mixture. Bifunctionalized peptide Au NPs were prepared as in the reported procedure with slight
modification [9]. Different proportions of CALNN in the ligand shell were obtained by adjusting
the ratio of CALNN to GPDC (1:4, 1:6, 1:8, and 1:10) in the peptide mixture. An aqueous solution
of peptide mixture (CALNN and GPDC) for each concentration ratio was added to the solution of
Au NPs.

2.2.2. Gly-Pro-Gly-Ethylenediamine-PEG4-Lipoamide (GPG-EN-PEG4-LA)

In order to use the peptide substrate (GPG-EN-PEG4-LA), the ring (1,2-dithiolane) has to be
opened to form a bidentate thiol anchoring group. Ring opening was achieved by the incubation of
the ligand with 50 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) as a reducing agent in a
10:1 (v/v) ratio for 1 hour at room temperature. Functionalized Au NPs were prepared by adding an
aqueous solution of PEGylated ligand to the solution of Au NPs.

2.2.3. GPDCALNNC Peptide

Au NPs functionalized with GPDCALNNC peptide were prepared by adding 1 mM peptide
solution dissolved in sodium phosphate buffer (pH 7.4) to the solution of Au NPs in a 1:10 (v/v) ratio.

2.3. Purification

The gold conjugates were purified from excess protein and nanoparticles before using them for
any experiment or storage. After overnight incubation at room temperature, any excess peptides were
removed by two sequential centrifugations (14,500 rpm), each for 15 minutes using a 5415D Eppendorf
centrifuge (Eppendorf, Hamburg, Germany). The speed and time were optimized and determined
experimentally. The final product was a loose red precipitate. The pellet was resuspended and stored
in deionized water at 4 ◦C.

2.4. Instrumental Techniques

All zeta potential analyses were carried out using the Malvern Zetasizer Nano ZS. The scattered
light was detected at a 135◦ angle with Non-Invasive Backscatter (NIBS) technology. The refractive
index of the particle (1.59) polystyrene standard as well as the refractive index (1.33) and the viscosity
(0.88) of ultrapure water were measured at 25 ◦C. All data analyses were performed in automatic
mode. The measured size range was presented as the mean value of four runs. For zeta potential
measurements, a universal dip cell with an applied voltage of less than 5 V was used and the
Smoluchowski approximation was employed by the instrument’s software to calculate the zeta
potential values for aqueous solutions of Au NPs (F(Ka) value = 1.5).

FTIR spectra were obtained using a PerkinElmer spectrum 100 Fourier Transform Infrared
Spectrometer (PerkinElmer, Waltham, MA, USA). The KBr pellet technique is most commonly adopted
for recording the spectra. However, in this work, the purified samples were lyophilized and the
powdered solid were characterized directly in their free-standing state.

2.5. Assay of DPP-IV/CD26 Activity

To perform the colorimetric assays for DPP-IV/CD26, Aliquots of each modified Au NP
preparation were incubated with the enzyme at varying activities in Tris buffer (50 mM, pH 8.3)
in the wells of a transparent 96-well microtiter plate. The contents were gently mixed using a plate
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shaker at 300–400 rpm for 60 s; and then incubated at 37 ◦C for 15 min. The UV-vis absorption spectra
of the solutions were recorded using absorbance scans from 400 to 900 nm.

3. Results and Discussion

3.1. Investigation of Peptide Coupling Using UV-Visible Spectroscopy

The UV-vis absorption spectroscopy allowed the monitoring of the interaction of the various
ligand substrates with Au NPs, since SPR is highly sensitive to the NP environment. The Au NP
colloid was found by TEM to be mainly comprised of 14-nm gold spheres exhibiting an extinction
maximum at 523–524 nm (Figure 1). Following NP conjugation and coupling reaction with functional
ligands (GPDCALNNC or GPG-EN-PEG4-LA), a slight shift in the absorption maximum was observed
between 2.5 and 1.7 nm, respectively, while C/G-modified Au NPs displayed an absorption band shift
of 2.9 nm. This shift in λmax of Au NPs was due to the modification of the Au NPs with the various
ligands. The coupling of the stabilizing ligands alters the level of the electromagnetic interaction
between the Au NPs and the ligand due to the formation of an asymmetric environment. The effect of
ligand coupling on the LSPR shift of gold colloids can be accounted for by assuming the contribution
of the dielectric of the organic shell [24].
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3.1.1. Evaluation of Ligand Coupling to Gold Nanoparticle Surfaces by FTIR

FTIR spectroscopy was employed to detect changes to the characteristic bands of thiol after Au
NP coupling, as free thiol is expected to bind to the Au NP surface via thiolate bonds. Generally,
amino acids exist as zwitterions and display spectra featuring both primary amine and carboxylate
functional groups. The bands for NH3

+ stretch (very broad), NH bend (asymmetric/symmetric), and
COO− (carboxylate ion) stretch (asymmetric/symmetric) are typical for this type of compound [24].
In the case of the GPDCALNNC peptide composed of nine amino acids, the main focus was to look
for changes in the thiol group in the cysteine. Figure 2 shows the FTIR spectra of the GPDCALNNC
before and after coupling to Au NPs. The band in spectrum A at 1652 and 1385 cm−1 corresponds to
the asymmetric and symmetric stretching of COO−. A band at 1522 cm−1 corresponds to NH bend
and the very broad band of NH3

+ stretch was observed in the 3000–3500 cm−1 range. In addition,
a weak band near 2550 cm−1 confirms the presence of the SH group in the cysteine molecule. These
values are in good agreement to those reported by Aryal et al. (2006) for cysteine-capped Au NPs [25].
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Figure 2. Infrared spectra of stabilized ligand GPDCALNNC (A) and GPDCALNNC-capped Au NPs
(B). Functional ligands inside red circles represent the shift in the band position and disappearance of
thiol band, suggesting the formation of a thiolate–gold bond.

These results are in good agreement with the IR spectra of peptides or amino acids, but the
characteristic SH band around 2500–2600 cm−1 seems to be very weak because of the low levels of
sulphur in the peptide. However, small changes in the absorption spectra were detected in the case of
GPDCALNN-capped Au NPs (spectra B). A shift in the position of COO− and NH3

+ stretching is likely
due to a change in their dipole moment, when cysteine binds on a metal surface with high electron
density. Although significant band changes due to SH were not observed in the spectra of the free and
NP-coupled peptide, other bands of COO− and NH3

+ in spectrum B encountered a displacement that
may indicate the peptide coupling to the Au NP surface.

3.1.2. Stability of Modified Au NPs in High-Ionic-Strength Solutions

In order to enhance the stability of the Au NP platforms, separate stabilizing ligands
were chosen and their stability was evaluated in buffer solutions of varying ionic strengths.
The aggregation of Au NPs was used as a means of investigating the stability of the three
different platforms (C/G-bifunctionalized ligand, PEGylated ligand, and CALNN-containing ligands).
The semi-quantitative measurement of the aggregation process of colloidal NPs was calculated by
measuring the variation of the integrated absorbance between 500 and 700 nm [26]. As the absorbance
of the Au NP solution shifts to longer wavelengths upon particle aggregation, the flocculation
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parameter increases with the extent of particle aggregation. Figure 3A shows the aggregation parameter
as a function of NaCl concentration for different stabilizing ligands.
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Figure 3. (A) Effect of introducing different stabilizing groups on the stability of Au NPs at different
ionic strengths. The aggregation parameter is defined as follows: AP = (A − A0)/A0, where A is the
integrated absorbance between 500 and 700 nm of the sample and A0 is the integrated absorbance
between 500 and 700 nm of the initial, fully dispersed solution of NPs. (B) UV-vis study of C/G-capped
Au NP stability as a function of NaCl concentration. Inset: stability of C/G-capped Au NPs (1:4, 1:6, 1:8,
and 1:10) compared to GPDC-capped Au NPs in NaCl solutions with various ionic strengths. As higher
concentrations of the salt were added, a greater screening of charges stabilizing the modified Au NPs
occurs, leading to the red shift of the absorption band and band broadening.

The incorporation of stabilizing groups enhanced the stability of Au NPs, with the highest stability
achieved with the C/G-capped Au NPs. The coupling of CALNN ligand separately with the functional
biorecognition ligand offered a stable Au NP up to a NaCl concentration of 1 M, with no evident
change in the UV-vis absorbance spectrum. NaCl-induced reversible aggregation [27] occurred at
1.25 M NaCl and was more pronounced at 1.5 M, as can be seen in Figure 3B. As predicted, high
stability was achieved due to the formation of a compact self-assembled peptide layer [8].



Appl. Sci. 2018, 8, 2589 8 of 12

The other systems investigated were GPDCALNNC-capped NPs and PEGylated ligand tagged
with the biorecognition element GP, in which good stability was achieved but to a lesser extent than
that obtained by the bifunctionalization of the Au NPs.

3.1.3. Investigation of Zeta Potential and Hydrodynamic Radius

To further assess the stability of the modified Au NP formulations, the zeta potential and average
hydrodynamic radius were measured to give further insight into the understanding of the state of
the NP surface and to predict the long-term stability of the NP solution. Table 3 summarizes the
zeta potential values and hydrodynamic radii of the different functionalized Au NP preparations.
The higher negative charge on the surface imparts higher stability owing to the electrostatic repulsion
between neighboring particles. The zeta potential values further confirm that the highest stability is
achieved with the bifunctionalized Au NP preparation.

Table 3. Average zeta potential and hydrodynamic radius of different peptide-stabilized Au NPs.

Sample Zeta Potential (mV) Average Hydrodynamic Radius (nm)

GPDC: CALNN 4:1 −46.1 22.88
GPDC: CALNN 6:1 −38.9 23.68

GPDC: CALNN 10:1 −39.0 35.42
GPDCALNNC −35.9 39.5
GPG-PEG4-LA −16.5 38.1

The stability of C/G-capped Au NPs is improved by increasing the molar ratio of CALNN to
GPDC in the peptide mixture, as can be seen in Table 3. The data are in good agreement with the
stability noticed in high-ionic-strength solutions. However, it should be noted that the PEGylated
ligand displays the lowest zeta potential, which does not coincide with the stability it demonstrates in
saline solutions, and this can be interpreted as steric repulsion imparted by coiled PEG, while the zeta
potential measures the electrostatic potential that exists between the shear plane of the NPs and the
solvent [28].

3.1.4. Detection of DPP-IV Activity Using Functionalized Au NPs

The C/G-capped Au NPs showed a typical SPR peak at 525 nm, i.e., a red shift of 3 nm with
respect to the unmodified Au NPs, and good stability in phosphate buffer saline (PBS). After carefully
adjusting the molar ratio of CALNN to GPDC, the molar ratio of CALNN to GPDC at 1:10 in the
reaction mixture was selected in order to evaluate the sensitivity of the method to DPP-IV/CD26, as
this mixture was found to be stable (as shown in Table 3) whilst simultaneously having the highest
ratio of bound functional ligand.

A perceptible color change from red to faint purple was only obtained with 15 U/L of DPP-IV
activity and it became more evident with increasing the activity to 30 U/L (see Figure 4). The ratio
of absorption at 750 and 525 nm was used to evaluate the response of dipeptide-capped Au NPs to
DPP-IV/CD26.

Similar conditions were applied to measure DPP-IV/CD26 activity using the PEGylated Au NP
system or the GPDCALNNC Au NP system but neither caused color changes, nor was a significant
UV-visible spectral shift observed, even at high DPP-IV activities (>50 U/L). This total lack of response
was attributed to steric hindrance caused by the compact structure of the remaining ligands (whether
PEG or CALNN) bound to the NP and consequently preventing NPs aggregation. A probable reason
for the lack of response to DPP-IV/CD26 in the case of GPDCALNNC is the presence of two cysteine
residues in the sequence that may form disulphide bridges, leading to a variable percentage of
dimerized products [29].
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Figure 5. Calibration curve of A750/A525 versus the different activities DPP-IV incubated with
C/G-capped Au NPs. Error bars represent the standard deviation (n = 3).
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4. Conclusions

Three approaches for enhancing modified Au NP system stability were developed and their
performances were evaluated. These approaches involved different strategies to enhance the stability
of Au NPs for the colorimetric detection of DPP-IV in a high-ionic-strength medium.

The first strategy used the incorporation of a PEGylated sequence with a dithiol anchor because
the surface properties of these systems can be engineered through the introduction of functional
ligands to create biorecognition ligands [9,32].

The other two strategies used a peptide sequence (CALNN) designed by [8]. This peptide was
selected from 58 peptide sequences tested for their high stability and resistance to electrolyte-induced
Au NP aggregation. In one strategy, the CALNN peptide was introduced separately as a stabilizer
with the previously tested functional ligands, while the third approach involved the decoration of the
CALNN peptide with the GPDC ligand.

The stability of these three systems was evaluated against high-ionic-strength solution and
exhibited high resistance to aggregation in solutions with up to 0.5 M NaCl, with the highest
stability achieved by C/G-capped Au NPs. Further stability studies were conducted by zeta potential
measurements. C/G-capped Au NPs displayed the highest zeta potential value, which coincides with
its highest stability in saline solution, whilst the PEGylated ligand expressed a low zeta potential value,
which might be attributed to the low surface charge of the ligand.

DPP-IV/CD26 activity using the three approaches was detected under optimal conditions and
only C/G-capped Au NPs showed a response with a color change when incubated with DPP-IV/CD26.
C/G-capped Au NPs were less sensitive than the monofunctionalized systems, with a dynamic range
of 10–30 U/L but with very high stability in ionic solutions. This could be attributed to the presence of
compact dense layers of CALNN, which hampered effective Au NP aggregation and hence reduced
the analytical sensitivity.

In spite of these limitations, the developed bifunctionalized assay was successfully evaluated
by gel electrophoresis, zeta potential, and hydrodynamic radius measurements and tested for the
assay of DPP-IV activity. These Au NP systems provide insight into different stabilization systems
and their effect on the aggregation process. There are a number of parameters to be considered when
incorporating a stabilizer, such as the length of the stabilizer residue, the compact density of the
stabilizer, and the stabilizer-to-functional ligand ratio [33].
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