

Programming emergent symmetries with saddle-splay elasticity

XIA, Yu http://orcid.org/0000-0002-9129-8660, KIM, Dae Seok, CHEN, Shenglan, KIM, Se-Um, CLEAVER, Douglas J http://orcid.org/0000-0001-7867-3879 and YANG, Shu http://orcid.org/0000-0001-8834-3320

Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/25454/

This document is the Supplemental Material

Citation:

XIA, Yu, DEBENEDICTIS, Andrew A, KIM, Dae Seok, CHEN, Shenglan, KIM, Se-Um, CLEAVER, Douglas J, ATHERTON, Timothy J and YANG, Shu (2019). Programming emergent symmetries with saddle-splay elasticity. Nature Communications, 10 (1), p. 5104. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Description of Additional Supplementary Files

Supplementary Movie 1: 90° switching. -1/2 defects array in annuli pattern, which is switched into by the application of a small (0.5 V/mm) transverse, 90° -directional electric field as indicated by each yellow arrow in the movie.

Supplementary Movie 2: 180° switching. -1/2 defects array in annuli pattern, which is switched into by the application of a small (0.5 V/mm) transverse, 180° -directional electric field as indicated by each yellow arrow in the movie.