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Abstract 

Chapter abstract 

Abstract 

To support their targeted improvement of the relay exchange, Great Britain Speed 

Skating required a tool that could be used to advance knowledge on ‘how to execute the 

relay exchange effectively’. A tool that measures relay exchange kinematics in 

representative race scenarios, over its entirety, and with an acceptable level of 

measurement error (± 0.19 m·s-1). A review of existing measurement solutions found 

that the Olympic Oval (CAN) multi-camera network was the only tool that came close 

to meeting this criterion. However, while this multi-camera network satisfied the 

metrics, scenarios, and scope of relay exchange measurement, its ± 1.53 m·s-1 error 

exceeded the target measurement error. For these reasons, this thesis developed a multi-

camera network to measure accurate, two-dimensional, relay exchange kinematics.  

The literature review identified that the accuracy of the National Ice Centre (GBR) 

multi-camera network was dependent on five sources of measurement error. 

Accordingly, a series of investigations quantified how these errors propagated, 

independently, to errors in relay exchange kinematics. In the case where these errors 

exceeded the target measurement error, additional studies investigated minimising each 

error. Using this empirically informed measurement workflow, Monte Carlo 

simulations showed that the multi-camera network’s total error was ± 0.17 m·s-1. This 

error was within the target measurement error and significantly less than the 

benchmark Olympic Oval (CAN) multi-camera network. Investigations into the 

execution of the relay exchange demonstrated how this reduction in error allowed Great 
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Britain Short-Track Speed Skating to advance knowledge on ‘how to execute the relay 

exchange effectively’. In turn, supporting the team’s targeted improvement of the relay 

exchange, and ultimately, their aim of delivering medal-winning performances at the 

Winter Olympic Games.  
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Introduction 

Chapter 1 Introduction 

Introduction 

Short-track speed skating has been part of the Olympic programme since its debut at the 

1992 Winter Olympic Games in Albertville, France (Bullock, Martin, & Zhang, 2008). In 

its current format, individual (500 m, 1,000 m and 1,500 m) and relay (3,000 m and 

5,000 m) events provide a country with the opportunity to win eight gold medals (ISU, 

2016). The principal aim of Great Britain Short-Track Speed Skating – the project's 

collaborating organisation – is to deliver medal-winning performances at the Winter 

Olympic Games.  

To earn a medal in short-track speed skating, a skater or team must advance through 

several qualification races to reach the medal contest, e.g. heats, quarter-finals, semi-

finals. In all events, races – performed anticlockwise on a 111.12 m oval – involve four to 

six skaters racing head-to-head at speeds exceeding 12.5 m·s-1 (Landry, Gagnon, & 

Laurendeau, 2013). Advancement through these qualification races, and medal colour, 

is dependent on the finishing position in that race only, i.e. finishing time, with respect 

to other races, is irrelevant (ISU, 2016). For this reason, strategic aspects such as ‘how 

long to draft for’ and ‘when and where to overtake’, are essential for success in short-track 

speed skating (Konings, Noorbergen, Parry, & Hettinga, 2016; Maw, Proctor, 

Vredenburg, & Ehlers, 2006; Muehlbauer & Schindler, 2011; Noorbergen, Konings, 

Micklewright, Elferink-Gemser, & Hettinga, 2016) 

Raced over 3,000m (27 laps) for women and 5,000m (45 laps) for men, the relay event 

provides an additional strategic component to short-track speed skating races: the relay 
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exchange. Excluding the final two laps of the race, the relay exchange allows a team, 

consisting of four skaters, to change the skater involved in the pack race at any time 

(ISU, 2016). With change in race responsibility initiated by touch, the relay exchange – 

illustrated in Figure 1-1 – is typically executed by the skater involved in the pack race, 

Skater1, pushing the new skater, Skater2, at the start of the straight.  

In a typical race, teams will execute the relay exchange every 1½ laps, resulting in 17 

relay exchanges over 3,000 m and 29 relay exchanges over 5,000 m. Skaters and coaches 

believe that during this period of the race, time can be gained or lost depending on how 

well a team executes the relay exchange (Osborough & Henderson, 2009; Riewald, 

Broker, Smith, & Otter, 1997). For this reason, Great Britain Short-Track Speed Skating 

have targeted improving the execution of the relay exchange to support their aim of 

delivering medal-winning performances at the Winter Olympic Games.  

Despite the purported effect of the relay exchange, scholars and practitioners –  

 

Figure 1-1. The short-track speed skating relay exchange. In preparation for the exchange, Skater2 builds 

up speed on the inside of the track to arrive at the start of the straight with a similar speed to Skater1. 

Post relay exchange, Skater1 recovers inside of the track for future involvement in the race. Figure 

adapted from Hext et al. (2017).   
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including Great Britain Short-Track Speed Skating’s coaches and sport science team – 

know very little about ‘how to execute the relay exchange effectively’, due to the 

difficulties in measuring the relay exchange in (1) representative race scenarios, i.e. for 

up to four team simultaneously, (2) over its entirety, i.e. the straight and proceeding 

corner, and (3) with an acceptable level of measurement error, i.e. the ability to measure 

skating velocity to within ± 0.19 m·s-1. Consequently, the factors currently reported 

critical for effective relay exchange execution are limited to the scenario where a team is 

isolated from the pack race, with the mechanisms that underlie each factor, unknown. 

Accordingly, to support their targeted improvement of the relay exchange, Great Britain 

Short-Track Speed Skating require a tool that can be used to advance knowledge on 

‘how to execute the relay exchange effectively’. A tool that measures relay exchange 

kinematics in representative race scenarios, over its entirety, and with an acceptable 

level of measurement error.   

1.1 Thesis aim 

This thesis investigates developing a tool to measure accurate, two-dimensional, relay 

exchange kinematics in short-track speed skating. More specifically, based on a review 

of existing short-track speed skating measurement solutions in Chapter 3, this thesis 

aims to develop a multi-camera network to measure accurate, two-dimensional, relay 

exchange kinematics. The overarching aim of this thesis, therefore, is to answer the 

research question ‘Can multi-camera networks be used to measure accurate, two-

dimensional, relay exchange kinematics in short-track speed skating’. 

1.2 Thesis structure 

The remainder of this thesis is structured into four parts as follows, 

Part I   Multi-camera network contextualisation 

The first part of the thesis contextualises the need for developing a multi-camera  
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network to measure accurate, two-dimensional, relay exchange kinematics. First, 

Chapter 2 evidences the strategic opportunity of the relay exchange and provides a 

rationale for how future work should advance knowledge on ‘how to execute the relay 

exchange effectively’. Second, based on this rationale, Chapter 3 formulates a relay 

exchange measurement needs analysis and reviews existing short-track speed skating 

measurement solutions using the needs analysis as an evaluation criterion.   

Part II   Multi-camera network development 

The second part of the thesis investigates developing the National Ice Centre multi-

camera network to measure accurate, two-dimensional, relay exchange kinematics. First, 

Chapter 4 provides an overview of the multi-camera network installed at the home of 

Great Britain Short-Track Speed Skating's World Class Performance Programme. 

Second, Chapter 5 identifies its sources of measurement error and the most suitable 

method for quantifying its accuracy. Third, Chapters 6 to 13 quantify how these sources 

of measurement error propagate, independently, to errors in relay exchange kinematics. 

Finally, Chapter 14 determines whether the multi-camera network can measure accurate, 

two-dimensional, relay exchange kinematics. 

Part III   Multi-camera network demonstration 

The third part of the thesis demonstrates how the developed multi-camera network 

allows Great Britain Short-Track Speed Skating to advance knowledge on ‘how to 

execute the relay exchange effectively’. Chapter 15 presents two investigations that, until 

now, were not possible due to the aforementioned difficulties in measuring the relay 

exchange.  

Part IV   Summary and conclusion 

The fourth part of the thesis (Chapter 16) summarises the findings reported in this 

thesis, discusses their practical implications for Great Britain Short-Track Speed Skating, 

and presents an overall thesis conclusion. 
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Part I 

Part I – Multi-camera network contextualisation 

Part I   Multi-camera network contextualisation 

 



 

 

14 

 

Relay exchange efficacy 

Chapter 2 Relay exchange efficacy 

Relay exchange efficacy in elite short-track speed skating 

2.1 Introduction 

This thesis investigates developing a multi-camera network to measure accurate, two-

dimensional, relay exchange kinematics. In this chapter, I begin to contextualise the 

need for this work by examining the efficacy of the relay exchange in elite short-track 

speed skating. The results are used to evidence the strategic opportunity of the relay 

exchange – ergo supporting its targeted improvement by Great Britain Short-Track 

Speed Skating – and provide a rationale for how future work should advance knowledge 

on ‘how to execute the relay exchange effectively’.  

To examine the efficacy of the relay exchange in elite short-track speed skating, I 

quantify the relay exchange’s effect on race time and race position during the 5,000 m 

short-track relay. First, to understand the relay exchange's effect on race time, I compare 

the time taken to complete the straight for the scenarios with and without the relay 

exchange at different corner skating speeds. Second, to understand the relay exchange's 

effect on race position, I compare both skating scenarios’ overtaking effectiveness, i.e. 

their ability to achieve a gain-in-race position. 

2.2 Method 

The Faculty of Health & Wellbeing Research Ethics Committee, Sheffield Hallam 

University, UK, approved this investigation. 
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2.2.1 Performance data 

This investigation used data collected from three International Skating Union (ISU) 

Short Track World Cups during the 2012–2013 season. The dataset consisted of 20 

men’s 5,000 m relay races: 12 heats, 6 semi-finals and 2 A-finals. Each race was captured 

using a single Sony HDR PJ260VE camcorder operating at 50 Hz (progressive scan). As 

illustrated in Figure 2-1, the camera was mounted on a tripod in the spectator gallery 

opposite the relay start line and fixed approximately 45° to the rink’s longitudinal axis. 

The camera’s field of view was adjusted to capture the full rink surface.  

2.2.2 Calibration procedure 

For each race, the investigation calibrated the rink surface using a two-dimensional 

direct linear transformation (DLT) (Walton, 1981). First, the procedure manually 

digitised six track marking blocks of known position to calculate the eight DLT 

coefficients necessary to reconstruct a 2D position of a point on a plane (Figure 2-1). A 

 

Figure 2-1. The experimental setup, highlighting (1) the camera location in relation to the rink, (2) the 

six digitised track marking blocks used in the calibration procedure, and (3) the sector lines that split 

the track into three main sections. 
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frame approximately two seconds into the captured footage was used to ensure that (1) 

the camera had settled in its fixed position after the operator pressed record, and (2) the 

track marking blocks had not yet been displaced from their correct location. Second, the 

procedure overlaid six sector lines onto the race footage by extending lines through the 

digitised track marking blocks. As illustrated in Figure 2-1, and in accordance with 

Bullock, Martin, and Zhang (2008), the six sector lines split the short-track into three 

main sections: the straight, the corner entry, and the corner exit. The typical mean 

reconstruction error of the calibration procedure was 0.05 m ± 0.05 m on the 60 × 30 m 

rink surface. For a detailed description of the method used to evaluate the calibration 

procedure, see part two of Dunn, Wheat, Miller, Haake, & Goodwill (2012). 

2.2.3 Race analysis procedure 

For each race, the procedure defined the start of the race as the first frame where the 

start gun was seen to fire. Accordingly, the analysis calculated all subsequent temporal 

race measurements using the camera frame rate at a resolution of 0.02 seconds. For each 

team, the procedure manually digitised the absolute time and rink position where the 

lead blade of the racing skater first passed through a sector line for the race's entirety 

(270 unique spatiotemporal events per team). For the corner exit and corner entry 

sector line events, the analysis also recorded the team's position in the pack race. If a 

skater fell, the procedure collected no further measurements for that team. All manual 

digitisation was performed by a single operator to negate inter-operator digitisation 

error. 

2.2.4 Data analysis 

For each instance of a relay exchange, i.e. the scenario where a relay exchange occurred 

during the straight, the analysis calculated five metrics – depicted in Figure 2-2a– using 

the absolute time, rink position, and race position data: (1) corner exit time (�1): the time 

taken from the apex sector line to the exit sector line, (2) straight time (�2): the time 

taken from the exit sector line to the entry sector line, (3) apex block distance (�1): the 



  Relay exchange efficacy  

 

17 

 

distance along the apex sector line from the track marking block to the skater’s lead 

blade, (4) exit block distance (�1): the distance along the exit sector line from the track 

marking block to the skater’s lead blade, and (5) the gain-in-race position count: the 

number of positive changes in race position from the exit sector line to the following 

entry sector line, e.g. if a team moved from 3rd to 1st position in the race, this would 

count as two gain-in-race positions. The analysis also calculated the five metrics for the 

scenario where no relay exchange occurred during the straight, termed free skating. 

The analysis computed corner exit speed by dividing the distance travelled by the skater 

during the sector, termed corner exit distance, by the corner exit time. As illustrated in 

Figure 2-2b, and in agreement with Yule & Payton (2000), the analysis assumed that 

 

Figure 2-2. (a) The five metrics calculated for instance of a relay exchange or free skating scenario: 

corner exit time (�1), straight time (�2), apex block distance (�1), exit block distance (�1), and gain-in-

race position count. (b) The centre of rotation (�), corner radius (�), and two metrics used to calculate 

the corner exit distance: the minor (�) and major (	) radii.  
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skaters turn around a centre of rotation located at the corner centre, �. This allows the 

corner exit distance, 
, to be calculated as an arc length of an ellipse 


 ≈ 0.25

⎩{{
⎨{
{⎧

�(	 + �)
⎣⎢
⎢⎡1 + 3 (	 − �	 + �)2

10 + √((	 − �)(	 + �))
2
⎦⎥
⎥⎤
⎭}}
⎬}
}⎫  (&'. 2.1) 

where 	 is the ellipse major radius, the sum of the exit block distance (�1) and corner 

radius (�), and � is the ellipse minor radius, the sum of the apex block distance (�1) and 

corner radius (�).  

For each race, the analysis calculated the overtaking effectiveness of skating scenario * as 

a percentage of the total scenario * instances. For example, if a race had four gain-in-race 

position’s during the relay exchange scenario’s 29 instances, the relay exchange would 

receive an overtaking effectiveness of 13.8%. After removing the race’s first free skating 

instance – due to the initial jostling for position from the race start – a typical 5,000 m 

relay had 29 relay exchange instances and 60 free skating instances. 

2.2.5 Reliability and validity 

The level of human error in the race analysis procedure was assessed by digitising all 270 

spatiotemporal events for a single team, from a randomly selected relay race, on two 

occasions separated by a day. The root mean square error (RMSE) was 0.02 m to 0.03 m 

and 0.002 to 0.003 seconds for the spatial and temporal metrics, respectively. The 

validity of the temporal metrics was assessed during a Great Britain Short-Track Speed 

Skating simulated relay race at the National Ice Centre (Nottingham, UK). As described 

by Hext, Heller, Kelley, & Goodwill (2016), I compared sector times, measured as per 

the race analysis procedure, to synchronised cameras located perpendicular to each 

sector line. The root mean square error was 0.011 seconds for both corner exit and 

straight times. Collectively, the reliability and validity for both spatial and temporal 

metrics are within the mean 0.05 m reconstruction error and the 0.02-second camera 
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resolution. 

2.2.6 Statistical analysis 

SPSS 24 (IBM, 2016) was used to analyse both race time and race position data. For race 

time data, i.e. corner exit speed and straight time, the analysis discretised data into 0.5 

m·s-1 groups; with a minimum of 10 instances of both relay exchange and free skating 

scenarios required for further analysis. For each group, the analysis compared 

differences in straight time between the relay exchange and free skating scenarios using 

an independent �-test (for normally distributed datasets) or a Mann–Whitney + -test 

(for non-normally distributed datasets). The analysis used Shapiro–Wilk tests to test for 

normality (Shapiro & Wilk, 1965). 

For race position data, i.e. overtaking effectiveness, the analysis first calculated the relay 

exchange and free skating scenarios’ ,-��-.� 	
/	.�	0- (Graham & Mayberry, 2014). 

The  ,-��-.� 	
/	.�	0- represents the conditional percentage of relays in which 

skating scenario * had a greater overtaking effectiveness than skating scenario 1. For 

example, if the relay exchange scenario had a greater overtaking effectiveness than the 

free skating scenario in three out of five relays, and the same overtaking effectiveness in 

one out of five relays, the relay exchange’s overtaking effectiveness would receive a 

,-��-.� 	
/	.�	0- of 75%. To identify whether the scenarios percent advantages 

significantly differed from chance, i.e. 50%, the analysis performed conditional Binomial 

tests. In addition to the ,-��-.� 	
/	.�	0-, the analysis compared differences between 

the relay exchange and free skating scenarios’ overtaking effectiveness using a Wilcoxon 

signed-rank test. This analysis used a non-parametric equivalent of the dependent �-test 

as the dataset violated the assumptions of normality, 2 (20) = 0.21, , < 0.5.   

In all statistical tests, the significance level, �, was set at , < 0.05, with effect sizes 

calculated using Pearson’s correlation coefficient, �, as described by Field (2009). Effect 

size magnitudes were interpreted using Cohen’s thresholds; where < 0.1, is trivial; 0.1–

0.3, small; > 0.3–0.5, moderate, and > 0.5, large (Cohen, 1988). 
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2.3 Results 

2.3.1 Race time 

Of the 1968 relay exchanges and 1971 free skating instances analysed, the analysis 

discretised 97.8% of the data into seven 0.5 m·s-1 groups ranging from 11.51 m·s-1 to 15 

m·s-1. The distribution of each group’s relay exchange and free skating instances are 

reported in Table 2-1. Note the shift towards slower corner exit speeds for the relay 

exchange scenario compared to the free skating scenario. All groups greater than 12.5 

m·s-1 were analysed using a Mann–Whitney + -test, instead of an independent �-test, as 

the data violated the assumptions of normality. 

Table 2-1 presents the descriptive statistics, significance test results, and effect sizes for 

each corner exit speed. At corner exit speeds lower than 13.5 m·s-1, straight times were 

significantly faster during the relay exchange scenario (, < 0.01). The exception being 

the 11.51 m·s-1 to 12 m·s-1 group, where no significant difference was observed (, = 

0.056). This group did, however, exhibit the largest effect size (� = 0.32); the magnitude 

of the effect decreasing from moderate to small as the corner exit speed increased. For 

corner exit speeds of 13.51 m·s-1 to 14 m·s-1, the analysis found no significant difference 

between the relay exchange and free skating scenarios (, = 0.093), with the magnitude 

of the effect trivial (� = −0.05). In contrast, at corner exit speeds greater than 14 m·s-1, 

straight times were significantly slower during the relay exchange scenario (, < 0.001). 

Here, the magnitude of the effect increasing negatively, from small to moderate, as the 

corner exit speed increased. 

2.3.2 Race position 

Of the 169 gain-in-race positions observed, 79 gain-in-race positions occurred during 

the relay exchange scenario and 90 gain-in-race positions occurred during the free 

skating scenario. Table 2-2 presents the descriptive statistics and ,-��-.� 	
/	.�	0- 

for each scenario’s overtaking effectiveness. The relay exchange scenario’s overtaking 

effectiveness (� ̃= 13.8%) was significantly larger than the free skating scenario (� ̃= 
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6.7%), 4 = -2.8, , < 0.01, � = -0.44 (a moderate effect), and had a ,-��-.� 	
/	.�	0- 

(80%) that significantly differed from chance, , < 0.05.  
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Table 2-1. Descriptive statistics (mean ± standard deviation), significance test results, and effect sizes for relay exchange and free skating straight times. 

Corner exit speed . (5-, 67) Relay exchange Free skating Test statistic   ,   � 
11.51 – 12.0 m·s-1 36 (25, 11) 2.55 ± 0.11 s 2.62 ± 0.12 s -1.98a 0.056 0.32 

12.01 – 12.5 m·s-1 135 (91, 44) 2.48 ± 0.07 s 2.52 ± 0.08 s -3.24a 0.002 0.27 

12.51 – 13.0 m·s-1 449 (307, 142) 2.40 ± 0.07 s 2.44 ± 0.07 s 15,045b 0.000 0.24 

13.01 – 13.5 m·s-1 960 (616, 344) 2.34 ± 0.07 s 2.35 ± 0.07 s 88,043 b 0.000 0.14 

13.51 – 14.0 m·s-1 1158 (600, 558) 2.28 ± 0.07 s 2.27 ± 0.07 s 157,899 b 0.093 -0.05 

14.01 – 14.5 m·s-1 839 (272, 567) 2.23 ± 0.06 s 2.20 ± 0.06 s 54,366.5 b 0.000 -0.24 

14.51 – 15.0 m·s-1 277 (42, 235) 2.19 ± 0.05 s 2.15 ± 0.05 s 2,452.5 b 0.000 -0.31 

Notes:  5- = relay exchange, 67 = free skating. Statistical test performed: a Independent �-test, b Mann-Whitney + -test.  

 

  Table 2-2. Overtaking effectiveness descriptive statistics and percent advantage. 

Skating scenario . (% of total dataset) Median (81 , 83) % advantage 
Relay exchange 79 (46.7%) 13.8 (6.9, 17.2) 80%* 

Free skating 90 (53.3%) 6.7 (5.0, 10.0) 20%* 

 Notes: 81 = lower quartile, 83 = lower quartile. * , < 0.05.
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2.4 Discussion 

To begin to contextualise the need for developing a multi-camera network to measure 

accurate, two-dimensional, relay exchange kinematics, this investigation examined the 

efficacy of the relay exchange in elite short-track speed skating. In this section, I discuss 

the effect of the relay exchange on race time and race position, i.e. the two metrics used 

to quantify the relay exchange’s efficacy, the strategic opportunity of the relay exchange, 

the limitations of the investigation, and how future work should advance knowledge on 

‘how to execute the relay exchange effectively’.   

2.4.1 Race time 

To understand the effect of the relay exchange on race time, I compared the time taken 

to complete the straight for the scenarios with and without the relay exchange at 

different corner skating speeds prior to the straight. Overall, the results show that the 

relay exchange's effect on race time is dependent on the corner exit speed; having a 

positive effect at slower speeds and a negative effect at faster speeds.   

At slower corner exit speeds, the positive effect of the relay exchange, that is, faster 

straight times for the relay exchange scenario, was consistent with other elite sports 

relays. In swimming, the occurrence of the relay exchange accounted for significantly 

faster mean individual split times compared to individual events (Skorski, Etxebarria, & 

Thompson, 2016). While in athletics, the relay exchange had a significant positive effect 

on progression through the 4 × 100 m relay, due to the baton being passed forward by 

up to 2 m for no loss in time (Ward-Smith & Radford, 2002). This mechanism is 

analogous to the short-track relay exchange where instead of the baton, the skater active 

in the race moves forward for no loss in time, i.e. from Skater1 to Skater2. Despite this, 

however, as the corner exit speed increased the positive effect of the relay exchange 

transitioned to having no, and then a negative effect, highlighted by the Pearson 

correlation coefficient values in Table 2-1. The transition suggests that in addition to 

moving forward a body length for no loss in time, other factors determine the effect of 
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the relay exchange on race time. 

One explanation for the relay exchange’s ‘positive to negative transition’ is that the relay 

exchange requires Skater2 (the incoming skater) to arrive at the start of the straight with 

a similar speed to that of Skater1 (the outgoing skater involved in the pack race). As 

Skater2 generates this speed on the inside of the short-track over a tighter corner radius, 

Skater2 expends more energy to overcome the higher cornering forces for comparable 

speeds (Rundell, 1996). Accordingly, as the race speed increases, Skater2 may struggle to 

match the speed of Skater1. To explore the consequence of differences in speed between 

Skater1 and Skater2 at first-contact, I modelled the relay exchange as a one-dimensional 

collision using the mean energy exchange efficiency reported by Riewald, Broker, Smith, 

& Otter (1997). Figure 2-3a shows that when the relative speed at first-contact increases, 

i.e. a larger difference in Skater1 and Skater2’s speed, Skater2's final-contact speed relative 

to Skater1's first-contact speed – i.e. the current speed of the race – decreases. 

Another explanation for the relay exchange’s ‘positive to negative transition’ is that 

when Skater1 pushes Skater2 during the relay exchange, they apply a force over the 

duration of the contact, i.e. an impulse. By assuming that both components of this 

impulse remain constant for all relay exchanges, we can explore the effect of the impulse 

on the relay exchange using the impulse-momentum theorem. Figure 2-3b and Figure 

2-3c show that as the race speed increases (1) Skater2's final-contact speed relative to 

their first-contact speed decreases, i.e. the impulse has a lessened effect on the relay 

exchange, and (2) Skater2 has less distance to accelerate after the relay exchange; 

potentially explaining why Osborough & Henderson (2009) found relay exchanges 

initiated greater than 4.5 m from the straight’s start had slower mean skating speeds 

than relay exchanges initiated 4 to 4.5 m from the start. 

An additional finding from this part of the investigation was the observed differences in 

distributions for the relay exchange and free skating instances over the seven-corner exit 

speed groups. Specifically, the greater number of relay exchange instances at slower 
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corner exit speeds compared to the greater number of free skating instances at faster 

corner exit speeds. This difference in distributions suggests that either (1) the additional 

constraints of the relay exchange, such as Skater1 ensuring that they are well positioned 

 

Figure 2-3. (a) The effect of relative speed at first-contact on the relative speed of Skater2 at final-contact 

and the speed of Skater1 at first-contact. (b) The effect of increasing race speed on the relative speed of 

Skater2 at final-contact and the speed of Skater2 at first-contact. (c) The effect of increasing race speed 

on Skater2’s distance to corner entry at final-contact, assuming a constant first-contact position of 4 m.  
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to push Skater2 at the start of the straight, results in a lower upper limit of corner exit 

speed, or (2) that Skater1 is slower during the relay exchange’s corner exit due to fatigue; 

the sector representing the final period of the skater's current involvement in the pack 

race. The latter agrees with Riewald et al. (1997), who reported losses in speed for 

Skater1 prior to the relay exchange contact. 

2.4.2 Race position 

To understand the effect of the relay exchange on race position, I compared the relay 

exchange and free skating scenarios’ overtaking effectiveness, i.e. each scenario’s ability 

to achieve a gain-in-race position. Overall, the results show that the relay exchange 

scenario presents a superior opportunity for a team to overtake in elite short-track speed 

skating. To the author’s knowledge, this finding is the first empirical data presented on 

the overtaking effectiveness of the relay exchange in head-to-head sports. 

To provide a theoretical reasoning to why the relay exchange presents a superior 

opportunity for a team to overtake, I consider the relay event as a complex dynamical 

system that consists of many degrees of freedom in constant flux, e.g. athlete, teammates, 

and opponents. In dynamical systems, perturbations can create temporary periods of 

instability before the system returns to the same or a previous/ new stable state 

(McGarry, Anderson, Wallace, Hughes, & Franks, 2002). In sporting competition, these 

stability disrupting perturbations occur when the typical rhythm of play – or in our case, 

the race – is disturbed by a high or low skill (McGarry, Khan, & Franks, 1999; Reed & 

Hughes, 2006). By viewing the relay exchange as a high-skill perturbation in the short-

track relay, I would expect the relay exchange’s overtaking effectiveness to be superior to 

free skating, as it represents a period in the race where the current stable race state, i.e. 

the current race positions, reorganise themselves into the same or previous/ new stable 

race states. 

As the relay exchange offers a superior opportunity for a team to overtake, it is essential 

that a team knows how to execute the relay exchange effectively. More specifically, ‘how 
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to execute the relay exchange to achieve a gain-in-race position’. Current opinion 

suggests that two factors appear critical (1) the time for Skater1 to contact Skater2 after 

exiting the corner, and (2) the efficiency of the energy exchange during skater contact 

(Riewald et al., 1997). With initiating the relay exchange between 3.5 m and 4 m from 

the start of the straight also being reported as producing the fastest skating speed during 

the straight (Osborough & Henderson, 2009). Both these investigations, however, only 

analysed one team on the short-track, i.e. the scenario where a team is isolated from the 

pack race, over the duration of the straight. Accordingly, we do not know if these factors 

are discriminative of achieving a gain-in-race position, and irrespective of this, the 

mechanisms that underlie each factor, e.g. how does the actions of Skater1 and Skater2 in 

the corner affect the time for Skater1 to contact Skater2 after exiting the corner? 

2.4.3 Practical implications 

To the author’s knowledge, the study presented in this chapter is the first to investigate 

the efficacy of the relay exchange in elite short-track speed skating. Accordingly, Great 

Britain Short-Track Speed Skating can use the findings to improve their tactical 

preparation and decision-making before and during relay races. First, when considering 

the relay exchange as a strategic component of the 5,000 m relay, it is important to note 

that races typically exhibit a negative pacing strategy, i.e. the race starts slow and finishes 

fast. Therefore, Section 2.3.1’s race time results suggest that varying the frequency of 

relay exchange execution could improve performance compared to the current norm of 

every 1½ laps (note that in this study, the 1½ lap frequency accounted for 96% of the 

relay exchanges analysed). For example, at slow race speeds, increasing the frequency of 

the relay exchange so that they are executed while other teams are free skating could 

allow time to be gained relative to these teams. In contrast, at fast race speeds typical of 

the race end, decreasing the frequency of the relay exchange could likewise allow time to 

be gained relative to other teams in the race.  

Second, a team's ability to use the relay exchange to gain both race time and race  
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position could facilitate the implementation of other race strategies. For example, in 

short-track speed skating drafting, i.e. one skater, skating closely behind another, has 

been shown to reduce heart rate and blood lactate (Hoshikawa et al., 2005; Rundell, 

1996). In turn, allowing a skater or team to conserve energy for the later stages of the 

race where improved performance has been shown to result in better final race position 

(Konings et al., 2016). Despite this, however, Hoffman, Listemann, McManaman, & 

Rundell (1998) reported that many skaters and coaches are reluctant to utilise drafting 

as a race strategy due to the difficulties in overtaking. This investigation’s results show 

that this difficulty could be alleviated by (1) increasing or decreasing the frequency of 

relay exchange execution; the fastest skating scenario equating to differences of up to 

0.84 m at the end of the straight, or (2) targeting the relay exchange as the period of the 

race to overtake; assuming that a team knows ‘how to execute the relay exchange to 

achieve a gain-in-race position’. 

2.4.4 Limitations 

Note that while the above findings demonstrate the efficacy of the relay exchange in elite 

short-track speed skating, the observations are only applicable for the men’s 5,000 m 

relay and not the women’s 3,000 m relay. Although other strategic aspects of short-track 

speed skating races, such as the relationship between start and finishing position, have 

shown to exhibit similar relationships when comparing sex (Maw et al., 2006; 

Muehlbauer & Schindler, 2011), these analyses compared events with the same race 

distances. Consequently, it is currently unclear whether an analysis of the 3,000 m relay 

event would lead to the same findings as reported in this chapter. Still, this approach is 

sufficient for this thesis, as Great Britain Short-Track Speed Skating’s targeted relay 

exchange improvement is primarily focussed on the 5,000 m relay event, as this was the 

distance funded for the Winter Olympic Games. 

2.4.5 Future work 

In addition to providing evidence to support Great Britain Short-Track Speed Skating’s 
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targeted improvement of the relay exchange execution, the chapter’s results provide a 

rationale for how Great Britain Short-Track Speed Skating should start to advance 

knowledge on ‘how to execute the relay exchange effectively’. In turn, supporting their 

aim of delivering medal winning performances at the Winter Olympic Games. First, 

future work should validate the mechanisms proposed in Section 2.4.1 regarding why 

the relay exchange's effect on race time is dependent on the speed of the race. For 

example, if the relative velocity at impact increases with race speed, Great Britain Short-

Track Speed Skating can explore the optimum methods for Skater2 to match the speed 

of Skater1, i.e. different skating trajectories/ trajectory timings. Second, due to the 

superior overtaking effectiveness of the relay exchange, future work should investigate 

‘how to execute the relay exchange to achieve a gain-in-race position’. This aspect of 

future work should begin by investigating whether the current factors reported critical 

for effective relay exchange execution – based on the scenario where a team is isolated 

from the pack race – are discriminative of achieving a gain-in-race position, and if so, 

the mechanisms that underlie each factor.  

2.5 Chapter summary 

This chapter began to contextualise the need for developing a multi-camera network to 

measure accurate, two-dimensional, relay exchange kinematics. First, by examining the 

relay exchange’s effect on race time and race position, the results evidenced the strategic 

opportunity of the relay exchange; ergo providing empirical data to support its targeted 

improvement by Great Britain Short-Track Speed Skating. For the former, the results 

showed that the relay exchange’s effect on race time is dependent on race speed; having 

a positive effect at slower speeds and a negative effect at faster speeds. This finding 

suggests that the current norm of executing the relay exchange every 1½ laps may not be 

optimal. Instead, varying the frequency of the relay exchange execution could allow time 

to be gained relative to other teams in the race. For the latter, the results showed that the 

relay exchange offers a superior opportunity for a team to overtake. Accordingly, if a 

team knows ‘how to execute the relay exchange to achieve a gain-in-race position’, the 
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relay exchange could facilitate race strategies which are underutilised due to the 

difficulties in overtaking, e.g. drafting. Second, the results provided a rationale for how 

future work should advance knowledge on ‘how to execute the relay exchange effectively’. 

This work focuses on validating the proposed theoretical mechanisms for why the relay 

exchange’s effect on race time is dependent on race speed and understanding ‘how to 

execute the relay exchange to achieve a gain-in-race position’. 
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Needs analysis 

Chapter 3 Relay exchange measurement needs analysis 

Relay exchange measurement needs analysis 

3.1 Introduction 

In Chapter 2, I began to contextualise the need for developing a multi-camera network 

to measure accurate, two-dimensional, relay exchange kinematics. By examining the 

relay exchange’s efficacy in elite short-track speed skating, I (1) evidenced the strategic 

opportunity of the relay exchange; ergo supporting its targeted improvement by Great 

Britain Short-Track Speed Skating, and (2) used this evidence to provide a rationale for 

how Great Britain Short-Track Speed Skating should advance current knowledge on 

‘how to execute the relay exchange effectively’.  

In this chapter, I continue to contextualise the need for this programme of work. First, I 

use Chapter 2’s rationale to formulate a relay exchange measurement needs analysis. 

The needs analysis includes the required metrics, scenarios, and scope of relay exchange 

measurement and its acceptable level of measurement error. Second, I review existing, 

vision-based, short-track speed skating measurement solutions using the needs analysis 

as an evaluation criterion. Finally, I summarise the findings and practical implications 

of Part I of the thesis. 

3.2 Needs analysis I – Metrics, scenarios, and scope 

To conduct the work described in Section 2.4.5, and consequently advance knowledge 

on ‘how to execute the relay exchange effectively’, Great Britain Short-Track Speed 

Skating need to measure short-track speed skating kinematics during the relay exchange, 
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i.e. the position and velocity of a skater. This data, coupled with the point in time of 

Skater1 and Skater2’s first- (�:;<) and final- (�:;=) contact, will enable Great Britain Short-

Track Speed Skating to compute the required kinematic metrics-of-interest. These 

metrics, described in Section 3.2.1, include those necessary to validate the theoretical 

mechanisms proposed in Section 2.4.1 for why the relay exchange’s effect on race time is 

dependent on race speed, and the two factors reported critical for effective relay 

exchange execution in Section 2.4.2.  

3.2.1 Metrics  

Section 2.4.1 described four metrics when proposing theoretical mechanisms for why 

the relay exchange’s effect on race time is dependent on race speed (1) Skater1’s corner 

exit speed, /1>?;@, (2) the relative velocity between Skater1 and Skater2 at first-contact, 

/2:;<|1:;<, (3) the relative velocity between Skater2’s velocity at final-contact and Skater1’s 

velocity at first-contact, /2:;=|1:;<, and (4) Skater2’s distance to the end of the straight at 

final-contact, 
:;=.  

The first metric, /1>?;@, is computed as 

     /1>?;@ = 
1>?;@�1>?;@  (&'. 3.1) 

where 
1>?;@ is Skater1’s corner exit distance and �1>?;@ is Skater1’s corner exit time. As 

detailed in Section 2.2.4, 
1>?;@ is computed as an arc length of an ellipse and �1>?;@ is 

computed as the period of time between Skater1 first passing through the corner apex 

and corner exit sector lines.   

The second metric, /2:;<|1:;<, is computed as 

     /2:;<|1:;< = /2:;< − /1:;< (&'. 3.2) 
where /2:;< is Skater2’s velocity at first-contact and /1:;< is Skater1’s velocity at first-

contact.  
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The third metric, /2:;=|1:;<, is computed as 

     /2:;=|1:;< = /2:;= − /1:;< (&'. 3.3) 
where /2:;= is Skater2’s velocity at final-contact and /1:;< is Skater1’s velocity at first-

contact.   

Finally, the fourth metric, 
:;=, is computed as 

     
:;= = ∣ �2:;= − �D=.>=@<F ∣  (&'. 3.4) 
where �2:;= is Skater2’s �-coordinate at final-contact – where � represents the rink’s 

longitudinal axis – and �D=.>=@<F is the �-coordinate of the corner entry sector line at the 

end of the straight (described in Section 2.2.2).  

Section 2.4.2 reported that two metrics appear critical for effective relay exchange 

execution (1) the time for Skater1 to contact Skater2 after exiting the corner, �HI=@, and 

(2) the efficiency of the energy exchange during skater contact, J>.  

The first metric, �HI=@, is computed as  

     �HI=@ =  �:;< − �1D=.>?;@  (&'. 3.5) 
where �:;< is the point in time of Skater1 and Skater2’s first-contact and �1D=.>?;@ is the 

point in time when Skater1 first passes through the corner exit sector line at the start of 

the straight (described in Section 2.2.2).  

The second metric, termed ‘contact energy exchange efficiency’, J>, is computed as  

     J> =  &L2:;=&L1:;< + &L2:;<  (&'. 3.6) 

where &L2:;= is Skater2’s kinetic energy at final-contact, &L1:;< is Skater1’s kinetic 

energy at first-contact, and &L2:;< is Skater2’s kinetic energy at first-contact. In this 
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equation, each skater’s kinetic energy, &L, is calculated as 

     &L = 0.5N/2  (&'. 3.7) 
where N is the skater’s mass and / is the skater’s velocity at that point in time.  

3.2.2 Scenarios 

Importantly, to advance knowledge on ‘how to execute the relay exchange effectively’, 

Great Britain Short-Track Speed Skating need to measure these metrics in representative 

race scenarios, i.e. for up to four teams simultaneously. For example, as the relay 

exchange offers a superior opportunity for a team to overtake, Great Britain Short-Track 

Speed Skating need to know ‘how to execute the relay exchange to achieve a gain-in-race 

position’. This work necessitates the measurement of more than one team on the short-

track to determine the factors of the relay exchange that are discriminative of successful 

overtakes. Similarly, the factors currently reported critical for effective relay exchange 

execution are limited to the scenario where a team is isolated from the pack race. 

Riewald, Broker, Smith, & Otter (1997) only examined one team on the short-track to 

avoid measurement occlusion, i.e. one skater skating in front of the skater-of-interest. 

As we would expect situational conditions such as race position in the pack to influence 

‘how to execute the relay exchange effectively’, future work necessitates the measurement 

of the relay exchange in more competitive race scenarios. 

3.2.3 Scope 

In addition to measuring the relay exchange in representative race scenarios, to advance 

knowledge on ‘how to execute the relay exchange effectively’, Great Britain Short-Track 

Speed Skating need to measure the relay exchange over its entirety, i.e. the straight and 

proceeding corner. At present, current research into the relay exchange’s execution has 

only measured the relay exchange during the straight due to the short-track’s large 

measurement area, ~1,800 m2. As a result, this research did not investigate the 

mechanisms that underlie the factors critical for effective relay exchange when a team is 
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isolated from the pack race. For example, how do the actions of Skater1 and Skater2 

during the corner influence the time for Skater1 to contact Skater2 after exiting the 

corner? As Great Britain Short-Track Speed Skating need to understand these 

mechanisms to achieve their targeted improvement of the relay exchange execution, 

future work needs to measure the entirety of the relay exchange. 

3.2.4 Summary 

To advance knowledge on ‘how to execute the relay exchange effectively’, Great Britain 

Short-Track Speed Skating need to measure short-track speed skating kinematics during 

the relay exchange. This data, coupled with the point in time of Skater1 and Skater2’s 

first- and final-contact, will enable the necessitated kinematic metrics-of-interest to be 

computed. Importantly, Great Britain Short-Track Speed Skating need to measure these 

metrics in (1) representative race scenarios, i.e. for up to four teams simultaneously, and 

(2) overs its entirety, i.e. the straight and proceeding corner.   

3.3 Needs analysis II – Measurement error  

When measuring the relay exchange metrics reported in Section 3.2, we would expect 

some amount of measurement error, i.e. a difference between a measured and reference 

value (JCGM, 2012). In sports performance research, the ‘absence of measurement 

error’, also referred to as a measurement’s reliability, is critical (Atkinson & Nevill, 1998; 

Currell & Jeukendrup, 2008). For example, Great Britain Short-Track Speed Skating 

need to know whether an observed improvement in the execution of the relay exchange 

is real or merely due to measurement error. For this reason, Great Britain Short-Track 

Speed Skating requires a tool where the measurement error in the relay exchange is 

acceptable for practical use, i.e. advancing knowledge on ‘how to execute the relay 

exchange effectively’.  

To determine whether a tool’s measurement error is acceptable for practical use, 

Atkinson & Nevill (1998) suggest that the user should relate measurement error to an 
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analytical goal. In elite sports research, a well-established analytical goal is the ability of 

a measurement tool to detect the smallest worthwhile enhancement in performance 

(Bernards, Sato, Haff, & Bazyler, 2017; Currell & Jeukendrup, 2008). This concept refers 

to the smallest change in an athlete’s performance that has a substantial effect on their 

chances of winning (Hopkins, Hawley, & Burke, 1999; Malcata & Hopkins, 2014). If this 

value can be detected, the analytical goal is attained, and the tool’s measurement error is 

deemed acceptable for practical use. 

Scholars typically estimate the smallest worthwhile enhancement in performance as an 

improvement equal to 0.3 of the coefficient of variation in an athlete’s race-to-race 

performance, i.e. the within-athlete race-to-race variability (Hopkins et al., 1999; 

Konings & Hettinga, 2018; Malcata & Hopkins, 2014). This approach, however, is 

limited in short-track speed skating due to the race format prioritising race position not 

race time. Konings & Hettinga (2018) showed that large variability in race time, 

predominantly caused by tactical decisions at the beginning of the race, resulted in large 

coefficients of variation compared to other elite sports. For example, the 1,500 m event 

had a smallest worthwhile enhancement in race time of 1.8 seconds.  

Accordingly, Konings & Hettinga (2018) suggested estimating the smallest worthwhile 

enhancement in performance using the lap with the lowest within-athlete race-to-race 

variability instead of the total race time, i.e. the lap where athletes tend to follow their 

own strategy and are not influenced too much by opponents’ actions. In comparison to 

the typical approach, this method led to a smallest worthwhile enhancement in 

performance of 0.09 seconds in lap 11 of the 1,500 m event. Still, while this value 

represents a more realistic estimate of the smallest worthwhile enhancement in 

performance, it is not suitable for determining whether the measurement error in the 

relay exchange is acceptable for practical use as its resolution is over the entirety of a lap. 

As reported by Hext, Heller, Kelley, & Goodwill (2016), in short-track speed skating the 

relay exchange accounts for less than 30% of the total lap time. 
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For these reasons, Section 3.3.1 presents an alternative method for estimating the 

smallest worthwhile enhancement in performance in short-track speed skating. 

Importantly, unlike the approaches described above, the method is based on measuring 

the smallest worthwhile enhancement in performance during the relay exchange. This 

value is used in Section 3.3.2 to determine the acceptable level of measurement error in 

the relay exchange for advancing knowledge on ‘how to execute the relay exchange 

effectively’.   

3.3.1 Smallest worthwhile enhancement in relay exchange performance 

Chapter 2 showed that the relay exchange scenario presents a superior opportunity for a 

team to achieve a gain-in-race position. This is important in the relay event as it 

facilitates the implementation of other race strategies, such as drafting, which are 

underutilised due to the difficulties in overtaking (Hoffman et al., 1998). Accordingly, 

Section 2.4.5 suggested that to advance knowledge on ‘how to execute the relay exchange 

effectively’, future work should investigate ‘how to execute the relay exchange to achieve a 

gain-in-race position’. For this reason, this method defines the smallest worthwhile 

enhancement in relay exchange performance as the smallest enhancement in skating 

velocity required to achieve a gain-in-race position.  

To estimate the smallest enhancement in skating velocity required to achieve a gain-in-

race position, I simulate overtake scenarios for the range of corner exit velocities 

reported in Chapter 2 (11.5 m·s-1 to 15 m·s-1). As illustrated in Figure 3-1, the simulation 

spans the exit of one corner to the entrance of the next, i.e. the period of short-track 

races where overtakes typically occur (Haug, Drinkwater, Mitchell, & Chapman, 2015). 

The simulation assumes that (1) Skater2 (the trailing skater) is level with Skater1 (the 

leading skater) at the start of the straight, i.e. the best-case scenario/ most conservative 

simulation of an overtake manoeuvre, and (2) to ensure a clean overtake, Skater2 needs 

to be 1 m in front of Skater1 by the time Skater1 arrives at the end of the straight. This 

value represents the most conservative estimate of existing values used to determine 
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whether a skater is drafting, i.e. skating closely behind another skater, mimicking their 

stride (Hoffman et al., 1998; Rundell, 1996).   

The results of the simulation show that – over the range of simulated Skater1 velocities – 

Skater2 needs to increase their skating velocity by a minimum of 0.38 m·s-1 to 0.49 m·s-1 

to ensure a clean overtake. Importantly, for each simulated velocity, this represents a 

relative enhancement in skating velocity of 3.3%. For this reason, this method estimates 

the smallest enhancement in relay exchange performance as a 3.3% increase in skating 

velocity.   

3.3.2 Acceptable level of measurement error 

In this section, I use the estimate of the smallest worthwhile enhancement in relay 

exchange performance (i.e. a 3.3% increase in skating velocity) to determine the 

acceptable level of measurement error in the relay exchange for advancing knowledge 

on ‘how to execute the relay exchange effectively’. Figure 3-2 illustrates this procedure. 

N1and N2 represent two measurements: N1 is a baseline performance and N2 the 

baseline performance with the addition of the smallest worthwhile enhancement in 

performance. As illustrated by the shaded areas, each of these measurements has an 

associated uncertainty, i.e. the potential deviation of the measure from its true value 

(Challis, 2018). If there is a gap between each measures bounds of uncertainty, the 

 

Figure 3-1. The overtake simulation. Skater2 is level with Skater1 at the start of the straight. However, by 

the time Skater1 has reached the entry of the proceeding corner, Skater2 is now 1 m ahead. 
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measurement tool can detect the smallest worthwhile enhancement in performance. If 

not, users cannot be certain whether the observed difference in performance is real or 

due to measurement error (Hudson, 2015).  

A measurement’s bounds of uncertainty are related to the accuracy of the measurement 

tool. As illustrated in Figure 3-3, as the accuracy of a measurement increases, the 

uncertainty decreases. The International Vocabulary of Metrology defines accuracy as 

‘the closeness of agreement between a measured and true value’. It does not have a 

numerical value, but instead is a descriptive and comparative term that reflects both the 

trueness and precision of the measurement (JCGM, 2012). The former is defined as ‘the 

closeness of agreement between the average of an infinite number of measured values 

and a reference value’ (JCGM, 2012). Typically expressed in terms of bias, trueness 

represents the systematic measurement error, i.e. the general trend for measurements to 

be different in a particular direction (Figure 3-3) (Atkinson & Nevill, 1998; ISO, 1994). 

The latter is defined as ‘the closeness of agreement between results obtained by replicate 

measurements on the same or similar object under specified conditions’ (JCGM, 2012). 

In other words, precision represents the random measurement error inherent in every 

measurement procedure (Figure 3-3) (ISO, 1994). Importantly, both errors should be 

considered when defining the acceptable level of measurement error in the relay 

exchange.  

Using the aforementioned bounds of uncertainty method, and the smallest worthwhile 

enhancement in relay exchange performance, the acceptable level of measurement error  

 

Figure 3-2. Determining the acceptable level of measurement error in the relay exchange. N1 is a 

baseline performance and N2 is the baseline plus the smallest worthwhile enhancement in relay 

performance. If there is a gap between each measures’ bounds of uncertainty (±Q), a measurement tool 

can detect the smallest worthwhile enhancement in relay exchange performance.  
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in the relay exchange can be defined as the ability to measure skating velocity to within 

± 1.65%. Note, however, that this relative measurement error only reflects the precision 

of the measurement (i.e. the random error). For example, irrespective of whether the 

measurement has a systematic error of 0.1 m·s-1 or 10 m·s-1, Great Britain Short-Track 

Speed Skating can detect the smallest worthwhile enhancement in relay exchange 

performance if the precision of the measurement is within ± 1.65% of this value. As a 

result, while this definition suffices for identifying the smallest worthwhile enhancement 

in relay exchange performance – and therefore investigating ‘how to execute the relay 

exchange to achieve a gain-in-race position’ – it does not facilitate other aspects of future 

work proposed for advancing knowledge on ‘how to execute the relay exchange 

effectively’.  

Chapter 2 showed that the relay exchange’s effect on race time is dependent on the race 

 

Figure 3-3. The meaning and inter-relationship of the terms error, uncertainty, accuracy, trueness, bias, 

and precision are depicted using the analogy of a dart board to illustrate the centre of a target and the 

spread of values. 
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speed; having a positive effect at slower speeds and a negative effect at faster race speeds. 

Accordingly, Section 2.4.5 suggested that future work should validate the theoretical 

mechanisms proposed for this phenomenon. For example, as the race speed increases 

from 11.5 m·s-1 to 15 m·s-1, the relay exchange’s effect on race time transitions from 

positive to negative due to the relative velocity at first-contact increasing. For this reason, 

the definition of the acceptable level of measurement error also needs to reflect the 

trueness of the measurement (i.e. the systematic error). Section 3.3.1 reported that over 

this range of speeds, Skater2 needs to increase their skating velocity by a minimum of 

0.38 m·s-1 to 0.49 m·s-1 to ensure a clean overtake. Based on the aforementioned bounds 

of uncertainty method, these values lead to acceptable levels of measurement error 

ranging from ± 0.19 m·s-1 to ± 0.25 m·s-1. Therefore, to ensure that Great Britain Short-

Track Speed Skating can (1) detect the smallest worthwhile enhancement in relay 

exchange performance for all expected race speeds, and (2) validate the theoretical 

mechanisms proposed for why the relay exchange’s effect on race time is dependent on 

race speed, the acceptable level of measurement error is defined as the ability to measure 

skating velocity to within ± 0.19 m·s-1.   

3.3.3 Summary 

All measured values contain error. Accordingly, Great Britain Short-Track Speed 

Skating requires a tool where the measurement error in the relay exchange is acceptable 

for advancing knowledge on ‘how to execute the relay exchange effectively’. In elite sports 

research, the acceptable level of measurement error is typically defined as the tool’s 

ability to detect the smallest worthwhile enhancement in performance. As the relay 

exchange scenario presents a superior opportunity for a team to overtake, Section 3.3.1 

estimated this value as the smallest enhancement in skating velocity required to achieve 

a gain-in-race position. Over the range of race speeds reported in Chapter 2 (11.5 m·s-1 

to 15 m·s-1), this equated to an increase in skating velocity of 0.38 m·s-1 to 0.49 m·s-1, i.e. a 

relative increase of 3.3%. Based on a bounds of uncertainty method, this led to the 

acceptable level of measurement error in the relay exchange ranging from ± 0.19 m·s-1 to 
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± 0.25 m·s-1, i.e. a relative error of ± 1.65%. Of these values, Section 3.3.2 defined the 

acceptable level of measurement error in the relay exchange as the ability to measure 

skating velocity to within ± 0.19 m·s-1. This absolute error, which reflects both the 

trueness (i.e. the systematic error) and precision (i.e. the random error) of the 

measurement, ensures that Great Britain Short-Track Speed Skating can (1) detect the 

smallest enhancement in skating velocity required to achieve a gain-in-race position for 

all race speeds, and (2) validate the theoretical mechanisms proposed for why the relay 

exchange’s effect on race time transitions from positive to negative as the race speed 

increases. 

3.4 Existing vision-based measurement solutions 

In this section, I use the needs analysis to review existing, vision-based, measurement 

solutions for measuring short-track speed skating kinematics. Radio frequency 

identification methods such as local position measurement (Stelzer, Pourvoyeur, & 

Fischer, 2004) are excluded, as Great Britain Short-Track Speed Skating require a tool 

that simultaneously provides video-feedback. The review groups these existing vision-

based measurement solutions into three broad categories (1) existing relay exchange 

measurement methods, (2) single-panning cameras, and (3) multi-camera networks. 

First, I evaluate each categories’ solutions on their ability to measure the metrics, 

scenarios, and scope of the relay exchange (Section 3.2). Second, if these solutions meet 

these measurement requirements, I evaluate the solutions’ accuracy using the definition 

of an acceptable level of measurement error (Section 3.3).  

3.4.1 Existing relay exchange measurement methods 

The investigations of Riewald et al. (1997) and Osborough & Henderson (2009) used 

two different methods to measure kinematics during the relay exchange. Riewald et al. 

(1997) used a two-camera pan-tilt system, and Osborough & Henderson (2009) used 

three static cameras positioned perpendicular to the straight. Position, velocity, and 

kinetic energy were computed as a three- and two-dimensional point estimate by 
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manually digitising a single mid-pelvic point on each skater.  

When considering the metrics, scenarios, and scope of relay exchange measurement, 

these methods have two limitations. Firstly, both methods only allow the measurement 

of the relay exchange with one team on the short-track due to the potential for 

measurement occlusion, i.e. another skater occluding the mid-pelvic point on the 

skater-of-interest. Secondly, due to the mid-pelvic point being susceptible to occlusion 

in the two-camera pan-tilt system and the field-of-view being constrained to the straight 

in the three-camera system, these methods only allow the relay exchange to be measured 

during the straight. Accordingly, both methods cannot measure the relay exchange in 

(1) representative race scenarios, i.e. for up to four teams simultaneously, and (2) over 

its entirety, i.e. the straight and proceeding corner. As discussed in Section 3.2, both are 

critical for advancing knowledge on ‘how to execute the relay exchange effectively’. 

3.4.2 Single-panning cameras 

In short-track speed skating, much work has focused on the measurement of kinematics 

using single panning camera footage recorded from a position in the spectator gallery 

close to the start/ finish line (Liu, 2014; Liu & Tang, 2009; Liu, Tang, Cheng, Huang, & 

Liu, 2009; Liu, Tang, Huang, Liu, & Sun, 2007; Wang, 2012; Wang, Cheng, & Shan, 

2014; Wang, Liu, Liu, Tang, & Liu, 2009). These methods compute position and velocity 

as a two-dimensional point estimate by (1) automatically computing the transformation 

matrices that map each frame to a global rink model, and (2) tracking skater's motion 

automatically by inputting observation models, based on colour extraction from the 

head and body, into a Kalman filter.  

When considering the metrics, scenarios, and scope of relay exchange measurement, 

single panning-cameras do enable the relay exchange to be measured over its entirety, 

i.e. the straight and proceeding corner. However, as the performance of these methods is 

affected by continuous sections of partial or full skater occlusion (Liu et al., 2009), this 

solution does not enable the measurement of the relay exchange in representative race 
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scenarios as the likelihood of skater occlusion would increase due to up to 16 skaters 

being on the short-track. As discussed in Section 3.2.2, this is critical for advancing 

knowledge on ‘how to execute the relay exchange effectively’.  

3.4.3 Multi-camera network 

Landry, Gagnon, & Laurendeau (2013) described using a multi-camera network to 

measure kinematics during short-track speed skating. The multi-camera network – 

installed at the Olympic Oval in Calgary (CAN) – consisted of four cameras fixed 22.5 m 

above the rink surface. Collectively, the four cameras’ field-of-view covered the entirety 

of the short-track. The multi-camera network computed position and velocity as a two-

dimensional point estimate by (1) establishing a common rink plane between the four 

camera views, and (2) tracking skaters’ motion automatically by inputting observation 

models – based on a 16-bin grey level histogram – into a particle filter.  

When considering the metrics, scenarios, and scope of relay exchange measurement, the 

multi-camera network satisfies all criteria. The method facilitates the measurement of 

the relay exchange in (1) representative race scenarios, i.e. for up to four teams 

simultaneously, and (2) over its entirety, i.e. the straight and proceeding corner, as the 

overhead view negates measurement occlusion and covers the whole short-track. 

However, as Landry et al. (2013) reported overall errors in velocity measurements of ± 

1.53 m·s-1, the multi-camera network does not meet the level of measurement error 

required for advancing knowledge on ‘how to execute the relay exchange effectively’; the 

magnitude of error considerably larger than the ± 0.19 m·s-1 deemed acceptable in 

Section 3.3. 

3.4.4 Summary 

A variety of vision-based measurement solutions have been used in short-track speed 

skating to measure a two-dimensional point estimate of a skater’s position and velocity. 

In general, these solutions are inappropriate for advancing knowledge on ‘how to 
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execute the relay exchange effectively’, as they are unable to measure the relay exchange 

in (1) representative race scenarios, i.e. for up to four teams simultaneously, and (2) 

over its entirety, i.e. the straight and proceeding corner. At present, the only solution 

that meets these criteria is a multi-camera network. However, while the multi-camera 

network satisfies the metrics, scenarios, and scope of relay exchange measurement, the 

measurement error is unsuitable for detecting the smallest enhancement in performance 

during the relay exchange. Accordingly, this measurement error needs to be minimised 

if a multi-camera network is to be used to advance knowledge on ‘how to execute the 

relay exchange effectively’.    

3.5 Part I summary 

Part I of the thesis contextualised the need for developing a multi-camera network to 

measure accurate, two-dimensional, relay exchange kinematics. First, by examining the 

relay exchange’s effect on race time and race position, Chapter 2 evidenced the strategic 

opportunity of the relay exchange and thus provided empirical data that supported its 

targeted improvement by Great Britain Short-Track Speed Skating (Chapter 1). For the 

former, the results showed that the relay exchange’s effect on race time is dependent on 

race speed; having a positive effect at slower speeds and a negative effect at faster speeds. 

This finding suggests that the current norm of executing the relay exchange every 1½ 

laps may not be optimal. Instead, varying the frequency of the relay exchange execution 

could allow time to be gained relative to other teams in the race. For the latter, the 

results showed that the relay exchange offers a superior opportunity for a team to 

achieve a gain-in-race position. Accordingly, the relay exchange could facilitate race 

strategies which are currently underutilised due to the difficulties in overtaking. The 

chapter concluded by using these results to provide a rationale for how Great Britain 

Short-Track Speed Skating should advance knowledge on ‘how to execute the relay 

exchange effectively’. This work focuses on (1) validating the theoretical mechanisms 

proposed for why the relay exchange’s effect on race time is dependent on race speed, 

and (2) understanding ‘how to execute the relay exchange to achieve a gain-in-race 
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position’.  

Second, Chapter 3 used this rationale to formulate a relay exchange measurement needs 

analysis. The needs analysis showed that to advance knowledge on ‘how to execute the 

relay exchange effectively’, Great Britain Short-Track Speed Skating need to be able to 

measure relay exchange kinematics in (1) representative race scenarios, i.e. for up to 

four teams simultaneously, (2) over its entirety, i.e. the straight and proceeding corner, 

and (3) with an acceptable level of measurement error; operationally defined as the 

ability to measure skating velocity to within ± 0.19 m·s-1. This absolute error reflected 

both the trueness (i.e. the systematic error) and precision (i.e. the random error) of the 

measurement to ensure that Great Britain Short-Track Speed Skating could (1) detect 

the smallest enhancement in skating velocity required to achieve a gain-in-race position, 

and (2) validate the proposed theoretical mechanisms for why the relay exchange’s effect 

on race time is dependent on race speed.  

The chapter concluded by using the needs analysis as a criterion to review existing, 

vision-based, short-track speed skating measurement solutions. The review showed that 

although a variety of different measurement solutions have been used in short-track 

speed skating, only one method facilitated the measurement of the relay exchange in (1) 

representative race scenarios, and (2) over its entirety: the multi-camera network 

installed at the Olympic Oval in Calgary (CAN). However, while this multi-camera 

network satisfied the metrics, scenarios, and scope of relay exchange measurement, its ± 

1.53 m·s-1 error in skating velocity did not meet the ± 0.19 m·s-1 target measurement 

error. For these reasons, this thesis investigates developing a multi-camera network to 

measure accurate, two-dimensional, relay exchange kinematics.
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Part II 

Part II – Multi-camera network development 

Part II   Multi-camera network development 
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Multi-camera network 

Chapter 4 The National Ice Centre multi-camera network 

The National Ice Centre multi-camera network 

4.1 Introduction 

The first part of this thesis contextualised the need for developing a multi-camera 

network to measure accurate, two-dimensional, relay exchange kinematics. First, 

Chapter 2 evidenced the strategic opportunity of the relay exchange and provided a 

rationale for how future work should advance knowledge on ‘how to execute the relay 

exchange effectively’. Second, Chapter 3 formulated a relay exchange measurement needs 

analysis and reviewed existing short-track speed skating measurement solutions. The 

review showed that while the Olympic Oval (CAN) multi-camera network was the only 

measurement solution that satisfied the metrics, scenarios, and scope of relay exchange 

measurement, its ± 1.53 m·s-1 error did not meet the ± 0.19 m·s-1 target measurement 

error. Therefore, the second part of this thesis investigates developing a multi-camera 

network to measure accurate, two-dimensional, relay exchange kinematics. Before 

Chapter 5 reviews the literature with regards to such an investigation, this chapter 

provides an overview of the multi-camera network developed in the thesis and outlines 

several image characteristics that will influence the multi-camera network’s ability to 

measure accurate, two-dimensional, relay exchange kinematics. 

4.2 The multi-camera network 

The multi-camera network developed in this thesis is installed at the National Ice Centre 

in Nottingham; the home of Great Britain Short-Track Speed Skating’s World Class 

Performance Programme. The National Ice Centre (GBR) multi-camera network 



  Multi-camera network 

 

49 

 

consists of 26 Axis M3204 network cameras (Axis Communications, Lund, Sweden). All 

cameras are fixed on a suspended structure – nine metres above the short-track – and 

positioned so that the network’s collective field-of-view covers 90% of the 1800 m2 

capture area (60 x 30 m short-track). Figure 4-1 illustrates the position of each camera 

on the suspended structure and the camera’s approximate field-of-view. Each camera 

delivers 25 MJPEG images per second (progressive scan), at a resolution of 1280 x 800 

pixels, and exposure time of 0.004 seconds. As the Axis M3204 cameras do not support 

generator locking, i.e. using a reference signal to synchronise two or more cameras, each 

camera’s shutter can be out-of-phase by up-to ± 0.02 seconds with all other cameras.  

Table 4-1 compares the National Ice Centre (GBR) multi-camera network to the 

Olympic Oval (CAN) multi-camera network described in Section 3.4.3. While the 

sampling frequencies of the cameras are identical, the National Ice Centre (GBR) multi-

camera network uses an additional 22 cameras to cover the short-track and captures 

images at a higher resolution. The former is due to the building restricting the camera 

height above the short-track, i.e. four cameras’ field-of-view would not cover the short-

track at the National Ice Centre, the latter due to differences in the camera make/ model.  

 

Figure 4-1. A schematic of the National Ice Centre (GBR) multi-camera network. 
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4.3 Image characteristics 

The National Ice Centre (GBR) multi-camera network’s images each comprise of 

1,024,000 (1280 x 800) pixels. These pixels – each consisting of three numerical RGB 

components ranging from 0 to 255 – determine the overall appearance of an image. 

Importantly for this thesis, the image’s appearance and skater’s appearance within that 

image varies for several reasons. These characteristics, outlined below, will influence the 

multi-camera network’s ability to measure accurate, two-dimensional, relay exchange 

kinematics and are considered throughout the remainder of this thesis.  

4.3.1 Image appearance 

The multi-camera network’s images have two distinct artefacts: horizontal banding and 

lens distortion. In addition to these artefacts, the overall appearance of an image is 

dependent on the ambient lighting and the network setup.  

Horizontal banding & lens distortion 

Figure 4-2 shows four pairs of high- and low-intensity horizontal bands in two images 

from a single camera. These bands, common to all images in the multi-camera network, 

are the result of the light sources’ alternating current (AC) power supply and the image 

sensor’s electronic rolling shutter. Figure 4-3 illustrates how the waveform of an AC 

power supply corresponds to a change in brightness of the corresponding light source 

(Yoo, Im, & Paik, 2014). The multi-camera network captures this change in brightness 

Table 4-1. The multi-camera network configuration at the National Ice Centre and Olympic Oval. 

Multi-camera network National Ice Centre (GBR) Olympic Oval (CAN) 

Camera model Axis M3204 Prosilica GC 650 

Number of cameras 26 4 

Camera height 9 m 22.5 m 

Image resolution 1280 x 800 pixels 659 x 493 pixels 

Sampling frequency 25 Hz 25 Hz 
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in each image as the electronic rolling shutter exposes and readouts each scanline (row 

of pixels) sequentially from top to bottom over the duration of the sampling interval. As 

a result, the bottom scanline is exposed 0.04 seconds (1/sampling frequency) later than 

the top scanline (Bradley, Atcheson, Ihrke, & Heidrich, 2009; Wilburn, Joshi, Vaish, 

Levoy, & Horowitz, 2004). Moreover, as the electronic rolling shutter and AC power 

supply are not in-phase, the position of the banding changes over time (Figure 4-2). 

 

Figure 4-2. Two images from a single camera in the National Ice Centre (GBR) multi-camera network. 

The images demonstrate the two artefacts of all multi-camera network images (1) horizontal banding, 

i.e. four pairs of high- and low-intensity horizontal bands, and (2) lens distortion, i.e. straight lines 

appearing curved. 

 

Figure 4-3. The effect of an AC power supply on the brightness of a corresponding light source (left). 

The National Ice Centre (GBR) multi-camera network captures this change in brightness in each image 

as the image sensor’s electronic rolling shutter exposes and readouts each scanline (row of pixels) 

sequentially from top to bottom over the duration of the 0.04-second sampling interval (right). 
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In addition to horizontal banding, each camera in the multi-camera network is subject 

to radial and tangential lens distortion. The spherical shape of the lens causes radial 

distortion and manufacturing defects, i.e. the non-alignment of the camera lens and 

imaging plane, causes tangential distortion (Bradski & Kaehler, 2008). Figure 4-2 

illustrates how this lens distortion results in straight lines appearing curved in an image.  

Ambient lighting & network setup 

The National Ice Centre's ambient lighting, i.e. the available light in the rink 

environment, varies for two reasons (1) daylight, as one side of the rink has windows, 

and (2) the lighting’s colour temperature. Great Britain Short-Track Speed Skating 

selects the highest setting of colour temperature to improve skating visibility. This 

change, however, is not instantaneous. Figure 4-4 shows how changes in weather (e.g. 

sunny and overcast) and lighting (e.g. 0 minutes to 20 minutes after the change in 

colour temperature) alters the appearance of a camera's images within a training session. 

As outlined in Section 4.2, the positions of the 26 cameras allow the National Ice Centre 

multi-camera network to capture 90 % of the short-track. As a result, each camera’s 

proximity to the available light sources in the rink environment differs. As shown in 

Figure 4-5, this varying proximity results in an image from one camera appearing lighter 

or darker than images from another camera captured at the same time. 

 

Figure 4-4. Images from a single camera in the National Ice Centre (GBR) multi-camera network 

during a Great Britain Short-Track Speed Skating training session. The appearance of the camera’s 

images differs due to changes in daylight and colour temperature. 
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4.3.2 Skater appearance 

In addition to the characteristics outlined in Section 4.3.1, the appearance of a skater in 

an image is dependent on the skating condition, track position, and skating velocity.  

Skating condition 

A single lap of a short-track contains two different skating conditions, the corner and 

straight, both of which are repeated twice per lap. The skating technique in each of these 

condition differs. The straight skating condition typically contains one glide on each 

blade (Hesford, Laing, Cardinale, & Cooper, 2012; Hettinga, Konings, & Cooper, 2016). 

The skater adopts a crouched skating position, i.e. the trunk is kept close to horizontal, 

to minimise the skater’s frontal area and thus reduce frictional losses from air friction 

(van Ingen Schenau, 1982). In addition to maintaining a crouched skating position, the 

corner skating condition contains three-sub phases: the entry, hang and exit (Hesford et 

al., 2012; Hettinga et al., 2016). Here, the skater leans towards the centre of rotation to 

maintain the balance of forces between the skate and ice (Chun, 2001; Yule & Payton, 

2000). Figure 4-6 illustrates the differences in a skater’s appearance between the straight 

and corner skating conditions in the multi-camera network. 

 

 

Figure 4-5. Images from two cameras in the National Ice Centre (GBR) multi-camera network during a 

Great Britain Short-Track Speed Skating training session. The appearance of the cameras’ images differs 

due to varying proximities to the available light sources. 
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Track position 

The short-track, a 111.12 m oval, is defined by 14 moveable track marking blocks 

positioned on the ice (ISU, 2016). As illustrated in Figure 4-7, from the central track 

position these track marking blocks are moved by one or two metres in either direction 

to define five different short-tracks. Great Britain Short-Track Speed Skating uses all 

 

 

Figure 4-6. The appearance of a skater in the National Ice Centre (GBR) multi-camera network during 

the straight (top) and corner (bottom) skating conditions. 

 

Figure 4-7. From the central track position (Track 3), each corner’s seven-track marking blocks can be 

moved by one or two metres in either direction to define five different short-tracks. 
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these track positions throughout training sessions to preserve good ice conditions.  

Figure 4-8 shows how a skater’s appearance in an image varies between different short-

tracks in the corner skating condition. 

Skating velocity 

As shown in Chapter 2, skating velocity changes throughout the short-track relay. These 

different skating velocities affect a skater’s appearance in an image in two ways. Firstly, 

at faster skating velocities, a skater travels further in a camera’s 0.004 second exposure 

time. As illustrated in Figure 4-9, this leads to the skater appearing more blurred in an 

image. Secondly, as the skating velocity increases during the corner skating condition, a 

skater leans further towards the centre of rotation to maintain the balance of forces 

 

Figure 4-8. The effect of track position on a skater’s appearance in the National Ice Centre (GBR) multi-

camera network during the corner skating condition. Track 1 (left) and Track 5 (right). 

 

Figure 4-9. The effect of velocity on a skater’s appearance in the National Ice Centre (GBR) multi-

camera network. At faster velocities (right) a skater (1) appears more blurred in an image due to 

travelling less distance in a single exposure (0.004 seconds), and (2) has a more pronounced lean in a 

corner skating condition image due to having to balance the larger centripetal force. 
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between the skate and ice. As shown in Figure 4-9, the lean angle changes the 

appearance of a skater in an image. 

4.4 Chapter summary 

This chapter provided an overview of the multi-camera network developed in this thesis. 

The National Ice Centre (GBR) multi-camera network uses 26 cameras – fixed on a 

suspended structure nine metres above the rink surface – to capture the 60 x 30 m short-

track. Compared to the Olympic Oval (CAN) multi-camera network, which does not 

meet the ± 0.19 m·s-1 target measurement error for advancing knowledge on ‘how to 

execute the relay exchange effectively’, the National Ice Centre (GBR) multi-camera 

network uses an additional 22 cameras to capture the short-track and records images at 

a higher resolution. The chapter concluded by demonstrating how the appearance of 

images in the multi-camera network is dependent on four characteristics (horizontal 

banding, lens distortion, ambient lighting, and the network setup), with the appearance 

of skaters within each image dependent on an additional three characteristics (skating 

condition, track position, and skating velocity). These characteristics are considered 

throughout the remainder of this thesis, as they will influence the multi-camera 

network’s ability to measure accurate, two-dimensional, relay exchange kinematics. 
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Literature review 

Chapter 5 Literature review 

Literature review 

5.1 Introduction 

The second part of this thesis investigates developing the National Ice Centre (GBR) 

multi-camera network to measure accurate, two-dimensional, relay exchange 

kinematics. In this chapter, I review the literature with regards to such an investigation. 

The review is formed of two parts. First, the review examines the four stages of the 

multi-camera network's measurement workflow (1) measuring skater position in an 

image, (2) measuring skater position on the short-track, (3) measuring skater position 

over time, and (4) computing skater velocity. Second, the review evaluates different 

approaches for determining whether the multi-camera network can measure accurate, 

two-dimensional, relay exchange kinematics. The chapter concludes by using the 

outcomes of the review to formulate the thesis’s objectives.    

5.2 Part I. Measuring skater position in an image 

The first step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to digitise the position of a skater in 

the image’s pixel coordinate system. The pixel coordinate system has a R- and /-axis, 

with the origin located at the top left corner. Users can digitise the position of a skater in 

the pixel coordinate system in two ways (1) manually, by visually identifying and 

selecting the skater in the image (Payton, 2008), or (2) automatically, using digital image 

processing techniques (Barris & Button, 2008). While both methods introduce error 

into the measurement process, manual digitisation is also a time-consuming procedure 
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(Ceccon et al., 2013; Payton, 2008). For example, in the National Ice Centre (GBR) 

multi-camera network, it takes approximately one hour to digitise a single skater over a 

ten-second lap. For this reason, the multi-camera network must automatically digitise 

the position of a skater in the pixel coordinate system. In this section, I provide an 

overview of automated digitisation principles (Section 5.2.1), before reviewing existing 

methods used in short-track speed skating (Section 5.2.2) and human motion analysis 

(Section 5.2.3).  

5.2.1 Principles of automated digitisation 

Automated digitisation consists of two processes: segmentation and representation 

(Moeslund & Granum, 2001). Segmentation separates objects of interest, referred to as 

the foreground (e.g. skaters), from the rest of the image, referred to as the background 

(e.g. the rink surface) (Moeslund, Hilton, & Krüger, 2006). Figure 5-1 illustrates the 

typical output of the segmentation process; a binary image where the background is 

black and the foreground is white (Hudson, 2015).  

Segmentation methods are based on either temporal or spatial information and are 

routinely used in combination to separate the foreground from the background 

(Hudson, 2015; Moeslund & Granum, 2001). Temporal-based segmentation assumes 

that the background of an image is static. Subsequently, the difference between images 

originates from the movement of the object of interest. For example, image subtraction 

subtracts the current image from a reference image that contains only the background. 

This reference image can either be a single static image or an image that is continually 

updated (Moeslund & Granum, 2001; Sobral & Vacavant, 2014). Spatial segmentation 

assumes that the appearance of the object of interest, i.e. the pixel intensities, are 

different from the rest of the image. A straightforward spatial segmentation approach is 

histogram thresholding. Here, each pixel in an image is classified as either background 

or foreground if its intensity is either less or greater than a set threshold. This threshold 

is selected either manually or automatically (Russ & Brent, 2011).  
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Representation then describes foreground objects in the binary image using some 

convenient manner (Moeslund & Granum, 2001). As illustrated in Figure 5-1, examples 

include single points, bounding boxes, edges, and blobs.  

5.2.2 Automated digitisation in short-track speed skating 

The Olympic Oval (CAN) multi-camera network described in Section 3.4.3 is the most 

relevant example of automated digitisation in this review. This multi-camera network 

uses a combination of subtraction and thresholding to automatically digitise a skater’s 

position in the pixel coordinate system.  

Segmentation method 

First, Landry et al. (2013) subtracted the current image from a reference image; the 

average of several images where no skaters were on the rink. Second, Landry et al. 

 

Figure 5-1. The two processes of automated digitisation: segmentation (top) and representation 

(bottom). Segmentation separates objects of interest, referred to as the foreground (e.g. skaters), from 

the rest of the image, referred to as the background (e.g. the rink surface). Representation then describes 

these foreground objects in some convenient manner. Examples include single points, bounding boxes, 

edges, and blobs. 
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(2013) applied a threshold to this subtracted image globally, and then locally to the 

identified foreground objects. This two-stage process – illustrated in Figure 5-2 – 

ensured that the final foreground objects were more robust to cast shadows.  

Landry et al. (2013) used Otsu's (1979) method to select the two threshold values 

automatically. This method assumes that the histogram of the subtracted image is 

bimodal; one mode represents the background's pixel intensities (i.e. the rink surface), 

and the other mode represents the foreground's pixel intensities (i.e. the skaters). The 

method selects the intensity that minimises the intra-class variance as the threshold 

value.   

Representation method 

Landry et al. (2013) represented each identified foreground object as a pair of single 

coordinates. In each foreground object, each pixel was assumed to have an equal mass 

and the geometric centroid calculated, 

     S-.��T*
U  =  ∑ R;=;=1.      S-.��T*
W  =  ∑ /;=;=1.  (&'. 5.1) 

where . is the total number of foreground object pixels, R; is the R-coordinate of the *th 

pixel, and /; is the /-coordinate of the *th pixel. 

 

Figure 5-2. The Olympic Oval (CAN) multi-camera network automated digitisation procedure. From 

left to right, the associated image from (1) the background subtraction, (2) the global threshold, and (3) 

the local threshold. Figure adapted from Landry et al. (2013). 

Item removed for copyright reasons 
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National Ice Centre (GBR) multi-camera network feasibility 

The Olympic Oval (CAN) multi-camera network’s automated digitisation algorithm has 

two limitations that warrant consideration. First, using the average of several images to 

create the subtraction reference image is not feasible in the National Ice Centre (GBR) 

multi-camera network as horizontal banding and ambient lighting changes throughout 

a training session (Section 4.3.1). Instead, a continuously updated reference image – 

known as a background model – would be required (Sobral & Vacavant, 2014). Second, 

when comparing the algorithm to manually digitised data, the uncertainty in the 

automated digitisation of a skater (2.61 pixels) propagated to errors in velocity (± 1.04 

m∙s-1) that exceeded the ± 0.19 m∙s-1 target measurement error (Section 3.3). Landry et al. 

(2013) reported that the magnitude of this uncertainty was due to ambiguity in the 

digitised point. Human operators digitised a skater’s two-dimensional centre-of-mass 

point estimate – a point between the coccyx and belly button (equivalent to the 1st 

lumbar vertebra) – using cues such as the relative position of the limbs and head. In 

contrast, the algorithm used the foreground object’s geometric centroid. Accordingly, a 

simple way to reduce this error would be to use a marker to define a skater’s centre-of-

mass point estimate. This approach is frequently used in human motion analysis to 

identify landmarks of interest (Payton, 2008).   

5.2.3 Automated digitisation in human motion analysis 

In human motion analysis, optical motion capture is considered the gold standard 

measurement technique as it offers high spatial accuracy (less than a millimetre) and 

high temporal resolution (upwards of several hundred frames per second) (Song & 

Godøy, 2016). The process utilises data captured from image sensors to triangulate the 

three-dimensional position of anatomical landmarks between two or more calibrated 

cameras with overlapping projections. These landmarks, such as joint centres or 

segment endpoints (Payton, 2008), are typically identified using either retroreflective 

(passive) or light-emitting (active) fiducial markers. The former being advantageous due 
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to the absence of wires, batteries and pulsing circuitry on the participant under analysis 

(Chiari, Croce, Leardini, & Cappozzo, 2005).  

When filmed using infrared lights, the light reflected from retroreflective passive 

markers is easy to locate in an otherwise dark image (Peikon, Fitzsimmons, Lebedev, & 

Nicolelis, 2009; Pintaric & Kaufmann, 2007). When these markers are not retroreflective, 

the properties of the background and marker are manipulated to create high contrast 

images. For example, scholars have ensured a dark image background by covering both 

the capture volume and participant in dark materials (Ceccon et al., 2013; Sampe, Vijai, 

Latifah, & Aprintono, 2009; Yeasin & Chaudhuri, 2000) and selected the colour of the 

marker to maximise the image contrast (Sampe et al., 2009; Theobalt, Albrecht, Haber, 

Magnor, & Seidel, 2004). 

In addition to the fiducial marker’s colour, scholars also manipulate the marker's shape 

and size; with both influencing the overall measurement accuracy. For example, passive 

fiducial markers are typically either sphere- or disc-shaped (Magalha ̃es et al., 2013). 

While spherical markers assist in the accurate calculation of the marker centroid – as 

they always appear as a circle in a two-dimensional image – they also protrude from the 

athlete's body. In swimming, Kjendlie and Bjørn (2012) reported that the protruding 

nature of 24 spherical markers (19 mm in diameter) increased passive drag by up to 10%. 

As a result, Ceccon et al. (2013) used disk-shaped markers in a kinematic analysis of the 

front crawl. However, as the appearance of a disk-shaped marker is dependent on the 

marker's position relative to the camera, the calculation of a marker’s centroid may have 

been less accurate due to a smaller count of foreground pixels. Likewise, the selected size 

of a marker is a trade-off between accuracy and digitisation error; while a larger marker 

theoretically increases the automated digitisation accuracy, it may also interfere with 

other markers and the athlete’s movement (Chiari et al., 2005; Payton, 2008). 

Segmentation methods 

By creating high contrast images, fiducial markers can be segmented using thresholding 
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techniques. However, even with the most elaborate segmentation methods, the result of 

this segmentation is rarely perfect, i.e. the segmentation method misclassifies pixels as 

either foreground and background (Russ & Brent, 2011). For this reason, before 

representing foreground objects as single points, binary images are processed. 

One approach to processing binary images is to apply morphological operations such as 

dilation and erosion. As shown in Figure 5-3, the two operations add (dilation) and 

remove (erosion) pixels from the foreground object's boundary. The number of pixels 

added or removed is dependent on the size and shape of a structuring element (Comer 

& Delp, 1999). For example, during dilation, the value of the processed image's *th pixel 

is the maximum value of all pixels in the binary image's *th pixel neighbourhood 

(defined by the structuring element). In contrast, during erosion, the value of the 

processed image's *th pixel is the minimum value of all pixels in the binary image's 	th 

pixel neighbourhood.  

An alternative approach to processing binary images in optical motion capture is to 

apply constraints to foreground objects based on a posteriori knowledge of the object’s 

image appearance. For example, Flam, de Souza Ramos, de Queiroz, de Albuquerque 

Araújo and Gomide (2009) used a minimum and maximum foreground object area 

constraint, while Shafiq, Tümer and Güler (2001) defined the minimum and maximum 

foreground object width and height. In both examples, if the foreground object did not 

meet the predefined criteria, the associated pixels were reclassified as background.  

 

Figure 5-3. Morphological erosion (left) and dilation (right) operations. The 3 x 3-pixel structuring 

element removes or adds pixels to the foreground object’s boundary (centre) based on the minimum or 

maximum value in the structuring element’s pixel neighbourhood. Figure adapted from Dunn (2014).  
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Representation methods 

Optical motion capture represents each fiducial marker foreground object using a single 

pair of coordinates that define the marker's centre. While the centre of a marker can be 

estimated using various methods, Chiari et al. (2005) reported that optical motion 

capture commonly uses the geometric centroid and circle-fitting methods. 

As reported in Section 5.2.2, when Landry et al. (2013) calculated the geometric centroid 

of a skater’s foreground object, the calculation (&'. 5.1) assumed that each pixel had an 

equal mass. In optical motion capture, an alternative brightness-weighted approach is 

also used (Peikon et al., 2009). This method assumes that the mass of each pixel is 

equivalent to the pixel’s intensity,    

     S-.��T*
U  =  ∑ R;X�;=;=1∑ X�;=;=1
     S-.��T*
W  =  ∑ /X�;=;=1∑ X�;=;=1

 (&'. 5.2) 

where . is the total number of foreground object pixels, R; is the R-coordinate of the *th 

pixel, /; is the /-coordinate of the *th pixel, and X�; is the intensity of the *th pixel.  

Circle-fitting procedures estimate the marker’s centroid as the centre of a circle fitted to 

the edge of a foreground object using a least-squares method (Chiari et al., 2005). The 

method minimises the mean square distance from the circle to the data points. The 

objective function, 6 , is defined by, 

     6 = ∑ 
;2
=

;=1
 (&'. 5.3) 

where 
; is the Euclidean distance from the point to the circle.  

Based on the equation of a circle,  

     (� − 	)2 + (� − �)2 = 52 (&'. 5.4) 

where (	, �) is its centre and 5 is its radius, 
; is given by,  
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; = √(�; − 	)2 + (�; − �)2 − 5 (&'. 5.5) 

This method can be extended to ellipses to account for sphere-shaped markers that do 

not appear as circles in a two-dimensional image (Fitzgibbon, Pilu, & Fisher, 1999). 

However, this procedure is more computationally expensive due to the additional 

parameters required to define an ellipse. 

National Ice Centre (GBR) multi-camera network feasibility 

The use of retroreflective markers in the National Ice Centre (GBR) multi-camera 

network is not feasible as the installation does not include infrared lights. In contrast, 

the use of non-retroreflective markers is feasible, as both the properties of the 

background (e.g. skin-suit) and marker (e.g. colour, shape and size) can be manipulated. 

Considering that most of each camera’s field-of-view is ice, a dark skin suit with a 

contrasting coloured fiducial marker seems most suitable. The marker should also be 

disk-shaped – as air friction accounts for approximately 75% of the frictional forces that 

a skater has to overcome (de Koning, de Groot, & van Ingen Schenau, 1992; van Ingen 

Schenau, 1982) – and the size of the marker maximised to minimise the error in the 

automated digitisation algorithm. Finally, due to the appearance a disk-shaped marker 

being dependent on its position relative to the camera, the geometric centroid should be 

used to calculate the centre of the fiducial marker. 

5.2.4 Section summary 

The first step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to digitise the skater’s position in 

the pixel coordinate system. The multi-camera network should automate this procedure 

due to the associated time cost of manual digitisation. The most relevant example of 

automated digitisation in short-track speed skating is not suitable for the National Ice 

Centre (GBR) multi-camera network as ambiguity in the digitised point propagated to 

errors that exceed the ± 0.19 m∙s-1 target measurement error. The simplest way to reduce 
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this ambiguity is to place a fiducial marker at the skater’s two-dimensional centre-of-

mass point estimate. To automatically digitise this fiducial marker requires high contrast 

between the marker and background. When specialist equipment cannot be used (e.g. 

infrared cameras with retroreflective markers), manipulating the background and 

marker properties can create the necessary contrast. In the multi-camera network, a 

dark skin suit with a coloured marker seems the best solution. The marker should be 

disk-shaped to minimise air friction and the geometric centroid used to calculate the 

marker's centre. 

5.3 Part I. Measuring skater position on the short-track 

The second step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to transform the position of a 

skater from the pixel coordinate system to the global coordinate system. The global 

coordinate system represents three-dimensional points in the real world and has an �-, 

�-, and 4-axis. The transformation from pixel to global coordinate systems is called 

reconstruction, and the reverse is called projection.  

To reconstruct (pixel) and project (global) coordinates, a calibration model is required. 

The calibration model – calculated using a calibration procedure – defines the 

relationship between the pixel and global coordinate systems and the equations for 

reconstruction and projection. In a recent review of calibration procedures, Hudson 

(2015) deemed that a nonlinear calibration procedure – which implemented the 

methods of Heikkilä and Silvén (1997) and Zhang (1999) – was most suitable for 

correcting the lens distortion detailed in Section 4.3.1. However, the Olympic Oval 

(CAN) multi-camera network used an image rectification calibration procedure. In the 

following sections, I review both approaches for use at the National Ice Centre.  

5.3.1 Image rectification calibration procedure 

Image rectification is a transformation process used to project images onto a common 
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image plane. This procedure requires several positions – termed control points – where 

both pixel and global coordinates are known. In the Olympic Oval (CAN) multi-camera 

network, Landry et al. (2013) used features of the short-track such as track marking 

blocks to define these points. As illustrated in Figure 5-4, image rectification warps the 

source image to the global coordinate system by applying a high-order polynomial 

transformation,    

     �′ =  ∑ ∑ 	;,^_
^

`
;

�;�^     �′ =  ∑ ∑ �;,^_
^

`
;

�;�^ (&'. 5.6) 

For all control points, Landry et al. (2013) used singular value decomposition 

factorisation to find the coefficient 	;,^ and �;,^ linking all points to their projection 

(�′, �′). The appearance of the other pixels was then determined using bilinear or 

bicubic interpolation. Figure 5-4 demonstrates the results of a 2nd, 3rd and 4th order 

polynomial rectification in the Olympic Oval (CAN) multi-camera network. 

National Ice Centre (GBR) multi-camera network feasibility 

The Olympic Oval (CAN) multi-camera network’s calibration procedure has two 

limitations that warrant consideration. First, the mean root mean square reprojection 

error for the selected 4th order polynomial rectification (0.2235 pixels) propagated to 

errors in velocity (± 0.48 m∙s-1) that exceed the ± 0.19 m∙s-1 target measurement error. 

 

Figure 5-4. The result of a 3rd order image rectification in the Olympic Oval (CAN) multi-camera network 

(left) and the pixel reprojection error for a 2nd, 3rd and 4th order polynomial rectification (right). Figure 

adapted from Landry et al. (2013).  
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Second, Landry et al. (2013) reported that the calibration's reprojection error grew 

rapidly outside the areas covered by the control points, e.g. inside the short-track. In 

order for Great Britain Short-Track Speed Skating to advance knowledge on ‘how to 

execute the relay exchange effectively’, accurate measurement in this area is essential as 

oncoming skaters build up speed on the inside of the short-track in preparation for the 

relay exchange. This limitation is more of a concern than the former, as the reported 

reprojection error would likely propagate to smaller velocity errors in the multi-camera 

network due to the system having a higher spatial resolution, i.e. a greater number of 

pixels per metre (Section 4.2). 

5.3.2 Nonlinear calibration procedure 

A nonlinear calibration procedure uses an intrinsic and extrinsic calibration model to 

calculate the relationship between the pixel and global coordinates systems. The 

intrinsic calibration accounts for the effects that the camera lens and camera 

construction has on an image, i.e. radial and tangential lens distortion, and the extrinsic 

calibration estimates the camera’s pose, i.e. the position and orientation of the camera in 

the global coordinate system. Bouguet's (2015) Camera Calibration Toolbox for 

MATLAB – a popular implementation of the nonlinear calibration procedure – uses 

seven steps to construct the two calibration models.  

1. Set and lock the camera and lens settings (e.g. image resolution and focus). 

2. Record images of a calibration object, e.g. a planar checkerboard pattern, in a 

range of positions and orientations that cover the camera’s field-of-view.  

3. Select a subset of calibration object images that cover the camera’s field-of-view 

evenly in a range of orientations.  

4. Use the geometry of the checkerboard pattern to calculate the global coordinates 

of the calibration object’s intersections (i.e. the checkerboard’s corners). 

5. Use digital image processing techniques to extract the pixel coordinates of the 

checkerboard intersections.  
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6. Calculate the intrinsic parameters (focal length, principal point and pixel skew) 

and the camera’s distortion coefficients (radial and tangential). An optimisation 

routine is used to minimise the reprojection error, i.e. the sum of the distances 

between the extracted and projected checkerboard intersections.  

7. Calculate the extrinsic parameters (rotation and translation matrix). This 

procedure requires the intrinsic parameters and four control points. If a user 

provides more than four control points, the toolbox performs an error 

minimisation process. 

The nonlinear calibration procedure uses the camera’s intrinsic and extrinsic 

parameters to project global coordinates into the pixel coordinate system and 

reconstruct pixel coordinates into the global coordinate system. 

Projection 

Four steps are required to project a three-dimensional point in the global coordinate 

system to a two-dimensional point in the pixel coordinate system. The first step 

transforms the three-dimensional point from the global coordinate system (�c, �c, 4c) 

to the camera coordinate system (�H, �H, 4H). This transformation consists of a rotation 

(5) followed by a translation (e ) to collocate the coordinate systems, 

     [�H�H4H
] =  5 [�c�c4c

] + e  (&'. 5.7) 

The second transformation is from the camera coordinate system (��, ��, 4�) to the 

undistorted normalised image coordinate system (RUh, /Uh). This procedure consists of 

projecting the three-dimensional point on the calibrated plane to the image plane. Here, 

a pinhole camera model is assumed,  

     [RUh/Uh] = [�H/4H�H/4H] (&'. 5.8) 
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The third transformation is from the undistorted normalised image coordinate system 

(RUh, /Uh) to the distorted normalised image coordinate system (R
, /
). This 

transformation applies radial (&'. 5.10) and tangential (&'. 5.11) lens distortion to the 

point,  

     [Rh/h] = (Q< [RUh/Uh]) + [QUQW] (&'. 5.9) 

     Q< = 1 + p1�2 + p2�4 + p3�6 (&'. 5.10) 

     [QUQW] = [2p4R/Uh + p5(�2 + 2RUh2)2p5R/Uh + p4(�2 + 2/Uh2)] 
(&'. 5.11) 

where � is the magnitude of (RUh, /Uh), p1−3 are radial distortion coefficients, and  p4−5 

are the tangential distortion coefficients.  

The fourth transformation is from the distorted normalised image coordinate system 

(Rh, /h) to the pixel coordinate system (R, /),  

     [R/] = [Rhx? + /h y + �?/h xF + �F ] (&'. 5.12) 

where �? and �F are the coordinates of the principal point (in pixels), x? and xF are the 

focal length (in pixels), and y  is the pixel skew. 

Reconstruction 

Four steps are required to reconstruct a two-dimensional point in the pixel coordinate 

system to a three-dimensional point in the global coordinate system. The first 

transformation is from the pixel coordinate system (R, /) to distorted normalised image 

coordinate system (R
, /
). Here, &'. 5.12 is rearranged to give, 

     [Rh/h] = [(R − /hy − �?)/x?(/ − �F)/xF ] (&'. 5.13) 
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The second transformation is from the distorted normalised image coordinate 

system (R
, /
) to the undistorted normalised image coordinate system (RR
, /R
). This 

removes both radial and tangential distortion,  

     [RUh/Uh] = 1Q<  ([Rh/h] − [QUQW]) (&'. 5.14) 

where Q<, QU and QW are defined as in &'. 5.10 and &'. 5.11.  

The third transformation is from the undistorted normalised image coordinate system 

(RUh, /Uh) to the camera coordinate system (�H, �H, 4H). This is achieved using line-

plane interception geometry, 

     [�H�H4H
] = 
 [RUh/Uh1 ] (&'. 5.15) 

where � is the distance between the optical centre and point in the camera coordinate 

system (Dunn et al., 2012).  

The fourth transformation is from the camera coordinate system (�H, �H, 4H) to the 

global coordinate system (�c, �c, 4c). This is the reverse of the transformation in 

&'. 5.7, 

     [�c�c4c
] = 5−1 ([�H�H4H

] − e) (&'. 5.16) 

National Ice Centre (GBR) multi-camera network feasibility 

While the accuracy of the nonlinear calibration procedure is unknown in the National 

Ice Centre (GBR) multi-camera network, the procedure appears better suited to 

transforming the position of a skater from the pixel coordinate system to the global 

coordinate system. In tennis, Dunn et al. (2012) showed that compared to other 

calibration models, a nonlinear calibration model reduced reconstruction errors outside 
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the court’s control points as the calibration model was more efficient at correcting lens 

distortion. Accordingly, this procedure enables the multi-camera network to measure 

skaters on the inside of the short-track as they prepare for the relay exchange. Of note, 

Landry et al. (2013) trialled and disregarded the nonlinear calibration procedure at the 

Olympic Oval due to the checkerboard intersections not covering the image sensor 

sufficiently in a variety of poses. Landry et al. (2013) positioning a 11 x 9 square 

checkerboard pattern (each 0.5 m x 0.5 m) on the rink surface. The implementation of 

this procedure at the National Ice Centre would need to resolve this issue. 

5.3.3 Out-of-plane error 

In the calibration procedures described in Section 5.3.1 and Section 5.3.2, the 

relationship between the pixel and global coordinate systems is only valid for the 

calibrated plane. As illustrated in Figure 5-5, reconstructed points of interest (e.g. a 

fiducial marker) not on this calibrated plane (e.g. the rink surface) are subject to out-of-

plane error (Sih, Hubbard, & Williams, 2001). Despite this, Landry et al. (2013) did not 

consider this source of error in the Olympic Oval (CAN) multi-camera network.  

 

Figure 5-5. Vertical out-of-plane error relative to the camera’s central axis, where pc is the calculated 

position, pa is the actual position, and e is the out-of-plane error. The measurement or estimation of the 

camera-to-calibrated plane distance, b, and out-of-plane distance, d, allows the calculation of pa and e 

from pc. Figure adapted from Sih et al. (2001). 
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In both vertical and horizontal axes, the magnitude of out-of-plane error, -, is 

equivalent to,  

     - =  (
�) ,H (&'. 5.17) 

where 
 is the out-of-plane distance,  is the camera-to-calibrated plane distance, and 

 ,H is the reconstructed position. As a result, the easiest way to minimise the magnitude 

of out-of-plane error is to increase the camera-to-calibrated plane distance (Payton, 

2008). This approach, however, is not feasible in the National Ice Centre (GBR) multi-

camera network as all 26 cameras are fixed on a suspended structure 9 m above the rink 

surface (Section 4.2). This approach also demonstrates that the magnitude of out-of-

plane error will be more substantial in the National Ice Centre (GBR) multi-camera 

network, as the Olympic Oval (CAN) multi-camera network’s cameras are fixed 22.5 m 

above the short-track (Table 4-1). 

The alternative approach to minimise out-of-plane error is to use an elevated calibration 

plane to reduce out-of-plane distances. In tennis, Dunn (2014) showed that compared to 

the court surface, a calibrated plane elevated to the height of the tennis net, i.e. the 

expected height of the players centre-of-mass, reduced root mean square reconstruction 

errors by up to 0.24 m. Dunn (2014) used two different methods to construct this 

elevated calibration plane, both of which used elevated control points. The first method 

defined the elevated control points by positioning a rigid object – set to the height of the 

tennis net – at known locations in the global coordinate system (e.g. court line 

intersections). As illustrated in Figure 5-6, the digitisation of these points defined the 

location of the control points in the pixel coordinate system. In contrast, the second 

method used a camera-court plane calibration model – constructed using the nonlinear 

calibration procedure described in Section 5.3.2 – to project the elevated plane control 

points into the pixel coordinate system.     
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5.3.4 Section summary 

The second step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to use a calibration model to 

transform the position of a skater from the pixel coordinate system to the global 

coordinate system. The most relevant example – an image rectification calibration 

procedure implemented at the Olympic Oval (CAN) multi-camera network – is not 

suitable for the multi-camera network as the calibration's reprojection error increases 

rapidly outside the areas covered by the control points, e.g. inside the short-track. For 

Great Britain Short-Track Speed Skating to advance knowledge on ‘how to execute the 

relay exchange effectively’, accurate measurement in this area is essential as oncoming 

skaters build up speed on the inside of the short-track in preparation for the relay 

exchange. Instead, a nonlinear calibration procedure seems more suitable as the method 

is better equipped to correct for lens distortion outside the areas covered by the control 

points. However, this technique requires the projected checkerboard intersections used 

in the intrinsic calibration to sufficiently cover the image sensor. Finally, the nonlinear 

 

Figure 5-6. The digitised court plane (red circle) and elevated plane (yellow circle) control points used to 

construct camera-court plane and camera-court elevated plane calibration models. Figure adapted from 

Dunn (2014). 
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calibration model is only valid for the calibrated plane. As a result, any measured point 

(e.g. the fiducial marker) not on this plane (e.g. the rink surface) is subject to out-of-

plane error. The magnitude of this error, unknown in short-track speed skating multi-

camera networks, can be reduced using elevated calibration planes if required. 

5.4 Part I. Measuring skater position over time 

The third step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to track the skater’s position over 

time, i.e. in consecutive images. In a multi-camera network, this tracking procedure 

consists of two parts (1) tracking the skater within a camera’s field-of-view, termed 

intra-camera tracking, and (2) tracking the skater between different cameras field-of-

view, termed inter-camera tracking. Importantly, both are performed in the global 

coordinate system to facilitate inter-camera tracking (Wang, 2013). 

5.4.1 Fiducial marker tracking in human motion analysis 

In optical motion capture, a passive fiducial marker is tracked from the current 

image, x;, to the next image, x~+1, by looking at the displacement of the marker over a 

four-frame window (Malik, Dracos, & Papantoniou, 1993). The displacement of the 

marker from x;−1 into x; predicts the position of the marker in the next image, x;+1. 

Then the actual position of the fiducial marker in x;+1, and a further prediction of the 

marker into the next image, x;+2, confirms the previously made hypothesis by 

eliminating any ambiguities in the prediction. This ‘predict and confirm’ strategy – 

illustrated in Figure 5-7 – is described below in detail.  

In Figure 5-7, the fiducial marker being tracked, m1, in the current image, x;, has an 

established tracking link from the previous image, x;−1. The displacement between these 

two positions is applied to the fiducial marker position in x; to predict a search 

neighbourhood in the next image, x;+1. This search neighbourhood, centred on the 

predicted position, is the region where the fiducial marker is expected to be located. If 
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the search neighbourhood only contains one marker, a tracking link is established from 

x; to x;+1. However, this is not the case in Figure 5-7 as two candidate markers, m1 and 

m2, are detected in the search neighbourhood. In this scenario, the movement is 

prolonged into the next image, x;+2, and a new search neighbourhood generated for 

each candidate marker. As the search neighbourhoods in x;+2 only contain one marker, 

m1, this marker is confirmed as the correct marker in x;+1, and a tracking link 

established between x; and x;+1. If the search neighbourhoods in x;+2 contain two 

candidate markers, e.g. m1 and m2, another criterion is required to determine the correct 

tracking link from x; to x;+1. Example criteria include (1) selecting the marker in x;+2 

that has the smallest Euclidian distance from the predicted positions, (2) selecting the 

trajectory with the smoothest acceleration over the four-frame period (Herda, Fua, 

Plänkers, Boulic, & Thalmann, 2001), and (3) selecting the trajectory with the most 

consistent fiducial marker size (Peikon et al., 2009).  

 

Figure 5-7. Illustration of the four-frame tracking procedure. The displacement between the tracked 

fiducial marker, m1, in x;−1 and x; is used to predict a search neighbourhood in x;+1. As this search 

neighbourhood contains two candidate markers, the prediction is prolonged into x;+2, and a new search 

neighbourhood generated for each candidate marker. As these search neighbourhoods only contain one 

marker, m1, this marker is confirmed as the correct marker in x;+1 and a new tracking link is established 

between x; and x;+1. 
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Importantly, for this four-frame tracking procedure to work well a minimum 

displacement condition is required (Song & Godøy, 2016). In other words, the time 

interval between two successive images should be short enough to avoid rapid changes 

in a fiducial marker’s trajectory. Although the National Ice Centre (GBR) multi-camera 

network sampling interval is relatively low (25 Hz, Table 4-1), as trajectories in short-

track speed skating are highly constrained to the short-track, rapid changes in a marker 

trajectory are unlikely. Still, if a trajectory violates the minimum displacement condition, 

a more sophisticated prediction method is required. 

5.4.2 Tracking prediction methods 

Peikon et al. (2009) used two marker states to predict the position of the search 

neighbourhood (1) the marker's current position, ��, and (2) the marker’s current 

velocity, /�. By assuming a constant velocity over the time interval, ∆�, Peikon et al. 

(2009) projected the position state forward to predict its value in the next image, x;+1,  

     ��+1 = �� + (∆� · /�) (&'. 5.18) 

Based on the measured position, ��, in x;+1, both state variables were then updated 

(&'. 5.19 and &'. 5.20) and reused in &'. 5.18 to predict the search neighbourhood in 

the proceeding image, x;+2. 

     ��+1 = �� (&'. 5.19) 

     /�+1 = (�� − ��)∆�  (&'. 5.20) 

This approach, like the four-frame tracking procedure described in Section 5.4.1, 

assumes that the state variables contain no error. However, in real applications, the 

actual position �� of the marker is almost never the predicted position (Flam et al., 

2009). This difference, �, is known as the residual error, 
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     � =  �� − ��+1 (&'. 5.21) 

To include this residual error in the update of the both state variables, Flam et al. (2009) 

used an alpha-beta tracking filter (Yoo & Kim, 2003). The alpha-beta tracking uses the 

residual error, together with the alpha � and beta � constants, to update the position 

and velocity state variables,  

     ��+1 = ��+1 + �� (&'. 5.22) 

     /�+1 = /� + ( �∆�) � (&'. 5.23) 

where � and � are smoothing parameters ranging from 0 to 1 (alpha) and 0 to 2 (beta). 

Large parameters produce a fast-tracking response to changes in the trajectory while 

small values reduce the level of noise in the state variables. 

In more difficult tracking scenarios, such as skater’s undergoing long periods of 

occlusion in panning camera systems, scholars use more complex tracking procedures. 

For example, in short-track speed skating the Kalman filter (Liu & Tang, 2009), 

unscented Kalman filter (Liu, Tang, Cheng, Huang, & Liu, 2009; Liu, Tang, Huang, Liu, 

& Sun, 2007), and particle filter (Wang, Liu, Liu, Tang, & Liu, 2009) have been used to 

track skaters in successive images. In these methods, rather than only using the previous 

position, velocity, and residual error to predict the current state variables, a probability 

density function – constructed of all previous measurements – is used. While Kalman 

filters assume that the distribution of the previous states is Gaussian, particle filters do 

not restrict the shape of the distribution (de Queiroz, Gomide, & de Albuquerque 

Araújo, 2012). 

5.4.3 Tracking search neighbourhoods 

In addition to enabling tracking links to be established between fiducial markers in 

consecutive images, search neighbourhoods – also called prediction radii (Song & 

Godøy, 2016) or tracking windows (Gilbert, Giles, Flachs, Rogers, & Hsun U, 1980) – 
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can be used to increase the accuracy and efficiency of the automated digitisation 

procedures discussed in Section 5.2. By cropping the original image to the search 

neighbourhood, the algorithms only need apply the image processing operations to the 

region of interest (Gilbert et al., 1980; Kelley, 2011). Accordingly, the smaller number of 

processed pixels reduces the chance of false positive fiducial marker detection and the 

required computation. 

5.4.4 Tracking initialisation 

In the four-frame tracking example presented in Figure 5-7, the tracking procedure had 

already identified the fiducial marker's position in the previous, x;−1, and current, x;, 
image. As a result, the fiducial marker's state (e.g. the position and velocity) was already 

known, and the tracking procedure could predict the marker's position in the next 

image, x;+1. However, when the tracking procedure first starts, this a posteriori 

knowledge is unknown. For this reason, an initialisation procedure is required to ensure 

that the tracking procedure commences operation with the correct interpretation of the 

scene, i.e. the fiducial marker's current state (Moeslund & Granum, 2001). While this 

initialisation procedure can be automated, typically the procedure involves the manual 

detection of the marker in the first (Magalha ̃es et al., 2013) or first two (Yeasin & 

Chaudhuri, 2000) images of the analysis. While both methods measure the marker’s 

current position, in the single image procedure a default marker displacement or 

velocity is also required. Finally, in addition to defining the fiducial marker's state, the 

initialisation procedure can also be used to associate semantics with the fiducial marker. 

For example, Flam et al. (2009) used the procedure to define the name of each marker's 

appropriate anatomical landmark. In the National Ice Centre (GBR) multi-camera 

network, this could be used to associate the marker with the relevant athlete's identity or 

the athlete's relay team. 

5.4.5 Section summary 

The third step in measuring two-dimensional relay exchange kinematics using the  
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National Ice Centre (GBR) multi-camera network is to track the skater’s position over 

time in the global coordinate system. This tracking procedure – performed within and 

between-cameras’ field-of-view – uses a ‘predict and confirm’ strategy over a four-image 

period to establish a fiducial marker’s tracking link from the current image, x;, to the 

next image, x~+1. The complexity of this prediction is dependent on the skater’s 

displacement in consecutive images, with a search neighbourhood used to (1) minimise 

the number of candidate tracking links, and (2) increase the accuracy and efficiency of 

the automated digitisation algorithm. This prediction also requires an initialisation 

procedure to ensure that the tracking procedure commences operation with the correct 

interpretation of the scene, e.g. the marker's current position and velocity. This process 

– achieved by digitising and labelling the first one or two images in the analysis 

manually – can also be used to associate an athlete’s identity, or the athlete's relay team, 

to the fiducial marker.    

5.5 Part I. Computing skater velocity 

The fourth step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to use the skater’s tracked position 

to compute the resultant velocity. Great Britain Short-Track Speed Skating is interested 

in the resultant velocity, as skaters generate propulsive forces by pushing-off at right 

angles relative to the gliding motion of the skate (de Koning & van Ingen Schenau, 

2000). As illustrated in Figure 5-8, the sideward (/2) and gliding (/1) velocity determine 

the new magnitude and direction of the skater’s centre-of-mass velocity (/3); calculated 

as,  

     /3 = √/12 + /22  (&'. 5.24) 

Velocity can be computed using either analytical, graphical, or numerical techniques 

(Gordon & Caldwell, 2014).  Of these three methods, human motion analysis generally 

uses numerical differentiation due to the data's format, i.e. position coordinates equally 
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spaced in time, being in the precise format for applying numerical techniques. While 

there are various numerical deviation formulas, the equations presented below are 

examples of finite difference techniques.  

For a sample of . points, the velocity /; at the *th point,  

when * = 1, is computed using the forward difference method, 

     /; = 7;+1 − 7;��  (&'. 5.25) 

 

Figure 5-8. A skater generates propulsive forces by pushing-off at right angles relative to the gliding 

motion of the skate. This push-off results in a sideward velocity (v2) of the body’s centre-of-mass with 

respect to the skate. Together with the velocity of the gliding skate (v1), this determines the new 

magnitude and direction of the body’s centre-of-mass velocity (v3). Figure adapted from de Koning and 

van Ingen Schenau (2000). 
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when * = 2 to . – 1, is computed using the central difference method, 

     /; = 7;+1 − 7;−12��  (&'. 5.26) 

and when * = ., is computed using the backward difference method,  

     /; = 7; − 7;−1��  (&'. 5.27) 

where 7 is the position of the skater (measured in the global coordinate system) and �� 
is the sampling interval of the data (calculated as one over the camera’s sampling 

frequency).  

5.5.1 Sampling interval error and uncertainty 

When computing velocity, the finite difference techniques presented in &'. 5.25 to 

&'. 5.27 assume that the sampling interval of the data is constant. As described below, 

in the National Ice Centre (GBR) multi-camera network this is not the case both within- 

and between-cameras’ field-of-view.  

Within-camera sampling interval error 

As illustrated in Figure 5-9, data collected from a camera with a global shutter meets the 

constant sampling interval assumption as the shutter starts and stops light integration 

for every pixel in the sensor at the same time. As readout time is sequential by scanlines, 

i.e. each row of pixels, each pixel requires a sample and hold circuit to preserve the value 

from when the time integration ends until it can be read out (Wilburn et al., 2004).  

In contrast, data collected from cameras with an electronic rolling shutter – for example, 

the National Ice Centre (GBR) multi-camera network (Section 4.3.1) – do not meet the 

constant sampling interval assumption. As shown in Figure 5-9, an electronic rolling 

shutter exposes each scanline just before it is read out. As readout time is sequential by 

scanline, a row of pixels lower in the image starts and stops light integration nearly an 

image later than a row of pixels at the top of the image (Wilburn et al., 2004). This slice 
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in the spatiotemporal volume, known as temporal shear (Bradley et al., 2009), means 

that the sampling interval is only constant in consecutive images between scanlines. The 

effect of this sampling interval error in the computation of skating velocity within-

cameras’ field-of-view is unknown in the National Ice Centre (GBR) multi-camera 

network. 

To account for temporal shear, Bradley et al. (2009) modelled the camera’s electronic 

rolling shutter readout time. The model, illustrated in Figure 5-10, calculates the readout 

time �F(;), for scanline �, in image *, as, 

     �F(;) = �(;) + (��) ⋅ ∆� (&'. 5.28) 

where ∆� is the frame duration (one over the sampling frequency), � is the total 

number of scanlines in the image, and �(;) is the first scanline’s readout time in image *. 
Bradley et al. (2009) noted that the total number of scanlines might be larger than the 

number of visible scanlines, i.e. the number of rows in an image, as invisible scanlines 

can exist for synchronisation signals. For example in high definition video, there are 

1125 scanlines but only 1080 visible scanlines (ITU, 2011).  

 

Figure 5-9. Effect of camera shutter type in the spatiotemporal volume. Global shutters capture the 

entire image at the same time, so each image is vertical in the volume. In contrast, electronic rolling 

shutters capture lower rows in the image later in time, so each image lies on a slanted plane in the 

volume. Figure adapted from Wilburn et al. (2004).  
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The model's readout times can be used to estimate the true sampling interval, ∆�′, 
between consecutive frames as follows,  

     ∆�′ =  (�F(;) + ∆�) − �F(;−1)
 (&'. 5.29) 

Between-camera sampling interval uncertainty 

As reported in Section 4.2, the cameras in the National Ice Centre (GBR) multi-camera 

network can be out-of-phase by up-to ± 0.02 seconds, as the Axis M3204 cameras do 

not support generator locking. Like the within-camera sampling interval error reported 

previously, the effect of this sampling interval uncertainty in the computation of skating 

velocity between-cameras’ field-of-view is unknown in the multi-camera network. 

5.5.2 Removing high-frequency noise 

Before the computation of velocity, position data needs to be processed to attenuate 

high-frequency noise in the automated digitisation procedure (Bartlett, 2014; Derrick & 

 

Figure 5-10. The electronic rolling shutter readout time model. Just-in-time exposure (Δe) and 

sequential scanline readout, create a shear of exposure time intervals in the time domain. The slope of 

this temporal shear is the function of (1) the camera’s sampling interval (Δt), and (2) the total number of 

scanlines (S); where N is the number of visible scanlines. Figure adapted from Bradley et al. (2009).   
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Gordon, 2014). Bartlett (2014) highlighted the importance of removing high-frequency 

noise using a simplified representation of a recorded sports movement. Consider 

coordinate � expressed by the equation, 

     � = 27*.4�� + 0.027*.40�� (&'. 5.30) 

the first term, 27*.4��, represents the observed motion, known here as the signal. The 

signal’s amplitude is 2, and its frequency is 2 Hz (indicated by 7*.4��). The second term, 

0.027*.40��, represents the noise. The noise’s amplitude is equivalent to 1% of the 

motion, and its frequency is 20 Hz (indicated by 7*.40��). Figure 5-11 shows that there 

is little difference between the noise-free and noisy displacement trajectories. However, 

when &'. 5.30 is differentiated with respect to time in &'. 5.31, the noise’s amplitude 

increases to 10% of the noise-free velocity signal (Figure 5-11).  

     / = 8��T74�� + 0.8��T740�� (&'. 5.31) 

One approach to removing this high-frequency noise is to use a digital filter to attenuate 

different elements of the frequency spectrum (Sinclair, Taylor, & Hobbs, 2013). For 

 

Figure 5-11. The effect of high-frequency noise propagation in displacement (left) and velocity (right) 

data. Noise-free and noisy measurements are denoted by the black and blue line, respectively.  
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example, when using a low-pass filter, the cut-off frequency is selected so that the lower 

frequencies remain (e.g. skater motion) and the high frequencies reduce (e.g. 

digitisation error). In biomechanics, the fourth order zero-lag Butterworth filter is 

typically used (Yu, Gabriel, Noble, & An, 1999). As the Butterworth filter’s cut-off 

frequency increases, the influence of the filter on the data reduces, i.e. the data will 

become more like the raw signal. In short-track speed skating, previous studies have 

selected frequencies of 6- and 10-Hz (Chun, 2001; Kim, Jun, Yoo, & Park, 2013). 

Another approach to removing high-frequency noise is to use a smoothing spline. A 

smoothing spline is a series of polynomial curves joined together at points called knots. 

Performed in the time domain, smoothing splines can be considered as the numerical 

equivalent to drawing a smooth curve through the complete set of data points (Bartlett, 

2014). A smoothing parameter, �, ranging from 0 to 1, controls the extent of this 

smooth curve. For example, when � = 0 a least-squares straight line is fit to the data. In 

contrast, when � = 1 a cubic spline interpolant is fit to the data. When compared to the 

Butterworth filter, the smoothing spline has the advantage that it does not require a 

constant sampling frequency (Derrick & Gordon, 2014). As discussed in Section 5.5.1, 

this is the case in the National Ice Centre (GBR) multi-camera network, as the sampling 

interval is only constant between scanlines in consecutive images due to the cameras' 

electronic rolling shutter. 

Finally, human motion analysis applies both Butterworth filters and smoothing splines 

to the raw coordinate data in the global coordinate system. Scholars typically remove the 

noise at this point as, in three-dimensional studies, each camera’s pixel coordinate 

system raw coordinate data does not contain the full information about the recorded 

movement (Bartlett, 2014). 

5.5.3 Section summary 

The fourth step in measuring two-dimensional relay exchange kinematics using the 

National Ice Centre (GBR) multi-camera network is to use the skater’s tracked position 
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to compute the resultant velocity.  This step first attenuates high-frequency noise, 

associated with the automated digitisation of a skater, before using finite differencing 

techniques to compute velocity. In the multi-camera network, this computation is 

subject to within-camera sampling errors and between-camera sampling interval 

uncertainties. The former is due to each camera’s electronic rolling shutter causing 

temporal shear within each image, the latter due to each camera’s shutter being out-of-

phase by up-to ± 0.02 seconds. The effect of both is currently unknown. 

5.6 Part I. Summary 

The first part of the literature review examined the four stages of the multi-camera 

network’s measurement workflow. These stages included (1) measuring skater position 

in an image, (2) measuring skater position on the short-track, (3) measuring skater 

position over time, and (4) computing skater velocity. Based on the review, the multi-

camera network’s ability to measure accurate, two-dimensional, relay exchange 

kinematics is dependent on five sources of measurement error. These errors, defined 

below, combine to form the multi-camera network’s total error.  

• Section 5.2 concluded that the multi-camera network should use a fiducial-

marker based digitisation algorithm to automatically digitise a skater’s position 

in the pixel coordinate system. Skater point error describes how uncertainty in 

this automated digitisation propagates to errors in position and velocity. 

• Section 5.3 showed that the multi-camera network requires a calibration model 

to transform the position of a skater from the pixel coordinate system to the 

global coordinate system. Calibration model error describes how incorrect 

relationships between the pixel and global coordinate systems propagate to 

errors in position and velocity within- and between-cameras’ field-of-view. 

• Section 5.3 demonstrated that a calibration model’s relationship between the 

pixel and global coordinate system is only valid for the calibrated plane. Out-of-
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plane error describes how any measured point (i.e. a fiducial marker) not on this 

plane (i.e. the rink surface) propagates to errors in position and velocity. 

• Section 5.5 showed that due to the image sensor’s electronic rolling shutter, each 

camera in the multi-camera network is subject to temporal shear, i.e. the 

sampling interval is only constant between scanlines in successive images. 

Rolling shutter error describes how the resulting within-camera sampling interval 

error propagates to errors in velocity.     

• Section 5.5 reported that due to the Axis M3204 cameras not supporting 

generator locking, all cameras in the multi-camera network are out-of-phase by 

up-to ± 0.02 seconds. Out-of-phase error describes how the subsequent between-

camera sampling interval uncertainty propagates to errors in velocity.  

Based on the Olympic Oval (CAN) multi-camera network, the magnitude of skater point 

error (± 1.04 m∙s-1) and calibration model error (± 0.48 m∙s-1) exceed the ± 0.19 m∙s-1 

target measurement error. In contrast, the magnitude of out-of-plane error, rolling 

shutter error, and out-of-phase error is unknown. Accordingly, I need to quantify all 

sources of measurement error in the National Ice Centre (GBR) multi-camera network. 

First, the quantification of these errors, independently, allows the multi-camera 

network’s measurement workflow to be empirically informed by identifying the errors 

that exceed the ± 0.19 m·s-1 target measurement error and need to be minimised, e.g. 

skater point error and calibration model error. Second, the quantification of these errors, 

collectively, would determine whether the multi-camera network can measure accurate, 

two-dimensional, relay exchange kinematics.  

5.7 Part II. Error quantification 

The first part of the literature review identified five sources of measurement error that 

would determine the National Ice Centre (GBR) multi-camera network’s ability to 

measure accurate, two-dimensional, relay exchange kinematics. Section 5.6 concluded 
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that the quantification of these errors (1) independently, would allow the multi-camera 

network’s measurement workflow to be empirically informed, and (2) collectively, 

would determine whether the multi-camera network can measure accurate, two-

dimensional, relay exchange kinematics. In the second part of this literature review, I 

evaluate different approaches for quantifying the multi-camera network’s measurement 

error. First, Section 5.7.1 outlines several metrics used to quantify the systematic and 

random components of measurement error. Second, Section 5.7.2 discusses the validity 

of the criterion values used in the calculation of these metrics, termed ground truth data. 

Third, Sections 5.7.3 to 5.7.5 review the relative advantages and disadvantages of 

creating ground truth datasets manually, automatically, and synthetically. 

5.7.1 Error metrics 

As detailed in Section 3.3.2, the accuracy of a measurement reflects both its trueness and 

precision (JCGM, 2012). Typically expressed in terms of bias, trueness represents the 

systematic measurement error, i.e. the general trend for measurements to be different in 

a particular direction. Accordingly, a measurement made with high trueness will have 

little error. &'. 5.32 to &'. 5.34 present three different approaches to quantifying this 

component of measurement error: the mean (�)̅, absolute mean (|�|̅), and root mean 

square (5��) error.  

     �̅ =  1. ∑ ∆�;
=

;=1
 (&'. 5.32) 

     |�|̅ =  1. ∑|∆�;|=
;=1

 (&'. 5.33) 

     5�� = √∑ (∆�;)2=;=1.  (&'. 5.34) 

where ∆�; is the difference between a measure and a criterion value – termed the 

ground truth – and . is the number of measurements. Of these three criteria, Challis 
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(2018) recommends the RMS error, as this is the most conservative metric. For example, 

in &'. 5.32 positive and negative measurements would cancel one and other out leading 

to smaller error values.  

In contrast, precision represented the random measurement error inherent in every 

measurement procedure. Accordingly, measurements made with high precision have a 

small deviation of errors. This deviation is typically quantified using the standard 

deviation, �,  

     � =  ( 1. − 1 ∑(�; − �)̅2=
;=1

)12
 (&'. 5.35) 

where �; is the difference between the observed and ground truth value, and � ̅is the 

mean value of these observations.  

5.7.2 Ground truth data 

The quality of any error quantification is dependent on the accuracy and validity of the 

ground truth values used in &'. 5.32 to &'. 5.35. In this thesis, the term validity refers 

to whether the ground truth values, termed the ground truth dataset, are representative 

of the National Ice Centre (GBR) multi-camera network's intended use-cases (Krig, 

2014), i.e. the different measurement scenarios where the system will be required to 

measure accurate, two-dimensional, relay exchange kinematics. The following 

subsections present examples of these intended use-cases for the sources of 

measurement error identified in part one.  

Skater point error intended use-cases 

Section 4.3 demonstrated that the appearance of images in the National Ice Centre 

(GBR) multi-camera network is dependent on four characteristics (horizontal banding, 

lens distortion, ambient lighting, and the network setup), with the appearance of skaters 

within each image dependent on an additional three characteristics (skating condition, 
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track position, and skating velocity). As the multi-camera network’s automated 

digitisation algorithm (Section 5.2) needs to work independently of these characteristics, 

the ground truth dataset used to quantify the multi-camera network’s measurement 

error should include a range of these scenarios. 

Calibration model error intended use-cases 

Section 4.3.2 highlighted that in the National Ice Centre (GBR) multi-camera network, 

the position of a skater in an image is dependent on the position of the short-track 

(ranging from 1 to 5) and the skater's trajectory. As the performance of the multi-

camera network's calibration model (Section 5.3) will not be constant over the whole 

image plane, the magnitude of calibration model error may be dependent on the position 

of a skater. For this reason, the ground truth dataset used to quantify the multi-camera 

network’s measurement error should include different short-track positions and a range 

of skater trajectories. 

Out-of-plane error intended use-cases 

Section 4.3.2 described how the skating technique differs between the corner and 

straight in short-track speed skating. These differences in technique may lead to 

different magnitudes of out-of-plane error. For example, as skaters lean towards the 

centre of rotation during the corner, the out-of-plane error may be smaller. Similarly, the 

magnitude of out-of-plane error may be dependent on the skater's stature, as the knee 

and trunk angle characterise the crouched skating position (Konings et al., 2015). As a 

result, the ground truth dataset used to quantify the National Ice Centre (GBR) multi-

camera network’s measurement error should include skating from both the corner and 

straight for a range of different skater statures. 

Sampling interval error intended use-cases 

Chapter 2 showed that during the short-track speed skating relay, skating velocities vary 

from 11.5 m∙s-1 to 15 m∙s-1. This range of velocities may propagate to different 
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magnitudes of rolling shutter error and out-of-phase error for a given sampling interval 

error or uncertainty. Therefore, the ground truth dataset used to quantify the multi-

camera network’s measurement accuracy should include various skating velocities. 

5.7.3 Manual ground truth 

In the Olympic Oval (CAN) multi-camera network, Landry et al. (2013) used a 

manually created ground truth dataset to quantify the network's measurement error. 

This dataset included 1163 points, each measured two times, from 15 independent 

skater trajectories. Landry et al. (2013) defined the system’s measurement error as the 

difference between the manual and automated digitisation methods.  

Manual ground truth advantages 

A manually created ground truth dataset enables the ground truth dataset to include 

several of the multi-camera network's intended use-cases. For example, by sampling 

ground truth points from different cameras, trajectories, and training sessions, the 

ground truth dataset could include the different appearances of an image and skater 

reported in Section 4.3. 

Manual ground truth disadvantages 

A manually created ground truth dataset only allows three of the five sources of 

measurement error to be quantified: skater point error, rolling shutter error, and out-of-

phase error. The other two sources of error, calibration model error and out-of-plane 

error, are both included in the manual and automated digitisations’ reconstructed pixel 

coordinates. Furthermore, due to the high-frequency noise expected in the manual 

digitisation of the ground truth pixel coordinates, the quantification of the three sources 

of error could be attenuated or amplified. 

5.7.4 Automated ground truth 

van der Kruk, Schwab, van der Helm, and Veeger (2016) automatically created a ground  
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truth dataset using an optical motion capture system. The dataset was used to quantify 

error in three inertial measurement unit filter designs that measured the orientation of a 

skate. Twenty infrared cameras were used to cover a 50 m long-track speed skating 

straight. The ground truth dataset comprised of the skate's lean angle for two elite long-

track speed skaters, at a skating velocity of 10.3 m·s-1, for three complete straights. 

Automated ground truth advantages 

An automatically created ground truth dataset like van der Kruk, Schwab, van der Helm, 

and Veeger (2016) has a high degree of accuracy as optical motion capture can measure 

position in three-dimensions to less than a millimetre (Song & Godøy, 2016). Moreover, 

the ground truth dataset enables all five sources of measurement error to be quantified. 

Automated ground truth disadvantages 

To create a ground truth dataset that covers both the corner and straight skating 

conditions requires a high number of optical motion cameras. For example, Kim et al. 

(2013) used eight cameras alone to cover the period from the 4th to 6th track marking 

block. This complicated experimental setup does not facilitate the repeated 

measurements over multiple days to account for the different appearances of an image 

and skater reported in Section 4.3.  

5.7.5 Synthetic ground truth 

Hudson (2015) used a synthetic ground truth dataset to quantify errors in a video-based 

system that automatically measured swimming speed. The synthetic dataset was created 

by recording a swimming pool scale model – illustrated in Figure 5-12 – from a typical 

viewpoint of a performance analyst. The ground truth dataset consisted of the 

checkerboard intersection coordinates in both the pixel and global coordinate systems.  

Hudson (2015) proceeded to use the ground truth dataset in a series of computer 

simulations to investigate different sources of measurement error. For example, he 
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simulated the effect of automated digitisation uncertainty on a swimmer’s reconstructed 

position by adding randomly sampled pixel uncertainties from a Gaussian distribution 

to all pixel coordinates in the ground truth dataset. In each iteration (. = 10, 000), the 

new pixel coordinates were reconstructed into the global coordinate system and 

compared to the associated ground truth coordinate. Of note for this thesis, Hudson 

(2015) created the Gaussian distribution by quantifying the digitisation precision in 96 

different swimming points. All 96 points were sampled from a 400 m individual race 

that included four different swimming strokes and a variety of different colour 

swimming caps, i.e. the system’s different intended use-cases.  

Synthetic ground truth advantages 

A synthetic ground truth dataset of three-dimensional trajectories projected into a 

camera's pixel coordinate system would allow all sources of error in the National Ice 

Centre (GBR) multi-camera network to be quantified. Furthermore, by using computer 

simulations to explore individual sources of measurement error, all intended use-cases 

could be investigated. For example, by sampling points from different cameras, 

 

Figure 5-12. Example view of the swimming pool scale model used by Hudson (2015) to define the 

ground truth datasets pixel and global coordinate system data. Figure adapted from Hudson (2015). 
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trajectories, and training sessions, a modelled distribution of digitisation uncertainty 

could account for the different appearances of an image/ skater reported in Section 4.3.  

Synthetic ground truth disadvantages 

Like the automatic ground truth dataset, a synthetic ground truth dataset requires the 

measurement of three-dimensional trajectories using a gold-standard measurement 

technique. However, unlike the automated ground truth dataset, this data would only 

need to be collected on a single day as the effect of changes in image/ skater appearance 

could be simulated. 

5.7.6 Section summary 

The sources of measurement error in the National Ice Centre (GBR) multi-camera 

network need to be quantified (1) independently, to allow the multi-camera network’s 

measurement workflow to be empirically informed, and (2) collectively, to determine 

whether the multi-camera network can measure accurate, two-dimensional, relay 

exchange kinematics. The quality of this error quantification is dependent on the 

ground truth dataset’s accuracy and validity. Compared to other created ground truth 

datasets, a synthetic, three-dimensional, ground truth dataset seems most appropriate. 

The dataset allows the multi-camera network’s five sources of measurement error to be 

quantified and the effect of its intended use-cases to be considered, e.g. the effect of 

skating condition on out-of-plane error. 

5.8 Chapter summary & thesis objectives 

The second part of this thesis investigates developing the National Ice Centre (GBR) 

multi-camera network to measure accurate, two-dimensional, relay exchange 

kinematics. In this chapter, I reviewed the literature with regards to such an 

investigation. First, by reviewing the four stages of the multi-camera network’s 

measurement workflow, part one of the review identified five sources of measurement 

error that would determine the multi-camera network’s accuracy. Second, by evaluating 
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different approaches for quantifying the multi-camera network’s measurement error, 

part two of the review concluded that a synthetic, three-dimensional, ground truth 

dataset would facilitate a more detailed quantification of error by allowing all sources of 

measurement error, in addition to the multi-camera network's intended use-cases, to be 

considered. The quantification of these errors, and the creation of the ground truth 

dataset, form the first six objectives of the thesis. 

1. To quantify rolling shutter error in the multi-camera network 

2. To quantify out-of-phase error in the multi-camera network 

3. To quantify calibration model error in the multi-camera network 

4. To create a representative dataset of ground truth kinematics. 

5. To quantify out-of-plane error in the multi-camera network 

6. To quantify skater point error in the multi-camera network  

Finally, using the measurement workflow empirically informed during objectives one 

through six, the seventh objective of the thesis is, 

7. To quantify total error in the multi-camera network 
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Rolling shutter error 

Chapter 6 Rolling shutter error 

Rolling shutter error in the multi-camera network 

6.1 Introduction 

This chapter addresses the first objective of the programme of research: to quantify 

rolling shutter error in the multi-camera network. Rolling shutter error describes how 

errors in the sampling interval within a camera’s field-of-view propagate to errors in 

velocity. As detailed in Section 5.5.1, and demonstrated in Figure 6-1, within-camera 

sampling interval errors are the result of the image sensor’s electronic rolling shutter 

causing temporal shear.  

In the following sections, I describe the investigation into the multi-camera network’s 

rolling shutter error. To provide a more detailed insight, the investigation also considers 

the effect of skating velocity on rolling shutter error. 

 

Figure 6-1. Temporal shear in an Axis M3204 camera, i.e. the National Ice Centre (GBR) multi-camera 

network’s camera make and model (Table 4-1). By using a mirror to record an electronic clock at the top 

and bottom of the camera’s field-of-view, the image shows that the difference in the clocks time is 

equivalent to the camera’s sampling interval (0.04 seconds). 
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6.2 Method 

Rolling shutter error was quantified using a computer simulation in MATLAB R2016a 

(MathWorks, 2016). The simulation fixed all other sources of measurement error in the 

multi-camera network at zero (Section 5.6).  

6.2.1 Ground truth trajectories 

Six ground truth trajectories – representing constant velocities from 10 m·s-1 to 15 m·s-1 

(at 1 m·s-1 intervals) – were used to simulate the effect of rolling shutter error in the 

multi-camera network. These trajectories covered the range of velocities expected to be 

measured by the multi-camera network; Chapter 2 reporting velocities of 11.5 m·s-1 to 

15 m·s-1 during elite short-track speed skating relays. 

Each ground truth trajectory was projected onto a simulated image plane (1280 x 800 

pixels) – in the dominant skating direction – over a five-image period (0.2 seconds). 

Figure 6-2 demonstrates these projections for the slowest and fastest trajectory. The 

projections assumed that (1) the ground truth trajectories were sampled at the sampling 

frequency of the multi-camera network (25 Hz, Table 4-1), and (2) each pixel on the 

image plane represented 0.01 m x 0.01 m in the global coordinate system. The latter 

value was determined by measuring, in pixels, an object of known length positioned on 

the rink surface at the centre of a camera's field-of-view. The simulated image plane’s 

resolution was set at 1280 x 800 pixels, as this replicated the image resolution of the 

National Ice Centre cameras (Table 4-1). 

6.2.2 Simulation 

For each ground truth trajectory, I simulated two scenarios. The first scenario simulated 

an image sensor with a global shutter, i.e. a sensor with a constant sampling interval 

(Section 5.5.1). The second scenario simulated an image sensor with an electronic 

rolling shutter, i.e. a sensor where the sampling interval is only constant between 

scanlines in consecutive images (Section 5.5.1). In both scenarios, the simulation 
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reconstructed the ground truth trajectories into the world coordinate system using a 

linear scaling coefficient. Resultant velocity was then calculated using &'. 5.24, with 

finite difference techniques – detailed in &'. 5.25 to &'. 5.27 – used to compute 

velocity in the �- and �-axis.  

In the global shutter scenario, the simulation used a sampling interval based on the 

sampling frequency of the camera to compute velocity. As all cameras at the National 

Ice Centre capture images at 25 Hz (Table 4-1), this equated to 0.04 seconds. To account 

 

Figure 6-2. The simulation’s slowest (10 m·s-1, left) and fastest (15 m·s-1, right) ground truth trajectories 

projected onto an image plane over a five-image period (0.2 seconds). 
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for temporal shear (Section 5.5.1), the rolling shutter scenario used a sampling interval 

based on the position of the skater in successive images. First, &'. 5.28 was used to 

calculate the readout time in each image, �F(;), with the skater’s / pixel coordinate 

defining the scanline of interest, �. Second, &'. 6.1 was used to calculate the sampling 

interval, 

     ∆�′ = (�F(;) + ∆�) − �F(;−1) (&'. 6.1) 
where * is the current image and ∆� is the sampling interval based on camera’s sampling 

frequency (0.04 seconds). 

6.2.3 Data analysis 

For each ground truth trajectory, the simulation calculated two metrics (1) the sampling 

interval error, defined as the difference between the global and rolling shutter scenarios’ 

sampling interval, and (2) the rolling shutter error, defined as the difference between the 

global and rolling shutter scenarios’ computed skating velocity. Both metrics assumed 

that the rolling shutter scenario’s sampling interval and skating velocity were the true 

values.  

6.3 Results 

Figure 6-3 presents the sampling interval error and rolling shutter error for each ground 

truth trajectory. The magnitude of both metrics was dependent on the skating velocity.  

6.4 Discussion 

This investigation quantified rolling shutter error in the multi-camera network, i.e. how 

within-camera sampling interval error, caused by the image sensor’s electronic rolling 

shutter, propagated to errors in velocity. Overall, the magnitude of rolling shutter error 

exceeded the ± 0.19 m·s-1 target measurement error. Furthermore, the magnitude of 

rolling shutter error was found to be dependent on the skating velocity; smaller at slower 

velocities and larger at faster velocities.  
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The dependency of rolling shutter error on skating velocity is explained by how the 

multi-camera network’s electronic rolling shutters operate. At faster velocities, skaters 

travel further in consecutive images. As illustrated in Figure 6-2, the outcome of this is a 

more substantial difference between the skater's / pixel coordinates. As these 

coordinates define the scanline of interest in &'. 6.1, when calculating the readout time 

in &'. 5.28, faster velocities lead to a greater sampling interval error. For example, in 

this simulation the sampling interval error increased from 0.002 seconds to 0.003 

seconds over the range of ground truth trajectories.  

It is important to note, however, that when considering the effect of skater velocity on 

rolling shutter error, the simulation projected the ground truth trajectories in the 

dominant skating direction, i.e. parallel to the progression of an image’s scanline 

exposure and readout. As shown in Figure 6-4a, this scenario is where rolling shutter 

error is most severe, as the difference between the skater's / pixel coordinates is at its 

maximum. In contrast, Figure 6-4b shows that in the scenario where a skater moves 

perpendicular to the progression of an image’s scanline exposure and readout, no rolling 

shutter error is present as there is no difference between the skater's / pixels coordinates.  

 

Figure 6-3. Sampling interval error (left) and rolling shutter error (right) in the National Ice Centre 

(GBR) multi-camera network. 
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In the National Ice Centre (GBR) multi-camera network, the likelihood of the second 

scenario is small as the dominant direction of skater motion is typically parallel to the 

progression of an image’s scanline exposure and readout. Still, the magnitude of rolling 

shutter error would be less than reported in Section 6.3 if a skater moved predominantly 

perpendicular to the progression of an image’s scanline exposure and readout. As 

illustrated in Figure 6-5, this is the case for the four cameras that cover the hang phase 

of the corner skating condition (Section 4.3.2).  

Nevertheless, with the predominant skating direction in 22 cameras parallel to the 

progression of an image’s scanline exposure and readout, the multi-camera network's 

within-camera sampling interval error needs to be reduced. This reduction can be 

achieved in four ways (1) using cameras with a global shutter, (2) aligning the cameras 

so that the dominant skating direction is perpendicular to the scanline progression, (3) 

increasing the cameras sampling frequency, and (4) modelling the electronic rolling 

shutter's readout time. Solution one negates rolling shutter error as global shutters do 

not cause temporal shear within an image (Section 5.5.1). Solution two reduces rolling 

shutter error by minimising the difference between a skater's / pixels coordinates in 

consecutive images. Solution three reduces rolling shutter error by minimising the 

 

Figure 6-4. The effect of skating direction on rolling shutter error. When a skater moves parallel to the 

progression of the image’s scanline exposure and readout (left), rolling shutter error is at its greatest as 

the difference between a skater’s / pixel coordinates is at its maximum. In contrast, when a skater moves 

perpendicular to the progression of the image’s scanline exposure and readout (right), rolling shutter 

error is zero as there is no difference between a skater’s / pixel coordinates.    
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difference in readout times for a set difference in / pixel coordinates, and solution four 

corrects rolling shutter error by using the calculated readout times to correct the within-

camera sampling interval error.  

Critically for this thesis, solution one to three are not feasible. The first two are 

unpractical due to the scale and associated cost of either replacing or realigning the 

cameras at the National Ice Centre, while the third is unattainable due to the cameras’ 

sampling frequency already being set to the maximum capacity. For this reason, to 

achieve the ± 0.19 m·s-1 target measurement error, an electronic rolling shutter model 

should be used to correct the rolling shutter error.  

6.4.1 Limitations 

The simulation used in this investigation assumed that each pixel represented 0.01 m x 

0.01 m in the global coordinate system (Section 6.2.1). Therefore, as illustrated in Figure 

6-6, the projection of a straight-line trajectory in the global coordinate system appeared 

as a straight-line trajectory in the pixel coordinate system. However, as reported in 

Section 4.3.1, this is not the case in the National Ice Centre (GBR) multi-camera 

 

Figure 6-5. The two National Ice Centre (GBR) multi-camera network cameras (in each corner) where 

skaters (denoted in blue) move predominantly perpendicular to the progression of an image’s scanline 

exposure and readout. As a result, the magnitude of rolling shutter error would be less in these cameras.  
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network. Instead, straight-line trajectories appear curved in the pixel coordinate system 

due to lens distortion (Figure 6-6). This distortion – caused by the image magnification 

decreasing as the distance from the optical axis increases – means that at the periphery 

of an image, more of the global coordinate system fits into a single pixel’s area. 

Subsequently, this investigation may have overestimated the multi-camera network’s 

rolling shutter error in the image periphery, as the difference between the projected 

skater's / pixel coordinates would have been smaller than simulated. Nevertheless, as the 

simulation’s results would have been similar towards the centre of the image, i.e. where 

distortion is negligible, the findings still demonstrate the necessity for using an 

electronic rolling shutter model to correct the within-camera sampling interval error. 

6.5 Chapter summary 

This chapter used a computer simulation to address the first objective of the programme 

of research: to quantify rolling shutter error in the multi-camera network. More 

specifically, how within-camera sampling interval error – caused by temporal shear 

from the image sensor’s electronic rolling shutter – propagated to errors in velocity. The 

simulation showed that the multi-camera network's rolling shutter error exceeded the ± 

0.19 m·s-1 target measurement error. Moreover, the magnitude of this rolling shutter 

 

Figure 6-6. The appearance of a global coordinate system straight-line trajectory projected into a pixel 

coordinate system with no lens distortion (left) and lens distortion (right).  
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error, which ranged from 0.48 m·s-1 to 1.04 m·s-1, was dependent on the current skating 

velocity. For these reasons, the chapter concluded that the multi-camera network should 

minimise rolling shutter error by using an electronic rolling shutter model to correct 

within-camera sampling interval errors.  
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Out-of-phase error 

Chapter 7 Out-of-phase error 

Out-of-phase error in the multi-camera network 

7.1 Introduction 

Chapter 6 showed that the multi-camera network’s rolling shutter error exceeded the ± 

0.19 m·s-1 target measurement error. Within-camera sampling interval errors – 

dependent on the skating velocity – leading to rolling shutter errors ranging from 0.48 

m·s-1 to 1.05 m·s-1. For this reason, the chapter concluded that multi-camera network 

should minimise rolling shutter error by using an electronic rolling shutter model to 

correct within-camera sampling interval errors. In this chapter, I continue to explore 

sampling interval errors in the multi-camera network by addressing the second 

objective of the programme of research: to quantify out-of-phase error in the multi-

camera network. Out-of-phase error describes how uncertainty in the sampling interval 

between two cameras’ field-of-view propagates to errors in velocity. As detailed in 

Section 5.5.1, between-camera sampling interval uncertainties are caused by the multi-

camera network’s camera shutters being out-of-phase by up-to ± 0.02 seconds. In the 

following sections, I describe the investigation into the multi-camera network’s out-of-

phase error. To provide a more comprehensive insight, the investigation considers the 

effect of skating velocity on out-of-phase error. 

7.2 Method 

Out-of-phase error was quantified using a computer simulation in MATLAB R2016a 

(MathWorks, 2016). The simulation fixed all other sources of measurement error in the 

multi-camera network at zero (Section 5.6).  
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7.2.1 Ground truth trajectories 

Six ground truth trajectories – representing constant velocities from 10 m·s-1 to 15 m·s-1 – 

were used to simulate the effect of out-of-phase error in the multi-camera network. As 

described in Section 6.2.1, these trajectories represented the expected range of velocities 

during elite short-track speed skating relays. The simulation projected each ground 

truth trajectory between two, non-overlapping, simulated image planes (1280 x 800 

pixels) – in the dominant skating direction – over a two-image period (0.08 seconds). 

Figure 7-1 illustrates these projections for the slowest (10 m·s-1) and fastest (15 m·s-1) 

trajectory. As in the rolling shutter error simulation (Section 6.2.1), the projections 

assumed that (1) the ground truth trajectories were sampled at 25 Hz, and (2) each pixel 

represented 0.01 m x 0.01 m in the global coordinate system. The simulated image 

 

Figure 7-1. The slowest (10 m·s-1, left) and fastest (15 m·s-1, right) ground truth trajectories projected 

between two, non-overlapping, simulated image planes (Camera 1 top, Camera 2 bottom) over a two-

image period. While the skater distance, 
, is known, the sampling interval, ��, between image 1 (top) 

and image 2 (bottom) is not, due to the camera shutters being out-of-phase by up-to ± 0.02 seconds.  
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planes’ resolution was set at 1280 x 800 pixels, as this replicated the image resolution of 

the cameras at the National Ice Centre (Table 4-1).  

7.2.2 Simulation 

For each ground truth trajectory, I simulated two scenarios. The first scenario simulated 

two cameras’ shutters being in-phase. The second scenario simulated two cameras’ 

shutters being out-of-phase. In both scenarios, the simulation reconstructed the ground 

truth trajectory into the global coordinate system using a linear scaling coefficient. 

Resultant velocity was then calculated using &'. 5.24, with the backward difference used 

to compute velocity in the �- and �-axis (&'. 5.27).   

In the in-phase scenario, the simulation used a sampling interval based on the sampling 

frequency of the camera to compute velocity. As all cameras at the National Ice Centre 

capture images at 25 Hz (Table 4-1), this equated to 0.04 seconds. In the out-of-phase 

scenario, the simulation used all possible between-camera sampling intervals (at 0.001-

second intervals). Based on the in-phase sampling interval, and camera shutters being 

out-of-phase by up-to ± 0.02 seconds (Section 4.2), this equated to 0.02 seconds to 0.06 

seconds. 

7.2.3 Data analysis 

For each ground truth trajectory, the simulation calculated two metrics for each 

simulated sampling interval (1) the sampling interval error, defined as the difference 

between the in- and out-of-phase scenarios’ sampling interval, and (2) the out-of-phase 

error, defined as the difference between the in- and out-of-phase scenarios’ computed 

velocity. Both metrics assumed that the out-of-phase scenario’s sampling interval and 

velocity were the true values.  

7.3 Results 

Figure 7-2 shows each ground truth trajectory’s sampling interval error and out-of-phase 
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error for all out-of-phase scenarios. The absolute magnitude of out-of-phase error 

increased with the sampling interval error and the skating velocity. 

7.4 Discussion 

This investigation quantified out-of-phase error in the multi-camera network, i.e. how 

uncertainty in the sampling interval between two cameras’ field-of-view, caused by the 

multi-camera network’s camera shutters being out-of-phase by up-to ± 0.02 seconds, 

propagated to errors in velocity. Overall, the magnitude of out-of-phase error exceeded 

the ± 0.19 m·s-1 target measurement error. Moreover, the absolute magnitude of out-of-

phase error was found to be dependent on two factors (1) the sampling interval 

uncertainty; smaller at lesser uncertainties and larger at greater uncertainties, and (2) 

the skating velocity; smaller at slower velocities and larger at faster velocities.  

The computation of velocity – specifically the backward difference method used in this 

investigation – explains the dependency of out-of-phase error on both the sampling 

interval uncertainty and skating velocity. Sampling interval uncertainty manifests in 

&'. 5.27’s denominator, as ∆� represents the sampling interval, whereas skating velocity 

 

Figure 7-2. Out-of-phase error in the National Ice Centre (GBR) multi-camera network. 
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manifests in the equation’s numerator, as faster velocities lead to larger differences 

between the current (7;) and previous (7;−1) skater position. Here, it is important to 

note that only the absolute magnitude of out-of-phase error is dependent on the skating 

velocity. Skating velocity does not affect the magnitude of out-of-phase error when 

expressed as a percentage of the ground truth velocity. For example, a sampling interval 

uncertainty of ± 0.02 seconds leads to relative out-of-phase errors of ± 50% for all six 

ground truth trajectories. 

As all absolute out-of-phase errors exceed the ± 0.19 m·s-1 target measurement error, the 

multi-camera network needs to minimise between-camera sampling interval 

uncertainties. Payton (2008) describes two-ways to do this: generator locking and using 

an event marker such as a strobe light. The former uses a reference signal to ensure that 

all camera shutters are in-phase. The latter uses the event marker – which can be seen by 

all cameras – to determine the sampling interval uncertainty. Unfortunately, neither 

solution is feasible in the multi-camera network as the Axis M3204 cameras do not 

support generator locking and there isn’t a position on the rink surface that all cameras 

can see. Furthermore, regardless of the event marker position, this method only allows 

cameras to be in-phase to the nearest half-an-image (i.e. 0.02 seconds). As reported in 

Section 7.3, a 0.02-second sampling interval error leads to relative out-of-phase errors of 

± 50%. Therefore, to meet the ± 0.19 m·s-1 target measurement error, the results of this 

investigation suggest that the multi-camera network should only calculate two-

dimensional relay exchange kinematics within a camera’s field-of-view. 

7.5 Chapter summary 

This chapter used a computer simulation to address the second objective of the 

programme of research: to quantify out-of-phase error in the multi-camera network. 

More specifically, how between-camera sampling interval uncertainty – caused by two 

cameras shutters being out-of-phase by up-to ± 0.02 seconds – propagated to errors in 

velocity. The simulation showed that the multi-camera network’s out-of-phase error 
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exceeded the ± 0.19 m·s-1 target measurement error. Moreover, the absolute magnitude 

of out-of-phase error, which ranged from -7.5 m·s-1 to 7.5 m·s-1, was dependent on the 

sampling interval uncertainty and the current skating velocity. As the multi-camera 

network cannot minimise between-camera sampling interval uncertainties, the chapter 

concluded that out-of-phase error should be negated in the multi-camera network by 

only calculating two-dimensional relay exchange kinematics within each camera’s field-

of-view. 
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Calibration model error 

Chapter 8 Calibration model error 

Calibration model error in the multi-camera network 

8.1 Introduction 

This chapter addresses the third objective of the programme of research: to quantify 

calibration model error in the multi-camera network. Calibration model error describes 

how incorrect relationships between the pixel and global coordinate systems propagate 

to errors in position and velocity within (intra-) and between (inter-) cameras’ field-of-

view. However, as Chapter 7 concluded that the multi-camera network should only 

calculate relay exchange kinematics within each camera’s field-of-view, to negate out-of-

phase error, inter-camera calibration model error is only concerned with how 

reconstructed positions from different cameras align in the global coordinate system. 

In the following sections, I describe the calibration of the multi-camera network and the 

investigation into its intra- and inter-camera calibration model error. To provide a more 

detailed insight, the investigation considers the effect of skating condition and skating 

velocity on intra- and inter-camera calibration model error.  

8.2 Multi-camera network calibration 

The National Ice Centre (GBR) multi-camera network was calibrated using the 

nonlinear calibration procedure described in Section 5.3.2. This method was deemed 

most suitable for correcting the lens distortion documented in Section 4.3.1, outside the 

areas covered by the calibration’s control points. The following subsections describe the 

details of the calibration procedure specific to the multi-camera network. 
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8.2.1 Camera settings 

As reported in Table 4-1, all cameras had a sampling frequency of 25 Hz, an image 

resolution of 1280 x 800 pixels, and an exposure time of 0.004 seconds. In addition to 

these settings, each camera’s field-of-view was maximised and focused at 1 m above the 

rink surface. A height of 1 m was selected, as this represented the estimated height of a 

fiducial marker during the crouched skating position. Chun (2001), Park, Yun, Lee and 

Baik (1998), and van der Kruk, Veeger, van der Helm and Schwab (2017) showing that 

skaters’ whole body centre-of-mass range from 0.4 m to 0.8 m above the rink surface. To 

focus each camera, a black and white checkerboard pattern – fixed on a tripod at 1 m 

above the rink surface – was placed in the camera’s field-of-view. The camera was 

deemed to be in focus when the contrast between the checkerboard’s black and white 

tiles was sharpest. 

8.2.2 Calibration object 

Images of a planar checkerboard pattern (8 x 8 squares, each 0.03 m x 0.03 m) were 

collected on an elevated work platform – located 2 m underneath each camera – as 

described in Section 5.3.2. Using an elevated work platform ensured that the projection 

of the checkerboard's intersection pixel coordinates on the image plane covered the 

image sensor sufficiently for accurate calibration (Wang, 2013). As reported in Section 

5.3.2 this insufficient coverage of the image sensor was why Landry et al. (2013) 

disregarded the nonlinear calibration procedure in the Olympic Oval (CAN) multi-

camera network. Figure 8-1 shows the calibration object as seen on the rink surface and 

the elevated work platform. 

8.2.3 Intrinsic model parameters 

Check2D (Centre for Sports Engineering Research, 2013) was used to calculate each 

camera’s focal length, principal point, pixel scale factor and three-parameter radial 

distortion model. The intrinsic model’s goodness of fit was evaluated using the RMS 

reprojection error. As outlined in Section 5.3.2, the reprojection error describes the sum 
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of the distances between the extracted and projected intersections of the image’s 

checkerboard. Overall, the multi-camera network’s mean camera RMS reprojection 

error was 0.26 ± 0.03 pixels. This error was less than the 0.33 ± 0.04 pixels reported by 

Zhang (1999) in his real-world example and similar to the 0.22 pixels in the Olympic 

Oval (CAN) multi-camera network (Landry et al., 2013). 

8.2.4 Extrinsic model parameters 

Bouguet's (2015) Camera Calibration Toolbox for MATLAB was used to calculate each 

camera’s rotation and translation matrix. The toolbox required the intrinsic model 

parameters – determined in Section 8.2.3 – and four control points, i.e. positions where 

both pixel and global coordinates are known. Figure 8-2 shows the typical position of 

these control points in a camera’s field-of-view.  

Check2D (Centre for Sports Engineering Research, 2013) was used to manually digitise 

the centre of each control point on five occasions separated by a day. The mean of these 

five trials defined each control point’s pixel coordinates and mitigated the random error 

expected in the digitisation process (Payton, 2008). A reference grid constructed on the 

rink surface was used to calculate each control point’s position in the global coordinate 

system. The reference grid – illustrated, in part, in Figure 8-2 – consisted of two vertical 

 

Figure 8-1. The calibration object as seen on the rink surface (left) and elevated work platform (right) at 

the National Ice Centre. Using the elevated work platform ensured that the projection of the 

checkerboard intersections on the image plane sufficiently covered the image sensor.  
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axis tape measures, aligned on the inside edge of the ice hockey rink’s goal lines, and 

twelve horizontal axis tape measures.  

8.3 Method 

The Faculty of Health & Wellbeing Research Ethics Committee (Sheffield Hallam 

University, UK) approved the calibration model error investigation. 

8.3.1 Intra-camera calibration model error 

The investigation quantified intra-camera calibration model error by filming a planar 

checkerboard pattern (4 x 4 squares, each 0.3 m x 0.3 m) sliding over the rink surface in 

a range of positions and orientations that covered each camera's field-of-view. An 

example of the planar checkerboard, as seen in the multi-camera network, is shown in 

Figure 8-3. By assuming that the checkerboard’s ground truth distances (0.0424 m and 

0.6 m) were covered in consecutive images (�� = 0.04 seconds), the board’s geometry 

 

Figure 8-2. The typical position of a camera’s four control points in the National Ice Centre (GBR) 

multi-camera network. The dashed line denotes the reference grid used to define each control points 

position in the global coordinate system. 
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defined two ground truth velocities (10.6 m·s-1 and 15 m·s-1). Collectively, these ground 

truth velocities covered the range of velocities expected during short-track speed skating 

relays; Chapter 2 observing skating velocities ranging from 11.51 m·s-1 to 15 m·s-1.  

Data analysis 

For each camera in the multi-camera network, Emgu CV-3.0.0 (Emgu, 2015) was used 

to automatically extract the pixel coordinates of the checkerboard’s intersections in each 

image of the checkerboard. The analysis removed false positive checkerboard 

intersection extractions – illustrated in Figure 8-4 –if the image’s maximum 

reprojection error was higher than the camera's mean maximum reprojection error plus 

two standard deviations. 

For each image in a camera’s checkerboard image dataset, the extracted pixel 

coordinates were reconstructed into the global coordinate system – as described in 

Section 5.3.2 – using the relevant camera-rink plane calibration model constructed in 

 

Figure 8-3. The intra-camera calibration model error planar checkerboard. By assuming that the 

checkerboard’s ground truth distances (0.0424 m and 0.6 m) were covered in consecutive images (�� = 

0.04 seconds), the board’s geometry defined two ground truth velocities (10.6 m·s-1 and 15 m·s-1).  
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Section 8.2. For each pair of global coordinates, resultant velocity was then calculated 

using &'. 5.24, with the backward difference method used to compute velocity in both 

the �- and �-axis (&'. 5.25). As the investigation mitigated rolling shutter error by 

sliding the checkerboard at less than 0.5 m·s-1, &'. 5.25 used a 0.04-second sampling 

interval. The analysis defined intra-camera calibration model error as the difference 

between the ground truth and computed velocity.  

8.3.2 Inter-camera calibration model error 

The investigation quantified inter-camera calibration model error by identifying 

positions on the rink surface seen in two-or-more cameras’ field-of-view. These 

positions – termed static reference points – included control points used in the multi-

camera network’s extrinsic calibration (Section 8.2.4) and the short-track's track 

marking blocks (Section 4.3.2). The static nature of these positions negated rolling 

shutter error in the analysis.  

 

Figure 8-4. False positive intersection extraction in the National Ice Centre (GBR) multi-camera 

network. In this example, Emgu CV-3.0.0 should have extracted the true positive intersection. 
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Data analysis 

Check2D (Centre for Sports Engineering Research, 2013) was used to manually digitise 

the point centre of each static reference point on five occasions separated by a day.  The 

investigation used the mean of these five trials to define each reference point’s pixel 

coordinates, as this minimised the random errors expected in the digitisation procedure 

(Payton, 2008). Each mean pixel coordinate was reconstructed into the global 

coordinate system – as described in Section 5.3.2 – using the relevant camera-rink plane 

calibration model constructed in Section 8.2. For each position seen in two cameras’ 

field-of-view, the analysis defined inter-camera calibration model error as the difference 

between the reconstructed positions in the �- and �-axis.  

8.3.3 Skating condition 

The investigation calculated both intra- and inter-camera calibration model error for the 

two skating conditions described in Section 4.3.2. The analysis classified cameras as 

covering either the corner or straight based on their rink surface field-of-view. The field-

of-view was calculated by reconstructing the image's perimeter pixel coordinates into 

the global coordinate system – as described in Section 5.3.2 – using the camera-rink 

plane calibration models constructed in Section 8.2. Figure 8-5 illustrates these rink 

surface field-of-views and the final classification of skating condition cameras. In total, 

the corner skating condition had 16 cameras and the straight skating condition had 10 

cameras. In the inter-camera calibration model error analysis, in the scenario where the 

multi-camera network saw a static reference point in both corner and straight cameras’ 

field-of-view, the investigation included the magnitude of inter-camera calibration 

model error in both skating conditions’ statistics. 

8.3.4 Statistical analysis 

SPSS 24 (IBM, 2016) was used to calculate intra- and inter-camera calibration model 

error descriptive statistics (median, first quartile, third quartile, minimum, and 
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maximum error) for each ground truth velocity in the corner and straight skating 

conditions. The analysis calculated the median and the first and third quartiles, instead 

of the arithmetic mean and standard deviation, as these statistics are more 

representative of systematic and random error in non-normally distributed datasets.  

The effect of skating condition on intra- and inter-camera calibration model error was 

determined using a Mann Whitney U-test. Data were treated as non-parametric, as the 

 

Figure 8-5. Skating condition camera classification in the multi-camera network.  
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underlying assumptions of parametric statistical tests, i.e. normality and homogeneity of 

variance, were violated. Similarly, for both skating conditions, a Mann Whitney U-test 

was used to determine the effect of skating velocity on intra-camera calibration model 

error. Effect sizes were also calculated using Pearson’s correlation coefficient, �, in 

accordance with Field (2009), 

� =  4√. (&'. 8.1) 
where 4 is the standardised test statistic. The magnitudes of the correlations were 

interpreted using Cohen's thresholds; where < 0.1, is trivial; 0.1–0.3, small; > 0.3–0.5, 

moderate; and > 0.5, large (Cohen, 1988). 

8.4 Results 

8.4.1 Intra-camera calibration model error 

A total of 59,836 images of the checkerboard were captured using the National Ice 

Centre (GBR) multi-camera network. This image set reduced to 57,470 images after 

false positives were removed (Section 8.3.1).  Table 8-1 reports the descriptive statistics 

for each skating condition and ground truth velocity, with an example checkerboard  

Table 8-1. Intra-camera calibration model error descriptive statistics. 

Condition Statistic Ground truth 10.6 m·s-1 Ground truth 15 m·s-1 

Corner  Median -0.014 -0.027  

 81, 83 -0.052, 0.023 -0.076, 0.019 

 Minimum  -0.385 -0.364 

 Maximum -0.358 -0.423 

    

Straight Median -0.014  -0.028  

 81, 83 -0.051, 0.022 -0.074, 0.016 

 Minimum  -0.303 -0.369 

 Maximum -0.296 -0.244 

Notes: 81 and 83 = first and third quartiles. Resultant velocity measured in m·s-1.  
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coverage for a corner and straight camera field-of-view presented in Figure 8-6. Overall, 

the multi-camera network had a RMS intra-camera calibration model error of 0.06 m·s-1. 

Skating condition 

There was a significant difference in intra-camera calibration model error between the 

corner and straight skating conditions, +  = 7.60 x 1010, , = 0.000, � = 0.00 (a trivial 

effect). The median velocity error was smaller during the corner (-0.0189 m·s-1) than the 

straight (-0.0194 m·s-1). 

Skating velocity 

There was a significant difference in intra-camera calibration model error between the 

two skating velocities in both corner (+  = 2.67 x 1010, , = 0.000, � = -0.11, i.e. a small 

effect) and straight (+  = 9.99 x 109, , = 0.000, � = -0.11, i.e. a small effect) skating 

conditions.  

8.4.2 Inter-camera calibration model error 

A total of 119 pairs of static reference points were identified in the multi-camera 

network's field-of-view. The points consisted of 75 track marking blocks and 41 control 

points. Table 8-2 reports the descriptive statistics for each skating condition, with both 

corner and straight skating conditions’ static reference points shown in Figure 8-7. 

 

Figure 8-6. Example intra-camera calibration model error checkerboard coverage for a National Ice 

Centre (GBR) multi-camera network camera. 
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Overall, the multi-camera network had a RMS inter-camera calibration model error of 

0.01 m and 0.02 m in the �- and �-axis, respectively.  

Table 8-2. Inter-camera calibration model error descriptive statistics. 

Statistic X position error   Y position error  

 Corner Straight  Corner  Straight 

Median 0.01 0.01  0.01 0.02 

81, 83 0.00, 0.02 0.00, 0.01  0.01, 0.03 0.01, 0.02 

Minimum 0.00 0.00  0.00 0.01 

Maximum 0.03 0.02  0.07 0.02 

Notes: 81 and 83 = first and third quartiles. Resultant velocity measured in m·s-1.  

Skating condition 

There was no significant difference in inter-camera calibration model error between the 

corner and straight skating conditions in the �- (+  = 1.31 x 103, , = 0.088, � = -0.15, i.e. 

a small effect) and �- (+  = 1.64 x 103, , = 0.996, � = 0.00, i.e. a trivial effect) axis. 

8.5 Discussion 

This investigation quantified the multi-camera network’s calibration model error. More 

specifically, how incorrect relationships between the pixel and global coordinate systems 

propagated to (1) errors in position and velocity within (intra-) cameras’ field-of-view, 

 

Figure 8-7. The inter-camera calibration model error static reference points in the National Ice Centre 

(GBR) multi-camera network. 
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and (2) errors in position between (inter-) cameras’ field-of-view. To provide a more 

detailed insight, the investigation considered the effect of skating condition and skating 

velocity.   

8.5.1 Intra-camera calibration model error 

Overall, the multi-camera network's intra-camera calibration model error was within the 

± 0.19 m·s-1 target measurement error and significantly less than the Olympic Oval 

(CAN) multi-camera network's ± 0.48 m·s-1 intra-camera calibration model error. As 

both multi-camera networks had similar reprojection errors (Section 8.2.3), this sizeable 

reduction in intra-camera calibration model error was attributed to the National Ice 

Centre (GBR) multi-camera network having a superior spatial resolution, i.e. greater 

number of pixels per metre. As documented in Section 4.2, the Olympic Oval (CAN) 

multi-camera network uses four cameras to capture the short-track (each at a resolution 

of 659 x 493 pixels). In contrast, the National Ice Centre multi-camera network uses 26 

cameras to capture the short-track (each at a resolution of 1280 x 800 pixels). 

Consequently, for a given pixel error, error in the reconstructed distance – and thus 

velocity – is larger in the Olympic Oval (CAN) multi-camera network.  

Effect of skating condition on intra-camera calibration model error 

Intra-camera calibration model error was effectively invariant to the skating condition. 

Although the velocity error was significantly larger in the straight skating condition, the 

size of the effect was trivial; the difference between the median intra-camera calibration 

model errors (0.0005 m·s-1) equivalent to ± 0.3 % of the ± 0.19 m·s-1 target measurement 

error. This finding is unsurprising considering that the nonlinear calibration procedure 

described in Section 8.2 was the same for all cameras in the multi-camera network. The 

observed significant difference was likely due to the large sample size (. = 804,540) 

increasing the statistical power of the Mann-Whitney test, i.e. the ability of the test to 

detect an effect between the two skating conditions. Hopkins, Marshall, Batterham, & 
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Hanin (2009) state that with a large enough sample size, all effects would be statistically 

significant.  

Effect of skating velocity on intra-camera calibration model error 

In both corner and straight skating conditions, the intra-camera calibration model error 

was significantly greater for the faster-skating velocity. This was due to velocity 

dependent errors in the sampling interval and velocity dependent uncertainties in the 

checkerboard's reconstructed intersection positions. Error in the sampling interval was 

caused by filming the planar checkboard pattern sliding over the rink surface at 0.5 m·s-1. 

As a result, the investigation only mitigated rolling shutter error in the analysis. Chapter 

6 showed that when a skater moves predominantly parallel to the progression of 

scanline exposure and readout, the magnitude of sampling interval error – and 

consequently rolling shutter error – is greater at faster skating velocities due to a more 

substantial distance between the /-pixel coordinates in consecutive images. Uncertainty 

in the checkerboard's reconstructed intersection positions was due to errors in each 

camera's intrinsic model. Figure 8-8 illustrates these errors – over the 1280 x 800 pixel 

image plane – for a corner and straight skating condition camera. In both examples, the 

magnitude of intrinsic error is non-uniform, i.e. the magnitude and direction of the 

 

Figure 8-8. Intrinsic calibration model error for a corner (left) and straight (right) camera in the National 

Ice Centre (GBR) multi-camera network. The blue vectors – amplified for visualisation purposes – 

demonstrate the non-uniformity of the reprojection error. Consequently, skating velocity has a 

significant effect on intra-camera calibration model error, as the difference between two positions’ 

intrinsic model error is less severe at slow velocities (left) compared to fast velocities (right). 
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model’s reprojection error changes over the image plane. As a result, the difference 

between two positions’ intrinsic model error is more severe at faster velocities as the 

positions cover a larger distance on the image plane. This greater magnitude of intrinsic 

model error leads to significantly larger errors in velocity. 

Critically, the effect of skating velocity on intra-camera calibration model error was 

small in both skating conditions. The difference between the skating velocities median 

error in the corner (0.013 m·s-1) and straight (0.015 m·s-1) equated to only 6.9 % and 8 % 

of the ± 0.19 m·s-1 target measurement error. Based on this target error, the results 

demonstrate that the multi-camera network's intra-camera calibration model error is 

effectively invariant to the skating velocity. 

8.5.2 Inter-camera calibration model error 

Chapter 7 showed that the multi-camera network should only calculate two-

dimensional relay exchange kinematics within each camera’s field-of-view to negate out-

of-phase error. Therefore, in this chapter, inter-camera calibration model error was only 

concerned with how reconstructed positions – seen in two cameras’ field-of-view – 

aligned in the global coordinate system. Overall, the multi-camera network's inter-

camera calibration model error was undetectable from one camera to the next when 

visualising a trajectory over the 60 x 30 m rink surface; the RMS inter-camera 

calibration model error was of 0.01 m and 0.02 m in the �- and �-axis, respectively. 

Effect of skating condition on inter-camera calibration model error 

The magnitude of inter-camera calibration model error was invariant to the skating 

condition. In both the �- and �-axis, the analysis found no significant differences 

between the corner and straight skating condition. As described in Section 8.5.1, this is 

unsurprising as the nonlinear calibration procedure was the same for all cameras in the 

multi-camera network. 
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8.6 Chapter summary 

This chapter addressed the third objective of the programme of research: to quantify 

calibration model error in the multi-camera network. More specifically, how incorrect 

relationships between the pixel and global coordinate systems propagated to (1) errors 

in position and velocity within (intra-) cameras’ field-of-view, and (2) errors in position 

between (inter-) cameras’ field-of-view. For the former, the chapter showed that the 

multi-camera network's intra-camera calibration model error was within the ± 0.19 m·s-1 

target measurement error, significantly less than the Olympic Oval (CAN) multi-camera 

network ± 0.48 m·s-1 intra-camera calibration model error, and effectively invariant to 

the skating condition and skating velocity. The multi-camera network had an overall 

RMS intra-camera calibration model error of 0.06 m·s-1. As both multi-camera networks 

had similar reprojection errors, the chapter attributed this significant reduction in intra-

camera calibration model error to the National Ice Centre (GBR) multi-camera network 

having a superior spatial resolution of the rink surface. For the latter, the chapter 

established that the multi-camera network’s inter-camera calibration model error – in 

both skating conditions – was undetectable from one camera to the next when 

visualising a trajectory over the 60 x 30 m rink surface. The multi-camera network had 

an overall RMS inter-camera calibration model error of 0.01 m and 0.02 m in the �- and 

�-axis, respectively.  
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Ground truth kinematics 

Chapter 9 Ground truth kinematics 

A representative dataset of ground truth kinematics 

9.1 Introduction 

This chapter addresses the fourth objective of the programme of research: to create a 

representative dataset of ground truth short-track speed skating kinematics. Ground 

truth short-track speed skating kinematics represent the criterion values used in the 

quantification of the multi-camera network’s measurement error. As detailed in Section 

5.7.2, the quality of the multi-camera network's error quantification is dependent on the 

validity of this ground truth dataset. More specifically, the dataset's representativeness of 

the multi-camera network's intended use-cases, i.e. the different measurement scenarios 

where the system will be required to measure accurate, two-dimensional, relay exchange 

kinematics. Section 5.7.2 concluded that compared to other methods of creating ground 

truth datasets, a synthetic, three-dimensional, ground truth dataset seemed most 

appropriate. The dataset enables (1) the multi-camera network’s five sources of 

measurement error to be quantified, and (2) the effect of the multi-camera network’s 

intended-use cases to be considered.  

In the following sections, I describe the two-stage process used to create this synthetic 

dataset. First, Section 9.2 details the collection of real-world, three-dimensional, fiducial 

marker kinematics during a Great Britain Short-Track Speed Skating training session. 

Second, Section 9.3 documents how these trajectories were used to create a 

representative synthetic dataset. Finally, Section 9.4 discusses the overall validity of the 

synthetic ground truth dataset. 
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9.2 Real-world fiducial marker kinematics 

The Faculty of Health & Wellbeing Research Ethics Committee, Sheffield Hallam 

University, UK, approved this study.  

9.2.1 Participants 

Two male elite short-track speed skaters from the Great Britain Short-Track Speed 

Skating World Class Performance Programme (mean ± standard deviation age = 18.5 ± 

0.7 years, stature = 178.5 ± 4.9 cm, mass = 69.3 ± 5.8 kg) participated in this study. 

Before testing, both skaters gave their written informed consent. 

9.2.2 Experimental procedure 

Testing took place during a Great Britain Short-Track Speed Skating training session at 

the National Ice Centre, Nottingham, GBR. Participants were asked to complete three 

trials equivalent to fast (9 seconds), medium (10.5 seconds) and slow (12 seconds) lap 

times. In each trial, participants skated a corner and proceeding straight with a flying 

start. The three-dimensional position of the fiducial marker was measured using high-

speed video cameras and the multi-camera network. The former measured the fiducial 

marker height, the latter the fiducial marker rink position. The fiducial marker – a red 

foam hemisphere, 0.12 m in diameter – was positioned on a black vest 0.1 m above the 

participant’s two-dimensional centre-of-mass point estimate, i.e. the 1st lumbar vertebra. 

As shown in Figure  9-1, this allowed the marker to be seen clearly in all cameras, even 

when participants placed their arms behind their back, and minimised the injury 

potential in the scenario where a participant fell. 

9.2.3 One-dimensional fiducial marker kinematics 

In each trial, I measured the position of the fiducial marker in the 4-axis during the 

corner and the straight using four high-speed video cameras. As illustrated in Figure 9-2, 

the trial started and ended when the fiducial marker was in line with the corner’s 2nd 

track marking block and the proceeding corner’s 1st track marking block.  
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Experimental setup  

Two gen-locked high-speed video cameras (Phantom V4.3, Vision Research, Wayne, 

USA) – operating at 100 Hz, a resolution of 800 x 160 pixels, and exposure time of 0.001 

seconds – filmed the corner. I positioned each camera in the viewing gallery opposite 

the corner-of-interest to maximise the camera-to-calibrated plane distance and aligned 

the optical axes perpendicular to the dominant plane of motion. The first camera’s field-

of-view covered the 2nd to 4th track marking block (Camera 1 in Figure 9-2) and the 

second camera’s field-of-view covered the 4th to 6th track marking block (Camera 2 in 

Figure 9-2). The study excluded the remainder of the corner from the analysis due to the 

increased potential for marker occlusion.   

 

Figure 9-1. The fiducial marker as seen in the high-speed video cameras (top) and multi-camera 

network (bottom).  
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Two gen-locked high-speed video cameras (Phantom Miro 340, Vision Research, 

Wayne, USA) – operating at 100 HZ, a resolution of 1280 x 160 pixels, and exposure 

time of 0.001 seconds – filmed the straight. Similarly, I positioned each camera in the 

viewing gallery opposite the straight-of-interest and aligned their optical axes aligned 

perpendicular to the dominant plane of motion. The first camera’s field-of-view covered 

the 7th track marking block to the start/finish line (Camera 3 in Figure 9-2) and the 

second camera’s field-of-view covered the start/finish line to the 1st track marking block 

of the proceeding corner (Camera 4 in Figure 9-2).  

Calibration procedure  

Each high-speed video camera was calibrated using a linear scaling coefficient function 

     � = 6R.��*T.(R, /) (&'. 9.1) 
where � is the linear scaling coefficient used to reconstruct the fiducial marker’s 4 

position from the pixel coordinate system to the global coordinate system and (R, /) are 

the pixel coordinates that define the skater’s current plane of motion. Using a scaling 

 

Figure 9-2. The high-speed video camera experimental setup. The cameras captured each trial from 

when the fiducial marker was in line with the corner’s 2nd track marking block and the proceeding 

corner’s 1st track marking block. 
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coefficient specific to the current plane of motion mitigated out-of-plane error in the 

analysis by reducing the out-of-plane distance (Section 5.3.3).  

I constructed each camera’s linear scaling coefficient function by collecting images of a 

calibration object, 1 m in height, over the entirety of the camera’s capture volume 

(corner = 36 images, straight = 70 images). For each calibration object image, Check2D 

(Centre for Sports Engineering Research, 2013) was used to manually digitise the centre 

of the sphere at the top of the calibration object (R@, /@) and the centre of the sphere 

fitted to the hemisphere at the bottom of the calibration object (R�, /�). Figure 9-3 

illustrates these digitised positions. The image was zoomed to enlarge the view of each 

sphere, with the cursor's diameter adjusted and aligned to match the sphere's outline. 

Each image’s digitised pixel coordinates then defined a linear scaling coefficient at that 

location, 

     �(R;, /;) =  �|/@ − /�| (&'. 9.2) 

where (R;, /;)  are the pixel coordinates of the sphere centroid fitted to the hemisphere 

at the bottom of the calibration object, �  is the height of the calibration object in the 

 

Figure 9-3. The high-speed video camera’s calibration object digitised positions.  
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global coordinate system (1 m), and /@ and /� are the vertical pixel coordinates of the 

calibration object’s top and bottom sphere centroid. All location specific linear scaling 

coefficients were used to define the linear scaling coefficient function – a piecewise 

triangle surface over the image plane – by acting as the function’s nodes. The function 

applied a bivariate linear interpolation within each triangle to return the location-

specific linear scaling coefficient.  

The validity of the calibration procedure, i.e. the degree to which the calibration 

functions succeed in reconstructing the actual height, was ± 0.005 m. I determined this 

value by using the linear scaling coefficient functions to reconstruct the pixel 

coordinates that defined the calibration object’s known height in 40 additional 

calibration object images (10 images per high-speed video camera). The investigation 

defined the validity of the calibration procedure as the RMS error between the known 

and reconstructed calibration object height. 

Digitisation & reconstruction procedure 

For each high-speed video camera, Check2D (Centre for Sports Engineering Research, 

2013) was used to manually digitise the fiducial marker, defined as the centre of a sphere 

fitted to the foam hemisphere (R@;, /@;), and the skate blade, defined as the point of 

contact between the rink surface and blade (R�;, /�;). Figure 9-4 illustrates theses two 

digitised positions. I then used &'. 9.3 to reconstruct the position of the fiducial marker 

in the 4-axis,  

     4; = �;(|/@; − /�;|) (&'. 9.3) 
where �; is the linear scaling coefficient returned from the camera specific calibration 

function (&'. 9.1) and /@ and /� are the vertical pixel coordinates of the digitised 

fiducial marker and skate blade in the *th image. &'. 9.1 used the skate blade pixel 

coordinates (R�;, /�;) to define the current plane of motion.  
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All manual digitisation was performed by a single operator to negate inter-operator 

digitisation error. The level of intra-operator error in the high-speed video digitisation 

and reconstruction procedure was ± 0.003 m (± 0.32 pixels ). I determined this value by 

digitising the fiducial marker in 40 images (10 per high-speed video camera) on two 

occasions separated by a week. The investigation defined intra-operator error as the 

mean absolute error between all pairs of reconstructed fiducial marker positions.  

The out-of-plane error in the high-speed video digitisation and reconstruction procedure 

was ± 0.013 m. I determined this value using a computer simulation. The simulation – 

illustrated in Figure 9-5 – investigated how expected differences in the skate blade and 

fiducial marker plane of motion led to errors in the reconstructed fiducial marker 

position in the corner and straight high-speed video cameras.  

Data processing  

For each trial, MATLAB R2016a (MathWorks, 2016) was used to join the position of the 

fiducial marker in the corner and straight onto a single timestamp. This process 

consisted of four stages. The first stage used a zero-phase 4th order Butterworth filter to 

 

Figure 9-4. The high-speed video camera’s fiducial marker and skate blade digitised positions. 
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attenuate high-frequency noise in the manual digitisation of the fiducial marker and 

skate blade (Bartlett, 2014). In accordance with Chun (2001), the filter used a cut-off 

frequency of 6 Hz. The second stage used the trial's start and end timestamps – 

measured in the multi-camera network – to determine the overall trial length. This 

length was used to create a 1-by-. matrix of the trial sampled at 100 Hz as follows,  

     6� = [41 42 43 … 4=] (&'. 9.4) 
The third stage mapped the position of the fiducial marker in the corner and straight 

onto 6�. The corner data beginning at 41, and the straight data ending at 4=. Lastly, the 

fourth stage used a cubic spline to interpolate the position of the fiducial marker from 

the 6th to 7th track marking block, with the final data downsampled to 25 Hz to allow 

allignment with the multi-camera network’s data. 

9.2.4 Two-dimensional fiducial marker kinematics 

In each trial, I measured the fiducial marker’s �- and �-axis position during the corner 

and straight using the National Ice Centre (GBR) multi-camera network. As in Section 

 

Figure 9-5. The high-speed video camera out-of-plane error simulation, where � is the camera-to-

calibrated plane distance, 
 is the out-of-plane distance, ,� is the true height, ,H is the measured height, 

and - is the out-of-plane error. 
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9.2.3, the trial started and ended when the fiducial marker was in line with the corner’s 

2nd track marking block, and the proceeding corner’s 1st track marking block.  

Experimental setup 

Fifteen of the multi-camera network’s twenty-six cameras – operating at 25 Hz, a 

resolution of 1280 x 800 pixels, and exposure time of 0.004 seconds – filmed the corner 

and straight. Figure  9-6 illustrates these cameras’ field-of-view.  

Calibration procedure 

As documented in Chapter 8, each camera was calibrated using the nonlinear 

calibration procedure described in Section 5.3.2. Based on the results from Chapter 8, in 

the worst-case scenario the validity of the calibration procedure, i.e. the degree to which 

the calibration models succeeded in reconstructing the actual distance, was ± 0.016 m. I 

determined this value by using the camera-rink plane calibration models to reconstruct 

pixel coordinates that defined two known distances in 59,836 images.   

 

 

Figure 9-6. The fifteen-camera field-of-views used to collect two-dimensional fiducial marker kinematics. 
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Digitisation & reconstruction procedure 

For each trial, Check2D (Centre for Sports Engineering Research, 2013) was used to 

manually digitise the centre of the fiducial marker in each image. First, the image was 

zoomed to enlarge the view of the marker. Then, the cursor's diameter adjusted and 

aligned to match the fiducial marker's outline. Figure 9-7 illustrates this procedure. All 

digitisation was performed by a single operator to negate inter-operator digitisation 

error. The level of intra-operator error in the multi-camera network digitisation 

procedure was ± 0.005 m (± 0.52 pixels). I determined this value by digitising the 

fiducial marker in 40 images (10 per high-speed video camera) on two occasions 

separated by a week. The study defined intra-operator error as the mean absolute error 

between all pairs of reconstructed fiducial marker positions.  

For each trial, I reconstructed the fiducial marker’s pixel coordinates into the global 

coordinate system using camera-elevated plane calibration models specific to each 

digitised point. This process – consisting of three stages – negated out-of-plane error in 

the analysis (Section 5.3.3). The first stage used the timestamp of each digitised image to 

align the pixel coordinates onto the fiducial marker’s 4-position timestamp created in 

Section 9.2.3. Accordingly, each digitised image, *, had the format 

[e*N-7�	N,;, S	N-�	�2;, R;, /;, 4;]. Note that due to the multi-camera network’s 

overlapping camera field-of-views, each timestamp could contain more than one 

S	N-�	�2 and associated R;, /;, 4; coordinates. The second stage constructed the 

 

Figure 9-7. The multi-camera network’s digitised position (denoted by the circular yellow cursor). 
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camera-elevated plane calibration model for each digitised image – as described in 

Section 5.3.3 – using the relevant control point and camera-rink plane calibration model 

constructed in Chapter 8. For each image, the analysis projected the camera’s control 

points to the height of 4;. The third stage then reconstructed each images pixel 

coordinates into the global coordinates system – as described in Section 5.3.2 – using the 

camera-elevated calibration model constructed in stage two.  

Data processing 

For each trial, a smoothing spline – implemented in MATLAB R2016a (MathWorks, 

2016) – was used to combine each camera’s reconstructed fiducial marker positions into 

a single trajectory (Section 5.5.2). The smoothing parameter, �, was set empirically at 0.3. 

The smoothing spline was sampled at 25 Hz to create the trial’s final fiducial marker 

positions.  

9.2.5 Three-dimensional fiducial marker kinematics 

For each trial, I joined the position of the fiducial marker in the 4-axis (measured in 

Section 9.2.3) and the �- and �-axis (measured in Section 9.2.4), to create five real-world, 

three-dimensional, fiducial marker kinematics. Note that one of the six trials were 

omitted at this stage, due to an error in the multi-camera network’s data collection. 

Figure 9-8 illustrates an example of the three-dimensional fiducial marker kinematics.  

9.3 Synthetic fiducial marker kinematics 

The real-world fiducial marker trajectories collected in Section 9.2 only (1) covered half-

a-lap, (2) characterised five of the infinite number of skating trajectories, and (3) 

represented two skater statures from Great Britain Short-Track Speed Skating's World 

Class Performance Programme. For these reasons, I applied a suite of geometric 

transformations to each real-world trajectory to create a more representative dataset of 

ground truth short-track speed skating kinematics.  
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MATLAB R2016a (MathWorks, 2016) was used to apply four geometric 

transformations to each real-world trajectory. These transformations – described below 

and illustrated in Figure  9-9 – created 63 synthetic trajectories for each real-world 

trajectory.  

1. The first transformation reflected the real-world trajectory through the rink 

origin and ensured that the trajectory covered most of a full-lap (Figure  9-9a).  

 

Figure 9-8. An example real-world, three-dimensional, fiducial marker trajectory.  
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2. The second transformation translated the real-world trajectories � component 

over a period of 14 m, at 2 m intervals (Figure  9-9b). This transformation 

ensured that the real-world trajectory covered (1) the five-different short-track 

positions (Section 4.3.2), and (2) the inside of the short-track, i.e. where skaters 

build up speed prior to the relay exchange. 

3. The third transformation translated the � component of the real-world trajectory 

by ± 2 m (Figure  9-9c). This transformation ensured that the trajectory covered 

a range of each cameras’ field-of-view. 

4. The fourth and final transformation multiplied the 4 component of the real-

world trajectory – normalised to the skater’s stature – by 1.52 m, 1.69 m and 1.86 

m. This transformation ensured that the trajectory represented the minimum, 

mean, and maximum skater stature in Great Britain Short-Track Speed Skating’s 

Word Class Performance Programme. 

For each synthetic fiducial marker trajectory, the ground truth resultant velocity was 

calculated using &'. 5.24, with finite difference techniques used to compute velocity in 

the �- and �-axis (&'. 5.25 to &'. 5.27). I used a sampling interval of 0.04 seconds to 

compute velocity as the ground truth trajectories had a sampling frequency of 25 Hz 

(Section 9.2.4). 

9.4 Discussion 

Sections 9.2 and 9.3 described the two-stage process used to create a dataset of ground 

truth short-track speed skating kinematics. The thesis requires this dataset to act as the 

criterion values used in the quantification of the multi-camera network’s measurement 

error. As a result, the quality of the multi-camera network’s error quantification is 

dependent on the ground truth dataset’s validity. More specifically, the dataset’s 

representativeness of the multi-camera network's intended use-cases, i.e. the different 

measurement scenarios where the system will be required to measure accurate, two-  
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Figure 9-9. The first three geometric transformations applied to each real-world fiducial marker 

trajectory: (a) transformation 1 reflected the trajectory – denoted by the black line - through the rink 

origin, (b) transformation 2 translated the trajectories � component over a period of 14 m (at 2 m 

intervals), (c) transformation 3 translated the � component of the real-world trajectory by ± 2 m. 
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dimensional, relay exchange kinematics. Overall, the created dataset consists of 315 

synthetic trajectories that cover a range of skating velocities, skater statures, and skating 

trajectories. The validity of each aspect, along with the measurement of the real-world 

fiducial marker trajectories, is discussed below. 

Real-world fiducial marker trajectories 

First and foremost, the validity of the ground truth dataset is dependent on the accuracy 

of the real-world fiducial marker trajectories, as these trajectories form the basis of the 

dataset. In an ideal scenario, these trajectories would have been captured using a gold-

standard measurement technique, e.g. optical motion capture. Although considered, 

optical motion capture was not feasible due to the limited capture volume it afforded. 

For example, Kim et al. (2013) used eight cameras to cover the period from the 4th to 6th 

track marking block alone. In this thesis, it was essential that I captured fiducial marker 

kinematics during both the corner and straight skating conditions due to the differences 

in skating technique (Section 4.3.2). Unfortunately, the estimated 42 cameras needed to 

cover the volume of interest were not available. Instead, the two techniques used in this 

study measured the fiducial marker to within ± 0.02 m when considering (1) the validity 

of the calibration, (2) the intra-operator digitisation error, and (3) the out-of-plane error. 

Furthermore, any noise in the measurement was reduced by filtering (4-axis) and 

smoothing (�- and �-axis) the raw kinematic data. Although these signals are still likely 

to contain error when compared to optical motion capture, I believe that they are still 

valid representations of a fiducial marker in short-track speed skating. 

Skating velocities in the ground truth dataset 

The ground truth dataset includes five different skating velocities equivalent to 10.12 to 

11.88 second lap times. Note that the skaters did not complete the fastest trial, i.e. a 9 

second lap time, due to fatigue. First, it is important to have a representative range of 

velocities in the ground truth dataset as Chapter 2 showed that the skating velocity 

varies during the relay event. Second, as detailed in Section 5.7.2, the multi-camera 
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network’s sources of error may be sensitive to velocity-dependent differences in fiducial 

marker kinematics. For example, during the corner, the magnitude of out-of-plane error 

may be smaller at faster velocities, as skaters will lean further towards the centre of 

rotation to maintain the balance of forces between the skate and ice (Chun, 2001; Yule & 

Payton, 2000). Consequently, the dataset can be used to quantify the effect of skating 

velocity on the multi-camera network's sources of measurement error for slow-to-

medium skating velocities, but only infer the effect of skating velocity at the fastest 

skating velocities in short-track speed skating. 

Skater statures in the ground truth dataset 

The ground truth dataset encapsulates the full range of skater's statures in Great Britain 

Short-Track Speed Skating's World Class Performance Programme, i.e. the skaters who 

will be analysed using the National Ice Centre (GBR) multi-camera network. I achieved 

this by multiplying the skater statures by the normalised 4 component of the five real-

world trajectories. This technique has been used previously in short-track speed skating 

to compare the kinematic characteristics of different skater statures during the corner 

skating condition. Importantly, Chun (2001) described how the vertical displacement of 

the whole-body centre-of-mass was similar for the normalised data. It is important to 

have a range of skater statures in the ground truth dataset as the multi-camera network’s 

sources of error may be dependent on stature-dependent differences in fiducial marker 

kinematics. For example, in short-track speed skating, skaters adopt a crouched skating 

position to minimise their frontal area and thus reduce frictional losses from air friction 

(Section 4.3.2). As detailed in Section 5.7.2, as the knee and trunk angle characterise this 

crouched skating position (Konings et al., 2015), for a given set of angles, the height of 

the fiducial marker – and thus the magnitude of out-of-plane error - is likely to be 

greater for a tall stature skater. The dataset created in this chapter can be used to 

investigate/ quantify this type of effect. 

Skating trajectories in the ground truth dataset 



  Ground truth kinematics 

 

143 

 

The ground truth dataset includes 105 different full-lap skating trajectories. These 

trajectories cover the five-different short-track positions (Section 4.3.2) and the inside of 

the short-track, i.e. where skaters build up speed prior to the relay exchange. I achieved 

this trajectory coverage by applying three geometric transformations to each real-world 

fiducial marker trajectory. It is essential to have this variety of skating trajectories in the 

ground truth dataset as the multi-camera network’s sources of error may be position-

dependent. For example, Chapter 8 demonstrated that the intrinsic calibration model 

error was not constant over the whole image plane; Figure 8-8 illustrating the 

reprojection error’s non-uniformity. By having a variety of skating trajectories in the 

ground truth dataset, the quantification of the multi-camera network's measurement 

error can include these position-dependent errors. 

9.5 Chapter summary  

This chapter described the two-stage process used to address the fourth objective of the 

programme of research: to create a representative dataset of ground truth short-track 

speed skating kinematics. Ground truth short-track speed skating kinematics represent 

the criterion values used in the quantification of the multi-camera network’s 

measurement error. The first stage used four high-speed video cameras, and the multi-

camera network, to measure five, real-world, three-dimensional trajectories of a fiducial 

marker positioned at a skater’s two-dimensional centre-of-mass point estimate. These 

five trajectories – collected over a corner and proceeding straight – covered a range of 

skating velocities equivalent to 10.12 second and 11.88 second lap times. The second 

stage applied a suite of geometric transformations to each real-world trajectory to create 

21 different full-lap skating trajectories for the minimum, mean, and maximum skater 

statures in Great Britain Short-Track Speed Skating’s World Class Performance 

Programme. By including various skater statures and skating trajectories, the synthetic 

ground truth dataset (. = 315) was deemed suitable for assessing the multi-camera 

network’s sources of measurement error over the range of skating velocities. 
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Out-of-plane error 

Chapter 10 Out-of-plane error 

Out-of-plane error in the multi-camera network 

10.1 Introduction 

This chapter addresses the fifth objective of the programme of research: to quantify out-

of-plane error in the multi-camera network. Out-of-plane error describes how any 

measured point not on the calibrated plane propagates to errors in position and velocity. 

As detailed in Section 5.3.3, in the National Ice Centre (GBR) multi-camera network, 

out-of-plane error is caused by using fiducial markers to define skaters' rink position. 

These fiducial markers – positioned at a skater’s two-dimensional centre-of-mass point 

estimate – are always located above the calibrated rink surface (Section 8.2).  

In the following sections, I describe the investigation into the multi-camera network’s 

out-of-plane error. To provide a more detailed insight, the investigation considers the 

effect of skating condition, skater stature, and skating velocity. 

10.2 Method 

The multi-camera network’s out-of-plane error was quantified using a computer 

simulation in MATLAB R2016a (MathWorks, 2016).  

10.2.1 Ground truth trajectories 

All 315 synthetic ground truth trajectories created in Chapter 9 were used to simulate 

the effect of out-of-plane error in the multi-camera network. These trajectories included 

three representative skating velocities (equivalent to ~ 10 s, 11 s and 12 s lap times), 
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three skater statures (1.52 m, 1.69 m and 1.86 m), and 105 independent full-lap 

trajectories.  

The simulation projected each ground truth trajectory onto the multi-camera network’s 

26 image planes – as described in Section 5.3.2 – using the camera-rink plane calibration 

models constructed in Chapter 8. Figure 10-1 illustrates a projected ground truth 

trajectory for a corner and straight skating condition camera. Before the projection 

procedure, I partitioned each ground truth trajectory so that the simulation only 

projected the relevant ground truth coordinates into each camera’s field-of-view.  

Ground truth trajectory partitioning was performed using each camera’s global 

coordinate system field-of-view (defined in Section 8.3.3). If the ground truth 

coordinates were inside a camera’s field-of-view, the simulation assigned these 

coordinates to that camera. If the coordinates appeared in more than one camera’s field-

of-view, the simulation assigned these coordinates to both cameras. 

10.2.2 Simulation 

For each ground truth trajectory, the simulation reconstructed each camera’s ground 

truth pixel coordinates into the global coordinate system – as described in Section 5.3.2 

– using the camera-rink plane calibration models constructed in Chapter 8. Resultant 

velocity was then calculated using &'. 5.24, with finite difference techniques used to 

 

Figure 10-1. An example of a ground truth trajectory projected onto a corner (left) and straight (right) 

skating condition camera image plane. 
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compute velocity in the �- and �-axis (&'. 5.25 to &'. 5.25). The simulation used a 

sampling interval of 0.04 seconds to compute velocity, as the ground truth trajectories 

had a sampling frequency of 25 Hz (Section 9.2). 

10.2.3 Data analysis 

For each ground truth trajectory, the simulation calculated two metrics for each camera 

(1) the out-of-plane distance, defined as the median 4 component of the camera’s 

ground truth trajectory, and (2) the out-of-plane error, defined as the RMS error 

(&'. 5.34) between the camera’s ground truth and reconstructed position and velocity 

trajectories. This calculation assumed that the ground truth condition represented the 

actual values of position and velocity.    

10.2.4 Statistical analysis 

SPSS 24 (IBM, 2016) was used to calculate the out-of-plane distance and out-of-plane 

error descriptive statistics (median, first quartile, third quartile, minimum, maximum, 

and ± 95% confidence bounds) for the corner and straight skating conditions (defined 

in Section 8.3.3). The analysis calculated the median and first and third quartiles, instead 

of the arithmetic mean and standard deviation, as these statistics are more 

representative of systematic and random error in non-normally distributed datasets. As 

all out-of-plane errors were positive due to the calculation of the RMS error, the ± 95% 

confidence bounds represented the 95th percentile, i.e. the value below which 95% of the 

out-of-plane errors were found.  

A Mann Whitney + -test was used to analyse differences in out-of-plane error between 

the corner and straight skating condition. Data were treated as non-parametric, as the 

underlying assumptions of parametric statistical tests, i.e. normality and homogeneity of 

variance, were violated. For each skating condition, one-way Kruskal-Wallis ANOVAs 

were used to examine differences in out-of-plane error between the three skater statures 

and investigate differences in out-of-plane error between the three skating velocities. 
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Where main effects occurred, post hoc pairwise comparisons (Mann Whitney �-test) 

were used to identify the observed differences. The analysis used the RMS velocity error 

as the sole metric of out-of-plane error, as the numerical computation of velocity 

amplifies any uncertainty in position (Section 5.5.2). 

In all statistical tests, the significance level, �, was set at , < 0.05. For post hoc 

comparisons, the Bonferroni correction was used to correct each pairwise � so that the 

overall significance remained at , < 0.05 (Field, 2009). Effect sizes were also calculated 

using Pearson’s correlation coefficient (&'. 8.1), with the magnitudes interpreted using 

Cohen's thresholds; where < 0.1, is trivial; 0.1–0.3, small; > 0.3–0.5, moderate; and > 0.5, 

large (Cohen, 1988). 

10.3 Results 

A total of 6,846 ground truth and reconstructed position and velocity trajectories were 

compared (corner = 3,713, straight = 3,133). The descriptive statistics are reported in 

Table 10-1, with an example out-of-plane error for both corner and straight skating 

conditions shown in Figure 10-2. Overall, the multi-camera network’s ± 95% confidence 

bounds in out-of-plane error was ± 1.49 m·s-1.   
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              Table 10-1. Out-of-plane error descriptive statistics for the corner and straight skating conditions in the National Ice Centre (GBR) multi-camera network. 

Statistic Out-of-plane distance  X position error  Y position error  Resultant velocity error 

 Corner Straight  Corner Straight  Corner Straight  Corner Straight 

Median  0.77 0.98  0.23  0.24   0.22  0.19  0.93  1.23  

81, 83  0.71, 0.84 0.90, 1.05  0.17, 0.32 0.22, 0.26  0.18, 0.34 0.11, 0.32  0.84, 1.01 1.11, 1.36 

Minimum 0.60 0.63  0.02 0.11  0.02 0.01  0.66 0.67 

Maximum 1.10 1.20  0.66 0.43  0.68 0.64  1.59 1.85 

± 95% CB 0.94 1.14  0.50 0.28  0.49 0.45  1.20 1.57 

               Notes: 81 and 83 = first and third quartiles. CB = Confidence bounds. Out-of-plane distance, X position error, and Y position error measured in metres. Resultant  

               velocity measured in m·s-1.  
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10.3.1 Skating condition 

There was a significant difference in out-of-plane error between the corner and straight 

skating conditions, +  = 1.05 x 107, , = 0.000, � = 0.69 (a large effect). The RMS velocity 

error was smaller during the corner (/3̃ = 0.93 m∙s-1) than the straight (/3̃ = 1.23 m∙s-1). 

10.3.2 Skater stature 

There was a significant main effect for skater stature on out-of-plane error in both 

corner (�(2) = 1.90 x 103, , = 0.000) and straight (�(2) = 1.21 x 103, , = 0.000) skating 

conditions. The post hoc pairwise comparisons are summarised in Table 10-2. In both 

 

Figure 10-2. Example out-of-plane errors for a corner (left) and straight (right) skating condition camera 

in the National Ice Centre (GBR) multi-camera network. 
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skating conditions, the magnitude of out-of-plane error was significantly smaller for the 

minimum stature compared to the mean stature (�H = -0.45, �� = -0.4), the mean stature 

compared to the maximum stature (�H = -0.42, �� = -0.36), and the minimum stature 

compared to the maximum stature (�H = -0.88, �� = -0.76). 

10.3.3 Skating velocity 

There was a significant main effect for skating velocity on out-of-plane error in both 

corner (�(2) = 2.28 x 101, , = 0.000) and straight (�(2) = 4.52 x 102, , = 0.000) skating 

conditions. The post hoc pairwise comparisons are summarised in Table 10-3. In the 

corner, the magnitude of out-of-plane error was significantly smaller for the medium 

velocity compared to the fast velocity (�H = -0.06), and the slow velocity compared to the 

fast velocity (�H = -0.1). Note that the out-of-plane error was smaller for the slow velocity 

compared to the medium velocity, but not statistically significant (, = 0.08, �H = -0.04). 

In the straight, the magnitude of out-of-plane error was significantly smaller for the slow 

velocity compared to the medium velocity (�� = -0.3), the medium velocity compared to 

the fast velocity (�� = -0.17), and the slow velocity compared to the fast velocity (�� = -

0.46). 

Table 10-2. Effect of skater stature on out-of-plane error: post hoc pairwise comparisons. 

Condition Stature (1 – 2) 4 ̃Dist1 4 ̃Dist2 /3̃ Error1 /3̃ Error2 +  , � 

Corner Min - Mean 0.69 0.77 0.81 0.91 -2.70 x 102 0.000 -0.45 

 Min - Max 0.69 0.85 0.81 1.02 -1.88 x 103 0.000 -0.88 

 Max - Mean 0.85 0.77 1.02 0.91 -9.09 x 102 0.000 -0.42 

         

Straight Min - Mean 0.89 0.99 1.10 1.23 -7.18 x 102 0.000 -0.40 

 Min - Max 0.89 1.09 1.10 1.37 -1.37 x 103 0.000 -0.76 

 Max - Mean 1.09 0.99 1.37 1.23 -6.56 x 102 0.000 -0.36 

Notes: Skater statures (min, mean and max) represent values of 1.52, 1.69 and 1.86 m, respectively.          4 ̃Dist = Median out-of-plane distance measured in metres. /3̃ Error = Median out-of-plane error 

measured in m·s-1. U = Mann-Whitney U-Test. Significance values adjusted using the Bonferroni 

correction to control for family-wise error. Magnitude of effect, �, measured using Pearson's correlation 

coefficient.           
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10.4 Discussion 

This investigation aimed to quantify out-of-plane error in the multi-camera network. 

More specifically, how measured points (i.e. the fiducial marker) not on the calibrated 

plane (i.e. the rink surface) propagated to errors in position and velocity. To provide a 

more detailed insight, the investigation also considered the effect of skating condition, 

skater stature, and skating velocity on the magnitude of out-of-plane error. Overall, the 

results showed that the multi-camera network’s out-of-plane error (± 1.49 m·s-1) 

exceeded the ± 0.19 m·s-1 target measurement error. Fiducial marker out-of-plane 

distances, ranging from 0.6 m to 1.2 m, leading to substantial errors in position (0.01 m 

to 0.68 m) and velocity (0.66 m·s-1 to 1.85 m·s-1). For this reason, out-of-plane error must 

be minimised in order to measure accurate, two-dimensional, relay exchange kinematics.  

Effect of skating condition on out-of-plane error 

The magnitude of out-of-plane error in the multi-camera network was dependent on the 

skating condition. The RMS velocity errors were significantly smaller in the corner than 

the straight due to differences in skating technique. As outlined in Section 4.3.2, in 

addition to maintaining a crouched skating position, skaters lean towards the centre of 

Table 10-3. Effect of skating velocity on out-of-plane error: post hoc pairwise comparisons. 

Condition Velocity (1 – 2) 4 ̃Dist1 4 ̃Dist2 /3̃ Error1 /3̃ Error2 +  , � 
Corner Slow - Med 0.80 0.76 0.92 0.93 -8.71 x 101 0.081 -0.04 

 Slow - Fast 0.80 0.75 0.92 0.94 -2.29 x 102 0.000 -0.10 

 Fast - Med 0.75 0.76 0.94 0.93 -1.42 x 102 0.009 -0.06 

         

Straight Slow - Med 0.95 1.00 1.17 1.29 -5.49 x 102 0.000 -0.30 

 Slow - Fast 0.95 0.98 1.17 1.35 -8.75 x 102 0.000 -0.46 

 Fast - Med 0.98 1.00 1.35 1.29 -3.26 x 102 0.000 -0.17 

Notes: Skating velocity (slow, med and fast) akin to approximately 12, 11, and 10 second lap times, 

respectively. 4 ̃Dist = Median out-of-plane distance measured in metres. /3̃ Error = Median out-of-plane 

error measured in m·s-1. U = Mann-Whitney U-Test. Significance values adjusted using the Bonferroni 

correction to control for family-wise error. Magnitude of effect, �, measured using Pearson's correlation 

coefficient.           
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rotation during the corner to maintain the balance of forces between the skate and ice 

(Chun, 2001; Yule & Payton, 2000). As a result, the corner skating condition exhibits 

smaller out-of-plane distances (Table 10-1), and thus out-of-plane error, as the fiducial 

marker is closer to the calibrated rink surface. 

Effect of skater stature on out-of-plane error 

Irrespective of skating condition, the multi-camera network’s out-of-plane error was 

dependent on the skater stature. RMS velocity errors significantly increased from the 

minimum, to mean, to maximum stature in Great Britain Short-Track Speed Skating’s 

World Class Performance Programme due to larger out-of-plane distances. This result 

is unsurprising considering that the crouched skating position is characterised using the 

knee and trunk angle (Konings et al., 2015). Subsequently, for a given set of angles, I 

would expect that the height of the fiducial marker (located on the trunk), and thus the 

out-of-plane distance, to be greater for a taller stature skater. 

Effect of skating velocity on out-of-plane error 

In the corner skating condition, out-of-plane distances decreased as skating velocity 

increased, due to the skaters leaning further towards the centre of rotation. As reported 

in Section 4.3.2, as the centripetal force increases with skating velocity, skaters lean 

further towards the centre of rotation to maintain the balance of forces between the 

skate and ice. Despite this, the results showed that the RMS velocity error significantly 

increased with skating velocity, i.e. as the out-of-plane distance decreased. While this 

result contradicts the chapter's earlier findings, where smaller out-of-plane distances led 

to smaller RMS velocity errors, the result is consistent with the findings in Chapter 8.  

In Chapter 8, intra-camera calibration model error significantly increased with skating 

velocity due to velocity dependent errors in the sampling interval and velocity 

dependent uncertainties in the checkerboard’s reconstructed intersection positions. 

While the former is irrelevant in this study, as the ground truth trajectories created in 
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Chapter 9 had a constant 0.04-second sampling interval, the latter, caused by non-

uniform errors in each camera's intrinsic model, is still relevant in this investigation. 

This result suggests that the effect of skating velocity in the corner skating condition is 

more sensitive to intra-camera calibration model error than out-of-plane error. 

Importantly for the multi-camera network, the size of this effect was small (Table 10-3). 

The difference between the slow and fast velocity condition’s median RMS velocity error 

(0.02 m·s-1) equated to only 11% of the ± 0.19 m·s-1 target measurement error. This value 

suggests that the multi-camera network's out-of-plane error is effectively invariant to 

skating velocity in the corner skating condition. 

In the straight skating condition, no relationship existed between the  out-of-plane 

distance and skating velocity, as skaters attempt to maintain an aerodynamically 

favourable trunk angle (van Ingen Schenau, 1982). Nevertheless, as witnessed in the 

corner skating condition, the RMS velocity error significantly increased with skating 

velocity due to intra-camera calibration model error. In contrast to the corner, however, 

the difference between the slow and fast velocity condition’s median RMS velocity error 

(0.18 m·s-1) was equivalent to 96% of the ± 0.19 m·s-1 target measurement error. 

Considering that the two skating conditions exhibited the same range of median out-of-

plane distances (0.05 m), this suggests that other factors were present in the analysis.  

One explanation for the large difference between the slow and fast velocity condition’s 

median RMS velocity error is that the analysis of the straight skating condition included 

skating typical of the corner skating condition. This reasoning is highlighted in Figure 

10-3, and evidenced in Table 10-1, as the straight skating condition exhibits a greater 

range of out-of-plane distances and a similar minimum out-of-plane distance. If the 

analysis had correctly classified the skating condition cameras for all trajectories in the 

ground truth dataset, I would expect the straight to have a smaller range of out-of-plane 

distances and a greater minimum out-of-plane distance, as the skaters do not have to 

lean towards the centre of rotation. Instead, as the cameras did not correctly classify the 

skating condition cameras for all ground truth trajectories, this artefact increased the 
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range of RMS velocity errors in each velocity condition and, as a result, increased the 

differences between each skating condition’s RMS velocity error. For this reason, I 

believe that the multi-camera network’s out-of-plane error is also effectively invariant to 

skating velocity in the straight skating condition. 

10.5 Chapter summary 

This chapter used a computer simulation to address the fifth objective of the 

programme of research: to quantify out-of-plane error in the multi-camera network. 

More specifically, how measured points (i.e. the fiducial marker) not on the calibrated 

plane (i.e. the rink surface) propagated to errors in position and velocity. The simulation 

showed that the multi-camera network’s out-of-plane error (± 1.49 m·s-1) exceeded the ± 

0.19 m·s-1 target measurement error. Fiducial marker out-of-plane distances, ranging 

from 0.6 m to 1.2 m, leading to substantial errors in position (0.01 m to 0.68 m) and 

velocity (0.66 m·s-1 to 1.85 m·s-1). Furthermore, the simulation demonstrated that the 

magnitude of this out-of-plane error was dependent on (1) the skating condition; 

significantly smaller in the corner than the straight, and (2) the skater stature; 

significantly increasing from the minimum, to mean, to maximum skater stature in 

Great Britain Short-Track Speed Skating’s World Class Performance Programme. For 

 

Figure 10-1. Examples of corner skating captured (and analysed) in a straight skating condition camera 

in the National Ice Centre (GBR) multi-camera network. 
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these reasons, the multi-camera network’s out-of-plane error must be minimised in 

order to measure accurate, two-dimensional, relay exchange kinematics.  
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Elevated calibration planes 

Chapter 11 Minimising out-of-plane error 

Minimising out-of-plane error 

11.1 Introduction 

Chapter 10 showed that the multi-camera network’s out-of-plane error (± 1.49 m·s-1) 

exceeded the ± 0.19 m·s-1 target measurement error. Out-of-plane distances, ranging 

from 0.6 m to 1.2 m, leading to substantial errors in position (0.01 m to 0.68 m) and 

velocity (0.66 m·s-1 to 1.85 m·s-1). The chapter also demonstrated that the magnitude of 

out-of-plane error was dependent on (1) the skating condition; significantly smaller in 

the corner than the straight, and (2) the skater stature; significantly increasing from the 

minimum, to mean, to maximum skater stature in Great Britain Short-Track Speed 

Skating’s World Class Performance Programme. For these reasons, Chapter 10 

concluded that the multi-camera network’s out-of-plane error must be minimised in 

order to measure accurate, two-dimensional, relay exchange kinematics. 

In this chapter, I explore minimising this out-of-plane error by constructing camera-

elevated plane calibration models. As reported in Section 5.3.3, camera-elevated plane 

calibration models minimise out-of-plane error by reducing the out-of-plane distance. In 

this case, elevating the calibration plane to the expected height of the fiducial marker. 

The following sections describe the investigation into the multi-camera network’s out-

of-plane error when using camera-elevated plane calibration models. The investigation 

also considers the effect of skating condition, skater stature, and skating velocity on out-

of-plane error, to provide a more detailed understanding of the efficacy of camera-

elevated plane calibration models in the multi-camera network.    
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11.2 Method 

The multi-camera network’s out-of-plane error was quantified using a revised version of 

the simulation described in Chapter 10. All revisions are detailed in Section 11.2.1. 

11.2.1 Revisions 

First, in Chapter 10 the simulation reconstructed each camera’s ground truth 

trajectories into the global coordinate system using the camera-rink plane calibration 

models constructed in Chapter 8. In this investigation, the simulation reconstructs each 

camera’s ground truth trajectories into the global coordinate system using the camera-

elevated plane calibration models detailed in Section 10.2.2. 

Second, in Chapter 10 the simulation defined the out-of-plane distance as the median 4 

component of a camera’s ground truth trajectory. In this simulation, the analysis defines 

out-of-plane distance as the median difference between the 4 component of the 

camera’s ground truth trajectory and the height of the camera’s elevated plane 

calibration model.  

11.2.2 Camera-elevated plane calibration models 

For each ground trajectory, the simulation constructed the camera-elevated plane 

calibration models – as described in Section 5.3.3 – using the control points and camera-

rink plane calibration models documented in Chapter 8. The simulation projected each 

camera’s control points at 45% and 59% of the skater's stature in the corner and straight 

respectively, to mitigate the effect of skating condition (Section 10.3.1) and skater 

stature (Section 10.3.2) on out-of-plane error.  

The two scaling coefficients were determined using the six, real-world, fiducial marker 

trajectories described in Section 9.2. I calculated these coefficients as the mean height of 

the fiducial marker – normalised to the percentage of skater stature – during the corner 

and straight skating conditions defined in Section 8.3.3. Note that this calculation 

included the trial omitted from the synthetic fiducial marker dataset (Section 9.2.5). 
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This trial characterised the height of the fiducial marker in the scenario where a skater 

supports their lean towards the corner’s centre of rotation by placing their left hand on 

the rink surface. As illustrated in Figure 11-1, this scenario results in a lower fiducial 

marker height. The inclusion of this trial ensured that the scaling coefficients were more 

representative of short-track speed skating and less biased towards the ground truth 

dataset used in the simulation.  

11.3 Results 

A total of 6,846 ground truth and reconstructed position and velocity trajectories were 

compared (corner = 3,713, straight = 3,133). The descriptive statistics are reported in 

Table 11-1, with an example out-of-plane error for both corner and straight skating 

conditions shown in Figure 11-2. Overall, the multi-camera network’s ± 95% confidence 

bounds in out-of-plane error were ± 0.25 m·s-1, with 90% of the errors falling within the 

± 0.19 m·s-1 target measurement error. 

 

Figure 11-1. An example of the lower fiducial marker position during the corner skating condition when 

a skater supports their lean towards the centre of rotation by placing their left hand on the rink surface. 
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Table 11-1. Out-of-plane error descriptive statistics for the corner and straight skating conditions in the National Ice Centre (GBR) multi-camera network. 

Statistic Out-of-plane distance  X position error  Y position error  Resultant velocity error 

 Corner Straight  Corner Straight  Corner Straight  Corner Straight 

Median  -0.00 -0.01  0.01 0.01  0.01 0.01  0.07 0.09 

81, 83 -0.03, 0.04 -0.06, 0.02  0.01, 0.02 0.01, 0.02  0.01, 0.02 0.00, 0.02  0.05, 0.11 0.06, 0.12 

Minimum -0.13 -0.33  0.00 0.00  0.00 0.00  0.00 0.02 

Maximum -0.26 -0.10  0.08 0.14  0.08 0.22  0.46 0.54 

± 95% CB  0.16  0.06  0.05 0.05  0.05 0.09  0.25 0.26 

               Notes: 81 and 83 = first and third quartiles. CB = Confidence bounds. Out-of-plane distance, X position error, and Y position error measured in metres. Resultant  

               velocity measured in m·s-1.  
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11.3.1 Skating condition 

There was a significant difference in out-of-plane error between the corner and straight 

skating conditions, +  = 6.81 x 106, , = 0.000, � = 0.15 (a small effect). The RMS velocity 

error was smaller during the corner (/3̃ = 0.07 m∙s-1) than the straight (/3̃ = 0.09 m∙s-1). 

11.3.2 Skater stature 

There was a significant main effect for skater stature on out-of-plane error in both 

corner (�(2) = 6.95 x 101, , = 0.000) and straight (�(2) = 6.84 x 101, , = 0.000) skating 

conditions. The post hoc pairwise comparisons are summarised in Table 11-2. In both 

 

Figure 11-2. Example out-of-plane errors for a corner (left) and straight (right) skating condition camera 

in the National Ice Centre (GBR) multi-camera network when using camera-elevated plane calibration 

models. 



  Elevated calibration planes 

 

161 

 

skating conditions, the magnitude of out-of-plane error was significantly smaller for the 

minimum stature compared to the mean stature (�H = -0.09, �� = -0.11), the mean 

stature compared to the maximum stature (�H = -0.08, �� = -0.07), and the minimum 

stature compared to the maximum stature (�H = -0.17, �� = -0.18). 

11.3.3 Skating velocity 

There was a significant main effect for skating velocity on out-of-plane error in both 

corner (�(2) = 4.47 x 102, , = 0.000) and straight (�(2) = 1.04 x 102, , = 0.000) skating 

conditions. Table 11-3 summarises the post hoc pairwise comparisons. In both skating 

conditions, the magnitude of out-of-plane error was significantly smaller for the slow 

velocity compared to the medium velocity (�H = -0.02, �� = -0.13), the medium velocity 

compared to the fast velocity (�H = -0.4, �� = -0.1), and the slow velocity compared to the 

fast velocity (�H = -0.42, �� = -0.22). 

11.4 Discussion 

This investigation aimed to minimise the National Ice Centre (GBR) multi-camera 

network's out-of-plane error by constructing camera-elevated plane calibration models. 

Table 11-2. Effect of skater stature on out-of-plane error: post hoc pairwise comparisons. 

Condition Stature (1 – 2) 4 ̃Dist1 4 ̃Dist2 /3̃ Error1 /3̃ Error2 +  , � 

Corner Min - Mean 0.01 -0.02 0.06 0.07 -1.86 x 102 0.000 -0.09 

 Min - Max 0.01 -0.01 0.06 0.08 -3.59 x 102 0.000 -0.17 

 Max - Mean 0.01 -0.01 0.08 0.07 -1.73 x 102 0.000 -0.08 

         

Straight Min - Mean -0.01 -0.00 0.08 0.09 -1.92 x 102 0.000 -0.11 

 Min - Max -0.01 -0.01 0.08 0.10 -3.26 x 102 0.000 -0.18 

 Max - Mean -0.01 0.00 0.10 0.09 -1.33 x 102 0.000 -0.07 

Notes: Skater statures (min, mean and max) represent values of 1.52, 1.69 and 1.86 m, respectively.          4 ̃Dist = Median out-of-plane distance measured in metres. /3̃ Error = Median out-of-plane error 

measured in m·s-1. U = Mann-Whitney U-Test. Significance values adjusted using the Bonferroni 

correction to control for family-wise error. Magnitude of effect, �, measured using Pearson's correlation 

coefficient.     
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To provide a more detailed insight into the efficacy of these elevated calibration planes, 

the investigation also considered the effect of skating condition, skater stature, and 

skating velocity on out-of-plane error. The results showed that the multi-camera 

network’s out-of-plane error (± 0.25 m·s-1) still exceeded the ± 0.19 m·s-1 target 

measurement error when using these calibration models. Nevertheless, the camera-

elevated plane calibration models significantly reduced the magnitude of out-of-plane 

error compared to the rink-plane calibration models (± 1.49 m·s-1), with 90% of the 

errors now within the target measurement error. I attribute this reduction in out-of-

plane error to the camera-elevated plane calibration models reducing the multi-camera 

network’s out-of-plane distances. In Chapter 10, I reported that these distances ranged 

from 0.6 m to 1.2 m. In this investigation, the distances ranged from -0.33 m to 0.26 m.  

The 10% of out-of-plane errors that exceeded the ± 0.19 m·s-1 target measurement error 

were the result of errors in the classification of the cameras’ skating condition. In 

Chapter 8, I classified cameras as either corner or straight skating based on their rink 

surface field-of-view. However, as illustrated in Figure 10-3, depending on the current 

short-track and skater trajectory this classification can be incorrect. For example, in 

Table 11-3. Effect of skating velocity on out-of-plane error: post hoc pairwise comparisons. 

Condition Velocity (1 – 2) 4 ̃Dist1 4 ̃Dist2 /3̃ Error1 /3̃ Error2 +  , � 
Corner Slow - Med -0.02 -0.02 0.06 0.06 -3.25 x 101 0.000 -0.02 

 Slow - Fast -0.02 -0.04 0.06 0.10 -9.44 x 102 0.000 -0.42 

 Fast - Med -0.04 -0.02 0.10 0.06 -9.11 x 102 0.000 -0.40 

         

Straight Slow - Med -0.03 -0.01 0.08 0.09 -2.44 x 102 0.000 -0.13 

 Slow - Fast -0.03 -0.00 0.08 0.10 -4.31 x 102 0.000 -0.22 

 Fast - Med 0.00 -0.01 0.10 0.09 -1.87 x 102 0.000 -0.10 

Notes: Skating velocity (slow, med and fast) akin to approximately 12, 11, and 10 second lap times, 

respectively. 4 ̃Dist = Median out-of-plane distance measured in metres. /3̃ Error = Median out-of-plane 

error measured in m·s-1. U = Mann-Whitney U-Test. Significance values adjusted using the Bonferroni 

correction to control for family-wise error. Magnitude of effect, �, measured using Pearson's correlation 

coefficient.           
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Figure 10-3, the multi-camera network captures corner skating – trajectory 1 and 

trajectory 2 – in a straight skating condition camera. As a result, the camera-elevated 

plane calibration model is less effective at reducing out-of-plane distances, leading to 

out-of-plane errors that exceed the ± 0.19 m·s-1 target measurement error. Accordingly, 

the multi-camera network can minimise these errors by dynamically classifying each 

camera’s skating condition depending on the current short-track position. 

Effect of skating condition on out-of-plane error 

Consistent with the findings of Chapter 10, the results showed that out-of-plane error 

was significantly smaller in the corner skating condition than the straight. In Chapter 10, 

I reported that the difference in skating condition RMS velocity error was due to the 

 

Figure 10-3. Example misclassification of skating condition cameras in the National Ice Centre (GBR) 

multi-camera network. The multi-camera network captures corner skating (Trajectory 1 and Trajectory 

2) in a straight skating condition camera (Camera 2). As a result, the elevated calibration plane is less 

effective at minimising out-of-plane distances. This larger distance leads to out-of-plane errors that 

exceed the ± 0.19 m·s-1 target measurement error. 
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skating technique. As skaters lean towards the centre of rotation to maintain the balance 

of forces between the skate and ice (Chun, 2001; Yule & Payton, 2000), the corner 

skating condition exhibited smaller out-of-plane distances as the fiducial marker was 

closer to the calibrated rink surface. This explanation was not the case in this 

investigation, as I minimised out-of-plane distances by constructing camera-elevated 

plane calibration models, at the expected height of the fiducial marker, in both skating 

conditions. 

In this study, the difference in skating condition RMS velocity error was due to the 

corner's scaling coefficient being more effective at minimising out-of-plane distances. 

Table 11-1 shows that the corner had a smaller range of out-of-plane distances (0.39 m) 

compared to the straight (0.43 m). Interestingly, this result may be due to the 

misclassification of skating condition cameras rather than an incorrect straight scaling 

coefficient. As shown in Figure 11-3, straight skating condition cameras captured corner 

skating in the multi-camera network. Nevertheless, the size of this observed effect was 

small; the difference between the corner and straight median RMS velocity error (0.02 

m·s-1) equivalent to only 8% of the ± 0.19 m·s-1 target measurement error. For this 

reason, the results suggest that when using camera-elevated plane calibration models, 

the multi-camera network’s out-of-plane error is effectively invariant to the skating 

condition. 

Effect of skater stature on out-of-plane error 

In agreement with Chapter 10, in both corner and straight skating conditions, the multi-

camera network's out-of-plane error significantly increased from the minimum, to mean, 

to maximum stature in Great Britain Short-Track Speed Skating's World Class 

Performance Programme. In Chapter 10, I reported that these differences were due to 

out-of-plane distances increasing with skater stature. However, this was not the case in 

this investigation, as I constructed camera-elevated plane calibration models to a set 

percentage of the skater's stature in both skating conditions.  
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In this investigation, out-of-plane errors significantly increased with skater stature due to 

the angle of incidence also increasing. Figure 10-4 demonstrates how constructing 

camera-elevated plane calibration models to a set percentage of a skater's stature, leads 

to a greater angle of incidence – and thus a larger out-of-plane error – for a taller stature 

skater. Importantly for the multi-camera network, when comparing the minimum and 

maximum skater stature condition, the difference between the median RMS velocity 

error in the corner (0.01 m·s-1) and straight (0.02 m·s-1) equated to only 7% and 10% of 

the ± 0.19 m·s-1 target measurement error. Accordingly, this findings suggest that when 

using camera-elevated plane calibration models, the multi-camera network's out-of-

plane error is effectively invariant to the skater stature. 

Effect of skating velocity on out-of-plane error 

In both skating corner and straight skating conditions, the multi-camera network's out-

of-plane error was significantly larger as the skating velocity increased from the slow, to 

 

Figure 10-4. Effect of skater stature on out-of-plane error. For a given skater position and out-of-plane 

distance, d, the magnitude of out-of-plane error, e, is significantly larger for a taller skater stature (right), 

due to the angle of incidence, θ, increasing. The size of this effect – amplified in this figure for 

illustrative purposes – ranges from trivial to small.   
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medium, to fast velocity condition. As the magnitude of RMS velocity error did not 

increase with the associated out-of-plane distance (Table 11-3), as in Chapter 10, the 

larger out-of-plane errors were due to the effect of skating velocity being more sensitive 

to intra-camera calibration model error than out-of-plane distances. At faster skating 

velocities, a greater difference in two measured position's intrinsic model error – the 

result of non-uniform error’s in each camera’s intrinsic model – leading to larger out-of-

plane errors. 

Importantly for the multi-camera network, when comparing the slow and fast velocity 

condition, the difference between the median RMS velocity error in the corner (0.04 

m·s-1) and straight (0.02 m·s-1) only equated to 21% and 9.8% of the ± 0.19 m·s-1 target 

measurement error. Interestingly, the corner skating condition was more sensitive to 

skating velocity than the straight due to a more substantial difference in out-of-plane 

distance (corner = 0.06 m, straight = 0.03 m). This greater distance suggests that while 

skating velocity is more sensitive to intra-camera calibration model error, the magnitude 

of out-of-plane distance still influences the overall velocity error. For this reason, future 

research could continue to explore minimising out-of-plane error in the National Ice 

Centre (GBR) multi-camera network by constructing camera-elevated plane calibration 

models specific to the skating velocity. Still, for this thesis, the findings suggest that 

when using camera-elevated plane calibration models, the multi-camera network's out-

of-plane error is effectively invariant to the skating velocity. 

11.5 Chapter summary 

This chapter constructed camera-elevated plane calibration models – specific to the 

skating condition and skater stature – to minimise out-of-plane error in the National Ice 

Centre (GBR) multi-camera network. The chapter showed that the multi-camera 

network’s out-of-plane error (± 0.25 m·s-1) still exceeded the ± 0.19 m·s-1 target 

measurement error when using these calibration models. However, the camera-elevated 

plane calibration models significantly reduced the magnitude of out-of-plane error 
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compared to rink-plane calibration models (± 1.49 m·s-1), with 90% of the errors now 

within the target measurement error. Furthermore, the magnitude of out-of-plane error 

was now effectively invariant to the skating condition, skater stature, and skating 

velocity. The chapter concluded that this improvement in out-of-plane error was due to 

minimising the out-of-plane distances between the calibrated plane and fiducial marker. 

Furthermore, the remaining 10% of errors – attributed to the misclassification of each 

camera’s skating condition – could be reduced by classifying each camera’s skating 

condition dynamically. 
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Digitisation uncertainty 

Chapter 12 Automated digitisation uncertainty 

Digitisation uncertainty in the multi-camera network 

12.1 Introduction 

This chapter begins to address the sixth objective of the programme of research: to 

quantify skater point error in the multi-camera network. Skater point error describes 

how uncertainty in the automated digitisation of a skater propagates to errors in 

position and velocity. In the Olympic Oval (CAN) multi-camera network, this 

uncertainty (2.61 pixels) led to errors in velocity (± 1.04 m∙s-1) that exceeded the ± 0.19 

m∙s-1 target measurement error. In Section 5.2, I identified that a fiducial marker-based 

automated digitisation algorithm could minimise this uncertainty by reducing the 

ambiguity in the digitised point. Moreover, to aid the digitisation algorithm, the fiducial 

marker should be coloured, and positioned on a dark skin suit, to enhance the contrast 

between the fiducial, skin suit, and rink surface. 

In the following sections, I describe the developed fiducial marker-based automated 

digitisation algorithm and an investigation into the algorithm’s digitisation uncertainty. 

First, the investigation quantifies the algorithm’s automated digitisation uncertainty for 

six different candidate fiducial marker colours, as Great Britain Short-Track Speed 

Skating requires a minimum of four unique markers to distinguish between relay teams. 

Second, the investigation considers the effect of the skating condition on automated 

digitisation uncertainty, as the appearance of a skater – and thus the fiducial marker – 

differs between the corner and straight (Section 4.3.2). The results of this chapter are 

used in Chapter 13 to quantify the multi-camera network’s skater point error. 



  Digitisation uncertainty 

 

169 

 

12.2 Fiducial marker automated digitisation algorithm 

The National Ice Centre (GBR) multi-camera network’s fiducial marker-based 

automated digitisation algorithm was developed in MATLAB R2016a (MathWorks, 

2016). The algorithm, described in Sections 12.2.1 to 12.2.7, consists of seven stages. The 

stages begin once the multi-camera network either manually initialises (Section 5.4.4) or 

automatically predicts (Section 5.4.2) the fiducial marker’s position in the current image. 

In the multi-camera network, the predictions are made using the alpha-beta filter 

described in Section 5.4.2 (� = 0.5 and � = 2). When applied to the ground truth dataset, 

a typical alpha-beta filter prediction error in the corner and straight skating condition, 

i.e. the resultant difference between the ground truth and predicted pixel coordinates, is 

0.86 ± 0.44 pixels and 0.93 ± 0.61 pixels, respectively. 

12.2.1 Search neighbourhood 

The algorithm creates a 33 x 33-pixel search neighbourhood around the predicted 

fiducial marker position (measured to the nearest pixel). Figure 12-1b illustrates three 

typical examples of this search neighbourhood. In the first example, the search 

neighbourhood only contains the fiducial marker and skin suit. In the second and third 

example, ice is also present. In this scenario, the skin suit either completely or partially 

surrounds the fiducial marker. In the latter case, the fiducial marker meets the rink 

surface and highlights why a white coloured fiducial – which should provide the 

maximum contrast with a black skin suit – is not suitable in the multi-camera network. 

12.2.2 Colour segmentation 

The algorithm transforms the search neighbourhood from the RGB to HSV colour 

space, and then applies a threshold to the hue channel, to identify pixels similar to the 

colour of the fiducial marker. The result is a binary image where pixels similar to the 

colour of the fiducial marker are white (foreground), and all other pixels are black 

(background). Figure 12-1c demonstrates these binary images for each search 

neighbourhood example. 
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The HSV colour space represents a colour by its hue (H), saturation (S) and value (V). 

Hue is a chromatic feature that describes a pure colour, saturation is a measure of how 

the white light dilutes the hue, and value is the intensity or brightness of the colour 

(Garcia-Lamont, Cervantes, López, & Rodriguez, 2018). The colour segmentation 

procedure uses the hue channel, as this channel is invariant to changes in illumination 

(Liu & Tang, 2009). The result of the hue data being decoupled from the value 

component (Garcia-Lamont et al., 2018). This decoupling is important in the multi-

camera network as Section 4.3.1 demonstrated that the appearance of an image, i.e. it’s 

intensity or brightness, varies due to changes in the ambient lighting and differences in 

the proximity of each camera to the available light sources. 

12.2.3 Skin suit segmentation 

At this stage, foreground pixels in the fiducial marker binary image include the skater’s 

skin suit. The algorithm applies a threshold to the search neighbourhood's value channel 

to classify the skin suit as background. The result is a second binary image where the 

skin suit's pixels are black and all other pixels, including the fiducial marker, are white. 

 

Figure 12-1. Three examples of the first three stages of the fiducial marker automated digitisation 

algorithm: (a) the fiducial marker as seen in the multi-camera network, (b) the search neighbourhood, 

(c) the colour segmentation binary image, (d) the skin suit segmentation binary image, and (e) the 

product of the colour segmentation and skin suit binary images.  
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Figure 12-1d demonstrates these binary images for each search neighbourhood example. 

As illustrated in Figure 12-1e, the product of these two binary images removes the skin 

suit from the fiducial marker binary image.  

The algorithm selects the value channel's threshold using the search neighbourhood’s 

median value and a set coefficient. The median value represents the intensity of the skin 

suit, and the addition of a set coefficient ensures that the threshold includes all skin suit 

pixel intensities. 

12.2.4 Ice segmentation 

As illustrated in Figure 12-2c, after the colour and skin suit segmentation the 

foreground pixels in the fiducial marker binary image may still include ice. The 

algorithm removes this ice by creating a third binary image where ice is black and all 

other pixels, including the fiducial marker and skin suit, are white. Figure 12-2d 

demonstrates these binary images for each search neighbourhood example. Note that if 

the search neighbourhood is all foreground, i.e. white, no ice was detected. As shown in 

 

Figure 12-2. Three examples of the fiducial marker automated digitisation algorithm’s ice segmentation: 

(a) the fiducial marker as seen in the multi-camera network, (b) the search neighbourhood, (c) the 

product of the colour segmentation and skin suit binary images, (d) the ice segmentation binary image, 

and (e) the product of the current fiducial marker and ice segmentation binary image.  
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Figure 12-2e, the product of these two images removes ice from the fiducial marker 

binary image.  

The algorithm creates the ice segmentation binary image by thresholding a single 

channel from the RGB search neighbourhood created in Section 12.2.1. The algorithm 

uses the colour channel where the intensity of the fiducial marker and skin suit are most 

similar. For example, and as illustrated in Figure 12-3, the blue channel when the 

fiducial marker is green. The intensity level of the threshold is selected using Otsu’s 

automated method (Otsu, 1979). The algorithm applies Otsu's method to the selected 

RGB channel on a 60 x 60-pixel search neighbourhood centred on the predicted 

position of the fiducial marker. The combination of the larger search neighbourhood 

and the selected RGB channel ensures that the distribution of intensities in the image is 

bimodal. One mode represents the ice, the other, the fiducial marker and skin suit.   

12.2.5 Candidate selection 

After colour, skin suit, and ice segmentation, all foreground objects in the binary image 

represent candidate fiducial markers. Figure 12-4c demonstrates these candidate fiducial 

markers for each search neighbourhood example. As illustrated in Figure 12-4d, to 

remove small foreground objects that don't represent the fiducial marker, the algorithm 

uses a morphological opening operation. The opening procedure – which uses a 1x1 

disk-shaped structuring element – consists of morphological erosion followed by 

morphological dilation (Section 5.2.3). Then, in the case where more than one candidate 

 

Figure 12-3. The green fiducial marker as seen in the Red, Green, and Blue colour channel in the National 

Ice Centre (GBR) multi-camera network. The blue channel is used to determine the ice segmentation 

threshold as the intensity of the fiducial marker and skin suit are most similar.  
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exists, the algorithm selects the best candidate. This procedure requires the geometric 

centroid of each object to be calculated (&'. 5.1). As shown in Figure 12-4e, the 

algorithm selects the candidate with the smallest Euclidian distance from the geometric 

centroid to the centre of the search neighbourhood as the fiducial marker.     

12.2.6 Fiducial marker processing  

The selected fiducial marker's foreground object may include noise, i.e. the incorrect 

classification of pixels during the colour, skin suit, and ice segmentation methods. For 

example, Figure 12-5c shows a scenario where the algorithm does not remove the ice 

between a skater’s torso and arm, as the intensity of the ice is similar to that of the skater. 

The algorithm removes this type of noise by filtering the product of the fiducial marker's 

foreground object and the search neighbourhood's value channel. This process removes 

any pixel from this image where the intensity is less than a selected threshold; set as the 

image's maximum pixel intensity minus the product of (1) the pixel intensity standard 

deviation, and (2) a set coefficient. The set coefficient, dependent on the fiducial marker 

 

Figure 12-4. Three examples of the fiducial marker automated digitisation algorithm’s candidate 

selection: (a) the fiducial marker as seen in the multi-camera network, (b) the search neighbourhood, (c) 

the product of the current fiducial marker and ice segmentation binary image, (d) the fiducial marker 

binary image after morphological opening, and (e) the fiducial marker binary image after candidate 

selection.  
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colour, means that this process removes 0.1 to 5% of the minimum pixel intensities 

from the original foreground object.  

In the example described above, this process separates the foreground object into two 

candidate markers (Figure 12-5d). As a result, the algorithm reperforms candidate 

selection (as described in Section 12.2.5) to select the correct candidate (Figure 12-5e). 

Note that in the scenario where no noise is present, the filtering procedure only removes 

pixels from the edge of the foreground object. This pixel removal does not notably 

change the geometric centroid of the fiducial marker. 

12.2.7 Pixel coordinate transformation 

At present, the algorithm has measured the fiducial marker's geometric centroid in the 

search neighbourhood coordinate system (�-	��ℎU, �-	��ℎW). The algorithm 

transforms these coordinates into the image’s pixel coordinate system to allow the 

fiducial marker position to be reconstructed into the global coordinate system. Figure 

12-6 illustrates this transformation. 

 

Figure 12-5. Three examples of the fiducial marker automated digitisation algorithm’s fiducial marker 

processing: (a) the fiducial marker as seen in the multi-camera network, (b) the search neighbourhood, 

(c) the fiducial marker binary image after candidate selection, (d) the fiducial marker binary image after 

fiducial marker processing, and (e) the fiducial marker binary image after candidate selection.  
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First, the algorithm calculates the pixel coordinates of the search neighbourhood's top 

left corner in the image’s pixel coordinate system (�N�-	��ℎU, �N�-	��ℎW), 

     �N�-	��ℎU = .*.�(��-
*��-
U) − 16 (&'. 12.1) 
     �N�-	��ℎW = .*.�(��-
*��-
W) − 16 (&'. 12.2) 

where ��-
*��-
U and ��-
*��-
W is the predicted position of the fiducial marker used 

in Section 12.2.1. If either �N�-	��ℎU or �N�-	��ℎW is outside the image’s pixel 

coordinate system, the algorithm sets the relevant coordinate to one. Second, the 

algorithm calculates the fiducial marker’s position in the image’s pixel coordinate 

system (�NU, �NW) 

     �NU = �N�-	��ℎU + �-	��ℎU  (&'. 12.3) 

     �NW = �N�-	��ℎW + �-	��ℎW (&'. 12.4) 

 

Figure 12-6. Pixel coordinate transformation. The automated digitisation algorithm transforms the 

fiducial marker position (�-	��ℎU , �-	��ℎW) from the search neighbourhood coordinate system to the 

image pixel coordinate system (�NU, �NW) using the pixel coordinates of the search neighbourhood’s 

top left corner in the image pixel coordinate system (�N�-	��ℎU , �N�-	��ℎW).  
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12.3 Method 

This investigation quantified uncertainty in Section 12.2’s automated digitisation 

algorithm by comparing the algorithm's outputs to manually digitised ground truth data 

for six candidate fiducial marker colours. 

12.3.1 Candidate fiducial marker colours 

The six candidate fiducial marker colours – red, yellow, green, cyan, blue, and magenta 

– represented 60° intervals in the hue colour space. As described in Section 9.2.2, each 

fiducial marker (0.12 m in diameter) was positioned on a black vest 0.1 m above the 

skater’s two-dimensional centre-of-mass point estimate (i.e. the 1st lumbar vertebra). 

Figure 12-7 shows a typical image of each candidate fiducial marker colour in the 

National Ice Centre (GBR) multi-camera network.   

12.3.2 Fiducial marker test set 

Images of all candidate fiducial marker colours were collected using the National Ice 

Centre (GBR) multi-camera network during three Great Britain Short-Track Speed 

Skating training sessions over a two-week period. For each fiducial marker colour, the 

dataset consisted of three laps (one from each training session), on different short-track 

positions (one to five), akin to skating velocities of approximately 10, 11 and 12 second 

lap times. To evaluate the automated digitisation algorithm, a test set of 100 images were 

selected at random for each candidate fiducial marker colour (corner skating = 50 

images, straight skating = 50 images). For both skating conditions, the investigation 

assumed that the random image selection from different training sessions, skating 

 

Figure 12-7. The six candidate fiducial marker colours as seen in the National Ice Centre (GBR) multi-

camera network. From left to right (1) red, (2) yellow, (3) green, (4) cyan, (5) blue, and (6) magenta. 
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velocities, and short-track positions would account for the sources of variance in a 

skater's – and thus fiducial markers – appearance outlined in Section 4.3. 

12.3.3 Data analysis 

For each image in a fiducial marker colour's test set, the pixel coordinates of the marker 

centre were digitised both manually and automatically. In accordance with Landry et al. 

(2013), the investigation defined uncertainty in the automated digitisation as the 

resultant difference between these two methods.  

Manual skater digitisation 

Check2D (Centre for Sports Engineering Research, 2013) was used to digitise the centre 

of each fiducial marker manually. Figure 12-8 highlights this procedure. The image was 

zoomed to enlarge the view of the marker and the cursor's diameter adjusted and 

aligned to match the fiducial's outline. All manual digitisation was performed by a single 

operator to negate inter-operator digitisation error. As reported in Section 9.2.4, the 

procedures’ intra-operator error was ± 0.52 pixels. 

Automated skater digitisation 

The algorithm described in Section 12.2 was used to digitise the centre of each fiducial 

marker automatically. Table 12-1 summarises the algorithm’s parameters for the six 

 

Figure 12-8. The manual digitisation procedure. First, the image the image was zoomed to enlarge the 

view of the marker. Second, the cursor's diameter adjusted and aligned to match the marker's outline. 
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candidate fiducial markers. The parameters include (1) the colour segmentation 

minimum and maximum hue thresholds, (2) the skin suit segmentation set coefficient, 

(3) the ice segmentation RGB channel, and (4) the fiducial marker processing set 

coefficient. For each image, the algorithm created the search neighbourhood (Section 

12.2.1) by using the manually digitised fiducial marker position as the predicted fiducial 

marker position.  

12.3.4 Statistical analysis  

MATLAB R2016a (MathWorks, 2016) was used to compare the automated digitisation 

uncertainty in the National Ice Centre (GBR) and Olympic Oval (CAN) multi-camera 

networks. For each candidate fiducial marker, the analysis calculated the mean absolute 

digitisation uncertainty for the complete test set,  

     |�-	. 
*0*�*7	�*T. R.�-��	*.��| =   ∑ |5;|=;=1.  (&'. 12.5) 
where . is the number of images in the candidate fiducial markers test (. = 100), and 5; 
is the resultant uncertainty (measured in pixels) in the *th image. The analysis used the 

complete test set, as Landry et al. (2013) did not consider the effect of skating condition 

on digitisation uncertainty in the Olympic Oval (CAN) multi-camera network.  

Table 12-1. Automated digitisation algorithm parameters for each candidate fiducial marker colour. 

Candidate Hue Hue1 Hue2 Coefficient1  Ice Channel Coefficient2  

Red 0/360 270 60 0.04 Green 2.4 

Yellow 60 0 150 0.08 Blue 2.2 

Green 120 60 180 0.07 Blue 2.7 

Cyan 180 90 240 0.07 Red 2.7 

Blue 240 120 330 0.04 Red 3.3 

Magenta 300 210 45 0.07 Green 2.2 

Notes: All hue measurements are expressed in degrees. The hue thresholds include all angles from Hue1 

to Hue2 when moving in a clockwise direction. Coefficent1 is used in the skin suit segmentation with 

Coefficent2 used in the fiducial marker processing. 
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For each candidate fiducial marker, a Mann Whitney + -test – performed in SPSS 24 

(IBM, 2016) – was used to analyse differences in automated digitisation uncertainty 

between the corner and straight skating conditions. As shown in Table 12-2, the analysis 

treated the data as non-parametric as five of the twelve fiducial marker colour datasets 

violated the normality assumption of parametric statistical tests. In all statistical tests, 

the significance level, �, was set at , < 0.05, with effect sizes calculated using Pearson’s 

correlation coefficient (&'. 8.1). Effect size magnitudes were interpreted using Cohen's 

thresholds; where < 0.1, is trivial; 0.1–0.3, small; > 0.3–0.5, moderate; and > 0.5, large 

(Cohen, 1988).  

12.4 Results 

Of the 600 images analysed, the algorithm automatically digitised the fiducial marker 

597 times. Figure 12-9 illustrates the candidate fiducial marker colours automated 

digitisation uncertainty. Compared to the Olympic Oval (CAN) multi-camera network, 

all fiducial marker colours exhibited a smaller mean absolute digitisation uncertainty. 

Table 12-3 reports the results of the Mann-Whitney + -tests. For all candidate fiducial 

marker colours, there was no significant difference in automated digitisation 

uncertainty between the corner and straight skating conditions. 

Table 12-2. Normality results for each candidate fiducial marker’s automated digitisation uncertainty.  

 Corner   Straight   

Colour . �  , . �  ,  

Red 50 0.977 0.455 50 0.983 0.696 

Yellow 50 0.969 0.203 50 0.967 0.186 

Green 50 0.961 0.095 50 0.983 0.714 

Cyan 50 0.967 0.176 50 0.886 0.000* 

Blue 50 0.914 0.002* 50 0.541 0.000* 

Magenta 50 0.835 0.000* 50 0.910 0.001* 

Notes: . = sample size. �  = Shapiro-Wilk test statistic. * Distributions significantly deviate from 

normal. 
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12.5 Discussion 

This investigation aimed to quantify automated digitisation uncertainty in the multi-

camera network for six different candidate fiducial marker colours. Overall, the findings 

showed that for all candidate fiducial marker colours, the multi-camera network’s 

automated digitisation uncertainty was less than the Olympic Oval (CAN) multi-camera 

 

Figure 12-9. Automated digitisation uncertainty in the National Ice Centre (GBR)multi-camera network. 

 

Table 12-3. Median automated digitisation uncertainty for the corner and straight skating conditions, 

Mann-Whitney U-test results, and effect sizes for each candidate fiducial marker colour. 

Fiducial Corner Straight +  , � 

Red 0.96 0.87 9.92 x 102 0.138 -0.15 

Yellow 0.84 0.85 1.23 x 103 0.953 -0.01 

Green 0.88 0.88 1.23 x 103 0.961 -0.00 

Cyan 0.97 0.86 1.13 x 103 0.497 -0.07 

Blue 1.05 0.97 1.08 x 103 0.236 -0.12 

Magenta 0.98 1.01 1.18 x 103 0.763 -0.03 

Notes: Automated digitisation uncertainty measured in pixels. Magnitude of effect, �, measured using 

Pearson's correlation coefficient.                                                                                            
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network. As Landry et al. (2013) reported that the Olympic Oval (CAN) multi-camera 

network uncertainty was due to ambiguity in the digitised point (Section 5.2.2), the 

observed reduction was attributed to the use of fiducial markers minimising this 

ambiguity. The use of fiducial markers is similar to other automated digitisation 

approaches, such as optical motion capture, where passive markers are used to identify 

anatomical landmarks of interest such as segment endpoints (Payton, 2008). 

Of the 600 images analysed, the algorithm failed to digitise the fiducial marker on three 

occasions. Figure 12-10 illustrates each of these occasions. In the first two instances, the 

algorithm failed to digitise the red fiducial marker during the skin suit segmentation 

procedure, as the skin suit threshold was set too high (Section 12.2.3). As a result, the 

algorithm classified the fiducial marker's pixels as background in the skin suit binary 

image. This misclassification of pixels led to the loss of the fiducial marker during the 

multiplication of the fiducial marker and skin suit binary images. In the third instance, 

the algorithm failed to digitise the magenta fiducial marker during the colour 

segmentation procedure, as the predefined thresholds did not encapsulate the hue of the 

fiducial marker (Section 12.2.2). As a result, the algorithm classified the fiducial 

marker's pixels as background in the colour segmentation binary image. In this case, the 

misclassification of pixels was likely due to (1) the fiducial marker being partly occluded, 

and (2) noise in the image acquisition, rather than (3) incorrectly set hue thresholds. In 

this investigation, the magenta fiducial’s thresholds were set conservatively at ± 90° 

around the theoretical 300° hue (Table 12-1).  

Interestingly, all three instances occurred in the periphery of Camera 1's field-of-view. 

As a result, the algorithm can make use of the multi-camera network's overlapping 

camera field-of-views to digitise these skater positions. Figure 12-10 shows that the 

multi-camera network sees aspects of Camera 1's field-of-view in Cameras 21, 22 and 25. 

These cameras provide a superior view of the fiducial marker in all three instances. In 

each of these new images, the algorithm successfully digitises the fiducial marker. 
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Candidate fiducial marker performance 

Great Britain Short-Track Speed Skating only require four unique fiducial marker 

colours to distinguish between relay teams. Section 12.4 showed that the automated 

 

Figure 12-10. The three instances where the automated digitisation algorithm failed (top). Due to the 

National Ice Centre (GBR) multi-camera network’s overlapping field-of-views, in each scenario an 

alternative camera provides a superior view of the fiducial marker for the automated digitisation 

algorithm. In each of these new images (bottom), the algorithm successfully digitises the fiducial marker. 
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digitisation uncertainty was less than one pixel for four fiducial marker colours (red, 

yellow, green, and cyan) and greater than one pixel for two fiducial markers (blue and 

magenta).  

The blue fiducial marker’s larger uncertainty was due to the similarity in value channel 

pixel intensities for the fiducial marker and skin suit. This similarity led to the skin suit 

segmentation procedure classifying a proportion of the fiducial marker's pixels as 

background in the skin suit binary image (Section 12.2.3). This loss of fiducial marker 

pixels leads to increased digitisation uncertainty as the calculation of the geometric 

centroid is affected. This explanation, however, was not the case for the magenta fiducial 

marker as the differences in value channel pixel intensities for the fiducial marker and 

skin suit were akin to the other candidate fiducial marker colours. Accordingly, this 

suggests that other factors caused the larger automated digitisation uncertainty.  

One explanation for the magenta’s larger uncertainty is that the randomly generated test 

sets used in the analysis were biased. For example, the magenta test set could have 

included more instances where a skater was in the periphery of the image, had a more 

pronounced lean towards the centre of rotation, and – as a result – had a partially 

occluded fiducial marker that was less conducive to accurate digitisation. While future 

work could explore whether the random selection of test set images introduced bias into 

the analysis, this is not necessary for this thesis as Great Britain Short-Track Speed 

Skating only requires four unique fiducial markers to distinguish between relay teams. 

As a result, the remainder of this thesis will use the four fiducial markers that exhibited 

sub-pixel automated digitisation uncertainty. 

Effect of skating condition on automated digitisation uncertainty 

The multi-camera network’s automated digitisation uncertainty was invariant to the 

skating condition. The results showed that there were no significant differences between 

the corner and straight skating condition for all six candidate markers (Table 12-3). This 

finding is important for the multi-camera network as the appearance of a skater in an 
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image – and thus the fiducial marker – varies between the corner and straight due to 

differences in skating technique (Section 4.3.2). While both adopt a crouched skating 

position, skaters lean towards the centre of rotation to maintain the balance of forces 

between the skate and ice (Chun, 2001; Yule & Payton, 2000). As a result, the skin suit 

may not always surround the fiducial marker. 

Limitations 

This investigation has two limitations that require consideration. First, in accordance 

with Landry et al. (2013), the investigation assumed that the manually digitised fiducial 

markers represented the ground truth, i.e. the pixel coordinates contained no error. This 

assumption is not true as the manual digitisation procedure had a 0.52-pixel precision. 

Therefore, although this method allowed the National Ice Centre (GBR) multi-camera 

network to be compared to the Olympic Oval (CAN) multi-camera network, due to 

errors in the manual digitisation procedure it is possible that the investigation either 

over- or under-estimated the magnitude of automated digitisation uncertainty. 

Assuming that both the manual and automated digitisation procedures’ uncertainty are 

stochastic and uncorrelated, the former is more likely as the overall automated 

digitisation uncertainty, Q�, is equivalent to, 

     Q� =   √QN2 + Q	2 (&'. 12.6) 
where QN is the uncertainty in the manual digitisation procedure, and Q	 is the 

uncertainty in the automated digitisation procedure.  

Second, the investigation used the manually digitised fiducial marker pixel coordinates 

in the quantification of the automated digitisation algorithm’s uncertainty on two 

occasions (1) to create the initial fiducial marker search neighbourhood (Section 12.2.1), 

and (2) to determine which candidate fiducial marker had the smallest Euclidean 

distance during the candidate selection procedure (Section 12.2.5). Therefore, despite 

the relatively low precision in the manual digitisation procedure, it is likely that the 
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investigation only evaluated the automated digitisation uncertainty in the scenario 

where the fiducial marker’s predicted position error was less than one pixel. 

Although Section 12.2 reported that the typical mean prediction error was less than one 

pixel in the multi-camera network (corner = 0.86 pixels, straight = 0.93 pixels), the low 

relative precision (corner = 0.44 pixels, straight = 0.61 pixels) means that a proportion of 

prediction errors will be greater than one pixel. Accordingly, the results may have 

underestimated the magnitude of automated digitisation uncertainty in the multi-

camera network. However, in a randomly extracted corner and straight skating 

condition case study – illustrated in Figure 12-11 – there was no difference in automated 

digitisation uncertainty when I added one- and two-pixel errors to the fiducial markers’ 

predicted position. Still, future work should provide a more detailed exploration of the 

effect of prediction error on automated digitisation uncertainty in the National Ice 

Centre (GBR) multi-camera network.  

12.6 Chapter summary 

This chapter began to address the sixth objective of the programme of research: to 

quantify skater point error in the multi-camera network. This error describes how 

uncertainty in the automated digitisation of a skater propagates to errors in position and 

velocity. First, the chapter described the seven stages of the National Ice Centre (GBR) 

multi-camera network's fiducial marker-based automated digitisation algorithm. Second, 

 

Figure 12-11. The corner and straight skating condition prediction error case studies. When I added 

one- and two-pixel errors to the fiducial markers’ predicted position, there was no difference in the 

algorithm’s digitised position.  
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the chapter quantified the uncertainty in this developed algorithm. The results showed 

that the automated digitisation uncertainty was less than the Olympic Oval (CAN) 

multi-camera network, and invariant to the skating condition, for six candidate fiducial 

markers. The chapter concluded that this improvement was due to fiducial marker’s, 

positioned at skaters’ two-dimensional centre-of-mass point estimate, reducing 

ambiguity in the digitised point. In the next chapter, I explore how this automated 

digitisation uncertainty propagates to skater point error in the multi-camera network. As 

Great Britain Short-Track Speed Skating only requires four unique fiducial markers to 

distinguish between relay teams, the chapter uses the four fiducial markers that 

exhibited sub-pixel automated digitisation uncertainty. 
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Skater point error 

Chapter 13 Skater point error 

Skater point error in the multi-camera network 

13.1 Introduction 

Chapter 12 began to address the sixth objective of the programme of research – to 

quantify skater point error in the multi-camera network – by quantifying uncertainty in 

the automated digitisation of a skater. The chapter showed that the National Ice Centre 

(GBR) multi-camera network’s automated digitisation uncertainty was less than the 

Olympic Oval (CAN) multi-camera network, and invariant to the skating condition, i.e. 

the corner and straight, for six different fiducial marker colours. The chapter attributed 

these results to the use of fiducial markers, positioned at skaters’ two-dimensional 

centre-of-mass point estimate, reducing the ambiguity in the digitised point.  

In this chapter, I explore how this smaller automated digitisation uncertainty propagates 

to skater point error in the multi-camera network, i.e. errors in position and velocity. As 

Great Britain Short-Track Speed Skating only requires four unique markers to 

distinguish between relay teams, I quantify the multi-camera network’s skater point 

error for the four fiducial marker colours that exhibited sub-pixel automated digitisation 

uncertainty in Chapter 12. To provide a more detailed insight, I also consider the effect 

of skating condition, skater stature, and skating velocity on skater point error. 

13.2 Method 

For each fiducial marker colour, skater point error was quantified using Monte Carlo 

simulation methods in MATLAB R2016a (MathWorks, 2016). 
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13.2.1 Ground truth trajectories 

All 315 synthetic ground truth trajectories created in Chapter 9 were used to simulate 

the effect of skater point error in the multi-camera network. These trajectories included 

three representative skating velocities (equivalent to ~ 10 s, 11 s, and 12 s lap times), 

three skater statures (1.52 m, 1.69 m, and 1.86 m), and 105 independent full-lap 

trajectories.  

For each fiducial marker colour (red, yellow, green, and cyan), the simulation projected 

the 315 ground truth trajectories onto the multi-camera network’s 26 image planes – as 

described in Section 5.3.2 – using the camera-rink plane calibration models constructed 

in Chapter 8. Before the projection procedure, the investigation partitioned each ground 

truth trajectory so that the simulation only projected the relevant ground truth 

coordinates into each camera’s field-of-view. This process – detailed in Section 10.2.1 – 

negated false positives in the simulation, i.e. the incorrect projection of a global 

coordinate onto a camera’s image plane.  

13.2.2 Simulation 

For each ground truth trajectory, the investigation performed 26 camera-specific 

Monte-Carlo simulations for each fiducial marker colour. A camera's simulation 

comprised of 100 independent iterations, with each iteration consisting of two scenarios. 

The first scenario, termed ground truth, added no automated digitisation uncertainty to 

the camera’s ground truth projected pixel coordinates. The second scenario, termed 

simulated uncertainty, added the expected automated digitisation uncertainty to the 

camera’s ground truth projected pixel coordinates. 

The simulation added uncertainty to ground truth pixel coordinates by randomly 

sampling from a multivariate Gaussian distribution. The multivariate Gaussian 

distribution, an extension of the univariate Gaussian distribution to two or more 

correlated variables, has a mean vector, �, and covariance matrix, ∑. The diagonal 
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elements of ∑ contain the variances for each variable, while the off-diagonal elements of 

∑ contain the covariance between variables. Modelling the automated digitisation 

uncertainty as a multivariate Gaussian distribution ensured that the simulation did not 

model R- and /-pixel coordinate uncertainty as independent variables.  

For each fiducial marker colour, the investigation created corner and straight skating 

condition multivariate Gaussian distributions using the results of the study described in 

Chapter 12. As reported in Table 12-2, the National Ice Centre (GBR) multi-camera 

network’s automated digitisation uncertainty was normally distributed for all fiducial 

marker colour datasets apart from the cyan fiducial marker’s straight skating condition. 

The parameters of these multivariate Gaussian distributions are reported below, with an 

example raw and modelled distribution presented in Figure 13-1.  

The red fiducial marker’s corner and straight parameters (� and ∑) were  

     �HI<=>< = [ 0.64480.5288 ]      ∑HI<=>< = [-0.1549 -0.0278-0.0278 -0.2044 ] 
     ��@<�;cℎ@ =[ 0.62540.4438 ]      ∑�@<�;cℎ@ = [-0.1293 -0.0179-0.0179 -0.1969 ] 

The yellow fiducial marker’s corner and straight parameters (� and ∑) were  

     �HI<=>< = [ 0.57300.4016 ]      ∑HI<=>< = [-0.1831 -0.0212-0.0212 -0.1988 ] 

     ��@<�;cℎ@ =[ 0.54370.5414 ]      ∑�@<�;cℎ@ = [-0.1282 -0.0096-0.0096 -0.1472 ] 

The green fiducial marker’s corner and straight parameters (� and ∑) were  

     �HI<=>< = [ 0.49720.5342 ]      ∑HI<=>< = [-0.3250 -0.0066-0.0066 -0.2055 ] 
     ��@<�;cℎ@ =[ 0.61430.5241 ]      ∑�@<�;cℎ@ = [-0.1114  -0.0016-0.0016  -0.2126 ] 
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The cyan fiducial marker’s corner and straight parameters (� and ∑) were  

     �HI<=>< = [ 0.59960.6198 ]      ∑HI<=>< = [-0.1634 -0.0105-0.0105 -0.1437 ] 
     ��@<�;cℎ@ =[ 0.64120.3965 ]      ∑�@<�;cℎ@ = [-0.0718 -0.0306-0.0306 -0.3518 ] 

In each camera simulation iteration, the investigation reconstructed both scenarios’ 

pixel coordinates into the global coordinate system – as described in Section 5.3.2 – 

using the relevant camera-elevated plane calibration model constructed in Chapter 10. 

This procedure, i.e. using the same calibration models for both scenarios, ensured that 

 

Figure 13-1. Example corner and straight skating condition raw and modelled automated digitisation 

uncertainty in the skater point error simulation. 
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out-of-plane error was not a confounding factor in the simulation’s results. Resultant 

velocity was then calculated using &'. 5.24, with finite difference techniques used to 

compute velocity in the �- and �-axis (&'. 5.25 to &'. 5.27). The simulation used a 

sampling interval of 0.04 seconds to compute velocity as the ground truth trajectories 

had a sampling frequency of 25 Hz (Section 9.2). 

13.2.3 Data analysis 

In each camera simulation iteration, the investigation calculated skater point error as the 

RMS error (&'. 5.34) between the camera’s ground truth and reconstructed position 

and velocity trajectories. This calculation assumed that the ground truth condition 

represented the actual value of position and velocity. 

13.2.4 Statistical analysis 

SPSS 24 (IBM, 2016) was used to calculate each fiducial marker’s skater point error 

descriptive statistics (median, first quartile, third quartile, minimum, maximum, and ± 

95% confidence bounds) for the corner and straight skating conditions (defined in 

Section 8.33). The analysis calculated the median and first and third quartiles, instead of 

the arithmetic mean and standard deviation reported in Section 5.7.1, as the statistics 

are more representative of systematic and random error in non-normally distributed 

datasets. As all skater point errors were positive due to the calculation of the RMS error, 

the ± 95% confidence bounds represented the 95th percentile, i.e. the value below which 

95% of the skater point errors were found. 

To investigate the effect of skating condition, skater stature, and skating velocity on 

skater point error, the analysis pooled the results of the four fiducial markers into a 

single dataset. This data was treated as non-parametric, as the underlying assumptions 

of parametric statistical tests, i.e. normality and homogeneity of variance, were violated. 

First, a Mann Whitney U-test was used to analyse differences in skater point error 

between the corner and straight skating condition. Second, for each skating condition, 
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one-way Kruskal-Wallis ANOVAs were used to examine differences in skater point 

error between the three skater statures and the three skating velocities. Where main 

effects occurred, post hoc pairwise comparisons (Mann Whitney + -test) were used to 

identify the observed differences. Note that in all statistical tests, the analysis used the 

RMS velocity error as the sole metric of skater point error, as the numerical computation 

of velocity amplifies any uncertainty in position (Section 5.5.2). 

In all statistical tests, the significance level, �, was set at � < 0.05. As described in Section 

10.2.4, in post hoc comparisons the Bonferroni correction was used to correct each 

pairwise � so that the overall significance remained at � < 0.05 (Field, 2009). Effect sizes 

were also calculated using Pearson’s correlation coefficient (&'. 8.1), with the 

magnitudes interpreted using Cohen's thresholds; where < 0.1, is trivial; 0.1–0.3, small; > 

0.3–0.5, moderate; and > 0.5, large (Cohen, 1988). 

13.3 Results 

For each fiducial marker, the investigation compared a total of 685,200 reconstructed 

ground truth and simulated uncertainty position and velocity trajectories (corner = 

371,900, straight = 313,300). Table 13-1 reports each marker’s descriptive statistics, with 

Figure 13-2 illustrating an example skater point error for both corner and straight 

skating conditions. Overall, the multi-camera network’s ± 95% confidence bounds in 

skater point error were ± 0.14 m·s-1. 
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Table 13-1. Skater point error descriptive statistics for each fiducial marker colour in the National Ice Centre (GBR) multi-camera network. 

Statistic Colour X position error  Y position error  Resultant velocity error 

  Corner Straight  Corner Straight  Corner Straight 

Median (81, 83) Red 0.007 (0.006, 0.008) 0.005 (0.005, 0.006)  0.007 (0.006, 0.008) 0.006 (0.005, 0.007)  0.082 (0.068, 0.100) 0.078 (0.062, 0.089) 

 Yellow 0.006 (0.005, 0.007) 0.005 (0.005, 0.006)  0.006 (0.005, 0.007) 0.005 (0.005, 0.006)  0.083 (0.069, 0.102) 0.065 (0.054, 0.078) 

 Green 0.007 (0.006, 0.008) 0.006 (0.005, 0.006)  0.007 (0.006, 0.008) 0.006 (0.005, 0.006)  0.094 (0.077, 0.118) 0.080 (0.064, 0.092) 

 Cyan 0.007 (0.006, 0.008) 0.006 (0.005, 0.007)  0.007 (0.006, 0.008) 0.006 (0.005, 0.006)  0.074 (0.060, 0.091) 0.101 (0.081, 0.116) 

          

Min – Max Red 0.001 – 0.021 0.001 – 0.015  0.000 – 0.020 0.001 – 0.017  0.002 – 0.582 0.001 – 0.425 

 Yellow 0.000 – 0.022 0.001 – 0.014  0.001 – 0.022 0.001 – 0.016  0.002 – 0.508 0.002 – 0.379 

 Green 0.000 – 0.023 0.000 – 0.016  0.000 – 0.027 0.001 – 0.017  0.001 – 0.576 0.001 – 0.460 

 Cyan 0.001 – 0.020 0.001 – 0.017  0.001 – 0.021 0.001 – 0.015  0.001 – 0.432 0.002 – 0.514 

          

± 95% CB Red 0.010 0.007  0.010 0.008  0.139 0.118 

 Yellow 0.009 0.007  0.009 0.007  0.145 0.103 

 Green 0.010 0.007  0.010 0.008  0.178 0.120 

 Cyan 0.010 0.008  0.010 0.007  0.133 0.152 

Notes: 81 and 83 = first and third quartiles. CB = Confidence bounds. X and Y position measured in metres. Resultant velocity measured in m·s-1.  
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13.3.1 Skating condition 

There was a significant difference in skater point error between the corner and straight 

skating conditions, +  =8.07 x 1011, , = 0.000, � = -0.11 (a small effect). The RMS velocity 

error was larger during the corner (/3̃ = 0.083 m·s-1) than the straight (/3̃ = 0.077 m·s-1). 

13.3.2 Skater stature 

There was a significant main effect for skater stature on skater point error in both corner 

(�  (2) =6.71 x 102, , = 0.000) and straight (�  (2) =1.11 x 103, , = 0.000) skating 

conditions. The post hoc pairwise comparisons are summarised in Table 13-2. In both 

 

Figure 13-2. Example skater point errors for a corner (left) and straight (right) skating condition camera 

in the National Ice Centre (GBR) multi-camera network. 
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skating conditions, the magnitude of skater point error was significantly larger for the 

minimum stature compared to the mean stature (�H = 0.01, �� = 0.02), the mean stature 

compared to the maximum stature (�H = 0.01, �� = 0.02), and the minimum stature 

compared to the maximum stature (�H = 0.03, �� = 0.04).  

13.3.3 Skating velocity 

There was a significant main effect for skating velocity on skater point error in both 

corner (�  (2) =3.81 x 102, , = 0.000) and straight (�  (2) =3.69 x 102, , = 0.000) skating 

conditions. Table 13-3 summarises the post hoc pairwise comparisons. In both skating 

conditions, the magnitude of skater point error was significantly smaller for the slow 

velocity compared to the medium velocity (�H = -0.01, �� = -0.01), the medium velocity 

compared to the fast velocity (�H = -0.01, �� = -0.02), and the small velocity compared to 

the fast velocity (�H = -0.02, �� = -0.02).  

13.4 Discussion 

This investigation aimed to quantify skater point error in the multi-camera network for 

four fiducial marker colours, i.e. how uncertainty in the automated digitisation of a 

Table 13-2. Effect of skater stature on skater point error: post hoc pairwise comparisons.  

Condition Stature (1 – 2) ¢  /3̃ Error1 /3̃ Error2 +  , � 

Corner Min - Mean 988,800 0.083 0.083 1.01 x 104 0.000 0.01 

 Min - Max 989,600 0.083 0.082 2.23 x 104 0.000 0.03 

 Max - Mean 988,800 0.082 0.083 1.22 x 104 0.000 0.01 

        

Straight Min - Mean 833,600 0.078 0.077 1.25 x 104 0.000 0.02 

 Min - Max 835,600 0.078 0.076 2.63 x 104 0.000 0.04 

 Max - Mean 833,600 0.076 0.077 1.39 x 104 0.000 0.02 

Notes: Skater statures (min, mean and max) represent values of 1.52, 1.69 and 1.86 m, respectively. /3̃ 

Error = Median skater point error measured in m·s-1. U = Mann-Whitney U-Test. Significance values 

adjusted using the Bonferroni correction to control for family-wise error. Magnitude of effect, �,  
measured using Pearson's correlation coefficient.            
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skater propagated to errors in position and velocity. The investigation also considered 

the effect of skating condition, skater stature, and skating velocity, to provide a more 

detailed insight into the multi-camera network’s skater point error.  

The results showed that the multi-camera network's skater point error was within the ± 

0.19 m·s-1 target measurement error and significantly less than the Olympic Oval (CAN) 

multi-camera network's ± 1.04 m·s-1 skater point error, for all four fiducial marker 

colours. Overall, the multi-camera network had a skater point error of ± 0.14 m·s-1. I 

attribute this improvement in skater point error to two factors. First, as reported in 

Chapter 12, the use of fiducial markers minimised uncertainty in the automated 

digitisation of a skater by reducing the ambiguity in the digitised point. As a result, I 

reduced skater point error at a pixel level before reconstructing the pixel coordinates 

into the global coordinate system. Second, as shown in Chapter 8, the National Ice 

Centre (GBR) multi-camera network has a superior spatial resolution of the rink 

surface; the result of using 26 cameras – all recording at a higher image resolution – to 

capture the short-track. This superior spatial resolution reduced skater point error in the 

global coordinate system after I reconstructed the pixel coordinates. 

Table 13-3. Effect of skating velocity on skater point error: post hoc pairwise comparisons.  

Condition Velocity (1 – 2)  N /3̃ Error1 /3̃ Error2 +  , � 

Corner Slow - Med 1,186,800 0.082 0.083 -1.15 x 104 0.000 -0.01 

 Slow - Fast 890,800 0.082 0.082 -1.71 x 104 0.000 -0.02 

 Fast - Med 892,800 0.083 0.083 -5.59 x 103 0.000 -0.01 

        

Straight Slow - Med 1,001,200 0.077 0.077 -5.93 x 103 0.000 -0.01 

 Slow - Fast 751,200 0.077 0.078 -1.70 x 104 0.000 -0.02 

 Fast - Med 754,000 0.078 0.077 -1.10 x 104 0.000 -0.02 

Notes: Skating velocity (slow, med and fast) akin to approximately 12, 11, and 10 second lap times, 

respectively. /3̃ Error = Median skater point error measured in m·s-1. U = Mann-Whitney U-Test. 

Significance values adjusted using the Bonferroni correction to control for family-wise error. Magnitude 

of effect, �, measured using Pearson's correlation coefficient.                            
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The multi-camera network’s maximum skater point error did, however, exceed the ± 

0.19 m·s-1 target measurement error for all four fiducial marker colours, in both skating 

conditions (Table 13-1). In Chapter 11, I reported that similar magnitudes of out-of-

plane error were due to errors in the classification of skating condition cameras. This 

misclassification resulted in the camera-elevated calibration planes being less effective at 

minimising out-of-plane distances. This was not the case in this study, however, as both 

ground truth and simulated uncertainty scenarios were reconstructed into the global 

coordinate system using the same calibration model to negate out-of-plane error. In this 

study, the 2% of errors that exceeded the ± 0.19 m·s-1 target measurement error were due 

to uncertainty in the automated digitisation of a skater introducing high-frequency 

noise into the reconstructed fiducial marker positions. As described in Section 5.5.2, and 

demonstrated in Figure 13-2, the numerical computation of velocity amplifies these 

errors in position. For this reason, the results suggest smoothing raw reconstructed 

fiducial marker positions to attenuate high-frequency noise. As discussed in Section 

5.5.2, a smoothing spline should be implemented instead of the commonly used 

Butterworth filter, as this technique does not require a constant sampling interval. As 

detailed in Section 5.5.1, in the National Ice Centre (GBR) multi-camera network the 

sampling interval is only constant between corresponding scanlines in consecutive 

images due to the image sensors’ electronic rolling shutter.  

Effect of skating condition on skater point error 

The results showed that skater point error was significantly larger in the corner skating 

condition than the straight. This finding contradicts Chapter 12, where despite the 

pooled uncertainty for the four fiducial markers being larger in the corner (median = 

0.93 pixels) than the straight (median = 0.89 pixels), automated digitisation uncertainty 

was found to be invariant to the skating condition. Instead, in this investigation, the 

corner's larger RMS velocity errors were due to differences in the spatial resolution of 

each skating condition's calibrated plane. 
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The spatial resolution of a calibration plane, i.e. the number of metres per pixel, 

increases as the camera-to-calibration plane distance decreases. As the multi-camera 

network constructs camera-elevated plane calibration models at 45% and 59% of the 

skater's stature, to mitigate out-of-plane error in the corner and straight, the corner 

skating condition has a greater camera-to-calibration plane distance and therefore a 

lower spatial resolution. For example, for a given pixel, a skater stature of 1.69 m has a 

spatial resolution of 0.0127 m per pixel in the corner and 0.0122 m per pixel in the 

straight. This lower spatial resolution, coupled with the larger automated digitisation 

uncertainty reported in Chapter 12, leads to skater point error being significantly larger 

in the corner skating condition than the straight.  

Importantly for the multi-camera network, the size of this effect was small; the 

difference between the median RMS velocity error (0.006 m·s-1) equated to 3.2% of the ± 

0.19 m·s-1 target measurement error. For this reason, the results suggest that the multi-

camera network's skater point error is effectively invariant to the skating condition. As 

discussed in Section 12.5, this is important in the multi-camera network as the 

appearance of a skater – and thus the fiducial marker – varies between the corner and 

straight due to differences in the skating technique (Section 4.3.2).  

Effect of skater stature on skater point error 

In both corner and straight skating conditions, the results showed that skater point error 

was significantly larger as the skater stature decreased. These larger errors in RMS 

velocity (Table 13-2) were due to differences in the spatial resolution of each stature's 

calibrated planes. As discussed above, the spatial resolution of a calibration plane 

increases as the camera-to-calibration plane distance decreases. By constructing camera-

elevated plane calibration models specific to each skater's stature, the spatial resolution 

of a calibration plane is lower for a shorter skater stature. For example, for a given pixel, 

the spatial resolutions of the minimum (1.52 m), mean (1.69 m), and maximum (1.86 

m) skater stature were 0.0129 m, 0.0127 m and 0.0126 m in the corner skating condition, 
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and 0.0124 m, 0.0122 m and 0.0121 m in the straight skating condition. As a result, the 

lower spatial resolution leads to a larger skater point error for a given pixel uncertainty.  

Importantly for the multi-camera network, the size of these effects was trivial (Table 13-

2). For example, when comparing the minimum and maximum skater stature, the 

difference between the median RMS velocity error in the corner (0.001 m·s-1) and 

straight (0.002 m·s-1) only equated to 0.8% and 0.9% of the ± 0.19 m·s-1 target 

measurement error. Consequently, these findings indicate that the multi-camera 

network's skater point error is effectively invariant to skater stature.  

Effect of skating velocity on skater point error 

In both corner and straight skating conditions, the results showed that skater point error 

was significantly larger as skating velocity increased. On the surface, this finding is 

unsurprising considering that the appearance of a skater – and thus fiducial marker – is 

dependent on the skating velocity (Section 4.3.2). At faster velocities, skaters travel 

further in a camera’s 0.004-second exposure, leading to an increase in the image's 

motion blur and, as a result, automated digitisation uncertainty. However, this was not 

the case in this study as the multivariate Gaussian distributions only modelled 

automated digitisation uncertainty for the different skating conditions (Section 13.2.2). 

As a result, the simulated automated digitisation uncertainty was the same for each 

skating velocity condition.  

In this study, consistent with the findings in Chapters 8, 10, and 11, skater point error 

significantly increased with skating velocity due to intra-camera calibration model error. 

As shown in Chapter 8, intra-camera calibration model error increases significantly with 

skating velocity due to greater differences in two measured positions’ intrinsic 

calibration model errors. These results suggest that the effect of skating velocity in the 

multi-camera network is more sensitive to intra-camera calibration model error than 

skater point error.  
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Importantly for the multi-camera network, the effect of skating velocity on skater point 

error was trivial (Table 13-3). For example, when comparing the slow and fast skating 

velocity, the difference between the median RMS velocity error in the corner (0.001 m·s-

1) and straight (0.001 m·s-1) equated to only 0.6% and 0.7% of the ± 0.19m·s-1 target 

measurement error. Accordingly, these findings suggest that the multi-camera network's 

skater point error is effectively invariant to the skating velocity. This outcome is 

important in the multi-camera network, as Chapter 2 showed that skating velocity varies 

during the short-track speed skating relay event. 

Limitations 

This study has two limitations that warrant consideration. First, as this study used the 

results of Chapter 12 to model uncertainty in the automated digitisation of a skater, the 

limitations discussed in Section 12.5 also apply to this study. Second, in Section 13.2.2, I 

reported that the distribution of uncertainty in the automated digitisation of a skater 

was non-normal in the cyan fiducial marker’s straight skating condition. Despite this, 

the investigation modelled this automated digitisation uncertainty as a multivariate 

Gaussian distribution due to the challenges surrounding the generation of multivariate 

non-Gaussian data. For example, while I could have applied non-linear transformations 

to the R- and /-pixel uncertainties to rectify the non-normality, this would have likely 

altered the dependence between the modelled variables (Ruscio & Kaczetow, 2008). 

Subsequently, the randomly sampled uncertainty added to the cyan fiducial marker’s 

raw pixel coordinates in the straight skating condition cameras may have manifested 

differently in the simulation using a multivariate non-Gaussian distribution.  However, 

as the parameters of this distribution are similar to the other fiducial marker colour 

datasets, it is likely that the automated digitisation uncertainty would still have 

manifested as high-frequency noise in the multi-camera network. 

13.5 Chapter summary 

This chapter used Monte Carlo simulations to address the sixth objective of the 
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programme of research: to quantify skater point error in the multi-camera network. 

More specifically, how uncertainty in the automated digitisation of a skater propagated 

to errors in position and velocity. The chapter showed that the multi-camera network’s 

skater point error was within the ± 0.19 m·s-1 target measurement error, significantly less 

than the Olympic Oval (CAN) multi-camera network’s ± 1.04 m·s-1 skater point error, 

and effectively invariant to the skating condition, skater stature, and skating velocity, for 

all four fiducial markers. Overall, the multi-camera network’s skater point error was ± 

0.14 m·s-1. The chapter concluded that the multi-camera network’s improvement in 

skater point error was due to fiducial markers minimising the uncertainty in the 

automated digitisation of a skater and the National Ice Centre (GBR) multi-camera 

network having a superior spatial resolution of the rink surface. Furthermore, the 2% of 

errors that exceeded the target measurement error – attributed to automated digitisation 

uncertainty introducing high-frequency noise into reconstructed fiducial marker 

positions – could be attenuated by using smoothing splines. 
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Total error 

Chapter 14 Total error 

Total error in the multi-camera network 

14.1 Introduction 

The second part of this thesis has investigated developing the National Ice Centre (GBR) 

multi-camera network to measure accurate, two-dimensional, relay exchange 

kinematics. In Chapter 5, the literature review identified five sources of measurement 

error that would determine the multi-camera network’s accuracy. Accordingly, 

Chapters 6 to 13 quantified how these sources of error propagated, independently, to 

errors in position and velocity. This programme of research ensured that multi-camera 

network’s measurement workflow was empirically informed by identifying the sources 

of error that exceed the ± 0.19 m·s-1 target measurement error and need to be minimised, 

e.g. out-of-plane error in the multi-camera network.  

In the final chapter of part two, I address the seventh objective of the programme of 

research: to quantify total error in the multi-camera network. Total error describes how 

the five sources of measurement error propagate, collectively, to errors in position and 

velocity. In doing so, this chapter answers the thesis's overarching research question 

‘Can multi-camera networks be used to measure accurate, two-dimensional, relay 

exchange kinematics in short-track speed skating’. First, I quantify the multi-camera 

network’s total error for the four selected fiducial marker colours used to identify the 

four teams in the short-track speed skating relay. Second, to provide a more 

comprehensive insight, I consider the effect of skating condition, skater stature, and 

skating velocity on the magnitude of total error. 
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14.2 Method 

For each fiducial marker colour, the multi-camera network’s total error was quantified 

using a revised version of the simulation described in Chapter 13.  

14.2.1 Revisions 

First, in Chapter 13, each camera simulation consisted of two scenarios: ground truth 

and simulated uncertainty. In this investigation, the simulation only used the simulated 

uncertainty scenario. This scenario adds the expected automated digitisation 

uncertainty to the camera’s ground truth projected pixel coordinates by randomly 

sampling from the appropriate multivariate Gaussian distribution (Section 13.2.2). 

Second, based on the recommendations of Chapter 11, the simulation dynamically 

classified the skating condition camera depending on the short-track position. The 

dynamic classification ensured that corner skating was not reconstructed using camera-

elevated plane calibration models created for straight skating and vice versa. Third, 

based on the recommendations of Chapter 13, the simulation smoothed raw 

reconstructed fiducial marker positions using a smoothing spline (Section 5.5.2). The 

smoothing parameter, �, was set empirically at 0.3. The smoothing spline removed the 

high-frequency noise associated with the automated digitisation uncertainty from the 

calculated kinematic variables. Fourth, the simulation calculated total error as the RMS 

error (&'. 5.34) between the camera’s reconstructed simulated uncertainty scenario and 

the camera’s ground truth trajectory position and velocity trajectories. This procedure 

ensured that the simulation included out-of-plane error. 

14.3 Results 

For each fiducial marker, the investigation compared a total of 684,600 ground truth 

and reconstructed simulated uncertainty position and velocity trajectories (corner = 

369,600, straight = 315,000). Table 14-1 reports each marker’s descriptive statistics, with 

Figure 14-1 illustrating an example total error for both corner and straight skating 
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conditions. Overall, the multi-camera network’s ± 95% confidence bounds in total error 

were ± 0.17 m·s-1. 
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Table 14-1. Total error descriptive statistics for each fiducial marker colour in the National Ice Centre (GBR) multi-camera network. 

Statistic Colour X position error  Y position error  Resultant velocity error 

  Corner Straight  Corner Straight  Corner Straight 

Median (81, 83) Red 0.014 (0.009, 0.021) 0.012 (0.008, 0.018)  0.014 (0.009, 0.020) 0.009 (0.006, 0.016)  0.077 (0.056, 0.105) 0.082 (0.059, 0.113) 

 Yellow 0.014 (0.009, 0.022) 0.012 (0.008, 0.018)  0.014 (0.009, 0.021) 0.010 (0.006, 0.016)  0.079 (0.057, 0.108) 0.083 (0.060, 0.114) 

 Green 0.014 (0.009, 0.022) 0.012 (0.008, 0.018)  0.014 (0.009, 0.021) 0.010 (0.006, 0.016)  0.076 (0.055, 0.104) 0.086 (0.062, 0.117) 

 Cyan 0.014 (0.009, 0.022) 0.012 (0.008, 0.018)  0.014 (0.009, 0.021) 0.010 (0.006, 0.016)  0.077 (0.056, 0.105) 0.083 (0.060, 0.114) 

          

Min – Max Red 0.000 – 0.091  0.000 – 0.045  0.000 – 0.091 0.000 – 0.061  0.000 – 0.730 0.002 – 0.281 

 Yellow 0.000 – 0.096 0.000 – 0.045  0.000 – 0.093 0.001 – 0.061  0.000 – 0.763 0.001 – 0.296 

 Green 0.000 – 0.092 0.001 – 0.045  0.000 – 0.092 0.001 – 0.061  0.000 – 0.698 0.003 – 0.291 

 Cyan 0.000 – 0.093 0.001 – 0.045  0.000 – 0.095 0.001 – 0.061  0.000 – 0.745 0.002 – 0.283 

          

± 95% CB Red 0.038 0.028  0.039 0.032  0.173 0.166 

 Yellow 0.038 0.028  0.039 0.032  0.177 0.167 

 Green 0.038 0.028  0.039 0.032  0.172 0.168 

 Cyan 0.038 0.028  0.039 0.032  0.172 0.166 

 Notes: 81 and 83 = first and third quartiles. CB = Confidence bounds. X and Y position measured in metres. Resultant velocity measured in m·s-1.  
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14.3.1 Skating condition 

There was a significant difference in total error between the corner and straight skating 

conditions, +  = 1.02 x 109, , = 0.000, � = 0.08 (a trivial effect). The RMS velocity error 

was smaller during the corner (/3�  = 0.077 m·s-1) than the straight (/3�  = 0.084 m·s-1). 

14.3.2 Skater stature 

There was a significant main effect for skater stature on total error in both corner (�  (2) 

= 2.11 x 104, , = 0.000) and straight (�  (2) = 2.95 x 104, , = 0.000) skating conditions. 

The post hoc pairwise comparisons are summarised in Table 14-2. In both skating 

 

Figure 14-1. Example skater point errors for a corner (left) and straight (right) skating condition camera 

in the National Ice Centre (GBR) multi-camera network. 
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conditions, the magnitude of total error was significantly smaller for the minimum 

stature compared to the mean stature (�H = -0.08, �� = -0.10), the mean stature 

compared to the maximum stature (�H = -0.07, �� = -0.09), and the minimum stature 

compared to the maximum stature (�H = -0.15, �� = -0.19).  

14.3.3 Skating velocity 

There was a significant main effect for skating velocity on total error in both corner (�  

(2) = 2 x 101, , = 0.000) and straight (�  (2) = 3.3 x 101, , = 0.000) skating conditions. 

Table 14-3 summarises the post hoc pairwise comparisons. In both skating conditions, 

the magnitude of total error was significantly smaller for the slow velocity compared to 

the medium velocity (�H = -0.08, �� = -0.12), the medium velocity compared to the fast 

velocity (�H = -0.39, �� = -0.09), and the slow velocity compared to the fast velocity (�H = 

-0.46, �� = -0.20).  

14.4 Discussion  

This investigation aimed to quantify total error in the multi-camera network for four 

different fiducial marker colours, i.e. how the multi-camera network’s five sources of 

Table 14-2. Effect of skater stature on total error: post hoc pairwise comparisons.  

Condition Stature (1 – 2) ¢  /3̃ Error1 /3̃ Error2 +  , � 

Corner Min - Mean 989,200 0.072 0.078 -64,833.20 0.000 -0.08 

 Min - Max 985,200 0.072 0.083 -124,927.01 0.000 -0.15 

 Max - Mean 982,400 0.078 0.083 -60,093.76 0.000 -0.07 

        

Straight Min - Mean 840,000 0.077 0.084 -71,238.16 0.000 -0.10 

 Min - Max 840,000 0.077 0.091 -136,182.03 0.000 -0.19 

 Max - Mean 840,000 0.084 0.091 -64,943.88 0.000 -0.09 

Notes: Skater statures (min, mean and max) represent values of 1.52, 1.69 and 1.86 m, respectively. /3̃ 

Error = Median skater point error measured in m·s-1. U = Mann-Whitney U-Test. Significance values 

adjusted using the Bonferroni correction to control for family-wise error. Magnitude of effect, �, 
measured using Pearson's correlation coefficient.          
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measurement error propagated, collectively, to errors in position and velocity. The 

investigation also considered the effect of skating condition, skater stature, and skating 

velocity, to provide a more detailed insight into the multi-camera network’s total error. 

The results showed that the multi-camera network's total error was within the ± 0.19 

m·s-1 target measurement error and significantly less than the Olympic Oval (CAN) 

multi-camera network's ± 1.53 m·s-1 total error, for all four fiducial markers. Overall, the 

multi-camera network had a total error of ± 0.17 m·s-1. I attribute this improvement in 

measuring relay exchange kinematics to reducing the multi-camera network’s five 

sources of measurement error.  

These findings have two clear implications for this thesis. First, the results answer the 

thesis’s overarching research question ‘Can multi-camera networks be used to measure 

accurate, two-dimensional, relay exchange kinematics’. Yes, if the network’s sources of 

measurement error are mitigated as outlined in Part II of this thesis. Second, the results 

confirm that the aim of the thesis – to develop a multi-camera network to measure 

accurate, two-dimensional, relay exchange kinematics – has been achieved. Importantly, 

this finding suggests that Great Britain Short-Track Speed Skating can use the National 

Ice Centre (GBR) multi-camera network as a tool to advance knowledge on ‘how to 

 Table 14-3. Effect of skating velocity on total error: post hoc pairwise comparisons.  

Condition Velocity (1 – 2)  N /3̃ Error1 /3̃ Error2 +  , � 

Corner Slow - Med 1,180,000 0.067 0.073 -67,337.02 0.000 -0.08 

 Slow - Fast 886,000 0.067 0.106 -417,695.62 0.000 -0.46 

 Fast - Med 890,800 0.073 0.106 -350,358.60 0.000 -0.39 

        

Straight Slow - Med 1,008,000 0.077 0.086 -86,078.16 0.000 -0.12 

 Slow - Fast 756,000 0.077 0.091 -155,089.41 0.000 -0.20 

 Fast - Med 756,000 0.086 0.091 -69,011.25 0.000 -0.09 

Notes: Skating velocity (slow, med and fast) akin to approximately 12, 11, and 10 second lap times, 

respectively. /3̃ Error = Median skater point error measured in m·s-1. U = Mann-Whitney U-Test. 

Significance values adjusted using the Bonferroni correction to control for family-wise error. Magnitude 

of effect, �, measured using Pearson's correlation coefficient.                            
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execute the relay exchange effectively’. In turn, supporting the team’s targeted 

improvement of the relay exchange, and ultimately, their aim of delivering medal-

winning performances at the Winter Olympic Games. 

The multi-camera network’s maximum total error did, however, exceed the ± 0.19 m·s-1 

target measurement error for all four fiducial marker colours in both skating conditions 

(Table 14-1). In Chapter 13, I reported that similar maximum skater point errors were 

due to the amplification of automated digitisation uncertainty in the computation of 

velocity. However, as illustrated in Figure 14-1, this study reduced high-frequency noise 

by applying smoothing splines to each camera’s raw reconstructed fiducial marker 

positions (Section 14.2.1). In this study, the maximum total errors were due to out-of-

plane errors. In Chapter 11, I reported that 10% of out-of-plane errors exceeded the ± 

0.19 m·s-1 target measurement error due to the misclassification of skating condition 

cameras, e.g. corner skating in a straight skating condition camera. This 

misclassification resulted in the camera-elevated plane calibration models being less 

effective at minimising out-of-plane distances and, as a result, larger out-of-plane errors. 

Although the potential for misclassification was minimised in this study by dynamically 

classifying the skating condition camera depending on the current short-track position, 

the wrong classification of skating condition camera still resulted in 3% of errors 

exceeding the target measurement error. 

Effect of skating condition on total error 

The results showed that total error was significantly smaller in the corner skating 

condition than the straight skating condition. This result contradicts our findings in 

Chapter 13 but is consistent with the outcomes of Chapter 11.  

In Chapter 13, I reported that skater point error was significantly larger in the corner 

skating condition due to (1) the corner’s camera-elevated calibration plane models 

having a smaller spatial resolution, and (2) the corner having a greater magnitude of 

automated digitisation uncertainty. The former was the result of a more substantial 
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camera-to-calibrated plane distance, as I constructed corner calibration models at 45% 

of the skater's stature compared to 59% in the straight. The latter was due to differences 

in skating technique leading to less optimal views of the skater for the automated 

digitisation algorithm, e.g. the skin suit not surrounding the fiducial marker (Section 

12.2.1). In contrast, in Chapter 11 I attributed significantly smaller out-of-plane errors in 

the corner skating condition to the scaling coefficient being more effective at 

minimising out-of-plane distances. It was noted, however, that this result may have been 

due to the misclassification of skating condition cameras, i.e. straight skating condition 

cameras capturing corner skating (Section 11.4).  

Collectively, these findings suggest that the effect of skating condition in the multi-

camera network is more sensitive to out-of-plane error than skater point error. 

Importantly for the multi-camera network, the effect of skating velocity on total error 

was trivial. The difference between the median RMS velocity error (0.007 m·s-1) equated 

to 3.7% of the ± 0.19 m·s-1 target measurement error. This finding suggests that the 

multi-camera network's total error is effectively invariant to the skating condition. As 

discussed in Section 12.5, this is important in the multi-camera network as the 

appearance of the fiducial marker differs between the two skating conditions.   

Effect of skater stature on total error 

In both corner and straight skating conditions, the results showed that the multi-camera 

network's total error significantly increased from the minimum, to mean, to maximum 

skater stature in Great Britain Short-Track Speed Skating's World Class Performance 

Programme. Again, these results contradict the findings from Chapter 13 but are 

consistent with the outcomes of Chapter 11.  

In Chapter 13, I stated that skater point error significantly decreased as the skater stature 

increased due to the calibration planes having a higher spatial resolution, i.e. a greater 

number of pixels per metre. This higher spatial resolution was the product of taller 

stature skaters' elevated calibration planes having a smaller camera-to-elevated plane 
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distance. In contrast, in Chapter 11 I reported that the multi-camera network's out-of-

plane error significantly increased with skater stature due to the angle of incidence 

increasing. These findings further demonstrate that the multi-camera network is more 

sensitive to out-of-plane error than skater point error. The former accounted for 7% 

(corner) and 10% (straight) of the ± 0.19 m·s-1 target measurement error, the latter 0.8% 

(corner) and 0.9% (straight) of the ± 0.19 m·s-1 target measurement error. 

Importantly for the multi-camera network, the effect of skater stature on total error was 

small. The difference between the minimum and maximum skater stature's median 

RMS velocity error in the corner (0.011 m·s-1) and straight (0.014 m·s-1) equated to only 

5.8% and 7.4% of the ± 0.19 m·s-1 target measurement error. These values, approximately 

equivalent to the magnitude of out-of-plane error minus the magnitude of skater point 

error, demonstrate that the multi-camera network's total error is effectively invariant to 

the skater stature.  

Effect of skating velocity on total error 

Consistent with our findings in Chapters 8, 10, 11, and 13, in both corner and straight 

skating conditions, total error significantly increased with skating velocity due to intra-

camera calibration model error. In Chapter 8, I reported that intra-camera calibration 

model error increased with skating velocity due to velocity-dependent uncertainties in 

the sampling interval and reconstructed positions. While the former is irrelevant in this 

investigation, as the ground truth trajectories created in Chapter 9 had a constant 0.04-

second sampling interval, the latter, caused by differences in two measured position's 

intrinsic calibration model error, was still present. In Chapters 10, 11 and 13, I showed 

that intra-camera calibration model error was more sensitive to skating velocity than 

both out-of-plane and skater point error.  

Importantly, the difference between the slow and fast velocity condition’s median RMS 

velocity error in the corner (0.039 m·s-1) and straight (0.014 m·s-1) equated to only 

20.5 % and 7.4% of the ± 0.19 m·s-1 target measurement error. In accordance with 
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Chapter 11, the corner skating condition’s total error was larger than the straight due to 

a more substantial difference in out-of-plane distances (corner = 0.06 m, straight = 0.03 

m). For this reason, future research could explore minimising out-of-plane error by 

constructing camera-elevated plane calibration models specific to the current skating 

velocity. Nevertheless, the results show that the multi-camera network's total error is 

effectively invariant to the skating velocity. As reported in Section 13.4, this is important 

in the multi-camera network as skating velocity varies during short-track speed skating 

relays. 

Limitations 

This investigation has two limitations that warrant consideration. First, as the 

investigation used a revised version of the simulation described in Chapter 13, the 

limitations discussed in Section 13.4 are also applicable here. Second, the simulation did 

not include the effect of the multi-camera network’s rolling shutter error, as the ground 

truth trajectories created in Chapter 9 had a constant sampling interval. While this 

constant sampling interval is not representative of the multi-camera network, as the 

sampling interval is only constant between corresponding scanlines in consecutive 

images (Section 5.5.1), the simulation assumed that the multi-camera network would 

negate rolling shutter error by using the electronic rolling shutter model described in 

Chapter 6. However, as shown below, this would not always be the case due to 

uncertainty in the automated digitisation of a skater.  

To recap, the electronic rolling shutter model allows the readout time �F(^) for scanline �, 

in image 1, to be calculated as, 

     �F(^) = �(^) + (��)  �� (&'. 5.28) 
where ∆t is the sampling interval, S is the total number of scanlines per image, and �(^) 
is the readout time of the first scanline in image 1. Accordingly, the sampling interval 

�H(^) between two consecutive frames is calculated as, 
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     �H(^) = (�F(^) +  ��) − �F(^−1)
 (&'. 5.29) 

Uncertainty in the automated digitisation of a skater leads to errors in the model’s 

calculated sampling interval, as the uncertainty represents an error in the measurement 

of scanline � in &'. 5.28. The impact of this error in &'. 5.29 can be explored using a 

simple simulation. The data from Chapter 12’s investigation demonstrates that the 

median automated digitisation uncertainty in the /-axis, i.e. the � scanline, was ± 0.55 

pixels. As each scanline in the multi-camera network is equivalent to 0.00005 seconds 

(sampling interval/ total number of scanlines), the median pixel automated digitisation 

uncertainty leads to sampling interval errors of ± 0.0000275 seconds. Consequently, in 

the two worst case scenarios the sampling interval error is ± 0.000055 seconds. 

Accordingly, for a skater travelling at 10 m·s-1, the error in velocity would be ± 0.013 

m·s-1. As this value is considerably lower than the median RMS velocity errors reported 

in Table 14-1, this result demonstrates that the inclusion of rolling shutter error in the 

simulation would not have notably affected our findings. 

14.5  Chapter summary 

This chapter used Monte Carlo simulations to address the seventh and final objective of 

the programme of research: to quantify total error in the multi-camera network. This 

error described how the five sources of measurement error in the multi-camera network 

propagated, collectively, to errors in position and velocity. The chapter showed that the 

multi-camera network's total error was within the ± 0.19 m·s-1 target measurement error, 

significantly less than the Olympic Oval (CAN) multi-camera network’s ± 1.53 m·s-1 

total error, and effectively invariant to the skating condition, skater stature, and skating 

velocity, for all four fiducial markers. Overall, the multi-camera network had a total 

error of ± 0.17 m·s-1. These findings had two clear implications for this thesis. First, the 

findings answered the thesis’s overarching research question ‘Can multi-camera 

networks be used to measure accurate, two-dimensional, relay exchange kinematics’. Yes, 

if the network’s sources of measurement error are mitigated as outlined in Part II of this 
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thesis. Second, the findings confirmed that the aim of the thesis – to develop a multi-

camera network to measure accurate, two-dimensional, relay exchange kinematics – had 

been achieved. Importantly, this finding suggested that Great Britain Short-Track Speed 

Skating can use the National Ice Centre (GBR) multi-camera network as a tool to 

advance knowledge on ‘how to execute the relay exchange effectively’.
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Part III 

Part III – Multi-camera network demonstration 

Part III   Multi-camera network demonstration 
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Relay exchange execution 

Chapter 15 Relay exchange execution 

Relay exchange execution in elite short-track speed skating 

15.1 Introduction 

To support their targeted improvement of the relay exchange, Great Britain Short-Track 

Speed Skating require a tool that can be used to advance knowledge on ‘how to execute 

the relay exchange effectively’; a tool that measures relay exchange kinematics in 

representative race scenarios, over its entirety, and with an acceptable level of 

measurement error (± 0.19 m·s-1). In Chapter 3, a review of existing measurement 

solutions found that the only tool that facilitated the measurement of the relay exchange 

in representative race scenarios, and over its entirety, was the Olympic Oval (CAN) 

multi-camera network. However, while this multi-camera network satisfied the metrics, 

scenarios, and scope of relay exchange measurement, its ± 1.53 m·s-1 error did not meet 

the target measurement error. For these reasons, this thesis aimed to develop a multi-

camera network to measure accurate, two-dimensional, relay exchange kinematics.   

In Chapter 14, Monte-Carlo simulations showed that the total error in the developed 

multi-camera network was ± 0.17 m·s-1. This error was within the ± 0.19 m·s-1 target 

measurement error, significantly less than the Olympic Oval (CAN) multi-camera 

network’s ± 1.53 m·s-1 total error, and effectively invariant to the skating condition, 

skater stature, and skating velocity. These findings confirmed that the aim of the thesis 

had been achieved and suggested that Great Britain Short-Track Speed Skating could 

use the multi-camera network as a tool to advance knowledge on ‘how to execute the 

relay exchange effectively’.  
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In this chapter, I present two investigations that demonstrate how this reduction in 

error to within the target measurement error allows Great Britain Short-Track Speed 

Skating to advance knowledge on ‘how to execute the relay exchange effectively’. First, as 

I showed that the relay exchange’s effect on race time is dependent on race speed 

(Section 2.4.1), I validate one of two theoretical mechanisms proposed for this 

phenomenon. This mechanism states that the relay exchange’s effect on race time 

transitions from positive to negative, with increasing race speed, due to the relative 

velocity at first-contact increasing. Second, as I showed that the relay exchange scenario 

offers a superior opportunity for a team to overtake (Section 2.4.2), I explore ‘how to 

execute the relay exchange to achieve a gain-in-race position’. This work (1) examines 

whether the two factors reported critical for effective relay exchange execution – when a 

team is isolated from the pack race – are discriminative of successful overtakes, and (2) 

uses a single case study to explore the mechanisms that underlie the first critical factor: 

the time for Skater1 to contact Skater2 after exiting the corner.   

In both investigations, I demonstrate how the developed multi-camera network allows 

greater insight into the execution of the relay exchange by considering how the National 

Ice Centre (GBR) and Olympic Oval (CAN) multi-camera networks’ uncertainty in 

velocity affects the interpretation of the results. Collectively, the analyses show that only 

the National Ice Centre (GBR) multi-camera network enables Great Britain Short-Track 

Speed Skating to validate the proposed theoretical mechanisms and explore ‘how to 

execute the relay exchange to achieve a gain-in-race position’. 

15.2 Method 

The Faculty of Health & Wellbeing Research Ethics Committee, Sheffield Hallam 

University, UK, approved these investigations.  

15.2.1 Performance data 

Both investigations used data collected from two Great Britain Short-Track Speed 
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Skating training sessions during the 2017–2018 season. The dataset consisted of one 

3,000 m and one 5,000 m, three-team, mixed-sex, relay race. Each race was captured 

using the multi-camera network developed in the second part of this thesis. In both 

races, skaters wore one of twelve fiducial markers. These markers consisted of the six 

circular fiducial marker colours tested in Chapter 12 (see Section 12.3.2) and an 

additional six triangular fiducial marker colours explored during the multi-camera 

network’s development.   

15.2.2 Race analysis procedure 

For each race, I used the multi-camera network to automatically compute each teams’ 

Skater1 and Skater2 position and velocity for every instance of a relay exchange where 

both skaters wore a circular fiducial marker that exhibited sub-pixel automated 

digitisation uncertainty (i.e. red, yellow, green, and cyan). As illustrated in Figure 15-1, I 

computed each skaters’ kinematics from the moment when the centre of Skater1’s 

fiducial marker first passed through the entry sector line (�1D=.>=@) until the centre of 

Skater2’s fiducial marker first passed through the following entry sector line (�2D=.>=@). 

For each instance of a relay exchange, I also manually digitised the team’s position in the 

pack race at the corner exit sector line, corner entry sector line, and the point in time of 

Skater1 and Skater2’s first- (�:;<) and final- (�:;=) contact (Figure 15-1). All manual 

digitisation was performed by a single operator to negate inter-operator digitisation 

error. In the scenario where a skater fell, no further measurements were computed for 

that team.  

15.2.3 Data analysis  

For each instance of a relay exchange, I calculated four metrics – depicted in Figure 15-2 

– using the computed relay exchange kinematics: (1) Skater1’s corner exit time (�1): the 

time taken from when the centre of Skater1’s fiducial marker first passed through the 

apex sector line to when the centre of Skater1’s fiducial marker first passed through the 

exit sector line, (2) Skater1’s apex block distance (�1): the distance along the apex sector  
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line from the track marking block to the centre of Skater1’s fiducial marker, (3) Skater1’s 

exit block distance (�1): the distance along the exit sector line from the track marking 

block to the centre of Skater1’s fiducial marker, and (4) the team’s gain-in-race position 

count: the number of positive changes in race position from the corner exit sector line to 

the following corner entry sector line, e.g. if a team moved from 3rd to 1st position in the 

race, this would count as two gain-in-race positions.  

To validate whether increasing race speeds led to larger relative velocities at first-contact, 

I calculated Skater1’s corner exit speed, i.e. the team’s current speed in the race, and the 

relative velocity at first-contact, as described in Section 3.2.1 (Equations 3.1 and 3.2). To 

examine whether the two factors reported critical for effective relay exchange execution  

 

Figure 15-1. The race analysis procedure, highlighting (1) the period of computed kinematics, i.e. from 

when the centre of Skater1’s fiducial marker first passes through the entry sector line (�1D=.>=@) until the 

centre of Skater2’s fiducial marker first passes through the following entry sector line (�2D=.>=@), and (2) 

the manual digitisation of the first-(�:;<) and final-(�:;=) contact. 
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– when a team is isolated from the pack race – are discriminative of successful overtakes, 

I calculated each factor for every gain-in-race position where both gain- and loss-in-race 

position teams’ Skater1 and Skater2 wore a circular fiducial marker that exhibited sub-

pixel automated digitisation uncertainty. Both factors, that is, the time for Skater1 to 

contact Skater2 after exiting the corner (�HI=@) and the contact energy exchange 

efficiency (J>), were computed as described in Section 3.2.1 (Equations 3.5 to 3.7). 

Finally, to examine the mechanisms that underlie the time for Skater1 to contact Skater2 

after exiting the corner, I compared the gain- and loss-in-race position teams’ position 

and velocity at the point in time when each team’s Skater1 fiducial marker first passed 

through the corner entry, apex, and exit sector lines. To consider how the National Ice 

Centre (GBR) and Olympic Oval (CAN) multi-camera networks’ uncertainty in velocity 

affected the interpretation of each sector line comparison, each comparison accounted 

for the multi-camera networks’ reported uncertainty. 

15.2.4 Statistical analysis 

SPSS 24 (IBM, 2016) was used to analyse both race time and race position data. For the 

race time data, I examined the relationship between Skater1’s corner exit speed and the 

relative velocity at first-contact using Pearson’s correlation coefficient, �, for normally 

 

Figure 15-2. The four metrics calculated for each instance of a relay exchange: Skater1’s corner exit time 

(�1), Skater1’s apex block distance (�1), Skater1’s exit block distance (�1), and the gain-in-race position 

count.  
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distributed datasets, or Spearman’s Rho correlation coefficient, �, for non-normally 

distributed datasets. In both cases, the correlation coefficient ranges from −1 to +1, 

with a coefficient of ± 1 indicating a perfect positive or negative relationship, and a 

coefficient of 0 indicating no relationship at all (Field, 2009). To test the correlation 

coefficient’s statistical significance, I used a one-tailed hypothesis as the proposed 

theoretical mechanism is directional, i.e. the relative velocity at first-contact increases 

with Skater1’s corner exit speed. To consider how the National Ice Centre (GBR) and 

Olympic Oval (CAN) multi-camera networks’ uncertainty in velocity affected the 

interpretation of the calculated correlation coefficient, I estimated the coefficient’s 95% 

confidence bounds using Monte-Carlo error analyses (Curran, 2014). For each multi-

camera network, I added uncertainty to the measured relative velocities at first-contact 

– and recalculated the correlation coefficient – for 10,000 independent iterations. The 

analysis added uncertainty to the measured values by uniformly sampling from the 

multi-camera network’s uncertainty in relative velocity at first-contact. In accordance 

with Taylor (1997), I calculated this uncertainty in relative velocity as  

     Q/2:;<|1:;< = √Q/12 + Q/22  (&'. 15.1) 
where Q/12 and Q/22 is the multi-camera network’s uncertainty in Skater1 and Skater2’s 

velocity. This resulted in a ± 0.24 m·s-1 and ± 2.16 m·s-1 uncertainty in relative velocity in 

the National Ice Centre (GBR) and Olympic Oval (CAN) multi-camera networks, 

respectively. The 95% confidence bounds represented the values that 95% of the 

calculated correlation coefficients laid between. 

For the race position data, I calculated each critical factor’s ,-��-.� 	
/	.�	0- 

(Graham & Mayberry, 2014). The ,-��-.� 	
/	.�	0- represents the conditional 

percentage of relay exchange overtakes in which the gain-in-race position’s critical 

factor * had a better value than the loss-in-race position’s critical factor *. For example, if 

the gain-in-race position’s time to first-contact was better in three out of five overtakes, 

and the same in one out of five overtakes, the time to first-contact would receive a 
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,-��-.� 	
/	.�	0- of 75%. Based on Riewald, Broker, Smith, & Otter (1997), better 

values for the time to first-contact and the contact energy exchange efficiency were 

smaller and greater values, respectively. For each critical factor the analysis also 

compared differences between the gain- and loss-in-race position teams using a 

dependent �-test. Again, I used a one-tailed hypothesis due to both critical factors being 

directional. Finally, to consider how the National Ice Centre (GBR) and Olympic Oval 

(CAN) multi-camera networks’ uncertainty in velocity affected the interpretation of the 

contact energy exchange efficiency’s ,-��-.� 	
/	.�	0-, I calculated each multi-

camera network’s uncertainty in contact energy exchange efficiency. In accordance with 

Taylor (1997), I calculated this uncertainty as   

     QJ>J> = ⎷
√√√(Q&L2:;=&L2:;= )2 + (Q&L1:;<&L1:;< )2 + (Q&L2:;<&L2:;< )2  (&'. 15.2) 

where Q represents the measurement uncertainty, &L2:;= is Skater2’s kinetic energy at 

final-contact, &L1:;< is Skater1’s kinetic energy at first-contact, and &L2:;< is Skater2’s 

kinetic energy at first-contact. In this equation, the uncertainty in each skater’s kinetic 

energy, Q&© , is calculated as 

     Q&©&© = 2 (Q// )  (&'. 15.3) 

where / is the skater’s velocity at that point in time, and Q/ is the multi-camera 

network’s uncertainty in velocity. The analysis did not consider how the National Ice 

Centre (GBR) and Olympic Oval (CAN) multi-camera networks’ timing uncertainty 

affected the interpretation of the time to first-contact’s ,-��-.� 	
/	.�	0-, as temporal 

uncertainty data was not available for the Olympic Oval (CAN) multi-camera network. 

In all statistical tests, I used Kolmogorov–Smirnov tests to test for normality, set the 

significance level, ∝, at , < 0.05, and calculated effect sizes using Pearson’s correlation 



  Relay exchange execution 

 

223 

 

coefficient, � (Field, 2009). Effect sizes were interpreted using Cohen’s thresholds; where 

< 0.1, is trivial; 0.1–0.3, small; > 0.3–0.5, moderate, and > 0.5, large (Cohen, 1988). 

15.3 Results 

15.3.1 Race time 

In total, Skater1 and Skater2 wore circular fiducial markers that exhibited sub-pixel 

automated digitisation uncertainty in 12 relay exchanges. These exchanges had a 

median Skater1 corner exit speed of 11.08 m·s-1 (IQR = 0.31 m·s-1) and a median relative 

velocity at first-contact of 1.74 m·s-1 (IQR = 0.29 m·s-1). I used the Spearman’s Rho 

correlation coefficient to examine the relationship between these two metrics as the 

Kolmogorov–Smirnov test showed that both the distribution of Skater1’s corner exit 

speed (2 (12) = 1, , < 0.001) and the relative velocity at first-contact (2 (12) = 0.925, , 

< 0.001) significantly differed from normal. The coefficient showed that the relative 

velocity at first-contact was significantly related to Skater1’s corner exit speed, « = 0.74, , 

(one-tailed) < 0.01. More specifically, as Skater1’s corner exit speed increased, so did the 

relative velocity at first-contact. The correlation coefficient’s 95% confidence bounds 

ranged from 0.44 to 0.82 in the National Ice Centre (GBR) multi-camera network and 

from -0.46 to 0.67 in the Olympic Oval (CAN) multi-camera network. 

15.3.2 Race position 

In total, the gain- and loss-in-race position teams’ Skater1 and Skater2 wore circular 

fiducial markers that exhibited sub-pixel automated digitisation uncertainty in four 

relay exchanges. Table 15-1 presents each critical factor’s descriptive statistics, 

significance test results, effect sizes, and ,-��-.� 	
/	.�	0-. The gain-in-race position 

teams’ time for Skater1 to contact Skater2 after exiting the corner was significantly 

shorter than the loss-in-race position teams’ (, < 0.01), with the magnitude of this effect 

large (� = -0.95). Moreover, the time for Skater1 to contact Skater2 after exiting the 

corner had a 100% ,-��-.� 	
/	.�	0-, i.e. in 100% of the relay exchange overtakes, the 

gain-in-race position team had a shorter time to first-contact.    
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Table 15-1. Descriptive statistics (mean ± standard deviation), significance test results, effect sizes, and ,-��-.� 	
/	.�	0- for each critical factor. 

Critical factor Gain-in-race position Loss-in-race position � , � �-��-.� 	
/	.�	0- 
Time to first-contact 0.51 ± 0.16 s 0.81 ± 0.1 s -5.415 0.006 -0.95 100% 

Contact energy exchange efficiency  61.6 ± 4.7% 69.5 ± 5.2% -1.600 0.896 0.68 25% 

Note: Effect size measured using Pearson’s correlation coefficient, �. 
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In contrast, the gain-in-race position teams’ contact energy exchange efficiency was not 

significantly more efficient than the loss-in-race position teams’ contact energy 

exchange efficiency (, = 0.90). In fact, the mean contact energy exchange efficiency was 

greater for the loss-in-race position team and the contact energy exchange efficiency 

only had a ,-��-.� 	
/	.�	0- of 25%, i.e. the gain-in-race position team only had a 

more efficient energy exchange during skater contact in 25% of the relay exchange 

overtakes. When considering how each multi-camera network’s uncertainty in velocity 

affected the interpretation of the contact energy exchange efficiency’s 

,-��-.� 	
/	.�	0-, Figure 15-3a shows that the developed multi-camera network 

could conclude that three of the four observed differences in contact energy exchange 

efficiency were real – and not due to measurement error – as the error bars did not 

overlap in exchanges two to four. These exchanges represented the three instances 

where the loss-in-race position team had a more efficient contact energy exchange 

efficiency. In contrast, Figure 15-3b shows that the Olympic Oval (CAN) multi-camera 

network could not conclude that any of the observed differences were real, as the error 

bars overlapped in all four relay exchanges. 

Figure 15-4a illustrates the selected overtake case study used to examine the 

mechanisms that underlie the time for Skater1 to contact Skater2 after exiting the corner. 

 

Figure 15-3. The gain- (dark grey) and loss- (light grey) -in-race position teams’ contact energy 

exchange efficiency. The error bars represent the measurement uncertainty in the National Ice Centre 

(a) and Olympic Oval (b) multi-camera networks.   
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The gain- and loss-in-race position teams’ time were 0.52 seconds and 0.75 seconds, 

respectively. Figures 15-4b to 15-4d and Figure 15-5 show the position and velocity of 

each team’s Skater1 and Skater2, when each teams’ Skater1 first passed through the 

corner entry, apex, and exit sector line.  

Corner entry  

At the corner entry sector line (Figure 15-4b), the teams’ Skater1 had comparable track 

positions in the �-axis (∆ = 0.45 m) and similar skating velocities (∆ = 0.05 m·s-1). 

However, compared to the loss-in-race position team, the gain-in-race position team’s 

Skater2 was further behind Skater1 in the �-axis (∆ = 1.03 m), closer to Skater1 in the �-

 

Figure 15-4. (a) The case study’s gain- and loss-in-race position teams’ Skater1 and Skater2 trajectories, 

and (b-d) the gain- and loss-in-race position teams’ Skater1 and Skater2 track position when each teams’ 

Skater1 fiducial marker first passed through the corner entry, apex, and exit sector line. 
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axis (∆ =1.44 m), and travelling faster (∆ = 0.35 m·s-1). Figures 15-5c and 15-5d show 

that only the developed multi-camera network could conclude that this observed 

difference in velocity was real – and not due to measurement error – as the error bars 

did not overlap in the National Ice Centre (GBR) multi-camera network.  

Corner apex 

At the corner apex sector line (Figure 15-4c), the teams’ Skater1 and Skater2 had similar 

track positions in the �-axis (�1∆ = 0.06 m, �2∆ = 0.25 m). Likewise, the teams’ Skater1 

exhibited similar skating velocities (∆ = 0.13 m·s-1). However, compared to the loss-in-

race position team, the gain-in-race position team’s Skater2 was closer to Skater1 in the 

�-axis (∆ =0.93 m) and had a faster skating velocity (∆ = 0.5 m·s-1). Figures 15-5c and 

15-5d show that only the developed multi-camera network could conclude that this 

 

Figure 15-5. The gain- (dark grey) and loss- (light grey) -in-race position teams’ Skater1 and Skater2 

resultant velocity when each teams’ Skater1 fiducial marker first passed through the corner entry, apex, 

and exit sector line. The error bars represent the measurement uncertainty in the National Ice Centre (a 

& c) and Olympic Oval (b & d) multi-camera networks. 
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observed difference in velocity was real – and not due to measurement error – as the 

error bars did not overlap in the National Ice Centre (GBR) multi-camera network.  

Corner exit 

At the corner exit sector line (Figure 15-4d), the gain-in-race position team’s Skater1 was  

closer to the corner exit track marking block in the �-axis (∆ = 1.46 m), and had a 

slower skating velocity (∆ = 0.36 m·s-1), compared to the loss-in-race position team’s 

Skater1. Similarly, the gain-in-race position team’s Skater2 was closer to the corner exit 

track marking block in the �-axis (∆ = 1.41 m), closer to Skater1 in the �-axis (∆ = 0.73 

m) and had a faster skating velocity (∆ = 0.5 m·s-1). Figure 15-5 shows that only the 

developed multi-camera network could conclude that the observed differences in 

velocity were real – and not due to measurement error – as the error bars in the 

National Ice Centre (GBR) multi-camera network did not overlap.  

15.4 Discussion 

In the previous sections, I presented two investigations that demonstrate how the multi-

camera network’s reduction in error to within the target measurement error allows 

Great Britain Short-Track Speed Skating to advance knowledge on ‘how to execute the 

relay exchange effectively’. In this section, I discuss the findings of each investigation, the 

practical implications for the thesis and for Great Britain Short-Track Speed Skating, the 

limitations of the investigations, and how future work should continue to investigate the 

relay exchange’s execution. 

15.4.1 Race time 

In the first investigation, I validated the first of two theoretical mechanisms proposed 

for why the relay exchange’s effect on race time is dependent on race speed. This 

mechanism proposed that the relay exchange’s effect on race time transitions from 

positive to negative, with increasing race speeds, due to the relative velocity at first-

contact increasing. Overall, the results supported this mechanism, as the relative velocity 
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at first-contact increased with Skater1’s corner exit speed, i.e. the team’s current race 

speed.  

Importantly, the results also showed that due to its smaller uncertainty in velocity, only 

the developed multi-camera network could conclude that the observed relationship 

between the relative velocity at first-contact and race speed was real and not due to 

measurement error. In the National Ice Centre (GBR) multi-camera network, the 

correlation coefficient’s 95% confidence bounds ranged from a medium (« = 0.44) to 

large (« = 0.82) positive relationship. In contrast, the correlation coefficient’s 95% 

confidence bounds ranged from a medium negative (« = -0.46) to large positive (« = 

0.67) relationship in the Olympic Oval (CAN) multi-camera network. This finding 

provides one example of how the multi-camera network’s reduction in error to within 

the target measurement error allows Great Britain Short-Track Speed Skating to 

advance knowledge on ‘how to execute the relay exchange effectively’. The reduction 

enables Great Britain Short-Track Speed Skating to validate the theoretical mechanisms 

that underlie effective relay exchange execution. Mechanisms that the Olympic Oval 

(CAN) multi-camera network cannot validate due its large uncertainty in velocity.  

15.4.2 Race position 

In the second investigation, I explored ‘how to execute the relay exchange to achieve a 

gain-in-race position’, as the relay exchange scenario offers a superior opportunity for a 

team to overtake (Section 2.4.2). To do this, I (1) examined whether the two factors 

reported critical for effective relay exchange execution are discriminative of successful 

overtakes, and (2) used a single case study to explore the mechanisms that underlie the 

first critical factor: the time for Skater1 to contact Skater2 after exiting the corner.  

First, the results showed that while the time for Skater1 to contact Skater2 after exiting 

the corner is discriminative of successful overtakes, the contact energy exchange 

efficiency is not. More specifically, the gain-in-race position team always had a shorter 

time to first-contact but only had a more efficient energy exchange in one of the four 
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overtakes analysed. Second, the results showed that both the timing and velocity of 

Skater2 is an essential part of the mechanism that underlies the time for Skater1 to 

contact Skater2 after exiting the corner. When Skater2 was closer to Skater1 at the corner 

entry sector line, they were further ahead of Skater1 at both the corner apex and corner 

exit, which ultimately led to a greater time to first-contact. In order to be further behind 

Skater1 at the corner entry, Skater2 had to have a greater velocity to ensure that they 

arrived on the straight in-front of Skater1. 

Importantly, the results showed that due to its smaller uncertainty in velocity, only the 

developed multi-camera network could conclude that (1) the relay exchange’s contact 

energy exchange efficiency was not discriminative of successful overtakes, and (2) that 

Skater2’s velocity was an essential part of the mechanism that underlies the time to first-

contact. The National Ice Centre (GBR) multi-camera network could identify that the 

observed differences between the gain- and loss-in-race position teams’ contact energy 

exchange efficiency were real in three of the four relay exchanges analysed. Likewise, the 

multi-camera network could identify real differences in each team’s Skater2 velocity at 

the corner entry, apex, and exit. In contrast, due to its large uncertainty in velocity, the 

Olympic Oval (CAN) multi-camera network could not conclude whether the observed 

differences in contact energy exchange efficiency and Skater2 velocity were real or due to 

measurement error. These findings provide two further examples of how the multi-

camera network’s reduction in error to within the target measurement error allows 

Great Britain Short-Track Speed Skating to advance knowledge on ‘how to execute the 

relay exchange effectively’. The reduction enables Great Britain Short-Track Speed 

Skating to explore ‘how to execute the relay exchange to achieve a gain-in-race position’.  

15.4.3 Practical implications 

This chapter has one clear implication for this thesis. In Chapter 14, I could only suggest 

that the developed multi-camera network could be used to advance knowledge on ‘how 

to execute the relay exchange effectively’, as its total error was within the target 
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measurement error. In this chapter, however, I provide three examples that demonstrate 

how the developed multi-camera network’s reduction in error enables greater insight 

into ‘how to execute the relay exchange effectively’. For this reason, Great Britain Short-

Track Speed Skating can use the developed multi-camera network as a tool to support 

their targeted improvement of the relay exchange execution. 

In addition, as the two studies presented in this chapter are the first to investigate their 

respective topics, Great Britain Short-Track Speed Skating can use the chapter’s findings 

to advance their understanding of ‘how to execute the relay exchange effectively’. In the 

first investigation, I found that Skater1 and Skater2’s relative velocity at first-contact 

increased with race speed. One explanation for this phenomenon is that Skater2 

generates their speed on the inside of the short-track. As the inside of the short-track 

has a tighter corner radius, Skater2 expends more energy compared to Skater1 – at 

comparable race speeds – as they have to overcome higher cornering forces (Rundell, 

1996). Therefore, as the race speed increases, it becomes more difficult for Skater2 to 

match the speed of Skater1. As demonstrated in Chapter 2, when the relative velocity at 

first-contact increases, Skater2’s final-contact velocity relative to Skater1’s first-contact 

velocity decreases. For this reason, to mitigate the relay exchange’s effect on race time 

transitioning from positive to negative with increasing race speeds, Skater2 should 

further attempt to match the speed of Skater1 at faster race speeds.  

In the second investigation, I first found that the time for Skater1 to contact Skater2 after 

exiting the corner is discriminative of successful overtakes. One explanation for this 

finding is that Skater1 suffers pre-contact velocity losses after exiting the corner (Riewald 

et al., 1997). Subsequently, a greater time to first-contact may be associated with a 

greater loss in Skater1’s pre-contact velocity. We can explore the effect of this velocity 

loss by modelling the relay exchange as a one-dimensional collision using the mean 

contact energy exchange efficiency reported by Riewald et al. (1997) and a constant 

Skater2 first-contact velocity. Figure 15-6 shows that as Skater1’s pre-contact velocity loss 

increases, the absolute magnitude of Skater2’s final-contact velocity decreases. As a result, 
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it seems essential for the prospective gain-in-race position team to have a shorter time to 

first-contact compared to the prospective loss-in-race position team, as this is likely to 

lead to the team having a greater Skater2 final-contact velocity. 

Second, I found that the contact energy exchange efficiency is not discriminative of 

successful overtakes. As useful performance indicators should relate to successful 

performance outcomes (Hughes & Bartlett, 2002), this finding suggests that the contact 

energy exchange efficiency is not a suitable performance indicator of the relay 

exchange’s execution in representative race scenarios. For example, consider two relay 

exchanges with the same Skater1 first-contact velocity (12 m·s-1), Skater2 first-contact 

velocity (10 m·s-1), and contact energy exchange efficiency (J> = 65%). The only 

difference between these exchanges is that Skater1 and Skater2 have a mass of 65 kg in 

the first exchange and a mass of 70 kg and 65 kg in the second relay exchange. By 

rearranging Equation 3.6, we can calculate that in these relay exchanges, Skater2’s final-

contact velocity is 10.15 m·s-1 and 10.38 m·s-1, respectively. These exchanges have 

different final-contact velocities due to differences in Skater1’s mass. This difference in 

final-contact velocity is more important than the equal contact energy exchange 

efficiency when comparing the execution of relay exchanges in head-to-head scenarios. 

 

Figure 15-6. The effect of Skater1 pre-contact velocity loss on Skater2’s final-contact velocity. 
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Collectively, these findings suggest that the factors critical for effective relay exchange 

execution differ between the scenarios where a team is isolated from the pack race and 

when a team successfully achieves a gain-in-race position. Therefore, although the relay 

exchange always involves Skater1 pushing Skater2 at the start of the straight, its execution 

should be approached dynamically – based on the race scenario and the goal of the relay 

exchange – rather than a ‘one-type-fits-all’ approach.  

Finally, I found that Skater2’s timing and velocity is an essential part of the mechanism 

that underlies the time for Skater1 to contact Skater2 after exiting the corner; the factor 

critical to effective relay execution in all relay scenarios currently investigated. This 

finding is unsurprising considering that during the relay exchange, Skater1 and Skater2’s 

actions are interdependent and need to be coordinated to execute the relay exchange 

effectively. As reported by Steiner, Macquet, & Seiler (2017), when teams succeed in 

coordinating their aggregated resources effectively, for example by both individuals 

subtly adapting their movement displacement trajectories and velocity to create or 

minimise space and time (Duarte et al., 2012), they optimise the parameters relevant to 

their performance. Accordingly, it seems advisable that Skater2 adapts their position and 

velocity to ensure that they are behind Skater1 as this skater passes the corner entry 

sector line, and approximately level with Skater1 at the apex sector line, to guarantee that 

they do not arrive at the start of the straight too early.  

15.4.4 Limitations 

As the chapter’s findings can be used by Great Britain Short-Track Speed Skating to 

advance their understanding of ‘how to execute the relay exchange effectively’, the 

limitations of the investigations should be noted. First, the dataset used in both 

investigations consisted of two relay races collected during the multi-camera network’s 

development period. At this point in the programme of research, twelve different 

fiducial markers were being evaluated for automated skater digitisation. Subsequently, 

the number of instances where both skaters or gain- and loss-in-race position teams 
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wore circular fiducial markers that exhibited sub-pixel automated digitisation was small 

(. = 12 and . = 4, respectively). Still, the samples are similar to the twelve (Riewald et al., 

1997) and six (Osborough & Henderson, 2009) relay exchanges analysed in existing 

investigations.  

Second, the teams in both relay races were mixed-sex. For this reason, the analysis 

included male-to-male, female-to-female, and female-to-male, relay exchanges. 

Although the mixed-sex relay event is being introduced at the 2022 Winter Olympic 

Games (ISU, 2018), this thesis is focused on the men’s 5,000 m relay event (Section 

2.4.4). Accordingly, due to sexual dimorphisms in skeletal muscle mass, strength, 

anaerobic power, anaerobic capacity, and maximal aerobic capacity (Seiler, de Koning, 

& Foster, 2007), it is unclear whether male-to-male relay exchanges would produce the 

same findings found in this chapter given the already small sample size.  

Finally, both relay races comprised of three teams. Although this race format does occur 

in elite short-track speed skating, the relay event typically involves four teams racing 

head-to-head (ISU, 2016). As there is no current understanding of how different spatial 

constraints – afforded by the team’s race position and the number of teams in the pack 

race – affect the factors discriminative of successful overtakes, the findings at present 

should only be deemed relevant for the scenario where three-teams are involved in the 

relay exchange scenario. 

15.4.5 Future work  

The chapter’s findings also provide a rationale for how Great Britain Short-Track Speed 

Skating should continue to investigate the relay exchange execution. First, to address the 

limitations reported in Section 15.4.4, future work should repeat both investigations 

using a larger sample of same- and mixed-sex relay exchanges, from three- and four-

team relays. Second, as the relay exchange’s effect on race time transitions from positive 

to negative with increasing race speeds due to larger relative velocities at first-contact, 

future work should investigate ‘how to execute the relay exchange to minimise the relative 
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velocity at first-contact’. This work should begin by determining the upper-limit of 

Skater2’s velocity during the corner, to understand whether skaters can match the 

velocity of Skater1 at first-contact but choose not to. Third, as Section 15.4.2 showed that 

not all relay exchange metrics are suitable performance indicators in representative race 

scenarios, future work should explore new metrics for quantifying the relay exchange’s 

execution. Finally, as the timing and velocity of Skater2 is an essential part of the 

mechanism that underlies the time to first-contact, future work should continue to 

investigate Skater1 and Skater2’s interpersonal coordination tendencies. To provide a 

more detailed insight, this work should use additional measures – such as Skater1 and 

Skater2’s relative distance and relative velocity – over a continuous time scale, as this 

investigation only considered the skaters’ position and velocity at three key locations: 

the corner entry, apex, and exit.  

15.5 Chapter summary 

This chapter presented two investigations that demonstrated how the multi-camera 

network’s reduction in error to within the target measurement error allows Great 

Britain Short-Track Speed Skating to advance knowledge on ‘how to execute the relay 

exchange effectively’. The first investigation validated one of two theoretical mechanisms 

proposed for why the relay exchange’s effect on race time transitions from positive to 

negative as the race speed increases. The results showed that due to its smaller 

uncertainty in velocity, only the developed multi-camera network could conclude that 

this phenomenon, in part, is due to Skater1 and Skater2’s relative velocity at first-contact 

increasing with race speed. The second investigation explored ‘how to execute the relay 

exchange to achieve a gain-in-race position’. This work examined whether the factors 

currently reported critical for effective relay exchange execution are discriminative of 

successful overtakes and used a single case study to explore the mechanisms that 

underlie the first critical factor. Again, the results illustrated that due to its smaller 

uncertainty in velocity, only the developed multi-camera network could conclude that 

(1) the relay exchange’s contact energy exchange efficiency was not discriminative of 
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successful overtakes, and (2) that Skater2’s velocity was an essential part of the 

mechanism that underlies the time to first-contact. 
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Summary & conclusion 

Chapter 16 Summary and conclusion 

Summary and conclusion 

16.1 Introduction 

This thesis investigated developing a tool to measure accurate, two-dimensional, relay 

exchange kinematics in short-track speed skating. More specifically, based on a review 

of existing measurement solutions, this thesis aimed to develop a multi-camera network 

to measure accurate, two-dimensional, relay exchange kinematics. Accordingly, the 

overarching aim of this thesis was to answer the research question ‘Can multi-camera 

networks be used to measure accurate, two-dimensional, relay exchange kinematics’. This 

investigation was formed of three parts. Part I contextualised the need for this 

programme of work, Part II investigated developing the National Ice Centre (GBR) 

multi-camera network, and Part III demonstrated how this tool allows Great Britain 

Short-Track Speed Skating to advance knowledge on ‘how to execute the relay exchange 

effectively’. In this chapter, for each part of the thesis, I summarise the key findings, 

discuss their practical implications for Great Britain Short-Track Speed Skating, 

acknowledge the limitations of the research, and provide a rationale for future work, 

before presenting an overall thesis conclusion. 

16.2 Part I – Multi-camera network contextualisation 

The first part of the thesis contextualised the need for developing a multi-camera 

network to measure accurate, two-dimensional, relay exchange kinematics. First, 

Chapter 2 evidenced the strategic opportunity of the relay exchange and provided a 

rationale for how future work should advance knowledge on ‘how to execute the relay 
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exchange effectively’. Second, based on this rationale, Chapter 3 formulated a relay 

exchange measurement needs analysis and reviewed existing short-track speed skating 

measurement solutions. 

16.2.1 Summary of findings 

Chapter 2 used spatiotemporal data extracted from three ISU Short Track World Cups 

to examine the efficacy of the relay exchange in elite short-track speed skating. By 

quantifying the relay exchange’s effect on race time and race position during the 5,000 

m relay, the chapter evidenced the strategic opportunity of the relay exchange. For the 

former, the chapter showed that the relay exchange’s effect on race time was dependent 

on race speed; having a positive effect at slower speeds and a negative effect at faster 

speeds. For the latter, the chapter showed that – compared to free skating – the relay 

exchange scenario presented a superior opportunity for a team to overtake. Collectively, 

these results were used to rationalise how scholars and practitioners should advance 

knowledge on ‘how to execute the relay exchange effectively’. This work included (1) 

validating the proposed theoretical mechanisms for why the relay exchange’s effect on 

race time is dependent on race speed, and (2) investigating ‘how to execute the relay 

exchange to achieve a gain-in-race position’. For the latter, the chapter suggested that this 

work should begin by investigating whether the factors critical for effective relay 

exchange execution – when a team is isolated from the pack race – are discriminative of 

achieving a gain-in-race position, and the mechanisms that underlie these factors. 

Chapter 3 used this rationale to formulate a relay exchange measurement needs analysis. 

The needs analysis showed that to advance knowledge on ‘how to execute the relay 

exchange effectively’, Great Britain Short-Track Speed Skating need to be able to measure 

relay exchange kinematics in (1) representative race scenarios, i.e. for up to four teams 

simultaneously, (2) over its entirety, i.e. the straight and proceeding corner, and (3) with 

an acceptable level of measurement error; operationally defined as ‘the ability to 

measure skating velocity to within ± 0.19 m·s-1’. This absolute error, which reflected 
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both the trueness (i.e. the systematic error) and precision (i.e. the random error) of the 

measurement, was selected to ensure that Great Britain Short-Track Speed Skating 

could (1) validate the proposed theoretical mechanisms for why the relay exchange’s 

effect on race time is dependent on race speed, and (2) detect the smallest enhancement 

in skating velocity required to achieve a gain-in-race position.  

Chapter 3 used the needs analysis as a criterion to review existing, vision-based, short-

track speed skating measurement solutions. The review showed that only one existing 

method facilitated the measurement of the relay exchange in (1) representative race 

scenarios, and (2) over its entirety: the multi-camera network installed at the Olympic 

Oval in Calgary (CAN). However, while this multi-camera network satisfied the metrics, 

scenarios, and scope of relay exchange measurement, its ± 1.53 m·s-1 error in skating 

velocity did not meet the ± 0.19 m·s-1 target measurement error. Accordingly, the 

remainder of the thesis investigated developing a multi-camera network to measure 

accurate, two-dimensional, relay exchange kinematics.  

16.2.2 Practical implications 

The first part of the thesis had several practical implications for Great Britain Short-

Track Speed Skating. To the author’s knowledge, the study presented in Chapter 2 is the 

first to investigate the efficacy of the relay exchange in elite short-track speed skating. 

Therefore, in addition to providing empirical data to support the team’s targeted 

improvement of the relay exchange, coaches and athletes can use the chapter’s findings 

to further improve their tactical preparation and decision-making before and during 

relay races. First, the chapter showed that the relay exchange’s effect on race time is 

dependent on race speed. This finding suggests that the current norm of executing the 

relay exchange every 1½ laps may not be optimal. Instead, varying the frequency of the 

relay exchange execution could allow time to be gained relative to other teams in the 

race. For example, at faster race speeds (typical of the race end), a team could decrease 

the frequency of the relay exchange as it has a negative effect on race time. Second, the 
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chapter showed that the relay exchange offers a superior opportunity for a team to 

overtake. Therefore, if a team knows ‘how to execute the relay exchange to achieve a gain-

in-race position’, the relay exchange could be used to facilitate other race strategies 

which are underutilised due to the difficulties in overtaking, e.g. drafting (Hoffman et al., 

1998).   

16.2.3 Limitations 

The first part of the thesis had one notable limitation that warrants consideration. In 

Chapter 2, the investigation into the relay exchange’s efficacy only considered the men’s 

5,000 m relay event. Consequently, the chapter’s evidence regarding (1) the strategic 

opportunity of the relay exchange, (2) the rationale for how future work should advance 

knowledge on ‘how to execute the relay exchange effectively’, and (3) the relay exchange 

measurement needs analysis formulated in Chapter 3, were only based on the 5,000 m 

relay event and not the women’s 3,000 m relay event. Although other strategic aspects of 

short-track speed skating races, such as the relationship between start and finishing 

position (Maw et al., 2006; Muehlbauer & Schindler, 2011), have shown to exhibit 

similar relationships when comparing sex, these analyses compared events with the 

same race distances. As a result, it is currently unclear whether an analysis of the 3,000 

m relay event would have led to the same findings as reported in part one. Still, this 

approach was sufficient for this thesis, as Great Britain Short-Track Speed Skating’s 

targeted relay exchange improvement was primarily focussed on the 5,000 m relay event, 

as this was the distance funded for the Winter Olympic Games by UK Sport. 

16.3 Part II – Multi-camera network development 

The second part of the thesis investigated developing the National Ice Centre multi-

camera network to measure accurate, two-dimensional, relay exchange kinematics. In 

Chapter 5, the literature review identified five sources of measurement error that would 

determine the multi-camera network’s accuracy. The quantification of these errors, 

alongside the creation of a ground truth dataset of kinematics, formed the thesis’s first 
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six objectives. Compared to previous investigations, the ground truth dataset facilitated 

a more detailed quantification of error by allowing all sources of measurement error, in 

addition to the multi-camera network’s intended use-cases, i.e. the effect of skating 

condition, skater stature, and skating velocity, to be considered. The seventh and final 

objective of the thesis determined whether the multi-camera network could measure 

accurate, two-dimensional, relay exchange kinematics. In Section 16.3.1, I summarise 

the thesis’s findings in relation to each of these objectives. 

16.3.1 Summary of findings 

Rolling shutter error 

Chapter 6 used a computer simulation to address the first objective of the programme of 

research: to quantify rolling shutter error in the multi-camera network. Rolling shutter 

error described how within-camera sampling interval error – caused by temporal shear 

from the image sensor’s electronic rolling shutter – propagated to errors in velocity. The 

chapter showed that the multi-camera network’s rolling shutter error exceeded the ± 

0.19 m·s-1 target measurement error. Moreover, the magnitude of this error, which 

ranged from 0.48 m·s-1 to 1.05 m·s-1, was dependent on the current skating velocity. The 

chapter concluded that rolling shutter error should be minimised in the multi-camera 

network by using an electronic rolling shutter model to correct within-camera sampling 

interval errors.  

Out-of-phase error 

Chapter 7 used a computer simulation to address the second objective of the 

programme of research: to quantify out-of-phase error in the multi-camera network. 

Out-of-phase error described how between-camera sampling interval uncertainty – 

caused by two camera shutters being out-of-phase by up-to ± 0.02 seconds – propagated 

to errors in velocity. The chapter showed that the multi-camera network's out-of-phase 

error exceeded the ± 0.19 m·s-1 target measurement error. Moreover, the absolute 

magnitude of this error, which ranged from -7.5 m·s-1 to 7.5 m·s-1, was dependent on the 
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magnitude of the between-camera sampling interval uncertainty and the skater’s current 

velocity. As the multi-camera network cannot minimise between-camera sampling 

interval uncertainties, the chapter concluded that out-of-phase error should be negated 

in the multi-camera network by only calculating two-dimensional relay exchange 

kinematics within each camera’s field-of-view. 

Calibration model error 

Chapter 8 addressed the third objective of the programme of research: to quantify 

calibration model error in the multi-camera network. Calibration model error described 

how incorrect relationships between the pixel and global coordinate systems propagated 

to (1) errors in position and velocity within (intra-) cameras’ field-of-view, and (2) 

errors in position between (inter-) cameras’ field-of-view. For the former, the chapter 

showed that the multi-camera network's intra-camera calibration model error was 

within the ± 0.19 m·s-1 target measurement error, significantly less than the Olympic 

Oval (CAN) multi-camera network’s ± 0.48 m·s-1 intra-camera calibration model error, 

and effectively invariant to the skating condition and skating velocity. The multi-camera 

network, overall, had a RMS intra-camera calibration model error of 0.06 m·s-1. As both 

multi-camera networks had similar reprojection errors, the chapter attributed this 

significant reduction in intra-camera calibration model error to the National Ice Centre 

(GBR) multi-camera network having a superior spatial resolution of the rink surface. 

For the latter, the chapter showed that the multi-camera network's inter-camera 

calibration model error was undetectable from one camera to the next when visualising a 

trajectory over the 60 x 30 m rink surface. The multi-camera network had an overall 

RMS inter-camera calibration model error of 0.01 m and 0.02 m, in the �-and �-axis 

respectively. 

Ground truth kinematics 

Chapter 9 described the two-stage process used to address the fourth objective of the 

programme of research: to create a representative dataset of ground truth short-track 
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speed skating kinematics. Ground truth short-track speed skating kinematics represent 

the criterion values used in the quantification of the multi-camera network’s 

measurement error. The first stage used four high-speed video cameras, and the multi-

camera network, to measure five, real-world, three-dimensional trajectories of a fiducial 

marker positioned at a skater's two-dimensional centre-of-mass point estimate. The five 

trajectories, collected over a corner and proceeding straight, covered a range of skating 

velocities equivalent to 10.12 second to 11.88 second lap times. The second stage applied 

a suite of geometric transformations to each real-world trajectory to create 21 different 

full-lap skating trajectories for the minimum, mean, and maximum skater statures in 

Great Britain Short-Track Speed Skating’s World Class Performance Programme. By 

including various skater statures and skating trajectories, the chapter concluded that the 

synthetic ground truth dataset (. = 315) was suitable for assessing the multi-camera 

network’s sources of measurement error over this range of skating velocities. 

Out-of-plane error  

Chapter 10 used a computer simulation to address the fifth objective of the programme 

of research: to quantify out-of-plane error in the multi-camera network. Out-of-plane 

error described how measured points (i.e. the fiducial marker) not on the calibrated 

plane (i.e. the rink surface) propagated to errors in position and velocity. The chapter 

showed that the multi-camera network’s out-of-plane error (± 1.49 m·s-1) exceeded the ± 

0.19 m·s-1 target measurement error and was dependent on the skating condition and 

skater stature. Fiducial marker out-of-plane distances, ranging from 0.6 m to 1.2 m, led 

to substantial errors in position (0.01 m to 0.68 m) and velocity (0.66 m·s-1 to 1.85 m·s-1). 

The chapter concluded that the multi-camera network’s out-of-plane error must be 

minimised in order to measure accurate, two-dimensional, relay exchange kinematics. 

To minimise the multi-camera network's out-of-plane error, Chapter 11 constructed 

camera-elevated plane calibration models specific to the skating condition and skater 

stature. The chapter showed that the multi-camera network’s out-of-plane error (± 0.25 
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m·s-1) still exceeded the ± 0.19 m·s-1 target measurement error when using these 

calibration models. Nevertheless, the camera-elevated plane calibration models 

significantly reduced the magnitude of out-of-plane error compared to the rink-plane 

calibration models (± 1.49 m·s-1), with 90% of the errors now within the target 

measurement error. In addition, the magnitude of out-of-plane error was now effectively 

invariant to the skating condition, skater stature, and skating velocity. The chapter 

concluded that this improvement in out-of-plane error was due to minimising the out-

of-plane distances between the calibrated plane and fiducial marker. Furthermore, the 

remaining 10% of errors – attributed to the misclassification of each camera’s skating 

condition – could be reduced by classifying each camera’s skating condition 

dynamically. 

Skater point error 

Chapter 12 began to address the sixth of the programme of research: to quantify skater 

point error in the multi-camera network. Skater point error described how uncertainty in 

the automated digitisation of a skater propagated to errors in position and velocity. By 

comparing the developed automated digitisation algorithm to manually digitised 

ground truth data (. = 600 images), the chapter showed that the multi-camera 

network's automated digitisation uncertainty was less than the Olympic Oval (CAN) 

multi-camera network, and invariant to the skating condition, for six candidate fiducial 

marker colours. The four fiducials that exhibited sub-pixel digitisation uncertainty were 

selected for use as Great Britain Short-Track Speed Skating only required four unique 

markers to distinguish between relay teams. The chapter concluded that the multi-

camera network’s improvement in automated digitisation uncertainty was due to 

fiducial markers, positioned at skaters’ two-dimensional centre-of-mass point estimate, 

reducing ambiguity in the digitised point.  

Chapter 13 used Monte Carlo simulations to investigate how this uncertainty 

propagated to skater point error. The chapter showed that the multi-camera network’s 
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skater point error was within the ± 0.19 m·s-1 target measurement error, significantly less 

than the Olympic Oval (CAN) multi-camera network’s ± 1.04 m·s-1 skater point error, 

and effectively invariant to the skating condition, skater stature, and skating velocity, for 

all four fiducial markers. Overall, the multi-camera network’s skater point error was ± 

0.14 m·s-1. The chapter concluded that the multi-camera network’s improvement in 

skater point error was due to (1) fiducial markers minimising the uncertainty in the 

automated digitisation of a skater, and (2) the National Ice Centre (GBR) multi-camera 

network having a superior spatial resolution of the rink surface. Furthermore, the 2% of 

errors that exceeded the target measurement error – attributed to automated digitisation 

uncertainty introducing high-frequency noise into reconstructed fiducial marker 

positions – could be attenuated by using smoothing splines. 

Total error 

Chapter 14 used Monte Carlo simulations to address the seventh objective of the 

programme of research: to quantify total error in the multi-camera network. Total error 

described how the multi-camera network’s five sources of measurement error 

propagated, collectively, to errors in position and velocity. The chapter showed that the 

multi-camera network's total error was within the ± 0.19 m·s-1 target measurement error, 

significantly less than the Olympic Oval (CAN) multi-camera network’s ± 1.53 m·s-1 

total error, and effectively invariant to the skating condition, skater stature, and skating 

velocity, for all four fiducial markers. Overall, the multi-camera network had a total 

error of ± 0.17 m·s-1. These findings had two clear implications for the thesis. First, the 

findings answered the thesis’s overarching research question ‘Can multi-camera 

networks be used to measure accurate, two-dimensional, relay exchange kinematics’. Yes, 

if the network’s sources of measurement error are mitigated as outlined in this thesis. 

Second, the findings confirmed that the aim of the thesis – to develop a multi-camera 

network to measure accurate, two-dimensional, relay exchange kinematics – had been 

achieved.  
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16.3.2 Practical implications 

The second part of the thesis had one significant practical implication for Great Britain 

Short-Track Speed Skating. As Chapter 14 showed that the multi-camera network’s total 

error was within the ± 0.19 m·s-1 target measurement error, the results suggested that 

Great Britain Short-Track Speed Skating could use the National Ice Centre (GBR) 

multi-camera network as a tool to advance knowledge on ‘how to execute the relay 

exchange effectively’. In turn, supporting the team’s targeted improvement of the relay 

exchange, and ultimately, their aim of delivering medal-winning performances at the 

Winter Olympic Games. 

16.3.3 Limitations 

Although the findings presented in part two of the thesis confirmed that the aim of the 

thesis had been achieved, Chapters 6 to 14 identified several limitations that may have 

influenced this result. Of these limitations, two warrant the most consideration. First, 

Chapter 14 did not quantify the multi-camera network’s total error for the full range of 

expected velocities, as the ground truth dataset only included velocities equivalent to 

10.12 second to 11.88 second lap times. In short-track speed skating, the fastest lap 

times can reach 8 seconds. However, by comparing the different velocities in the ground 

truth dataset, Chapter 14 did show that the multi-camera network’s total error was 

effectively invariant to skating velocity. Second, Chapter 13 only quantified the multi-

camera network's skater point error in the scenario where the fiducial marker's 

prediction error was less than one pixel. Although, on average, this is the case in the 

multi-camera network, the prediction errors relatively low precision means that a 

proportion of prediction errors would be greater than one pixel. While Chapter 12 

showed that there was no difference in a skater's digitised position with an additional 

one- and two-pixel prediction error, and Chapter 14 showed that high-frequency noise 

associated with digitisation error was attenuated using a smoothing spline, a more 

detailed understanding of the effect of prediction error on total error is required. 
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16.3.4 Future work 

The results presented in the second part of the thesis provide a rationale for how future 

work should continue to investigate developing the National Ice Centre multi-camera 

network to measure accurate, two-dimensional, relay exchange kinematics. First, future 

investigations should address the limitations reported in Section 16.3.3 by quantifying 

the multi-camera network’s total error at the fastest expected skating velocities and in 

the scenario where a fiducial marker has a prediction error greater than one pixel. 

Second, future work should investigate minimising the multi-camera network's out-of-

plane error by (1) improving the dynamic classification of skating condition camera, and 

(2) constructing camera elevated-plane calibration models specific to the current skating 

velocity, as Chapter 14 showed that the multi-camera network’s total error was most 

sensitive to this source of measurement error.  

16.4 Part III – Multi-camera network demonstration 

The third part of the thesis demonstrated how the multi-camera network’s reduction in 

error to within the target measurement error allowed Great Britain Short-Track Speed 

Skating to advance knowledge on ‘how to execute the relay exchange effectively’. Chapter 

15 presented two investigations on the relay exchange’s execution that considered how 

the developed National Ice Centre (GBR) and benchmark Olympic Oval (CAN) multi-

camera networks’ uncertainty in velocity affected the interpretation of the results. 

16.4.1 Summary of findings 

In the first investigation, Chapter 15 used the developed multi-camera network to 

validate one of two theoretical mechanisms proposed for why the relay exchange’s effect 

on race time transitions from positive to negative with increasing race speeds (Section 

2.4.1). This mechanism stated that the relay exchange’s effect on race time transitions 

from positive to negative due to the relative velocity at first-contact increasing. By 

examining the relationship between the team’s current race speed and the relative 

velocity at first-contact in 12 relay exchanges, the chapter provided empirical data that 
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supported this mechanism. Furthermore, the chapter showed that due to its smaller 

uncertainty in velocity, only the developed multi-camera network could conclude that 

the observed relationship was real and not due to measurement error. 

In the second investigation, Chapter 15 used the developed multi-camera network to 

explore ‘how to execute the relay exchange to achieve a gain-in-race position’. This work 

examined whether the factors reported critical for effective relay exchange execution 

were discriminative of successful overtakes and investigated the mechanisms that 

underlie the first critical factor: the time for Skater1 to contact Skater2 after exiting the 

corner. Again, the chapter showed that due to its smaller uncertainty in velocity, only 

the developed multi-camera network could conclude that (1) the relay exchange’s 

contact energy exchange efficiency was not discriminative of successful overtakes, and 

(2) that Skater2’s velocity was an essential part of the mechanism that underlies the time 

to first-contact. 

16.4.2 Practical implications 

The third part of the thesis had several practical implications for Great Britain Short-

Track Speed Skating. First and foremost, the investigations presented in Chapter 15 

demonstrated how the developed multi-camera network’s reduction in error enables 

Great Britain Short-Track Speed Skating to advance knowledge on ‘how to execute the 

relay exchange effectively’. Accordingly, Great Britain Short-Track Speed Skating can use 

the developed multi-camera network as a tool to support their targeted improvement of 

the relay exchange, and ultimately, their aim of delivering medal-winning performances 

at the Winter Olympic Games.  

In addition, as the studies presented in Chapter 15 were the first to investigate their 

respective topics, Great Britain Short-Track Speed Skating can use the findings to 

advance their understanding of ‘how to execute the relay effectively’. First, Chapter 15 

found that the relative velocity at first-contact increased with race speed. Therefore, to 

mitigate the negative effect of the relay exchange at faster race speeds, Skater2 should 



  Summary & conclusion 

 

250 

 

further attempt to match the speed of Skater1; even though this requires the skater to 

expend more energy. Second, Chapter 15 found that the factors critical for effective 

relay exchange execution differed between the scenarios where a team is isolated from 

the pack race and achieving a gain-in-race position. Therefore, although the relay 

exchange always involves Skater1 pushing Skater2 at the start of the straight, its execution 

should be approached dynamically – based on the race scenario and the goal of the relay 

exchange – rather than a ‘one-type-fits-all’ approach. Finally, the chapter demonstrated 

that the timing and velocity of Skater2 was an essential part of the mechanism that 

underlies the time to first-contact; the factor that appears critical for effective relay 

execution in all race scenarios. In this respect, it seemed advisable that Skater2 adapts 

their position and velocity to ensure that they are behind Skater1 when this skater passes 

the corner entry sector line, and approximately level with Skater1 at the apex sector line, 

to guarantee that they do not arrive at the start of the straight too early. 

16.4.3 Limitations 

The third part of the thesis had three limitations that warrant consideration. First, the 

number of relay exchanges (. = 12) and relay exchange overtakes (. = 4) analysed in 

Chapter 15 was small. Although these samples were similar to existing relay exchange 

investigations (Osborough & Henderson, 2009; Riewald et al., 1997), readers should 

exercise caution when drawing conclusions from this chapter. Second, the two datasets 

used in Chapter 15 included male-to-male, female-to-female, and female-to-male, relay 

exchanges. Although all of these relay exchange scenarios exist in elite short-track speed 

skating, this thesis was focused on the men’s 5,000 m relay event (Section 2.4.4). 

Accordingly, due to sexual dimorphisms, it is unclear whether male-to-male relay 

exchanges would produce the same findings given the already small sample size. Finally, 

the two datasets used in Chapter 15 consisted of relay exchanges from three-team relay 

races. Although this race format occurs in elite short-track speed skating, the relay event 

typically involves four-teams racing head-to-head (ISU, 2016). As there is no current 

understanding of how different spatial constraints – afforded by the team’s race position 
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and the number of teams in the pack race – affect the factors discriminative of successful 

overtakes, the associated findings should only be deemed relevant for three-team race 

scenarios at present. 

16.4.4 Future work 

The results presented in the third part of the thesis provide a rationale for how Great 

Britain Short-Track Speed Skating should continue to investigate the relay exchange 

execution. First, future work should address the limitations reported in Section 16.4.3, 

by repeating both investigations using a larger sample of same- and mixed-sex relay 

exchanges, from three- and four-team relays. Second, future work should investigate 

‘how to execute the relay exchange to minimise relative velocity at first-contact’, as this 

explains, in part, why the relay exchange’s effect on race time transitions from positive 

to negative with increasing race speeds. Third, future work should explore new metrics 

for quantifying the relay exchange’s execution in competitive race scenarios, as only one 

of the factors currently reported critical for effective relay exchange execution was 

discriminative of successful relay exchange overtakes. Finally, future work should 

continue to investigate Skater1 and Skater2’s interpersonal coordination tendencies, as 

Skater2's timing and velocity were shown to be an essential part of the mechanism that 

underlies the time to first-contact. This work should use additional measures – such as 

Skater1 and Skater2’s relative distance and velocity – over a continuous time scale, as 

Chapter 15 only considered the skaters’ position and velocity at the corner entry, apex, 

and exit. 

16.5 Conclusion 

This thesis developed a multi-camera network to measure accurate, two-dimensional, 

relay exchange kinematics in short-track speed skating. Compared to existing 

measurement solutions, the multi-camera network can measure relay exchange 

kinematics in representative race scenarios, over the entirety of the exchange, and with 

an acceptable level of error. Monte Carlo simulations showed that the multi-camera 
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network’s total error was ± 0.17 m·s-1. This error was within the target measurement 

error (± 0.19 m·s-1) and significantly less than the benchmark Olympic Oval (CAN) 

multi-camera network (± 1.53 m·s-1). Investigations into the execution of the relay 

exchange demonstrated how this reduction in error allows Great Britain Short-Track 

Speed Skating to advance knowledge on ‘how to execute the relay exchange effectively’. In 

turn, supporting the team’s targeted improvement of the relay exchange, and ultimately, 

their aim of delivering medal-winning performances at the Winter Olympic Games. 

 

 

 

 

 

 



  References 

 

253 

 

References 

Chapter 17 References 

References 

Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement 

error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 

217–238. 

Barris, S., & Button, C. (2008). A review of vision-based motion analysis in sport. Sports 

Medicine, 38(12), 1025–1043. 

Bartlett, R. (2014). Quantitative analysis of movement. In Introduction to sports 

biomechanics: Analysing human movement patterns (Third ed., pp. 115–162). 

Oxford, United Kingdom: Routledge. 

Bernards, J., Sato, K., Haff, G., & Bazyler, C. (2017). Current research and statistical 

practices in sport science and a need for change. Sports, 5(4), 87.  

Bouguet, J.-Y. (2015). Camera calibration toolbox for MATLAB. Retrieved from 

http://www.vision.caltech.edu/bouguetj/calib_doc/ 

Bradley, D., Atcheson, B., Ihrke, I., & Heidrich, W. (2009). Synchronization and rolling 

shutter compensation for consumer video camera arrays. In Proceedings of the 

IEEE Computer Science Conference on Computer Vision and Pattern Recognition 

Workshops (pp. 1–8). Miami, FL, United States of America: IEEE Computer Society. 

Bradski, G., & Kaehler, A. (2008). Learning OpenCV. (M. Loukides, Ed.). Sebastopol, CA, 

United States of America: O’Reilly. 



  References 

 

254 

 

Bullock, N., Martin, D. T., & Zhang, A. (2008). Performance analysis of world class 

short track speed skating: What does it take to win? International Journal of 

Performance Analysis in Sport, 8(1), 9–18. 

Ceccon, S., Ceseracciu, E., Sawacha, Z., Gatta, G., Cortesi, M., Cobelli, C., & Fantozzi, S. 

(2013). Motion analysis of front crawl swimming applying CAST technique by 

means of automatic tracking. Journal of Sports Sciences, 31(3), 276–287. 

Challis, J. H. (2018). Data processing and error estimation. In C. J. Payton & A. Burden 

(Eds.), Biomechanical evaluation of movement in sport and exercise (Second, pp. 

168–194). Oxford, United Kingdom: Routledge. 

Chiari, L., Croce, U. D., Leardini, A., & Cappozzo, A. (2005). Human movement 

analysis using stereophotogrammetry. Part 2: Instrumental errors. Gait and Posture, 

21(2), 197–211. 

Chun, M.-K. (2001). The kinematic analysis of the cornering movements in short track 

speed skating. The International Journal of Applied Sports Science, 13(2), 63–80. 

Cohen, J. (1988). Statistical power analysis for the behavioural sciences (Second ed.). 

Hillsdale, NJ, United States of America: Lawrence Erlbaum Associates. 

Comer, M. L., & Delp, E. J. (1999). Morphological Operations For Color Image 

Processing. Journal of Electronic Imaging, 8(3), 279–289. 

CSER. (2013). Check2D. Retrieved from http://www.check2d.co.uk/ 

Curran, P. A. (2014). Monte Carlo error analyses of Spearman’s rank test. ArXiv. 

Currell, K., & Jeukendrup, A. E. (2008). Validity, reliability and sensitivity of measures 

of sporting performance. Sports Medicine, 38(4), 297–316.  

de Koning, J. J., de Groot, G., & van Ingen Schenau, G. J. (1992). Ice friction during 

speed skating. Journal of Biomechanics, 25(6), 565–571. 



  References 

 

255 

 

de Koning, J. J., & van Ingen Schenau, G. J. (2000). Performance-determining factors in 

speed skating. In V. M. Zatsiorsky (Ed.), Biomechanics in sport: Performance 

enhancement and injury prevention (pp. 232–246). Oxford, United Kingdom: 

Blackwell Science. 

de Queiroz, D. P., Gomide, J. V. B., & de Albuquerque Araújo, A. (2012). Evaluation of 

real time tracking methods for an open source motion capture system. In 

Proceedings of the 25th Conference on Graphics, Patterns and Images. Ouro Preto, 

Brazil. 

Derrick, T. R., & Gordon, D. G. E. (2014). Signal processing. In D. G. E. Robertson, G. E. 

Caldwell, J. Hamill, G. Kamen, & S. N. Whittlesey (Eds.), Research Methods in 

Biomechanics (Second ed., pp. 270–290). Champaign, IL, United States of America: 

Human Kinetics. 

Duarte, R., Araújo, D., Davids, K., Travassos, B., Gazimba, V., & Sampaio, J. (2012). 

Interpersonal coordination tendencies shape 1- vs-1 sub-phase performance 

outcomes in youth soccer. Journal of Sports Sciences, 30(9), 871–877.  

Dunn, M. D., Wheat, J., Miller, S., Haake, S., & Goodwill, S. R. (2012). Reconstructing 

2D planar coordinates using linear and non-linear techniques. In E. J. Bradshaw, A. 

Burnett, & P. A. Hume (Eds.), ISBS Conference Proceedings (pp. 380–383). 

Melbourne, Australia. 

Emgu. (2015). Emgu CV-3.0.0. Retrieved from 

http://www.emgu.com/wiki/index.php/Main_Page 

Field, A. (2009). Discovering statistics using SPSS (Third ed.). London, United Kingdom: 

SAGE. 

Fitzgibbon, A., Pilu, M., & Fisher, R. B. (1999). Direct least square fitting of ellipses. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476–480. 



  References 

 

256 

 

Flam, D. L., de Souza Ramos, T. L. A., de Queiroz, D. P., de Albuquerque Araújo, A., & 

Gomide, J. V. B. (2009). OpenMoCap: An open source software for optical motion 

capture. In S. Ceballos (Ed.), Proceedings of the Brazilian Symposium on Games and 

Digital Entertainment (pp. 151–161). Rio de Janeiro, Brazil: IEEE Computer 

Society. 

Garcia-Lamont, F., Cervantes, J., López, A., & Rodriguez, L. (2018). Segmentation of 

images by color features: A survey. Neurocomputing, 292, 1–27. 

Gilbert, A. L., Giles, M. K., Flachs, G. M., Rogers, R. B., & Hsun U, Y. (1980). A real-

time video tracking system. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, PAMI-2(1), 47–56. 

Gordon, D. G. E., & Caldwell, G. E. (2014). Planar kinematics. In D. G. E. Robertson, G. 

E. Caldwell, J. Hamill, G. Kamen, & S. N. Whittlesey (Eds.), Research Methods in 

Biomechanics (Second ed., pp. 9–34). Champaign, IL, United States of America: 

Human Kinetics. 

Graham, J., & Mayberry, J. (2014). Measures of tactical efficiency in water polo. Journal 

of Quantitative Analysis in Sports, 10(1), 67–79.  

Haug, W. B., Drinkwater, E. J., Mitchell, L. J., & Chapman, D. W. (2015). The 

relationship between start performance and race outcome in elite 500-m short-

track speed skating. International Journal of Sports Physiology and Performance, 

10(7), 902–906. 

Heikkilä, J., & Silvén, O. (1997). A four-step camera calibration procedure with implicit 

image correction. In Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (pp. 1106–1112). San Juan, Puerto Rico: 

IEEE Computer Society. 

Herda, L., Fua, P., Plänkers, R., Boulic, R., & Thalmann, D. (2001). Using skeleton-based 



  References 

 

257 

 

tracking to increase the reliability of optical motion capture. Human Movement 

Science, 20(3), 313–341. 

Hesford, C. M., Laing, S. J., Cardinale, M., & Cooper, C. E. (2012). Asymmetry of 

quadriceps muscle oxygenation during elite short-track speed skating. Medicine 

and Science in Sports and Exercise, 44(3), 501–508. 

Hettinga, F. J., Konings, M. J., & Cooper, C. E. (2016). Differences in muscle 

oxygenation, perceived fatigue and recovery between long-track and short-track 

speed skating. Frontiers in Physiology, 7(619), 1–14. 

Hext, A., Heller, B., Kelley, J. W., & Goodwill, S. R. (2016). Measuring straight time in 

elite short track speed skating relays. Procedia Engineering, 147, 622–626. 

Hoffman, E., Listemann, E., McManaman, C., & Rundell, K. W. (1998). Short track 

speed skating: Analysis of drafting during world championship competition. 

Medicine and Science in Sports and Exercise, 30(Suppplement 5), 310. 

Hopkins, W. G., Hawley, J. A., & Burke, L. M. (1999). Design and analysis of research on 

sport performance enhancement. Medicine and Science in Sports and Exercise, 

31(3), 472–485. 

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive 

statistics for studies in sports medicine and exercise science. Medicine and Science 

in Sports and Exercise, 41(1), 3–13. 

Hoshikawa, H., Yoshino, T., Tamaki, K., Tomita, H., Kato, K., Ishihara, K., … 

Kawakami, T. (2005). The effects of drafting on blood lactate accumulation during 

short track speed skating. Proceedings of the 13th Annual Meeting of the Canadian 

Soceity for Exercise Physiology, 30(Supplement 1). 

Hudson, C. R. (2015). Automated tracking of swimmers in the clean swimming phase of a 

race. Sheffield Hallam University. 



  References 

 

258 

 

Hughes, M. D., & Bartlett, R. M. (2002). The use of performance indicators in 

performance analysis. Journal of Sports Sciences, 20(10), 739–754.  

IBM. (2016). IBM SPSS statistics for Windows, Version 24.0. Armonk, NY, United 

States of America: IBM Corp. 

ISO. (1994). 5725-1 Accuracy (trueness and precision) of measurement methods and 

results — Part 1: General principles and definitions. 

ISU. (2016). Special regulations and technical rules. Speed skating and short track speed 

skating. Dubrovnik, Croatia: International Skating Union. 

ISU. (2018). Short-track speed skating mixed gender relay event included in the 2022 

Olympic Program. Retrieved January 3, 2018, from https://www.isu.org/news/145-

news/12131-short-track-speed-skating-mixed-gender-relay-approved-by-the-ioc-

for-beijing-2022?templateParam=15 

ITU. (2011). Recommendation ITU-R BT.601-7, Studio encoding parameters of digital 

television for standard 4:3 and wide-screen 16:9 aspect ratios. BT Series, 

Broadcasting Service (Television). International Telecommunication Union. 

JCGM. (2012). International vocabulary of metrology – Basic and general concepts and 

associated terms. Technical Report.  

Kelley, J. W. (2011). Measuring ball spin rates in match play tennis. Sheffield Hallam 

University. 

Kim, T.-H., Jun, M.-K., Yoo, S.-H., & Park, S.-K. (2013). Kinematic analysis of cornering 

with different radius of curve course in short track speed skating. Korean Journal of 

Sport Biomechanics, 23(2), 109–116. 

Kjendlie, P.-L., & Bjørn, H. O. (2012). Automatic 3D motion capture of swimming: 

Marker resistance. In W. Kohrt & S. Blair (Eds.), Proceedings of the 59th Annual 



  References 

 

259 

 

Meeting of the American College of Sports Medicine. San Francisco, CA, United 

States of America. 

Konings, M. J., Elferink-Gemser, M. T., Stoter, I. K., van der Meer, D., Otten, E., & 

Hettinga, F. J. (2015). Performance characteristics of long-track speed skaters: A 

literature review. Sports Medicine, 45(4), 505–516. 

Konings, M. J., & Hettinga, F. J. (2018). Objectifying tactics: Athlete and race variability 

in elite short-track speed skating. International Journal of Sports Physiology and 

Performance, 13(2), 170–175. 

Konings, M. J., Noorbergen, O. S., Parry, D., & Hettinga, F. J. (2016). Pacing behaviour 

and tactical positioning in 1500 m short-track speed skating. International Journal 

of Sports Physiology and Performance, 11(1), 122–129. 

Krig, S. (2014). Ground truth data, content, metrics, and analysis. In Computer Vision 

Metrics. Survey, Taxonomy, and Analysis (pp. 283–312). Berkeley, CA, United 

States of America: Apress. 

Landry, T., Gagnon, L., & Laurendeau, D. (2013). A GIS-centric optical tracking system 

and lap simulator for short track speed skating. In Proceedings of the International 

Conference on Computer and Robot Vision (pp. 288–294). Regina, SK, Canada: 

IEEE Computer Society. 

Liu, C. (2014). A computer-aided training (CAT) system for short track speed skating. 

Utah State Uinversity. 

Liu, G., & Tang, X. (2009). Tracking high speed skater by using multiple model. 

Computer and Information Science, 2(1), 126–131. 

Liu, G., Tang, X. L., Cheng, H. D., Huang, J. H., & Liu, J. F. (2009). A novel approach for 

tracking high speed skaters in sports using a panning camera. Pattern Recognition, 

42(11), 2922–2935. 



  References 

 

260 

 

Liu, G., Tang, X. L., Huang, J. H., Liu, J. F., & Sun, D. (2007). Hierarchical model-based 

human motion tracking via unscented Kalman filter. In Proceedings of the 11th 

IEEE Conference on Computer Vision (pp. 1–8). Rio de Janeiro, Brazil: IEEE 

Computer Society.  

Magalha ̃es, F. A., Sawacha, Z., Di Michele, R., Cortesi, M., Gatta, G., & Fantozzi, S. 

(2013). Effectiveness of an automatic tracking software in underwater motion 

analysis. Journal of Sports Science & Medicine, 12(4), 660–667. 

Malcata, R. M., & Hopkins, W. G. (2014). Variability of competitive performance of elite 

athletes: A systematic review. Sports Medicine, 44(12), 1763–1774. 

Malik, N. A., Dracos, T., & Papantoniou, D. A. (1993). Particle tracking velocimetry in 

three-dimensional flows. Experiments in Fluids, 15(4–5), 279–294. 

MathWorks. (2016). MATLAB R2016a. Natick, MA, United States of America: 

MathWorks.Inc. 

Maw, S., Proctor, L., Vredenburg, J., & Ehlers, P. (2006). Influence of starting position 

on finishing position in World Cup 500 m short track speed skating. Journal of 

Sports Sciences, 24(12), 1239–1246. 

McGarry, T., Anderson, D. I., Wallace, S. A., Hughes, M. D., & Franks, I. M. (2002). 

Sport competition as a dynamical self-organizing system. Journal of Sports Sciences, 

20(10), 771–781. 

McGarry, T., Khan, M. A., & Franks, I. M. (1999). On the presence and absence of 

behavioural traits in sport: An example from championship squash match-play. 

Journal of Sports Sciences, 17(4), 297–311. 

Moeslund, T. B., & Granum, E. (2001). A survey of computer vision-based human 

motion capture. Computer Vision and Image Understanding, 81(3), 231–268. 



  References 

 

261 

 

Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based 

human motion capture and analysis. Computer Vision and Image Understanding, 

104(2–3), 90–126. 

Muehlbauer, T., & Schindler, C. (2011). Relationship between starting and finishing 

position in short track speed skating races. European Journal of Sport Science, 11(4), 

225–230. 

Noorbergen, O. S., Konings, M. J., Micklewright, D., Elferink-Gemser, M. T., & Hettinga, 

F. J. (2016). Pacing and tactical positioning in 500- and 1000-m short-track speed 

skating. International Journal of Sports Physiology and Performance, 11(6), 742–748.  

Osborough, C., & Henderson, S. (2009). Effect of relay changeover position on skating 

speed for elite short track speed skaters. In A. J. Harrison, R. Anderson, & I. Kenny 

(Eds.), ISBS Conference Proceedings (Vol. 1). Limerick, Ireland. 

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE 

Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. 

Park, S.-H., Yun, N.-S., Lee, K.-O., & Baik, J.-H. (1998). The kinematic analysis of short 

track speed skating in straight. Journal of Korean Physical Education Association for 

Girls and Women, 12, 103–117. 

Payton, C. J. (2008). Motion analysis using video. In C. J. Payton & R. Bartlett (Eds.), 

Biomechanical evaluation of movement in sport and exercise (pp. 8–32). Oxford, 

United Kingdom: Routledge. 

Peikon, I. D., Fitzsimmons, N. A., Lebedev, M. A., & Nicolelis, M. A. L. (2009). Three-

dimensional, automated, real-time video system for tracking limb motion in brain-

machine interface studies. Journal of Neuroscience Methods, 180(2), 224–233. 

Pintaric, T., & Kaufmann, H. (2007). Affordable infrared-optical pose-tracking for 

virtual and augmented reality. In Proceedings of Trends and Issues in Tracking for 



  References 

 

262 

 

Virtual Environments Workshop, IEEE VR (pp. 44–51). Charlotte, NC, United 

States of America: IEEE Computer Society. 

Reed, D., & Hughes, M. (2006). An Exploration of Team Sport as a Dynamical System. 

International Journal of Performance Analysis in Sport, 6(2), 114–125.  

Riewald, S. A., Broker, J. P., Smith, S. L., & Otter, J. (1997). Energetics and timing of 

relay exahnges in short-track speed skating. Medicine and Science in Sports and 

Exercise, 29(Supplement 5), 8. 

Rundell, K. W. (1996). Effects of drafting during short-track speed skating. Medicine 

and Science in Sports and Exercise, 28(6), 765–771.  

Ruscio, J., & Kaczetow, W. (2008). Simulating multivariate nonnormal data using an 

iterative algorithm. Multivariate Behavioral Research, 43(3), 355–381. 

Russ, J. C., & Brent, N. F. (2011). The image processing handbook (Sixth ed.). Boca Raton, 

FL, United States of America: CRC Press. 

Sampe, I. E., Vijai, N. A., Latifah, R. M. T., & Aprintono, T. (2009). A study on the 

effects of lightning and marker color variation to marker detection and tracking 

accuracy in gait analysis system. In Proceedings of the International Conference on 

Instrumentation, Communication, Information Technology, and Biomedical 

Engineering (pp. 1–5). Bandung, Indonesia: IEEE Computer Society. 

Seiler, S., de Koning, J. J., & Foster, C. (2007). The fall and rise of the gender difference 

in elite anaerobic performance. Medicine and Science in Sports and Exercise, 39(3), 

534–540. 

Shafiq, M. S., Tümer, S. T., & Güler, H. C. (2001). Marker detection and trajectory 

generation algorithms for a multicamera based gait analysis system. Mechatronics, 

11(4), 409–437. 



  References 

 

263 

 

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete 

samples). Biometrika, 52((3-4)), 591–611. 

Sih, B. L., Hubbard, M., & Williams, K. R. (2001). Correcting out-of-plane errors in two-

dimensional imaging using nonimage-related information. Journal of Biomechanics, 

34(2), 257–260. 

Sinclair, J., Taylor, P. J., & Hobbs, S. J. (2013). Digital filtering of three-dimensional 

lower extremity kinematics: An assessment. Journal of Human Kinetics, 39(1), 25–

36. 

Skorski, S., Etxebarria, N., & Thompson, K. G. (2016). Breaking the myth that relay 

swimming is faster than individual swimming. International Journal of Sports 

Physiology and Performance, 11(3), 410–413. 

Sobral, A., & Vacavant, A. (2014). A comprehensive review of background subtraction 

algorithms evaluated with synthetic and real videos. Computer Vision and Image 

Understanding, 122(May), 4–21. 

Song, M.-H., & Godøy, R. I. (2016). How fast is your body motion? Determining a 

sufficient frame rate for an optical motion tracking system using passive markers. 

PLoS ONE, 11(3), 1–14. 

Steiner, S., Macquet, A.-C., & Seiler, R. (2017). An integrative perspective on 

interpersonal coordination in interactive team sports. Frontiers in Physiology, 

8(1440).  

Stelzer, A., Pourvoyeur, K., & Fischer, A. (2004). Concept and application of LPM - A 

novel 3D local position measurement system. IEEE Transactions on Microwave 

Theory and Techniques, 52(12), 2664–2669. 

Taylor, J. (1997). Introduction to error analysis: The study of uncertainties in physical 

measurements (Second edition). California, USA: University Science Books. 



  References 

 

264 

 

Theobalt, C., Albrecht, I., Haber, J., Magnor, M., & Seidel, H.-P. (2004). Pitching a 

baseball - Tracking high-speed motion with multi-exposure images. ACM 

Transactions on Graphics, 23(3), 540–547. 

van der Kruk, E., Schwab, A. L., van der Helm, F. C. T., & Veeger, H. E. J. (2016). 

Getting the angles straight in speed skating: A validation study on an IMU filter 

design to measure the lean angle of the skate on the straights. Procedia Engineering, 

147, 590–595. 

van der Kruk, E., Veeger, H. E. J., van der Helm, F. C. T., & Schwab, A. L. (2017). Design 

and verification of a simple 3D dynamic model of speed skating which mimics 

observed forces and motions. Journal of Biomechanics, 64, 93–102. 

van Ingen Schenau, G. J. (1982). The influence of air friction in speed skating. Journal of 

Biomechanics, 15(6), 449–458. 

Walton, J. S. (1981). Close-range cine-photogrammetry: A generalized technique for 

quantifying gross human motion. Pennsylvania State University, USA. 

Wang, X. (2013). Intelligent multi-camera video surveillance: A review. Pattern 

Recognition Letters, 34(1), 3–19. 

Wang, Y. (2012). A Novel and Effective Short Track Speed Skating Tracking System. Utah 

State University. 

Wang, Y., Cheng, H. D., & Shan, J. (2014). Multiplayer tracking system for short track 

speed skating. IET Computer Vision, 8(6), 629–641.  

Wang, Y., Liu, J. F., Liu, G., Tang, X. L., & Liu, P. (2009). Observation and analysis of 

high-speed human motion with frequent occlusion in a large area. Measurement 

Science and Technology, 20(12). 

Ward-Smith, A. J., & Radford, P. F. (2002). A mathematical analysis of the 4 × 100 m 



  References 

 

265 

 

relay. Journal of Sports Sciences, 20, 369–381. 

Wilburn, B., Joshi, N., Vaish, V., Levoy, M., & Horowitz, M. (2004). High-speed 

videography using a dense camera array. In Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 294–

301). Washington, DC, United States of America: IEEE Computer Society. 

Yeasin, M., & Chaudhuri, S. (2000). Development of an automated image processing 

system for kinematic analysis of human gait. Real-Time Imaging, 6(1), 55–67. 

Yoo, J.-C., & Kim, Y.-S. (2003). Alpha-beta-tracking index (α-β-Λ) tracking filter. Signal 

Processing, 83(1), 169–180. 

Yoo, Y., Im, J., & Paik, J. (2014). Flicker removal for CMOS wide dynamic range 

imaging based on alternating current component analysis. IEEE Transactions on 

Consumer Electronics, 60(3), 294–301. 

Yu, B., Gabriel, D., Noble, L., & An, K.-N. (1999). Estimate of the optimum cutoff 

frequency for the butterworth low-pass digital filter. Journal of Applied 

Biomechanics, 15(3), 318–329. 

Yule, T., & Payton, C. J. (2000). Angle of body lean and speed around the curve in short-

track speed skating. Journal of Sports Sciences, 18(1), 11–12. 

Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown 

orientations. In Proceedings of the IEEE International Conference on Computer 

Vision (Vol. 1, pp. 666–673). Kerkyra, Greece: IEEE Computer Society. 



   

 

266 

 

 


