Sheffield
Hallam
University

A new approach to deploy a self-adaptive distributed
firewall

DA COSTA JUNIOR, Edmilson P, DA SILVA, Carlos Eduardo
<http://orcid.org/0000-0001-9608-439X>, PINHEIRO, Marcos and SAMPAIO,
Silvio

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/25227/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DA COSTA JUNIOR, Edmilson P, DA SILVA, Carlos Eduardo, PINHEIRO, Marcos
and SAMPAIO, Silvio (2018). A new approach to deploy a self-adaptive distributed
firewall. Journal of Internet Services and Applications, 9 (12).

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

da Costa Junior et al. Journal of Internet Services and Applications (2018) 9:12

https://doi.org/10.1186/513174-018-0083-6

Journal of Internet Services
and Applications

RESEARCH Open Access

A new approach to deploy a self-adaptive

distributed firewall

Edmilson P. da Costa Junior!, Carlos Eduardo da Silva'”"

and Silvio Sampaio'

@ CrossMark

, Marcos Pinheiro?

Abstract

results achieved demonstrate its viability.

Distributed firewall systems emerged with the proposal of protecting individual hosts against attacks originating from
inside the network. In these systems, firewall rules are centrally created, then distributed and enforced on all servers
that compose the firewall, restricting which services will be available. However, this approach lacks protection against
software vulnerabilities that can make network services vulnerable to attacks, since firewalls usually do not scan
application protocols. In this sense, from the discovery of any vulnerability until the publication and application of
patches there is an exposure window that should be reduced. In this context, this article presents Self-Adaptive
Distributed Firewall (SADF). Our approach is based on monitoring hosts and using a vulnerability assessment system
to detect vulnerable services, integrated with components capable of deciding and applying firewall rules on affected
hosts. In this way, SADF can respond to vulnerabilities discovered in these hosts, helping to mitigate the risk of
exploiting the vulnerability. Our system was evaluated in the context of a simulated network environment, where the

Keywords: Distributed firewall, Self-adaptive software, Network security, Software vulnerability assessment

1 Introduction
Several institutions all over the world deal with com-
plex network infrastructure, involving an increasing num-
ber of equipment (e.g., switches, routers) and servers,
usually providing different services. These environments
may contain several types of vulnerabilities that could
be exploited by an attacker. In this way, it is extremely
important to maintain software systems up to date with
versions that fix known vulnerabilities. Considering the
diversity of activities and variety of research topics con-
ducted throughout an university, it is common to find
situations where several services, and servers, need to be
provided for different groups of people, and more often
than not, maintained by these groups. This leads to an
inconsistency in management and security procedures,
where servers poorly configured, with outdated services,
or both may become potential targets for attacks.

In this context, the traditional approach for network
security, in which firewalls are deployed on the border

*Correspondence: kaduardo@imd.ufrn.br

'Digital Metropolis Institute, Federal University of Rio Grande do Norte (UFRN),
Natal, RN, Brazil

Full list of author information is available at the end of the article

@ Springer Open

of the network is no longer effective, as centralized bor-
der firewalls are not able to deal with attacks originated
from inside the security perimeter [1]. Today’s technol-
ogy movements, such as Bring Your Own Device (BYOD)
and the availability of 3G/4G connections, mean that a
malicious user has already penetrated the border defense.
This is exacerbated when we consider university environ-
ments, which are usually open to the public in general, and
contains some servers maintained by researchers, with
outdated and potentially vulnerable services.

Distributed firewall systems [2] have emerged as a solu-
tion for dealing with incidents originated from inside the
secure perimeter, by including firewalls in different points
of the network and servers. In such systems, a centralized
control mechanism is responsible for distributing firewall
rules to each point of the network, and hence it is possi-
ble to control what services running on those servers are
exposed on the network, and only for specific client hosts.

However, the application of distributed firewall also
brings some challenges, such as the management of these
firewalls and their rules, and the response time in case of
an incident. Traditional solutions for intrusion detection

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-018-0083-6&domain=pdf
https://orcid.org/0000-0001-9608-439X
https://orcid.org/0000-0001-9608-439X
mailto: kaduardo@imd.ufrn.br
http://creativecommons.org/licenses/by/4.0/

da Costa Junior et al. Journal of Internet Services and Applications (2018) 9:12

or vulnerability assessment usually notify an administra-
tor, who then assesses and decides how to respond to deal
with the situation [3]. However, this approach is usually
not fast enough for avoiding information theft, the infec-
tion of new systems/servers, or even service unavailability,
mainly for attacks conducted during strategic times, such
as the middle of the night or weekends, when the IT team
is usually out of service.

Moreover, it is possible to identify a gap on the inte-
gration between the several tools involved in securing
a network environment. For example, a Vulnerability
Assessment System (VAS) may detect a vulnerability on
a particular server, but the firewall of such system may
not react to such detection, as both systems are not inte-
grated. Such problem becomes more evident when we
consider the dynamic nature of a complex network envi-
ronment, in which new devices and services are constantly
added/removed, and new vulnerabilities are discovered
and patched. Finally, it is worth mentioning that, although
there are firewall solutions that inspect application pro-
tocols, in 2016 more than half of the corporate networks
were still using conventional firewalls [4].

In this context, the main contribution of this paper
is an architecture for network security based on self-
protection, named Self-Adaptive Distributed Firewall
(SADF). SADF integrates different components that are
part of a network for supporting the autonomic manage-
ment of its infrastructure in response to security-related
incidents. SADF has been deployed on a prototype inte-
grating a configuration management system with a VAS
for managing a distributed firewall, in which possible
threats can be detected (i.e., servers with vulnerabilities)
and appropriate decisions be made for mitigating their
impacts with minimal human intervention.

The motivation for using self-adaptation is the proven
effectiveness and efficiency of self-adaptation in dealing
with uncertainty in a wide range of applications, includ-
ing those related to security [5-7]. Our current prototype
of SADF monitors the hosts of a network, which are then
scanned by a VAS in the search for known vulnerabili-
ties. Once a vulnerability is discovered, firewall rules for
reacting to it are defined based on high-level policies.
These rules are then applied to individual hosts, effectively
mitigating the exposure window for the vulnerable server.

SADF was first proposed in [8], in which the main
issues related to the theme were presented, together with a
proposal of architecture and a prototype implementation
that demonstrated its viability. Compared to our previous
work, this article further details the proposed architec-
ture, which now fully implements a Monitor-Analyse-
Plan-Execute-Knowledge (MAPE-K) feedback control
loop [9] for managing the self-adaptation process. This
article also presents details about high-level policies
and the decision-making process used for controlling

Page 2 of 21

adaptation, and an evaluation of the whole implementa-
tion in a controlled environment.

The remaining of this paper is organized as follows:
Section 2 contextualizes our work defining its scope and
presenting some background on self-protection. Section 3
presents a conceptual view of the proposed SADF archi-
tecture. Section 4 describes a prototype that has been
implemented to demonstrate our approach feasibility.
Results from the experiments conducted in a controlled
environment to evaluate the proposed approach are pre-
sented and discussed in section 5. Section 6 discusses
some related work. Section 7 concludes the paper.

2 Contextualization

In a university network infrastructure, such as the Federal
University of Rio Grande do Norte (UFRN) in Brazil,
it is common to find several groups of servers hosting
from basic services, like e-mail, Web, and DNS (Domain
Name System), to specific applications. These institutions
usually maintain a network team responsible for manag-
ing these services. However, it is also common to find
other servers and equipment providing a set of local ser-
vices used and maintained by researchers in their respec-
tive laboratories. Such a diverse environment is prone to
inconsistency in management and security procedures,
causing it to be likely susceptible to vulnerable servers due
to misconfiguration or outdated software. Moreover, an
university network contains some workstations and wire-
less access points, which together with the trend of BYOD
and the availability of 3G/4G connectivity, constitute a
plethora of equipment outside the control of the central
management team.

The firewall is usually treated as the first line of defense
of computer networks [10]. A firewall is a trusted host
that acts as a choking point of one or more networks,
usually at the border between a public and a private net-
work. The traffic between the networks passes through
the firewall, which decides based on a set of rules, which
network packet should be allowed to continue or blocked.
However, as previously mentioned, the limitations of a
centralized firewall, which is not able to protect against
internal attacks, has motivated the definition of a dis-
tributed firewall model [2]. In a distributed firewall, secu-
rity policies are defined in a centralized fashion using
specific language, and then distributed, by secure means,
to be applied to different enforcement points. These
enforcers can either be located on different segregation
points inside the network, such as routers and switches,
or on each host of the network [1]. Figure 1 presents a
general view of a network infrastructure where we can
identify a Rules Management Server, which is responsible
for dealing with and distributing the firewall rules into the
different enforcement points, such as switches, servers,
or both.

da Costa Junior et al. Journal of Internet Services and Applications

(2018) 9:12

Page 3 of 21

External Network

Internet

Internal Network

Laboratory
servers

Fig. 1 General view of the distributed firewall scope considered in this paper

Operating and maintaining this infrastructure requires a
continuous effort as, even though there are different tools
for facilitating management and maintenance actions, it
is common to find out that most of these operations
are still manually conducted. For example, the majority
of institutions use, apart from firewalls, some tool for
configuration management, resource and service moni-
toring, intrusion detection and vulnerability assessment
systems, which scans the network pointing out vulner-
able services. These are important tools for maintain-
ing the network infrastructure, but there is a lack of
integration among them, requiring human intervention
for conducting some tasks, and wasting valuable time
between the moment an incident is detected, and an
administrator performs some corrective action to mitigate
its impact.

In this context, software self-adaptation can be used
for integrating such tools, contributing for automating
the security management of the network, with minimal
human intervention.

A self-adaptive software system is able to modify its
own structure or behaviour during run-time in order to
deal with changes in its requirements, the environment
in which it is deployed, or the system itself [9]. Among
the different properties of a self-adaptive system, self-
protection has been identified as a key concept for build-
ing autonomous self-managed systems. While systems’
architectures are becoming more dynamic and adaptive,
the majority of the protection mechanisms have kept sim-
ple, with security policies usually manually defined, in a
slow and costly way.

One way for achieving self-adaptation is through the
Monitor-Analyse-Plan-Execute-Knowledge = (MAPE-K)
feedback control loop over a target system [11]. In this
way, a self-protection mechanism allows the protected
system to monitor and analyze its resources to detect
possible problems, being able to react accordingly to
deal with the detected problem. This reaction depends
on the type of monitoring and analysis technique being
employed, type of incident and the type of system being
protected, and can range from emergency system shut-
down, deactivation of damaged module and replacement
for a new instance, user or connection blocking, etc. [7].

Figure 2 presents a reference architecture for a sys-
tem that implements self-protection. At a meta-level, we
have a protecting sub-system, responsible for implement-
ing the MAPE-K feedback control loop that protects the
protected sub-system at the base level. The protected sub-
system contains the system functionality associated with
the main application logic and may incorporate different
security mechanisms, such as access control and cryp-
tography, and different execution environment such as
Software Defined Networks with or without support for
Network Functions Virtualization. The meta-level subsys-
tem is responsible for detecting security-related incidents
and for the decision-making associated with the use of the
mechanisms available at the base-level [7]. The base-level
sub-system runs over and interacts with, a domain, which
can also be monitored for helping in the decision making
of the MAPE-K at the meta-level.

Thinking along these lines, a SADF solution can be
employed as a preventive mechanism for dealing with

da Costa Junior et al. Journal of Internet Services and Applications (2018) 9:12

Page 4 of 21

Protecting Subsystem (Meta-level)

Specifies
Protection
Objectives

Analysis [Planning / '

— Is Monitored
Execution

Is Monitored

User/Engineer

Protected Subsystem (Base-level) | Interacts

Manages

Domain

TS

Fig. 2 Self-protection reference architecture [7]

well-known vulnerabilities. For example, whenever a par-
ticular server contains a vulnerability with a score greater
than a pre-defined value, the firewall could be configured
to only allow access to the server from clients in the same
network.

3 Architecture for self-adaptive distributed
firewall

Our solution for a Self-Adaptive Distributed Firewall
(SADF) is built on top of the MAPE-K reference model
as the means for logically structuring the different tasks
involved in the management of the security aspects for
network infrastructure, and for integrating the different
tools usually involved in those tasks, allowing for their

automation. Figure 3 presents a conceptual view of SADF
architecture.

Each phase of the MAPE-K feedback control loop is
implemented by an engine, which encapsulates the con-
crete components that allow for each engine functionality.
To perform self-adaptation, the Monitor, Analyze, Plan
and Execute engine components use different models that
provide an abstraction of relevant aspects of the managed
system, its environment, and the self-adaptation goals
[12]. These models are maintained by a knowledge base
represented in Fig. 3.

The Monitoring engine is responsible for collecting
information about the different servers of the network
infrastructure. This collection happens through Sensor

Self-adaptative Distributed Firewall

Analysis
report

<Plan> E

Decision engine

Reports

A

!|(CVE + CVSS)

N

Firewall rules 'E
templates !
F » ! <Analyze=>
*gé ! Analyzer engin
T Vulnerability
High-level Assessment
policies | [~ ! System
! | Vulnerabilities Server
Description

el ~

Firewall rules II

71 ‘ .
) v

e —
<Monitor>E T“E”! TEXECU“”E
Monitoring engine Knowledge appﬁ:::i:l?l: 2::3“] e
""""""""""""""""""""""""" Y
Sensor Effector
f _ :,j;] Server
\Z’;'e;;fy . g
(CVE + CVS5) ——

Fig. 3 Conceptual architecture of the proposed solution

da Costa Junior et al. Journal of Internet Services and Applications

interfaces in each server. This data is represented by
a Server description model, which is a format that can
be manipulated and reasoned upon by the components
of SADE. A service description model contains, among
other information, details about the operating system, IP
Address, services’ names, versions and network port. Fur-
thermore, it captures the firewall rules currently in effect
on the server. The Monitoring engine is also responsible
for obtaining Vulnerabilities descriptions from an exter-
nal Vulnerability base. Vulnerabilities are represented
through CVE!, which defines a dictionary and stan-
dard representation format for vulnerabilities descrip-
tions. These descriptions are published through the CVE
List and maintained by different vulnerabilities databases
(e.g., the NVD?). Vulnerabilities have an associated sever-
ity score calculated based on the CVSS?, which defines
metrics and formulas for deriving a vulnerability score,
and a standard format representation.

The Analyzer engine relies on a Vulnerability Assess-
ment System (VAS) to search for known vulnerabilities
on the services currently running on the network. A VAS
works by scanning the network and conducting different
tests to find vulnerabilities in systems and servers, pro-
ducing a vulnerability report for each server. Based on the
server descriptions, the VAS can be employed with higher
priority to scan known services running on each server,
usually, when there are changes in the server descrip-
tions or new vulnerabilities have been published. In the
meantime, full vulnerability analysis of servers can still be
performed. A High-level policy captures the requirements
of the administrator, and together with the VAS report
and the server description, is used for detection of policy
violations. For example, servers with a vulnerability score
greater than a particular threshold should only be acces-
sible from machines in the same network, but the current
firewall rules allow access from anywhere. All this data
is used by the Analyzer engine component for producing
Analysis report, which indicates, for example, servers with
known vulnerabilities.

The Decision engine component is responsible for the
plan phase of the MAPE-K loop. This component is
responsible for making decisions on how to respond to
the encountered situation based on the analysis report,
the server descriptions, the high-level policies, and a set
of Firewall rules templates. These templates provide a sort
of parametrized firewall rules for different services, which
can then be employed by the Decision engine for defining
specific firewall rules to be applied. The creation of fire-
wall rules must employ mechanisms for avoiding conflicts
between rules. Besides creating firewall rules to be applied
to the servers of the network, the Decision engine also
produces a report intended for a human administrator.

At the execute phase we have a Firewall rule application
engine component, which is responsible for effecting the

(2018) 9:12

Page 5 of 21

new firewall rules on the servers. This component must
take in consideration mechanisms for guaranteeing secure
communication with each server, and configuration man-
agement techniques.

The MAPE-K reference architecture allows for the use
of different mechanisms for each of its phases, which can
be integrated in a number of different interaction pat-
terns [13, 14]. Thinking along these lines, an SADF-based
solution can be deployed with different components. In
our particular architecture, we employed a configuration
management system and a VAS with the roles of monitor-
ing and analyzing the network infrastructure. These can
be easily replaced by a metrics monitoring system, such as
Zabbix, with threshold-based policies for identifying the
necessity of adaptation, an IDS or any other analysis prod-
uct that can detect abnormal situation on the network
infrastructure. The decision-making process of our solu-
tion is based on high-level policies defined by an adminis-
trator, which must consider the execution environment to
be controlled. One advantage of such approach is the sep-
aration of concerns between the functions of the MAPE-K
loop. SADF controls a distributed firewall, but our archi-
tecture allows the management of more sophisticated
environments such as Software Defined Networks with
Network Function Virtualization capabilities when those
are available. Since we have taken as a basis a real scenario,
in which there is no support to SDN/NFV, we chose to
focus on the control of a distributed firewall, acting as a
proof-of-concept for deployment in such environment.

4 Instantiating the SADF
The proposed SADF architecture has been instantiated
into a prototype implementation using a combination
of existing open source and in-house developed compo-
nents. This instantiation has been used to build a case
study to demonstrate the feasibility of our approach. As
a scenario for presenting its instantiation, in this paper
we consider the protection of a Web server running
the Apache HTTPD software and the JBoss Application
Server.

In this section we present details about the different
representation models employed in our instantiation, fol-
lowed by a description of the developed prototype.

4.1 Model representation

One aspect that must be considered for a self-protection
solution is the representation of the protected environ-
ment, such as servers, services, and firewall rules.

For representing servers and their deployed services
we chose the representation language defined by the
Puppet* configuration management tool. The Puppet lan-
guage allows the description of servers, services, and
configurations using a parametrized approach and well-
defined semantics. Puppet configures systems in two

da Costa Junior et al. Journal of Internet Services and Applications (2018) 9:12

main stages: compiling and applying a catalog. A cat-
alog is a document that describes the desired system
state. It lists all resources that need to be managed,
as well as any dependencies between those resources.
The core of the Puppet language is declaring resources.
Groups of resources can be organized into classes, which
are larger units of configuration. While a resource may
describe a single file or package, a class may describe
everything needed to configure an entire service or
application.

An example of representation for a server and its
services is shown in Listing 1. The node named sadf-
target.info.ufrn.br was previously added to the Puppet
ecosystem, which allows to describe and apply new con-
figurations to this server. As shown in Listing 1, the node
has two monitored services: the Apache HTTPD - a well-
known open source HTTP server -, and the JBoss - an
application server to the Java Platform, Enterprise Edition
(Java EE).

Listing 1 Example of a node description using the Puppet
language

node ’sadf—target.info.ufrn.br’ {

1

2

3| include apache::mod:: php

4| apache::vhost { ’apache’:
5| port => ’80’,

6| docroot => ’/var/www/html’,
7

8

}

9| include jboss

10| jboss:: default { ’jboss’
11| http_port => 8080,

12| ajp_port => 8009,

13| jmx_porp => 9090,

14| xms => 1024,

15| xmx => 1024,

16| }

17

18| include fw_sadf_target
19]}

Briefly, the settings on Listing 1 define that the Apache
HTTPD server must run the PHP module (line 3), and cre-
ate a VirtualHost listening to port 80 from DocumentRoot
/var/www/html (lines 4 to 7). Regarding JBoss service,
three ports must be configured: 8080 which is bound to
the HTTP connector, 8009 to the AJP connector, and 9090
that works as a managing interface to the JMX (lines 11
to 13). Moreover, the parameters xms and xmx are used
to determine the min and max memory size, respectively,
to be allocated on the HEAP (lines 14 and 15). The class
fw_sadf target (line 18), which will be detailed later on, is
applied to this node, defining a specific firewall rules for
the sadf-target.info.ufrn.br node.

Similarly, it is necessary to represent firewall rules in a
format that can be reasoned upon. For this purpose, we

Page 6 of 21

decided to employ the FLIP language [15, 16] for defin-
ing the firewall rules templates that SADF receives as
input. In FLIP, firewall rules are defined using a high-
level language that can be automatically translated into
device-specific format. FLIP provides a well defined lan-
guage with formal semantics, together with proven sound
and complete algorithms for conflict resolution and trans-
lation into device specific firewall rules. Its formalism was
one of the main reasons for choosing FLIP.

Listing 2 Example of firewall rules using the FLIP language

—

domain sadf—target.info.ufrn.br =
[10.3.128.12],

2| local —network = [10.3.128.0/24],

3

4lservice apache = tcp.[port=80],

5/ jboss = tcp.[port=8080, port=8009, port
])

7|policy_group vulnerable_jboss{

8| incoming:

9| apache {allow x}

10| jboss {deny * except local —network}
11}

12

13lapply vulnerable_jboss on sadf—target.
info.ufrn.br;

Listing 2 presents an example of a rule in FLIP. The
first block (lines 1-2) defines the domains, which can
be networks or hosts. We define a target server (sadf-
target.info.ufrn.br) and a network (local-network) that
represents the network in which the target is running. The
second block (lines 4-5) of FLIP defines services, which
may have one or more ports. In this example, Apache and
JBoss were specified. In the sequence, we define a policy
group (lines 7-11), which specifies the behavior that will
be taken about services in a given scenario. One group
was created that allows access to Apache HTTPD (line 9)
and blocks access to JBoss (line 10) except when the con-
nection comes from sadf-engine.info.ufrn.br. Finally, it is
necessary to make a connection between the group and
the protected domain (line 13).

Figure 4 presents a class diagram with the meta-model
created for manipulating FLIP firewall rules as objects.
The Model class represents the language model that con-
sists of declarations. A Declaration is a generic block
that represents each of the terms supported by FLIP. The
Domain class describes a network or host, which has the
attributes name and address to represent the name of
the domain and the IP address. The Service class repre-
sents a service with names and ports. The Policy_group
class defines the policy that has a name, traffic direc-
tions, which can be incoming or outgoing, policy-related

da Costa Junior et al. Journal of Internet Services and Applications

(2018) 9:12

Page 7 of 21

B Model

[0..*] Declaration

[Declaration

Fig. 4 Class diagram of FLIP implementation in Xtext

E
[Domain g Pelicy_group g Service
= name : EString [0..1] exception | = name: EString = name : EString
= address : EString .11 domas o direction : EString o ports : Elnt
[0. 1 domain | _ tion : EString [0.."T SETvice
— —
[0..1]|policy
0..1] domain
.1 B Apply]

services and domains that can be inserted into the pol-
icy as the target domain of the action or exception to
the target group. Finally, the Apply class assigns policies
to domains, causing their traffic to meet the conditions
described in the FLIP policy.

In order to apply firewall rules, FLIP models need to be
translated into Concrete firewall rules . Since we employ
the Puppet language for describing and managing servers
and services, we employed Puppet’s firewall module® for
representing concrete firewall rules, and hence the fire-
wall rules can be applied by Puppet agents. To achieve
that, FLIP rules expressed in text files are instantiated into
Java objects, which are then used to create Puppet classes.
During the translation process, some fields are extracted
from the FLIP rules’ fields and then written as a Puppet
class describing each host and its services. This transla-
tion has been implemented as a Java class that handles the
FLIP Model and makes it possible to obtain its respec-
tive rule declarations as domains, services, policy_groups
and actions to perform the assembly of Puppet’s classes.
Listing 3 presents an example of the class that speci-
fies the firewall rules to the sadf-target.info.ufrn.br node,
which have been generated from the example pre-
sented in Listing 2. The first two rules (lines 3-12) are
included by SADF to guarantee access from its com-
ponents to the targeted host. The following rules (lines
13-30) blocks access to JBoss ports (8009, 8080, 9090)
except when the connection comes from the network
10.3.128.0/24.

Listing 3 Firewall rule created by using Puppet

llclass fw_sadf_target {

2| include firewall module

3| firewall {’001 accept connections from
puppet master’

4 proto => ’all’,

51 source => '10.3.225.163",

6 action => “accept’,

73

g firewall {’002 accept connections from

sadf—scanner ’
9 proto => ’all’,

100 source => ’10.3.227.777,

11| action => ’accept’,

12| }

13| firewall {’100 deny access to port
8009 :

14/ dport => 8009,
15| proto => tcp,

16| action => drop,

17| source => !10.3.128.0/24,

18| }

19| firewall {’101 deny access to port
8080°:

20 dport => ’80807,
21| proto => tcp,

22| action => drop,

23| source => !10.3.128.0/24,

24| }

25| firewall {’102 deny access to port
9090 :

26/ dport =>. 90907,

27| proto => tcp,

28/ action => drop,

29| source => !10.3.128.0/24,
300 }

31}

da Costa Junior et al. Journal of Internet Services and Applications (2018) 9:12

We employ high-level policies to define how to respond
to found vulnerabilities in the monitored environment.
These policies are based on Event-Condition-Action
(ECA) rules. The basics of an ECA rule imply that when-
ever an event occurs, a predefined condition is evalu-
ated, which trigger a specific action when the condition
is true. The event may be represented by a complex
structure involving a number of sub-events. Similarly
to the event, the condition may be formed by several
sub-conditions that must be evaluated under a spe-
cific logic. Finally, an action may be a composition
of actions according to the condition and event that
activated it [17].

In our approach, an event is a discovered vulnerability,
while the condition captures the context of this vulnera-
bility in terms of its severity and other information that
can be used for decision making on how to respond, i.e.,
the action.

The syntax used to define a policy is given by the
set of fields {server, service, port, CVSS, CVE, action}
that can be mapped to four scopes: target, score, vul-
nerability, and execution, as described in Table 1. The
target scope defines the policy application range and is
formed by the fields server, service, and port. The score
scope - given by the CVSS field - specifies the CVSS
threshold value, hence addressing vulnerabilities with
CVSS equal or higher than this value. In contrast, the
vulnerability scope - given by the CVE field - directly
addresses the CVE, allowing to act only for specific vul-
nerabilities. The score and vulnerability scopes may be
optional, i.e., as long as one is provided, the other may be
omitted.

The target, score and vulnerability scopes comprise the
condition of our policy, while the action scope defines
how to respond when the specified condition is eval-
uated to true. Action in our policy refers to a fire-
wall rule template, which must be provided together
with the policy. In this way, the proposed system can
dynamically select the appropriate parametric rule tem-
plate for the detected situation, which is then popu-
lated based on the information about the affected host
description.

Table 1 High-level policy’s fields description

Page 8 of 21

4.2 Prototype implementation

In this section, we describe our prototype implementa-
tion, whose concrete architecture is illustrated in Fig. 5.
Implementation and functioning details for each devel-
oped module are also presented. Moreover, the iterations
between the modules and the tools/models employed in
the solution are discussed.

As previously mentioned, we employ the Puppet con-
figuration management language for describing servers’
configurations. Puppet provides tools for applying config-
urations, and for obtaining the current status of a host. A
Puppet agent component runs on each host, and reports
to (and receive commands from) the puppet-master com-
ponent, which stores servers description into the Puppet
catalog. Hence, Puppet agents fulfill the roles of sen-
sor and effector of servers, while the Puppet master is
responsible for the monitor and execute phases of the
MAPE-K.

4.2.1 Monitor engine

The function of this module is to collect information
regarding all sosts members and so creating the Server
description which is used by SADF to represent the servers
and its services. All hosts managed by the Puppet are taken
as members of our scheme. The Puppet collects informa-
tion regarding the servers by pooling agents (see Fig. 5)
- that plays the role of a sensor on SADF architecture -
and store it in its Catalog. Thus, the monitoring module
can gather information about all servers by communi-
cating to the PuppetDB® - a Data Warehouse that stores
information and allows the access to it through a specific
AP’

The UML sequence diagram in Fig. 6 illustrates
the interaction between the Monitor engine and the
PuppetDB. The Monitor engine first creates an empty list
of descriptions (call 1), then it contacts the PuppetDB to
collect the list of managed nodes (call 2), and finally, it
starts a loop to recover the list of services to each node
(call 3). The Monitor engine maintains a list of servers pre-
viously collected to detect when there is a change in one of
the servers. Thus, once all servers’ descriptions have been
obtained, the Monitor engine performs internal processing

Field Description Mandatory Input syntax

Server Target server for the policy Yes Hostname, network range or just ‘any’ to represent any server.
Service Target service for the policy Yes Server name or ‘any’ to represent any service.

Port Target port for the policy Yes List of integer numbers or ‘any’ to represent any port.

CVSS Score’s threshold value No A decimal value between 0.0 and 10.0

CVE Vulnerability ID. No List of CVEs.

Action Action to be executed for the policy. Yes List of supported action names.

da Costa Junior et al. Journal of Internet Services and Applications (2018) 9:12 Page 9 of 21

Self-adapative Distributed Firewall

i | Firewall rules + H
: templates | \ H
- R <Analyze> . <Plan> E :
' > i — » =) H
' Analyzer Analysis Decision engine :
: engine report » H
' | High-evel +—/ L‘ 5
i ROk = = Firewall rules II — II :
i OpenVAS OpenVAS (FLIP) po :
: Target/Tasks Scan reports S ¢ S :
E ; ’J <Plan> E] :
<Monitor,Analyze FLIP '
' OpenVAS H
NVT Manager
' |(CVE + CVSS) 1 1 :
| | | Z]):
i A oTP Server Concrete <Executte :
' <Analyze> '— descriptions firewall rules Execution engine | :
: OpenVAS (Puppet (Puppet '
Scanner / :
; / 3 <Monitor,Execute :
' <Monitor>E L N 7__,,' Puppet Master <Execute>{| H
Monitor engine [‘ e __’}‘__ Firewall Zabbix Server
r.,,_ | e module
Puppet Catalog /

i""‘—‘"”"] X [

f‘!!_!!q <sensor,effector>

f’ m —¥ Puppet Agent L

OpenVAS
NVT Feed ¢
Service
C
— -_-’.f
i

Fig. 5 Architectural view of the prototype implementation

(call 4) in order to identify servers that need to be scanned
again due to changes in their configuration.

It is important to mention that the description files defi-
nition for servers in Puppet is out of the scope of this work.

So there is an assumption that this task was previously

performed by the network administrator team. Thereby

L 1: create serverDescriptions()

: the focus of this work is to define and apply the firewall
[rules according to the specified configuration, as well as
m targeting well-known vulnerabilities on servers.
|
I
» |

2: get nodes()

4.2.2 Analyzer engine
M 3: get services(node)

Considering that a list of all services running on each
oo semees server is known, a vulnerability evaluation may be used
4 pre-process