
Trailer control through vehicle yaw moment control: 
theoretical analysis and experimental assessment

ZANCHETTA, Mattia, TAVERNINI, Davide, SORNIOTTI, Aldo, GRUBER, 
Patrick, LENZO, Basilio <http://orcid.org/0000-0002-8520-7953>, FERRARA, 
Antonella, SANNEN, Koen, DE SMET, Jasper and DE NIJS, Wouter

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/25224/

This document is the Published Version [VoR]

Citation:

ZANCHETTA, Mattia, TAVERNINI, Davide, SORNIOTTI, Aldo, GRUBER, Patrick, 
LENZO, Basilio, FERRARA, Antonella, SANNEN, Koen, DE SMET, Jasper and DE 
NIJS, Wouter (2019). Trailer control through vehicle yaw moment control: theoretical 
analysis and experimental assessment. Mechatronics, 64 (102282). [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Mechatronics 64 (2019) 102282 

Contents lists available at ScienceDirect 

Mechatronics 

journal homepage: www.elsevier.com/locate/mechatronics 

Trailer control through vehicle yaw moment control: Theoretical analysis 

and experimental assessment ✩ 

Mattia Zanchetta 

a , Davide Tavernini a , Aldo Sorniotti a , ∗ , Patrick Gruber a , Basilio Lenzo 

b , 
Antonella Ferrara 

c , Koen Sannen 

d , Jasper De Smet d , Wouter De Nijs d 

a University of Surrey, Guildford, UK 
b Sheffield Hallam University, Sheffield, UK 
c Universita’ di Pavia, Pavia, Italy 
d Flanders MAKE, Lommel, Belgium 

a r t i c l e i n f o 

Keywords: 

Torque-vectoring 
Articulated vehicle 
Hitch angle control 
Yaw moment 
Experimental tests 
Performance comparison 

a b s t r a c t 

This paper investigates a torque-vectoring formulation for the combined control of the yaw rate and hitch angle 
of an articulated vehicle through a direct yaw moment generated on the towing car. The formulation is based on 
a single-input single-output feedback control structure, in which the reference yaw rate for the car is modified 
when the incipient instability of the trailer is detected with a hitch angle sensor. The design of the hitch angle 
controller is described, including the gain scheduling as a function of vehicle speed. The controller performance is 
assessed by means of frequency domain and phase plane analyses, and compared with that of an industrial trailer 
sway mitigation algorithm. In addition, the novel control strategy is implemented in a high-fidelity articulated 
vehicle model for robustness assessment, and experimentally tested on an electric vehicle demonstrator with 
four on-board drivetrains, towing two different conventional single-axle trailers. The results show that: (i) the 
torque-vectoring controller based only on the yaw rate of the car is not sufficient to mitigate trailer instability in 
extreme conditions; and (ii) the proposed controller provides safe trailer behaviour during the comprehensive set 
of manoeuvres, thus justifying the additional hardware complexity associated with the hitch angle measurement. 
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. Introduction 

Articulated vehicle dynamics are more complex than those of rigid
ehicles, and involve several safety-critical situations. For instance,
railer snaking and jackknifing are conditions that untrained drivers are
ot able to control [1] and may lead to severe accidents. As a result,
any studies discuss the dynamic behaviour of articulated vehicles and
ropose ways to mitigate their potentially unstable response. 

For example, [2–5] investigate the stability properties of different
ractor-trailer combinations through simulations. The common conclu-
ion is that the stability of the overall vehicle depends on the trailer
arameters (e.g., mass, yaw mass moment inertia and dimensions) and
ow the trailer is connected to the tractor. Nowadays the towing vehi-
le itself is not normally a source of instability, because it is controlled
y the vehicle stability controller based on the actuation of the friction
rakes. On the other hand, in general the trailer is not directly con-
rolled. The importance of the trailer connection is discussed by Sharp
nd Fernández [6] , who analyse the influence of the position and fric-
ion level of the hitch joint. 
✩ This paper was recommended for publication by Associate Editor Dr. Amir Khaje
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In the literature the position of the centre of gravity (COG) of the
railer and the location of the trailer axle with respect to the hitch joint
re mentioned as the key parameters for articulated vehicle stability,
.e., they determine whether the vehicle is subject to common instability
odes, such as snaking and jackknifing. In particular, jackknifing insta-

ility is described by Bouteldja and Cerezo in [7] as “a loss of stability
n the yaw motion of the articulated system […]. The driving wheels of
he tractor lose their skid resistance and are involved towards the right-
and side or the left because of the force exerted by the trailer. ” The
ork of the same author in [8] describes a jackknifing detection system

or heavy-duty vehicles. Snaking occurs when the system is subject to
n oscillatory behaviour, and can be predicted from the real part of the
ystem eigenvalues. This is the focus of the study by Azad et al. [9] ,
hich also considers the effect of the damping coefficient of the hitch

oint. Darling et al. and Š u š ter š i č et al. [10–11] experimentally assess
he main trailer parameters provoking instability at high speed, such as
he position of the centre of gravity of the trailer. 

Several methods are proposed to improve articulated vehicle stabil-
ty by controlling the towing vehicle. For example, car manufacturers
pour. 
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List of symbols 

a B, i , b B, i Butterworth filter coefficients for the industrial 
controller, 𝑖 = 0, 1, 2 

a C front semi-wheelbase of the car 
a x, C longitudinal acceleration of the car 
a y, C lateral acceleration of the car 
a y, T lateral acceleration of the trailer 
a T longitudinal distance between the trailer centre of 

gravity and the hitch joint 
B Butterworth filter transfer function 
b C rear semi-wheelbase of the car 
b T longitudinal distance between the trailer axle and 

the trailer centre of gravity 
C Drag aerodynamic drag coefficient 
C PI proportional integral controller transfer function 
C i i axle cornering stiffness, 𝑖 = 𝐹 , R, T 

D i coefficients in the denominator of the transfer 
functions, 𝑖 = 0, 1, 2, 3, 4 

e C longitudinal distance from the hitch joint to the 
rear axle of the car 

f max maximum steering frequency achieved during the 
sweep steer test 

f n natural frequency of the system 

F y, ij lateral tyre force in the nonlinear model, 𝑖 = 𝐿 , R ; 
𝑗 = 𝐹 , R, T 

F y, F lateral force at the front axle of the car 
F y, R lateral force at the rear axle of the car 
F y, T lateral axle force of the trailer 
F z, ij vertical tyre force, 𝑖 = 𝐿 , R ; 𝑗 = 𝐹 , R, T 

F z, i , static static load on the i -th axle, 𝑖 = 𝐹 , R, T 

G i, j transfer functions for the articulated vehicle, 𝑖 = 

𝛿𝑤 , M z, ref ; 𝑗 = 𝑟 𝐶 , 𝛽C , 𝜙

𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 ,𝑖𝑠𝑜 
yaw moment to yaw rate transfer function for the 
isolated vehicle 

h C longitudinal distance from the hitch joint to the 
centre of gravity of the car 

H CG, C height of the centre of gravity of the towing car 
H Hitch height of the hitch joint 
H RC, C roll centre height of the car 
H RC, T roll centre height of the trailer 
H Roll, C vertical distance from the centre of gravity to the 

roll centre of the car 
H Roll, T vertical distance from the centre of gravity to the 

roll centre of the trailer 
i , j generic index 
IACA integral of the absolute value of the control action 
J z, C yaw mass moment of inertia of the car 
J z, T yaw mass moment of inertia of the trailer 
k Roll, F front axle roll stiffness of the car 
k Roll, R rear axle roll stiffness of the car 
K aw anti-windup gain 
K Ir integral gain of the PI controller 
K Pr proportional gain of the PI controller 
K 𝛽 weighting coefficient for the yaw rate reference 

based on the sideslip angle 
K 𝜙 weighting coefficient for the yaw rate error and 

hitch angle error 
K 𝜙, min minimum value of the weighting coefficient of yaw 

rate error and hitch angle error 
k 1 coefficient for the calculation of the aerodynamic 

load transfer 
k 2 coefficient for the calculation of the load transfer 

associated with the lateral acceleration 
l C wheelbase of the towing car 
l T distance from the trailer axle to the hitch joint 
m C mass of the car 
m T mass of the trailer 
M z, ref reference yaw moment 
𝑀 𝑧,𝑝𝑟𝑒 − 𝑠𝑎𝑡 reference yaw moment before saturation 
N i j, k numerator coefficients of the transfer functions, 𝑖 = 

0, 1, 2, 3; 𝑗 = 𝛿𝑤 , M z, ref ; 𝑘 = 𝑟 𝐶 , 𝛽C , 𝜙

OLTF 𝑎𝑟𝑡, 𝐾 𝜙= 0 open-loop transfer function of the articulated vehi- 
cle, with 𝐾 𝜙 = 0 

OLTF 𝑎𝑟𝑡, 𝐾 𝜙= 1 open-loop transfer function of the articulated vehi- 
cle, with 𝐾 𝜙 = 1 

OLTF iso open-loop transfer function of the isolated vehicle 
r C yaw rate of the towing car 
r h handling yaw rate 
r s stability yaw rate 
r ref reference yaw rate 
RMSE i root mean square error, 𝑖 = Δ𝜙, Δr , Δr 𝜙
s Laplace operator 
S C car frontal area 
t time 
t f final time of the relevant part of the manoeuvre for 

the computation of the performance indicators 
t i initial time of the relevant part of the manoeuvre 

for the computation of the performance indicators 
𝑡 − time at the previous discretisation step 
T i track width, 𝑖 = 𝐹 , R, T 

T ref, ij reference motor torque, 𝑖 = 𝐿 , R ; 𝑗 = 𝐹 , R 

V vehicle speed 
V in initial vehicle speed 
v x longitudinal velocity of the car 
v y lateral velocity of the car 
W 𝜙 hitch angle error gain 
X axis of the inertial reference system 

Y axis of the inertial reference system 

z complex number in the Z -transform process 
𝛼i axle slip angles, 𝑖 = 𝐹 , R, T 

𝛽C sideslip angle at the centre of gravity of the car 
𝛽C, R sideslip angle at the rear axle of the car 
𝛽Dat sideslip angle of the car measured by the Corrsys- 

Datron sensor at the front bumper 
𝛿swa steering wheel angle 
𝛿w steering angle of the front wheels of the car 
ΔF z, aero longitudinal load transfer due to aerodynamic 

forces 
Δ𝐹 𝑧,𝑎 𝑦 ,𝑖 lateral load transfer on each axle caused by the lat- 

eral acceleration, 𝑖 = 𝐹 , R, T 

Δr C car yaw rate error 
Δr C, filt, B filtered yaw rate error of the car in the industrial 

controller 
Δr 𝜙 yaw rate error with hitch angle correction 
Δ𝜙 hitch angle error 
Δ𝜙lim 

hitch angle error threshold for the full activation 
of the hitch angle contribution 

Δ𝜙sat saturation value of the hitch angle error 
Δ𝜙th lower activation threshold of the hitch angle con- 

tribution 
𝜁 damping ratio of the transfer function 
𝜇 tyre-road friction coefficient 
𝜌 air density 
𝜙 hitch angle 
𝜙max maximum value of hitch angle during the test 
𝜙ref reference hitch angle 
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e.g., Mercedes, Honda and Skoda, see [12–14] ) are offering a dedi-
ated trailer stability function in the electronic stability program (ESP)
f their production cars, which activates when a trailer is attached. In
ase of potentially dangerous trailer oscillations, the algorithm inter-
enes, e.g., by reducing the engine torque and actuating the friction
rakes on the towing vehicle (either the front brakes individually or
ll four brakes) to slow down and stabilise the car-trailer combination.
lso Gerum et al. [15] discuss the possibility of improving stability by
pplying braking torques at the rear wheels of the towing vehicle. The
atent by Wu et al. in [16] proposes the application of symmetric and
symmetric friction braking torques based on the estimated motion of
he trailer, to create a yaw moment to damp trailer sway. A typical brak-
ng algorithm for the towing vehicle to mitigate the trailer oscillations
s described by Williams and Mohn [17] . The oscillations are detected
rom the difference between a quasi-static prediction of the yaw rate
f the car and the actual yaw rate, which is band-pass filtered with ap-
ropriate corner frequencies to highlight the oscillations caused by the
railer, usually ranging between 0.5 Hz and 2 Hz. The authors conclude
hat the system works well but further analysis is required for the algo-
ithm industrialisation. Hac et al. [18] study the stability of car-trailer
ystems through analytical modelling, simulation and road testing. In
ddition, the effects of applying symmetric or asymmetric braking con-
rol on the towing vehicle are analysed with simulations. An important
onclusion of this study is that asymmetric braking is more effective in
railer stabilisation than symmetric braking, because of the direct yaw
oment that is generated by the controller. In [19] Mokhiamar and Abe
ropose two sliding mode formulations for direct yaw moment control,
ne based on the yaw rate of the towing vehicle and the other one on its
ideslip angle. In [20] Mokhiamar also introduces a feedback controller
hat outputs the desired yaw moment and lateral force, which are then
onverted into braking force and steering demands for the towing vehi-
le. The combined controller is less effective in low friction conditions.
eedback controllers to obtain a stabilising steering input for the rear
heels of the towing vehicle are compared by Deng and Kang in [21] .
he investigated strategies are based on the yaw rate and lateral velocity
f the tractor, or hitch angle and hitch rate, or their combination. The
tudy highlights that the operating point for model linearization has lit-
le influence on the stability properties of the system, i.e., on the poles
n the complex plane. 

Several studies apply the control action only to the trailer. In
22] Fernández and Sharp propose an active braking system for cara-
ans, which uses the measured hitch angle and its time derivative to
btain asymmetric braking pressure demands to damp the hitch angle
scillations. From the measurement of the trailer roll rate, which is in-
egrated along time and filtered, the controller from Sharp and Fernán-
ez [23] computes a braking torque demand for either the right or left
heels of the trailer. The results highlight the roll motion of the ar-

iculated vehicle as a key contributor to vehicle behaviour leading to
naking instability, which justifies the possibility of designing a roll-
ased controller. In [24] Plöchl et al. present a sliding mode controller
hat computes a corrective yaw moment and individual braking torques
or the trailer, based on measurements of the yaw rates of the trailer and
owing vehicle. The study also shows the robustness of the developed
ontroller and the ability to allow safe vehicle operation at higher speed
alues. As an alternative to brake interventions, in [25] Tabatabaei Oreh
t al. discuss active steering control of the trailer wheels to track a ref-
rence hitch angle. The study focuses on the design of the reference
ehicle behaviour and shows that that the proposed controller can pro-
ide superior tracking performance in comparison with other considered
trategies. In [26] Lee et al. describe a controller for the braking system
f the trailer, which is robust with respect to sensor noise as well as vari-
tions in longitudinal velocity and model parameters. In [27] Shamim
t al. compare three linear quadratic regulators (LQRs) for car-trailer sta-
ilisation, based on: (i) active trailer braking control; (ii) active trailer
teering control; and (iii) a variable geometry approach, i.e., the lateral
osition of the hitch joint is actively controlled. The simulation results
rom a linear single-track vehicle model show that option (iii) is the least
ffective. 

Other studies discuss control systems with concurrent actuations on
ractor and trailer. For example, in [28] Oh et al. describe a stability
ontroller for a combination vehicle. The system actuates the individ-
al brakes of the car and trailer based on the hitch angle, yaw rate, roll
ngle, roll rate and lateral acceleration of the tractor. The controller
lso includes state estimation and is shown to improve the vehicle be-
aviour in several simulated manoeuvres. In [29] Tamaddoni and Taheri
resent an adaptive controller actuating the tractor and trailer brakes
hrough the direct Lyapunov method, including validation with Truck-
im simulations. The authors mention the possibility of integrating the
ystem with a standard anti-lock braking system (ABS). In [30] Ei-Gindy
t al. compare LQRs actuating the brakes of: (i) the towing vehicle, i.e.,
 truck; (ii) the dolly, i.e., the second articulated unit, connecting the
ruck with the trailer; and (iii) the trailer. The results highlight the ben-
fits of the control strategies, although the authors mention robustness
ssues with respect to model parameter variations. LQRs for the steering
ctuation are simulated by Kim et al. in [31] . Steering control is imple-
ented on the rear axle of the tractor and trailer wheels, as a function of

he yaw rates and sideslip angles of the towing vehicle and trailer. The
esults show improvements in sharp cornering manoeuvres. The patent
y Englert et al. [32] describes an active braking system based on the
etection of trailer sway. Wang et al. [33] consider a single-track model
f the articulated vehicle and study the effect of external yaw moments
n the towing vehicle and trailer, based on a PID controller that uses
he yaw rate of the passive vehicle as reference. The results show that
he concurrent control of trailer and tractor can provide benefits with
espect to controlling either unit alone. In [34] Chen and Shieh conduct
xperimental tests on a small-scale articulated vehicle purposely built
o study a model reference adaptive controller preventing jackknifing.
owever, the small scale of the vehicle prototype, with very different

yres and suspensions from those of an actual vehicle, would require a
urther validation of the controller. 

In the literature, the majority of the direct yaw moment controllers
or articulated vehicles uses the friction brakes, which inevitably re-
uce vehicle speed, and thus are actuated only in emergency conditions.
orque-vectoring (TV) represents an alternative to achieve the benefits
f direct yaw moment control without penalising drivability. The studies
n [35–41] offer an overview on the advantages of TV on rigid vehicles
ith multiple electric motors, in terms of cornering performance and

nergy efficiency. TV enables direct yaw moment control without sig-
ificant reduction of vehicle speed, which is the typical issue of the in-
erventions of common vehicle stability controllers actuating the friction
rakes. In the field of articulated vehicles, the patent from Wu [42] de-
cribes a TV strategy for the stabilisation of a car-trailer system. The
ontroller splits the torque among the rear wheels of the towing vehicle
n accordance to the trailer sway, which is detected with a band-pass
lter applied to the yaw rate of the towing vehicle, similarly to the al-
orithms in [16] and [17] . One of the conclusions of the review from
empaty and He [43] is that there is a lack of published experimen-

al results of TV controllers on full-size articulated vehicles. Even more
mportantly, the literature misses an assessment of the benefits of di-
ectly including the hitch angle input into the trailer sway mitigation
lgorithm, with respect to the currently implemented industrial formu-
ations (see [12–14,16,17,42] ), based on the control of the filtered yaw
ate of the towing vehicle. 

This study provides further insights to address this knowledge gap.
he main contributions are: 

• A dedicated TV control function for trailer stability, designed for an
electric car with multiple motors towing a conventional trailer. The
TV controller includes: (i) the continuous feedback control of the car
yaw rate; and (ii) the control of the measured hitch angle in case of
significant trailer oscillations. 



M. Zanchetta, D. Tavernini and A. Sorniotti et al. Mechatronics 64 (2019) 102282 

Fig. 1. Double-track model of the articulated vehicle. All vari- 
ables are shown with a positive sign. 

 

 

 

s  

s  

t  

a  

p  

t  

t  

b  

u  

j  

v  

m  

g

2

2

 

m  

T  

t  

t  

t  

𝛿  

(  

b  

t
 

m

 

w

𝐹  

 

m  

e

𝐹  

w

𝛼  

𝛼  

𝛼

 

t  

l  

g  

m

w

Δ  

Δ

Δ

Δ  
• A single input single output (SISO) formulation for the control of the
two relevant variables, i.e., the yaw rate and hitch angle, with one
control action, i.e., the direct yaw moment applied to the car. 

The paper is structured as follows. The vehicle models for control
ystem design and assessment are explained in Section 2 . Section 3 de-
cribes the proposed hitch angle control algorithm. Sections 4 –6 analyse
he controller performance with simulations and experimental tests on
 four-wheel-drive electric vehicle demonstrator. In Section 4 , phase
lane and frequency domain analyses are used to assess the benefits of
he proposed controller with respect to an industrial trailer sway mitiga-
ion algorithm for stability control systems of passenger cars, based on a
and-pass filter applied to the yaw rate of the towing vehicle. The sim-
lations in Section 5 demonstrate the controller capability of mitigating
ackknifing and snaking, and its robustness with respect to significant
ehicle parameter variations. Section 6 presents the experimental assess-
ent of the controller along several manoeuvres at the Lommel proving

round (Belgium). Finally, Section 7 draws the main conclusions. 

. Articulated vehicle models 

.1. Vehicle model for phase plane analysis 

Fig. 1 reports the schematic of the simplified nonlinear double-track
odel of the articulated vehicle, adopted for the phase plane analyses.
he model includes four states, namely: (i) the car sideslip angle, 𝛽C ; (ii)
he car yaw rate, r C ; (iii) the hitch rate, 𝜙̇; and (iv) the hitch angle, 𝜙, i.e.,
he angle between the longitudinal axes of the car and the trailer. The
wo model inputs are: (i) the steering angle on the front axle of the car,

w , imposed by a human driver or an automated driving controller; and
ii) the direct yaw moment applied to the car, M z, ref , which is computed
y the TV controller, and generated by the torque difference between
he electric motors on the left and right vehicle sides. 

By assuming that 𝜙, 𝛽C and 𝛿w are small, the resulting equations of
otion in matrix form are [44] : ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
𝑚 𝐶 + 𝑚 𝑇 

)
𝑉 − 𝑚 𝑇 

(
ℎ 𝐶 + 𝑎 𝑇 

)
− 𝑚 𝑇 𝑎 𝑇 0 

− 𝑚 𝑇 ℎ 𝐶 𝑉 𝐽 𝑧,𝐶 + 𝑚 𝑇 ℎ 𝐶 
(
ℎ 𝐶 + 𝑎 𝑇 

)
𝑚 𝑇 ℎ 𝐶 𝑎 𝑇 0 

− 𝑚 𝑇 𝑎 𝑇 𝑉 𝐽 𝑧,𝑇 + 𝑚 𝑇 𝑎 𝑇 
(
ℎ 𝐶 + 𝑎 𝑇 

)
𝐽 𝑧,𝑇 + 𝑚 𝑇 𝑎 

2 
𝑇 

0 
0 0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝛽̇𝐶 
𝑟̇ 𝐶 
𝜙̈

𝜙̇

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐹 𝑦,𝐹 + 𝐹 𝑦,𝑅 + 𝐹 𝑦,𝑇 − 

(
𝑚 𝐶 + 𝑚 𝑇 

)
𝑉 𝑟 𝐶 

𝑎 𝐶 𝐹 𝑦,𝐹 − 𝑏 𝐶 𝐹 𝑦,𝑅 − ℎ 𝐶 𝐹 𝑦,𝑇 + 𝑚 𝑇 ℎ 𝐶 𝑉 𝑟 𝐶 + 𝑀 𝑧,𝑟𝑒𝑓 

− 𝑙 𝑇 𝐹 𝑦,𝑇 + 𝑚 𝑇 𝑎 𝑇 𝑉 𝑟 𝐶 
𝜙̇

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(1)

here: 

 𝑦,𝑗 = 𝐹 𝑦,𝐿𝑗 + 𝐹 𝑦,𝑅𝑗 𝑗 = 𝐹 , 𝑅, 𝑇 (2)
The lateral tyre forces are computed with the Pacejka Magic For-
ula, without considering the interaction between longitudinal and lat-

ral forces [45] : 

 𝑦,𝑖𝑗 ( 𝑡 ) = 𝐹 𝑦 
(
𝛼𝑗 , 𝐹 𝑧,𝑖𝑗 , 𝜇

)
, 𝑖 = 𝐿, 𝑅, 𝑗 = 𝐹 , 𝑅, 𝑇 (3)

here the slip angles, in accordance to [44] and [46] , are given by: 

𝐹 = 

1 
𝑣 𝑥 

(
𝑣 𝑦 + 𝑎 𝐶 𝑟 𝐶 

)
− 𝛿𝑤 ≅ 𝛽𝐶 + 

𝑎 𝐶 𝑟 𝐶 

𝑉 
− 𝛿𝑤 (4)

𝑅 = 

1 
𝑣 𝑥 

(
𝑣 𝑦 − 𝑏 𝐶 𝑟 𝐶 

)
≅ 𝛽𝐶 − 

𝑏 𝐶 𝑟 𝐶 

𝑉 
(5)

𝑇 = 

1 
𝑣 𝑥 

(
𝑣 𝑦 − 

(
ℎ 𝐶 + 𝑙 𝑇 

)
𝑟 𝐶 − 𝑙 𝑇 𝜙̇

)
− 𝜙 ≅ 𝛽𝐶 − 

(
ℎ 𝐶 + 𝑙 𝑇 

)
𝑟 𝐶 

𝑉 
− 

𝑙 𝑇 

𝑉 
𝜙̇ − 𝜙

(6) 

In the calculation of F z, ij , the nonlinear model considers the load
ransfers due to the aerodynamic drag and lateral acceleration a y . The
oad transfer associated with the longitudinal vehicle acceleration is ne-
lected, as the phase plane analyses are run at constant speed. In for-
ulas: 

𝐹 𝑧,𝑖𝑗 = 

𝐹 𝑧,𝑗, 𝑠𝑡𝑎𝑡𝑖𝑐 

2 
+ 𝑘 1 

Δ𝐹 𝑧,𝑎𝑒𝑟𝑜 
2 

+ 𝑘 2 Δ𝐹 𝑧, 𝑎 𝑦 ,𝑗 , 𝑖 = 𝐿, 𝑅, 

𝑗 = 𝐹 , 𝑅, 𝑇 , 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝑘 1 = −1 𝑖𝑓 𝑗 = 𝐹 

𝑘 1 = 1 𝑖𝑓 𝑗 = 𝑅 

𝑘 1 = 0 𝑖𝑓 𝑗 = 𝑇 

, 

{ 

𝑘 2 = −1 𝑖𝑓 𝑖 = 𝐿 

𝑘 2 = 1 𝑖𝑓 𝑖 = 𝑅 

(7) 

here: 

𝐹 𝑧,𝑎𝑒𝑟𝑜 = 

1 
2 
𝜌𝑆 𝐶 𝐶 𝐷𝑟𝑎𝑔 𝑉 

2 𝐻 𝐶𝐺,𝐶 

𝑙 𝐶 
(8)

𝐹 𝑧, 𝑎 𝑦 ,𝐹 
= 

𝑚 𝐶 𝑎 𝑦,𝐶 

𝑇 𝐹 

( 

𝑏 𝐶 𝐻 𝑅𝐶,𝐶 

𝑙 𝐶 
+ 

𝑘 𝑅𝑜𝑙 𝑙 ,𝐹 𝐻 𝑅𝑜𝑙 𝑙 ,𝐶 

𝑘 𝑅𝑜𝑙 𝑙 ,𝐹 + 𝑘 𝑅𝑜𝑙 𝑙 ,𝑅 

) 

+ 

𝑚 𝑇 𝑎 𝑦,𝑇 𝑏 𝑇 

𝑇 𝐹 𝑙 𝑇 

( 

𝑏 𝐶 𝐻 𝑅𝐶,𝐶 

𝑙 𝐶 

( 

1− 

ℎ 𝐶 

𝑏 𝐶 

) 

+ 

𝑘 𝑅𝑜𝑙 𝑙 ,𝐹 
(
𝐻 𝐻𝑖𝑡𝑐ℎ − 𝐻 𝑅𝐶,𝐶 

)
𝑘 𝑅𝑜𝑙 𝑙 ,𝐹 + 𝑘 𝑅𝑜𝑙 𝑙 ,𝑅 

) 

(9) 

𝐹 𝑧, 𝑎 𝑦 ,𝑅 
= 

𝑚 𝐶 𝑎 𝑦,𝐶 

𝑇 𝑅 

( 

𝑎 𝐶 𝐻 𝑅𝐶,𝐶 

𝑙 𝐶 
+ 

𝑘 𝑅𝑜𝑙 𝑙 ,𝑅 𝐻 𝑅𝑜𝑙 𝑙 ,𝐶 

𝑘 𝑅𝑜𝑙 𝑙 ,𝐹 + 𝑘 𝑅𝑜𝑙 𝑙 ,𝑅 

) 

+ 

𝑚 𝑇 𝑎 𝑦,𝑇 𝑏 𝑇 

𝑇 𝑅 𝑙 𝑇 

( 

𝑎 𝐶 𝐻 𝑅𝐶,𝐶 

𝑙 𝐶 

( 

1+ 

ℎ 𝐶 

𝑎 𝐶 

) 

+ 

𝑘 𝑅𝑜𝑙 𝑙 ,𝑅 
(
𝐻 𝐻𝑖𝑡𝑐ℎ − 𝐻 𝑅𝐶,𝐶 

)
𝑘 𝑅𝑜𝑙 𝑙 ,𝐹 + 𝑘 𝑅𝑜𝑙 𝑙 ,𝑅 

) 

(10) 

𝐹 𝑧, 𝑎 ,𝑇 = 

𝑚 𝑇 𝑎 𝑦,𝑇 
( 

𝑎 𝑇 𝐻 𝑅𝐶,𝑇 + 𝐻 𝑅𝑜𝑙 𝑙 ,𝑇 − 

𝑏 𝑇 (
𝐻 𝐻𝑖𝑡𝑐ℎ − 𝐻 𝑅𝐶,𝑇 

)) 

(11)

𝑦 𝑇 𝑇 𝑙 𝑇 𝑙 𝑇 
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Table 1 

Main vehicle demonstrator parameters. 

Car 

Mass [kg] 2290 

Yaw mass moment of inertia [kgm 

2 ] 2761 

Wheelbase [m] 2.660 

Front semi-wheelbase [m] 1.399 

Longitudinal distance from rear axle to hitch joint [m] 0.850 

Track width [m] 1.625 

Longitudinal distance from the Corrsys-Datron sensor to the car centre of gravity [m] 2.130 

No. of motors per axle (-) 2 

T railer A T railer B 

Mass [kg] 1400 1000 

Yaw mass moment of inertia [kgm 

2 ] 778 646 

Hitch joint to trailer centre of gravity distance [m] 2.666 1.961 

Hitch joint to axle distance [m] 2.800 2.300 
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.2. Vehicle model for control system design 

A linearised single-track version of the model in (1) is used for con-
rol system design. The lateral axle forces are replaced by linear expres-
ions, i.e., 𝐹 𝑦,𝐹 = 𝐶 𝐹 𝛼𝐹 , 𝐹 𝑦,𝑅 = 𝐶 𝑅 𝛼𝑅 , 𝐹 𝑦,𝑇 = 𝐶 𝑇 𝛼𝑇 , where C i and 𝛼i , with
 = 𝐹 , R, T , are the cornering stiffness and slip angle of the front axle of
he towing car, the rear axle of the towing car and the trailer axle. 

The cornering stiffness values were obtained from experimental skid-
ad tests carried out at the Lommel proving ground (Belgium), and were
elected for a lateral acceleration of 5 m/s 2 , following the approach in
47] . The test vehicle was the electric Range Rover Evoque prototype
f the European FP7 project iCOMPOSE that towed a single-axle trailer,
alled trailer A in the remainder. During the model parameter identifi-
ation tests, the TV controller was deactivated and the towing vehicle
as operated with an equal torque distribution among the wheels, the

o-called Passive vehicle configuration. Table 1 shows the main vehi-
le parameters together with two sets of trailer parameters. The control
ystem design is based on the parameters of trailer A. As discussed in
ection 6 , the system performance was experimentally investigated with
wo trailers, trailer A and trailer B. 

From (1) the system transfer functions, providing the states as func-
ions of the inputs, are derived for the frequency domain analysis
see the appendix). In particular, the transfer functions 𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 

( 𝑠 ) =
𝑟 𝐶 

𝑀 𝑧,𝑟𝑒𝑓 
( 𝑠 ) and 𝐺 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙

( 𝑠 ) = 

𝜙

𝑀 𝑧,𝑟𝑒𝑓 
( 𝑠 ) have the same fourth order denom-

nator and different second order numerators. 

.3. Vehicle model for control system assessment 

This study assesses the robustness and instability mitigation capabil-
ty of the proposed TV controller with a high-fidelity articulated vehi-
le model implemented in IPG CarMaker. Previous studies [37] include
he experimental validation of the towing vehicle model, i.e., the case
tudy electric Range Rover Evoque; the trailer A model was developed
rom the data in Table 1 . An experimental validation of the resulting
rticulated vehicle model was carried out for steady-state and transient
onditions. 

. Hitch angle controllers 

.1. TV control structure with hitch angle feedback 

Fig. 2 shows the feedback TV control structure with hitch angle con-
rol. The reference yaw moment is computed from a single control vari-

𝐾 𝜙 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 , 
1 + 

𝐾 𝜙,𝑚𝑖𝑛 −1 
Δ𝜙𝑡ℎ −Δ𝜙𝑙𝑖𝑚 

(
Δ𝜙𝑡ℎ − 

|||𝜙𝑟𝑒𝑓 − 𝜙
|||), 

𝐾 𝜙,𝑚𝑖𝑛 , 
ble, Δr 𝜙, which is the weighted linear combination of the yaw rate
rror, Δr C , and hitch angle error, Δ𝜙, where the latter has an influence
nly when it exceeds pre-determined thresholds: 

𝑟 𝜙 = 𝐾 𝜙Δ𝑟 𝐶 − 𝑊 𝜙

(
1 − 𝐾 𝜙

)
Δ𝜙 = 𝐾 𝜙

(
𝑟 𝑟𝑒𝑓 − 𝑟 𝐶 

)
− 𝑊 𝜙

(
1 − 𝐾 𝜙

)
Δ𝜙 (12)

Saturations can be imposed on Δ𝜙 in (12) , to limit the hitch angle
ontribution: 

𝜙 = 

{ 

𝜙𝑟𝑒𝑓 − 𝜙, 𝑖𝑓 𝜙𝑟𝑒𝑓 − 𝜙 ∈
[
−Δ𝜙𝑠𝑎𝑡 ; Δ𝜙𝑠𝑎𝑡 

]
Δ𝜙𝑠𝑎𝑡 𝑠𝑖𝑔𝑛 

(
𝜙𝑟𝑒𝑓 − 𝜙

)
, 𝑖𝑓 𝜙𝑟𝑒𝑓 − 𝜙 ∉

[
−Δ𝜙𝑠𝑎𝑡 ; Δ𝜙𝑠𝑎𝑡 

] (13) 

The theoretical justification of this control structure is provided by
48] , according to which the concurrent control of multiple variables,
.e., the yaw rate and hitch angle, with one input, i.e., the yaw moment
pplied to the towing vehicle, makes the system functionally uncontrol-
able. In other words, it is not possible to track both variables at the
ame time. Therefore, this study uses a novel single input single out-
ut (SISO) TV formulation, which is an extension of the one adopted in
41] for yaw rate and sideslip control in isolated vehicles. 

To guard against driveability issues, the controller formulation in-
ludes threshold bands based on the hitch angle error 𝜙𝑟𝑒𝑓 − 𝜙, which al-
ow gradually increasing the hitch angle correction. For small/negligible
railer oscillations, the weighting factor 1 − 𝐾 𝜙 is set to zero (i.e., 𝐾 𝜙 =
 ) so that the controller only tracks the reference yaw rate of the car.
f |𝜙𝑟𝑒𝑓 − 𝜙| is between predefined lower and upper thresholds, respec-
ively Δ𝜙th and Δ𝜙lim 

, the control action linearly blends the yaw rate
nd hitch angle errors. In formulas: 

𝑓 − 𝜙 ∈
[
−Δ𝜙𝑡ℎ ; Δ𝜙𝑡ℎ 

]
𝑓 − 𝜙 ∈

[
−Δ𝜙𝑙𝑖𝑚 ; −Δ𝜙𝑡ℎ 

]
∪
[
Δ𝜙𝑡ℎ ; Δ𝜙𝑙𝑖𝑚 

]
𝑓 − 𝜙 ∉

[
−Δ𝜙𝑙𝑖𝑚 ; Δ𝜙𝑙𝑖𝑚 

] (14) 

K 𝜙, min is usually set to a small positive value, thus allowing the driver
r the automated driving controller to maintain an influence on the ve-
icle trajectory also during extreme oscillations of the trailer, which
ould not be the case for 𝐾 𝜙,𝑚𝑖𝑛 = 0 . The gain W 𝜙 is included in (12) to
rovide an extra tuning parameter, which allows some degree of inde-
endent tuneability of the yaw rate and hitch angle loops. 

The controller blends the yaw rate and hitch angle contributions only
hen the trailer dynamics are deemed critical. During normal driving,

he controller tracks the reference yaw rate of the car. The parameters in
 12 )–( 14 ) can be tuned directly on the vehicle demonstrator, or through
ptimisation routines accounting for model uncertainties, such as those
ssociated with trailer mass and geometry, or the tyre-road friction coef-
cient. Owing to the availability of a vehicle demonstrator, the param-
ters used for the simulations and experimental tests of this preliminary
tudy were determined directly on the proving ground. 

According to the approach in [41] , r ref , i.e., the reference yaw rate
f the towing vehicle, is the weighted average of the handling yaw rate,
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Fig. 2. Simplified block diagram of the proposed TV control structure. 
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 h , and the stability yaw rate, r s : 

 𝑟𝑒𝑓 = 

(
1 − 𝐾 𝛽

)
𝑟 ℎ + 𝐾 𝛽𝑟 𝑠 (15)

here r h provides the reference behaviour in high tyre-road friction con-
itions, and depends on the driving mode selected by the driver, i.e., on
he desired cornering response. This can be designed to obtain an under-
teer characteristic, i.e., the graph of steering wheel angle as a function
f lateral acceleration, which is closer to the neutral steering behaviour
nd with higher maximum lateral acceleration or, vice versa, closer to
he passive vehicle behaviour. The steady-state values of r h are obtained
rom a look-up table for each driving mode, which is a function of steer-
ng angle and vehicle speed. The look-up tables are calculated offline
ith a quasi-static model and a set of reference understeer characteris-

ics, as detailed in [36–38] . The look-up table output is low-pass filtered
o provide the appropriate reference dynamics for r h . r s is computed
rom the measured lateral acceleration of the car, and represents a yaw
ate value that is compatible with the available tyre-road friction con-
itions. The weighting factor, K 𝛽 , is a function of the rear axle sideslip
ngle, 𝛽C, R , which can be either measured or estimated [38–39,49] . 

In this study the reference hitch angle, 𝜙ref , is the kinematic hitch
ngle, i.e., the hitch angle in absence of slip angles [50] . The differen-
ial equation describing the evolution of the kinematic hitch angle for a
iven vehicle speed, V , is: 

̇ = − 

𝑉 

𝑙 𝐶 

( 

𝑙 𝐶 

𝑙 𝑇 
sin ( 𝜙) + 

( 

𝑒 𝐶 

𝑙 𝑇 
cos ( 𝜙) + 1 

) 

tan 
(
𝛿𝑤 

)) 

(16)

By imposing 𝜙̇ = 0 in (16) , it is: 

𝑟𝑒𝑓 = − arctan 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
tan 

(
𝛿𝑤 

)( 

𝑙 2 
𝑐 
𝑙 𝑇 + 𝑒 𝐶 

√ 

tan 2 
(
𝛿𝑤 

)
𝑙 2 
𝑐 
𝑒 2 
𝑐 
− tan 2 

(
𝛿𝑤 

)
𝑙 2 
𝑐 
𝑙 2 
𝑇 
+ 𝑙 4 

𝑐 

) 

𝑙 𝐶 

( 

− tan 2 
(
𝛿𝑤 

)
𝑙 𝑇 𝑒 𝐶 + 

√ 

tan 2 
(
𝛿𝑤 

)
𝑙 2 
𝑐 
𝑒 2 
𝑐 
− tan 2 

(
𝛿𝑤 

)
𝑙 2 
𝑐 
𝑙 2 
𝑇 
+ 𝑙 4 

𝑐 

) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(17)

In the controller 𝜙ref is used as an indicator of the expected steady-
tate hitch angle based on the driver input, for an average trailer geom-
try. 

In accordance to the practice in stability control systems of produc-
ion vehicles, this study adopts a Proportional Integral (PI) controller
ncluding an anti-windup scheme with gain K aw : 

 𝑧,𝑝𝑟𝑒−𝑠𝑎𝑡 = 𝐾 𝑃 𝑟 Δ𝑟 𝜙+ 𝐾 𝐼𝑟 ∫ Δ𝑟 𝜙𝑑𝑡 − 𝐾 𝑎𝑤 ∫
(
𝑀 𝑧,𝑝𝑟𝑒−𝑠𝑎𝑡 ( 𝑡 − ) − 𝑀 𝑧,𝑟𝑒𝑓 ( 𝑡 − ) 

)
𝑑𝑡 

(18)

A specific algorithm is used for the online estimation of the maxi-
um and minimum possible values of the direct yaw moment. The yaw
oment limits are based on the wheel torque demand, the torque limits
ssociated with the electric drivetrains, the estimated available tyre-
oad friction level at each corner, and (optionally) a fixed yaw moment
evel set up during the tuning phase of the controller. This allows the
omputation of the saturated yaw moment, M z, ref , based on the most
onservative condition, and provides an input to the torque distribution
lock. Given the significant change of the system dynamics with vehicle
peed, the PI gains are scheduled with V . The torque distribution algo-
ithm in Fig. 2 converts the vehicle torque demand from the drivability
ontroller and the TV reference yaw moment into torque demands for
he right and left sides of the vehicle, which are then evenly distributed
etween the front and rear drivetrains of each side. 

.2. Feedback controller design 

The PI gains are selected for appropriate yaw rate control of the
solated car. A gain scheduling scheme is developed with the single-
rack model of the isolated car to keep constant stability margins of the
aw rate open-loop transfer function, OLTF iso ( 𝑠 ) = 𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 ,𝑖𝑠𝑜 

( 𝑠 ) 𝐶 𝑃𝐼 ( 𝑠 ) .
or a selection of values of V , Table 2 reports: (i) the corresponding PI
ains, K Pr and K Ir ; (ii) the natural frequency and damping ratio of the
igid vehicle transfer function without TV control, i.e., 𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 ,𝑖𝑠𝑜 

( 𝑠 ) ;
nd (iii) the gain and phase margins of OLTF iso ( s ). 

The gains determined for the car are then used with the single-track
odel formulation of the articulated vehicle to verify that good sta-

ility margins are obtained for each control function: yaw rate con-
rol, i.e., 𝐾 𝜙 = 1 , which implies OLTF 𝑎𝑟𝑡, 𝐾 𝜙= 1 ( 𝑠 ) = 𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 

( 𝑠 ) 𝐶 𝑃𝐼 ( 𝑠 ) ,
nd hitch angle control, i.e., 𝐾 𝜙 = 0 , which implies OLTF 𝑎𝑟𝑡, 𝐾 𝜙= 0 ( 𝑠 ) =
 𝑊 𝜙𝐺 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙

( 𝑠 ) 𝐶 𝑃𝐼 ( 𝑠 ) ; note that the negative sign accounts for the
dopted hitch angle convention. 

Based on the experience of the authors, the selection of the TV sys-
em PI gains should be focused on the stability and disturbance rejection
roperties of the controller, rather than its tracking performance. In this
ay, the TV objectives can typically be achieved without compromising
rivability, which is of the essence given the continuous operation of the
V controller. Nonetheless, in case a vehicle stability control function-
lity is pursued that only activates in emergency conditions, a tuning
trategy focused on tracking performance could be adopted. 

Table 2 shows the frequency response analysis data for different
peeds, one set of PI gains and W 𝜙 = 1. f n refers to the lowest value
f natural frequency of the system, while 𝜁 is the respective damping
atio. As indicated by the results, the set of gains determined for the
igid vehicle can be used for the TV controller of the articulated ve-
icles without compromising system stability. This observation allows
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Table 2 

Frequency response analysis for the articulated vehicle with TV controller, 𝑖 = 𝑟 𝐶 , 𝜙. 

V [km/h] K Pr 

[Nms/rad] 
K Ir 
[Nm/rad] 

𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 ,𝑖𝑠𝑜 ( 𝑠 ) OLTF iso ( s ) 𝐺 𝑀 𝑧,𝑟𝑒𝑓 , 𝑖 ( 𝑠 ) OLTF 𝑎𝑟𝑡, 𝐾 𝜙= 1 OLTF 𝑎𝑟𝑡, 𝐾 𝜙= 0 

f n [Hz] 𝜁 Gain 
margin 
[dB] 

Phase 
margin 
[deg] 

f n [Hz] 𝜁 Gain 
margin 
[dB] 

Phase 
margin 
[deg] 

Gain 
margin 
[dB] 

Phase 
margin 
[deg] 

40 35,150 43,380 3.10 0.98 Inf 120 1.15 0.89 Inf 121 Inf 99 

60 27,541 34,290 2.25 0.90 Inf 120 1.15 0.58 Inf 121 Inf 97 

80 24,480 31,652 1.86 0.82 Inf 120 1.14 0.42 Inf 122 Inf 96 

100 23,080 31,623 1.65 0.74 Inf 120 1.14 0.32 Inf 122 Inf 95 

Fig. 3. Normalised frequency response of: (a) yaw rate; and (b) hitch angle to a steering input at 𝑉 = 100 km/h. 
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b  
 significant reduction of the control system tuning time. The stability
f the gain scheduling scheme with respect to variations of V can be
emonstrated with the method in [47] . 

.3. Industrial controller 

This section briefly presents the trailer sway mitigation algorithm
atented by Bosch in [16] , which was developed for cars with stability
ontrol systems based on the actuation of the friction brakes. A cor-
ective yaw moment is applied when the estimated trailer oscillations
xceed a certain level. Similarly to the TV controller ( Section 3.1 ), the
osch algorithm computes the reference yaw moment from a single con-
rol variable, which is the sum of the yaw rate error, Δr C , and the filtered
aw rate error, B ( Δr C ), of the towing vehicle. The B ( Δr C ) contribution
s considered only when the filter output exceeds a threshold value: 

𝑟 𝐶,𝑓𝑖𝑙𝑡,𝐵 = 

{ 

Δ𝑟 𝐶 + 𝐵 

(
Δ𝑟 𝐶 

)
, 𝑖𝑓 

||| 𝐵 

(
Δ𝑟 𝐶 

)||| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Δ𝑟 𝐶 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(19) 

The filter is a second order Butterworth band-pass filter that is de-
igned to isolate the oscillations in the yaw rate error signal caused by
he trailer snaking: 

 ( 𝑧 ) = 

𝑏 𝐵, 0 + 𝑏 𝐵, 1 𝑧 
−1 + 𝑏 𝐵, 2 𝑧 

−2 

𝑎 𝐵, 0 + 𝑎 𝐵, 1 𝑧 
−1 + 𝑎 𝐵, 2 𝑧 

−2 (20)

The coefficients of B ( z ) are computed to provide cut-off frequencies
f 0.375 Hz and 1.125 Hz. Then, the reference yaw moment can be gen-
rated with any feedback controller, by replacing Δr C with Δr C, filt, B as
ontrol variable. In this study the PI formulation in (18) with the gains
f Table 2 is used for the assessment of the trailer sway mitigation strat-
gy. 
. Controller comparison 

.1. Frequency domain analysis 

Fig. 3 (a) and (b) compare the normalised frequency response of the
aw rate and hitch angle for a steering input at 𝑉 = 100 km/h for: 

• Passive – the passive articulated vehicle (without TV control and
with even torque distribution) described by 𝐺 𝛿𝑤 , 𝑟 𝐶 

( 𝑠 ) and 𝐺 𝛿𝑤 ,𝜙
( 𝑠 )

(see appendix). 
• YR Control – the articulated vehicle with TV control only on the yaw

rate of the car ( 𝐾 𝜙 = 1 ). 
• HA Control – the vehicle with only the TV hitch angle control con-

tribution active (i.e., K 𝜙 = 0). 
Note that in the following time domain analyses (see Sections 5 and
6 ), the TV controller with yaw rate and hitch angle control active is
indicated as YR + HA Control. As described in Section 3 , based on
the variation of K 𝜙 in the time domain, this configuration brings a
closed-loop system behaviour that changes depending on the vehicle
states. 

• YR + SM Control – the industrial trailer sway mitigation (SM) con-
troller with the Butterworth filter acting on the yaw rate error, which
is added to the YR Control formulation, with B in (20) being con-
verted into the Laplace domain. 

The analysis assumes a linear relationship between the handling yaw
ate and steering angle, where relevant. The normalisation of the Bode
lots is carried out by dividing each transfer function by the respective
teady-state gain. For a fair comparison, the PI gains of Table 2 were
dopted for all active configurations. As shown by Fig. 3 (b) all con-
rollers can reduce the hitch angle resonance peak, with the HA Control
eing the most effective (reduction of 67.7% relative to Passive). The
R Control (reduction of 29.3%) and the YR + SM Control (reduction of
7.7%) provide similar benefits. Also, the results highlight the advan-
ages of the flexibility of the YR + HA Control–the system response can
e varied between that of the YR Control, focused on the enhancement
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Fig. 4. Phase plane trajectories at V = 100 km/h and 𝛿w = 0 deg for: (a) the passive vehicle; (b) the vehicle with the YR Control; (c) the vehicle with the YR + SM 

Control; and (d) the vehicle with the YR + HA Control. 
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Table 3 

Tuning parameters of the hitch angle 
control function. 

Parameter Value 

Δ𝜙th 3 deg 

Δ𝜙lim 10 deg 

W 𝜙 1 s − 1 

Δ𝜙sat 10 deg 

K 𝜙, min 0.1 
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f the towing vehicle response in steady-state and transient conditions
or safety, performance and fun-to-drive, and that of the HA case, which
rovides a high damping of the hitch dynamics. 

.2. Phase plane analysis 

The controllers of Section 3 are implemented into the nonlinear
odel of Section 2.1 to perform a phase plane analysis of the articulated

ehicle response. The simulations are carried out at 𝑉 = 100 km/h and

𝑤 = 0 deg, and started with r C = 𝛽C = 0, while changing the initial con-
itions of 𝜙 and 𝜙̇. For the analysis, the TV yaw moment is saturated at
 / − 5000 Nm. The parameters in (14) are Δ𝜙th = 4 deg, Δ𝜙lim 

= 15 deg
nd 𝐾 𝜙,𝑚𝑖𝑛 = 0. 

Fig. 4 reports the phase plane results. The star marker indicates a
imulation run that exceeds the safety limits of the vehicle-trailer sys-
em, which are |𝜙̇| ≤ 110 deg/s and | 𝜙| ≤ 75 deg. These threshold values
ere selected by observing the behaviour of the passive vehicle during

xtreme manoeuvres in simulation. A successful run, i.e., when the 𝜙̇( 𝜙)
rajectory remains within the assigned limits, is indicated with the open
ircle marker (at the initial condition coordinate) and the correspond-
ng trajectory is shown in blue. Based on the limits, the passive vehicle
an successfully complete 210 simulations, and the YR Control and the
R + SM Control vehicles finish 211 runs each. With 278 successful sim-
lations, the vehicle with the YR + HA Control can complete ∼32% more
uns than the other vehicle cases. 

Even in the cases exceeding the set limits, the proposed YR + HA Con-
rol stabilises the vehicle with reduced oscillations with respect to the
ther control configurations. The important and novel conclusion is that
he direct adoption of the hitch angle information in the implementa-
ion of stability control systems would significantly enhance the active
afety of car-trailer combinations. 
. Simulation results 

The vehicle model of Section 2.3 is used to analyse the ability of
he controller to cope with jackknifing and snaking. Furthermore, the
nalysis assesses the controller robustness with respect to large varia-
ions in model parameters, in particular: (i) trailer mass; (ii) longitudi-
al position of the trailer centre of gravity; and (iii) tyre-road friction
oefficient. For conservativeness, in the next subsections the sideslip an-
le based correction of the reference yaw rate is deactivated. Therefore,
he reference yaw rate only depends on the handling yaw rate, which
s more aggressive than the response of the passive vehicle. In addition,
he tuning parameters of the hitch angle control function, reported in
able 3 , are kept constant in all simulations. 

.1. Jackknifing scenario 

Jackknifing is a very common instability mode of articulated vehi-
les, in which the towing vehicle reaches the friction limit and the trailer
oes not. The momentum of the latter pushes the towing vehicle, which
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Fig. 5. Towing vehicle yaw rate during a jackknifing scenario simulation. 

Fig. 6. Hitch angle during a jackknifing scenario simulation. 
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Fig. 7. Towing vehicle yaw rate during a snaking scenario simulation. 

Fig. 8. Hitch angle during a snaking scenario simulation. 

5

 

a  

c  

e  

i  

c  

u
 

f  

T  

w  

m
 

o  

w  

y  

c  

s  

a  

t  

t  

h  

s  

t  

s  

c  

c  

o  

g  

v  
ltimately spins. The articulated vehicle finally ends up in a “folded ”
osition [8] . 

To simulate this scenario, the tyre-road friction coefficient 𝜇 is set to
.6. The vehicle is accelerated to a speed of 100 km/h. Then the accel-
rator pedal is released and a swift steering wheel input with a 100 deg
agnitude is imposed at a rate of 400 deg/s. At the same time, a strong

orce impulse is applied to the brake pedal. This only affects the braking
ystem of the towing vehicle, which consequently tends to spin. After
 s, the steering wheel angle is brought back to zero with a gradient of
 400 deg/s. 

Figs. 5 and 6 show the time histories of the yaw rate of the towing
ehicle and hitch angle for: (i) the passive case; (ii) the vehicle with
nly the YR Control; and (iii) the vehicle with the proposed YR + HA
ontrol. The simulation is purposely designed to induce jackknifing in
he passive vehicle (grey lines in the plots) and understand the TV con-
roller reaction. Interestingly, in order to follow the reference yaw rate,
he YR Control applies a large positive yaw moment at ∼4 s, which in-
reases the yaw rate of the car but also has a negative effect on the
railer, as indicated by the large increase in hitch angle. By this point
he vehicle has been subjected to a significant speed reduction, which
ncreases damping and helps stabilisation. In the simulation with the
R + HA Control, as the trailer motion increases beyond the activation
hresholds of the hitch angle safety function, a negative yaw moment is
enerated between 4 s and 5 s, which decreases the towing vehicle yaw
ate and helps maintaining trailer stability. All subsequent trailer oscil-
ations are easily dealt with by the controlled vehicle, which ultimately
ecovers the straight-line motion at ∼7 s in Fig. 5 , significantly earlier
nd at higher final speed than with the YR Control. 
.2. Snaking scenario 

Snaking occurs when the trailer begins oscillating in a self-
mplifying fashion [9] . This can happen when the trailer parameters
ause system instability from a control viewpoint, i.e., at least one of the
igenvalues of the system has positive real part. As soon as the system
s subjected to a small input or an external disturbance, the instability
auses the oscillation of the hitch angle to progressively increase until,
ltimately, the vehicle cannot be recovered. 

In the snaking simulation, 𝜇 is set to 1 and the trailer axle is moved
orward, to be closer to the hitch joint than the trailer centre of gravity.
he vehicle is accelerated up to a speed of 100 km/h. Then a constant
heel torque demand is set and a steering wheel impulse of ∼40 deg
agnitude is applied, which induces the trailer oscillations. 

Figs. 7 and 8 show the snaking scenario results. After a few sec-
nds, in the passive case the trailer exhibits large amplitude oscillations,
hich also correspond to towing vehicle oscillations, as indicated by the
aw rate profile. As a consequence, the vehicle loses speed, which in-
reases system damping and reduces the hitch angle oscillations. The
ituation improves with the YR Control. As the steering angle is zero
fter the steering impulse, the reference yaw rate is zero, which implies
hat the TV controller tries to keep the car in a straight line. Despite
his, the oscillations quickly build up as shown by the yaw rate and
itch angle time histories. After a significant drop in vehicle speed, the
ituation stabilises at ∼15 s. In the YR + HA simulation, the amplitude of
he hitch angle oscillations initially increases similarly to the YR case. As
oon as the hitch angle error threshold is exceeded, the controller starts
orrecting the trailer motion. Because of the unstable nature of the spe-
ific trailer configuration, and the fact that the controller is designed to
nly correct the hitch angle if the threshold is exceeded, the hitch an-
le does not asymptotically tend to 0 deg, but is kept within reasonable
alues. By setting the activation threshold to 0 deg, it would be possible
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Table 4 

Sensitivity analyses during sinusoidal steer test at V = 70 km/h. 

Sensitivity on m T Sensitivity on a T Sensitivity on 𝜇

Passive YR + HA Passive YR + HA Passive YR + HA 
m T [kg] RMSE Δ𝜙 [deg] RMSE Δ𝜙 [deg] a T [m] RMSE Δ𝜙 [deg] RMSE Δ𝜙 [deg] 𝜇 [-] RMSE Δ𝜙 [deg] RMSE Δ𝜙 [deg] 

400 1.58 1.48 2.5 6.13 2.52 1 8.94 3.01 

1400 10.20 3.01 2.7 8.94 3.01 0.8 16.88 4.45 

2400 x 6.70 3.1 x 6.20 0.6 x 6.29 

3400 x 12.50 3.3 x 11.54 0.4 x 5.08 

4400 x x 3.5 x x 0.2 x x 

x: loss of vehicle stability. 
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Fig. 9. The vehicle demonstrator with trailer A during an obstacle avoidance 
test at the Lommel proving ground. 
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o have hitch angle convergence; however, this is not the purpose of the
ontroller, specifically designed to intervene in critical conditions. 

.3. Sensitivity analyses 

The sensitivity analyses compare the response of the passive vehicle
nd the vehicle with the YR + HA Control function during a sinusoidal
teering test. The vehicle is accelerated up to a speed of 70 km/h; then a
onstant wheel torque demand of 500 Nm is set and a single sinusoidal
teering wheel input of 50 deg magnitude is applied, which provokes
 swinging motion of the trailer. This is also one of the manoeuvres
dopted in the experimental assessment of the controller. The sensitiv-
ty analysis is conducted by changing each parameter individually. The
imulation results are in Table 4 , which includes the values of RMSE Δ𝜙,
.e., the root mean square value of the hitch angle error: 

𝑀𝑆 𝐸 Δ𝜙 = 

√ 

1 
𝑡 𝑓 − 𝑡 𝑖 ∫

𝑡 𝑓 

𝑡 𝑖 

Δ𝜙2 𝑑𝑡 (21)

MSE Δ𝜙 is an indicator of the hitch angle deviation from its reference
ehaviour. 

The results of the sensitivity analysis on trailer mass show that not
nly the YR + HA Control improves vehicle behaviour with respect to the
assive configuration, but also that the trailer mass can be increased by
000 kg in the active vehicle (from 1400 kg to 3400 kg) before stability
ssues occur because of actuator saturation. In the analysis on the trailer
OG position, as expected, for both the passive and active vehicles the
MSE Δ𝜙 worsens when the trailer centre of gravity is moved rearward.
he YR + HA Control can keep stability when the COG is by 0.5 m more
earward than in the passive case. The last scenario assesses the effect
f the tyre-road friction coefficient. The YR + HA Control can maintain
ehicle stability in a wider range of road conditions, and at the same
ime always generates better response than for the passive case. 

These results could be further improved by: (i) the activation of the
ideslip angle stability function; and (ii) the adaptive variation of the
V controller parameters, which were purposely kept constant in this
reliminary analysis. 

. Experimental results 

.1. Experimental set-up 

To experimentally assess the performance of the TV systems with
R Control and YR + HA Control, the algorithms ( Section 3 ) were im-
lemented on the dSpace AutoBox rapid control prototyping unit of the
attery electric Range Rover Evoque vehicle demonstrator ( Fig. 9 ) men-
ioned in Section 2 . The vehicle is equipped with four identical on-board
lectric drivetrains and an electro-hydraulic braking system to allow
recise individual wheel control in traction and braking. The controllers
ere tested with two different single axle trailers, trailer A and trailer
, that differ in length and mass; trailer A is heavier and has a greater
itch-to-axle distance ( Table 1 ). Both trailers have conventional over-
un braking systems, actuated by a mechanism located on the drawbar.
he sensor setup included: (i) two inertial measurement units (IMUs),
nstalled in the car and on the trailer to measure their respective yaw
ate and lateral acceleration; (ii) a Corrsys-Datron S-350 sensor attached
o the front bumper of the car to measure the body sideslip angle. The
ideslip angle values at the centre of gravity and at the rear axle of the
ar were computed by considering the measured yaw rate; and (iii) a
otentiometer connecting the car and the trailer to determine the hitch
ngle. 

The vehicle tests were performed at the Lommel proving ground
Belgium) with the three system configurations (see Sections 4 and 5 )–
assive, YR Control, and YR + HA Control. For each test the vehicle
as accelerated up to the target speed and, then, a constant torque de-
and was set and maintained throughout the rest of the manoeuvre.
he torque demand was approximately equal to the resistance torque
or straight line driving at the reference speed. Four manoeuvres were
erformed: 

i) Single sinusoidal steering test with a steering wheel angle input
of 50 deg amplitude and 3 s duration, starting at V in = 70 km/h. 

ii) Sweep steering test with a sinusoidal steering wheel input at a
progressively increasing frequency and 20 deg amplitude, start-
ing at V in = 90 km/h. 

iii) Prolonged sinusoidal steering test at constant frequency and
20 deg amplitude, starting at V in = 90 km/h. 

iv) Obstacle avoidance test, in which the vehicle has to complete the
manoeuvre without hitting cones positioned according to the ISO
standard 3888–2 [51] . 

In the following subsections, unless otherwise specified, the parame-
ers of the hitch angle stability function used in the controller are those
eported in Table 3 . 

.2. Single sinusoidal steering test 

Figs. 10 –12 show the time histories of steering wheel angle, hitch
ngle and yaw rate measured during the single sinusoidal steering test.
s indicated by Fig. 11 , this manoeuvre significantly excites the trailer
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Fig. 10. Steering wheel angle during sinusoidal steering test with trailer A and 
V in = 70 km/h, for three different vehicle configurations. 

Fig. 11. Hitch angle during sinusoidal steering test with trailer A and 
V in = 70 km/h, for three different vehicle configurations. 

Fig. 12. Yaw rate of the car during sinusoidal steering test with trailer A, 
V in = 70 km/h, and three different vehicle configurations. 
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Table 5 

Performance indicators for the sinusoidal tests with trailer A. 

Passive YR control YR + HA control 

RMSE Δ𝜙 [deg] 10.05 11.95 4.67 

𝑅𝑀𝑆 𝐸 Δ𝑟 𝐶 [deg/s] 4.82 2.36 9.74 

𝑅𝑀𝑆 𝐸 Δ𝑟 𝜙 [deg/s] 10.31 11.43 8.49 

| 𝜙max | [deg] 28.02 31.82 10.65 

IACA [Nm] – 820 2051 

Fig. 13. Hitch angle during sinusoidal steering test with trailer A and 
V in = 70 km/h, for YR Control and for YR + HA Control with different values 
of W 𝜙 [1/s]. 
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ynamics. The Passive and YR Control configurations experience maxi-
um hitch angles of ∼30 deg at t ≈ 3.2 s. The similar behaviour of the

wo vehicle configurations is due to the fact that the towing car remains
ithin its cornering limits, i.e., with a maximum lateral acceleration of
 m/s 2 . Hence, r ref ( t ) is close to r C ( t ), so that the magnitude of M z, ref

omputed by the YR Control is rather low and hardly influences the ve-
icle behaviour. This observation also confirms the simulation results
f Section 4 and 5 that showed the marginal benefit of the YR Control
ompared to the passive vehicle. In contrast, with the YR + HA Control
onfiguration the hitch angle correction is activated at t ≈ 2.4 s, i.e.,
hen | Δ𝜙| > Δ𝜙th = 3 deg. As a result, the TV system dampens the trailer
aw dynamics and 𝜙( t ) is kept bounded to a low amplitude of ∼10 deg.
owever, the yaw moment associated with the hitch angle contribution
akes the car maintain a negative yaw rate even when the steering input
s returning to zero. Although this effect is an intrusion into the driver
ontrol action on vehicle trajectory, the feedback from the professional
est drivers on the vehicle behaviour was positive, as the trailer oscilla-
ions experienced with the Passive and YR Control configurations were
erceived as rather critical. 

To quantitatively assess the system behaviour, the following perfor-
ance indicators were computed and are reported in Table 5: 

• The root mean square error values, RMSE , of Δ𝜙, Δr C and Δr 𝜙, based
on the definition in (21) . 

• The maximum absolute value of the hitch angle during the test,
| 𝜙max |. 

• The integral of the absolute value of the control action, IACA : 

𝐼𝐴𝐶𝐴 = 

1 
𝑡 𝑓 − 𝑡 𝑖 ∫

𝑡 𝑓 

𝑡 𝑖 

|||𝑀 𝑧,𝑟𝑒𝑓 
|||𝑑𝑡 (22)

The highest 𝑅𝑀𝑆 𝐸 Δ𝑟 𝐶 value ( Table 5 ) indicates that the YR + HA
ontrol vehicle has the lowest yaw rate tracking performance. How-
ver, the hitch angle tracking performance significantly improves (see
he RMSE Δ𝜙 value) and | 𝜙max | is more than halved, compared to the
ther two configurations. Also, as the overall articulated vehicle is op-
rating in less critical conditions, the 𝑅𝑀𝑆 𝐸 Δ𝑟 𝜙value reduced, which
mplies an overall better performance of the feedback controller. As ex-
ected, the damping of the trailer oscillations by the YR + HA Control
as achieved through a considerably higher control effort; in fact, the

ACA value of the YR + HA Control is nearly 2.5 times greater than with
he YR Control setup. 

To assess the tuneability of the YR + HA Control, two experimental
ensitivity analyses based on the sinusoidal steering test were conducted
one on W 𝜙, and one on Δ𝜙th and Δ𝜙lim 

. Fig. 13 shows the hitch angle
ime histories obtained with the different W 𝜙 settings, including the YR
ontrol configuration ( 𝑊 𝜙 = 0 ). As indicated by the results, the hitch an-
le peak can be reduced by increasing W 𝜙. Fig. 14 shows the hitch angle
rror time histories, Δ𝜙( t ), for different Δ𝜙th and Δ𝜙lim 

values and the
R Control case. As expected, the experiments show that lower thresh-
ld values anticipate the controller activation and lead to a considerable
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Fig. 14. Hitch angle error during sinusoidal steering test with trailer A and 
V in = 70 km/h, for YR Control and for YR + HA Control with different values of 
Δ𝜙th and Δ𝜙lim [deg]. 

Table 6 

Maximum frequency, f max , of the steering wheel input 
during the sweep steering tests with trailer A. 

Passive YR Control YR + HA Control 

f max [Hz] 0.5 0.6 1.1 
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Fig. 16. Steering wheel angle during sinusoidal steering test with trailer A, 
steering frequency of 0.67 Hz and V in = 90 km/h for three different vehicle con- 
figurations. 

Fig. 17. Hitch angle during sinusoidal steering test with trailer A, steering fre- 
quency of 0.67 Hz and V in = 90 km/h for three different vehicle configurations. 
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eduction in trailer sway, as opposed to a more oscillating behaviour
hen the thresholds are more relaxed. 

.3. Frequency sweep steering test 

The frequency sweep steering test was carried out to investigate the
ateral stability of the vehicle-trailer system with the developed con-
rollers. As indicated by the test results, the Passive vehicle ( Fig. 15 (a)
 (d)) and the YR Control vehicle ( Fig. 15 (b) & (e)) exhibit resonance
ehaviour at similar steering frequencies, approx. 0.5 Hz and 0.6 Hz,
ee Table 6 . Therefore, it was not possible to safely achieve a higher
requency and the driver had to stop the manoeuvre. With the YR + HA
ontrol ( Fig. 15 (c) & (f)), the driver was able to increase the input fre-
uency well beyond the level of the other two configurations, as the
railer resonance condition was damped by the yaw moment correction
erformed by the hitch angle contribution. The maximum steering fre-
uency achieved in this test was 1.1 Hz. Higher frequencies would have
ig. 15. Steering wheel angle (a, b, c) and hitch angle (d, e, f) profiles for: the Passiv
R + HA Control (c, f) during sweep steering test with trailer A and V in = 90 km/h. 
een possible with a consistently good safety margin, but the test road
as not sufficiently long to safely continue the manoeuvre. 

.4. Prolonged sinusoidal steering test at constant frequency 

The prolonged sinusoidal steering test was carried out at a steer-
ng frequency of 0.67 Hz in order to excite the trailer dynamics (see
ection 6.3 ). As indicated by Figs. 17 and 18 , this test provoked critical
riving conditions with the Passive and YR Control vehicle configura-
ions. In particular, the oscillations of the trailer increased beyond a safe
e vehicle (a, d); the vehicle with the YR Control (b, e); and the vehicle with the 
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Fig. 18. Rear-view camera shot of trailer A during the sinusoidal 
steering test at a steering frequency of 0.67 Hz and V in = 90 km/h 
for: (a) the Passive vehicle; and (b) the vehicle with the YR + HA 

Control. 

Fig. 19. Steering wheel angle during obstacle avoidance test with trailer B and 
V in = 50 km/h. 
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Fig. 20. Hitch angle during obstacle avoidance test with trailer B and 
V in = 50 km/h. 

Fig. 21. Map of the obstacle avoidance test results with trailer B for different 
control configurations and initial speeds. 
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evel ( Fig. 17 ) and the driver had to abort the manoeuvre early ( 𝛿swa ( t )
educed to zero at approx. 7 s and 9 s, see Fig. 16 ) and slow down the
ar. In contrast, with the YR + HA Control the trailer oscillations had a
mall amplitude and were bounded ( Fig. 17 ), so that the test could safely
ontinue and be completed. This result indicates the significant safety
nhancement that can be achieved with the YR + HA Control. Also, the
n-board shots taken at the maximum amplitude of trailer oscillations
ith the Passive and YR + HA Control cases visually demonstrate the
otential safety benefit of the controlled vehicle ( Fig. 18 ). 

.5. Obstacle avoidance test 

The obstacle avoidance test was carried out with trailer B, which is
ighter and shorter than trailer A. To allow a preliminary assessment
f the controller robustness, the experiments were carried out with the
uning parameter set established with trailer A. 

During the first part of the manoeuvre (see Figs. 19 and 20 ), the
uick transition from the first to the second lane brings a progressive
ncrease in trailer sway. When the vehicle returns to the first lane at
 ≈ 3 s, the trailer is still oscillating and the rapid change of direction
rovokes further oscillations, leading to the hitch angle peaks at t ≈ 3.5 s
nd t ≈ 4.5 s. In the second half of the manoeuvre, which is the critical
art of the test, the YR + HA Control significantly reduces the oscillation
mplitude with respect to the other two configurations. Moreover, it al-
ows successful completion of the manoeuvre, i.e., no cone is hit, which
as not the case for the Passive and the YR Control vehicles. 

Fig. 21 compares the maximum initial speeds that still allow success-
ul completion of the test. In each assessed configuration, the vehicle had
 attempts to complete the course without hitting cones. If the attempt
as successful, the speed was increased by 1 km/h and the manoeu-
re was repeated until 5 consecutive failures occurred from the same
nitial speed. In Fig. 21 , the open maker indicates a successful attempt
nd the “x ” indicates an unsuccessful attempt. The horizontal lines high-
ight the maximum initial speeds achieved by the vehicle with: (i) the
R Control (dotted line); (ii) the YR + HA Control with Δ𝜙𝑡ℎ = 8 deg and
𝜙lim 

= 15 deg; (iii) the same controller as in (ii) but with Δ𝜙𝑡ℎ = 4 deg
solid line). Configuration (i) achieved a maximum speed of 49 km/h,
hile the YR + HA Control allowed to increase the maximum speed up

o 50 km/h in configuration (ii), and to 52 km/h in configuration (iii). 
Fig. 22 shows aerial views of the vehicle during tests from 49 km/h.

ith the Passive configuration ( Fig. 22 (a)), the trailer swings to the left-
and side of the car (negative hitch angle peak) and, in doing so, hits
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Fig. 22. Aerial view of obstacle avoidance tests with trailer B for (a) the passive 
vehicle; and (b) the vehicle with the YR + HA Control. 
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everal cones. With the YR + HA Control (case (ii)) the trailer oscillates
o the left (see Fig. 22 (b)) and the hitch angle error is negative. Based on
he controller formulation in Section 3 , this condition reduces the yaw
oment, which, then, leads to a decrease in the yaw rate of the car. As
 result, the car is heading more to the right in reaction to the sway of
he trailer to the left, the oscillations are reduced and no cone is hit. 

. Conclusions 

The novel TV control setup of this study – the YR + HA Control –
ombines the simplicity of a SISO structure (which facilitates industrial
mplementation) with the capability of: (i) shaping the understeer char-
cteristic of the car through continuous yaw rate tracking; (ii) indirectly
onstraining the sideslip angle of the car by modifying its reference yaw
ate; and (iii) indirectly limiting the hitch angle oscillations through a
ontrol variable that considers yaw rate and hitch angle errors. 

The main conclusions are: 

• A TV system based only on the yaw rate and sideslip angle of the car
(i.e., without special consideration of the trailer dynamics) cannot
provide significant active safety benefits when a trailer is towed. 
• The phase plane analysis with the nonlinear vehicle model demon-
strated the significant extension of the safe vehicle operating condi-
tions allowed by the YR + HA Control (up to 32%), compared to: (i)
an industrial trailer sway mitigation function with a band-pass filter
on the car yaw rate error; and (ii) the TV system based only on the
yaw rate and sideslip angle of the car. 

• The good performance of the YR + HA Control was confirmed by the
frequency domain analysis. With respect to the benchmark industrial
controller, the YR + HA Control reduced the hitch angle resonance
amplitude by up to 48%. 

• The simulation results with the high-fidelity vehicle model showed
the YR + HA Control robustness with respect to: (i) jackknifing and
snaking; and (ii) large variations in model parameters, i.e., location
of the trailer centre of gravity, trailer mass and tyre-road friction
coefficient. 

• The YR + HA Control allowed bounding of the system response of
the case study vehicle-trailer combinations to safe levels throughout
the sinusoidal steering and obstacle avoidance tests of this study. 

• The experimental sensitivity analyses highlighted the predictable
tuneability of the YR + HA Control algorithm, which facilitates quick
set up of the controller. 

The very promising experimental results encourage further research
n the definition of industrially implementable methods for the direct
easurement or state estimation of the hitch angle in car-trailer combi-
ations. 
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hicle are: 

𝐺 (A1) 

𝐺 (A2) 

𝐺 (A3) 

𝐺
 𝑁 0 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 

(A4) 

𝐺
 𝑁 0 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 

(A5) 

𝐺 (A6) 

𝐷 (A7) 

w

𝐷  𝑇 

(
𝐶 𝐹 

(
𝑎 𝐶 + ℎ 𝐶 

)
− 𝐶 𝑅 

(
𝑏 𝐶 − ℎ 𝐶 

))
𝑚 𝑇 

)
𝑉 2 − 𝐶 𝐹 𝐶 𝑅 𝑙 𝑇 

(
𝑎 𝐶 + 𝑏 𝐶 

)2 )
𝐶 𝑇 𝑉 (A8) 

𝐷 − 

(
𝑏 𝑐 − ℎ 𝑐 

)(
− 𝑏 𝑐 + 𝑎 𝑇 + ℎ 𝑐 

)
𝐶 𝑅 

)(
𝑎 𝑇 − 𝑙 𝑇 

)
𝑚 𝑇 

𝐶 𝐹 

(
𝑎 𝑐 + ℎ 𝑐 

)
− 𝐶 

𝑅 

(
𝑏 𝑐 − ℎ 𝑐 

))
𝐽 𝑧,𝑇 

)
𝑉 2 + 𝐶 𝐹 𝐶 𝑅 𝑙 

2 
𝑇 

(
𝑎 𝑐 + 𝑏 𝑐 

)2 )
𝐶 𝑇 (A9) 

𝐷 + 𝐽 𝑧,𝑐 
))(

𝑎 𝑇 + 𝑙 𝑇 
)
𝑚 𝑇 

 𝑇 

)
𝐶 𝑇 

 

ℎ 𝑐 + 𝑏 𝑐 
(
𝑎 2 
𝑇 
𝑚 𝑐 + 𝐽 𝑧,𝑇 

))
𝐶 𝑅 𝑉 

2 
)
𝑚 𝑇 

(A10) 

𝐷
 

− 𝑙 𝑇 
)2 
𝐶 𝑇 + 𝑎 2 

𝑇 

(
𝐶 𝐹 + 𝐶 𝑅 

))
𝐽 𝑧,𝑐 

 𝑧,𝑐 + 𝑚 𝑐 

(
𝐶 𝐹 𝑎 

2 
𝑐 
+ 𝐶 𝑅 𝑏 

2 
𝑐 
+ 𝐶 𝑇 ℎ 

2 
𝑐 

))
𝐽 𝑧,𝑇 + 𝑚 𝑐 𝐽 𝑧,𝑐 𝐶 𝑇 𝑙 

2 
𝑇 

)
𝑉 2 (A11) 

𝐷 (A12) 

𝑁 (A13) 

𝑁  𝑇 
2 (𝑎 𝐶 + 𝑏 𝐶 

))
𝑉 (A14) 

𝑁 𝐶 𝑅 

(
𝑎 𝐶 + 𝑏 𝐶 

)(
𝑎 𝑇 

2 𝑚 𝑇 + 𝐽 𝑧,𝑇 
))
𝐶 𝐹 𝑉 

2 (A15) 

𝑁 (A16) 

𝑁  𝑅 𝑏 𝐶 𝑙 𝑇 
(
𝑎 𝐶 + 𝑏 𝐶 

))
𝑉 (A17) 

𝑁 𝐽 𝑧,𝐶 

)
𝑙 𝑇 + 

(
𝐽 𝑧,𝑇 + 𝑚 𝑇 𝑎 𝑇 

(
𝑎 𝑇 + ℎ 𝐶 

))(
𝑎 𝐶 + ℎ 𝐶 

))
𝑉 2 − 𝐶 𝑅 𝑏 𝐶 𝑙 𝑇 

2 (𝑎 𝐶 + 𝑏 𝐶 
))
𝐶 𝐹 𝐶 𝑇 

(A18) 
ppendix 

The transfer functions of the single-track model of the articulated ve

 𝛿𝑤 , 𝑟 𝐶 
( 𝑠 ) = 

𝑟 𝐶 

𝛿𝑤 
( 𝑠 ) = 

𝑁 3 𝛿𝑤 , 𝑟 𝐶 𝑠 
3 + 𝑁 2 𝛿𝑤 , 𝑟 𝐶 𝑠 

2 + 𝑁 1 𝛿𝑤 , 𝑟 𝐶 𝑠 
1 + 𝑁 0 𝛿𝑤 , 𝑟 𝐶 

𝐷 ( 𝑠 ) 

 𝛿𝑤 , 𝛽𝐶 
( 𝑠 ) = 

𝛽𝐶 

𝛿𝑤 
( 𝑠 ) = 

𝑁 3 𝛿𝑤 , 𝛽𝐶 𝑠 
3 + 𝑁 2 𝛿𝑤 , 𝛽𝐶 𝑠 

2 + 𝑁 1 𝛿𝑤 , 𝛽𝐶 𝑠 
1 + 𝑁 0 𝛿𝑤 , 𝛽𝐶 

𝐷 ( 𝑠 ) 

 𝛿𝑤 ,𝜙
( 𝑠 ) = 

𝜙

𝛿𝑤 
( 𝑠 ) = 

𝑁 2 𝛿𝑤 ,𝜙𝑠 
2 + 𝑁 1 𝛿𝑤 ,𝜙𝑠 

1 + 𝑁 0 𝛿𝑤 ,𝜙

𝐷 ( 𝑠 ) 

 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
( 𝑠 ) = 

𝑟 𝐶 

𝑀 𝑧,𝑟𝑒𝑓 

( 𝑠 ) = 

𝑁 3 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
𝑠 3 + 𝑁 2 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 

𝑠 2 + 𝑁 1 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
𝑠 1 +

𝐷 ( 𝑠 ) 

 𝑀 𝑧,𝑟𝑒𝑓 ,𝛽𝐶 
( 𝑠 ) = 

𝛽𝐶 

𝑀 𝑧,𝑟𝑒𝑓 

( 𝑠 ) = 

𝑁 3 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 
𝑠 3 + 𝑁 2 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 

𝑠 2 + 𝑁 1 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 
𝑠 1 +

𝐷 ( 𝑠 ) 

 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙
( 𝑠 ) = 

𝜙

𝑀 𝑧,𝑟𝑒𝑓 

( 𝑠 ) = 

𝑁 2 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙
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𝐷 ( 𝑠 ) 

 ( 𝑠 ) = 𝐷 4 𝑠 
4 + 𝐷 3 𝑠 

3 + 𝐷 2 𝑠 
2 + 𝐷 1 𝑠 

1 + 𝐷 0 

here the coefficients are: 

 0 = − 
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𝑎 𝐶 + ℎ 𝐶 
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𝑚 𝑇 + 𝑚 𝐶 𝑎 𝐶 
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𝐶 𝐹 − 
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𝑏 𝐶 − ℎ 𝐶 
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𝐶 𝑅 
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 1 = 
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− 
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− 𝑎 𝑐 − ℎ 𝑐 
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𝐶 𝐹 + 𝐶 𝑅 

(
𝑏 𝑐 − ℎ 𝑐 

))
𝑙 𝑇 + 𝐶 𝐹 

(
𝑎 𝑐 + ℎ𝑐 

)(
𝑎 𝑐 + 𝑎 𝑇 + ℎ 𝑐 

)
− 𝑚 𝑐 

(
𝐶 𝐹 𝑎 𝑐 − 𝐶 𝑅 𝑏 𝑐 

)
𝑙 2 
𝑇 
+ 
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𝑐 
𝑚 𝑐 + 𝐽 𝑧,𝑐 

)
𝐶 𝑅 + 𝐶 𝐹 

(
𝑎 2 
𝑐 
𝑚 𝑐 + 𝐽 𝑧,𝑐 

))
𝑙 𝑇 − 

(

 2 = − 
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− 

(
𝑎 𝑐 + ℎ 𝑐 
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𝑎 𝑇 + 𝑙 𝑇 
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𝑐 
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𝐶 𝐹 
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(
− 𝐽 𝑧,𝑐 ℎ 
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𝑐 
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(
− 𝑏 2 
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− 𝐽 𝑧,𝑇 𝑏 
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𝑐 

)
𝐶 𝑅 − 𝑉 2 𝑚 𝑐 𝐽 𝑧,𝑐 𝑙

+ 
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− 𝑎 2 

𝑇 

(
𝑎 𝑐 + 𝑏 𝑐 
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𝐽 𝑧,𝑇 ℎ 𝑐 + 𝑎 𝑐 

(
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𝑇 
𝑚 𝑐 + 𝐽 𝑧,𝑇 
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𝑉 2 

)
𝐶 𝐹 − 
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− 𝐽 𝑧,𝑇

+ 𝐽 𝑧,𝑇 
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− 

(
𝑎 𝑐 + 𝑏 𝑐 

)2 
𝐶 𝑅 + 𝑉 2 𝑚 𝑐 𝑎 𝑐 

)
𝐶 𝐹 − 𝑉 2 𝑚 𝑐 𝐶 𝑅 𝑏 𝑐 

))
𝑉 

 3 = 

((
𝐽 𝑧,𝑇 

((
𝐶 𝐹 + 𝐶 𝑅 

)
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𝑐 
+ 

(
2 𝐶 𝐹 𝑎 𝑐 − 2 𝐶 𝑅 𝑏 𝑐 
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𝑐 
𝐶 𝐹 + 𝑏 2 
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𝐶 𝑅 
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𝑎 𝑇

+ 

(
ℎ 2 
𝑐 
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𝐶 𝐹 𝑎 
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𝑐 
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𝑐 

)
𝑚 𝑐 

)
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𝐶 𝐹 + 𝐶 𝑅 + 𝐶 𝑇 

)
𝐽

 4 = 𝑉 3 
(((

𝑚 𝐶 + 𝑚 𝑇 

)
𝐽 𝑧,𝑇 + 𝑎 𝑇 

2 𝑚 𝐶 𝑚 𝑇 

)
𝐽 𝑧,𝐶 + ℎ 𝐶 

2 𝑚 𝐶 𝑚 𝑇 𝐽 𝑧,𝑇 
)

 0 𝛿𝑤 , 𝑟 𝐶 = 𝐶 𝐹 𝑉 
2 𝐶 𝑅 𝐶 𝑇 𝑙 𝑇 

(
𝑎 𝐶 + 𝑏 𝐶 

)
 1 𝛿𝑤 , 𝑟 𝐶 = 𝐶 𝐹 𝐶 𝑇 

((((
𝑚 𝐶 + 𝑚 𝑇 

)
𝑎 𝐶 + 𝑚 𝑇 ℎ 𝐶 

)
𝑙 𝑇 − 𝑚 𝑇 𝑎 𝑇 

(
𝑎 𝐶 + ℎ 𝐶 
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𝑉 2 + 𝐶 𝑅 𝑙
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𝑎 𝑇 − 𝑙 𝑇 

)2 (
𝑎 𝐶 + ℎ 𝐶 
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𝑚 𝑇 + 

(
𝑙 𝑇 

2 𝑚 𝐶 + 𝐽 𝑧,𝑇 
)
𝑎 𝐶 + 𝐽 𝑧,𝑇 ℎ 𝐶 

)
𝐶 𝑇 + 

 3 𝛿𝑤 , 𝑟 𝐶 = 𝐶 𝐹 
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𝑚 𝐶 + 𝑚 𝑇 

)
𝑎 𝐶 + 𝑚 𝑇 ℎ 𝐶 

)
𝐽 𝑧,𝑇 + 𝑎 𝐶 𝑎 𝑇 

2 𝑚 𝐶 𝑚 𝑇 

)
𝑉 3 

 0 𝛿𝑤 , 𝛽𝐶 = − 𝐶 𝐹 𝐶 𝑇 

((((
𝑚 𝐶 + 𝑚 𝑇 

)
𝑎 𝐶 + 𝑚 𝑇 ℎ 𝐶 

)
𝑙 𝑇 − 𝑚 𝑇 𝑎 𝑇 

(
𝑎 𝐶 + ℎ 𝐶 

))
𝑉 2 − 𝐶

 1 𝛿𝑤 , 𝛽𝐶 = − 
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𝑎 𝐶 + ℎ 𝐶 

)
𝑚 𝑇 + 𝑚 𝐶 𝑎 𝐶 

)
𝑙 𝑇 

2 + 

(
−2 

(
𝑎 𝐶 + ℎ 𝐶 

)(
𝑎 𝑇 + 

1 
2 
ℎ 𝐶 

)
𝑚 𝑇 − 
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𝑁 𝑎 𝑐 − 𝐶 𝑅 𝑎 
2 
𝑇 
𝑏 2 
𝑐 
+ 𝑉 2 𝐽 𝑧,𝑇 ℎ 𝑐 

)
𝑚 𝑇 

 

2 
𝑐 
𝐶 𝑅 

))
𝐶 𝐹 𝑉 (A19) 

𝑁 (A20) 

𝑁  𝐶 + 𝑚 𝑇 ℎ 𝐶 
)
𝑉 2 

)
𝑙 𝑇 − 𝑉 2 𝑚 𝑇 𝑎 𝑇 

(
𝑎 𝐶 + ℎ 𝐶 

))
𝐶 𝑇 − 𝑉 2 𝑚 𝑇 𝐶 𝑅 𝑎 𝑇 

(
𝑎 𝐶 + 𝑏 𝐶 

))
𝐶 𝐹 𝑉 

(A21) 

𝑁  

((
ℎ 𝐶 𝑙 𝑇 𝑚 𝐶 + 𝑙 𝑇 

2 𝑚 𝐶 + 𝐽 𝑧,𝑇 
)
𝑎 𝐶 − 𝐽 𝑧,𝐶 𝑙 𝑇 + 𝐽 𝑧,𝑇 ℎ 𝐶 

)
𝐶 𝑇 + 𝐽 𝑧,𝑇 𝐶 𝑅 

(
𝑎 𝐶 + 𝑏 𝐶 

))
𝐶 𝐹 𝑉 

2 

(A22) 

𝑁 𝑇 𝑎 𝐶 
)
𝐶 𝐹 𝑉 

3 (A23) 

𝑁 (A24) 

𝑁 (A25) 

𝑁 𝐽 𝑧,𝑇 
))
𝑉 2 (A26) 

𝑁 (A27) 

𝑁 (A28) 

𝑁  𝐽 𝑧,𝑇 

)
𝑉 2 + 𝑙 𝑇 

2 (𝑎 𝐶 𝐶 𝐹 − 𝑏 𝐶 𝐶 𝑅 

))
𝐶 𝑇 (A29) 

𝑁  𝐶 𝑙 𝑇 𝑎 𝑇 − 𝐶 𝑇 ℎ 𝐶 𝑙 𝑇 
2 )𝑚 𝑇 + 𝐽 𝑧,𝑇 

(
𝑉 2 𝑚 𝐶 + 𝑎 𝐶 𝐶 𝐹 − 𝑏 𝐶 𝐶 𝑅 − 𝐶 𝑇 ℎ 𝐶 

))
(A30) 

𝑁 (A31) 

𝑁  ℎ 𝐶 
)
𝐶 𝑅 

)
𝑙 𝑇 − 𝑚 𝑇 𝑎 𝑇 𝑉 

2 )𝐶 𝑇 − 𝑉 2 𝑚 𝑇 𝑎 𝑇 
(
𝐶 𝐹 + 𝐶 𝑅 

))
(A32) 

𝑁 − ℎ 𝐶 
)
𝐶 𝑅 

)
𝑎 𝑇 + 𝐶 𝑇 𝑙 𝑇 

2 )𝑚 𝑇 + 

(
ℎ 𝐶 𝑙 𝑇 𝑚 𝐶 + 𝑙 𝑇 

2 𝑚 𝐶 + 𝐽 𝑧,𝑇 
)
𝐶 𝑇 + 𝐽 𝑧,𝑇 

(
𝐶 𝐹 + 𝐶 𝑅 

))
(A33) 

𝑁 (A34) 
 2 𝛿𝑤 ,𝛽𝑐 = − 

((
− ℎ 𝑐 

(
𝑎 𝑇 − 𝑙 𝑇 

)2 (
𝑎 𝑐 + ℎ 𝑐 

)
𝐶 𝑇 + 

(
𝑉 2 𝐽 𝑧,𝑇 + 𝑎 2 

𝑇 

(
𝑉 2 𝑚 𝑐 − 𝐶 𝑅 𝑏 𝑐 

))
+ 

(
− 𝐽 𝑧,𝑐 𝑙 

2 
𝑇 
− 𝐽 𝑧,𝑇 𝑎 𝑐 ℎ 𝑐 − 𝐽 𝑧,𝑇 ℎ 

2 
𝑐 

)
𝐶 𝑇 + 𝐽 𝑧,𝑇 

((
𝑉 2 𝑚 𝑐 − 𝐶 𝑅 𝑏 𝑐 

)
𝑎 𝑐 − 𝑏

 3 𝛿𝑤 ,𝛽 = 𝐶 𝐹 

((
ℎ 𝐶 

(
𝑎 𝐶 + ℎ 𝐶 

)
𝑚 𝑇 + 𝐽 𝑧,𝐶 

)
𝐽 𝑧,𝑇 + 𝑎 𝑇 

2 𝑚 𝑇 𝐽 𝑧,𝐶 
)
𝑉 2 

 0 𝛿𝑤 ,𝜙 = − 

((
𝐶 𝑅 𝑙 𝑇 

2 (𝑎 𝐶 + 𝑏 𝐶 
)
+ 

(
− 

(
𝑏 𝐶 − ℎ 𝐶 

)(
𝑎 𝐶 + 𝑏 𝐶 

)
𝐶 𝑅 + 

((
𝑚 𝐶 + 𝑚 𝑇 

)
𝑎

 1 𝛿𝑤 ,𝜙 = − 

(((
𝑎 𝑇 − 𝑙 𝑇 

)2 (
𝑎 𝐶 + ℎ 𝐶 

)
𝐶 𝑇 + 𝐶 𝑅 𝑎 𝑇 

(
− 𝑏 𝐶 + 𝑎 𝑇 + ℎ 𝐶 

)(
𝑎 𝐶 + 𝑏 𝐶 

))
𝑚 𝑇 +

 2 𝛿𝑤 ,𝜙 = − 

(((
𝑎 𝑇 

2 𝑚 𝐶 + 𝑎 𝑇 𝑚 𝐶 ℎ 𝐶 + 𝐽 𝑧,𝑇 
)
𝑎 𝐶 − 𝑎 𝑇 𝐽 𝑧,𝐶 + ℎ 𝐶 𝐽 𝑧,𝑇 

)
𝑚 𝑇 + 𝑚 𝐶 𝐽 𝑧,

 0 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
= 

(
𝐶 𝐹 + 𝐶 𝑅 

)
𝐶 𝑇 𝑙 𝑇 𝑉 

2 

 1 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
= − 𝑉 

((
− 𝐶 𝐹 − 𝐶 𝑅 

)
𝑙 𝑇 

2 − 𝑉 2 
(
𝑚 𝐶 + 𝑚 𝑇 

)
𝑙 𝑇 + 𝑚 𝑇 𝑎 𝑇 𝑉 

2 )𝐶 𝑇 

 2 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
= 

(((
𝑎 𝑇 − 𝑙 𝑇 

)2 
𝑚 𝑇 + 𝑙 𝑇 

2 𝑚 𝐶 + 𝐽 𝑧,𝑇 

)
𝐶 𝑇 + 

(
𝐶 𝐹 + 𝐶 𝑅 

)(
𝑎 𝑇 

2 𝑚 𝑇 + 

 3 𝑀 𝑧,𝑟𝑒𝑓 , 𝑟 𝐶 
= 𝑉 3 

((
𝑚 𝐶 + 𝑚 𝑇 

)
𝐽 𝑧,𝑇 + 𝑎 𝑇 

2 𝑚 𝐶 𝑚 𝑇 

)

 0 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 
= 𝑉 

((
− 

(
𝑚 𝐶 + 𝑚 𝑇 

)
𝑉 2 − 𝑎 𝐶 𝐶 𝐹 + 𝑏 𝐶 𝐶 𝑅 

)
𝑙 𝑇 + 𝑚 𝑇 𝑎 𝑇 𝑉 

2 )𝐶 𝑇 

 1 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 
= − 

(((
𝑚 𝐶 + 𝑚 𝑇 

)
𝑙 𝑇 

2 − 2 
(
𝑎 𝑇 + 

1 
2 
ℎ 𝐶 

)
𝑚 𝑇 𝑙 𝑇 + 𝑚 𝑇 𝑎 𝑇 

(
ℎ 𝐶 + 𝑎 𝑇 

)
+

 2 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 
= − 𝑉 

((
𝑉 2 𝐽 𝑧,𝑇 + 

(
𝑉 2 𝑚 𝐶 + 𝑎 𝐶 𝐶 𝐹 − 𝑏 𝐶 𝐶 𝑅 − 𝐶 𝑇 ℎ 𝐶 

)
𝑎 𝑇 

2 + 2 𝐶 𝑇 ℎ

 3 𝑀 𝑧,𝑟𝑒𝑓 , 𝛽𝐶 
= 𝐽 𝑧,𝑇 𝑉 

2 ℎ 𝐶 𝑚 𝑇 

 0 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙
= − 𝑉 

(((
𝐶 𝐹 + 𝐶 𝑅 

)
𝑙 𝑇 

2 + 

((
𝑚 𝐶 + 𝑚 𝑇 

)
𝑉 2 + 

(
ℎ 𝐶 + 𝑎 𝐶 

)
𝐶 𝐹 − 

(
𝑏 𝐶 −

 1 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙
= − 𝑉 2 

(((
𝐶 𝐹 + 𝐶 𝑅 + 𝐶 𝑇 

)
𝑎 𝑇 

2 + 

(
−2 𝑙 𝑇 𝐶 𝑇 + 

(
ℎ 𝐶 + 𝑎 𝐶 

)
𝐶 𝐹 − 

(
𝑏 𝐶 

 2 𝑀 𝑧,𝑟𝑒𝑓 ,𝜙
= − 

((
𝐽 𝑧,𝑇 + 𝑚 𝑇 𝑎 𝑇 

(
ℎ 𝐶 + 𝑎 𝑇 

))
𝑚 𝐶 + 𝐽 𝑧,𝑇 𝑚 𝑇 

)
𝑉 3 
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