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Abstract  35 

Aggregation as an essential mechanism impacting nanoparticle (NP) functionality, fate, 36 

and transport in the environment is currently modelled using population-balance 37 

equation (PBE) models which are computationally expensive when combined with other 38 

continuum-scale reactive transport models. We propose a new simple mass-39 

concentration-based, chain-reaction modelling (CRM) framework to alleviate 40 

computational expenses of PBE and potentially to facilitate combination with other fate, 41 

transport, and reaction models. Model performance is compared with analytical PBE 42 

solution and a standard numerical PBE technique (fixed pivot, FP) by fitting against 43 

experimental data (i.e., hydrodynamic diameter and derived count rate of dynamic light 44 

scattering used as a representative of mass concentration) for early- and late-stage, 45 

aggregation of shattered graphene oxide (SGO) NP across a broad range of solution 46 
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chemistries. In general, the CRM approach demonstrates a better match with the 47 

experimental data with a mean Nash-Sutcliffe model efficiency (NSE) coefficient of 48 

0.345 than the FP model with a mean NSE of 0.29. Comparing model parameters 49 

(aggregation rate constant and fractal dimension) obtained from fitting CRM and FP to 50 

the experimental data, similar trends or ranges are obtained between the two approaches. 51 

Computationally, the modified CRM is an order-of-magnitude faster than the FP 52 

technique, suggesting that it can be a promising modelling framework for efficient and 53 

accurate modelling of NP aggregation. However, in the scope of this study, reaction rate 54 

coefficients of the CRM have been linked to collision frequencies based on simplified 55 

and empirical relationships which need improvement in future studies. 56 

Keywords: Nanoparticles, environmental fate and transport, early and late aggregation, 57 

sedimentation, chain reaction model, mass concentration 58 

 59 

1 Introduction 60 

Production of nanomaterials is now a mainstream commercial industry. For example, 61 

graphene oxide (GO) nanosheets with 12 morphologies are routinely manufactured 62 

across 40 countries, within 15 industries, and 585 applications [1, 2]. Commercial waste 63 

streams can lead to uncontrolled spread of nanomaterials in the environment [3, 4], 64 

however, there is also a range of opportunities for the use of nanomaterials in 65 

environmental systems, e.g., environmental applications such as clean-up of radionuclide 66 

contaminated sites [5-8], agronomic applications such as the use as nano-fertilizers and 67 

nano-pesticides [9, 10], and petroleum applications such as oil/gas reservoir recovery 68 

enhancement [11, 12]. It is of paramount importance to predict and control the 69 
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interactions, reactions, transport, and fate of nano-particulates in aquatic environments, a 70 

task which is already a key challenge for water and environmental engineers.  71 

One of the critical phenomena that controls NP fate and transport as well as their 72 

reactions and functionality in environmental and engineering systems is aggregation [12-73 

21]. Efficient integration of aggregation models with other NP fate, transport, and 74 

reaction models is crucial to enable the estimation of NP release into aquatic 75 

environments and designing NP application strategies [22-24]. Such models include: 76 

continuum models, i.e., advection-dispersion-reaction equations describing bulk mass 77 

transport over continuous spatial domains [21, 25, 26], NP life cycle assessment (LCA) 78 

which is a comprehensive modelling framework used to assess environmental and 79 

human health impacts of nanomaterials [27, 28], and abstract models including material 80 

flow analysis (MFA) or multi-media models (MMM) which are based on the mass 81 

balance principle at global and local scales [3, 29-32]. 82 

Recent investigation of the NP aggregation within systems such as porous media 83 

and surface waters revealed the need for further development of aggregation models to 84 

take realistic environmental complexity arisen from local particle resuspension into 85 

account [15]. There are several complex interactions which require consideration in a 86 

reactive transport model along with aggregation including NP reaction with existent 87 

pollutants [33, 34], interaction with background colloids and natural organic matter 88 

(hetero-aggregation), [16, 35-37], and with porous media [21, 25], as well as NP 89 

dissolution, sulfidation, and sedimentation [38-40]. Modelling approaches to aggregation 90 

with various levels of accuracy and efficiency are already available which are mostly 91 

different adaptations of PBE models [22, 40-42]. Yet a flexible, efficient, and accurate 92 

aggregation model that can be simply adapted and be coupled with other multiple-93 

constituent models of NP fate, transport, and reaction, which are already computationally 94 
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expensive, [43-45] is lacking. Furthermore, it is desirable for an aggregation model to be 95 

based on mass concentration as consistency of their main state variable with most of 96 

other models may facilitate their combination and since experimental/field data used as 97 

their input are also more readily available in terms of mass concentration [24].  98 

In this study, we present a simple mass-concentration-based approach with the aim 99 

to model aggregation more efficiently than common PBE, with an improved or similar 100 

accuracy. A modified chain reaction model (CRM) which is based on the mass 101 

concentration, may be capable of accounting for dynamics of the aggregate populations 102 

by resembling each particle size class as a species of the reaction. We propose that such 103 

a model may be a better alternative to PBE for integration with other NP fate, transport, 104 

and reaction models due to similarity in formulation to conventional reaction equations, 105 

potential computational efficiency, and flexibility in formulation and size classification. 106 

Fundamentally, an aggregation model generally follows a second order expression if 107 

described in terms of particle number concentration [46-48]. For pure aggregation, this 108 

expression leads to a decay in the number concentration of primary particles and the total 109 

number concentration over time while the total mass concentration is constant 110 

theoretically. Likewise, a mass concentration-based model should be able to describe 111 

mass transfer among classes of the aggregates while maintaining the total mass constant. 112 

The CRM is based on a series of first-order decay expressions maintaining the total mass 113 

in the system constant. We investigate whether this approach, after being compared with 114 

analytical solution of the PBE [49, 50], can describe the change in mean particle size, 115 

PSD, and concentration of shattered graphene oxide (SGO) NP under quiescent 116 

conditions of aggregation and sedimentation across a range of solution chemistries 117 

including different electrolyte concentrations, electrolyte species, and pH. We also 118 

compare the model performance with a typical PBE, i.e., the FP technique [51] which 119 
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has been widely used as a standard approach for comparison with other models [52-54]. 120 

To the best of our knowledge this is the first time that a mass-concentration CRM-based 121 

formulation is used for modelling the aggregation of colloidal particles. The previous use 122 

of the terminology ‘parallel parent and daughter’ in the literature of particle aggregation 123 

[55] was associated with the discretization of the PBE model. 124 

2 Model Development 125 

The basic CRM which has long been used in the context of dissolved contaminant 126 

transport in groundwater is as follows [56-58]: 127 

𝑑𝐶𝑘

𝑑𝑡
= 𝐿(𝐶𝑘) − 𝜆𝑘𝐶𝑘 + 𝑌𝑘 −1,𝑘𝜆𝑘−1𝐶𝑘−1 (1) 

If 𝑘 = 1: 128 

𝑑𝐶1

𝑑𝑡
= 𝐿(𝐶1) − 𝜆1𝐶1 (2) 

where 𝐶𝑘 is mass concentration [ML-3] of species k, 𝐿(𝐶𝑘) stands for the non-129 

reaction terms including other transport mechanisms such as advection, dispersion, fluid 130 

sinks/sources, and/or sedimentation; 𝜆𝑘 is the first-order reaction coefficient [T-1] for 131 

species k, and 𝑌𝑘 −1,𝑘 is the yield coefficient [–] between species k-1 and k, which for 132 

physical chain-reaction models can be calculated from the stoichiometric relationship 133 

between the two species [57]. 134 

To apply this concept to aggregation mechanisms, we first assume that particle 135 

volume/size dimension discretisation is regular and sequential based on a geometric 136 

series given as 𝑣𝑖+1 /𝑣𝑖 = 21/𝑞, where 𝑞 is the geometric factor and v is volume of each 137 

size class. Hence, size class k can have multiple additional primary particles compared to 138 

size class k-1. This is already a common assumption in the context of population balance 139 
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modelling [40, 59, 60]. Considering the aforementioned basic CRM for such a size 140 

discretization means that when particles of size class k-1 aggregate with each other and 141 

with particles of smaller size classes, the mass concentration of their class, k-1, decays 142 

and the mass concentration of one size class larger, k, increases. Based on this concept 143 

and disregarding the term, 𝐿(𝐶𝑘) in Eq. (1), i.e., considering pure aggregation, one needs 144 

to assume 𝑌𝑘−1,𝑘 = 1, in order to maintain the total mass of all size classes constant. This 145 

model, however, may only consider the aggregation of size class k-1 and smaller classes 146 

resulting in creation of mass in only class k.  Although due to the geometric nature of 147 

size classification, size class k can be sufficiently larger than its lower size class to 148 

accommodate aggregates produced in this way, a more accurate approach may be that 149 

aggregation of size class k-1 and smaller classes results in redistribution of mass from 150 

class k-1 among several larger classes. Therefore, we modify the basic form of the CRM 151 

model as follows:  152 

𝑑𝐶𝑘

𝑑𝑡
= 𝐿(𝐶𝑘) − 𝜆𝑘𝐶𝑘 + ∑ 𝑌𝑖,𝑘𝜆𝑖𝐶𝑖

𝑘 −1

𝑖=1

 (3) 

where k is the aggregate class size for which Eq. (3) is being solved. Since in the 153 

aggregation process first smaller aggregates are formed and then larger ones after 154 

collisions of the formers, the probability for transformation into larger classes should 155 

decrease with the increase in size class.  We assume that 𝑌𝑖 .𝑘  can be expressed as a linear 156 

function of volumes of size classes, which are already geometrically distributed, and 157 

considering total sum of 𝑌𝑖,𝑘  equal to one: 158 

𝑌𝑖.𝑘 =
𝑣𝑘𝑚𝑎𝑥 −𝑘+𝑖+1

∑ 𝑣𝑗
𝑘𝑚𝑎𝑥
𝑗=𝑖+1

 (4) 
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where 𝑘𝑚𝑎𝑥  is the maximum number of classes considered in the model, and 𝑣 is 159 

the volume of each class. For instance, assuming 𝑘𝑚𝑎𝑥 = 5 and combining both Eqs. (3) 160 

and (4) yields:   161 

𝑑𝐶1

𝑑𝑡
= −𝜆1𝐶1 , k=1 

𝑑𝐶2

𝑑𝑡
= −𝜆2𝐶2 +

𝑣5

𝑣2 + 𝑣3 + 𝑣4 + 𝑣5

𝜆1𝐶1 , k=2 

𝑑𝐶3

𝑑𝑡
= −𝜆3𝐶3 +

𝑣4

𝑣2 + 𝑣3 + 𝑣4 + 𝑣5

𝜆1𝐶1 +
𝑣5

𝑣3 + 𝑣4 + 𝑣5

𝜆2𝐶2 , k=3 

𝑑𝐶4

𝑑𝑡
= −𝜆4𝐶4 +

𝑣3

𝑣2 + 𝑣3 + 𝑣4 + 𝑣5

𝜆1𝐶1 +
𝑣4

𝑣3 + 𝑣4 + 𝑣5

𝜆2𝐶2

+
𝑣5

𝑣4 + 𝑣5

𝜆3𝐶3 , 

k=4 

𝑑𝐶5

𝑑𝑡
=

𝑣2

𝑣2 + 𝑣3 + 𝑣4 + 𝑣5

𝜆1𝐶1 +
𝑣3

𝑣3 + 𝑣4 + 𝑣5

𝜆2𝐶2 +
𝑣4

𝑣4 + 𝑣5

𝜆3𝐶3

+
𝑣5

𝑣5

𝜆4𝐶4 , 

k=5 

Since in the present study we only consider sedimentation along with aggregation, 162 

𝐿(𝐶𝑘) is given as [40, 61]:  163 

𝐿(𝐶𝑘) = −
𝑈𝑘

𝑍𝑠

𝐶𝑘 (5) 

where Zs is the sedimentation depth [L] and 𝑈𝑘  is the sedimentation velocity of 164 

aggregates in class k [LT-1] given as [62]:  165 

𝑈𝑘 =
𝑔

18𝜇
(𝜌0 − 𝜌𝑤)(2𝑎0)3−𝐷𝑓 (2𝑎𝑘)𝐷𝑓 −1  (6) 

where 𝑔 is the gravitational acceleration, 𝜌0   is the density of primary particles, [ML-3], 166 

𝜌𝑤  is the density of water [ML-3], 𝜇 is the dynamic viscosity of the suspending medium 167 
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[M T-1 L-1], 𝑎0 is the primary particle radius [L], 𝑎𝑘  is an aggregate radius in size class k 168 

[L], and Df is the fractal dimension.  169 

Reaction coefficients, 𝜆𝑘, should be expressed in a way that they incorporate the 170 

nature of collision analogous to the conventional Smoluchowski model [63]. Here as a 171 

first study developing a CRM framework, we propose two different simplifying 172 

approaches to describe 𝜆𝑘. For the first approach we rely on particle sizes, analogous to 173 

the so-called ‘sum’ collision frequency commonly used in population balance modelling 174 

[52, 64]. Such a size-based semi-empirical equation, hereafter designated as S-CRM, 175 

may be expressed as follows:  176 

𝜆𝑘 =
𝛬𝑆

𝜏
(

|𝑎𝑘𝑚𝑎𝑥−𝑘+1 − 𝑎𝑎𝑣𝑒,𝑡|

𝑎𝑘

)

𝜓

, 2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥  (7) 

where ΛS is the aggregation constant of the S-CRM, mimicking the attachment efficiency 177 

in population-balance models, aave,t is the equivalent radius of the geometric mean size of 178 

PSD at time t, 𝜓 is an empirical power which depends on the size discretization 179 

approach and is assumed in the present study to be 0.5, and τ is the characteristic time 180 

[T] of aggregation (coagulation time or aggregation half-life) given as follows [46]: 181 

𝜏 =
3𝜇

4𝑘𝑏𝑇𝑛0

 (8) 

where 𝑘𝑏  is the Boltzman constant, 𝜇 is the viscosity of the suspending medium [M T-1 182 

L-1], 𝑇 is temperature [K], n0 is the initial population of particles which can be 183 

determined from the initial PSD. Equation (7) is based on this concept that the rate of 184 

aggregation, 𝜆𝑘, may vary with the size of class in respect to the geometric-average size 185 

of the PSD [40]. When the geometric mean size of the aggregates grows during the 186 

aggregation process, the rates may also change for each class of particle over time. 187 

Therefore, the rates are updated in every time steps of the numerical solution. The 188 
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variation of 𝜆𝑘 over time through aave,t might help better constraining the dynamic 189 

cascading aspect of the aggregation if the model is applied in realistic environmental 190 

condition [15]. It should be noted that this model considers the Brownian motion through 191 

τ, such that increasing temperature and decreasing size can promote 𝜆𝑘 thereby the 192 

aggregation rate. This model may also consider the differential sedimentation 193 

mechanism of aggregation with larger differences between particles and 𝑎𝑎𝑣𝑒,𝑡 yielding 194 

larger 𝜆𝑘. To clarify this, the following example is given considering a maximum 195 

number of size classes as five: 196 

𝜆2 =
𝛬𝑆

𝜏
(

|𝑎4 − 𝑎𝑎𝑣𝑒,𝑡|

𝑎2

)

1
2⁄

 k=2 

𝜆3 =
𝛬𝑆

𝜏
(

|𝑎3 − 𝑎𝑎𝑣𝑒,𝑡|

𝑎3

)

1
2⁄

 k=3 

𝜆4 =
𝛬𝑆

𝜏
(

|𝑎2 − 𝑎𝑎𝑣𝑒,𝑡|

𝑎4

)

1
2⁄

 k=4 

𝜆5 =
𝛬𝑆

𝜏
(

|𝑎1 − 𝑎𝑎𝑣𝑒,𝑡|

𝑎5

)

1
2⁄

 k=5 

Alternatively, in the second approach to account for variations in 𝜆𝑘 across size 197 

classes, we directly utilize the concept of collision frequencies from the Smoluchowski 198 

model [63, 65]. However, instead of taking all possible collisions into account, we 199 

assume two types of collisions are dominant among all possible collisions. These include 200 

collisions between particles of similar size and collisions between any given particles 201 

and a particle with a geometrical mean size of PSD [66, 67]. By adding these two types 202 

of collision frequencies and nondimensionalizing each term by the maximum of their 203 

range, the following expression is resulted which is hereafter designated as C-CRM:   204 
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𝜆𝑘 =
𝛬𝐶

𝜏
(

𝛽𝑘,𝑘

𝛽1,1

+
𝛽𝑘,𝑘𝑎𝑣𝑒

𝛽𝑘𝑚𝑎𝑥 ,𝑘𝑎𝑣𝑒

) (9) 

where ΛC is the aggregation constant of the C-CRM, 𝛽𝑘,𝑘 is the collision frequency 205 

between each class of aggregates and classes of the same size; 𝛽𝑘,𝑘𝑎𝑣𝑒
 is the collision 206 

frequency between each class of aggregates and the class that has an equivalent size with 207 

the geometric mean size of the PSD in each time step; 𝛽1,1 and 𝛽𝑘𝑚𝑎𝑥 ,𝑘𝑎𝑣𝑒
 are the 208 

maximum of 𝛽𝑘,𝑘  and 𝛽𝑘,𝑘𝑎𝑣𝑒
 ranges, respectively, for all size classes. Calculations of 209 

these collision frequencies with considering all three aggregation mechanisms (i.e., 210 

Brownian, differential sedimentation, and orthokinetic aggregations) have been 211 

presented previously [40, 46] and are also available in the Supporting Information (SI). 212 

These equations are all expressed based on aggregate volumes to avoid the impact of 213 

aggregate shape on model outcomes [68]. It should be mentioned that 214 

nondimensionalizing each type of collision rate by the maximum of their range in Eq. (9) 215 

causes ignorance of the role of the two collision types in relation to each other. This may 216 

not be important in the scope of the present paper which aims to investigate whether the 217 

general formulation of CRM with simplifying assumptions about calculation of model 218 

coefficients can describe aggregation of NP.  219 

We compared the performances of the models with an accurate population balance 220 

model solution known as the FP scheme [51] given as:  221 

𝑑𝑛𝑘

𝑑𝑡
= ∑ [1 −

1

2
 𝛿𝑗,𝑖] 𝜂𝑘𝛼𝛽𝑗 ,𝑖  𝑛𝑗𝑛𝑖

𝑗≥𝑖

𝑗,𝑖
𝑣𝑘−1≤(𝑣𝑗+𝑣𝑖)≤𝑣𝑘+1

 − 𝑛𝑘 ∑ 𝛼 𝛽𝑘,𝑖  𝑛𝑖

𝑘𝑚𝑎𝑥

𝑖=1

−
𝑈𝑘

𝑍𝑠

𝑛𝑘 
(10) 

where 𝜂𝑘  is:  222 
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𝑣𝑘+1−(𝑣𝑗+𝑣𝑖)

𝑣𝑘 +1−𝑣𝑘
 ,  𝑣𝑘 ≤ (𝑣𝑗 + 𝑣𝑖) ≤ 𝑣𝑘+1 

       𝜂𝑘 = 

  
(𝑣𝑗 +𝑣𝑖)−𝑣𝑘−1

𝑣𝑘 −𝑣𝑘−1
 ,  𝑣𝑘−1 ≤ (𝑣𝑗 + 𝑣𝑖) ≤ 𝑣𝑘     

(11) 

where 𝑛𝑘  is particle number concentration of aggregates in size class 𝑘 [𝐿−3], 𝑣𝑖 is the 223 

volume of solids in each aggregate in size class i, 𝛿 is Kronecker delta, and α is the 224 

attachment efficiency which is typically estimated as an aggregation constant through 225 

model fitting to experimental data. A code written in MATLAB© (Version 2016a, 226 

Mathworks, USA) was used and modified for solving this study’s models, the details of 227 

which are summarised in the SI and are available in Babakhani et al. [40]. Briefly, an 228 

explicit forward Euler scheme was used for the time discretization of Eqs. (3) and (10) 229 

with an adjustable time-step. A power-law model [62, 69] was used for settling velocity 230 

and the Brinkman permeability model [40, 70, 71] was used to calculate permeability in 231 

collision frequency formulation. This model set was already found to best describe early 232 

and late stages of aggregation and sedimentation of hydroxyapatite (HAp) NP among 24 233 

model combinations [40]. Particle size distribution observed in the beginning of each 234 

experiment was used as the initial condition in the aggregation model.  235 

The optimization algorithm code developed in the former study [40] was also used here 236 

for calibration of parameters including aggregation constant (Λ in CRM or α in PBE) 237 

which controls the aggregation rate and fractal dimension (Df) which controls the 238 

sedimentation velocity through Eq. (6) and collision frequencies through Eqs. (S1-S3). 239 

Adjusting both parameters was necessary to fit the model against experimental data of 240 

both early and late stages of aggregation as demonstrated in the previous study [40]. All 241 

simulation characteristics were the same for different modelling approaches. The Nash–242 
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Sutcliffe model efficiency (NSE) coefficient [72] was used to compare different model 243 

performances against experimental data and analytical solution outputs. To calculate the 244 

mass balance, masses of particles remained suspended were integrated at the end of the 245 

simulation and was added to the integration of all mass fractions removed in each time 246 

step in a given cell at the end of simulation. The difference between this total mass and 247 

the initial mass put in the system divided by the initial mass was reported as the mass 248 

balance error. The analytical solution used for comparison with the new CRM was based 249 

on a log-normal distribution initial PSD. These are described in detail in the SI. In order 250 

to compare the CPU runtimes for different models, the models were run on a 64-bit 251 

Operating System with 3.5 GHz Intel® Xeon® CPU and 32 GB RAM.   252 

3 Experimental 253 

Graphene oxide (particle density 1.8 g/cm3) was obtained from Siniocarbon, China, in 254 

powder form and dispersed in deionized (DI) water at 2 g/L. Shattered graphene oxide 255 

was then produced via intensive ultra-sonication of the GO dispersion to achieve a 256 

relatively uniform initial hydrodynamic diameter of 90 nm. This was accomplished using 257 

a probe sonication at an amplitude of 30 μm and power of 40 W for 2 h with 30-second 258 

stop following each 30-second sonication. The dispersion was then centrifuged for 30 259 

min at 19500 ± 500 rpm to remove the fraction of larger particles. Finally, the dispersion 260 

was passed through a 0.45 𝜇𝑚 syringe filter and the filtrate was kept in dark at 4 ℃ as 261 

the stock dispersion. The concentration of this dispersion was determined using 262 

gravimetric measurement and was adjusted at the set concentration (50 mg/L) before 263 

each aggregation experiment.      264 

The evolution of aggregate size and concentration was measured over the course of 265 

each experiment at intervals of ~3.4 min using Dynamic Light Scattering (DLS) 266 



14 
 

technique (Malvern Zetasizer Nano ZS, UK) as this has been used for characterizing 267 

non-spherical particles/aggregates frequently [73-75]. The valid measurement size range 268 

reported by the manufacturer is 1 nm to 104 nm. The same instrument was used for 269 

measuring the zeta potential. The instrument settings for size measurement were fixed 270 

for all measurements following Babakhani et al. [40]. These include using 5 runs each 271 

with a duration of 10 s for every measurement, setting the beam attenuator at a unit of 272 

11, and the position of measurement at 6.5 mm. All experiments were conducted in 273 

duplicate for a duration >5 h. The standard deviations of the duplicate tests are reported 274 

as error bars in the final plots [76-78]. A sample volume of 3 mL was used inside the 275 

cuvette for all cases, corresponding to the measurement depth of ~2.3 cm and total water 276 

column height of ~3 cm. For fitting the model outputs we used the hydrodynamic 277 

diameter (DH), a scattered light intensity mean also known as cumulant mean, along with 278 

the derived count rate (DCR) data used as an indicator of mass concentration [40, 79, 279 

80]. Derived count rate was measured at different concentrations (5, 50, 500, and 1000 280 

mg/L) of SGO to examine the correlation between the two quantities. The model fitted to 281 

DH and DCR data was then used to describe experimental PSD obtained in the middle 282 

(150 min) and the end of each experiment (300 min). For PSD data a volume-based 283 

distribution was used, and the analysis model of the Zetasizer software was selected as 284 

“General Purpose (Normal Resolution)”.  285 

All experiments were conducted according to the following procedure: (1) prepare 286 

the particle dispersion in DI water for a final particle concentration of 50 mg/L; (2) 287 

adjust the pH at 6 ±  0.05 (or alternatively at 2.5, 4, 7.5, or 10) with NaOH/HCl (100 288 

mM); (3) ultrasonication for 5 min, add the electrolyte (either NaClO4 or CaCl2), 289 

immediately vortex for 5 s, transform to a disposable cuvette, and immediately start the 290 

measurement. The whole process after taking from ultrasonicator until the start of the 291 
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first measurement took 70 ± 20 s. The pH set for different cases did not show 292 

considerable variations over the course of experiment; with maximum variation for pH 293 

7.5 decreasing to 7.1 after ~15 h.  294 

4 Results and discussion  295 

4.1 Comparison of the chain-reaction model with the analytical solution  296 

Before assessing the CRM against experimental results, we first theoretically compare 297 

CRM’s performance with the analytical solution of the population balance model. Since 298 

the aggregation rate constants of S-CRM and C-CRM, ΛS and ΛC, are not expected to 299 

scale with the attachment efficiency in the analytical solution of the Smoluchowski 300 

model which is assumed to be one, we tried to fit the modified CRMs to the analytical 301 

solution by adjusting ΛS and ΛC as free parameters. Over 100 min aggregation, within a 302 

fairly broad range of conditions, i.e., varying q within 1-3, Df within 1.5-2.5, primary 303 

particle size, a0, between 200 and 300 nm, and initial concentration, C0, between 10 and 304 

50 mg/L, which were totally 99 cases, the S-CRM was able to fit the total number of 305 

particles produced by the analytical solution (assuming α = 1) very well with a mean 306 

NSE of 0.990±0.01 (Table S1). In a similar condition, but with a0 range of 300 and 400 307 

nm, and C0 range of 1 and 10 mg/L (99 cases), the C-CRM was able to fit the analytical 308 

solution with a lower mean NSE 0.804±0.230 compared to that of S-CRM (Table S2). It 309 

appears that fractal dimension is the most sensitive factor in controlling the C-CRM 310 

goodness-of-fit. Using C-CRM, an increase in Df, reduces NSE significantly whereas 311 

using S-CRM, an increase in Df elevates NSE. The results for the aggregation rate 312 

constants for S-CRM and C-CRM fitted to analytical solution outputs are shown in Figs. 313 

S1 and S2. These results indicate that aggregation rate constants vary with factors that 314 

can affect the particle size distribution grid, i.e., q, Df, and a0, and parameters which can 315 
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impact the collision frequency, i.e., C0. The reason for such behaviours is not clear 316 

although they can arise from numerical difficulties at very high aggregation rates 317 

required to synchronize the numerical model with the assumption of α = 1 in the 318 

analytical solution as well as simplifying basic assumptions of the analytical solution 319 

such as collision frequency being described only by Brownian collisions. Overall, these 320 

results suggest that the modified CRM is able to describe the aggregation phenomenon 321 

in most of cases when compared to a simplified analytical solution. 322 

4.2 Experimental results 323 

The results of hydrodynamic size evolution and DCR are presented in Figs. 1 and 324 

2. The late stage of aggregation/sedimentation, i.e., where the slope of size versus time 325 

changes significantly, does not appear within 5 h for electrolyte concentrations ≤0.5 mM 326 

CaCl2 and ≤20 mM NaClO4 at pH 6 (reaction limited regime, RLA) whereas above 327 

these thresholds the late stage appears as a significant reduction in the slope of the DH 328 

curve versus time. Likewise, at pH <6 and 20 mM NaClO4, the late stage of aggregation 329 

appears in DH curves. These are in general agreement with aggregation trends of 330 

hydroxyapatite (HAp) NP observed in the previous study [40]. It appears that critical 331 

coagulation concentration (CCC) [81] above which the system is considered under the 332 

diffusion limited regime (DLA), is between 0.5-1 mM for CaCl2 and between 30-50 mM 333 

for NaClO4. Considering matched DH curves for SGO size evolution at 0.5 CaCl2 and 30 334 

mM NaClO4, CCC ration of monovalent to divalent electrolyte is estimated to be in the 335 

range of  50–60 which is within the range calculated by Schulze-Hardy rule, i.e., 4–64 336 

[81] and in agreement with ratios measured for GO elsewhere [82]. Considering the 337 

proportionality of CCC with ζ4z-2 (where ζ is zeta potential and z is valence of the 338 

electrolyte) one can also calculate the CCC ration of monovalent to divalent electrolyte 339 
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[83, 84]. According to the zeta potential data, given in Fig. S3, ζ ranges from -25.7 to -340 

19.9 mV for monovalent and from -17.6 to -7.2 for divalent electrolytes at their 341 

corresponding CCC ranges assumed above. This yields CCC ration of monovalent to 342 

divalent electrolyte from 5.9 to 20.3 which is still within the boundaries of the Schulze-343 

Hardy rule but lower than the ranges calculated above. There is an ongoing research to 344 

understand such discrepancies [83-86].  345 

At moderate concentration of CaCl2 (0.5 mM), DCR/DCR0 demonstrates 346 

significant increase over time whereas at 30 mM NaClO4, DCR/DCR0 tends to show a 347 

mild decreasing trend (Fig. 1d,e). The increase in DCR/DCR0 is similar to the previous 348 

observations of Babakhani et al. [40], for HAp NP in presence of 0.3 mM CaCl2 at pH 6 349 

(RLA regime). Nevertheless, this behaviour seems to be specific to the presence of 350 

CaCl2 since this is not noticeable at 30 mM NaClO4 although a slight rise in DCR/DCR0 351 

is observed for lower NaClO4 concentrations—5 and 10 mM (Fig. 1d,e). While in a 352 

high-rate aggregating system variation in DCR/DCR0 may represent the variation in the 353 

normalized concentration (C/C0) of NP, at a low-rate aggregating system DCR/DCR0 354 

may not be a proper indicator of NP C/C0. This is because in this regime the 355 

sedimentation is not significant and C/C0 is expected to be constant while DCR/DCR0, 356 

especially in presence of CaCl2, demonstrates an increase above unity which might be an 357 

impact of scattered light being dependent on particle size, and appearing only when the 358 

change in concentration due to sedimentation is not significant. It should be noted that 359 

the use of  DCR/DCR0 as a representative of mass concentration in high-rate aggregation 360 

systems or DLA conditions was verified in the previous study [40] by being described 361 

with a size-matched model. Additionally, when there is no aggregation in the system 362 

SGO used in the present study shows a linear correlation between mass concentration 363 

and DCR data with a goodness-of-fit coefficient r2 =0.952 and P value ≫ 0.05 with the 364 
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null hypothesis being significant difference if P < 0.05 (Fig. S4, Supporting 365 

Information). Nevertheless, the dependency of the scattered light intensity on the particle 366 

size is theoretically proportional to the third power, in contrast to its dependency on 367 

mass concentration which is linear [87]. Thus, in an aggregating system in which the size 368 

grows over time, DCR’s proportionality to mass concentration may not necessarily 369 

follow a linear trend. Overall, the reason for the rise of DCR/DCR0 above unity in a 370 

slow-aggregation regime under some solution chemistries is not clear in the scope of the 371 

present study, and the real proportionality of DCR on mass concentration in an 372 

aggregating system is also not clear currently. These may be addressed in future studies.     373 

4.3 Model fit results 374 

Nash–Sutcliffe model efficiencies for different model fits to DH data are shown in Table 375 

1 and modelled curves versus observations of DH and DCR are illustrated in Figs. 1 and 376 

2. On average, FP, S-CRM, and C-CRM, show close mean NSE to DH curves with, 0.29, 377 

0.33, and 0.36, respectively. The reason for low overall mean NSE values is that in cases 378 

where observation data are close to their mean, i.e., at low aggregation rates such as 379 

cases at low electrolyte concentrations of 0.1 mM CaCl2 and 5 mM NaClO4 or at high 380 

pH of 10, even though visually a good match is obtained between the two graphs of the 381 

observation and modeled data, NSE is not reaching a value close to one as expected, and 382 

instead show values close to zero.  383 

Based on visual assessment of the fittings, the performance of S-CRM method is slightly 384 

poorer than other methods in terms of reproducing the sudden change in DH gradient 385 

between early and late stages of aggregation under the DLA regime (1 mM CaCl2 and 50 386 

mM NaClO4, Fig. 1b,c). It seems S-CRM and FP are less capable of mimicking the 387 

straight log linear curve of DH under the RLA regime (0.5 mM CaCl2 and 30 mM 388 
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NaClO4) than C-CRM method which also reproduces well the change of DH slope under 389 

the DLA regime. This is consistent with the maximum mean NSE obtained for the C-390 

CRM. 391 

Considering the DCR data (Figs. 1d,e,f and Fig. 2b), none of models reproduces 392 

the rising behaviour of DCR curves at intermediate IS because the simple explicit decay 393 

sedimentation term employed in this study is not expected to reproduce increase in the 394 

concentration. It should be noted that such a sedimentation model, which does not 395 

involve a partial derivative in respect to depth, is simple and does not require spatial 396 

discretization in the numerical solution thereby bypassing some of numerical 397 

issues/restrictions. However, it is still not clear to what extent the depth profiles resulted 398 

from this model match the reality, which is a subject of future studies. Within the DLA 399 

regime, all models can, to some extent, reproduce the nonlinear reduction in normalized 400 

DCR. In describing DCR trends within this regime, FP technique appeared to perform 401 

best followed by S-CRM and C-CRM (Fig. 1d,e,f and Fig. 2b). 402 

Model-produced PSDs based on DH and DCR-matched models are shown in Figs. 403 

3 and S5. It appears that none of the models can reproduce the PSD in all cases. In most 404 

of the cases, both modified CRM approaches tend to preserve the initial position of the 405 

PSD over time, although the heights of the peaks are changing. This is more noticeable 406 

for the C-CRM than S-CRM. The fixed pivot approach exhibiting considerable 407 

movement of the PSD position, appears to overestimate the experimental PSD, and 408 

cannot reproduce the stationary stage of the PSD, especially toward the late stage of 409 

aggregation. It is possible that in the case of CRM the mass gradually moves to larges 410 

size classes and becomes subject to sedimentation before it appears as movement of the 411 

PSD. Such a steady-state or equilibrium condition of the PSD has frequently been used 412 

as a basic assumption in model developments [24, 88-90]. Although FP overtimes the 413 
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position of PSD, it can reproduce the overall shape of the observed PSD generally better 414 

than other methods. On average, in terms of reproducing both shape and position of 415 

PSD, the size-based CRM performs relatively better than the other two methods because 416 

it produces PSDs with closer positions to observed PSDs, than that produced by FP and 417 

with a closer shape to observed PSD than that resulted by C-CRM (Figs. 3 and S5). It 418 

should be noted that particle size measurement using DLS for polydisperse samples has 419 

been criticized for being affected by the larger size fraction of the size spectrum, because 420 

the scattered light intensity is proportional to the size by a power of six [87]. Such 421 

uncertainties in the measurement approach makes it complex to find a model which 422 

reproduces all aspects of PSD.    423 

4.4 Estimated parameter trends  424 

The trends of estimated parameters including aggregation rate constants (ΛS, ΛC, or α) 425 

and fractal dimension, Df, are shown in Fig. 4 for different solution chemistries. 426 

According to this figure, the trends of aggregation rate constants are consistent among all 427 

cases. Unlike HAp NPs in a previous study [40], which exhibited multimodal trends of 𝛼 428 

estimated using the FP method with IS, here FP-estimated values of 𝛼 for SGO show a 429 

positive log linear trend with IS with r2=0.93 and 0.97 for NaClO4 and CaCl2, 430 

respectively (Fig. 4a,b) and a negative semi-log linear trend with pH with r2 = 0.98 (Fig. 431 

4c). Interestingly, consistent with the trends of α, the CRM-estimated aggregation 432 

constants ΛS and ΛC display a positive log linear trend with IS (r2=0.84 for C-CRM and 433 

r2=0.85 for S-CRM in NaClO4 solution and r2=1.00 for both C-CRM and S-CRM in 434 

CaCl2 solution) and a negative semi-log linear trend with pH (r2=0.73 for C-CRM and 435 

r2=0.86 for S-CRM). The gradients of the lines fitted to ΛS and ΛC versus IS and pH 436 

match very well with that of α (P=0.55 and 0.61 ≫ 0.05) (Fig. 4a-c).   437 
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Fractal dimension generally increases with IS (Fig. 4d,e) and decreases with pH 438 

(Fig. 4f), which is in agreement with Chowdhury et al. [91] measuring Df for TiO2 NP 439 

using static light scattering (SLS). Yet unlike aggregation constant patterns, Df trends are 440 

not effectively linear (Fig. 4d-f). This is mostly because of large Df  values determined at 441 

lowest IS which emanates from the fact that at the lowest IS, the aggregation is not 442 

operative and therefore particles remain in their primary size which should have a 443 

geometry close to Euclidian thereby having a Df close to 3 [40]. Estimated Df in the 444 

present study yields close ranges for the three models, namely, from 1.50 to 2.86 for the 445 

FP model, from 1.48 to 2.80 for C-CRM, and from 1.70 to 2.70 for S-CRM. Large 446 

values of Df (2.27-2.8) were commonly determined at high IS (DLA regime) while low 447 

Df values (1.48-1.99) were estimated at intermediate IS (RLA regime). Although similar 448 

ranges for Df under DLA have frequently been reported [62, 92], this is opposite to 449 

common ranges of Df, reported for aggregates formed in controlled condition where they 450 

are not subject to restructuring, i.e., Df close to 2.2 within RLA regime and close to 1.7 451 

within the DLA regime [46, 71, 91, 93]. The underlying reason for Df values differing 452 

from common ranges is attributed to restructuring of aggregates at greater depths during 453 

the late stage of aggregation in quiescent condition [40] as the typical trends and ranges 454 

of Df were achieved when the FP model was fitted only to the early stage of aggregation, 455 

or when the measurement depth was reduced to just below the surface of the water 456 

column.  457 

Overall, the general consistency of parameter trends suggests that CRM model 458 

parameters although do not scale with those of FP approach, generally show similar 459 

trends with FP parameters in respect to physical factors such as electrolyte concentration 460 

and pH. Aggregation rate parameters can be considered variable with size in order to 461 

include the impact of solution chemistry such as zeta potential and ionic strength through 462 
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the DLVO theory in a forward prediction mode similar to the previous study [40]. This is 463 

beyond the scope of the present study which aims to test the ability of CRM in 464 

‘describing’, rather than ‘predicting’, the aggregation behavior of NP.  465 

4.5 Comparison of model efficiency and accuracy  466 

The results of model run time and mass balance error for every case simulating an 467 

experimental duration of 18000 s are reported in Table 2. The computational times vary 468 

widely among experimental cases due to different aggregation rates, initial PSDs, etc. 469 

The mean runtime for the FP technique is 6.14 min. While it is complicated to compare 470 

runtimes across different studies due to differences in computer systems, software 471 

versions, number of grid points, simulation duration, initial conditions, etc., considering 472 

the simulation duration in the present study (18000 s), it appears that these runtimes for 473 

the FP method are comparable with elsewhere [22, 53, 54].  474 

Interestingly, the modified CRMs turn out to be about one order-of-magnitude 475 

faster than the FP method with mean runtimes 0.92±1.15 min for C-CRM and 0.49±0.53 476 

min, for S-CRM. The FP technique is a widely-accepted population-balance model [53, 477 

94], with an ability to preserve the two properties, population and mass. The MATLAB 478 

code for solving this model was already verified against analytical solutions of the 479 

population balance given for different initial conditions [40]. Here the FP method which 480 

is inherently a PBM yields a fairly low average absolute mass balance error (3.9×10-2 481 

%). However, the proposed models of the present study which are inherently mass-482 

balance models show even lower absolute mass balance errors; 4.2×10-6 % and 1.1×10-5 483 

%, for C-CRM and S-CRM models, respectively, suggesting that the use of mass balance 484 

in modelling aggregation not only leads to a more efficient simulation but also enhances 485 

the accuracy.  486 
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It should be noted that based on the current formulation of CRM models, the 487 

outcomes might be dependent on the particle size grid configuration such as the 488 

maximum number of size classes. A maximum number of 100 size classes may be 489 

recommended as a standard that is sufficient to capture PSD evolutions in the 490 

environmental systems, and thus this can be fixed as part of the model. We further 491 

investigated the influence of the number of size classes on model results. The outcomes 492 

presented in Figs. S6 and S7, revealed that at high aggregation rates the dependency on 493 

the number of bins is not significant for both C-CRM and S-CRM while at low 494 

aggregation rates this dependency is considerable. Further, we fitted the S-CRM model 495 

to the analytical solution results of the Smoluchowski model. As shown in Fig. S8, this 496 

investigation revealed that there is a log linear relationship between the adjusted S-CRM 497 

rate constant and the number of size classes in all cases, suggesting that the impact of 498 

number of size classes may be offset from aggregation rate constants in future studies. 499 

As already mentioned in Section 4.1 the impact of variation in particle size grid 500 

configuration causing changes in the aggregation constant fitted to the analytical solution 501 

might also arise from simplifying assumptions of the analytical solution and possible 502 

numerical inaccuracies of any given numerical approaches in certain configurations of 503 

the particle size grid [40, 53]. Such factors can deviate the trends of aggregation 504 

constants of numerical models from that of analytical approach whereas consistent 505 

trends are obtained across different numerical methods.   506 

5 Conclusions 507 

In this study we propose a new modelling framework based on a mass-balance chain 508 

reaction formulation. This includes a series of first-order, coupled decay reaction 509 

expressions with mass concentration as the main variable. Two simplifying approaches 510 
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based on size (S-CRM) or collision frequencies (C-CRM) were proposed for considering 511 

variations in the decay-reaction rates in terms of aggregate size classes. The two CRM 512 

approaches both can generally fit well to analytical solutions of the aggregation model 513 

with a log normal initial PSD within a range of conditions. When fitting to a range of 514 

experimental data for early and late aggregation and sedimentation of SGO, the 515 

performances of both approaches were generally similar to or better than that of the FP 516 

model which is a standard PBE. The new modelling framework was found on average 517 

one order-of-magnitude faster than the FP method while yielding a lower average mass 518 

balance error. In contrast to FP, modified CRM approaches tended to show a steady-state 519 

or equilibrium condition for the shape of the PSD at moderate or low aggregation rates. 520 

Similar trends for aggregation rate constants, estimated from model fitting to 521 

experimental data, were obtained for all models, and close ranges were obtained for 522 

fractal dimensions, suggesting that model parameters for the proposed modified CRM 523 

are meaningful and may follow conventional models. Although future studies may 524 

present more accurate relationships for CRM reaction rate and yield coefficients, the use 525 

of two simplifying/empirical preliminary approaches in this study for reaction rates 526 

demonstrated generally similar performances suggesting that the model is not much 527 

sensitive to these coefficients and therefore the simplifying assumptions taken in 528 

developing current relationships may not affect the model outcomes significantly.  529 

While there are uncertainties in the experimental results, parameter calibration 530 

process, and the basic assumptions of model relationships, based on the overall 531 

agreement between the modified CRM and analytical/numerical solutions of PBE as 532 

well as experimental data of SGO aggregation we conclude that a CRM formulation is 533 

able to describe NP aggregation phenomenon. Owing to its flexibility in formulation, 534 

low computational expenses, and the use of mass concentration, the CRM may also offer 535 
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potentials for modelling aggregate breakage, e.g., using negative rate coefficients [24],  536 

and may be a suitable option to be modified for modelling hetero-aggregation of NP with 537 

background colloids as well as the adsorption of other solute contaminants. The CRM 538 

can be a useful approach not only for modelling the aggregation of engineered NP in 539 

environmental media, but also for modelling the aggregation of particulate species in 540 

other contexts such as biogeochemistry where the complex network of the reactions in 541 

the reactive transport model makes incorporation of population balance models 542 

computationally cumbersome if possible at all. Overall, this study demonstrates that a 543 

chain-reaction model widely used for describing chemical and nuclear reactions can be 544 

used for modelling aggregation of colloidal particle.  545 
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 559 

Figure 1. Evolutions of size (a-c) and change in normalized derived count rate 560 

(DCR/DCR0), (d-f) for SGO NPs in electrolyte species NaClO4 (a,b,d,e) and CaCl2 (c,f) 561 

with a fixed pH at 6. Continuous lines represent FP, dash lines represent C-CRM 562 

technique, and dot lines represent the S-CRM model outcomes.   563 
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 564 

Figure 2. Evolutions of Size (a) and change in normalized derived count rate 565 

(DCR/DCR0), (b) for SGO NPs at various pH with a fixed IS at 20 mM NaClO4. 566 

Continuous lines represent FP; dash lines represent C-CRM technique, and dot lines 567 

represent the S-CRM model outcomes.  568 
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 569 

Figure 3. Comparisons of PSD for SGO NPs at 30 and 50 mM NaClO4 with a fixed pH 570 

at 6 and at the middle (t=150 min, b) and the end of experiments (t=300 min, c). 571 

Continuous lines represent FP; dash lines represent C-CRM technique, and dot lines 572 

represent the S-CRM model outcomes. It should be noted that lines in panel (a) only 573 

show the initial condition of the model.  574 

 575 
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 576 

Figure 4. Estimated parameter trends for different models: aggregation rate constants (𝛼, 577 

ΛS, and ΛC for FP, S-CRM, and C-CRM approaches), vs electrolyte concentration (a,b), 578 

and vs pH (c), and fractal dimension, Df, vs electrolyte concentration (d,e) and vs pH (f).  579 

 580 

 581 

 582 
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Table 1. Nash-Sutcliff determination coefficient, NSE, for fittings to hydrodynamic 583 

diameter data with different models across various solution chemistries.  584 

pH  Electrolyte 

concentration 

FP C-CRM S-CRM 

6 0.1 mM CaCl2 -0.093 -0.092 -0.092 

 0.5 mM CaCl2 0.862 0.947 0.830 

 1 mM CaCl2 0.505 0.340 0.422 

 5 mM NaClO4 -1.141 -0.826 -0.843 

 10 mM NaClO4 0.683 0.694 0.842 

 20 mM NaClO4 0.827 0.978 0.971 

 30 mM NaClO4 0.923 0.940 0.912 

 50 mM NaClO4 0.447 0.587 0.178 

2.5 20 mM NaClO4 -0.245 0.067 -0.072 

4  0.492 0.488 0.537 

7.5  0.257 0.256 0.255 

10  0.000 -0.033 0.000 

 585 

 586 

 587 

 588 

 589 

 590 
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Table 2. Comparison of the model run times and mass balance errors in a single-run 591 

mode based on parameters estimated from the calibration process.  592 

pH  Electrolyte 

concentration 

Model 

Run Time 

(min) 

Mass 

balance 

error (% ) 

Model Run 

Time (min) 

Mass 

balance 

error (% ) 

Model 

Run Time 

(min) 

Mass 

balance 

error (% ) 

  FP  C-CRM  S-CRM  

6 0.1 mM CaCl2 3.77 -7.1E-14 0.06 -2.8E-14 0.04 -2.8E-14 

 0.5 mM CaCl2 0.60 -2.1E-04 0.28 5.3E-10 0.04 9.4E-11 

 1 mM CaCl2 1.23 -4.1E-01 2.22 -9.5E-06 1.48 -9.1E-05 

 5 mM NaClO4 30.06 1.1E-08 0.13 -2.8E-14 0.09 1.4E-14 

 10 mM NaClO4 0.94 -2.9E-05 0.29 -1.0E-08 0.20 -1.5E-08 

 20 mM NaClO4 5.99 -3.8E-05 0.66 2.1E-11 0.47 8.4E-13 

 30 mM NaClO4 1.32 -2.4E-05 0.27 -4.7E-06 0.18 -5.0E-06 

 50 mM NaClO4 4.73 -5.1E-02 2.08 -3.6E-05 1.34 -3.8E-05 

2.5 20 mM NaClO4 2.59 4.4E-07 1.03 1.9E-08 0.70 2.5E-09 

4  18.17 -3.9E-07 3.67 1.1E-13 1.10 2.8E-14 

7.5  0.46 3.1E-12 0.07 -2.7E-08 0.05 -1.0E-08 

10  3.87 4.0E-12 0.22 3.0E-13 0.12 -1.4E-14 

 593 

 594 

 595 

 596 

 597 

 598 
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