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Background: The catecholaminergic precursor to dopamine, tyrosine, is an important 26 

modulator of cognitive performance. A number of studies have demonstrated that the 27 

beneficial effects of tyrosine on cognitive performance are most pronounced when 28 

individuals are exposed to stressful situations, such as hypothermia. However, little is 29 

known about whether manipulation of stress using non-aversive stimuli, such as 30 

cognitive demand, can also bring about similar improvements.  31 

Methods: We conducted a randomized, double-blind, placebo-controlled experiment to 32 

test the effects of tyrosine administration and cognitive load (low or high) on cognitive 33 

flexibility, a measure known to be influenced by catecholaminergic function. A total of 34 

70 healthy volunteers completed a baseline cognitive flexibility test (Wisconsin Card 35 

Sorting Test: WCST). Participants were given a dose of either tyrosine (2.0 g) or 36 

placebo (cellulose) and subject to either low cognitive load (simple reaction time task) 37 

or high cognitive load (digit memory span task), immediately followed by a WCST for 38 

a second time.  39 

Results: Contrary to expectations, we found that instead of ameliorating performance 40 

under the high cognitive load condition, tyrosine worsened cognitive flexibility.  41 

Limitations: Physiological marker of stress was not measured. 42 

Conclusions: Our results suggest that aversive stressors and cognitive demand 43 

modulate the effects of tyrosine on cognitive performance in a differential manner.  44 

Keywords: Tyrosine, Dopamine; Cognitive flexibility  45 
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 46 

The effect of Tyrosine and cognitive load on cognitive flexibility shown in a graphical 47 

abstract. 48 

 49 

Introduction 50 

Cognitive flexibility is the brain’s ability to think about multiple concepts at the same 51 

time and quickly switch between concepts (Majdic et al., 2017), which can be tested 52 

using various paradigms including reversal learning and set shifting. The neuronal 53 

circuitry underpinning cognitive flexibility encompasses parts of the prefrontal cortex 54 

and the striatum, and the catecholaminergic neurotransmitter dopamine acts as an 55 

important modulator of fronto-striatal activity (Klanker, Feenstra & Denys, 2013).  56 

Studies involving the pharmacological manipulation of the dopaminergic system have 57 

revealed that increased dopaminergic transmission through D2 receptors was beneficial 58 

to set shifting performance (Van Holstein et al., 2011) but not to reversal learning 59 
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(Cools et al., 2009). A similar finding was reported when the dopamine precursor L-60 

Dopa was administered to patients with Parkinson's disease, which improved set 61 

shifting but impaired reversal learning performance (Cools, 2006). Studies on 62 

amphetamine as a psychostimulant have reinforced the idea that dopaminergic activity 63 

and cognitive performance have an inverted U-shaped relationship (Cools and 64 

D’Esposito, 2011), with low or high doses impairing reversal learning (Idris, Repeto & 65 

Neill, 2005) but intermediate doses leaving performance intact (Soto et al., 2012).  66 

More recently, a number of studies have investigated the potential effect of the 67 

dopaminergic precursor tyrosine on cognitive flexibility, which theoretically might offer 68 

a number of advantages over L-Dopa. Unlike L-Dopa, the conversion of tyrosine to 69 

dopamine is restricted by competition from other endogenous amino acids and by the 70 

rate-limiting tyrosine-hydroxylase enzyme (Jongkees, Hommel, Kühn & Colzato, 2015). 71 

These restrictions comparatively limit the overall enhancement of dopamine levels by 72 

tyrosine, and reduce the likelihood of shifting participants to the far end of the inverted 73 

U-shaped curve. 74 

Tyrosine administration has been shown to improve task switching (Steenbergen, 75 

Sellaro, Hommel & Colzato, 2015). Our group found tyrosine had beneficial effects on 76 

set shifting, which was dependent on dorsolateral prefrontal cortex activity (Dennison, 77 

Gao, Lim, Stagg & Aquili, 2019). However, reports on the effectiveness of tyrosine on 78 

cognition are rather more inconsistent (Jongkees et al., 2015). Some of this 79 

heterogeneity is related to the clinical population tested (e.g. depression vs ADHD) 80 

(Gelenberg et al., 1990; Posner et al., 2009), and due to inter-individual differences of 81 

dopaminergic gene expression in the striatum (Colzato et al., 2016). Moreover, it has 82 
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been suggested that the positive cognitive effects of tyrosine may be most prominent 83 

when individuals are exposed to stressful situations (Jongkees et al., 2015).  84 

Aversive stimuli such as stress increase catecholamine activity and use up resources, 85 

resulting in the depletion of neurotransmitter levels and behavioural depression 86 

(Kvetnansky, Sabban & Palkovits, 2009). Under these circumstances, tyrosine can act to 87 

replenish this depletion. In studies on hypothermia as the stressor, tyrosine 88 

administration reversed the impairments on attention and memory (Mahoney, Castellani, 89 

Kramer, Young & Lieberman, 2007). Additional stressors in which tyrosine has been 90 

shown to have beneficial effects include sleep deprivation and an auditory stressor 91 

(Deijen and Orlebeck, 1994; Magill et al., 2003). Non-aversive stimuli such as high 92 

cognitive demand have also been hypothesized to lead to similar catecholaminergic 93 

depletion (Jongkees et al., 2015), but this has been hardly investigated. Thomas, 94 

Lockwood, Singh & Deuster (1999) were the first to show that tyrosine improved 95 

working memory performance only when performing multiple tasks simultaneously. 96 

Finding out whether tyrosine has enhancing effects only under particularly challenging 97 

conditions such as high cognitive load would be important as it would confirm that 98 

catecholaminergic depletion can be reversed both when individuals are exposed to overt 99 

and non-overt stressors.  100 

Method 101 

We conducted a randomized, double-blind, placebo-controlled study to test whether 102 

tyrosine beneficial effects on cognition during aversive stressful conditions (e.g., 103 

hypothermia) could be recreated using a non-aversive stressful stimuli (e.g., high 104 

cognitive load). In addition, we wanted to test the effect on a different domain, 105 
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cognitive flexibility, as tyrosine administration was shown to ameliorate cognitive 106 

flexibility performance under normal conditions (Steenbergen et al., 2015; Dennison et 107 

al., 2019).  108 

This study was approved by the ethics committee of Sheffield Hallam University and 109 

was conducted in compliance with the Declaration of Helsinki (World Medical 110 

Association, 1964). Participants consisted of 70 university students (M=19.9 years, 111 

SD=1.6) including 59 females and 11 males). Written informed consent was obtained 112 

from all participants in the study. Exclusion criteria included individuals with cardiac, 113 

hepatic, renal and neurological disorders, history of alcohol or drug addiction, and 114 

psychiatric illness, as well as those with a history of taking tyrosine supplements. 115 

Participants were randomly assigned to the tyrosine or placebo groups. Participants 116 

received either 2.0 g of tyrosine (BulkPowders Ltd, UK.) or 2.0 g of microcrystalline 117 

cellulose (Redwells Creative Limited, UK) dissolved in 400 mL of orange juice as in 118 

previously published protocols (Dennison et al., 2019). All participants were tested in 119 

the morning (9am-11am) and were asked to refrain from eating or drinking for at least 120 

three hours. This is to prevent tyrosine competition with other amino acids which may 121 

prevent its effectiveness. Participants waited 60 min before testing, as a previous 122 

studyon tyrosine modulation of cognitive flexibility found that the peak plasma 123 

concentration level occurred at 60 min following oral administration (Steenbergen et al., 124 

2015)[10]. 125 

To assess cognitive flexibility, we used an adapted Wisconsin Card Sorting Test 126 

(WCST) implemented in PEBL software (Mueller and Piper, 2014). The WCST 127 

provides a measure of task switching behaviour, in which subjects are required to match 128 
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a sample card to a set of four reference cards based on one of the following three rules: 129 

colour, shape, and number. Following a series of correct matches, the classification 130 

rules are changed unexpectedly and the subject must learn to switch responses (Monchi, 131 

Petrides, Petre, Worsley & Dagher, 2001). We measured reaction times and 132 

perseverative errors. Reaction times reflect the time taken to make a choice following 133 

the presentation of the sample and reference cards. Perseverative errors are counted as 134 

choosing the same incorrect response following a rule shift (e.g., classification rule 135 

shift: shape-colour; perseverative error: shape-shape; non-perseverative error: shape-136 

number). The task lasted between 5 and 7 minutes.  137 

For the cognitive load, participants were asked to complete either a simple reaction time 138 

task (low cognitive load) or a forward digit span memory task (high cognitive load) 139 

implemented in PEBL software. In the simple reaction time task, participants pressed 140 

the space bar as soon as possible following the presentation of a stimulus (the letter "x") 141 

in the middle of the screen. The dependent measure of interest was the time taken 142 

(reaction time in milliseconds) to respond to the stimulus. In the forward digit span 143 

memory task, participants were shown a sequence of digits on the screen, one at a time, 144 

starting with a list of three items. Participants were then asked to recall (by typing) the 145 

sequence in the exact order as it appeared. Participants had to recall correctly two out of 146 

three lists with the same number of items before moving to a list containing additional 147 

digits. The dependent measure of interest was the length of the longest list.      148 

After screening for eligibility, participants were instructed to refrain from 149 

eating/drinking for a minimum of 3 h to reduce competition from other amino acids that 150 

share the same transporter (Fernstrom, 1990). Participants were then required to attend a 151 
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session lasting approximately 75 min. They first signed a consent form and then 152 

completed a WCST (time 1). They then received either tyrosine or placebo according to 153 

the group allocation. After 60 min following tyrosine or placebo intake, half the 154 

participants completed a simple reaction time task (low cognitive load), and the other 155 

half completed a forward digit span memory task (high cognitive load). As soon as they 156 

finished the tasks (approximately 5 min), a WCST was administered for the second time 157 

(time 2). Finally, participants were asked to fill out a tyrosine/placebo double-blind 158 

questionnaire before being debriefed. An outline of the experimental procedure is 159 

shown in Figure 1.     160 

 161 

 162 

Fig. 1. Graphical illustration of the experimental procedure.  163 
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At time 0, all participants completed a WCST as a baseline measure of cognitive 164 

flexibility. Approximately 5 min later after completing the WCST, participants were 165 

administered either a placebo or tyrosine. After 65 min, which is the time for tyrosine to 166 

reach peak concentration in plasma, participants completed either the simple reaction 167 

time task (low cognitive load: condition 1 and 2) or the forward digit span memory task 168 

(condition 3 and 4). Finally, all participants completed a WCST for the second time. 169 

Results 170 

Statistical analyses were performed using SPSS version 24 (SPSS Inc). The sample size 171 

was calculated to achieve a power at 0.8, an alpha level set at 0.05, and a large effect 172 

size (Ƞ
2
) of 0.14 (G*Power 3.1.9.2, Germany). For the two dependent measures of the 173 

WCST (reaction time and perseverative errors), we ran a 2x2 factorial ANOVA with 174 

drug as one factor (placebo, tyrosine) and cognitive load as the second factor (low and 175 

high). Performance of the low and high cognitive load tasks was analysed using an 176 

independent samples t-test comparing placebo to tyrosine participants.  177 

The double-blind efficacy of tyrosine/placebo was analysed using a percent correct 178 

measure. A score of 100 was given if a participant correctly identified the condition, 179 

else a score of 0 was given. A Chi-Square test was used to assess the blinding efficacy.  180 

We first analysed changes in reaction times (RT) across conditions. We calculated the 181 

change in performance from baseline (Time 1: T1) to post-drug (Time 2: T2) (i.e. [T1] - 182 

[T2]), as in a recently published paper (Dennison et al., 2019). A 2x2 factorial between-183 

subjects ANOVA with drug as one factor (Placebo, Tyrosine) and cognitive load as the 184 

other factor (Low, High) demonstrated there was no main effect of drug [F (1, 66) =1.41, 185 

p=0.239, Ƞ
2
=.02]. However, there was a significant main effect of cognitive load [F (1, 186 
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66) =5.84, p=0.018, Ƞ
2
=.08], with the high cognitive load condition reducing the 187 

improvements in reaction times from baseline (M=129.3, SD=168.1) compared to the 188 

low cognitive load condition (M=209.5, SD=140.8), which showed greater 189 

improvements. Importantly, there was a significant interaction effect between drug and 190 

cognitive load [F (1, 66) =5.22, p=0.026, Ƞ
2
=.07]. To break down this interaction, 191 

follow-up simple main effect analyses were performed. For low cognitive load, there 192 

was no significant reaction time difference between placebo and tyrosine [F (1, 66) 193 

=0.58, p=0.446, Ƞ
2
=.00], whereas for high cognitive load, tyrosine reduced the 194 

improvement in reaction times from baseline compared to placebo [F (1, 66) =6.71, 195 

p=0.016, Ƞ
2
=.08]. Comparing within cognitive loads, there was no significant difference 196 

between low and high cognitive loads in placebo participants [F (1, 66) =.00, p=0.924, 197 

Ƞ
2
=.00]. Interestingly, there was a significant difference between low and high 198 

cognitive loads in tyrosine participants [F (1, 66) =10.48, p=0.002, Ƞ
2
=.13], with high 199 

cognitive load slowing down reaction times compared to the low condition (Fig 1A).    200 

We next investigated the second measure of cognitive flexibility using the perseverative 201 

error, analysed as above. There was no main effect of drug [F (1, 66) =.78, p=0.433, 202 

Ƞ
2
=.00], or main effect of cognitive load [F (1, 66) =1.83, p=0.180, Ƞ

2
=.02], or 203 

significant drug x cognitive load interaction [F (1, 66] =.01, p=0.919, Ƞ
2
=.00] (Fig 1B).    204 

To ensure the effects of tyrosine on cognitive flexibility were not influenced by changes 205 

in simple reaction times (i.e., low cognitive load task) or memory (i.e., high cognitive 206 

load task), we ran two independent sample t-tests. There were no significant differences 207 

in the performance between placebo and tyrosine participants on the simple reaction 208 

time task (t (32) = 1.92, p=0.065) or on the digit span memory task (t (32) = -.28, 209 
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p=0.781). These results confirmed the specificity of the tyrosine effects on cognitive 210 

flexibility as modulated by cognitive load (See Fig 2C and 2D). 211 

 212 

Fig. 2. A. Effect of drug (Placebo, Tyrosine) and cognitive load (Low, High) on 213 

cognitive flexibility as measured by a change in reaction times from baseline (pre-drug). 214 

B. Effect of drug (Placebo, Tyrosine) and cognitive load (Low, High) on cognitive 215 

flexibility as measured by a change in perseverative errors from baseline (pre-drug). C. 216 

Differences in performance between placebo and tyrosine participants on the low 217 

cognitive load task (simple reaction time). D. Differences in performance between 218 

placebo and tyrosine participants on the high cognitive load task (digit memory span 219 
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task). Indication: Error bars represent SEM. * indicates significance at p<.05; ** at p 220 

<.01. NS= not significant when p>.05.  221 

The double-blind efficacy of placebo/tyrosine administration was analysed using a Chi-222 

Square test. There was no significant association between the condition (i.e., placebo or 223 

tyrosine) and the participant correctly identified it [x
2
 (1) = 1.22, p=0.269].  224 

Conclusion  225 

This study aimed to test whether the beneficial effects of tyrosine on cognitive 226 

performance under aversive stressful conditions (e.g., hypothermia) as reported in the 227 

literature could be replicated under non-aversive but potentially stressful conditions (i.e., 228 

cognitive demand). We were particularly interested in measuring cognitive flexibility 229 

performance, as this has been shown to have a dopaminergic component (Klanker, 230 

Feenstra & Denys, 2013). Contrary to expected results, high cognitive load reduced 231 

tyrosine improvements in baseline reaction times when compared to placebo controls. 232 

Moreover, the high cognitive load did not produce a performance deficit (compared to 233 

the low cognitive load) in the placebo participants, but the opposite was true for those 234 

given tyrosine. Significantly, the detrimental effects of tyrosine on cognitive flexibility 235 

driven by the high cognitive load manipulation was specific, as tyrosine did not alter 236 

performance of the simple reaction time task (low cognitive load) or the forward digit 237 

span memory task (high cognitive load).  238 

Previous research using cognitive demand as a non-aversive stressor showed tyrosine 239 

had a beneficial effect on memory performance (Thomas et al., 1999). However, 240 

tyrosine improved working memory only when multitasking (i.e., high cognitive 241 

demand) and not during a simple task battery (i.e., low cognitive demand), which 242 
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suggests cognitive demand could induce a stress-like state similar to that elicited by an 243 

overt stressor such as hypothermia, and that tyrosine could act to replenish the 244 

catecholaminergic depletion (Jongkees et al., 2015). Interestingly, cold exposure as a 245 

stressor changed cortisol levels (Mahoney et al., 2007), but the high cognitive demand 246 

task did not alter cortisol, indicating cognitive demand may not trigger a physiological 247 

stress response. Future studies employing cognitive demand as a proxy for a stressful 248 

stimulus would need to further clarify the impact on catecholamine secretion and 249 

cortisol.  250 

There are a number of important differences between the current study and that of 251 

Thomas et al. (1999), which need to be noted when making comparisons. First, in the 252 

study by Thomas et al., they measured working memory, whereas we assessed cognitive 253 

flexibility. Although both working memory and cognitive flexibility performance are 254 

modulated by the dopaminergic system, several lines of evidence suggest that working 255 

memory is primarily mediated by D1 receptors, whilst cognitive flexibility by D2 (Ott 256 

and Nieder, 2019). Second, the cognitive load manipulation in the previous study 257 

included the simultaneous performance of a number of tasks, whereas we administered 258 

either a forward digit memory span or a simple reaction time task. Nevertheless, the 259 

high cognitive load task used in this study produced the intended overall (i.e., main 260 

effect) detrimental effect on performance. Third, the majority of our participants were 261 

females (59/70), and there have been reports of gender differences in response to stress 262 

(Allen, Bocek & Burch, 2011) and cognitive flexibility (Kalia et al., 2018).  263 

Previous studies have shown that tyrosine can improve cognitive flexibility under 264 

normal, non-stressful conditions (Steenbergen et al, 2015; Dennison et al., 2019). 265 
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Although the different types of cognitive flexibility tasks used in these studies and in 266 

the present study may provide a partial explanation for the contrasting results, it is still 267 

plausible that the beneficial effects of tyrosine on cognitive flexibility could be nullified 268 

by the simple attention task and worsened by the more demanding memory test, as 269 

demonstrated in our study. Regardless, the precise biological mechanism by which this 270 

behavioural effect is mediated needs to be further explored. Furthermore, the finding by 271 

Hensel et al. (2019) that showed tyrosine intake caused brain connectivity alterations 272 

between the prefrontal cortex and the striatum also needs further investigation. 273 

Limitations: One of the limitations of the study was that we cannot confirm that the high 274 

cognitive load task resulted in a physiological stress response as reported in studies 275 

using hypothermia as a stressor. The second limitation relates to the gender imbalance 276 

in our sample (more females) which only provides partial generalizability of our results.  277 

In conclusion, we provide evidence that high cognitive demand and aversive stressful 278 

stimuli (e.g., cold exposure) may have contrasting bidirectional influence on tyrosine 279 

administration on cognitive performance.  280 
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statistical analysis of the data, and wrote the manuscript.  283 
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