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Summary: Dry sliding wear of transition metal nitride coatings usually results in a dense and 

strongly adhered tribofilm on the worn surface. This paper presents detailed electron microscopy 

and Raman spectroscopy characterizations of the microstructure a newly developed multilayer 

coating TiAlCN/VCN and its worn surface after pin-on-disc sliding wear against an alumina ball. 

The friction coefficient in a range of 0.38 – 0. 6 was determined to be related to the environment 

humidity, which resulted in a wear coefficient of the coating varying between 10
-17

 and 10
-16

 m
3
N

-

1
m

-1
.  TEM observation of worn surfaces showed that, when carbon was incorporated in the nitride 

coating, the formation of dense tribofilm is inhibited. 

Key words: Tribology; Transmission electron microscopy (TEM); Raman spectroscopy; Physical 

vapour deposition (PVD); Nanolayers; Nitrides 

 

Introduction 

Nano-structured multilayer TiAlN/VN coatings of high hardness and good adhesion property have 

been grown by the combined cathodic arc and unbalanced magnetron reactive sputter deposition 

since 2000 [1]. The TiAlN/VN coatings have shown both low friction coefficient and extremely low 

wear rate in un-lubricated sliding wear as compared to other transition metal nitride coatings. This 

is attributed to the formation of a nanometer-scale, amorphous and multicomponent Ti-Al-V-O 

oxide film [2]. The tribofilm is strongly adhered to the parent nitride surface. It therefore dominates 

the low-friction property and protects the surface from mechanical wear. In industrial trials of 

coolant-free high-speed milling aluminium alloys, TiAlN/VN coated tools show low cutting forces, 

long lifetime and significantly reduced built-up edge (BUE) formation as compared to the uncoated 

tools or those coated with other TiAlN based coating [3]. In the same application area, the 

performance of carbon-based coatings such as diamond and diamond-like carbon are widely 

acknowledged for their low affinity to aluminium which brings about an almost BUE-free cutting 

process [4].  

When carbon was introduced in the deposition of TiAlCN/VCN multilayer coatings in a reactive 

atmosphere of nitrogen and methane [5], beneficial effects have been found in the tribological 

properties and tool performance [6]. This is obviously related to the modification of wear 

mechanisms especially the behaviour of tribofilm formation. It has been reported in literatures that 

tribofilm formation can be interrupted by the presence of surface active species [7] and that carbon 

implantation in the TiN coating leads to a significant reduction of friction coefficient [8].  The 

results presented in this paper are concentrated on the microstructure and dry-sliding wear 

mechanisms of the TiAlCN/VCN coatings. Special attention has been paid to the influence of 

carbon incorporation on the wear failure mechanisms including the generation of tribofilm.  

Experimental Part 

The TiAlCN/VCN coatings were grown on polished high speed steel coupons by using the 

combined high power impulse magnetron sputtering / unbalanced magnetron sputtering 

(HIPIMS/UBM) technology [6]. For this research the arc power supply on one of the cathodes in 

the Hauzer HTC-100-4 system was replaced by a HIPIMS power supply (Advanced Converters, 

Poland), which allowed sequential operation in HIPIMS and UBM mode. The advantages of 
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utilizing the novel HIPIMS surface treatment prior to the coating deposition are the enhanced 

coating adhesion and very smooth coating surface due to elimination of macroparticle induced 

defects [9]. After the HIPIMS etching, a 0.4 μm thick TiAlN base layer was deposited followed by 

2.6 μm thick TiAlCN/VCN layer deposited by standard UBM process in a mixed N2 + CH4 + Ar 

atmosphere.  

Sliding wear tests were conducted by using a computer-programmed CSM ball-on-disc tribometer 

at conditions: with a 6-mm counterpart ball of alumina, applied load 5 N, sliding speed 0.1 ms
-1

, 

room temperature in a range of 20 – 30 
0
C. As preliminary tests revealed an effect of relative 

humidity (RH) on the amplitude of friction coefficient, the sliding tests were performed in a range 

of RH values from 15 to 75%.  

The worn surfaces obtained after each wear test were examined using scanning electron microscopy 

(SEM), energy dispersive X-ray (EDX) spectroscopy and Raman spectroscopy. The Raman analysis 

was undertaken on a Renishaw-2000 Raman System with the excitation wavelength of 632.8 nm 

from a HeNe laser. This system allowed a lower spectral limit of 150 cm
-1

 and upper limit of 2,000 

cm
-1

.  

A Philips STEM-CM20 instrument, operating at 200 kV with a LaB6 filament, was employed for 

TEM bright field (BF) and dark field (DF) imaging, selected area diffraction (SAD) analysis and 

EDX analysis. Longitudinal cross-sectional TEM samples containing the worn surface were 

prepared following a procedure described in [2]. In addition, wear particles were collected on a 200-

mesh carbon-film copper grid for direct TEM analysis.  

Results and Discussion 

Mechanical and Structural Characterizations 

Detailed mechanical properties and structural characterization of the TiAlCN/VCN coatings have 

been reported in [6]. Typically, the coatings exhibited Knoop hardness HK0.025 27.7 GPa, Young’s 

modulus 296.9 GPa, and critical scratch load 58 N. The hardness and elastic modulus of the 

TiAlCN/VCN are comparable to those of the carbon-free coating TiAlN/VN. Note that the excellent 

adhesion property is attributed to the substrate surface etching with the HIPIMS process [9], where 

the coatings with cathodic arc etched interface showed scratch load of approximately 45 – 50 N.  

Fig. 1 shows SEM and TEM characterization of typical TiAlCN/VCN coating. The coating shows 

columnar grains with rough growth surface and nano-scale grain size. The columnar grains are fully 

dense where slightly sub-dense area can be seen along the column boundaries.  The coatings were 

determined to have a NaCl-type cubic crystalline structure following a preferred (220) growth 

orientation. Such structural features are similar to the carbon-free TiAlN/VN coatings grown under 

the same bias voltage (-75V) [2, 10]. 

  

Figure 1. Electron microscopy of TiAlCN/VCN coatings. (a) High-resolution SEM showing the 

coating surface containing feature of nanoscale grain size. (b) Cross-section TEM BF image 
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showing dense columnar morphology, with a SAD insert showing the cubic crystalline structure and 

(220) texture. (c) Cross-sectional TEM BF image at higher magnification showing the irregular 

multilayer morphology.  

Raman spectroscopy analysis confirmed the predominant structure of nitride in the TiAlCN/VCN, 

seeing the acoustic and optical bands of cubic nitride (at 250 and 650 cm
-1

 respectively) in spectra 

(a – c) in Fig. 2. However, the optical band is lower as compared to the carbon-free TiAlN/VN 

whereas the intensity of the acoustic bands is comparable. The lower optical band can be explained 

by the fill-up of some nitrogen vacancies with carbon atoms. Moreover, the Raman spectra acquired 

in the TiAlCN/VCN coatings showed, although with low intensity in spectrum (b), the disordered 

(D) and graphite (G) bands of carbon structure. The existence of small amount of amorphous carbon 

was also indicated in the modified TiAlCN/VCN multilayer fringes in high-magnification de-

focused bright field imaging as compared to TiAlN/VN [6, 10]. 

 

Figure 2. A collection of Raman spectra 

obtained in: (a) TiAlN/VN coating; (b) 

TiAlCN/VCN coating at CH4:N2 = 1:2; (c) 

TiAlCN/VCN coating at CH4:N2 = 1:2; (d) 

Wear debris attached inside the wear track; 

and (e) loose wear debris dropped on a glass 

plate.  

Tribological Properties 

Table 1 shows typical friction and wear behaviour of TiAlCN/VCN coatings tested at a range of 

environment humidity. At low humidity (RH 18 %), the coating exhibited an average friction 

coefficient 0.59 leading to a wear coefficient of 4.1  10
-16 

m
3
N

-1
m

-1
. When tested at higher 

humidity (RH 30 – 75%), the obtained friction coefficient was as low as 0.38 leading to 

significantly lower coefficient typically in the order of 10
-17 

m
3
N

-1
m

-1
. The results suggest 

environment dependent friction and wear properties of the carbon containing coating whereas good 

lubrication behaviour exists at higher humidity. This behaviour is similar to carbon-based materials. 

For example, in DLC coatings, high levels of sp
2
-bonding in graphite and DLC films leads to high 

friction. These bonds are greatly weakened by the presence of water molecules leading to lower 

friction [11, 12]. It is, however, dissimilar to the carbon-free nitride coatings according to our 

experiments. Under the same range of test conditions, pure nitride coatings TiAlN/VN and 

TiAlCrYN showed the friction and wear behaviours being independent of the variation of relative 

humidity. 

Table 1 Friction and wear properties of TiAlCN/VCN coating. 

 RH 
Coefficient of friction 

Coefficient of wear 

 % 10
-17  

m
3
N

-1
m

-1
 

Test 1 18 0.59 41.0 

Test 2 33 0.38 4.1 

Test 3 70 0.42 2.5 
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Characterizations of Worn Surfaces and Wear Debris 

The wear track obtained in each wear test contained islands of wear debris agglomerates 

distributing over the smooth worn surface and loose wear debris dispersing along the wear track 

boundaries. Preliminary SEM-EDX analysis revealed that the wear debris contained substantial 

amount of oxygen and the smooth worn surface area was free of oxygen.  

Typical Roman spectra of wear products have been shown in Fig. 2 excluding the spectrum of 

smooth worn surface which was the same as the as-deposited coating. Spectrum (d) shows a broad 

peak at 800 – 1000 cm
-1

 and strong D-G bands, indicating a mixture of complex oxides and carbon. 

The shift bands at 250 cm
-1

 and 650 cm
-1

 were contributions from the surrounding TiAlCN/VCN 

coating. To avoid the interference, some loose debris were taken away from the wear track and 

placed on a clean glass plate. The obtained spectrum is shown in spectrum (e), which shows shift 

bands at 299.1, 416.4, 505.0, 625.11, 672.8, 913.0, 1344.7, and 1580.2 cm
-1

. The spectrum may 

contain contributions from carbon structure (the D-G bands at 1356 and 1592 cm
-2

 respectively) and 

several oxides, including V2O5 (shift bands at 280, 400, 480, 520 and 1000 cm
-1

), Al2O3 (shift bands 

at 418, 639, 873, 993 and 1400 cm
-1

) and TiO2 (shift bands at 395, 639 and 792 cm
-1

) [14, 15]. In 

some wear debris areas, however, the D-G bands were not shown, indicating non-homogeneous 

distribution of carbon. In brief, Raman spectroscopy analysis suggested that the wear debris 

contains a mixture of several oxides and amorphous carbon.  

TEM imaging of longitudinal cross-sections of worn surface samples revealed that, there was no 

tribofilm closely attached on the TiAlCN/VCN worn surface, Figs. 3a-b. Instead, there were only 

areas where loose agglomerates of wear debris were left on the top edge, Fig. 3b. This phenomenon 

was repeatedly observed in all the imaged areas. In some areas, TEM observation has shown cracks 

and delamination sheets, Fig. 3a. The fact that no tribofilm was formed on the TiAlCN/VCN worn 

surface formed a striking contrast to the cases of carbon-free nitride coatings like TiAlN/VN [2] and 

TiAlN/CrN [13] in which a dense tribofilm was found to closely adhere to the parent worn surface.  

  

Figure 3. Analytical TEM analysis of TiAlCN/VCN and wear debris. (a-b) cross-sectional bright 

field images showing no tribofilm but loose agglomerates of wear debris on the worn surface top. 

(c) A bright field image showing wear debris exhibiting an amorphous matrix containing nitride 

nano-particles (seeing the inserts of associated electron diffraction patters and dark field image). (d) 

An EDX spectrum of wear debris with the highlighted low-energy area shown in (e).  

Fig. 3c shows TEM analyses of loose wear debris. The main bright field micrograph shows an 

amorphous medium containing nanometer scale crystalline particles. Electron diffraction pattern of 

the imaged area indicated a NaCl-type cubic structure of the particles, which was further confirmed 

by the associated dark field imaging. These particles resulted from mechanical wear of the coating. 

TEM-EDX analysis in Fig. 3d-e show substantial amount of oxygen together with the presence of 

Al, Ti and V, which was consistent to the SEM-EDX results as described before. Therefore, the 

wear of the TiAlCN/VCN coatings was classified as oxidation wear and mechanical wear. The 
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oxidation wear was consistent to those previously found in the sliding wear of TiAlN/VN. the 

mechanical wear could have occurred in the running-in period of sliding by high-stress and 

adhesive breaking [16] and might also be a result of delamination wear like those observed in other 

transition metal nitride coatings [13, 17].  

Effect of Carbon in the Tribofilm Formation  

As a general phenomenon of dry sliding wear, tribofilms were observed on the worn surfaces of 

several ceramics and transition metal nitride coatings. In literature [7], the generation of tribofilm 

was discussed concerning its bonding forces as well as the inhibition of tribofilm. The bonding 

forces for tribofilm formation were reported to be mainly van de Waals forces as well as 

electrostatic forces which are strong enough to resist being wiped off by the slider. On the other 

hand, any surface active specie on the sliding surface such as lubricant may reduce the interactive 

interaction and may lead to the inhibition of tribofilm. In transition nitride coatings such as TiN, the 

incorporation of carbon has been widely to have significant mechanical and tribological properties. 

For example, when a carbon-implanted TiN was tested in dry sliding conditions against a soft 

austenite stainless steel, it exhibited lower friction and lower wear rate than the carbon-free TiN [8]. 

A major difference in wear mechanisms between the TiN and the carbon-implanted TiN was that, 

the latter showed significantly reduced adhesive wear.  

In the TiAlCN/VCN coatings studied, carbon has been found to exist both in the as-deposited 

coating and in the resultant wear debris according to our Raman spectroscopy study (Fig. 2). 

Despite a similar predominant wear mechanism of tribo-oxidation occurring in the carbon-

containing TiAlCN/VCN (Figs. 2-3) and the carbon-free TiAlN/VN (refs. [2, 15]), the existence of 

carbon phase in the wear debris indicated its possible influence on the agglomeration of wear debris 

and the adhesive interaction between wear debris and the worn surface. According to our TEM 

observations, the carbon-containing TiAlCN/VCN coatings showed no tribofilm on the dry-sliding 

worn surfaces, being strikingly different to those carbon-free nitrides such as TiAlN/VN and 

TiAlCrYN where a closely attached tribofilm was generated under the same sliding conditions as 

described in this paper. The inhibition of tribofilm reveals significantly reduced adhesive interaction 

of the TiAlN/VN with the attached oxide debris.  

Conclusions 

1. The TiAlCN/VCN coatings grown by the combined HIPIMS/UBM technology exhibited 

predominantly a NaCl-type cubic crystalline    structure whereas carbon exists partly in the 

crystalline structure and partly as amorphous carbon.  

2. In dry sliding wear tests, the TiAlCN/VCN coatings showed both low friction coefficient (µ 

= 0.4) and low wear rate (Kc = ~ 10
-17

 m
3
N

-1
m

-1
) in a range of relative humidity RH = 23 – 

70%. The formation of adhesive tribofilm was inhibited, whereas the predominant wear 

mechanism was tribo-oxidation. 
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