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Abstract: Concrete made from ordinary Portland cement is one of the most widely used construction
materials due to its excellent compressive strength. However, concrete lacks ductility resulting in
low tensile strength and flexural strength, and poor resistance to crack formation. Studies have
demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the
compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet
as an excellent candidate for using as nano-reinforcement in cement-based composites. To date,
the majority of studies have focused on cement pastes and mortars. Only limited investigations into
concretes incorporating GO nanosheets have been reported. This paper presents an experimental
investigation on the slump and physical properties of concrete reinforced with GO nanosheets at
additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study
demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength,
and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO
nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum
value of GO nanosheet dosage for improving the split tensile strength of concrete.

Keywords: ordinary Portland cement; concrete; physical properties; graphene oxide

1. Introduction

Concrete made from ordinary Portland cement is one of the most widely used construction
materials [1]. As a structural material, concrete is desirable because of its excellent compressive
strength. However, concrete has poor ductility, with low tensile strength and flexural strength,
and poor resistance to crack formation [1]. Many attempts have been made to enhance its properties
and performance by adding supplementary cementitious materials (e.g., fly ash, blast-furnace slag,
etc.) and fibers (e.g., glass and steel), but they fail to adequately enhance its physical properties and
durability at the nanoscale [2,3].

Ordinary Portland cement is the principal binder holding sand and coarse gravels or crushed
rocks together to produce concrete when water is added to initiate the hydration. It is reported that the
global production of cement has exceeded 3600 million tonnes annually with more than 55% from
China since 2011 [4]. The cement industry accounted for 15% to 20% of China’s PM2.5 emissions, 3% to
4% of sulfur dioxide emissions, and 8% to 10% of nitrogen oxides emissions [5], resulting in a drive to
cut air pollution deriving from the cement industry in China.

Advancements in nanotechnology can generate opportunities to improve the properties and
performance of cement by incorporating nanomaterials [6]. Studies have demonstrated that the
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addition of 0.05% graphene oxide (GO) nanosheets (by weight of cement) can effectively increase
the compressive strength and flexural strength of ordinary Portland cement paste by 15% to 33%
and 41% to 58%, respectively, and it is suggested that this may be associated with the enhanced
mechanical interlocking, interaction between the microcracks and the GO nanosheets, promotion of
the hydration process, and the formation of powerful interfacial forces between carboxylic groups
and hydration products [7]. Such observations strongly indicate the role of the GO nanosheet can
potentially play in the nano-reinforcement in cement-based composites. To date, the majority of
studies have focused on cement paste and cement mortar, including their physical properties [8,9],
durability [10–13], and rheological behavior [14,15]. Limited results have been reported on the
physical properties of ultra-high strength concrete (UHSC) incorporating with GO nanosheets [16]
and ultra-high-performance concrete (UHPC) containing graphene nanoplatelets (GNPs) [17] and
graphene [18]. Lu and Ouyang [16] demonstrated that the fluidity of UHSC decreased, and its flexural
and compressive strengths improved with the addition of GO nanosheets from 0.00% to 0.03% by
weight of cement. The compressive strength of UHSC incorporating 0.01% at 28 days enhanced by
7.82% compared with that of UHSC without GO nanosheets. Meng and Khayat [17] verified that
when the GNPs content is less than 0.05%, the high-range water reducer (HRWR) demand decreased,
meaning the use of GNPs improved the flowability decrease, whereas an adverse effect on flowability
was obtained with GNPs content greater than 0.05%. And the authors also demonstrated the use of
GNPs did not have a significant effect on the compressive strength of UHPC with an increase of 5.2%
to 5.7% while the use of 0.3% GNPs increased the flexural strength and the tensile strength by 39% to
59% and 40% to 45%, respectively, dependent on the dimension and specific surface area of GNPs.
Dimov and Craciun et al. [18] concluded that the compressive strength and the flexural strength of
UHPC can increase up to 146% and 79.5%, separately. However, it should be noted that relatively
little work has been concerned with ordinary concrete incorporating GO nanosheets. It is, therefore,
apparent that further research in this area is required [3,19,20].

In this study, the effects of GO nanosheets on the slump and physical properties of concrete are
experimentally investigated. The GO nanosheet content is at additions of 0.00%, 0.02%, 0.03%, 0.04%,
0.06%, and 0.08% by weight of cement under a water–cement ratio of 0.5. The evaluated physical
properties of concrete include the compressive strength, flexural strength, and split tensile strength.
Additionally, the optimum value of GO nanosheet dosage for improving the split tensile strength of
concrete is also discussed.

2. Materials and Methods

2.1. Materials

Ordinary Portland cement (OPC) type 42.5R was used for all the concrete mixes, and its chemical
composition is shown in Table 1. Fine aggregate (FA) and coarse aggregate (CA) were natural river
sand with a fineness modulus of 2.74 and crushed quartz with a size range from 5 mm to 20 mm,
respectively. A polycarboxylate-based superplasticizer (PCs) was used to improve the workability
of concrete and was provided by Sichuan Zhaohui Xincheng New Materials and Technology Ltd.,
Chengdu, China. The GO nanosheet was used as a water dispersion solution which was synthesized by
using a modified Hummers method [21] at Chengdu Institute of Organic Chemistry, China Academy of
Sciences, Chengdu, China. The main parameters of the GO nanosheet are shown in Table 2. Figure 1a
shows a transmission electron microscopy (TEM) image of a typical GO nanosheet with wrinkled and
folded features. Figure 1b shows an atomic_force microscope (AFM) image of a typical GO nanosheet
with irregular shapes.
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Table 1. Chemical composition of cement (% by weight).

Component CaO SiO2 Al2O3 Fe2O3 MgO K2O Na2O SO3

Content (%) 65.16 21.25 4.21 3.35 2.90 0.97 0.50 0.72

Table 2. The composition and dimensions of graphene oxide nanosheet.

Items Carbon (%) Oxygen (%) The Length/Width (µm) Thickness (nm)

Value range 45–60 40–55 2–10 1–1.5
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Figure 1. Images of typical GO nanosheet. (a) transmission electron microscopy (TEM), (b) atomic
force microscope (AFM).

2.2. Concrete Mix and Specimen Preparation

Six concrete mixes were prepared. The concrete mix proportions are shown in Table 3 and are in
accordance with the relevant specification [22] and code [23]. All mixes had a water to cement ratio
(w/c) of 0.5. The GO nanosheets were added to the CGO0, CGO2, CGO3, CGO4, CGO6, and CGO8
at additions of 0.00%, 0.02%, 0.03%, 0.04%, 0.06%, and 0.08% by weight of cement. The total water
content was 168 kg/m3, which included the mixing water, GO nanosheet water dispersion solution,
and PCs solution.

Table 3. Concrete mixture proportions.

Mix ID Total Water
(kg/m3)

Cement
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

PCs
(kg/m3)

GO
(%)

GO
(kg/m3)

GCO0 168 336 626 1270 6.72 0.00 0.0000
GCO2 168 336 626 1270 6.72 0.02 0.0672
GCO3 168 336 626 1270 6.72 0.03 0.1008
GCO4 168 336 626 1270 6.72 0.04 0.1344
GCO6 168 336 626 1270 6.72 0.06 0.2016
GCO8 168 336 626 1270 6.72 0.08 0.2688

Both the fine aggregate (FA) and coarse aggregate (CA) were air dried in the laboratory environment.
Cement was first mixed with the fine aggregate in a twin shaft concrete mixer for two minutes, and then
the coarse aggregate was added before mixing for a further two and a half minutes at moderate speed.
The potable mix water was pre-mixed in a separate vessel with the PCs solution and mechanically
stirred for one and half minutes using a hand-mixer, which was followed by adding the GO nanosheet
water dispersion solution and further stirring for another one and half minutes at a moderate speed.
The pre-mixed solution was added to the dry mixed cement and aggregates and then mixed for two
and a half minutes at moderate speed. The freshly mixed concrete was poured into pre-oiled molds
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and compacted on an electric concrete vibration table after which the specimens were covered with a
polyethylene sheet and cured in the laboratory for twenty-four hours. Finally, the specimens were
demolded and cured at a relative humidity greater than 95% and a temperature of 21 ± 2 ◦C until tested.

2.3. Physical Property Tests and Slump Test

The compressive strength, flexural strength, and split tensile strength of specimens were measured
on day 7, day 14, and day 28. The concrete specimens were tested in accordance with the GB/T50081-2002,
Standard for Test Method of Mechanical Properties on Ordinary Concrete [24]. The specimens for
each test are listed in Table 4. A selection of specimens for compressive strength test are shown in
Figure 2. The loading rate employed was 0.6 MPa/s. It should be noted that due to the smaller,
non-standard size of the specimens used, the results from the compressive strength, flexural strength,
and split tensile strength tests were reduced by multiplying the conversion coefficients of 0.95, 0.85,
and 0.85, respectively, according to the GB/T50081-2002 Standard [24]. The slump test was carried out
in accordance with the GB/T50080-2002 Standard [25], which was employed to assess the workability
of concrete.

Table 4. Size of specimens.

Test Size Used (mm) Standard Size (mm) Conversion Coefficients

Compressive strength 100 × 100 × 100 150 × 150 × 150 0.95
Flexural strength 100 × 100 × 400 150 × 150 × 550 0.85

Split tensile strength 100 × 100 × 100 150 × 150 × 150 0.85
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3. Results and Discussion

3.1. Workability

The results obtained from the slump test are shown in Figure 3. It can be seen that the values of
slump obtained for concrete specimens with GO nanosheets (GCO02, GCO3, GCO4, GCO6, and GCO8)
are lower than that of concrete without GO nanosheets (GCO0). It is also observed that the value of the
slump of concrete decreased with the increase of the dosage of GO nanosheets. A similar result has also
been reported in a previous study where an ultra-high strength concrete (UHSC) incorporating GO
nanosheets was investigated [16]. This may be caused by the large surface area of the GO nanosheet,
resulting in a decrease in the availability of water in the fresh mix from wetting [7,16]. It is possible to
improve the slump of conventional mixes by using fly ash [15] and PCs [26]. However, Meng and
Khayat [17] verified in their study that when the GNPs content is less than 0.05%, the high-range
water reducer (HRWR) demand decreased, meaning the use of the GNPs improved the flowability
of the UHPC, whereas an adverse effect on its flowability was obtained with GNPs content greater
than 0.05%. This suggests that the workability of the UHPC is affected by both the additive and the
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GNPs. It is, therefore, necessary to perform further studies to better understand the influence of GO
nanosheets on the workability of ordinary concrete.
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Figure 3. Slump of concrete.

3.2. Compressive Strength

The results of the compressive strength tests for concrete specimens with ages of 7, 14, and 28 days
under the different GO contents are shown graphically in Figure 4. Each value presented is the
average of three test results. It is observed that the concrete specimens containing the GO nanosheets
(GCO02, GCO3, GCO4, GCO6, GCO8) generally have higher compressive strength compared with the
concrete with no addition (GCO0). When the content of GO nanosheets increased from 0.02% to 0.08%,
the 28-day compressive strength increased from 46.47 MPa to 55.22 MPa, representing an increase from
12.84% to 34.08% when compared to the concrete specimens without GO nanosheets (GCO0). This
confirms that the compressive strength of the concrete is enhanced by an increase in the content of GO
nanosheets from 0.02% to 0.08% for the water–cement ratio of 0.5. Based on the study on the cement
paste reinforced with GO nanosheets, this may be the result of enhanced mechanical interlocking,
intense interaction between the microcracks and the GO nanosheets, promotion of the hydration
process or the formation of powerful interfacial force between carboxylic groups and hydration
products [7]. For the UHPC enhanced with GNPs, it can be attributed to the “bridging effect” of
GNPs for microcracks and the “filler effect” for accelerating the hydration reactions of the cementitious
materials [17,27]. However, such a mechanism for the UHSC incorporating GO nanosheets was not
fully examined by FE-SEM [16], resulting in further study being required.

The trend in the compressive strength of the concrete specimens with age is shown in Figure 5.
This trend is different from that observed for the UHSC with additions of GO nanosheets in an earlier
study [16], where it was suggested that the values of compressive strength and flexural strength of
concrete from an addition 0.01% were greater than those from an addition of 0.03%. One explanation
may be a lower water-cement ratio of 0.2 [16]. However, the compressive strength of concrete is affected
by many factors, such as the water-cement ratio, raw material types, and complementary materials
and admixtures [1].
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3.3. Flexural Strength and Relationship between Compressive and Flexural Strength

The flexural strength results of the concrete specimens at 7, 14, and 28 days under the different
GO contents are shown graphically in Figure 6. Each value presented is the average of three test
results. It is apparent that the addition of GO nanosheets improves the flexural strength of all concrete
specimens with GO nanosheets (GCO2, GCO3, GCO4, GCO6, and GCO8). The flexural strength
enhances in a range from 2.77% to 15.60% at 28 days when the content of GO nanosheets increases
from 0.02% to 0.08%. However, the rate of increase in the flexural strength is generally less than that of
the compressive strength for concrete with GO nanosheet additions from 0.02% to 0.08%. Additionally,
it is also observed that the increasing rate before 14 days is greater compared with that from 14 to
28 days for a given GO nanosheets addition from 0.02% to 0.08%. The trend of the flexural strength of
the concrete specimens versus age at various GO nanosheets additions is shown in Figure 7.

It is widely accepted that the compressive and flexural strengths of concrete are related.
Various empirical relationships for predicting the flexural strength have been proposed, such as
the European [28] and China [29] codes. Table 5 shows the values of flexural strength and compressive
strength of the concrete specimens at 28 days, which were obtained from both the current experimental
study and the predicted models. It is apparent that there are differences between the experimental and
predicted values, most notably with those in EC-02, as illustrated in Figure 8 and Table 5.

Empirical models for predicting the flexural strength of concrete containing GO nanosheets based
on its compressive strength have not been reported in previous studies. Building on the experimental
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data of the flexural and compressive strengths listed in Table 5, and fitting the data (see Figure 8),
an empirical function with coefficients of determination r2 = 0.9345 was developed:

f f = 0.076 fc + 3.0612 (1)

where fc is the compressive strength at 28 days and ff is the flexural strength at 28 days. It should be
noted that this relationship may be subject to update when more data become available.
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Table 5. Flexural strength of concrete from the current study and as predicted by models (N/mm2) 1.

Mix ID
Compressive Strength

on Day 28 (fc)

Flexural Strength (ff)

Present Study
EC-02 [28]
f f = 0.201fc

China Code [29]
f f = 0.435 fc

0.713

GCO0 41.18 6.26 8.28 6.16
GCO2 46.47 6.43 9.34 6.72
GCO3 47.44 6.50 9.54 6.82
GCO4 50.16 6.77 10.08 7.09
GCO6 52.37 7.11 10.53 7.31
GCO8 55.22 7.24 11.10 7.60

1 fc = compressive strength at 28 days. f f = flexural strength at 28 days.
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3.4. Split Tensile Strength

The split tensile strength results for the concrete specimens at 7, 14, and 28 days are shown in
Table 6 and Figure 9. Each value presented is the average of three test results. The results show
that the split tensile strength of the specimens with a water-cement ratio of 0.5 generally increases
with increasing GO nanosheets content from 0.02% to 0.08%. It can also be seen that the split tensile
strength of the concrete increases when the GO nanosheet dosage increases from 0.0% to 0.03%, which
is followed by a gradual decrease of such strength with the increasing GO nanosheet dosage from 0.04%
to 0.08%. Furthermore, it is observed that the split tensile strength of concretes with GO nanosheet
content of 0.02% and 0.06% are comparable. It is important to note that the concrete specimen with a
GO nanosheet dosage of 0.03% (GCO3) shows the greatest enhancement, indicating that 0.03% is the
optimum value of GO nanosheet dosage for improving the split tensile strength of concrete with a
water-cement ratio of 0.5.

Table 6. Split tensile strength of concrete with varying GO nanosheet contents.

Mix ID GO (%)
Split Tensile Strength (MPa) Increase at

28 Days (%)7 Days 14 Days 28 Days

GCO0 0.00 1.98 2.35 2.62 0.00
GCO2 0.02 2.43 2.77 3.04 16.18
GCO3 0.03 2.58 2.98 3.27 24.81
GCO4 0.04 2.45 2.81 3.11 18.75
4CO6 0.06 2.41 2.76 3.04 15.95
GCO8 0.08 2.32 2.72 3.01 14.79
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4. Conclusions

The present study has led to the following conclusions:

(1) The slump of concrete containing GO nanosheets decreases with the addition of GO nanosheets
from 0.02% to 0.80% by weight of cement under a water to cement ratio of 0.5. However,
the workability of concrete is affected by both the additive and the GNPs. Therefore, further study
is needed to better understand the influence of GO nanosheets on the workability of concrete.

(2) The compressive strength of the concrete is enhanced by an increase at the level of GO nanosheets
from 0.02% to 0.08% for the water–cement ratio of 0.5. It may be associated with many factors,
such as the promotion of the hydration process, the “bridging effect” of GO nanosheets for
microcracks, etc. This will be subjected to further examination by SEM.

(3) The addition of GO nanosheets improves the flexural strength of concrete in a range from 2.77%
to 15.60% at 28 days when the content of GO nanosheets increases from 0.02% to 0.08%. However,
the rate of increase in the flexural strength is generally less than that of the compressive strength.

(4) The split tensile strength of the specimens with a water–cement ratio of 0.5 generally increases
with increasing GO nanosheets content. The results also indicate that 0.03% is the optimum value
of GO nanosheet dosage for improving the split tensile strength of the concrete specimens with a
water–cement ratio of 0.5.
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