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Abstract  1 

This paper investigated horizontal force production, foot kinematics and metatarsophalangeal 2 

(MTP) joint push-off axis use during acceleration in bend (anti-clockwise) and straight-line 3 

sprinting. It was hypothesised that bend sprinting would cause the left step push-off to occur 4 

about the oblique axis, resulting in a decrease in propulsive force. Three-dimensional 5 

kinematic and ground reaction force data were collected from nine participants during 6 

sprinting on the bend (36.5 m radius) and straight. Anteroposterior force was reduced at 38-7 

44% of stance during bend sprinting compared with the straight. This coincided with an 8 

increase in mediolateral force for the majority of the stance phase (3-96%) on the bend 9 

compared with the straight. In addition, a lower propulsive impulse was reported on the bend 10 

compared with the straight. Analysis of multi-segment foot kinematics provides insight into 11 

the possible mechanisms behind these changes in force production. Mean mediolateral centre 12 

of pressure position was more lateral in relation to the second metatarsal head in the left step 13 

on the bend compared with the straight, indicating the oblique axis was used for push-off at 14 

the MTP joint. Greater peak joint angles of the left foot were also reported, in particular, an 15 

increase in left step midfoot eversion and internal ankle rotation. It is possible these changes 16 

in joint kinematics are associated with the observed decrease in propulsive force. Therefore, 17 

practitioners should seek to strengthen muscles such as tibialis posterior in frontal and sagittal 18 

planes and ensure specificity of training which may aid in addressing these force reductions. 19 

Key words: 200 m, three-dimensional, athletics, curve, impulse, SPM 20 

 21 

 22 
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Introduction 23 

 During maximal velocity treadmill sprinting, faster speeds are associated with higher 24 

peak vertical forces
1
. However, rather than solely producing greater peak forces, faster speeds 25 

are more dependent on the ability to produce these forces rapidly, meaning the production of 26 

high vertical force over a short contact time is crucial
1
. During anti-clockwise bend sprinting, 27 

left step contact times are longer than straight-line sprinting
2-5

. As forces are only produced 28 

when the foot is in contact with the ground, it could be postulated that the associated ground 29 

reaction forces are affected.  30 

  During maximal velocity bend sprinting, lower peak resultant and vertical forces have 31 

been reported for the left step on the bend than the straight
6
. Additionally, inward forces were 32 

greater on the bend than the straight, with the left limb producing a greater peak inward force 33 

compared with the right on the bend
6
. This limb asymmetry in force production could hold 34 

important insights in understanding bend sprinting performance. Furthermore, the maximal 35 

velocity phase does not reflect the full requirements of a 200 m or 400 m race and 36 

consideration of the acceleration phase bend sprinting is required.  37 

  Similar to maximum speed
1
, straight-line acceleration performance is not simply 38 

reliant upon the production of large forces, but rather producing greater horizontal force as a 39 

proportion of the total amount of force applied
7,8

. Thus, 'ratio of force' has been proposed as a 40 

useful measure of performance during the acceleration phase of straight-line sprinting, 41 

placing emphasis on the orientation of force rather than magnitude
7-9

. The necessity to 42 

generate centripetal force during bend sprinting might also affect the magnitude of vertical 43 

and anteroposterior forces, and thus ratio of force, however, this is yet to be investigated. 44 

Therefore, ratio of force might provide important insight into performance changes between 45 

bend and straight sprinting.  46 



Page 5 of 27 

 

   Bojsen-Moller 
10

 observed the metatarsophalangeal joint (MTP) has two axes about 47 

which the foot can push off: transverse and oblique. The transverse axis runs through the 48 

heads of the first and second metatarsals (MTH1, MTH2), whereas the oblique axis runs 49 

through the second to fifth metatarsal heads (MTH5)
10

. Push-off at higher walking speeds 50 

uses the transverse axis, thus it is deemed more effective than the oblique axis at generating 51 

propulsive force in the direction of progression
10

. Churchill, Trewartha, Bezodis, Salo 
6
 52 

purported the inward lean of athletes during bend sprinting might promote the use of the 53 

oblique axis for the left ground contact (but the transverse axis for the right ground contact). 54 

Therefore, it is probable athletes are less effective at generating propulsive force when using 55 

the oblique axis, which has been suggested as a limiting factor in bend sprinting
6
. Indeed, the 56 

MTP joint has been highlighted as making an important contribution to performance in 57 

straight line sprinting
11,12

 and warrants investigation during bend sprinting.  58 

 If MTP joint push-off mechanics are influenced by sprinting on the bend, as a 59 

consequence the more proximal ankle joint also employ different compensatory mechanisms, 60 

as described by Bojsen-Moller 
10

. Kinematic adaptations have been reported elsewhere in the 61 

lower extremity, for example, both Alt, Heinrich, Funken, Potthast 
2
 and Churchill, Salo, 62 

Trewartha 
3
 reported an increase in peak left hip adduction on the bend compared with the 63 

straight at submaximal
2
 and maximal speeds

3
. Alt, Heinrich, Funken, Potthast 

2
 also reported 64 

greater peak left ankle eversion during bend sprinting. During the stance phase in sprinting, 65 

the foot is in a fixed position, thus motion at the foot and ankle is thought to pass proximally 66 

as part of a closed kinematic chain to the tibia, fibula and femur
13

. Therefore, adaptations 67 

occurring proximally in the kinematic chain during bend sprinting are likely associated with 68 

adaptations at the foot. Furthermore, asymmetric differences in strength of the muscle groups 69 

of the foot
14

 and high incidences of injuries to the foot
15

 have been reported in bend sprinting 70 
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athletes. Hence, better understanding the motion of the foot during bend sprinting might 71 

provide insight for practitioners to aid injury prevention strategies. 72 

  In summary, force adaptations during the bend sprinting acceleration are likely and 73 

might contribute towards a decrease in sprint performance. Furthermore, these changes could 74 

be associated with kinematic adaptations of the foot and ankle. Therefore, this study aimed to 75 

investigate horizontal force production, foot kinematics and MTP axis use during sprinting on 76 

the bend compared with the straight. A secondary aim was to evaluate between limb 77 

differences to identify the existence of any asymmetry during bend sprinting. It was 78 

hypothesised the oblique axis would be used by the left foot for push-off during bend 79 

sprinting, resulting in a decrease in propulsive force (and therefore sprint performance) in 80 

comparison with the straight. 81 

Methods 82 

Participants 83 

 Following institutional ethical approval, nine male sprinters (mean age 22 ± 4 years; 84 

body mass 71.48 ± 9.47 kg; stature 1.81 ± 0.06 m) volunteered to participate in this study. All 85 

athletes were experienced bend sprinters (200 and/or 400 m) and the inclusion criteria 86 

required a 200 m personal best of 23.5 s or faster (mean 22.70 ± 0.49 s, range 21.8 - 23.43 s) 87 

to standardise ability with previous research (Alt, Heinrich, Funken, Potthast 
2
 22.60 ± 0.33 s; 88 

Churchill, Salo, Trewartha 
3
 22.15 ± 0.93 s). At the time of data collection, all athletes were 89 

injury free and active in training. The study procedures were fully explained to participants 90 

who subsequently provided written informed consent.  91 

 92 

 93 
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Experimental set-up 94 

 The experimental set-up is demonstrated in figure 1. Kinematic data were collected 95 

using a 15-camera optoelectronic motion capture system (13 x Raptor model and 2 x Eagle 96 

model, Motion Analysis Corporation (MAC), Santa Rosa, CA, USA) sampling at 200 Hz. A 97 

right-handed lab coordinate system was defined using a rigid L-frame with four markers at 98 

known locations. Athletes ran primarily in the direction of the positive x-axis, where the 99 

positive y-axis was directed vertically upwards and the positive z-axis was mediolateral, 100 

pointing to the athletes’ right. The calibration volume (7 m long, 3 m wide and 1.5 m high) 101 

was located tangentially to the apex of the curve to record data through the 10 - 17 m section 102 

of the 30 m sprints. 103 

*** Figure 1 near here *** 104 

A modified Vicon Plug-in Gait (PiG) marker set (lower limb and trunk
16

) was used to 105 

model the torso, pelvis, thighs, shanks and feet segments (toebox, forefoot, rearfoot). Retro-106 

reflective markers (12.7 mm) were placed on the following anatomical landmarks: lateral 107 

malleolus, medial malleolus, shank (lower lateral 1/3), thigh (lower lateral 1/3 surface of the 108 

thigh), lateral femoral epicondyle, medial femoral epicondyle, greater trochanter, posterior 109 

superior iliac spine, anterior superior iliac spine, C7, T10, suprasternal notch, xiphoid 110 

process. Shoe-mounted markers (posterior, medial and lateral calcaneus, 1
st
 and 5

th
 metatarsal 111 

bases, MTH1, MTH2, MTH5 and head of the 2
nd

 toe) were used to represent the movement 112 

of the underlying structure of the foot. Further details of marker placement can be found in 113 

Judson, Churchill, Barnes, Stone, Brookes, Wheat 
17

. 114 

 Kinetic data were collected using a Kistler force plate (Model: 9287BA, 900 x 600 115 

mm) sampling at 1000 Hz. The force plate was embedded into the track surface and covered 116 



Page 8 of 27 

 

with a secured piece of synthetic track. The force platform was configured to produce a 117 

rising(/falling) edge 5 V signal at the onset of data collection, which was sampled by the 118 

motion capture system and used to temporally synchronise the kinematic and kinetic data. 119 

Protocol 120 

 Data were collected on a flat standard indoor track surface with a reconstructed bend 121 

replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 2008). Straight-122 

line trials were completed on a 30 m section of straight track. The order of experimental 123 

conditions were randomised to minimise order effects. Results from Morin, Slawinski, Dorel, 124 

de Villareal, Couturier, Samozino, Brughelli, Rabita 
18

 suggest the production of propulsive 125 

impulse in the first 20 m determines acceleration performance. Thus, it was decided to limit 126 

analysis to the 0 - 20 m section. Therefore, kinematic data were collected at 10-17 m within 127 

the present study to enable comparison with previous research. Furthermore, only one study 128 

has examined the acceleration phase of bend sprinting, analysing data at 12 m
19

, so the force 129 

plate was located at approximately 12 m. 130 

 Participants completed their typical competition warm-up before performing a 131 

maximum of six trials (three left, three right) at maximal effort for 30 m in each condition 132 

(bend and straight). Starting blocks were used alongside an 'on your marks, set, go' signal to 133 

maintain the experimental representativeness of the protocol. For force data, a minimum of 134 

one successful right and left step on the bend and one successful right and left step on the 135 

straight were achieved within these trials. A successful trial was defined as contact being 136 

made with the force plate without changes to running gait caused by ‘targeting’. To achieve 137 

this, one researcher modified the start location up to a maximum of one metre of the athletes 138 

based upon warm-up trials. Therefore, force data were collected in the range of 11 - 13 m. To 139 
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further reduce the likelihood of targeting, participants were not informed of the force plate 140 

location. Approximately eight minutes were allowed between trials to avoid the onset of 141 

fatigue
3
. Participants wore their own sprint spikes for the testing session.  142 

Data processing 143 

 Raw 3D marker coordinate data were analysed using Cortex software (version 5.3, 144 

Motion Analysis Corporation, Santa Rosa, CA, USA). Automatic gap filling, using a cubic 145 

spline, was performed. All gaps were <10 frames. A low-pass, fourth order recursive 146 

Butterworth filter was applied to raw marker positions. Residual analysis was used to 147 

determine the cut-off frequency (18 Hz). Visual 3D (version 6, C-Motion, Rockville, MD, 148 

USA) was used to define and construct segments, local coordinate systems and joint centres. 149 

Where possible, International Society of Biomechanics (ISB) guidelines
20,21

 were adhered to. 150 

However, the joint coordinate system for the multi-segment foot was defined in accordance 151 

with Cappozzo, Catani, Della Croce, Leardini 
22

. For centre of mass (CoM) calculations, 152 

body segment parameters were estimated from de Leva 
23

 and adjusted by 150 to 189 g 153 

representing the mass of individual participants' spiked shoe according to manufacturer 154 

specification.  Previous work established using a lower limb and trunk model was appropriate 155 

for whole body CoM calculations
16

. Kinetic data were analysed using Matlab (v2017a, 156 

Mathworks, Natick, USA). Force data were filtered with a low-pass, fourth order recursive 157 

Butterworth filter 150 Hz cut-off frequency, chosen with the use of residual analysis. 158 

 For force data, one successful trial per condition and per participant was analysed, as 159 

was the case with Churchill, Trewartha, Bezodis, Salo 
6
. Two participants were not able to 160 

record force data for one condition, so their force data was removed from the analysis.  For 161 

kinematic data, a mean of three trials was calculated for both the left and right foot on the 162 
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bend and straight. Touchdown and take-off events were identified using the mean plus two 163 

standard deviations of the last three seconds of vertical ground reaction force data (where 164 

there was zero load on the force plate) as a threshold
24

. For trials where force plate data were 165 

not available, the mean plus two standard deviations of the vertical coordinates of MTH5 in 166 

the static trial were used as a threshold for touchdown and take-off 
24

. All variables were 167 

calculated separately for the left and right step. Left and right steps were defined by the foot 168 

that initiated the step. Absolute speed was calculated using the first central difference 169 

technique from the horizontal distance travelled by the CoM of the lower limb and trunk 170 

model. Contact time was calculated at the time from touchdown to take-off. 171 

 For both bend and straight trials, horizontal forces in the global coordinate system 172 

were transformed into an instantaneous, body-fixed reference system. The body-fixed system 173 

was defined at each time point, oriented such that the x-axis pointed in the direction of the 174 

instantaneous centre of mass velocity vector, the y-axis pointed vertically upwards and the z-175 

axis pointed to the participant's right
25

 and expressed relative to body weight. Therefore, 176 

anteroposterior force was defined as the x-component of external force in the body-fixed 177 

coordinate system. Centre of mass data were upsampled from 200 to 1000 Hz using a cubic 178 

spline to enable the rotation of forces. Braking and propulsive impulses were calculated from 179 

absolute values and expressed relative to body mass. Ratio of force was calculated as the 180 

mean ratio of force in the direction of forward progression (relative to the direction of travel 181 

of the athlete's CoM) to resultant force during ground contact. 182 

 Adapted from Smith, Lake, Lees, Worsfold 
26

, MTP push-off axis was determined 183 

using centre of pressure (CoP) data. CoP data were first aligned with a local foot coordinate 184 

system. The mediolateral position of the CoP and MTH2 marker was then extracted during 185 

the propulsive phase of stance for each condition. The distance of the CoP from the MTH2 186 
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was then calculated for each frame, followed by calculation of the mean CoP position during 187 

the propulsive phase of stance and thus providing the mean mediolateral CoP position 188 

relative to MTH2. For ease of interpretation, data for the left foot were multiplied by -1, so a 189 

positive value indicated CoP was lateral to MTH2 and represented the oblique axis for both 190 

the left and right foot. Consequently, a negative value represents the use of the transverse axis 191 

(figure 2). 192 

*** Figure 2 near here *** 193 

 Joint orientation angles during the stance phase were defined as the distal segment 194 

relative to the proximal segment, using the joint coordinate system convention
27

. The analysis 195 

focussed on frontal and transverse plane variables since previous bend sprinting research has 196 

demonstrated that kinematic adaptations occur predominantly in the non-sagittal planes
2
. The 197 

following joint angles were chosen for analysis to allow assessment of the influence of foot 198 

position on force production: midfoot inversion and eversion, ankle inversion and eversion, 199 

ankle internal and external rotation.  Values for the left limb were multiplied by -1 for ease of 200 

interpretation. MTP angular velocity was included since Krell, Stefanyshyn 
11

 have shown a 201 

relationship between sprint performance and higher maximal rates of MTP extension. 202 

 Minimum detectable difference (MDD) indicates the magnitude of change required to 203 

be considered 'real'. Where the difference between conditions exceeds the MDD, it can be 204 

considered a change due to experimental condition and not natural athlete variance or 205 

protocol error. Therefore, peak angles and spatiotemporal variables were interpreted with 206 

reference to the MDD evaluated in the bend sprinting, identified by Judson, Churchill, 207 

Barnes, Stone, Brookes, Wheat 
17

.  208 

 209 
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Statistical analysis 210 

 Normal distribution of the data for each variable was confirmed by the Shapiro-Wilk 211 

normality test (P > 0.05).  212 

 For discrete variables, two way repeated measures ANOVAs were performed where 213 

condition (bend vs. straight) x limb (left vs. right) were analysed (P > 0.05). Due to a small 214 

sample size, the study may be statistically underpowered and so the chance of detecting a true 215 

effect was reduced. Therefore results were also interpreted using Hedges' g, which includes a 216 

correction for small sample sizes. Cohen 
28

 guidelines were used for the interpretation of 217 

effect size, where d < 0.20 represents a trivial difference, 0.20 ≥ 0.50 indicating a small 218 

difference, 0.50 ≥ 0.80 a moderate difference and ≥ 0.80 a large difference between means. 219 

 Statistical Parametric Mapping (SPM
29

) was used to statistically compare force 220 

production across the entire stance phase between conditions. Force data were first 221 

normalised to 101 data points, representing 0-100% of the stance phase. An SPM repeated 222 

measures two way ANOVA was then performed separately at each of the 101 time points 223 

resulting in the output of a statistical parametric map (SPM{F}). If SPM{F} exceeded the 224 

critical threshold, forces at these specific nodes could be considered different. A collection of 225 

consecutive nodes exceeding the threshold and considered significant is termed a 'supra-226 

threshold cluster'. Following methods used by Colyer, Nagahara, Salo 
30

, clusters of fewer 227 

than five nodes were considered unlikely to be meaningful. SPM analyses were implemented 228 

using open source SPM code (SPM1D open-source package, spm1d.org) in MATLAB 229 

(v2017a, Mathworks, Natick, USA). 230 

Results 231 

Performance descriptors  232 
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 There was a 2% reduction in absolute speed on the bend compared with the straight 233 

for the left step (g = 0.52, Table 1). During bend sprinting, absolute speed was faster during 234 

the right step than the left step (g = 0.48, Table 1). However, there was no significant main 235 

effect for condition, F (1, 8) = 0.574, P = 0.47 or limb F (1, 8) = 2.994, P = 0.122. For contact 236 

time, there was a significant main effect for condition, F (1, 8) = 6.111, P = 0.039 (g = 1.50 left 237 

step; 0.27 right step), with contact being longer on the bend than straight. A significant 238 

condition x limb interaction was also reported, F (1, 8) = 7.801, P = 0.023 showing the increase 239 

in contact time on the bend was greater in the left step compared with the right step (d = 240 

0.56).  241 

*** Table 1 near here *** 242 

Anteroposterior, mediolateral force and ratio of force 243 

 The profiles of anteroposterior force signals during straight-line and bend sprinting 244 

were similar for the majority of the stance phase (Figure 3). However, one supra-threshold 245 

cluster (37-44%) exceeded the critical threshold of F = 17.238 for the main effect of 246 

condition, where anteroposterior force was lower on the bend compared with the straight in 247 

both the left and right steps. The probability that a supra-threshold cluster of this size would 248 

be observed in repeated random samplings was P < 0.001.  249 

 One supra-threshold cluster exceeded the critical threshold (F = 15.309) for main 250 

effect of condition when comparing mediolateral force on the bend and straight (3-96%, P < 251 

0.001). This was due to an increase in mediolateral force production across the majority of 252 

the stance phase on the bend (see Figure 4). There was also a significant main effect for limb, 253 

with two supra-threshold clusters found at 1-12% and 75-100% of stance. At 1-12%, 254 
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mediolateral force was greater in the right step than left, whilst at 75-100% of stance, the left 255 

step was greater than the right. 256 

*** Figure 3 near here *** 257 

*** Figure 4 near here *** 258 

 There was a main effect for condition on propulsive impulse F (1, 6) = 8.53, P = 0.02 (g 259 

= 0.93 left step; 0.78 right step, Table 2), with the straight resulting in a greater propulsive 260 

impulse than the bend. However, there was no condition x limb interaction, F (1, 6) = 0.708, P 261 

= 0.433. For braking impulse, a 27% increase with large effect size (g = 1.29, Table 2) was 262 

reported in the left step on the bend relative to the straight. However, the main effect for 263 

condition was not significant, F (1, 6) = 6.272, P = 0.05. For mean ratio of force there was a 264 

significant main effect for condition, F (1, 6) = 11.647, P = 0.014 (g = 1.72 left step; 1.16 right 265 

step, Table 2), with the straight resulting in a higher mean ratio of force than the bend.  There 266 

was no condition x limb interaction for mean ratio of force (F (1, 6) = 2.628, P = 0.156). 267 

*** Table 2 near here *** 268 

 269 

MTP push-off axis and multi-segment foot kinematics 270 

 There was a significant condition x limb interaction for COP position, F (1, 6) = 271 

127.878, P < 0.001. The mean mediolateral COP position was more lateral in the left step on 272 

the bend compared with the straight (Figure 5). This indicates the oblique axis was in use 273 

during the left step on the bend, while the transverse axis was used for all other conditions.  274 

***Figure 5 near here*** 275 
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 There was a significant condition x limb interaction for peak ankle internal rotation, 276 

F (1, 8) = 17.091, P = 0.003. Left step peak ankle internal rotation was greater on the bend, 277 

compared with the straight (g = 1.70) and the right step on the bend (g = 1.95). Left step peak 278 

ankle eversion was 55% greater on the bend than straight (g = 0.88), however, no significant 279 

main effect for condition was reported, F (1, 8) = 1.247, P = 0.297.  For peak ankle inversion, 280 

there was a significant condition x limb interaction, F (1, 8) = 12.707, P = 0.007, due to a 281 

decrease in left step peak ankle inversion on the bend compared with the straight. For peak 282 

midfoot eversion, there was a significant condition x limb interaction (F = 11.768, P = 0.009) 283 

due to an increase in the left step on the bend compared with the straight (g = 0.79), and a 284 

decrease in the right step on the bend compared with the straight g = 0.72). A significant 285 

main effect for limb in peak midfoot eversion (F (1, 8) = 9.166, P = 0.016, g = 1.73) was also 286 

reported.  287 

 A significant condition x limb interaction was reported for peak midfoot inversion, F 288 

(1, 8) = 6.238, P = 0.037, due to an increase in right step peak midfoot inversion on the bend 289 

relative to the straight and the left step on the bend (g = 0.90).  There was no significant 290 

condition x limb interaction for MTP angular velocity (F (1,8) = 1.672, P = 0.232), however a 291 

moderate effect size between the left step on the bend and straight was reported (g = 0.50).  292 

*** Table 3 near here *** 293 

Discussion and Implications 294 

  The aim of this research was to investigate horizontal force production, foot 295 

kinematics and MTP joint axis use during sprinting in the acceleration phase on the bend 296 

compared to the straight. The left foot was found to use the oblique axis for push-off at the 297 

MTP joint. This coincided with a decrease in anteroposterior force and propulsive impulse 298 
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and an increase in peak eversion of the midfoot and ankle. These findings support the study's 299 

hypothesis.  Moreover, although non-statistically significant, a small (2%, g = 0.52) reduction 300 

in left step absolute speed on the bend compared with the straight was observed. The decrease 301 

in absolute speed is lower than the 4.7% reduction reported by Churchill, Salo, Trewartha 
3
 302 

during maximal speed, suggesting the effect of the bend during the acceleration phase 303 

accumulates and results in a greater loss of speed during the later maximal speed phase.  304 

 A decrease in propulsive force on the bend compared with the straight was observed, 305 

with the supra-threshold cluster occurring at 37-44% of the stance phase. Colyer, Nagahara, 306 

Salo 
30

 found better performances in straight-line sprinting were associated with the 307 

production of high amounts of propulsive force during the mid-late propulsive phase of the 308 

eighth step (55-85% of stance). As the sprint distance increased, these associations occurred 309 

earlier in the stance phase (nineteenth step: 19 - 64% of stance
30

). Therefore it is reasonable 310 

to assume that associations with sprint performance and propulsive force at the tenth or 311 

eleventh step as measured in the present study will occur earlier in the stance phase than the 312 

55-85% reported by Colyer, Nagahara, Salo 
30

 at the eighth step.  Thus, the results of the 313 

present study suggest the ability to produce propulsive force is reduced on the bend and 314 

occurs at a crucial time point during the stance phase which might impact upon acceleration 315 

performance.  316 

 In addition to the reduction in propulsive force, there was a decrease in propulsive 317 

impulse, particularly during the left step where a large effect size was found (g = 0.93). Right 318 

step propulsive impulse was also reduced on the bend compared to the straight. However, the 319 

moderate effect size suggests this was not to the same extent (propulsive impulse g = 0.78).  320 

Morin, Slawinski, Dorel, de Villareal, Couturier, Samozino, Brughelli, Rabita 
18

 discussed 321 
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how acceleration capability in faster sprinters was characterised by 'pushing more' but not 322 

necessarily 'braking less'. This concept suggests producing higher propulsive impulse is of 323 

greater importance than producing lower braking impulse, particularly in the first twenty 324 

metres of acceleration. This is supported by Colyer, Nagahara, Salo 
30

 who observed a 325 

positive association between better performances and higher amounts of anteroposterior force 326 

during the mid-late propulsion phase of stance. During bend sprinting, the ability to produce 327 

propulsive impulse was restricted, and although a significant effect was not reported for 328 

braking impulse, large effect sizes were observed when comparing left step on the bend and 329 

straight (g = 1.29). This suggests a greater braking impulse was experienced in the left step 330 

on the bend in comparison to the straight. Unlike Morin, Slawinski, Dorel, de Villareal, 331 

Couturier, Samozino, Brughelli, Rabita 
18

, acceleration performance during bend sprinting is 332 

characterised by 'pushing less' and 'braking more' than the straight, particularly with the left 333 

foot. Therefore, propulsive force production of the left foot may be a limiting factor for 334 

acceleration performance on the bend. 335 

 However, these reductions in propulsive force observed during bend sprinting are a 336 

necessary consequence of the additional requirement to produce centripetal force. In order to 337 

achieve this requirement, and stay in the correct lane, mediolateral force was greater on the 338 

bend compared to the straight for the majority (3-96%) of the stance phase. Whilst necessary 339 

for bend sprinting, it is possible the introduction of mediolateral force is a contributing factor 340 

for the decrease in ratio of force found during bend sprinting. In addition, use of SPM 341 

revealed mediolateral force during bend sprinting was greater in the right step compared to 342 

the left during 1-12% of the stance phase, whereas later in stance (75-100%), mediolateral 343 

force was greater in the left step than right, thus further establishing the left foot as fulfilling a 344 

different role to the right foot during bend sprinting. These asymmetries demonstrate the 345 
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benefit of SPM analysis which has provided insight that may have been lost with the analysis 346 

of discrete values. 347 

 In comparison with straight-line sprinting, bend sprinting elicited an 11% and 22% 348 

decrease in mean ratio of force for the left and right steps, respectively. A higher ratio of 349 

force has been associated with better acceleration performance
9
. This reinforces the notion 350 

that athletes apply propulsive force less effectively during bend sprinting and therefore the 351 

generation and orientation of force appear a limiting factor to acceleration performance on 352 

the bend when compared with straight-line sprinting. It appears this may be due to the 353 

combination of a reduction in propulsive force and an essential increase in mediolateral force. 354 

Whilst the right step experienced a decrease in ratio of force on the bend, right step ratio of 355 

force was 8% greater than the left step on the bend (g = 0.88). Thus, there appear to be 356 

asymmetries in force production of the left and right limb during bend sprinting, with the 357 

right being more effective at propulsive force production.  358 

 Ratio of force analysis provides an overview of force orientation and a reduction was 359 

reported in both left and right steps on the bend compared with the straight. This finding is 360 

reinforced when considering impulse, which as the product of force and time acts as a metric 361 

to evaluate force application. Reductions in the magnitude of force despite longer contact 362 

times resulted in a decrease in propulsive impulse that was greater in the left step. Therefore, 363 

it appears the decrease in acceleration performance at approximately12 m is largely due to 364 

changes in left step force orientation and application. 365 

 A mechanism behind the reported changes in force production during bend sprinting 366 

might be the use of different MTP joint push-off axes. Results showed that left step mean 367 

mediolateral COP position was more lateral on the bend than the straight, suggesting the 368 
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oblique axis is used to push-off with the left step during bend sprinting, supporting the 369 

hypothesis put forward by Churchill, Trewartha, Bezodis, Salo 
6
. The oblique axis is 370 

considered less effective for push-off at high speeds
10

. However, during bend sprinting, 371 

oblique axis use seems a necessary adaptation (dictated by the need to produce centripetal 372 

force and change in the segmental arrangement of the lower limb) required to enable the 373 

change of direction. The mean mediolateral COP position for the right step on the bend was 374 

more medial than the straight, thus transverse axis was in use. This reinforces the notion that 375 

the right step and left steps perform different functions during bend sprinting. Furthermore, 376 

results suggest there may be a decrease in MTP joint angular velocity during the left step on 377 

the bend compared to the straight. Krell, Stefanyshyn 
11

 established that faster male sprinters 378 

elicited higher maximal rates of MTP extension. Therefore, decreased MTP joint angular 379 

velocity might contribute to the decrease in sprint performance found on the bend. Further 380 

research is required to strengthen this conclusion. 381 

 Bend sprinting also induced kinematic adaptations in the multi-segment foot.  In 382 

particular, there was an increased left step peak midfoot eversion combined with increased 383 

left step peak internal ankle rotation on the bend compared to the straight. Although there was 384 

no significant main effect, a large effect size suggests a trend towards an increase in left step 385 

peak ankle eversion angle (g = 0.88). Eversion occurs during the first 15% of stance due to 386 

the eccentric contraction of invertors such as tibialis posterior and anterior
13

. As bi-planar 387 

muscles, whilst they are predominantly invertors they also have a role to play in 388 

plantarflexion of the foot and ankle
31

. Simulations
32

 and later experimental data
33

 suggested 389 

kinetics of the ankle joint play a dominant role in the acceleration of the centre of mass 390 

during the stance phases of early acceleration in straight-line sprinting. Therefore, as 391 

previously supposed by Chang, Kram 
34

, a joints capacity to contribute to the production of 392 
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propulsive forces in the sagittal plane may be restricted by the frontal and transverse plane 393 

adaptations reported. It appears the increased left step eversion and ankle internal rotation 394 

place the foot in a disadvantageous position, compromising the ability to produce propulsive 395 

force.  396 

 Hamill, Murphy, Sussman 
35

 theorised the left limb would most likely suffer injuries 397 

such as plantar fasciitis or post-tibialis tendonitis as a consequence of bend running and 398 

repeated exposure to stress in the frontal and transverse planes. The results of the current 399 

study support these possible injury aetiologies. Repetitive loading and excessive eversion are 400 

considered a risk factor for plantar fasciitis
36

. The increased eversion of the left midfoot and 401 

ankle found during bend sprinting may place additional stress on tibialis anterior which 402 

provides a 'stirrup' for the arch under the foot
31

 and may, therefore be a contributing factor  in 403 

the onset of plantar fasciitis.  404 

 It is acknowledged the use of shoe-mounted markers to represent movement of the 405 

underlying bones of the foot could be associated with some inaccuracies of joint kinematics, 406 

as observed by Sinclair 
37

 during running. However, sprint spikes tend to have a tight fit 407 

which helped minimise this risk. Furthermore, this approach ensured a more representative 408 

experimental design (see Pinder, Davids, Renshaw, Araujo 
38

) in comparison to other options 409 

such as bone-mounted markers. Whilst cutting holes in shoes enables skin-mounted markers, 410 

this compromises the integrity of the shoe and prevents athletes from wearing their own 411 

spikes. In addition, although in line with previous bend sprinting literature
2,3,6

, the sample 412 

size is small. Therefore, as Knudson 
39

 suggest, replication studies are encouraged to further 413 

advance our findings. 414 

 415 
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 Perspectives 416 

 The results demonstrate a reduction in the ability to produce anteroposterior force 417 

during bend sprinting. There was also an increase in mediolateral force, resulting in a lower 418 

average ratio of force, suggesting athletes apply force less effectively during bend sprinting. 419 

In the left step, the oblique axis was used for push-off at the MTP joint, combined with 420 

increased midfoot eversion and ankle internal rotation. Therefore, it appears athletes are 421 

restricted by their ability to produce force in the non-sagittal planes due to a complex 422 

interaction of adaptations at the joints of the ankle and foot. Practitioners should, therefore, 423 

seek to strengthen muscles in frontal and sagittal planes which may aid in addressing these 424 

reductions. In addition, as highlighted by Churchill, Salo, Trewartha 
3,

Churchill, Trewartha, 425 

Salo 
40

, undertaking sprint training on the bend to ensure specificity, is essential. Finally, it is 426 

possible that repeated stress in these planes may be a precursor to injury. Thus, strengthening 427 

muscles, such as the tibialis posterior and tibialis anterior may have implications for injury 428 

prevention as well as performance improvements. 429 

 430 
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Table 1 Group mean values (± standard deviation) and effect sizes (% difference) for performance measures of the left and right step.  

 Straight Bend 
Effect size (g) 

(% difference) 

 Left Right Left Right 
Left vs right 

straight 

Left vs right 

bend 

Straight vs bend 

left 

Straight vs bend 

right 

Absolute speed (m/s) 7.96 ± 0.23 8.00 ± 0.20 7.81 ± 0.30 7.89 ± 0.34 0.12 (0%) 0.48 (2%) 0.52 (2%) 0.05 (0%) 

Contact time (s) 0.107 ± 0.007 0.111 ± 0.012 0.119 ± 0.007 0.114 ± 0.008 0.34 (4%) 0.57 (4%) 1.50 (11%) 0.27 (3%) 

         

 

 

Table 2 Group mean values (± standard deviation), effect sizes (% difference) for anteroposterior force variables of the left and right step.  

 Straight Bend 
Effect size (g) 

(% difference) 

 Left Right Left Right 
Left vs. right 

straight 

Left vs. right 

bend 

Straight vs. bend 

left 

Straight vs. bend 

right 

Relative braking impulse 

(m/s) 
-0.08 ± 0.02 -0.09 ± 0.03 -0.11 ± 0.01 -0.10 ± 0.03 0.15 (6%) 0.27 (7%) 1.29 (27%) 0.37 (15%) 

Relative propulsive impulse 

(m/s) 
0.59 ± 0.06 0.65 ± 0.12 0.55 ± 0.06 0.58 ± 0.06 0.65 (10%) 0.45 (5%) 0.93 (7%) 0.78 (12%) 

Mean ratio of force (%) 19.13 ± 1.30 23.50 ± 5.52 16.94 ± 1.12 18.44 ± 2.03 1.03 (19%) 0.88 (8%) 1.72 (11%) 1.16 (22%) 
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Table 3 Group mean values (± standard deviation) and effect sizes (% difference) for centre of pressure and midfoot kinematics of the left and right step.  

 Straight Bend 
Effect size (g) 

(% difference) 

Peak angle  (°) Left Right Left Right Left vs right straight Left vs right bend Straight vs bend left Straight vs bend right 

Midfoot inversion  -7 ± 5 -7 ± 5  -5 ± 4 -12 ± 4 0.03 (6%) 1.48 (63%) 0.30 (41%) 0.90 (69%) 

Midfoot eversion  0.3 ± 5 -0.3 ± 5 4 ± 3 -4 ± 4 0.13 (209%) 1.73 (184%) 0.79 (956%) 0.72 (1271%) 

Ankle inversion  14 ± 9 10 ± 9 11 ± 9 12 ± 9 0.34 (48%) 0.06 (6%) 0.22 (33%) 0.19 (16%) 

Ankle eversion  -2 ± 9 -4 ± 10 -5 ± 9 -3 ± 10 0.15 (36%) 0.12 (23%) 0.88 (55%) 0.02 (8%) 

Ankle internal rotation  2 ± 4 3 ± 5 12 ± 7 1 ± 7 0.25 (44%) 1.95 (562%) 1.70 (346%) 0.46 (108%) 

Ankle external rotation  -10 ± 5 -10 ± 3 -5 ± 5 -9 ± 5 0.13 (9%) 0.85 (42%) 0.95 (50%) 0.20 (6%) 

MTP angular velocity (°/s) 776  ± 239 732  ± 120 694  ± 168 704  ± 176 0.25 (6%) 0.06 (2%) 0.50 (11%) 0.15 (4%) 

         

 

Figure 1: Plan view of experimental set-up (not to scale). 

Figure 2: Right foot representation of the transverse (solid line          ) and oblique (dashed line - - -) axes of the foot. Where T2 represents marker at the second toe and MTH1, 2 and 5 the first, 

second and fifth metatarsal heads, respectively.  

Figure 3: Group mean anteroposterior force for the left (red) and right (black) steps on the bend (dashed line - - -) and straight (solid line         ). Shaded areas represent supra-threshold clusters 

indicating a significant main effect for condition. 

Figure 4: Group mean mediolateral force for the left (red) and right (black) steps on the bend (dashed line - - -) and straight (solid line        ). Shaded areas represent supra-threshold clusters 

indicating a significant main effect for condition (left figure) and limb (right figure). A negative force represents inward force on the bend and lateral force on the straight. 

Figure 5:  Mean mediolateral centre of pressure position relative to second metatarsal head during the propulsive phase. 
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