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Abstract

A History Channel modern marvels broadcast aired in 2004 opened with this
statement ‘Our four most important natural resources are air, wafer, petroleum,
and rubber . In this list, the last element surprised everyone. No wonder the nat-
ural rubber latex is an essential material in today’s modern world. An important
application of natural rubber is medical gloves. Reducing thickness of gloves to
match the natural feel of human hands is always a challenge while maintaining

structural integrity.

A simple testing methodology is required to understand the mechanical behaviour
of the thin latex sheets. A uniaxial test and a bulge test with circular and rectan-
gular bulge windows is a simple combination to characterize the mechanical be-
haviour of this polymer sheet. Poisson’s ratio is directly measured from simple

tensile test using Digital Image Correlation (DIC).

The value of Poisson’s ratio is used to critique the bulge test results and under-
lying assumptions of bulge test analytical models. A bulge test with a sufficiently
long rectangular bulge window creates a plane-strain condition, which simplifies
the analytical treatments, and an analytical model of bulge pressure and maxi-
mum bulge height gives plane-strain modulus. Similarly, a circular bulge window
creates a state of equibiaxial strain and a similar analytical model gives biaxial

modulus. Both analytical models of the bulge test also give residual stress.

Material samples from gloves (thickness 125 um) have been characterized with
biaxial modulus of 1.863 + 0.11 MPa, plane-strain modulus of 1.171 + 0.24 MPa
and a biaxial residual stress of 0.292 + 0.052 MPa. The value of Poisson’s ratio a
mean value of 0.385 + 0.003.

Tensile test samples have been cut along three different directions and tensile
data shows that the material is isotropic and an interesting relationship between

biaxial data and plane-strain data is developed to calculate the anisotropy.

Finally, stress-strain data from these three tests is used to calibrate hyperelastic
material models in ANSYS.
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1. Introduction

This chapter includes a brief introduction to latex and processing of latex prod-
ucts. It also includes a brief about characterizing and modelling a thin latex poly-

mer film.



1.1 What is Latex?

Natural rubber is widely used in many aspects of life on a daily basis. It possesses
some very distinct properties, which put it into a special position among other
types of rubber, biopolymers and other materials. The important qualities of rub-

ber are listed below: (Kohjiya et al., 2014)

1. It is the only bio-synthesised (biomass) rubber by a tropical plant, Hevea
brasiliensis. By means of tapping into the trunk of this tree, a milky liquid
called Latex is collected into a container that is hung in a suitable position
around the trunk of the tree.

2. ltis the only polymeric hydrocarbon among biopolymers, i.e. ¢/s-1, 4-pol-
yisoprene that is composed of carbon and hydrogen atoms alone. All other
biopolymers contain other covalently bonded elements as opposed to im-
purities. The covalently bonded elements include nitrogen, oxygen and
sulphur, in addition to carbon and hydrogen.

3. Although many different types of synthetic rubbers (biopolymers) have
been developed industrially, natural rubber has not yet been chemically
synthesised.

4. Being an agricultural product, natural rubber is renewable and carbon neu-
tral. It begins with carbon dioxide as the starting material and decomposes
to carbon dioxide at the end of its life cycle. Hence, it does not contribute
to global warming.

5. ltis the elasticity of natural rubber, which makes it scientifically important.

It is an essential material for automobile tyres, among other things.



In 1839, Charles Goodyear developed ‘vulcanisation of rubber (Goodyear,
1839). Vulcanisation is the process of cross-linking the rubber molecules with
sulphur to give a stable network structure. This process made relatively less use-
ful material into an industrially important material that transformed manufacturing

especially during times of war.

However, the following points must be taken into consideration while trying to

understand the mechanical behaviour of this natural material.

1. Since it is agricultural product, the exact percentage of different constitu-
ents vary from tree to tree.

2. Geographic location and hence the weather of the area where the rubber
tree is grown affects the chemical composition of the natural latex.

3. Processing techniques have been improved over decades of research and
development to improve stability, mechanical behaviour, aesthetic proper-

ties, durability etc.

Therefore, it is usual to see some variation in the characterized mechanical be-

haviour of the natural latex material.

For a more detailed and very recent (2014) discussion on Natural Rubber Latex
(NRL), the reader is referred to a book (Kohjiya et al., 2014) authored by over a

dozen experts from all over the world and topics include:

1. Natural sources and different types of raw materials used in the production
2. Details of biosynthesis, processing and composition
3. Improvements in the sustainable production and recycling and reusing of

this strategic material



To help understand the mechanical behaviour and characterization of latex
gloves, it is important to understand the processing of latex gloves in a glove

manufacturing industry.

1.2 Processing latex gloves

Even though most of the manufacturing process of medical gloves is automated
by machines, it is still fairly labor intensive process. For instance, the exam gloves
are typically packaged into boxes by hand. For this reason, the cost of labor play
a significant role in determining where medical exam gloves are manufactured to

ensure the glove factory remains competitive in the global market.

The key element in the glove manufacturing factories is the quality and types of
formers used. Therefore, it is not uncommon for some glove factories to produce
medical examination gloves as well as industrial gloves, surgical gloves and even

condoms.

All images in this section are from science channel’s how it is made - rubber-

gloves TV program (Channel, 2013)

1.2.1 Cleaning the Glove Formers

Quality production of exam gloves include making sure the environment through-
out the glove factory is clean. This also means formers must be cleaned to ensure
there are no dirt or debris anywhere. Not cleaning the glove formers would cause
the final product to possibly have defects like holes. Exam glove-formers are
molds in the shape of a hand made from ceramic material. To clean the glove
formers, an acid bath is used by dipping the formers in them and then rinsing with

clean water. The formers are then dipped into an alkaline bath to neutralize the



acid, and again rinsed in clean water. Afterwards, the formers are brushed to
ensure the surface of the formers are consistent. This is an important step. Fac-
tories brush the formers to eliminate pin holes on the latex gloves. All these clean-

ing stages are shown the Figure 1-1.
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Figure 1-1 Multiple stages of cleaning aglove formers after a previous run. (a)
formers taking a dip in a water tank (b) Formers are being cleaned in a chlorine
tank (c) Revolving brushes scour the hard to reach ceramic-former surfaces (d)
formers are being dried in air while doing a swivel motion.

Glove factories have multiple production lines that produce batches of disposable
gloves. A dirty former can result in the manufacturer being forced to trash the

entire batch of exam gloves. For this reason, glove formers are regularly in-

spected and cleaned before the molds are dipped into coagulant tanks.



1.2.2 Former Dipping into Chemicals and Latex Coagulant

Once cleaned, the glove formers are first dipped into a chemical bath. This chem-
ical forms a film onto the formers and it is critical stage, as latex will not adhere

to the ceramic formers otherwise.

Next, the ceramic formers are given a bath in a coagulant tank (Figure 1-2) to
help the latex mixture adhere to the formers and help ensure the latex is distrib-
uted evenly. The coagulant tank stage determines the thickness of the latex exam

glove. The thicker the requirements for the disposable gloves are, the longer the

formers will travel in the coagulant tank.

Figure 1-2 Glove formers being dipped to form exam gloves



1.2.3 Volcanizing the Rubber and Leaching

After the formers are dipped into the latex mixture, they eventually travel through
a series of ovens to dry the gloves. This process is known as vulcanization (Fig-
ure 1-3). Vulcanization gives the rubber latex its strength and elasticity. This pro-
cess modifies the polymer by forming bridges (cross-links) between individual

polymer chains.

Figure 1-3 Hand formers with latex film entering over for curing (volcanizing)

After drying the latex mixture, the gloves are put through a leaching line to remove
residual chemicals and proteins from the surface of the gloves. A good leaching
line should be long, so latex proteins can be more effectively washed out. The
water should also be hot and fresh to dissolve proteins better. This step is crucial
to minimize the occurrence of latex sensitivity. The key to making a good medical
glove is to have a good leaching line. Factories that have bad leaching lines will

probably be dirty in addition to the leaching line being short.



Figure 1-4 Latex gloves leeched to clean gloves and to remove the chemical

residues and protiens.

The glove leaching stage is one area factories will vary depending on the quality
of exam gloves that are produced. Implanting a long leaching stage is expensive
because there is an opportunity cost in the number of disposable gloves the pro-
duction line can produce. The best factories will constantly circulate fresh water

adding to the cost of making exam gloves marginally more expensive.

1.2.4 Lip Rolling and Stripping Latex Gloves off

Lips (or beads) are rolled on the top of the gloves to facilitate the removal of

gloves from formers. These lips also help to put the gloves on and off.



Next, the latex gloves are stripped off the formers. Note that in the Figure 1-5, the
workers wear exam gloves and hair coverings so the medical exam gloves being

manufactured do not become contaminated.

Figure 1-5 Workers Removing Latex Gloves From Formers



1.2.5 Checking for Defects using Air and Water Tests

One of the quality tests factories will use to meet AQL (Acceptable Quality Level)
standards for manufacturing latex exam gloves is the air test. The factories will
inflate the latex gloves with air to visually detect any defects placing close atten-
tion to the fingers. Air testing the exam gloves is quite effective because the work-

ers can see how the latex material spreads as the glove inflates.

Figure 1-6 Worker testing gloves for holes using air test

The FDA (Food and Drug Authority) requires the testing of medical exam gloves
for pinholes, which can best be detected in a water test (Figure 1-7). Each exam

glove is filled with 1000 ml of water and examined for leaks.
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Figure 1-7 Worker testing medical gloves for holes using water test.

1.2.6 Packing the Exam Gloves in Boxes

The final step in manufacturing latex gloves is to pack the exam gloves in boxes.
Factories who are meticulous about quality will pack the exam gloves flat, one on
top of the other. This reduces waste, makes gloves easier to take out of the box,
and minimizes the bare human hand’s touch. Think of how easy it is to dispense
tissue from a tissue box. The same idea is applied to exam glove box dispensers.
Reputable companies will make sure that every exam glove is packaged using

the layered technique.

1.3 Characterizing a Thin Polymer Sheet

Natural rubber is still preferred for many applications, probably because of its
unique ability of strain-induced crystallisation (Kohjiya et al., 2014). Stretching a
piece of natural rubber at room temperature turns the amorphous rubber into a
semi-crystalline material. These crystallites are highly oriented along the tensile
direction and, acting like filler particles or crosslinks, tremendously increase the

tensile strength (Yeh & Hong, 1979).
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Developing an understanding of mechanical properties of thin latex sheets is vital
in predicting their response under various kinds of loading conditions, which
these thin sheets experience commonly during their applications. The mechani-
cal properties of thin latex sheets have been improved mainly because of secret
combinations of ingredients and processing techniques over the past couple of
decades. The main drive behind these developments is ever increasing demand

of natural latex rubber based products.

Natural latex rubber is extensively used in different medical devices. One of the
main medical use of this material is as medical gloves. Apart from helping to mit-
igate the spread of germs from touching by bare hand, the natural feel of human
hand contact with body parts and other tools and objects, called the tactile per-
formance, is another important requirement. The thickness of the medical gloves
plays a crucial role when considering tactile performance. The thinner the medical
gloves the better, but without compromising the mechanical strength and struc-
tural integrity. Therefore, there are many commercially available glove brands,
which use a commercially confidential combination of additive ingredients and/or
processing techniques to gain competitive advantage in the market. The mechan-
ical properties of thinner material deviates from that of the bulk materials, be-
cause of the sample dimensions are in an order of magnitude where physical

effects like dislocation motion, takes place (Arzt, 1998).

In light of the above discussion, it almost becomes imperative after a decade or
so to characterize the mechanical behaviour of thin latex films used in products

where tactile performance is vital besides structural integrity.
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Through an in depth review of the literature on polymers thin film characterization
methods (discussed in section 2.1.8), a bulge test is chosen. A bulge test is also
reported by some other names in the literature; like bubble inflation test (Galliot
& Luchsinger, 2011) or bubble-inflation-technique (Reuge, Schmidt, Maoult,
M.Rachik, & Abbe, 2001) and pressurized blistering test (Williams, 1997). The
bulge test has been developed based upon the seminal work by Beams (Beams,
1959). It is a well-developed technique and performing the experiment is rela-
tively easy. Many common bulging geometries, called bulge windows, can be
used with the same bulge experimental setup by changing only a few parts of the
bulge test setup. A state of plane-strain (width-height plane) can be achieved by
using a sufficiently long rectangular bulge window (Vlassak & Nix, 1992) and a
state of equibiaxial stress and strain is achieved at the centre of the bulge-surface
from a circular bulge window (Reuge et al., 2001). Analytical solutions involving
bulge pressure and maximum bulge height for infinitely long rectangular and cir-
cular windows give plane-strain modulus and biaxial modulus through curve fit-

ting.

Residual stress can be introduced in thin films including polymer thin films
through volume changes, which may take place in association with crosslinking

or crystallization mainly due to:
1. Temperature changes
2. Variation of atmospheric moisture contents

3. Processing techniques

13



Therefore, both analytical models (rectangular and circular bulge-windows) of
bulge pressure and maximum bulge height (p — h,) mentioned above include a
compensation term for residual stress and are similarly evaluated through curve

fitting.

Therefore, the whole reliability of a bulge test’s results depends upon accurate
measurements of bulge pressure and maximum bulge height. Accurate pressure
measurement is not a big challenge but the accurate measurements of out of
plane bulge height is not as simple. Several methods to measure the bulge height

have been reported in the literature:

1. Interferometers: (Huang, Lou, Tsai, Wu, & Lin, 2007; Huston, Sauter, Bunt,
& Esser, 2001; Maier-Schneider, Maibach, & Obermeier, 1995;
Tsakalakos, 1981; Wu, Fang, & Yip, 2004; Xiang & Chen, 2005; Y. H. Xu

et al., 2000; Zheng et al., 2000)

2. Atomic force Microscope (AFM): (Schweitzer & Goken, 2007)

3. Microscope: (Kalkman, Verbruggen, Janssen, & Groen, 1999; J. Neggers,
Hoefnagels, Hild, Roux, & Geers, 2014; Orthner, Rieth, & Solzbacher,

2010; Pan, Lin, Maseeh, & Senturia, 1990)

4. Moiré Deflectometry: (D. Xu & Liechti, 2010)

5. Mechanical Profilometers: (Jan Neggers, Hoefnagels, Hild, Roux, &

Geers, 2013)

6. 3D Digital Image Correlation (3D DIC): (Machado, Favier, & Chagnon,

2012)
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3D DIC is one of the techniques used to measure maximum bulge height. It not
only measures maximum bulge height but also the full deformed shape. A com-
mercially available 3D DIC system from LaVision will be used in bulge tests and

tensile tests throughout this study.

Another important mechanical property of material is Poisson’s ratio. It is the neg-
ative ratio of lateral and longitudinal strains. A tensile test is a simple way to in-

vestigate the Poisson’s ratio and using the DIC makes it simple to setup.

1.4 Modelling a Thin Polymer Sheet

Polymers belong to the class of materials called hyperelastic materials. Hypere-
lastic materials are better known for their ability to sustain large strains (several
hundred percent). Several dozen material models have been developed to cap-
ture this behaviour (Boyce & Arruda, 2000; Marckmann & Verron, 1999). Hyper-
elastic material models are developed either based upon their polymer chain
structures, called Micromechanical models, or based upon the physical material
behaviour without any reference to its chain structure, called Phenomenological

models.

Phenomenological hyperelastic models are commonly incorporated into commer-
cial Finite Element Analysis softwares like ANSYS and ABAQUS. ANSYS has
been picked up for its built-in hyperelastic model and its geometric modelling ca-
pabilities. ANSY'S will be used to fit a phenomenological hyperelastic model using
various types of engineering stress-strain data (uniaxial, plane and equibiaxial)

produced from multiple material characterization tests.

15



1.5 Aims and Objectives

Aim:

This research will try to characterize a sample of Latex obtained from commer-
cially available gloves using current state-of-the measurement technology. This
data will be used in conjunction with existing hyperelastic models to produce via-

ble numerical simulations through simple mechanical testing.

The average thickness of these glove samples is 125 microns. The term thin film
has been used throughout this document to refer to latex samples obtained from
a specific brand of commercially available gloves measuring 125 microns in thick-

ness.

Objectives:

1. Identify a suitable set of test methods and procedures to capture the me-
chanical behaviour of the latex polymer under various types of defor-
mation.

2. Characterize typical latex polymer glove samples using above methods.

3. ldentify hyperelastic material models that can predict stress-strain behav-

iour of this polymer.

16



2. Literature Review

This chapter discusses the modelling of hyperelastic materials. The hyperelastic
materials are classified into two categories i.e. Micro-mechanical network based
models, and Phenomenological models. There are many hyperelastic models
based upon these two approaches, the most common of these models are pre-

sented in this chapter.

Most common characterizing techniques employed to hyperelastic materials will

also be discussed in this chapter.
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2.1 Hyperelastic Material Models

A brief review of common Hyperelastic material models will be presented in this
chapter ending with a brief explanation of how some common material character-

ization tests that are used to curve fit hyperelastic material models.

2.1.1 Introduction.

Rubber materials, also known as hyperelastic materials, are made up of long
chains of macromolecules. These macromolecule chains are essentially ran-
domly oriented and made up of cross-linked molecules with weak molecular in-
teractions. The word elastomer is derived from elastic and polymer and is often
used interchangeably with rubber because rubber is elastic and made up of long
molecular polymer chains. This molecular network structure enables these mate-
rials to undergo large strain by changing their random configuration into a stretch-
oriented direction that governs the stress-strain behaviour of these polymers (Fig-

ure 2-1).
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Figure 2-1 A typical hyperealstic (latex polymer) material‘s “S” shaped response

curve showing tensile stress vs tensile stretch ratio (A) (Treloar, 1944).

The behaviour of a rubber band when stretched many times its original length
and, when released, recovering its original size quickly is a common matter of
everyday experience. To study this large strain behaviour of rubber-like materials
numerous hyperelastic material models have been proposed in the literature.

These models are classified by (Treloar, 1978) into two main categories:

1. Micro-mechanical network based hyperelastic models, and

2. Phenomenological models

A wide range of polymers can be modelled satisfactorily using statistical mechan-
ical treatments (micro-mechanical) and continuum mechanics treatments (phe-
nomenological models). Some polymers can withstand more orders of magnitude
of stretch (and therefore strain) than others, and some polymers are slightly more
compressible than others are, but they mainly exhibit non-linear elastic material

behaviour.
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Phenomenological models are not derived from any micro-mechanical physical
behavioural considerations and usually lack relations to the molecular structure
of the material. They are based upon the strain energy potential functions derived
using macroscopic continuum mechanics formulations using strain invariants or
principle stretches generally having polynomial form while still able to model over-
all behaviour. Natural latex rubber is assumed isotropic in elastic behaviour
(Rivlin, 1948) and very nearly incompressible (Rivlin, 1948). This assumption of
incompressibility simplifies the phenomenological materials models greatly. Phe-
nomenological models are commonly implemented in commercial Finite Element
Analysis (FEA) packages like ANSYS and ABAQUS. The primary reason for this
is the fact that these hyperelastic material models can be calibrated easily with a
set of mechanical tests. Calibrating phenomenological hyperelastic models will

be discussed further later in this chapter.

Micro-mechanical network models, on the other hand, are based upon underlying
physical mechanisms of the material’s individual chains. These models relate the
applied deformation to the individual chain stretches. For a complete review of
statistical mechanics treatment of rubber elasticity and related topics, the reader

is advised to see Treloar, (Treloar, 1975).

The performance of a hyperelastic model is based upon its ability to describe the
complete behaviour of the material under different loading conditions i.e. Uniaxial
or Biaxial and simple or pure shear. Therefore, better models will be those which
can predict experimental data satisfactorily under different types of loading con-
ditions (Marckmann & Verron, 1999). An efficient hyperelastic material model can

be defined by four qualities (Chagnon, Marckmann, & Verron, 2004).
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1. It should be able to accurately reproduce the whole “S” shaped response
of rubbers cf. Figure 2-1.

2. The change of deformation modes should not be problematic, i.e. if the
model behaves satisfactorily in uniaxial tension, it should also be quite ac-
curate in simple shear or in equibiaxial extension.

3. The number of relevant material parameters must be as small as possible,
in order to reduce the number of experimental tests needed for their iden-
tification.

4. The mathematical formulation has to be quite simple to render possible

numerical implementation of the model.

Therefore, it is imperative to develop a basic understanding of continuum me-

chanics necessary to model a hyperelastic material model.
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2.1.2 Basics of Continuum Mechanics

In the following, the basics of continuum mechanics needed to model hyperelastic
materials are presented. This is in no way a complete discussion of continuum
mechanics. For more detailed and basic descriptions of the modelling of large

strain the reader is advised to read for instance (Ward & Sweeney, 2012).

Several rotation-independent deformation tensors are used in mechanics, the
most common are the left and the right Cauchy-Green deformation tensors given
by B = FF* and C = F'F respectively where F' represents the transpose of the
deformation gradient tensor F. The left Cauchy-Green deformation tensor, B is
also known as Finger deformation tensor named after Joseph Finger (1894). Both
deformation tensors have the same invariants, I, I, and I;. These strain invari-
ants are given by:

L =23+ 25+ 23

I, = 2223 + 2325 + 2223 (1)

I; = A2A373
When dealing with large strains it is convenient to define a stretch ratio instead

of strain. A stretch ratio is defined as the ratio of stretched length and original

length in each of three mutually normal axes i.e. 1 = . Hence, stretch ratio

original

L_Loriginal)

(A) and engineering strain (e = are related as:

Loriginal

A=1+e (2)

Hyperelastic material models start by defining a strain energy potential function,
W (strain energy per unit undeformed volume). This strain energy potential func-
tion is defined either in terms of principal stretch ratios (4,,1,,15) or one or more

of the strain invariants, I, l,and 1.
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As mentioned earlier most polymers (except foam-like ones) are considered in-
compressible for most applications thus,

L=1 (3)
There are two types of stresses classically defined: the true or Cauchy stress o
and the nominal or first Piola-kirchhoff stress s. Once the strain energy function
W = w(ly, I,) has been defined, the principle stresses g;; (011, 022and a;3) can be

found using the following relation (Ward & Sweeney, 2012):

,0W 10w ]
ojj =2 Aia—ll——— -p, i=1,23 (4)

In equation ( 4 ), the term p represents an arbitrary hydrostatic pressure that does
not produce any deformation and can be found by applying conditions of equilib-
rium and/or loading boundary conditions. For example in a uniaxial test o,

(or g33) can be set equal to zero and an expression for p can be derived.

The nominal stress, s, in terms of the principal stretches and principal strain in-
variants can be found (Holzapfel, 2000) using the following relations:

w1
SiZon P

i=1,273 (5)

_owan owoh 1
SiT % o8, T oL oA, AP

(6)
{aw 1aw} 1
Si=2{lim=— — =t —p—

Equation ( 6 ) can be easily derived from equation ( 5 ) using chain rule and the
fact that W = w(ly, ;) and I, , = f(4;). Therefore, values of the nominal stress,
s, can be derived from the solution of system of equations ( 6 ) by applying loading

and boundary condition as explained earlier in this section.
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2.1.3 Phenomenological Models based upon Invariants of Strain (I,)

It is common in the literature to form a strain energy potential function using the
continuum mechanics approach in terms of strain invariants. Some more com-

mon models are presented here.

Some of the common hyperelastic models based upon statistical mechanical

treatment (phenomenological) take the general polynomial form (ANSYS, 2013):
N N 1

W= Cyllh=3) (=3 + ) — (= D (7)
=1 =1k

The above equation is based upon generalized Mooney strain energy function

(Mooney, 1940), constants C;;, d, are material parameters and determined by

ijs
curve fitting to experiment data from one or more tests from uniaxial, biaxial, pure
shear and volumetric tests. The term involving d; accounts for strain energy re-
sulting from material compression and if the material is incompressible (I; = 1),
this term is dropped and the equation ( 7 ) simplified to the following equation:
N
W= Cylh—3) (-3 (8)
i+j=1

In general, there is no upper limit on the value of N and a higher value of N im-
proves fit to an exact solution but it creates computational difficulty. Special cases

of equation ( 8 ) with values of N upto three give the Neo-Hookean and Mooney-

Rivlin models as discussed below.
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The Neo-Hookean model is the simplest model. If we retain only the first term of

equation ( 8 ) we get,

W = Cyo(l; — 3) (9)

The shear modulus of the material is related to the constant u = 2¢;,.

This is equivalent to the Gaussian model, which is based upon a micro-mechan-

ical formulation and takes into account molecular chain statistical considerations
with, C1o = >Nk6
where:

N = number of network chains in a unit volume
k = Boltzmann’s constant

6 = absolute temperature

Treloar (Treloar, 1944) while investigating carbon black-filled natural rubber
found the value of this constant C;, = 0.2 MPa and showed that this model is able
to predict the uniaxial, biaxial and simple shear experimental test data satisfac-

torily upto 50%.

Mooney (Mooney, 1940) observed the linear response of rubber under simple
shear loading conditions. This model is actually first two terms of the polynomial
model equation ( 8 ). He was able to define a strain energy potential function of

the form:

W:C10(11_3)+Co1(12—3) (10)
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where C,, and C,; are material constants. This model is only suitable for only

moderate strains (under 200%).

The Mooney-Rivlin model is an improvement of the previous Mooney model by
considering more terms of reduced polynomial equation ( 8 ). This model has
been extensively utilized in the study of polymers and it captures the short com-
ings of Neo-Hookean model mainly by considering terms involving the second

invariant, I, (Steinmann, Hossain, & Possart, 2012).

The series is often truncated to include fewer terms otherwise the unknowns in
the equation will rise significantly for example third degree truncation will require
9 material constants. The three-term Mooney-Rivlin strain energy function is

given as:

W = Cio(Iy —3) + Co1 (I —3) + €1 (I — 3)(; — 3) (11)

At different deformation states this model can grossly overestimate stresses at

moderate to large strains (Boyce & Arruda, 2000).

A two term Mooney-Rivlin model performs well in the moderate strain range /.e.

200-250% (Marckmann & Verron, 1999)

Rivlin and Saunders (Rivlin & Saunders, 1951) used a biaxial tensile test and
obtained experimental conditions to set I; or I, constant and they observed the

following:
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° ZTW is independent of I; and I, and is constant.
1

ow :
¢ - dependends inversely upon I,.
2

Based upon the above observations they proposed the following strain energy

function:

W =Cor(ly =3)+ f(I; = 3) (12)

where function Fhas to be determined using experimental data.

The Yeoh model (Yeoh, 1990, 1993) is another form of reduced polynomial strain
energy function with i = 3 and j = 0 as follow:

3
W= Z Cio(I; — 3)! OR
i=1 (13)

W = Cio(I; —3) + Cpo(ly — 3)% + C30(I; — 3)3

The use of higher order terms of only I; in the Yeoh'’s strain energy function are
useful in capturing different modes of deformation i.e. Uniaxial, Biaxial and Shear,

at moderate to large strains (Boyce & Arruda, 2000).

It is a relatively sophisticated model proposed by (Gent, 1996). It is similar to
Yeoh as it is also based only upon I; but it also includes I,,, which limits the max-
imum finite chain extensibility.

11_3
I, -3

E
Wz—gln[l— (14)
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where E is Young’s modulus of the material. As proved by Arruda and Boyce
(Arruda & Boyce, 1993a), their 8-chain model ( will be discussed in section
2.1.5.2) can be proved equivalent to Gent’s model. The logarithm terms can be

expanded into polynomial form as follows:
n
W= 6L -3) (15)
i=1
where C; are material constants. The highest value of n is usually three.

2.1.4 Phenomenological Models based upon Principal Stretch Ratios

(4:)

One obvious advantage of using hyperelastic material models based upon prin-

cipal stretch ratios is that they are directly measurable.

2.1.4.1 The Ogden Model (1972):

The Ogden Model is a sophisticated class of models used in simulation of hyper-
elastic materials, proposed by R. W. Ogden (Ogden, 1972). The strain energy

function is the sum of real powers of principal stretches:

N
w=>
i=1

Here u; and «a; are material constants and may assume any real values and are

=

i, (A%, + A%, + %5 = 3) (16)
L

Q

subjected to following stability criteria:

,ul-al->0 VI:].,N (17)
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This model is most widely used to model large strain because of its ability to be
tailored to fit a variety of data but this flexibility comes at the cost of computational
difficulty. This model has been shown to fit excellently by the author to the Tre-
loar’s (Treloar, 1944) experimental data with N = 3 (which requires six material

parameters).

This model is particularly popular in FEA but the only possible disadvantage is

the six material parameters, which requires large amounts of data for calibration.

2.1.5 Molecular Statistical Network based Models

These hyperelastic material models are founded upon micro-mechanical behav-
iour of a rubber-like material consisting of network chains. Since the polymer net-
work chains are made up of identical repeat units, called monomers, therefore,
the overall response under any loading condition is a collective result of the indi-
vidual deformations of this network structure. The statistical mechanical based
approach begins by assuming a structure of randomly oriented large macromol-
ecules where each chain is regarded as an assemblage of n number of links of

length [ each.

The simplest model is based upon a Gaussian statistical distribution, also known

as the Neo-Hookean model, which has already been discussed previously.
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The 3-chain model is an improvement of the Gaussian model through the use of
non-Gaussian network flexible chain theory (Wang & Guth, 1952). In this model,
the chains are located along the eigenvectors of the right Cauchy-Green strain
tensor using arbitrarily chosen principal axes (Figure 2-2). The chain deforms in
an affine manner (transformation that maps parallel lines to parallel lines and fi-
nite points to finite points) along these directions giving principal stretch ratios.

The resulting strain energy function is noted as follows:

3
_H Bi )]
W= 3\52 [Alﬁl+\/ﬁln<sinhﬁi (18)
where, 5; = L71 (%) fori = 1,2,3and L1 is called the inverse Langevin function

defined by:

L(B) = coth f — % and

u = Nk@ is shear modulus

N = number of network chains in a unit volume
k = Boltzmann’s constant, and

6 = absolute temperature.

Figure 2-2. A 3-chain model showing initial and deformed chains orientation

(Steinmann et al., 2012).
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Arruda and Boyce (Arruda & Boyce, 1993b) proposed a model similar to the 3-
chain model but is an 8-chain model where it is idealized in a cuboid, Figure 2-3.
Each network chain is assumed oriented along a half diagonal of the cuboid. Due
to symmetry of the chain structure, the central interior junction point remains at
the centre during the deformation. Therefore, the stretch of each chain in the

structure is the root-mean square of the applied stretches:

Figure 2-3. An 8-chain model showing initial and deformed chains orientation

(Steinmann et al., 2012).

1 I
Achain:\/g(/li-l'/l%-l'lé): 51 (19)

The strain energy function is given by the following:

W = Nk6vn [ﬂchainﬁchain ++vnln (Mﬂ (20)

sinh ﬁchain

where, Bopain = L1 (Mﬁ)
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This model was developed by G. Heinrich and M. Kaliske (Heinrich & Kaliske,
1997) and it proposes that the polymer chains remain in a tube-like structure while
surrounded by other chains. This model is based upon the fact that rubber net-
work chains are highly entangled. Therefore, there is always a topology restoring
potential in the rubber chain network and this potential is based upon statistical
mechanics. The strain potential energy function contains one term accounting for
strain energy due to cross-linking and another term for strain energy due to lim-
ited chain extensibility of its network chains. The strain energy potential function
is given by:

2G,

W = G.I*(2) — z

I"(=p) (21)

where I*(a) is the first invariant of the generalized (Lagrangian) o-order strain

n

n

tensor, e;(1;n) = , B is an empirical parameter (0 < g < 1), and G, and G,
are cross-link network modulus and constrained (or extensibility) network modu-
lus respectively. Initial shear modulus is given by G = G. + G,. This model is
equivalent to Ogden 2™ order with a; = 2,a, = =B, u; = G, and u, = —2G,/p.

This model is only suitable for moderate strains (200~250%) and cannot accom-

modate strain hardening.
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The same authors (Kaliske & Heinrich, 1999) of the tube model tried to overcome
the limitation of their model by replacing the underlying Gaussian distribution by
a non-Gaussian distribution. They formulated a new strain energy function by

introducing an extensibility parameter §.

3

+ In{1 — 62(I, — 3)}] + Zﬁie ;(A;ﬁ —~ 1) (22)

G [ =6 - 3)
T 2| 1-62(1,-3)

where I, is the first invariant of strain tensor and the other constants used have

the same meaning as described in the tube model.

Recently, Miehe et al (C. Miehe, S. GoOktepe, 2004) developed an approach
based upon many previous models including 3-chains and 8-chains in which in-
dividual polymer network chains are considered to be oriented radially from the
centre of a unit sphere to its surface. The authors suggested that a discretization
of 21 directions over a half sphere are sufficient to approximate a uniform distri-
bution of the chains over the sphere surface, which ensures isotropic behaviour

of the local chains. The strain energy function is as follows:

w =Nk9ni2211: w; [%-'_ln(sirﬁiﬁi)] (23)

where, w; are weight factors.
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2.1.6 Conclusive remarks about Hyperelastic Models

M. Johlitz at el. (Johlitz & Diebels, 2011) have simulated and compared uniaxial
and biaxial tensile stretch experiments data for silicon rubber ELASTOCIL® RT
265 using Neo-Hookean, Mooney-Rivlin and Yeoh hyperelastic models. They
found that Neo-Hookean model is only sufficient to model a uniaxial test data.
Whereas, a Mooney-Rivlin hyperelastic model can simulate both types of test

data satisfactorily upto a stretch of 60%.

E. Verron & G. Marckmann have extensively studied the inflation of rubber bal-
loons and bubble inflating flat thin rubber sheets and performed numerical simu-
lations of this problem using various hyperelastic models. At first, (Verron &
Marckmann, 2003b) they have used a two-terms Mooney-Rivlin model to do a
numerical study of inflation of two connected (where air can move between them)
rubber balloons. They concluded that the equilibrium of the connected balloons
is complicated and more complex hyperelastic constitutive equations, such as

Ogden’s models, are needed to model the hyperelastic behaviour.

Later on the same year, E. Verron & G. Marckmann (Verron & Marckmann,
2003a) have numerically simulated the same problem of inflating rubber balloons
using Network constitutive models. They have compared classical neo-Hookean
model with 3-chain, 8-chain and full network (which later became micro-sphere
model) hyperelastic models. They concluded that classical Neo-Hookean hyper-
elastic model does not account for the strain hardening which influences the

shape of inflated hyperelastic material.
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Carbon black rubber at moderate engineering strain (~25%) have been simulated
using Yeoh model in a commercial FEA code (ANSYS™) by Mathew Wadham-
Gagnom at el (Wadham-Gagnon et al., 2006). They calibrated the Yeoh model
and used it to experimentally validate the model by performing an experimental
test on a cantilevered rubber plate subjected to a bending load at the free end of

the plate.

M. Afandi (Mohammed, 2014) has shown that the gluten can be modelled as a
finite viscoelastic material using extended tube model. The extended tube model
when calibrated using uniaxial tension and compression, agrees reasonably well

with the experimental results except for tension results of strain more than 0.7.

It can be clearly seen from the above discussion that suitability of a particular
hyperelastic model to perform a numerical simulation is based upon the results
of calibration of these models with test data (Uniaxial, Biaxial and Pure shear). A
hyperelastic model with relatively small error of fit is deemed best. Therefore, a
suitable hyperelastic model to perform a numerical simulation of a bulge test will

be selected based upon the lowest value of error of fit while calibrating.
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2.1.7 Curve Fitting a Phenomenological Hyperelastic Material Model

Curve fitting a particular phenomenological hyperelastic material model, which
finds the coefficients of the strain energy potential function (W) requires engineer-

ing stress-strain data from one or more of the following type of tests:

3. Uniaxial tension or compression test
4. Biaxial tension or compression test

5. Pure Shear test (planar test)

Although fine-tuning a hyperelastic model with only a uniaxial test will give rea-
sonably accurate results for simple low strain (~50%) applications, for more com-
plex modes of deformation and higher strains, more than one type of test data is
required. A volumetric test can also be performed when fitting a hyperelastic
model to simulate a compressible hyperelastic material, generally a foam.
2
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Figure 2-4 Schematic representation of three tests. The arrows show stresses. In
the absence of any symbols, the system is free to move along that direction (a)
Uniaxial tension (b) Equibiaxial tension (c) Planar tension (or Pure shear), with

triangles showing fixed supports.
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In a uniaxial test, the material sample is stretched (or compressed) in the longi-
tudinal dimension only, therefore the stretch ratios for an incompressible material
and state of stress defining the deformation state and stress state respectively

are as follow:

1
/11=,1and,12=/13=ﬁ (24)

Using these values of 1 and the facts that for a thin material uniaxial tensile
tests; = 0, equation ( 6 ) can be used to drive the following relation for nominal

stress, s;.

1\/ 0W oW
S1= 2 (1 )(’1 al, * 612) (%)

The biaxial test is another commonly used test. A special type of biaxial test is an
equibiaxial test. In an equibiaxial test, a material sample, usually square shape,
is stretched equally in two dimensions (both dimension are equal) and hence the
name equibiaxial. Therefore, the stretch ratios and state of stress defining the

deformation state and stress state respectively are as follow:

1
=1 =Aand 1y =5 (26)

Using these values of 1 and the facts that for a biaxial tests; = s,and s; =0,
equation ( 6 ) can be used to drive the following relation for nominal stresses s;

and s,.
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1=%27 »)\ar; a1, (27)

In a planar test, one dimension of the test sample (at least ten times more than
the one being stretched) is held fixed (1, = 1) while the other dimension is
stretched like a tensile test. Therefore, the stretch ratios and state of stress de-

fining the deformation state and stress state respectively are as follow:

1
A=, ,12=1ancu3=Z (28)

Using these values of A and the facts that for a biaxial tests; = s, and s; =0,
equation ( 6 ) can be used to drive the following relation for nominal stresses s;.

PN VU 2
17 FEVACTARIETA (29)