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Abstract 

A History Channel modern marvels broadcast aired in 2004 opened with this 

statement ‘Our four most important natural resources are air, water, petroleum, 

and rubber ’. In this list, the last element surprised everyone. No wonder the nat-

ural rubber latex is an essential material in today’s modern world. An important 

application of natural rubber is medical gloves. Reducing thickness of gloves to 

match the natural feel of human hands is always a challenge while maintaining 

structural integrity.  

A simple testing methodology is required to understand the mechanical behaviour 

of the thin latex sheets. A uniaxial test and a bulge test with circular and rectan-

gular bulge windows is a simple combination to characterize the mechanical be-

haviour of this polymer sheet. Poisson’s ratio is directly measured from simple 

tensile test using Digital Image Correlation (DIC). 

The value of Poisson’s ratio is used to critique the bulge test results and under-

lying assumptions of bulge test analytical models. A bulge test with a sufficiently 

long rectangular bulge window creates a plane-strain condition, which simplifies 

the analytical treatments, and an analytical model of bulge pressure and maxi-

mum bulge height gives plane-strain modulus. Similarly, a circular bulge window 

creates a state of equibiaxial strain and a similar analytical model gives biaxial 

modulus. Both analytical models of the bulge test also give residual stress.  

Material samples from gloves (thickness 125 μm) have been characterized with 

biaxial modulus of 1.863 ± 0.11 𝑀𝑃𝑎, plane-strain modulus of 1.171 ± 0.24 𝑀𝑃𝑎 

and a biaxial residual stress of 0.292 ± 0.052 𝑀𝑃𝑎. The value of Poisson’s ratio a 

mean value of 0.385 ± 0.003. 

Tensile test samples have been cut along three different directions and tensile 

data shows that the material is isotropic and an interesting relationship between 

biaxial data and plane-strain data is developed to calculate the anisotropy. 

Finally, stress-strain data from these three tests is used to calibrate hyperelastic 

material models in ANSYS.
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1. Introduction 

This chapter includes a brief introduction to latex and processing of latex prod-

ucts. It also includes a brief about characterizing and modelling a thin latex poly-

mer film. 
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1.1 What is Latex? 

Natural rubber is widely used in many aspects of life on a daily basis. It possesses 

some very distinct properties, which put it into a special position among other 

types of rubber, biopolymers and other materials. The important qualities of rub-

ber are listed below: (Kohjiya et al., 2014) 

1. It is the only bio-synthesised (biomass) rubber by a tropical plant, Hevea 

brasiliensis. By means of tapping into the trunk of this tree, a milky liquid 

called Latex is collected into a container that is hung in a suitable position 

around the trunk of the tree. 

2. It is the only polymeric hydrocarbon among biopolymers, i.e. cis-1, 4-pol-

yisoprene that is composed of carbon and hydrogen atoms alone. All other 

biopolymers contain other covalently bonded elements as opposed to im-

purities. The covalently bonded elements include nitrogen, oxygen and 

sulphur, in addition to carbon and hydrogen. 

3. Although many different types of synthetic rubbers (biopolymers) have 

been developed industrially, natural rubber has not yet been chemically 

synthesised. 

4. Being an agricultural product, natural rubber is renewable and carbon neu-

tral. It begins with carbon dioxide as the starting material and decomposes 

to carbon dioxide at the end of its life cycle. Hence, it does not contribute 

to global warming. 

5. It is the elasticity of natural rubber, which makes it scientifically important. 

It is an essential material for automobile tyres, among other things. 
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In 1839, Charles Goodyear developed ‘vulcanisation of rubber’ (Goodyear, 

1839). Vulcanisation is the process of cross-linking the rubber molecules with 

sulphur to give a stable network structure. This process made relatively less use-

ful material into an industrially important material that transformed manufacturing 

especially during times of war.  

However, the following points must be taken into consideration while trying to 

understand the mechanical behaviour of this natural material. 

1. Since it is agricultural product, the exact percentage of different constitu-

ents vary from tree to tree.  

2. Geographic location and hence the weather of the area where the rubber 

tree is grown affects the chemical composition of the natural latex. 

3. Processing techniques have been improved over decades of research and 

development to improve stability, mechanical behaviour, aesthetic proper-

ties, durability etc.    

Therefore, it is usual to see some variation in the characterized mechanical be-

haviour of the natural latex material.  

For a more detailed and very recent (2014) discussion on Natural Rubber Latex 

(NRL), the reader is referred to a book (Kohjiya et al., 2014) authored by over a 

dozen experts from all over the world and topics include: 

1. Natural sources and different types of raw materials used in the production 

2. Details of biosynthesis, processing and composition 

3. Improvements in the sustainable production and recycling and reusing of 

this strategic material  
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To help understand the mechanical behaviour and characterization of latex 

gloves, it is important to understand the processing of latex gloves in a glove 

manufacturing industry. 

1.2 Processing latex gloves 

Even though most of the manufacturing process of medical gloves is automated 

by machines, it is still fairly labor intensive process. For instance, the exam gloves 

are typically packaged into boxes by hand. For this reason, the cost of labor play 

a significant role in determining where medical exam gloves are manufactured to 

ensure the glove factory remains competitive in the global market. 

The key element in the glove manufacturing factories is the quality and types of 

formers used. Therefore, it is not uncommon for some glove factories to produce 

medical examination gloves as well as industrial gloves, surgical gloves and even 

condoms. 

All images in this section are from science channel’s how it is made - rubber-

gloves TV program (Channel, 2013) 

1.2.1 Cleaning the Glove Formers 

Quality production of exam gloves include making sure the environment through-

out the glove factory is clean. This also means formers must be cleaned to ensure 

there are no dirt or debris anywhere. Not cleaning the glove formers would cause 

the final product to possibly have defects like holes. Exam glove-formers are 

molds in the shape of a hand made from ceramic material. To clean the glove 

formers, an acid bath is used by dipping the formers in them and then rinsing with 

clean water. The formers are then dipped into an alkaline bath to neutralize the 
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acid, and again rinsed in clean water. Afterwards, the formers are brushed to 

ensure the surface of the formers are consistent. This is an important step. Fac-

tories brush the formers to eliminate pin holes on the latex gloves. All these clean-

ing stages are shown the Figure 1-1. 

 

Figure 1-1 Multiple stages of cleaning aglove formers after a previous run. (a) 

formers taking a dip in a water tank (b) Formers are being cleaned in a chlorine 

tank (c) Revolving brushes scour the hard to reach ceramic-former surfaces (d) 

formers are being dried in air while doing a swivel motion. 

Glove factories have multiple production lines that produce batches of disposable 

gloves. A dirty former can result in the manufacturer being forced to trash the 

entire batch of exam gloves. For this reason, glove formers are regularly in-

spected and cleaned before the molds are dipped into coagulant tanks. 
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1.2.2 Former Dipping into Chemicals and Latex Coagulant 

Once cleaned, the glove formers are first dipped into a chemical bath. This chem-

ical forms a film onto the formers and it is critical stage, as latex will not adhere 

to the ceramic formers otherwise. 

Next, the ceramic formers are given a bath in a coagulant tank (Figure 1-2) to 

help the latex mixture adhere to the formers and help ensure the latex is distrib-

uted evenly. The coagulant tank stage determines the thickness of the latex exam 

glove. The thicker the requirements for the disposable gloves are, the longer the 

formers will travel in the coagulant tank. 

 

Figure 1-2 Glove formers being dipped to form exam gloves 
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1.2.3 Volcanizing the Rubber and Leaching 

After the formers are dipped into the latex mixture, they eventually travel through 

a series of ovens to dry the gloves. This process is known as vulcanization (Fig-

ure 1-3). Vulcanization gives the rubber latex its strength and elasticity. This pro-

cess modifies the polymer by forming bridges (cross-links) between individual 

polymer chains.   

 

Figure 1-3 Hand formers with latex film entering over for curing (volcanizing) 

After drying the latex mixture, the gloves are put through a leaching line to remove 

residual chemicals and proteins from the surface of the gloves. A good leaching 

line should be long, so latex proteins can be more effectively washed out. The 

water should also be hot and fresh to dissolve proteins better. This step is crucial 

to minimize the occurrence of latex sensitivity. The key to making a good medical 

glove is to have a good leaching line. Factories that have bad leaching lines will 

probably be dirty in addition to the leaching line being short. 
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Figure 1-4 Latex gloves leeched to clean gloves and to remove the chemical 

residues and protiens. 

The glove leaching stage is one area factories will vary depending on the quality 

of exam gloves that are produced. Implanting a long leaching stage is expensive 

because there is an opportunity cost in the number of disposable gloves the pro-

duction line can produce. The best factories will constantly circulate fresh water 

adding to the cost of making exam gloves marginally more expensive. 

1.2.4 Lip Rolling and Stripping Latex Gloves off 

Lips (or beads) are rolled on the top of the gloves to facilitate the removal of 

gloves from formers. These lips also help to put the gloves on and off. 
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Next, the latex gloves are stripped off the formers. Note that in the Figure 1-5, the 

workers wear exam gloves and hair coverings so the medical exam gloves being 

manufactured do not become contaminated.  

 

Figure 1-5 Workers Removing Latex Gloves From Formers 
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1.2.5 Checking for Defects using Air and Water Tests 

One of the quality tests factories will use to meet AQL (Acceptable Quality Level) 

standards for manufacturing latex exam gloves is the air test. The factories will 

inflate the latex gloves with air to visually detect any defects placing close atten-

tion to the fingers. Air testing the exam gloves is quite effective because the work-

ers can see how the latex material spreads as the glove inflates. 

 

Figure 1-6 Worker testing gloves for holes using air test 

The FDA (Food and Drug Authority) requires the testing of medical exam gloves 

for pinholes, which can best be detected in a water test (Figure 1-7). Each exam 

glove is filled with 1000 ml of water and examined for leaks. 
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Figure 1-7 Worker testing medical gloves for holes using water test. 

1.2.6 Packing the Exam Gloves in Boxes 

The final step in manufacturing latex gloves is to pack the exam gloves in boxes. 

Factories who are meticulous about quality will pack the exam gloves flat, one on 

top of the other. This reduces waste, makes gloves easier to take out of the box, 

and minimizes the bare human hand’s touch. Think of how easy it is to dispense 

tissue from a tissue box. The same idea is applied to exam glove box dispensers. 

Reputable companies will make sure that every exam glove is packaged using 

the layered technique. 

1.3 Characterizing a Thin Polymer Sheet 

Natural rubber is still preferred for many applications, probably because of its 

unique ability of strain-induced crystallisation (Kohjiya et al., 2014). Stretching a 

piece of natural rubber at room temperature turns the amorphous rubber into a 

semi-crystalline material. These crystallites are highly oriented along the tensile 

direction and, acting like filler particles or crosslinks, tremendously increase the 

tensile strength (Yeh & Hong, 1979). 
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Developing an understanding of mechanical properties of thin latex sheets is vital 

in predicting their response under various kinds of loading conditions, which 

these thin sheets experience commonly during their applications. The mechani-

cal properties of thin latex sheets have been improved mainly because of secret 

combinations of ingredients and processing techniques over the past couple of 

decades. The main drive behind these developments is ever increasing demand 

of natural latex rubber based products. 

Natural latex rubber is extensively used in different medical devices. One of the 

main medical use of this material is as medical gloves. Apart from helping to mit-

igate the spread of germs from touching by bare hand, the natural feel of human 

hand contact with body parts and other tools and objects, called the tactile per-

formance, is another important requirement. The thickness of the medical gloves 

plays a crucial role when considering tactile performance. The thinner the medical 

gloves the better, but without compromising the mechanical strength and struc-

tural integrity. Therefore, there are many commercially available glove brands, 

which use a commercially confidential combination of additive ingredients and/or 

processing techniques to gain competitive advantage in the market. The mechan-

ical properties of thinner material deviates from that of the bulk materials, be-

cause of the sample dimensions are in an order of magnitude where physical 

effects like dislocation motion, takes place (Arzt, 1998).  

In light of the above discussion, it almost becomes imperative after a decade or 

so to characterize the mechanical behaviour of thin latex films used in products 

where tactile performance is vital besides structural integrity.  
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Through an in depth review of the literature on polymers thin film characterization 

methods (discussed in section 2.1.8), a bulge test is chosen. A bulge test is also 

reported by some other names in the literature; like bubble inflation test (Galliot 

& Luchsinger, 2011) or bubble-inflation-technique (Reuge, Schmidt, Maoult, 

M.Rachik, & Abbe, 2001) and pressurized blistering test (Williams, 1997). The 

bulge test has been developed based upon the seminal work by Beams (Beams, 

1959). It is a well-developed technique and performing the experiment is rela-

tively easy. Many common bulging geometries, called bulge windows, can be 

used with the same bulge experimental setup by changing only a few parts of the 

bulge test setup. A state of plane-strain (width-height plane) can be achieved by 

using a sufficiently long rectangular bulge window (Vlassak & Nix, 1992) and a 

state of equibiaxial stress and strain is achieved at the centre of the bulge-surface 

from a circular bulge window (Reuge et al., 2001). Analytical solutions involving 

bulge pressure and maximum bulge height for infinitely long rectangular and cir-

cular windows give plane-strain modulus and biaxial modulus through curve fit-

ting.  

Residual stress can be introduced in thin films including polymer thin films 

through volume changes, which may take place in association with crosslinking 

or crystallization mainly due to: 

1. Temperature changes 

2. Variation of atmospheric moisture contents  

3. Processing techniques  
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Therefore, both analytical models (rectangular and circular bulge-windows) of 

bulge pressure and maximum bulge height (𝑝 − ℎ0) mentioned above include a 

compensation term for residual stress and are similarly evaluated through curve 

fitting. 

Therefore, the whole reliability of a bulge test’s results depends upon accurate 

measurements of bulge pressure and maximum bulge height. Accurate pressure 

measurement is not a big challenge but the accurate measurements of out of 

plane bulge height is not as simple. Several methods to measure the bulge height 

have been reported in the literature: 

1. Interferometers: (Huang, Lou, Tsai, Wu, & Lin, 2007; Huston, Sauter, Bunt, 

& Esser, 2001; Maier-Schneider, Maibach, & Obermeier, 1995; 

Tsakalakos, 1981; Wu, Fang, & Yip, 2004; Xiang & Chen, 2005; Y. H. Xu 

et al., 2000; Zheng et al., 2000) 

2. Atomic force Microscope (AFM): (Schweitzer & Göken, 2007) 

3. Microscope: (Kalkman, Verbruggen, Janssen, & Groen, 1999; J. Neggers, 

Hoefnagels, Hild, Roux, & Geers, 2014; Orthner, Rieth, & Solzbacher, 

2010; Pan, Lin, Maseeh, & Senturia, 1990) 

4. Moiré Deflectometry: (D. Xu & Liechti, 2010) 

5. Mechanical Profilometers: (Jan Neggers, Hoefnagels, Hild, Roux, & 

Geers, 2013) 

6. 3D Digital Image Correlation (3D DIC): (Machado, Favier, & Chagnon, 

2012) 
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3D DIC is one of the techniques used to measure maximum bulge height. It not 

only measures maximum bulge height but also the full deformed shape. A com-

mercially available 3D DIC system from LaVision will be used in bulge tests and 

tensile tests throughout this study. 

Another important mechanical property of material is Poisson’s ratio. It is the neg-

ative ratio of lateral and longitudinal strains. A tensile test is a simple way to in-

vestigate the Poisson’s ratio and using the DIC makes it simple to setup. 

1.4 Modelling a Thin Polymer Sheet 

Polymers belong to the class of materials called hyperelastic materials. Hypere-

lastic materials are better known for their ability to sustain large strains (several 

hundred percent). Several dozen material models have been developed to cap-

ture this behaviour (Boyce & Arruda, 2000; Marckmann & Verron, 1999). Hyper-

elastic material models are developed either based upon their polymer chain 

structures, called Micromechanical models, or based upon the physical material 

behaviour without any reference to its chain structure, called Phenomenological 

models. 

Phenomenological hyperelastic models are commonly incorporated into commer-

cial Finite Element Analysis softwares like ANSYS and ABAQUS. ANSYS has 

been picked up for its built-in hyperelastic model and its geometric modelling ca-

pabilities. ANSYS will be used to fit a phenomenological hyperelastic model using 

various types of engineering stress-strain data (uniaxial, plane and equibiaxial) 

produced from multiple material characterization tests. 
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1.5 Aims and Objectives  

Aim:  

This research will try to characterize a sample of Latex obtained from commer-

cially available gloves using current state-of-the measurement technology. This 

data will be used in conjunction with existing hyperelastic models to produce via-

ble numerical simulations through simple mechanical testing.  

The average thickness of these glove samples is 125 microns. The term thin film 

has been used throughout this document to refer to latex samples obtained from 

a specific brand of commercially available gloves measuring 125 microns in thick-

ness. 

Objectives: 

1. Identify a suitable set of test methods and procedures to capture the me-

chanical behaviour of the latex polymer under various types of defor-

mation. 

2. Characterize typical latex polymer glove samples using above methods. 

3. Identify hyperelastic material models that can predict stress-strain behav-

iour of this polymer.  
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2. Literature Review 

This chapter discusses the modelling of hyperelastic materials. The hyperelastic 

materials are classified into two categories i.e. Micro-mechanical network based 

models, and Phenomenological models. There are many hyperelastic models 

based upon these two approaches, the most common of these models are pre-

sented in this chapter.  

Most common characterizing techniques employed to hyperelastic materials will 

also be discussed in this chapter. 
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2.1 Hyperelastic Material Models 

A brief review of common Hyperelastic material models will be presented in this 

chapter ending with a brief explanation of how some common material character-

ization tests that are used to curve fit hyperelastic material models. 

2.1.1 Introduction. 

Rubber materials, also known as hyperelastic materials, are made up of long 

chains of macromolecules. These macromolecule chains are essentially ran-

domly oriented and made up of cross-linked molecules with weak molecular in-

teractions. The word elastomer is derived from elastic and polymer and is often 

used interchangeably with rubber because rubber is elastic and made up of long 

molecular polymer chains. This molecular network structure enables these mate-

rials to undergo large strain by changing their random configuration into a stretch-

oriented direction that governs the stress-strain behaviour of these polymers (Fig-

ure 2-1). 

  



19 

 

 

Figure 2-1 A typical hyperealstic (latex polymer) material‘s “S” shaped response 

curve showing tensile stress vs tensile stretch ratio (λ) (Treloar, 1944).  

The behaviour of a rubber band when stretched many times its original length 

and, when released, recovering its original size quickly is a common matter of 

everyday experience. To study this large strain behaviour of rubber-like materials 

numerous hyperelastic material models have been proposed in the literature. 

These models are classified by (Treloar, 1978) into two main categories: 

1. Micro-mechanical network based hyperelastic models, and 

2.  Phenomenological models 

A wide range of polymers can be modelled satisfactorily using statistical mechan-

ical treatments (micro-mechanical) and continuum mechanics treatments (phe-

nomenological models). Some polymers can withstand more orders of magnitude 

of stretch (and therefore strain) than others, and some polymers are slightly more 

compressible than others are, but they mainly exhibit non-linear elastic material 

behaviour. 
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Phenomenological models are not derived from any micro-mechanical physical 

behavioural considerations and usually lack relations to the molecular structure 

of the material. They are based upon the strain energy potential functions derived 

using macroscopic continuum mechanics formulations using strain invariants or 

principle stretches generally having polynomial form while still able to model over-

all behaviour. Natural latex rubber is assumed isotropic in elastic behaviour 

(Rivlin, 1948) and very nearly incompressible (Rivlin, 1948). This assumption of 

incompressibility simplifies the phenomenological materials models greatly. Phe-

nomenological models are commonly implemented in commercial Finite Element 

Analysis (FEA) packages like ANSYS and ABAQUS. The primary reason for this 

is the fact that these hyperelastic material models can be calibrated easily with a 

set of mechanical tests. Calibrating phenomenological hyperelastic models will 

be discussed further later in this chapter. 

Micro-mechanical network models, on the other hand, are based upon underlying 

physical mechanisms of the material’s individual chains. These models relate the 

applied deformation to the individual chain stretches. For a complete review of 

statistical mechanics treatment of rubber elasticity and related topics, the reader 

is advised to see Treloar, (Treloar, 1975). 

The performance of a hyperelastic model is based upon its ability to describe the 

complete behaviour of the material under different loading conditions i.e. Uniaxial 

or Biaxial and simple or pure shear. Therefore, better models will be those which 

can predict experimental data satisfactorily under different types of loading con-

ditions (Marckmann & Verron, 1999). An efficient hyperelastic material model can 

be defined by four qualities (Chagnon, Marckmann, & Verron, 2004). 
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1. It should be able to accurately reproduce the whole “S” shaped response 

of rubbers cf. Figure 2-1. 

2. The change of deformation modes should not be problematic, i.e. if the 

model behaves satisfactorily in uniaxial tension, it should also be quite ac-

curate in simple shear or in equibiaxial extension. 

3. The number of relevant material parameters must be as small as possible, 

in order to reduce the number of experimental tests needed for their iden-

tification. 

4. The mathematical formulation has to be quite simple to render possible 

numerical implementation of the model. 

Therefore, it is imperative to develop a basic understanding of continuum me-

chanics necessary to model a hyperelastic material model. 
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2.1.2 Basics of Continuum Mechanics 

In the following, the basics of continuum mechanics needed to model hyperelastic 

materials are presented. This is in no way a complete discussion of continuum 

mechanics. For more detailed and basic descriptions of the modelling of large 

strain the reader is advised to read for instance (Ward & Sweeney, 2012). 

Several rotation-independent deformation tensors are used in mechanics, the 

most common are the left and the right Cauchy-Green deformation tensors given 

by 𝔹 = 𝔽𝔽𝑡 and ℂ = 𝔽𝑡𝔽 respectively where 𝔽𝑡 represents the transpose of the 

deformation gradient tensor 𝔽. The left Cauchy-Green deformation tensor, 𝔹 is 

also known as Finger deformation tensor named after Joseph Finger (1894). Both 

deformation tensors have the same invariants, 𝐼1, 𝐼2 and 𝐼3. These strain invari-

ants are given by: 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆1
2𝜆3

2 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 

( 1 ) 

When dealing with large strains it is convenient to define a stretch ratio instead 

of strain. A stretch ratio is defined as the ratio of stretched length and original 

length in each of three mutually normal axes i.e. 𝜆 =
𝐿

𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
. Hence, stretch ratio 

(λ) and engineering strain (𝑒 =
𝐿−𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
) are related as: 

λ = 1 + e ( 2 ) 

Hyperelastic material models start by defining a strain energy potential function, 

W (strain energy per unit undeformed volume). This strain energy potential func-

tion is defined either in terms of principal stretch ratios (𝜆1, 𝜆2, 𝜆3) or one or more 

of the strain invariants, 𝐼1, 𝐼2𝑎𝑛𝑑 𝐼3.  
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As mentioned earlier most polymers (except foam-like ones) are considered in-

compressible for most applications thus, 

𝐼3 = 1 ( 3 ) 

There are two types of stresses classically defined: the true or Cauchy stress 𝝈 

and the nominal or first Piola-kirchhoff stress 𝑠. Once the strain energy function 

𝑊 = 𝑤(𝐼1, 𝐼2) has been defined, the principle stresses 𝜎𝑖𝑖 (𝜎11, 𝜎22𝑎𝑛𝑑 𝜎33) can be 

found using the following relation (Ward & Sweeney, 2012): 

𝜎𝑖𝑖 = 2 {𝜆𝑖
2

𝜕𝑊

𝜕𝐼1
−

1

𝜆𝑖
2

𝜕𝑊

𝜕𝐼2
} − 𝑝, 𝑖 = 1, 2, 3 ( 4 ) 

In equation ( 4 ), the term 𝑝 represents an arbitrary hydrostatic pressure that does 

not produce any deformation and can be found by applying conditions of equilib-

rium and/or loading boundary conditions. For example in a uniaxial test 𝜎22 

(or 𝜎33) can be set equal to zero and an expression for 𝑝 can be derived.  

The nominal stress, 𝒔, in terms of the principal stretches and principal strain in-

variants can be found (Holzapfel, 2000) using the following relations:  

𝒔𝒊 =
𝜕𝑊

𝜕𝜆𝑖
−

1

𝜆𝑖
𝑝, 𝑖 = 1, 2, 3 ( 5 ) 

𝒔𝒊 =
𝜕𝑊

𝜕𝐼1

𝜕𝐼1

𝜕𝜆𝑖
+

𝜕𝑊

𝜕𝐼2

𝜕𝐼2

𝜕𝜆𝑖
−

1

𝜆𝑖
𝑝,       𝑂𝑅 

𝒔𝒊 = 2 {𝜆𝑖

𝜕𝑊

𝜕𝐼1
−

1

𝜆𝑖
3

𝜕𝑊

𝜕𝐼2
} − 𝑝

1

𝜆𝑖
 

( 6 ) 

Equation ( 6 ) can be easily derived from equation ( 5 ) using chain rule and the 

fact that 𝑊 = 𝑤(𝐼1, 𝐼2) and 𝐼1,2 = 𝑓(𝜆𝑖). Therefore, values of the nominal stress, 

𝒔, can be derived from the solution of system of equations ( 6 ) by applying loading 

and boundary condition as explained earlier in this section. 
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2.1.3 Phenomenological Models based upon Invariants of Strain (𝑰𝒊) 

It is common in the literature to form a strain energy potential function using the 

continuum mechanics approach in terms of strain invariants. Some more com-

mon models are presented here. 

2.1.3.1 Polynomial Model 

Some of the common hyperelastic models based upon statistical mechanical 

treatment (phenomenological) take the general polynomial form (ANSYS, 2013): 

𝑊 = ∑ 𝐶𝑖𝑗(𝐼1 − 3)𝑖

N

𝑖+𝑗=1

(𝐼2 − 3)𝑗 + ∑
1

𝑑𝑘

(𝐼3 − 1)2𝑘

N

𝑘=1

 ( 7 ) 

The above equation is based upon generalized Mooney strain energy function 

(Mooney, 1940), constants 𝑪𝒊𝒋, 𝑑𝑘 are material parameters and determined by 

curve fitting to experiment data from one or more tests from uniaxial, biaxial, pure 

shear and volumetric tests. The term involving 𝑑𝑘 accounts for strain energy re-

sulting from material compression and if the material is incompressible (𝐼3 = 1), 

this term is dropped and the equation ( 7 ) simplified to the following equation: 

𝑊 = ∑ 𝐶𝑖𝑗(𝐼1 − 3)𝑖

N

𝑖+𝑗=1

(𝐼2 − 3)𝑗 ( 8 ) 

In general, there is no upper limit on the value of N and a higher value of N im-

proves fit to an exact solution but it creates computational difficulty. Special cases 

of equation ( 8 ) with values of N upto three give the Neo-Hookean and Mooney-

Rivlin models as discussed below. 
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2.1.3.2 The Neo-Hookean Model (1943):  

The Neo-Hookean model is the simplest model. If we retain only the first term of 

equation ( 8 ) we get, 

𝑊 = 𝐶10(𝐼1 − 3) ( 9 ) 

The shear modulus of the material is related to the constant 𝜇 = 2𝐶10.  

This is equivalent to the Gaussian model, which is based upon a micro-mechan-

ical formulation and takes into account molecular chain statistical considerations 

with, 𝐶10 =
1

2
𝑁𝑘𝜃 

where: 

𝑁 = number of network chains in a unit volume 

𝑘 = Boltzmann’s constant 

𝜃 = absolute temperature 

Treloar (Treloar, 1944) while investigating carbon black-filled natural rubber 

found the value of this constant 𝐶10 = 0.2 𝑀𝑃𝑎 and showed that this model is able 

to predict the uniaxial, biaxial and simple shear experimental test data satisfac-

torily upto 50%.  

2.1.3.3 The Mooney Model (1940) 

Mooney (Mooney, 1940) observed the linear response of rubber under simple 

shear loading conditions. This model is actually first two terms of the polynomial 

model equation ( 8 ). He was able to define a strain energy potential function of 

the form: 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) ( 10 ) 
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where 𝐶10 and 𝐶01 are material constants. This model is only suitable for only 

moderate strains (under 200%). 

2.1.3.4 The Mooney-Rivlin Model (1948):  

The Mooney-Rivlin model is an improvement of the previous Mooney model by 

considering more terms of reduced polynomial equation ( 8 ). This model has 

been extensively utilized in the study of polymers and it captures the short com-

ings of Neo-Hookean model mainly by considering terms involving the second 

invariant, 𝐼2 (Steinmann, Hossain, & Possart, 2012). 

The series is often truncated to include fewer terms otherwise the unknowns in 

the equation will rise significantly for example third degree truncation will require 

9 material constants. The three-term Mooney-Rivlin strain energy function is 

given as: 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3) ( 11 )  

At different deformation states this model can grossly overestimate stresses at 

moderate to large strains (Boyce & Arruda, 2000). 

A two term Mooney-Rivlin model performs well in the moderate strain range i.e. 

200-250% (Marckmann & Verron, 1999) 

2.1.3.5 The Rivlin and Saunders Model (1951): 

Rivlin and Saunders (Rivlin & Saunders, 1951) used a biaxial tensile test and 

obtained experimental conditions to set 𝐼1 or 𝐼2 constant and they observed the 

following: 



27 

 

 
𝜕𝑊

𝜕𝐼1
 is independent of 𝐼1 and 𝐼2 and is constant. 

 
𝜕𝑊

𝜕𝐼2
 dependends inversely upon 𝐼2. 

Based upon the above observations they proposed the following strain energy 

function: 

𝑊 = 𝐶01(𝐼1 − 3) + 𝑓(𝐼2 − 3) ( 12 ) 

where function f has to be determined using experimental data. 

2.1.3.6 The Yeoh Model (1990): 

The Yeoh model (Yeoh, 1990, 1993) is another form of reduced polynomial strain 

energy function with 𝑖 = 3 and 𝑗 = 0 as follow: 

𝑊 = ∑ 𝐶𝑖0(𝐼1 − 3)𝑖

3

𝑖=1

         𝑂𝑅 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)2 + 𝐶30(𝐼1 − 3)3 

( 13 ) 

The use of higher order terms of only 𝐼1 in the Yeoh’s strain energy function are 

useful in capturing different modes of deformation i.e. Uniaxial, Biaxial and Shear, 

at moderate to large strains (Boyce & Arruda, 2000). 

2.1.3.7 The Gent Model (1996): 

It is a relatively sophisticated model proposed by (Gent, 1996). It is similar to 

Yeoh as it is also based only upon 𝐼1 but it also includes 𝐼𝑚 which limits the max-

imum finite chain extensibility. 

𝑊 = −
𝐸

6
𝑙𝑛 [1 −

𝐼1 − 3

𝐼𝑚 − 3
] ( 14 ) 
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where  𝐸 is Young’s modulus of the material. As proved by Arruda and Boyce 

(Arruda & Boyce, 1993a), their 8-chain model ( will be discussed in section 

2.1.5.2) can be proved equivalent to Gent’s model. The logarithm terms can be 

expanded into polynomial form as follows: 

𝑊 = ∑ 𝐶𝑖(𝐼1
𝑖 − 3𝑖)

n

𝑖=1

 ( 15 ) 

where 𝐶𝑖 are material constants. The highest value of n is usually three. 

2.1.4 Phenomenological Models based upon Principal Stretch Ratios 

(𝝀𝒊) 

One obvious advantage of using hyperelastic material models based upon prin-

cipal stretch ratios is that they are directly measurable. 

2.1.4.1 The Ogden Model (1972):  

The Ogden Model is a sophisticated class of models used in simulation of hyper-

elastic materials, proposed by R. W. Ogden (Ogden, 1972). The strain energy 

function is the sum of real powers of principal stretches:  

𝑊 = ∑
𝜇𝑖

𝛼𝑖

(𝜆𝛼𝑖
1 + 𝜆𝛼𝑖

2 + 𝜆𝛼𝑖
3 − 3)

𝑁

𝑖=1

 ( 16 ) 

Here 𝜇𝑖 and 𝛼𝑖 are material constants and may assume any real values and are 

subjected to following stability criteria: 

𝜇𝑖𝛼𝑖 > 0                   ∀ 𝔦 = 1, N ( 17 ) 
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This model is most widely used to model large strain because of its ability to be 

tailored to fit a variety of data but this flexibility comes at the cost of computational 

difficulty. This model has been shown to fit excellently by the author to the Tre-

loar’s (Treloar, 1944) experimental data with 𝑁 = 3 (which requires six material 

parameters). 

This model is particularly popular in FEA but the only possible disadvantage is 

the six material parameters, which requires large amounts of data for calibration. 

2.1.5 Molecular Statistical Network based Models 

These hyperelastic material models are founded upon micro-mechanical behav-

iour of a rubber-like material consisting of network chains. Since the polymer net-

work chains are made up of identical repeat units, called monomers, therefore, 

the overall response under any loading condition is a collective result of the indi-

vidual deformations of this network structure. The statistical mechanical based 

approach begins by assuming a structure of randomly oriented large macromol-

ecules where each chain is regarded as an assemblage of 𝑛 number of links of 

length 𝑙 each. 

The simplest model is based upon a Gaussian statistical distribution, also known 

as the Neo-Hookean model, which has already been discussed previously.  
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2.1.5.1 The 3-chain Model (1943, 1952):  

The 3-chain model is an improvement of the Gaussian model through the use of 

non-Gaussian network flexible chain theory (Wang & Guth, 1952). In this model, 

the chains are located along the eigenvectors of the right Cauchy-Green strain 

tensor using arbitrarily chosen principal axes (Figure 2-2). The chain deforms in 

an affine manner (transformation that maps parallel lines to parallel lines and fi-

nite points to finite points) along these directions giving principal stretch ratios. 

The resulting strain energy function is noted as follows: 

𝑊 =
𝜇

3
√𝑛 ∑  [𝜆𝑖𝛽𝑖 + √𝑛 𝑙𝑛 (

𝛽𝑖

sinh 𝛽𝑖
)]

3

𝑖=1

 ( 18 ) 

where, 𝛽𝑖 = ℒ−1 (
𝜆𝑖

√𝑛
) for 𝑖 = 1, 2, 3 and ℒ−1 is called the inverse Langevin function 

defined by:  

ℒ(𝛽) = coth 𝛽 −
1

𝛽
 and  

𝜇 = 𝑁𝑘𝜃 is shear modulus 

 𝑁 = number of network chains in a unit volume  

𝑘 = Boltzmann’s constant, and  

𝜃 = absolute temperature. 

 

Figure 2-2. A 3-chain model showing initial and deformed chains orientation 

(Steinmann et al., 2012). 

  



31 

 

2.1.5.2 The 8-chain Model (1993):  

Arruda and Boyce (Arruda & Boyce, 1993b) proposed a model similar to the 3-

chain model but is an 8-chain model where it is idealized in a cuboid, Figure 2-3. 

Each network chain is assumed oriented along a half diagonal of the cuboid. Due 

to symmetry of the chain structure, the central interior junction point remains at 

the centre during the deformation. Therefore, the stretch of each chain in the 

structure is the root-mean square of the applied stretches: 

 

 

Figure 2-3. An 8-chain model showing initial and deformed chains orientation 

(Steinmann et al., 2012). 

𝜆𝑐ℎ𝑎𝑖𝑛 = √
1

3
(𝜆1

2 + 𝜆2
2 + 𝜆3

2) = √
𝐼1

3
 ( 19 ) 

The strain energy function is given by the following: 

𝑊 = 𝑁𝑘𝜃√𝑛 [𝜆𝑐ℎ𝑎𝑖𝑛𝛽𝑐ℎ𝑎𝑖𝑛 + √𝑛 𝑙𝑛 (
𝛽𝑐ℎ𝑎𝑖𝑛

𝑠𝑖𝑛ℎ 𝛽𝑐ℎ𝑎𝑖𝑛
)] ( 20 ) 

where, 𝛽𝑐ℎ𝑎𝑖𝑛 = ℒ−1 (
𝜆𝑐ℎ𝑎𝑖𝑛

√𝑛
). 
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2.1.5.3 The Tube Model (1997): 

This model was developed by G. Heinrich and M. Kaliske (Heinrich & Kaliske, 

1997) and it proposes that the polymer chains remain in a tube-like structure while 

surrounded by other chains. This model is based upon the fact that rubber net-

work chains are highly entangled. Therefore, there is always a topology restoring 

potential in the rubber chain network and this potential is based upon statistical 

mechanics. The strain potential energy function contains one term accounting for 

strain energy due to cross-linking and another term for strain energy due to lim-

ited chain extensibility of its network chains. The strain energy potential function 

is given by: 

𝑊 = 𝐺𝑐𝐼∗(2) −
2𝐺𝑒

𝛽
𝐼∗(−𝛽) ( 21 ) 

where 𝐼∗(𝛼) is the first invariant of the generalized (Lagrangian) α-order strain 

tensor, 𝑒𝑖(𝜆𝑖; 𝑛) =
𝜆𝑖

𝑛−1

𝑛
, β is an empirical parameter (0 ≤ 𝛽 ≤ 1), and 𝐺𝑐 and 𝐺𝑒 

are cross-link network modulus and constrained (or extensibility) network modu-

lus respectively. Initial shear modulus is given by 𝐺 = 𝐺𝑐 + 𝐺𝑒. This model is 

equivalent to Ogden 2nd order with 𝛼1 = 2, 𝛼2 = −𝛽, 𝜇1 = 𝐺𝑐  𝑎𝑛𝑑 𝜇2 = −2𝐺𝑒/𝛽. 

This model is only suitable for moderate strains (200~250%) and cannot accom-

modate strain hardening. 
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2.1.5.4 The Extended-Tube Model (1999) 

The same authors (Kaliske & Heinrich, 1999) of the tube model tried to overcome 

the limitation of their model by replacing the underlying Gaussian distribution by 

a non-Gaussian distribution. They formulated a new strain energy function by 

introducing an extensibility parameter δ.  

𝑊 =
𝐺𝑐

2
[
(1 − 𝛿2)(𝐼1 − 3)

1 − 𝛿2(𝐼1 − 3)
+ 𝑙𝑛{1 − 𝛿2(𝐼1 − 3)}] +

2𝐺𝑒

𝛽2
∑(𝜆𝑖

−𝛽
− 1)

3

𝑖=1

 ( 22 ) 

where 𝐼1 is the first invariant of strain tensor and the other constants used have 

the same meaning as described in the tube model. 

2.1.5.5 The Non-Affine Micro-Sphere Model (2004):  

Recently, Miehe et al (C. Miehe, S. Göktepe, 2004) developed an approach 

based upon many previous models including 3-chains and 8-chains in which in-

dividual polymer network chains are considered to be oriented radially from the 

centre of a unit sphere to its surface. The authors suggested that a discretization 

of 21 directions over a half sphere are sufficient to approximate a uniform distri-

bution of the chains over the sphere surface, which ensures isotropic behaviour 

of the local chains. The strain energy function is as follows:  

𝑊 = 𝑁𝑘𝜃𝑛 ∑  𝑤𝑖 [
𝜆𝑖𝛽𝑖

√𝑛
+ 𝑙𝑛 (

𝛽𝑖

sinh 𝛽𝑖
)]

21

𝑖=1

 ( 23 ) 

where, 𝑤𝑖 are weight factors. 
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2.1.6 Conclusive remarks about Hyperelastic Models 

M. Johlitz at el. (Johlitz & Diebels, 2011) have simulated and compared uniaxial 

and biaxial tensile stretch experiments data for silicon rubber ELASTOCIL® RT 

265 using Neo-Hookean, Mooney-Rivlin and Yeoh hyperelastic models. They 

found that Neo-Hookean model is only sufficient to model a uniaxial test data. 

Whereas, a Mooney-Rivlin hyperelastic model can simulate both types of test 

data satisfactorily upto a stretch of 60%. 

E. Verron & G. Marckmann have extensively studied the inflation of rubber bal-

loons and bubble inflating flat thin rubber sheets and performed numerical simu-

lations of this problem using various hyperelastic models. At first, (Verron & 

Marckmann, 2003b) they have used a two-terms Mooney-Rivlin model to do a 

numerical study of inflation of two connected (where air can move between them) 

rubber balloons. They concluded that the equilibrium of the connected balloons 

is complicated and more complex hyperelastic constitutive equations, such as 

Ogden’s models, are needed to model the hyperelastic behaviour. 

Later on the same year, E. Verron & G. Marckmann (Verron & Marckmann, 

2003a) have numerically simulated the same problem of inflating rubber balloons 

using Network constitutive models. They have compared classical neo-Hookean 

model with 3-chain, 8-chain and full network (which later became micro-sphere 

model) hyperelastic models. They concluded that classical Neo-Hookean hyper-

elastic model does not account for the strain hardening which influences the 

shape of inflated hyperelastic material. 
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Carbon black rubber at moderate engineering strain (~25%) have been simulated 

using Yeoh model in a commercial FEA code (ANSYS™) by Mathew Wadham-

Gagnom at el (Wadham-Gagnon et al., 2006). They calibrated the Yeoh model 

and used it to experimentally validate the model by performing an experimental 

test on a cantilevered rubber plate subjected to a bending load at the free end of 

the plate. 

M. Afandi (Mohammed, 2014) has shown that the gluten can be modelled as a 

finite viscoelastic material using extended tube model. The extended tube model 

when calibrated using uniaxial tension and compression, agrees reasonably well 

with the experimental results except for tension results of strain more than 0.7. 

It can be clearly seen from the above discussion that suitability of a particular 

hyperelastic model to perform a numerical simulation is based upon the results 

of calibration of these models with test data (Uniaxial, Biaxial and Pure shear). A 

hyperelastic model with relatively small error of fit is deemed best. Therefore, a 

suitable hyperelastic model to perform a numerical simulation of a bulge test will 

be selected based upon the lowest value of error of fit while calibrating. 
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2.1.7 Curve Fitting a Phenomenological Hyperelastic Material Model 

Curve fitting a particular phenomenological hyperelastic material model, which 

finds the coefficients of the strain energy potential function (𝑊) requires engineer-

ing stress-strain data from one or more of the following type of tests: 

3. Uniaxial tension or compression test 

4. Biaxial tension or compression test 

5. Pure Shear test (planar test) 

Although fine-tuning a hyperelastic model with only a uniaxial test will give rea-

sonably accurate results for simple low strain (~50%) applications, for more com-

plex modes of deformation and higher strains, more than one type of test data is 

required. A volumetric test can also be performed when fitting a hyperelastic 

model to simulate a compressible hyperelastic material, generally a foam. 

 

Figure 2-4 Schematic representation of three tests. The arrows show stresses. In 

the absence of any symbols, the system is free to move along that direction (a) 

Uniaxial tension (b) Equibiaxial tension (c) Planar tension (or Pure shear),   with 

triangles showing fixed supports.  
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2.1.7.1 Uniaxial Test 

In a uniaxial test, the material sample is stretched (or compressed) in the longi-

tudinal dimension only, therefore the stretch ratios for an incompressible material 

and state of stress defining the deformation state and stress state respectively 

are as follow: 

𝜆1 = 𝜆 𝑎𝑛𝑑 𝜆2 = 𝜆3 =
1

√𝜆
 ( 24 ) 

Using these values of 𝜆 and the facts that for a thin material uniaxial tensile 

test 𝑠3 = 0, equation ( 6 ) can be used to drive the following relation for nominal 

stress, 𝑠1. 

𝑠1 = 2 (1 −
1

λ3
) (𝜆

𝜕𝑊

𝜕𝐼1
+

𝜕𝑊

𝜕𝐼2
) ( 25 ) 

2.1.7.2 Biaxial Test 

The biaxial test is another commonly used test. A special type of biaxial test is an 

equibiaxial test. In an equibiaxial test, a material sample, usually square shape, 

is stretched equally in two dimensions (both dimension are equal) and hence the 

name equibiaxial.  Therefore, the stretch ratios and state of stress defining the 

deformation state and stress state respectively are as follow: 

𝜆1 = 𝜆2 = 𝜆 𝑎𝑛𝑑 𝜆3 =
1

λ2
 ( 26 ) 

Using these values of 𝜆 and the facts that for a biaxial test 𝑠1 = 𝑠2and  𝑠3 = 0, 

equation ( 6 ) can be used to drive the following relation for nominal stresses 𝑠1 

and 𝑠2. 
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𝑠1 = 𝑠2 = 2 (λ −
1

λ5
) (

𝜕𝑊

𝜕𝐼1
+ λ2

𝜕𝑊

𝜕𝐼2
) ( 27 ) 

2.1.7.3 Planar Tensile Test (or Pure Shear Test) 

In a planar test, one dimension of the test sample (at least ten times more than 

the one being stretched) is held fixed (𝜆2 = 1) while the other dimension is 

stretched like a tensile test. Therefore, the stretch ratios and state of stress de-

fining the deformation state and stress state respectively are as follow: 

𝜆1 = 𝜆, 𝜆2 = 1 𝑎𝑛𝑑 𝜆3 =
1

𝜆
 ( 28 ) 

Using these values of 𝜆 and the facts that for a biaxial test 𝑠1 = 𝑠2 and  𝑠3 = 0, 

equation ( 6 ) can be used to drive the following relation for nominal stresses 𝑠1. 

𝑠1 = 2 (𝜆 −
1

𝜆3
) (

𝜕𝑊

𝜕𝐼1
+

𝜕𝑊

𝜕𝐼2
) ( 29 ) 

Once engineering stress-strain data is on hand, the simplest approach as taken 

by many researchers is to use a commercial FEA software like, ANSYS or 

ABAQUS (Daly, Prendergast, Dolan, & Lee, 2000; Gong & Riyad, 2002; 

Wadham-Gagnon et al., 2006) to find the coefficients of the strain energy poten-

tial functions. 

 ANSYS provides a simple drag and drop functionality when a new material is 

defined, one of the hyperelastic models can be dragged on to the new material’s 

properties box. Similarly, a set of material tests can subsequently be dragged and 

dropped onto the properties box and values of stress and strain can be pasted 

into the table of the respective test. 
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2.1.8 Characterizing Hyperelastic Materials 

In this section, common technology and tests employed to characterize hypere-

lastic thin materials will be presented.  

2.1.8.1 Introduction 

Hyperelastic materials are generally characterized by non-linear elastic behav-

iour with large, mostly recoverable, elastic deformations. Their mechanical be-

haviour also strongly depends upon temperature and strain rates. 

C. Poilane et al (Poilane, Delobelle, Lexcellent, Hayashi, & Tobushi, 2000) have 

used nanoindentation, bulge test and point membrane deflection to characterize  

thin film of polyurethane shape memory polymer and compared these three non-

conventional characterizing techniques. They have obtained similar values of 

Young’s modulus and residual stress with the three charactering techniques i.e. 

nanoindentation, bulging and point membrane deflection. 

C.K. Huang et al (Huang et al., 2007) have characterized Polymethyl methacry-

late (PMMA)-based polymer using bulge tests with square and rectangular bulge 

windows. They have also studied the effect of different thicknesses on the value 

of Young’s modulus and concluded that slight thickness variations have no sig-

nificant effect on Young’s modulus. They have also concluded that a bulge test 

measures average values as compared to a nanoindentation test. 

Galliot & Luchsinger (Galliot & Luchsinger, 2011) have characterized Ethylene 

Tetra Fluoro Ethylene (ETFE) foils using uniaxial tensile tests, biaxial extension 

of cruciform specimen and bubble inflation (bulge test) tests.  
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Therefore, from the above discussion, the most common experimental measure-

ment techniques (tests) employed to characterize the mechanical behaviour of 

thin hyperelastic materials are uniaxial tension and biaxial extension tests, 

nanoindentation and bulge tests. 

2.1.8.2 Uniaxial Tension Test 

The uniaxial tension test or simply the tensile test is the most common type of 

test in material science because of the relatively simple construction of its testing 

device. It typically gives the load-deflection profile along the longitudinal direction. 

It can also be used to calculate Poisson’s ratio, another important property. Meas-

urement of Poisson’s ratio requires strain to be measured in the transverse direc-

tion. With the advancements of optical measurement techniques (like Digital Im-

age Correlation), it is comparatively easy to measure strains in longitudinal and 

lateral sample directions. Therefore, a tensile test can measures Poisson’s ratio 

directly; alternatively, Poisson’s ratio can be estimated from a combination of 

other tests data. 
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2.1.8.3 Biaxial Extension Test 

The biaxial extension test is another common test performed to characterize hy-

perelastic materials. A biaxial extension test, as compared to a simple tensile 

test, is more versatile but requires a more complex setup. A common geometry 

of sample is a cruciform which facilitates gripping but uses more material and 

sometimes test samples start tearing from corners which limits the maximum 

strain (Galliot & Luchsinger, 2011). 

 

Figure 2-5 A cruciform material sample for equibiaxial tetsing,. [Source: adopted 

from (Galliot & Luchsinger, 2011)] 

Others have used more complex grips which are attached all around the edges 

to maintain equibiaxial loads (Johlitz & Diebels, 2011; Kim et al., 2012; Meng et 

al., 2015).  

However, a biaxial tension test setup is worth the effort as it captures a large part 

of possible deformation states mainly because of its ability to stretch samples in 

two orthogonal independent directions at the same time. Therefore, it is easier to 

perform simple tension and pure shear tests (planar test) using the biaxial test 
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setup. Sometimes the term biaxial is used synonymous with equibiaxial. Engi-

neering stress-strain data obtained from equibiaxial test is then used to fit hyper-

elastic material models discussed in section 2.1.6. 

2.1.8.4 Nanoindentation 

Nanoindentation is a thin film characterization technique similar to the hardness 

tests commonly used for bulk material. A nanoindentation test uses an indenta-

tion instrument (a diamond Berkovich type indenter), which measures the pene-

tration depth and load during the loading and unloading continuously (Oliver & 

Pharr, 1992).  

The indentation depth is related to the area of contact between the indenter and 

the test material. This is done by making the indentation with a well-controlled 

force while continuously monitoring and measuring the displacement of the in-

denter, Figure 2-6. A nanoindentation test typically gives hardness and Young’s 

modulus of the material. 
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Figure 2-6 Example of the evoution of the applied load vs. the penetration depth 

upon nanoindentation cycle (Poilane et al., 2000).  

2.1.8.5 Bulge Test 

The bulge test is a versatile characterization method capable of determining a 

complete set of material properties of thin films under various controlled condi-

tions i.e. temperature, pressure and humidity (Tsakalakos, 1981). Hardware 

setup is relatively simple and mounting samples is quick and easy. Following the 

original work (Beams, 1959), this technique was used by many researchers with 

many innovative improvements. 

A bulge test is based on the precise measurement of the maximum bulge height 

of the centre of a thin film, ℎ0 under a uniform applied pressure, 𝑝. This 𝑝 − ℎ0 

behaviour depends upon the geometry of the bulge sample. Figure 2-7 shows a 

rectangular bulge geometry. 
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Figure 2-7 A rectangular sample (half section) under bulge and coordinate system. 

Bulge test has been successfully used to characterize thin films of a variety of 

materials (metals, ceramics, semiconductors and polymers) and bulge geome-

tries, summarized in Table 1. 
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Table 1 Different types of materials and geometries generally tested using a bulge 

test. 

 

 

Therefore, the commonly investigated bulge window geometries are rectangular 

and circular. 

  

Material tested Reference Bulge geometry 

Low pressure 
chemical vapour 
deposited Sili-
con Nitride 
( LPCVD Si3N4) 

(Kalkman et al., 1999; Maier-
Schneider et al., 1995; Schweitzer & 
Göken, 2007; Vlassak & Nix, 1992; 
Youssef, Ferrand, Calmon, Pons, & 
Plana, 2010) 

Square, Rectangular  

Silicon Carbide 
(SiC) 

(Huston et al., 2001; Wu et al., 2004) Square, Rectangu-
lar, Circular 

Silicon (Si) (Huston et al., 2001; Youssef et al., 
2010) 

Square, Rectangular  

Cu, Cu-Ni, Al-Cu (Kalkman et al., 1999; Schweitzer & 
Göken, 2007; Tsakalakos, 1981) 

Rectangular, Circu-
lar 

Poly-arylethers 
(PAE) 

(Y. H. Xu et al., 2000; Zheng et al., 
2000) 

Square 

Polyethylene 
terephthalate  
(PET) 

(D. Xu & Liechti, 2010) Rectangular, Circu-
lar 

Ethylene tetra 
fluoro ethylene  
(ETFE) 

(Galliot & Luchsinger, 2011) Circular 

Silicon based 
elastomer (RTV 
141) 

(Machado et al., 2012) Rectangular 
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2.1.8.5.1 Bulge Test with Rectangular Thin Film Samples 

The crux of this test is the correlation between bulge pressure, 𝑝 and maximum 

bulge height ℎ0. Figure 2-8 shows the basic geometry of a rectangular film sam-

ple. 

 

Figure 2-8 Nomenclature of a rectangular thin film sample 

A well-established correlation is given by (Pan et al., 1990) for a rectangular film 

sample as follows: 

𝑝 = 𝐶1

𝜎0𝑡

𝑎2
ℎ0 + 𝐶2

𝐸𝑡

𝑎4(1 − 𝑣)
ℎ0

3  ( 30 ) 

Where, 𝑝 is the applied differential pressure, 𝑡 is the undeformed thickness, ℎ0 is 

the maximum height at the centre of the thin film, 𝐸 is the elastic modulus, 𝑣 is 

the Poisson’s ratio, 𝑎 is the characteristic lateral dimension of the thin film meas-

ured from centre, and 𝜎0 is the residual stress with 𝐶1 and 𝐶2 as dimensionless 

constant functions. The value of 𝐶1 depends upon the aspect ratio (
𝑏

𝑎
) of a square 

or a rectangular sample. The value of 𝐶1 for a square film sample is 3.393 and 
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for  a rectangular sample, it approaches a value of 2.0 as the aspect ratio ap-

proaches 4.0 (Vlassak & Nix, 1992). 𝐶2, on the other hand, depends upon Pois-

son’s ratio, 𝑣 and the aspect ratio (
𝑏

𝑎
) of the rectangular sample and its value 

becomes independent of aspect ratio as aspect ratio exceeds a value of 4.0 

(Vlassak & Nix, 1992). Therefore, for a sufficiently long rectangular sample 

(𝑏 ≥ 4𝑎),  𝐶2 is 
4

3(1+𝑣)
 . Herein the term ‘long rectangular film’ will mean  (𝑏 ≥ 4𝑎). 

Therfore, for a sufficiently long rectangular film sample, the state of strain 

becomes plane-strain as strain in the length direction (y-axis) of the film is 

negligible. The only strain is in width-height plane (xz-plane) 

𝑝 =
4𝑀𝑟𝑡

3𝑎4
ℎ0

3 +
2𝜎0𝑡

𝑎2
ℎ0 ( 31 ) 

Where 𝑀𝑟 =
𝐸

1−𝑣2 is known as plane-strain modulus. 

2.1.8.5.2 Stress and Strain in Rectangular Thin Film Bulge Samples 

In a long rectangular film under uniform pressure, the shape of the bulge is cylin-

drical. If ℎ0 ≪ 𝑎, then the measured 𝑝 − ℎ0 data can directly translate into the 

nominal stress and nominal strain using the following relations (derivation in Ap-

pendix A) 

𝑠𝑥 =
𝑝𝑎2

2ℎ0𝑡
, 𝑒𝑥 =

𝑎2

6𝑅2
=

2ℎ0
2

3𝑎2
 ( 32 ) 

where 𝑅 is the radius of bulged-cylindrical surface. Deflection (ℎ) of the thin film 

is a polynomial function but for very low bulge heights in long rectangular samples 

the bulge-shape can be modelled as a parabola satisfactorily (Kalkman et al., 

1999).  
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Equation ( 32 ) will be used to calculate nominal stress-strain data to calibrate 

hyperelastic models. 

Using true strain ε = 𝑙𝑛 (
𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
) and considering incompressible material: 

𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 = 0 ( 33 ) 

The plane-strain assumption dictates that ε𝑦 = 0, then the thickness of material 

at the pole of the bulged surface can be approximated using the following equa-

tion with 𝜀𝑥 = 𝜀: 

𝑡𝑝 = 𝑡. 𝑒𝑥𝑝−𝜀 ( 34 ) 

The true stress is calculated using the reduced (actual) thickness and is given by: 

𝜎𝑥 =
𝑝(𝑎2 + ℎ0

2)

2ℎ0𝑡𝑝
 ( 35 ) 

It is easy to calculate the stretched length of the sample along the x (or y) axis 

and hence the stretch ratio (𝜆). Using the basic relation to calculate the stretched 

arc length along the width axis of the rectangular bulge window and dividing the 

stretched arc length by its original width, in this case the half-width of rectangular 

bulge window ‘a’ gives the stretch ratio. (Appendix A) 

𝜆 =
𝑅

𝑎
sin−1 (

𝑎

𝑅
) ( 36 ) 

Therefore, the true strain is calculated as follows: 

𝜀 = ln(𝜆) = 𝑙𝑛 [
𝑅

𝑎
sin−1 (

𝑎

𝑅
)] ( 37 ) 
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2.1.8.5.3 Bulge Test with Circular Thin Film Samples 

A general correlation between applied differential pressure (p) and the resulting 

radius of curvature (R) is given as (D. Xu & Liechti, 2010): 

𝑝 =  
𝑀𝑐𝑡𝑎2

3
(

1

𝑅
)

3

+ 2𝜎0𝑡 (
1

𝑅
) ( 38 ) 

where 𝑀𝑐 =
𝐸

1−𝜈
 and is known as biaxial modulus.   

But there is a discrepancy in equation ( 38 ) between the strain energy and work 

done by pressure, to compensate this difference, a mean strain is introduced by 

(Wan, Guo, & Dillard, 2003) as follows: 

𝜀𝑒 =
3

4
𝜀 =

𝑎2

8𝑅2
 ( 39 ) 

This mean strain has also been derived by Williams (Williams, 1997) based upon 

general elasticity.  

So equation ( 38 ) becomes, 

𝑝 =  
𝑀𝑐𝑡𝑎2

4
(

1

𝑅
)

3

+ 2𝜎0𝑡 (
1

𝑅
) ( 40 ) 

2.1.8.5.4 Stress and Strain in Circular Thin Film Bulge Samples 

The true biaxial state of stress exists at the centre of the bulged surface (called 

pole) as depicted in Figure 2-9. The biaxial true stress at the pole of the spherical 

cap is given by: 

𝜎𝑥 = 𝜎𝑦 =
𝑝𝑅

2𝑡𝑝
 ( 41 ) 

where, 



50 

 

𝑝 = bulge pressure 

𝑅 = bulge radius or radius of curvature 

𝑡𝑝 = thickness of the bulge sample at the pole 

 

Figure 2-9 A circular bulge sample geometry showing, the radius of the die hole 

(window) ‘a’, 𝑅 is the radius of the bulged spherical cap, bulge pressure  𝑝 and ℎ0 is 

the maximum bulge height. 

Thickness of the thin polymer can be approximated using equibiaxial true strains 

along x and y-axes. Since the polymer is assumed incompressible, it results in 

the following equation: 

𝜀𝑧 = −𝜀𝑥 − 𝜀𝑦 ( 42 ) 

Since 𝜀𝑧 = 𝑙𝑛 (
𝑡𝑝

𝑡
) and 𝜀𝑥 = 𝜀𝑦 = 𝜀, therefore  

𝑡𝑝 = 𝑡. 𝑒−2𝜀  ( 43 ) 

The stretch ratio (𝜆) is calculated using equation ( 36 ) and the true strain is cal-

culated from equation ( 37 ): 
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2.1.9 Summary 

Polymers belong to a type of material called hyperelastic materials. Hyperelastic 

materials are modelled either using phenomenological or based upon molecular 

statistical networks. The choice of a particular model depends upon, how good 

the model can fit various types of tests data (Uniaxial, biaxial, pure shear).  

Bulge test is well-developed thin films characterization technique, able to deter-

mine important mechanical properties. Using long rectangular and circular bulge 

windows and fitting their corresponding analytical models, Young’s modulus 

(given Poisson’s ratio) of the material can also be calculated besides biaxial mod-

ulus and plain-strain modulus. 

A tensile test with means to measure lateral strain can be used to measure Pois-

son’s ratio.  

Therefore, a bulge test with rectangular and circular bulge geometries and a ten-

sile test will be performed to characterize the polymer samples. 
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3. The Experimental Setup 

This chapter details the customised hardware setup design of the 

bulge and the tensile tests. The bulge test has two variants with 

slight modification to its sample holding fixture; one to hold a cir-

cular, ∅ 20 mm sample, and another to hold a rectangular sample. 

A tensile test setup is built by modifying the bulge hardware 

setup. The same syringe pump used to apply bulge pressure is 

used to perform the tensile tests.  
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3.1 Bulge Hardware Setup 

The bulge testing system (Figure 3-1) is made-up of many sub-systems as fol-

lows: 

1. A bulge chamber assembly with the provision of sample mounting and a 

buffer chamber. 

2. A pressure sensor with electrical signal output. 

3. A source of compressed air (a retrofitted syringe pump) 

4. A control system: a non-PC based microcontroller system (Arduino) 

5. and a bulge height measurement system (3D DIC by LaVision) 

 

Figure 3-1 A systematic overview of bulge setup with Digital Image Correlation  

(DIC) system. The syringe pump also houses the micro-controller in it. 
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3.1.1 The Bulge Chamber Assembly 

A cylindrical hole is drilled in a solid circular stock of steel of outer diameter ∅75 

mm. The top side of the bulge chamber, Figure 3-2, was machined to provide a 

standard grove for an O-ring to seal the bulge chamber and sample platform. 

Several other side holes are necessary for compressed air inlet/outlet and for 

pressure sensor attachment. An extra side hole, which was originally drilled for 

an exhaust controller that was needed in case of a desktop compressor was 

used, is plugged. The size of the bulge test geometry dimensions is limited by the 

maximum dimensions of the nearly flat samples, which can be obtained from the 

palm area of the gloves. 

 

Figure 3-2. The bulge chamber assembly, showing bulge chamber, sample 

mounting and holding configuration of a rectangular sample and pressure sensor. 
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Insert shows the bulge Chamber assembled view @ 0.5 the scale of the exploded 

assembly. 

A sample platform is machined and bolted on top of the pressure chamber. This 

platform with sample holder plate mainly serves two purposes: 

1. Provide a uniform surface for mounting the sample. 

2.  It can be changed, along with the sample holder plate, to accommodate 

different aspect ratios of rectangular and circular samples without chang-

ing the whole bulge chamber. 

The polymer sample is sealed onto the sample platform with a sample holder 

plate, which is bolted into the bulge chamber body through the sample platform. 

The pressure is applied through a buffer chamber. The buffer chamber is not 

shown in Figure 3-2, as it is the same as the bulge chamber but with only inlet 

and outlet side-holes for compressed air and the top sealed through an O-ring. 

The purpose of the buffer chamber is to add some stability by smoothing out any 

pressure fluctuations during loading and unloading cycles. Figure 3-3 shows the 

sample platform and sample holder plate as seen in a CAD package (PTC Creo). 
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Figure 3-3 sample platform and holder plate for circular bulge samples. 

The diameter of the circular bulge geometry is Ø = 20mm. 

Three different aspect ratios of rectangular geometries have been used as shown 

in Figure 3-4 and Table 2. 

Table 2 Three different rectangular window geometries with their respective 

aspect ratios (AS) and actual dimensions. All dimensions are in mm. 

# Name [Nominal size] Width (2a) Length (2b) AS (b/a) 

1 R1 [8x32] 7.93 31.93 4.03 

2 R2 [6x36] 5.85 36.03 6.16 

3 R3 [5x35] 4.83 34.93 7.23 

 

 

Figure 3-4 Three different rectangular sample windows (sample holder plates) 

nominal sizes (WxL mm). 
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3.1.2 The Pressure Sensor 

The pressure sensor from IFM (PN3097) has a working range of 0-101kPa. This 

pressure sensor also has an LCD display for reference purposes. The pressure 

sensor analogue current output is 0-20 mA and Vdc is 0-10 volts.  

 

Figure 3-5 The pressure sensor (IFM PN3097) attached to the bulge chamber with 

a rectangular bulge window mounted on the top. The lcd display unit are set to 

kPa. 

This voltage can be recorded into the DIC system through its built-in analogue-

to-digital convertor (ADC) of the ‘Strain Master’ Controller (LaVision™) but it is 

only passive recording without any means of controlling the pressure.  

The pressure has to be controlled during the experiment to maintain the same 

maximum pressure during loading cycles. The solution is to use an external con-

trol system, which can also control the pressure while storing pressure ADC data. 
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In this case, the pressure sensor output signals were stored in the control system. 

The control system used is an Arduino Nano general purpose board (version 3.0). 

3.1.3 The Syringe Pump System. 

A syringe pump system has been modified, only its hardware has been used after 

removing all the electronic circuitry. The hardware used includes the body, a sy-

ringe holding fixture, leadscrew with v-grooved belt-pulley assembly and a step-

per motor. The leadscrew receives the torque through a drive belt, which reduces 

the speed of the motor to half. There is no need to physically remove the keypad 

and LCD screen since it is disconnected (seen in Figure 3-6).  

The stepper motor is a six wire centre-tapped and takes 200 steps per revolution, 

thus giving 1.8° per step. A simple resistance measurement method with the help 

of a digital multimeter was used to identify the common terminals of the centre-

tapped-6-wired stepper motor. Further trial and error revealed the complete order 

of the step sequence to run the stepper with any desired steps, speed, and direc-

tion. The maximum speed at no load is found to be not more than 120 revolutions 

per minute (RPM). The stepper motor have been programmed to run at 60 RPM 

for all bulge experiments. Therefore, the leadscrew rotates at half the speed, 30 

RPM. The pitch of the leadscrew has been measured to be 0.5 mm. At the current 

parameters, the platform attached to the leadscrew travels linearly with a speed 

of 15 mm/min. 

A 100ml syringe has been used throughout the bulge tests; Figure 3-6 shows the 

complete syringe pump with control system inside the pump body. 
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Figure 3-6. The customised syringe pump system retrofitted with micro controller 

and stepper motor driver with feedback loop from pressure sensor. 

The 100𝑚𝑙 syringe (internal diameter 𝜙33𝑚𝑚) when plunged with a linear speed 

of 15 𝑚𝑚/𝑚𝑖𝑛 gives a volume flow rate of 0.2138 𝑚𝑙/𝑠𝑒𝑐.  

3.1.4 The Control System 

The control system is the brain of the experimental setup. A commercially avail-

able general-purpose microcontroller board is used to coordinate the whole ex-

periment. The microcontroller performs the following functions as the master: 

1. Read the pressure sensor analogue voltage through ADC (Analogue-to-

digital converter). This microcontroller has a 10-bit ADC. 

2. Control the maximum pressure by controlling the syringe pump during 

loading and unloading cycles. 

3. Store pressure readings in a log file using a free serial/TCP software. 
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4. Trigger the DIC system to capture a profile. 

Since the microcontroller board analogue input pins are only 5 volts (DC) tolerant, 

the pressure analogue signal (0-10VDC) should be halved using a voltage divider 

circuit as seen in Figure 3-7 if the working maximum pressure is higher than 

50kPa (5 VDC). However, for these bulge tests the maximum pressure has been 

under this value. Therefore, the pressure analogue signal has been directly input 

to the microcontroller.  

 

Figure 3-7. Microcontroller with a stepper motor driver (controller). Wirings are 

not shown to keep the presentation of the system tidy. 

The minimum pressure with this arrangement that can be read from the bulge 

experiment comes from ADC and the pressure sensor. The 10-bit ADC can read 

a minimum of  
50,000 𝑃𝑎

210 = 48.8 Pa and pressure sensor’s accuracy, as given in its 

technical notes, is 0.5% full scale (101 kPa) that is 505 Pa. Therefore, the accu-

racy of the bulge pressure measurement system is 0.5 kPa. 
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3.1.5 The Height Measurement System 

There are many different height measurement techniques reported in the litera-

ture used in a bulge test. Table 3 summarizes the bulge height measurement 

techniques. The most common method of measuring a bulge height is laser in-

terferometer. However, a laser interferometer can only measure a maximum of 

few hundreds of micrometers. It is clear from Table 3 that to be able measure a 

bulge height in mm range a 3D DIC system is needed. 

Table 3 Varius techniques used for height measurement in a bulge test. 

Height measurement 

technique 
Bulge heights (min.-max.) References 

Laser Interferometer 4-200 µm 

(Huston et al., 2001; 

Schweitzer & Göken, 2007; 

Vlassak & Nix, 1992; Wu et 

al., 2004; Y. H. Xu et al., 

2000; Zheng et al., 2000) 

Scanning laser beam 50 µm (Kalkman et al., 1999) 

Michelson type 

interferometer 
25 µm (Huang et al., 2007) 

Fringe projection 200 µm (Poilane et al., 2000) 

Optical profilometer 20 µm (Youssef et al., 2010) 

3D DIC Upto 180 mm 

(Çakmak, Kallaí, & Major, 

2014; Galliot & 

Luchsinger, 2011; 

Machado et al., 2012) 

Therefore, using a 3D DIC system, it not only calculates the bulge height but also 

calculates the 3D bulged-shape, which helps to justify analytical models devel-

oped, based upon assumptions of certain bulged shapes (cylindrical and spheri-

cal cape).  
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A commercially available 3D Digital Image Correlation (3D DIC) system (LaVision 

GmbH) has been used to measure the 3D bulged shape and hence determine 

the maximum bulge height. The DIC system (Figure 3-8) consists of the following: 

1. Two digital CCD cameras for recording low noise, grey-scaled images. 

2. Two sets of white LED light units 

3. ‘Strain Master’ controller: the main unit, which coordinates cameras, LED 

lights and other external signals (trigger and analogue signals inputs). 

4. A tripod to hold the cameras, LED lights and ‘Strain Master’ controller. 

5. Calibration plates (various sizes).  

 

Figure 3-8 (a) Bulge testing with Digital Image Correlation system by LaVision 

with various components mounted in the vertical position on a tripod (tripod not 

visible in the image). (b) A calibration plate 58x58x5.8 mm. 
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3.2 The Tensile test setup 

The tensile test is a very useful and basic test. The uniaxial stress-strain data it 

produces can be used to fine-tune a hyperelastic model for simple loading con-

ditions.  

A very simple tensile test setup is required as samples are very small and the 

tensile force requirements are very low as the polymer material is small dimen-

sions (45x15 mm). This material can be stretched very easily even with a gentle 

pull.  

The syringe system from the bulge test has been modified to build a miniature 

stepper-motor electirc frame. It is sufficiently stiff and provides appropriate 

displacement control. 

The tensile test set up consists of the following main components as shown in 

Figure 3-9. 

1. A syringe pump to act as main tensile test platform with custom control 

system to act as master controlling stepper motor of the syringe pump, 

storing data from the Loadcell and triggering the DIC system. 

2. Two grips to hold the tensile test sample one on the fixed post side and 

the other on the moving post of the tensile fixture (syringe pump). The fixed 

grip is attached to the tensile fixture through the load cell. 

3. DIC system to calculate strain in the tensile strips. 
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Figure 3-9 Schematic of Tensile test setup. Note: the syringe pump is now acting as 

tensile fixture.  

3.2.1 Strain Measurement 

A conventional tensile test only measures elongation (hence strain) along longi-

tudinal direction only. A wide variety of techniques exists for measuring strain in 

a tensile test; namely the strain gauges, extensometers, stress and strain deter-

mined by machine crosshead motion, optical strain measurement techniques and 

others (Motra, Hildebrand, & Dimmig-Osburg, 2014). None of the techniques 

given above is able to measure lateral strain in polymers as required in poison’s 

ratio calculations except optical strain measurement. A bulge tests always involve 

a multi-direction loading, therefore, a tensile test is required to estimate the Pois-

son’s ratio (υ). Strain gauges are practically impossible to attach to flexible poly-

mer samples going through a large strain. 
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Therefore, using the same DIC system as used with the bulge test is most appro-

priate technique of measuring longitudinal and lateral strains.  

3.2.2 Tensile Test Fixture (Retrofitted Syringe Pump) 

The syringe pump from the bulge test as described in 3.1.3 with slight modifica-

tions has been used to perform the tensile test as shown in Figure 3-10. This is 

simple and suitable for very small force tensile test. 

 

Figure 3-10 Syringe pump modification to carry out a tensile test of the polymer 

specimen.  

The loadcell assembly has been mounted on the non-moving side of the syringe 

pump to minimize inertia effects and the moving post, attached to the leadscrew, 

grips the other end of the tensile sample. 
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 Since travel of the moving post is limited due to small size of the syringe pump, 

the dimensions of the tensile sample must be kept small.  

Following a technique reported by Selvadurai (Selvadurai, 2006), a specimen 

with large nominal dimensions and integral cuts was used. This produces three 

individual test specimens in a single test with the overall measured data being 

the sum of the individual specimen response.  The combined specimen has a 

nominal size of  45 𝑚𝑚 in length and 30 𝑚𝑚 in width. The three test specimens 

within this have nominal cross-sectional dimensions of 10.0 𝑚𝑚 ×  0.125 𝑚𝑚. 

This specimen design enables a larger grip area, reducing slip, but still provides 

minimal transverse constraint allowing the specimen to deform without warping. 

To further minimise slip or damage to the specimen, an additional piece of latex 

was glued to the grip regions of the test specimen 

 

Figure 3-11 an image from DaVis 8.3 showing three Tensile Test strips. The yellow 

lines are added to clearly show sample and three strips in it. 
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Another benefit of using three tensile test strips is that the error in the sample 

dimensions will also be averaged over the three tensile strips instead of just one 

tensile strip. 
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3.2.3 Loadcell Assembly 

A load cell (max load 3kg, TEDEA-HUNTLEIGH) with a Load cell amplifier unit 

(LAU 73.1, Sensor Techniques Limited) is used to measure tensile force (Figure 

3-12). 

 

Figure 3-12 Loadcell assembly containing a 3kg loadcell.  The angle plate is 

attached onto the syringe pump, the loadcell is then attached to the angle plate on 

one end and sample clamping plates on the other. Lower left corner insert shows 

actual laodcell assembly. 

3.2.4 Loadcell Calibration 

The Loadcell has been calibrated with a digital force-measuring instrument (Sau-

ter FK100) with a maximum capacity of 100N in 0.05N steps. The force meter 

has been attached to the Loadcell assembly through a tensile spring. The 
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Loadcell assembly is bolted to the syringe pump, the force meter is pulled slightly 

and held static at its position, and Vdc output from the Loadcell is measured with 

a multimeter. Figure 3-13 shows the calibration result. No hysteresis has been 

observed during repeated cycles of loading and unloading of the Loadcell.  

 

Figure 3-13 Loadcell calibration plot showing ~100% fit and linear equation 

relating applied force [N] (x) to the resulting Vdc (y) produced by the loadcell. 

 

3.2.5 ADC Calibration 

The ADC (10-bits) of the controller is also calibrated with the help of a power 

supply (TTi QL355T) and digital multimeter (Agilent 34405A). A known voltage is 

applied to an analogue pin of the controller and the corresponding ADC values 

are noted. The process have been repeated several times for increasing and de-

creasing applied voltages.  
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Figure 3-14 Arduino ADC calibration results showing a very good fit.  
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4. 3D DIC with a Commercial System 

In this chapter, a brief review of the working principle of DIC will be presented. All 

software manuals are accessible from the DIC software used in this study. 
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4.1 Introduction 

Digital Image Correlation (DIC) is a non-contact, non-invasive measurement 

technique. It is an optical method that only requires visual access to the experi-

mental surface (Chu, Ranson, & Sutton, 1985). The sample surface to be rec-

orded needs to have some identifiable surface pattern or texture. Some surfaces 

have a natural identifiable pattern but in some cases where the surface is smooth 

and shiny, an artificial speckle pattern should be created by spray paint or any 

other means.  

An optical mouse is a very common example of motion detection below its sur-

face using DIC while illuminated with a light source.  

This technique tracks the changes of grey value pattern in a small area of N × N 

pixels called a subset during deformation or rigid body motion. This can be used 

to measure both displacement and deformation. 

4.2 The Working Principle of DIC 

The working principle of DIC system is similar for 2-D and 3-D measurement en-

vironments. A camera takes a series of grey-scale images of a deforming surface 

and compares them to a reference image (the first or previous image), Figure 

4-1. In 2D, a mapping function is calculated from one or more images of a known 

dot pattern. This mapping is known as calibration, discussed in detail in section 

4.4. 



73 

 

 

Figure 4-1 Basic step of DIC where a speckle pattern is discretized into small 

subsets. [Source: LaVision’s ‘Strain Master’ manual] 

The images are discretized into small squares of pixels, called subsets. The sub-

set at time t is compared to another subset at the same location in the next image 

(at time t+dt). During the comparison the subset is moved slightly (step over) to 

find the best match that gives the displacement vector for each subset, Figure 

4-2. 

 

Figure 4-2 Correlation peak for each facet (subset) and corresponding pattern 

displacement in 2D. [Source: adopted from LaVision’s ‘Strain Master’ manual] 
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In a 3D stereoscopic DIC system, two cameras see the same specimen surface 

being recorded (Figure 4-3). The DIC system is calibrated and a 3D mapping 

function is calculated to transform the local coordinate system of both cameras 

into world space. Each camera matches the pattern as explained in Figure 4-2 

and the set of displacements from each camera is combined using the 3D map-

ping function to build a 3D surface.  

 

Figure 4-3 A 3D stereoscopic DIC system with two cameras. Images L and R are 

recorded by left and right camera respectively. Displacements of each point (u, v) 

are calculated and mapped togather to calculate 3D displacements. [source: 

adopted from LaVision’s ‘Strain Master’ brochure] 

This study uses a LaVision DIC system that comes with its own software (DaVis 

V8.3) to perform the DIC algorithm. 

4.3 Hardware Setup 

The system is supplied complete with tripod, associated mounts for camera, and 

LED lighting system. The system is setup in a vertical orientation so that the two 

cameras have been arranged and focused to see vertically down the same area 
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of the bulge setup where polymer samples are mounted as shown in Figure 3-8 

(a) 

Once the hardware setup is complete and all connections are made, it is ready 

to launch the Davis softwares and acquire images for calibration. 

4.4 Preparing the Samples  

Latex material samples are cut from commercially available gloves (Figure 4-4). 

The average thickness of the gloves has been measured as 125 ± 1.4 with the 

help of a digital micrometre with a resolution of ±1 μm. 

 

Figure 4-4 Latex gloves used to cut samples from for testing with DIC. [Source of 

gloves: Premier Protector, Latex Examination Gloves (medium).]  

The colour of these glove samples gives a good contrast when spray painted with 

black matt paint as shown in Figure 4-5. The other samples for the bulge test are 

also cut in a similar manner from relatively flat areas of gloves, back and front of 

the glove around the palm area. 
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Figure 4-5 a circular latex sample is lightly spray painted with matt black paint (a 

commercially available spray bottle) to generate a random speckle pattern suitable 

for digital image correlation.  

After the samples are prepared, they are ready for DIC experiments as outlined 

in the next sections. 

4.5 DIC Calibration  

A calibration must be performed for every new experiment or a new sample and 

if the system is left unattended for long time. The LaVision DIC system comes 

with various sized calibration plates for 2D and 3D. For the experiments carried 

out in this work a calibration plate measuring 58 x 58 x 5.8 mm (Type 7) is used. 

This plate type is suitable for 3D calibration as it has 1mm height steps on both 

sides. Figure 4-6 shows the calibration window from DaVis showing recognised 

fiducial features. 
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Figure 4-6 Calibration window from DaVis showing calibration plate Type 7/ Type 

058-5 fitted with a 3D mapping function.  

A few images (three are sufficient) of the calibration plate are taken while placed 

on the sample and rotated slightly between the consecutive images. Then the 

calibration process is initiated and a 3D mapping function is calculated (Figure 

4-7). The reader is advised to read the manual ‘Strain Master’, available through 

help menu in DaVis, for a step-by-step calibration procedure. 
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Figure 4-7 A window showing fit parameters from DaVis 8.3. 

An important parameter is the root mean square of fit (RMS of fit). It is mentioned 

by LaVision in the ‘strain Master’ manual that for a 2 mega pixel camera an RMS 

fit value lower than 1 pixel is good, a value lower than 0.3 pixel is excellent, values 

higher than 2 pixel are questionable. These limits on values of pixels increase 

with higher resolution cameras. The cameras employed in this study are 5 meg-

apixels. Therefore, an RMS of fit of value 1.2 (Figure 4-7) will be considered good. 
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4.6 Profiles Acquisition 

Once the DIC system is calibrated, the next step is to acquire DIC data from the 

experiment. The important parameters to be set before recording are: 

1. Exposure time: duration of time during which light is allowed to reach the 

camera sensor. It is adjusted until there is no light saturation in the rec-

orded images and it depends on the lighting level surrounding the surface 

being recorded. A typical value between 15,000 – 50,000 microseconds 

(µs) is used in these experiments. If exposure time is too short (7000 ns 

at one time), then contrast will be very low and the surface speckle pattern 

will not be clearly visible. DIC correlation will either fail or give very noisy 

results.  

2. Recording frequency: this is selected based upon the speed of the exper-

iment. The approximate time for one loading cycle is noted and then using 

the number of cycles planned and the frequency, the total number of im-

ages is calculated. An upper limit of frequency, other than the DIC hard-

ware (controller and cameras) exists because of the value of the exposure 

time. For example, with a 50,000 µs exposure time the maximum fre-

quency permitted is 20 images per second 

The term ‘profile’ is used for the set of images taken by cameras while each cam-

era image is called a frame of the profile in DaVis. 

There are two ways to synchronize the start of recording of profiles in DaVis and 

the start of stretching or pressure bulging. 

1. Start the experiment and the recording in DIC system at about the same 

time manually. 
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2. Put the DIC system on standby from DaVis and trigger it externally. A mi-

crocontroller has been used to drive a stepper motor that drives the retro-

fitted syringe pump. The microcontroller triggers the DIC system when the 

syringe pump has been stopped for 500 milliseconds. DIC is triggered dur-

ing this time to avoid any blurring due to motion. When the DIC system 

takes the set number of profiles, it stops or recording is cancelled early in 

any situation (say sample damage). 

The second method has been used in all experiments. After acquisition of DIC 

profiles, the digital image correlation is run to calculate displacements. 

There is a specific colour scheme in DaVis to check if there is any light satu-

ration in the recording DIC profiles (images). The areas of saturation will be 

highlighted in red. If there is saturation in the recorded DIC profiles, the DIC 

correlation will not converge. Therefore, exposure time and   

4.7 Displacement Calculations 

In this step, DIC profiles are cross-correlated and resulting displacements and 

deformed surfaces are built. A combination of masks can be used to add and /or 

subtract areas of interest. 

As explained in 4.2, the image is divided into subsets starting from one or more 

seeding points selected in the masked area as shown in Figure 4-8. 
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Figure 4-8 A quadrilateral mask is applied to include the rectangular bulge window 

area. A seeding point is also placed to start discretization the masked area into 

subsets of N xN. A default value of 31x31 pixels for subset is shown in Figure 4-9 

(a)  

 

Figure 4-9 More calculation settings. (a) Default settings of subset size and step 

sizes (b) time series settings controlling correlation modes. 

    

    
(a)           (b) 
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The value of subset size affects the displacements calculated. Therefore, an op-

timal subset size will be selected from a convergence study for each new exper-

iment. 

There are three time series settings that control how to digitally correlate the pro-

files as shown in Figure 4-9 (b). These three settings are briefly summarized be-

low: 

4.7.1 Relative to First 

For small strains, as typical in metals (say 10%~20%), displacements are calcu-

lated by correlating all subsequent profiles always to the first profile. Since the 

total strain is small, the relative displacements between two consecutive profiles 

will be very small depending upon the recording frequency. Therefore, LaVision 

suggests using ‘relative to first’ time series setting when dealing with small 

strains. 

4.7.2 Sum of Differential and Differential 

For experiments involving large strains, typically for polymers, where strain is in 

typically three figures percentage, sum of differential or differential time setting is 

recommended by LaVision. In these modes of displacement calculations, two 

consecutive profiles are correlated as opposed to all profiles ‘relative to first’. 

These differential displacements are either added up as in ‘sum of differential’ 

case or just left unadded. If there are some less important areas (usually extreme 

sides) with more noise in them, the ‘sum of differential’ option does not always 

converge. In this situation, the ‘differential’ time series setting is used and the 

displacement data are processed outside DaVis.  
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In this study the ‘Sum of differential‘ setting is used for all experiments. 

4.8 Extracting Data 

Once all profiles in a recording have been correlated, DaVis provides many dif-

ferent tools in which useful information can be extracted from the vector field built 

from the calculated displacements.  

In the bulge test, only the bulge-profile along certain directions is important de-

pending upon the bulge window geometry as described in the next section. 

4.8.1 Rectangular Bulge Window 

As discussed in section 0, for a long rectangular window, bulge-shape is only 

relevant in the width direction. 

The orientation of the displacement vector field (and deformed surface) is a com-

bination of placement and orientation of the bulge chamber beneath the cameras 

and relative positions of the two cameras. Therefore, to be able to see the actual 

bulge-shape along the width, the local coordinate system has to be rotated.  

The projection of bulge height onto the DIC axes is shown in Figure 4-10 
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Figure 4-10 2D (top) view of vector field showing the rectangular window from 

the bulge test in DaVis. The rectangular vector field is not oriented along either of 

the DIC axes (X, Y). W-line is approximately along the width of the rectangle. 

The bulge height along the W-line is projected onto the DIC x-axis and then along 

the y-axis as shown. The bulge-shapes along the DIC axes and along the W-line 

are presented in Figure 4-11. 
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Figure 4-11 Bulge-shape along a W-line when projected onto DIC axes (X, Y) and 

the corrected actual bulge-shape along the width of a rectangular bulge window in 

Matlab. 

An alternate approach of getting the actual bulge-shape along the width of the 

rectangle is to rotate the bulge chamber after calibration but before recording the 

bulge experiment a certain number of degrees clockwise or anti-clockwise so that 

the resulting displacement vector field is either approximately horizontal or verti-

cal.  

It is a time taking process requiring trial and error. After calibrating the DIC sys-

tem, two profiles are recorded and correlated. An image of the vector field similar 

to the one shown in Figure 4-10 is taken and angle of rotation is measured from 

either DIC axes. The angle of rotation is measured in a free windows application 

called ‘ImageJ’. The bulge chamber is rotated about its axis of rotation avoiding 

any translation (Figure 4-12). After every rotation the resulting rotation of vector 

field in the DaVis software is measured. This process is repeated until an approx-

imate horizontal or vertical displacement vector field is obtained. 
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Figure 4-12 Bulge chamber rotation arrangements. The bulge chamber can be 

rotated the required angle approximately. 

The average number of rotations per bulge test recording is five. This second 

approach has been used in most of the bulge test recordings.  

4.8.2 Circular Bulge Window 

The bulge shape from the circular bulge window should be extracted such that it 

contains the maximum bulge height point, the centre point. The following proce-

dure is adopted to locate the centre of the circular bulge.  

A vertical line close to the centre of the bulge is first drawn and the DIC y-axis 

value of maximum bulge height is noted from DaVis. Then a horizontal line 

through the ‘noted value’ is drawn and bulge-shape is extracted in DaVis as 

shown in Figure 4-13. 
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Figure 4-13 Circular bulge window with a line drawn across its diameter to extract 

the bulge shape. 

4.8.3 Tensile Test 

The tensile test does not involve any 3D shape although the 3D DIC system is 

used to record it. The data required from DIC of the tensile test is strain along two 

mutually perpendicular lines. DaVis has a functionality of calculating strain along 

a line called the ‘Gauge Line’. Therefore, lines are drawn along longitudinal and 

lateral and longitudinal directions and strain along these lines is calculated using 

the ‘Gauge Line’ function.  

4.9 Export 

Once the bulge-shape or strain of all profiles are extracted, they are exported as 

a data file format (*.dat).  
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5. Processing DIC Data and Extracting Material Parameters 

All experimental results are presented in this chapter. The processing of experi-

mental data collected from experiments in MatLab is presented first then the 

shape of bulge is approximated with a polynomial and a circular arc. Material 

parameters are extracted through curve fitting of analytical models into the ex-

perimental data. Poisson’s ratio is calculated from tensile test results and com-

pared to the value of Poisson’s ratio calculated from the material parameters ob-

tained from the bulge tests. 
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5.1 Introduction 

DIC constructs a full 3D deformed surface by adding 3D displacements calcu-

lated from every two consecutive profiles (Figure 5-1). Each of the two cameras 

are used to capture an image at the same time and their images are combined 

into a profile using the mapping function calculated by DaVis during the calibra-

tion process. However, differential cumulative error also accumulates as differ-

ential displacements are added to construct the deformed surface. 

 

Figure 5-1 A 3D deformed surface as constructed in DaVis. A small roughness can 

be seen on the surface. These random surface imperfections are mainly a result of 

the speckle pattern not being uniform size and shape which results in a non-

smooth surface.  

The bulge-profiles data are read along different lines of interest in DaVis as out-

lined in 4.8.1 and exported as data files (*.dat extension). These data files are 

read in MatLab using a script file (*.m) and stored in MatLab data files (*.mat) 

ready for further processing as described in the next sections. All MatLab code 

files are attached in Appendix E. 
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5.2 Subset Size Convergence and Sensitivity 

Subset size in ‘displacement calculations settings’ as discussed in section 4.7 is 

an important parameter, which effects the DIC result. A subset-size convergence 

study is used to select an appropriate subset size for all different bulge test ge-

ometries as well as tensile tests.  

Figure 5-2, Figure 5-3, and Figure 5-4 show variations in the maximum bulge 

heights as the subset size in ‘DIC settings’ is increased for a particular DIC 

recording of the rectangular bulge test. It has been noted that as the nominal 

width size of rectangular bulge window is decreased in R1, R2 and R3, the 

maximum bulge height calculated by DIC also decreaeses gradually as the 

subset size is increased to 111 pixels (Table 4). It is clear from these figures that 

a default subset size of 31 pixels is suitable for DIC settings for rectangular bulge 

windows. 
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Table 4 Percentage decrease in maximum bulge height calculated using average 

height of subset sizes of 15, 21, 27 and 31 pixels when compared to the height 

calculated from a subset size of 111 pixels. 

Name 

[nominal width (mm)] 
%age decrease in heights 

R1 [8] 5.31 

R2 [6] 8.87 

R3 [5] 12.78 

A subset size of smaller than 15 pixels in the DIC settings did not converge 

showing that an average speckle size is in the order of 15 pixels. 

 

Figure 5-2 Variation of maximum bulge heights calculated using DIC from a single 

DIC recording of the bulge test with R1 bulge window as subset sizes are 

increased. 
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Figure 5-3 Variation of maximum bulge heights calculated using DIC from a single 

DIC recording of the bulge test with R2 bulge window as subset sizes are 

increased. 

 

Figure 5-4 Variation of maximum bulge heights calculated using DIC from a single 

DIC recording of the bulge test with R3 bulge window as subset sizes are 

increased. 
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Figure 5-5 shows subset size effect on the maximum bulge height of the circular 

bulge window. The maximum bulge height calculated with subset size of 111 pix-

els drops 6.17% from the average maximum bulge height calculated from the 

subset sizes of 15, 21, 27 and 31 pixels. Therefore, a default subset size is suit-

able for strain calculations for a circular bulge window. 

 

Figure 5-5 Variation of maximum bulge heights calculated using DIC from a single 

DIC recording of the bulge test with circular bulge window as subset sizes are 

increased.  
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The most interesting phenomenon is observed while changing subset size for a 

tensile test. There is no significant effect (205.8 ± 0.082%) on the longitudinal 

stretch ratio (𝜆1) for the selected subset sizes shown in Figure 5-6. On the other 

hand, the lateral stretch ratio (𝜆2) is very sensitive to the subset size changes 

(Figure 5-7). The calculated 𝜆2 remains constant upto a subset size of 27 and 

only falls ~0.2% when the subset size is increased to the default size of 31. The 

calculated 𝜆2 fall nearly linearly as the subset size is increased, as shown in Fig-

ure 5-7. Therefore, a subset size of 27 is used to calculate stretch ratios from the 

tensile tests. 

 

 

Figure 5-6 Variation of longitudinal stretch ratio (𝜆1) calculated using DIC from a 

single DIC recording of the tensile test as subset sizes are increased. 



95 

 

 

Figure 5-7 Variation of lateral stretch ratio (𝜆2) calculated using DIC from a single 

DIC recording of the tensile test as subset sizes are increased. The value of 𝜆2 

drops 0.1825% as subset size is increased from 27 to the default size of 31. 

As seen from Figure 5-2 to Figure 5-7, the general trend is an underestimation of 

the displacements at higher subset sizes. The most variation is observed in lat-

eral stretch (𝜆2) during the tensile test as subset size, is increased. 

5.3 Smoothing the Bulge-Profile: 

The bulge-profile data from DaVis have small fluctuations and require some 

smoothing. These small random variations are mainly the result of the sprayed 

speckled pattern. A very bad speckle pattern results in correlation breakdowns, 

but there are other less important factors like material discontinuities, sample 

thickness variations and experimental errors, which are harder to quantify. 

A MatLab function for smoothing data called smooth is used. The smoothing func-

tion takes one of the many methods available i.e. ‘moving average (default)’, ‘low-

ess’, ‘loess’, ‘spgolay’, ‘rlowess’, and ‘rloess’. Therefore a method called ‘lowess’ 
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(local regression using weighted linear least squares and a 1st degree polynomial) 

with 0.2 (20%) span is used after trying all other methods available in MatLab. 

The sampling span is a trade-off between deviation from original (raw) data and 

the noise in the DIC profile’s shapes, as seen in the raw data in Figure 5-8 to 

Figure 5-12. Each figure shows few bulge profiles to make the figures clearer. 

Higher bulge heights show a higher bulge pressure. The reader is referred to the 

MatLab documentation (MathWorks, 2016) for a complete review of smooth func-

tion. 

 

Figure 5-8. (R1S3) the third sample of the Rectangular window (aspect ratio ~4) 

after and before smoothing. 
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Figure 5-9 (R2S2) the second sample of the Rectangular window (aspect ratio ~6) 

after and before smoothing. 

 

Figure 5-10 (R3S3) the third sample of the Rectangular window (aspect ratio ~7) 

after and before smoothing. 
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Figure 5-11 (C20S3) the third sample of the circular bulge window of diameter 

20mm. Smoothing diametrical bulge-profile using ‘lowess’ and a span of 0.2. 

 

Figure 5-12 (C20S4) the fourth sample of the circular bulge window of diameter 

20mm. Smoothing diametrical bulge-profile using ‘lowess’ and a span of 0.2. 
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5.4 The Bulge-Profile Approximations 

The thin polymer film takes a certain shape depending upon the bulge window 

geometry. A sufficiently long rectangular bulge window becomes a cylindrical sur-

face while and a circular bulge window becomes a spherical surface.  

5.4.1 Rectangular Bulge Window 

The bulge-profile (bulge-shape) is cylindrical as a circular arc can fit very well as 

shown in Figure 5-13. The centre of the bulge-arc moves only vertically and ra-

dius of the circular arcs decreases (from 5.55𝑚𝑚 to 3.96𝑚𝑚) as the bulge pres-

sure is increased. The horizontal position of centre of the arc fluctuates very 

slightly with a standard deviation of 0.0082 𝑚𝑚.  

 

Figure 5-13 (R1S4) a circular arc fit to the bulge-shape. The horizontal position of 

the centre of the arc remains at a mean of 𝑥̅ = 0.00 𝑚𝑚 and standard deviation 

of 𝑠 = 0.0082 𝑚𝑚. The lowest arc represents the lowest pressure. 
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The shape of the bulge can also be approximated by a polynomial. For a small 

bulge height, the shape of the bulge is a parabola as also noted by Kalkman 

(Kalkman et al., 1999) and as seen in Figure 5-14. For higher bulge heights (and 

pressures), the bulge-shape can be better fit with a 4th degree polynomial (Pratt 

& Johnson, 1993), shown in Figure 5-15. 
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Figure 5-14 The bulge-profile (R1S2) at a pressure of 1.44 kPa showing polynomial 

fits of 2nd, 3rd, 4th, 5th and 6th degrees along with their respective goodness of fit 

(adjusted R2). All degrees of polynomials fit the bulge-profile very well. 

 

Figure 5-15. The bulge-profile (R1S2) at a pressure of 15.164 kPa showing 

polynomial fits of 2nd, 3rd, 4th, 5th and 6th degrees along with their respective 

adjusted R2 of fit. Polynomial fits of degree 4 and higher degrees fit best at all 

pressures (upto ~15kPa) and maximum bulge heights (upto ~4mm).  

A 4th degree polynomial fit to the bulge-profile is very good and increasing the 

degree of polynomial further (fifth, sixth etc.) gives no significant improvement as 

shown in Figure 5-15. 
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It has also been observed that with quadratic fit, the goodness of fit degrades as 

bulge height is increased past 2 𝑚𝑚 in the case of R1 and R2, and in the case of 

R3, the same is observed post 1.25 𝑚𝑚 bulge height. 

 

Figure 5-16 Variation of adjusted R2 (goodness of fit) of a quadratic polynomial fit 

as maximum bulge height increases. R1, R2 and R3 are three different aspect-ratio-

rectangular bulge windows. Each R window has many different samples and are 

designated by S1, S2 and so on. 
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Figure 5-17 Variation of adjusted R2 (goodness of fit) of a biquadratic polynomial 

fit as maximum bulge height increases. R1, R2 and R3 are three different aspect-

ratio-rectangular bulge windows. Each R window has many different samples and 

are designated by S1, S2 and so on. 

The benefit of fitting a polynomial curve is to be able to calculate the curve length, 

the new stretched length of the sample and hence the stretched ratios along the 

width and length of rectangular samples, 𝜆1 and 𝜆2 but polynomial curve is more 

susceptible to noise near edges as optical access is not very good. 

The arc length method will be used in this study, as it is better in dealing with the 

noise in the bulge-profile near the edges. The sample holder plate is 2mm thick 

and the when bulge height is about the same or more than the sample holder 

plate thickness, it obstructs the view of one or both DIC cameras as shown in 

Figure 5-18. 
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Figure 5-18 Rectangular bulge setup showing optically inaccessible spots (1 and 2) 

which do not correlate well in DIC and result in distorsions and excessive noise. 

Therefore, if bulge radius is used to calculate the stretched length of the bulge-

profile, it bypasses the noise related problem in dealing with the polynomial curve 

length. 

5.4.2 Circular Bulge Window 

When the bulge-profile is extracted from a diametric line on the deformed 3D 

geometry as explained in 4.8.2, a circular arc can be fitted to the bulge-shape 

with very reasonable accuracy as shown in Figure 5-19.  

The bulge-shape produced by a circular window is a spherical cap. This assump-

tion of a spherical cap remains only valid upto a hemispherical cap as also noted 

by (Reuge et al., 2001).  
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Figure 5-19 C20S3, Circular bulge window of diameter 20mm and sample three. A 

circular arc fits reasonably well to bulge shape as shown by the values of adjR2.  

5.5 Zero Pressure Height Correction 

It is necessary to compensate the maximum bulge height with pressure if the 

sample surface is not flat at the beginning due to wrinkles  (Kalkman et al., 1999; 

Schweitzer & Göken, 2007; Xiang & Chen, 2005; Yang, Long, Ma, & Wang, 

2014). A non-zero pressure is required to keep the thin polymer film from collaps-

ing and wrinkling. If the sample film collapsed and/or wrinkled, it would block the 

optical access of the DIC cameras to the sample surface. Another reason is that 

material samples are taken from gloves that are not completely flat which have a 

non-zero bulge height.  

Therefore, it is very important to compensate and correct the bulge heights of the 

first cycle. After the first cycle of bulging, the material has some temporary plastic 

stretch that is due to hysteresis and need not be corrected. 
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Figure 5-20 Pressure and maximum bulge height (𝑝 − ℎ0) response after height 

correction. Seven cycles are shown 

The starting two pressure values for the first cycle are taken and linear backward 

extrapolation is used to estimate the bulge height corresponding to a zero pres-

sure. This value is subtracted from all bulge height values before curve fitting.  

5.6 Fitting Curve to the Rectangular Bulge Data: 

A well-established correlation between bulge pressure (𝑝) and bulge height (ℎ0), 

as discussed in section 2.1.8.5.1 equation ( 31 ),  is as follows: (Vlassak & Nix, 

1992) 

𝑝 = 2
𝜎0𝑡0

𝑎2
ℎ0 +

4𝑀𝑟𝑡0

3𝑎4
ℎ0

3  

This relation can be linearized as follows (Yang et al., 2014; Youssef et al., 2010): 

𝑝

ℎ0
= 𝐴 + 𝐵ℎ0

2 ( 44 ) 
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Once 𝑝 − ℎ0 data have been extracted from the bulge test results, best straight-

line fit can be obtained using the equation: 

𝑌 = 𝐴 + 𝐵𝑋 ( 45 ) 

where,  

𝑌 =
𝑝

ℎ0
⁄   

𝑋 = ℎ0
2  

𝐴 = 𝑡ℎ𝑒 𝑌 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  

𝐵 = 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒  

Figure 5-21 shows the quality of straight-line fit of equation ( 45 ). The mean value 

adjusted R2 is 0.79 ±  0.020. 

 

Figure 5-21 (R2S2) Quality of the linear fit of  equation ( 45 ) for the five loading 

cycles. 
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Using a MatLab® script, the curve fit parameters 𝐴 and 𝐵 are found. The (X, Y) 

plot together with the value of constants of equation ( 45 ) is depicted in Figure 

5-22, which shows a reasonable correlation.  

Using the values of constants 𝐴 and 𝐵, the two material constants 𝜎0 =

𝐴𝑎2

2𝑡0
 and 𝑀𝑟 =

3𝐵𝑎4

4𝑡0
, given 2𝑎 for their respective rectangular windows (R1, R2 and 

R3) and thickness of samples (𝑡0 = 125 𝜇𝑚), are found. 

Note that a non-zero minimum pressure is required to keep the thin sheet taught 

and stop it from wrinkling and falling down because of its own weight. 

 

Figure 5-22. Linearization of experimental data for loading of the bulge test (R2S2) 

with line constants and an adjusted R2 value of 81%. 
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5.7 Fitting Curve to the Circular Bulge Data: 

A correlation between bulge pressure (𝑝) and bulge radius of curvature (𝑅), as 

discussed in section 2.1.8.5.3 and given in equation ( 40 ), is as follows: 

𝑃 =  
𝑀𝑐𝑡𝑎2

4
(

1

𝑅
)

3

+ 2𝜎0𝑡 (
1

𝑅
)  

Similarly, this relation can be linearized as follows: 

𝑝R = 𝐴 + 𝐵 (
1

𝑅
)

2

 ( 46 ) 

Once 𝑝 − 𝑅 data have been extracted from bulge test results. A best straight-line 

fit can be obtained using the linearization equation ( 45 ) with new values of X 

and Y: 

𝑌 = 𝑝𝑅  

𝑋 =
1

𝑅2  

Figure 5-23 shows the quality of straight-line fit to linearized equation ( 45 ). The 

mean adjusted R2 is 0.90 ±  0.01. 
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Figure 5-23 (C20S3) Quality of the linear-fit of  equation ( 45 ) for the eight loading 

cycles. 

The (X, Y) plot together with the value of constants of equation ( 45 ) is depicted 

in Figure 5-24.  

Using the values of constants 𝐴 and 𝐵, the two material constants 𝜎0 =

𝐴

2𝑡0
 and 𝑀𝑐 =

4𝐵

𝑡0𝑎2, given the radius of circular bulge window 𝑎 (
20

2
= 10𝑚𝑚), and 

thickness of the sample 𝑡0, are found. 

Note that a non-zero minimum pressure is required to keep the thin sheet taught 

and stop it from wrinkling and falling down because of its own weight. 
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Figure 5-24. linearization of experimental data for loading of the circular bulge test 

(C20S3) with an adjusted R2 value of 90%. 

 

5.8 Stabilization and Hysteresis 

It has been observed with all samples that the material (𝑝 − ℎ0) response mostly 

stabilizes after the first cycle of loading and unloading (or inflating and deflating), 

Figure 5-25. The same effect has been observed with all samples of all three 

aspect ratios (R1, R2 and R3) as well as circular window bulge samples (Figure 

5-26). A similar material response has also been observed in the tensile test re-

sults (Figure 5-27). Figure 5-27  

Therefore, all results from the first cycles of all experiments have been omitted 

from further presentation and use, to present stable results from which material 

behaviour can be determined. 
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Figure 5-25 (R3S4) Maximum bulge height and pressure plot of material with five 

cycles of loading (pressurizing) and unloading (de-pressurizing). The material 

response mainly stabilizes after the first cycle so that the following loading cycles 

give fairly consistent pressure and maximum bulge height response with 

hysteresis.  

 

Figure 5-26 (C20S3) stabilization in the material response curve under cyclic 

bulging with circular bulge window. The material response is mainly stable after 

the first cycle.  
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Figure 5-27 Tensile sample with ten stretching cycles showing stabilization of 

longitudinal stress-stretch (𝜎1 − 𝜆1) behaviour mainly after the first stretching 

cycle.  

The stress-stretch data presented in the Figure 5-27 has been aligned to origin 

for presentation, therefore, it is not suitable for reading Young’s modulus values. 

This stabilization effect is known as ‘Mullins effect’ and is attributed to strain-in-

duced softening of a polymer chain material due to repeated strain cycles 

(Göktepe & Miehe, 2005).  
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5.9 Unusable Results of some Rectangular Samples 

During the course of experiments, two rectangular samples (R2S1 and R3S1) 

ware found unsuitable for further consideration. It was noted that during construc-

tion of the deformed 3D shape, the bulged surface had missing surface patches 

especially from the top area (mid-width) because of reflection of light when the 

bulged surface had high curvature. These missing surface patches are due to a 

bad speckle-pattern (not unique) which results in the DIC correlation process to 

break down.  

 

Figure 5-28 (R2S1) A broken DIC correlation at the top of the bulged surface. The 

size of these missing patches (white colour) increased at higher strains (higher 

bulge pressure). The bulge-surface is colored with respect to the bulge height. 

Therefore, when the slice of the bulge shape is taken as described in section 4.8, 

the bulge-profile does not represent the actual bulge shape observed during the 

experiment as shown in Figure 5-29. 
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Figure 5-29 (R2S1) Bulge-profile as exported from DaVis showing non-circular 

shape but actually observed (through naked-eye) bulge shape during the 

experiment is circular (cylindrical in 3D). 

Two such samples have been identified to be unsuitable. 

1. R2S1: Second rectangular bulge window and first sample. 

2. R3S1: Third rectangular bulge window and first sample 

The material constants estimated from these two samples are also far from that 

of the material constants from other samples of the same geometry (Figure 5-30 

and Figure 5-31). 

The other sample with abnormal material parameters is R3S1. There is no prob-

lem with its 3D deformed surface but there is an excessive slack in the bulge after 

the first cycle. It is probable that the sample has not been mounted firmly, which 

resulted in slippage at high pressure. Therefore, no characterized material pa-

rameters are discussed/presented further from these two samples. 
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Figure 5-30 shows values of plane-strain modulus (𝑀𝑟), the value of 𝑀𝑟 for R3S1 

(2.64 ± 0.08 𝑀𝑃𝑎) is 41% higher than the average value of other four samples of 

R3. However, the same value for R2S1 is not far from the other four samples in 

R2 though. 

 

Figure 5-30 Variation of plane-strain modulus (𝑀𝑟) showing bad samples. Only 

R3S1 shows a very high value as compared to the rest of the samples with R2S1 

not far from other values in R2 group. 

Figure 5-31 shows the values of residual stress (𝜎0) for both bad samples. The 

values are far below the other values in their respective aspect ratio categories, 

R2 & R3 respectively.  



117 

 

 

Figure 5-31 Variation of residual (𝜎0) stress showing bad samples. The two 

samples, R2S1 and R3S1 show very low values for residual stress. ‘C’ shows the 

results from circular bulge window of diameter 20 (C20). 

5.10 Material Characterized Properties from Bulge Test 

Bulge test analytical models for a rectangular and a circular bulge window geom-

etry give these three material properties: 

1. Plane-strain modulus (𝑀𝑟) from a long rectangular bulge window 

2. Biaxial modulus (𝑀𝑐) from a circular bulge window 

3. Young’s Modulus (𝐸) derived from 𝑀𝑟 and 𝑀𝑐. 

4. Residual stress (𝜎0) from both bulge window geometries. 

These characterized material properties are presented in the next sections. 
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5.10.1 Variation of Plane-strain Modulus (𝑴𝒓)  

The values of plane-strain modulus have been estimated from curve fitting into 

equation ( 31 ). The next three figures present the variations in the values of 

plane-strain modulus highlighting effects of loading cycles, samples and geome-

try (aspect ratio) respectively. 

Figure 5-32 presents variations in the values of 𝑀𝑟 arising from three factors: 

loading cycles of a sample, samples of same geometry and aspect ratio of the 

rectangular bulge window. The data presented in the figure is only one point for 

each cycle; therefore, the error bars represent a 95% confidence interval on the 

estimated material parameters. The same can also be said about Figure 5-35 

and Figure 5-37 presented in the next sections. 

 

Figure 5-32 Variation of plane-strain modulus with rectangular bulge window as 

the aspect ratio is increased of  various samples over cyclic loading. The first cycle 

of loading has not been shown as the material stabilizes during it. The error bars 

show a 95% confidence interval on the estimated values. 
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Figure 5-33 shows the mean and standard deviation in 𝑀𝑟 of cycles plotted 

against four samples of each geometry. Figure 5-34 depicts the mean value of 

 𝑀𝑟 averaged over loading cycles and samples. 

Firstly, there is no regular pattern of variations in the value of  𝑀𝑟 over loading 

cycles and the variation is small probably due to experimental variations and post 

statistically processing of DIC data in MatLab. The maximum standard deviation 

(10%) from the sample average value of  𝑀𝑟 is in the cycles of R1S1 (Figure 

5-33). In general, there is slightly more random variation in samples of R1 than 

R2 and R3. Therefore, the material response under cyclic loading is deemed con-

sistent as compared to other variations as discussed in the following paragraphs. 

 

Figure 5-33 Variation of plane-strain modulus with rectangular bulge window with 

increasing aspect ratio for many samples. Mean and standard deviation of plane-

strain modulus to all cycles of a sample are shown. 
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Secondly, different samples with the same aspect ratio show more variation (Fig-

ure 5-33) as compared to the variations due to loading cycles (Figure 5-32). This 

variation can be explained by variations in the natural rubber material composi-

tion. As explained in section 1.1, properties of natural latex rubber vary based 

upon many factors. Therefore, it is likely that the two samples obtained from two 

gloves have slight difference in material composition. Even two samples from the 

same glove may have some variations in the thicknesses and initial curvatures. 

The initial curvatures in the bulge tests have been corrected through zero pres-

sure height corrections (section 5.5). In addition, the variations in the DIC data of 

each sample due to inhomogeneity in spraying on the samples to produce a 

speckle pattern for DIC should not be ignored. 

 

Figure 5-34 Variation of plane-strain modulus over three aspect ratios. Aspect 

ratio of rectangular bulge window show a clear increasing trend. The average 

value of this parameter for R2 is 1.171 ± 0.24 𝑀𝑃𝑎. 
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Third and finally, there is clear a trend in the value of  𝑀𝑟 with aspect ratio (Figure 

5-34). The value of  𝑀𝑟 increases as aspect ratio increases. It is also observed 

that the consistency in the value of  𝑀𝑟 has also slightly improved with increasing 

aspect ratio. 

The average value of  𝑀𝑟 for R2 is 1.171 ± 0.24 𝑀𝑃𝑎. 

5.10.2 Variation of Biaxial Modulus (𝑴𝒄) 

The value of the biaxial modulus (𝑀𝑐) is calculated through curve fitting the equa-

tion ( 40 ) in MatLab as discussed in section 5.7. 

The variation in the value of the biaxial Modulus (𝑀𝑐) over cyclic loading of two 

samples is shown in Figure 5-35. The variations in the value of 𝑀𝑐 over cycles is 

negligible and between the two samples is small. The average value of this pa-

rameter is 1.863 ± 0.11 𝑀𝑃𝑎. 
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Figure 5-35 Variation of biaxial modulus as material goes through cyclic bulging 

for two samples. The first bulging cycle data are not shown as the material 

stabilizes during it. The error bars show a 95% confidence interval on the 

estimated values. 
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5.10.3 Variation of Young’s Modulus (𝑬) 

Plane-strain modulus (𝑀𝑟 =
𝐸

1−𝑣2) and biaxial modulus (𝑀𝑐 =
𝐸

1−𝜈
) can be used to 

calculate Young’s modulus (𝐸). The mean value of Poisson’s ratio 𝜈 = 0.385 from 

tensile test is used to calculate the value of 𝐸. The value of 𝐸 for 𝑅2 is  0.997 ±

0.18 𝑀𝑃𝑎 and the value of 𝐸 for C (biaxial bulging with circular bulge window) 

is 1.145 ± 0.18 𝑀𝑃𝑎 as shown in Figure 5-36. The values of 𝐸 from other two 

aspect ratios (𝑅1 𝑎𝑛𝑑 𝑅3) are either two low or two high. 

 

Figure 5-36 Variation of Young’s modulus (𝐸) of the material with circular and 

rectangular bulge windows. 
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5.10.4 Variation of Residual Stress (𝝈𝟎) 

The value of residual stress (𝜎0) does not vary significantly over cycles in a sam-

ple as shown in Figure 5-37, as the other material parameters discussed above. 

 

Figure 5-37 Variation of residual stress of the material with rectangular and 

circular bulge windows. First cycle of loading has not been shown as the material 

stabilizes during it. The error bars show a 95% confidence interval on the 

estimated values. 

The sample-to-sample variations (Figure 5-38) can be attributed similarly to the 

same factors outlined in the discussion of plane-strain modulus (𝑀𝑟) in section 

5.10.1. 
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Figure 5-38 Variation of residual stress of the material with rectangular and 

circular bulge window geometries. 

The biaxial and plane-strain values of 𝜎0 are 0.292 ± 0.052 𝑀𝑃𝑎 and 0.201 ±

0.018 𝑀𝑃𝑎 respectively. 

 

Figure 5-39 Variation of residual stress value for circular (C) and  three aspect 

ratios of rectangular (R) bulge windows.  
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The value at ‘C’ represents biaxial value (from circular bulge) and as the aspect 

ratio increases the state of 𝜎0 moves towards a true plane-strain value. 

However, the most significant trend in the values of 𝜎0 is observed over aspect 

ratio. As a state of plane-strain is achieved, the value of 𝜎0 calculated represents 

only a component of the actual biaxial value of 𝜎0 in a thin polymer sheet of con-

stant area. This will be discussed in details in the discussion of the results section 

5.13. 

5.11 Measuring Isotropy of the Material with Tensile Test 

The lengths of two orthogonal gauge lines (Figure 5-40), drawn on the sample in 

the DaVis software during processing of the tensile test data, as the tensile sam-

ple undergoes one-dimensional stretching, are exported from DaVis and are read 

in MatLab®. Material samples of latex are stretched and un-stretched several 

times before recording with the DIC system to accommodate the stabilization ef-

fects. 

 

Figure 5-40 Gauge lines along length (L) and width (W) for used to calculate 

stretch ratios. These lines are not fiducial lines rather drawn during processing in 

DaVis. 

Stretch ratios are calculated in longitudinal (L) and lateral (W) directions as follow: 
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𝜆1 =
𝐿

𝐿0
, 𝜆2 =

𝑊

𝑊0
 ( 47 ) 

Where 𝐿0 and 𝑊0 are un-stretched lengths while 𝐿 and 𝑊 are stretched lengths 

in the two principal directions as shown on Figure 5-40. The stretching force is 

also recorded during the experiment. The tensile test data will be processed to 

yield poisson’s ratio and young’s modulus. 

5.11.1 Poisson’s ratio (𝛖) measured by Tensile Test 

It is important to investigate the isotropy of the material. For this purpose, sam-

ples are cut from gloves at three different orientations. The three orientations 

used are 0°, 45° and 90° measured from axis of the glove along the fingers. 

Poisson’s ratio (𝜐) is defined as the negative of the ratio of lateral strain and lon-

gitudinal strain. When dealing with large strains, as in polymers, Hencky (or true) 

strain is preferably used (Starkova & Aniskevich, 2010). Therefore, the following 

relation gives the Poisson’s ratio: 

υ = −
𝐿𝑛(𝜆2)

𝐿𝑛(𝜆1)
 ( 48 ) 

Figure 5-41 shows the variation of the value of 𝜐 averaged from two samples for 

each of the orientations.  

The mean value of PR is 0.385 ± 0.003 (Figure 5-41). The variation in the meas-

ured vale of PR in three selected directions is minimal supporting the claim that 

the material is isotropic. 
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Figure 5-41 Values of 𝜐 measured at three angle orientations of samples.Samples 

from two gloves are cut at each orientaion and the material is stretched many 

cycles before recording with the DIC. 

5.11.2 Poisson’s ratio (𝛖) Calculated from Characterized Parameters 

The value of υ can also be calculated from the values of plane-strain modulus 

(𝑀𝑟 =
𝐸

1−𝜐2) and biaxial modulus (𝑀𝑐 =
𝐸

1−𝜐
) as follows: 

𝜐 =
𝑀𝑐

𝑀𝑟
− 1 ( 49 ) 

The average value of biaxial modulus ( 𝑀𝑐 = 1.863 ± 0.11 𝑀𝑃𝑎) is used to calcu-

late the values of υ in Figure 5-42 and Figure 5-43. Note that the individual values 

of 𝑀𝑟 presented in Figure 5-33 are used but not the average values of 𝑀𝑟 shown 

in Figure 5-34 for the calculations of PR. Most spread is seen in the values of υ 

for R1, specially the value of R1S1, which is 226% higher than the average value 

of υ for other samples (S2, S3 and S4) of R1. In either case, all calculated values 

of υ in R1 are unrealistic. In the category of R2, the only value a bit off is R2S3. 
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The mean value of υ comes very close to 0.5 (υ = 0.49) when the value of υ 

calculated from R2S3 is not considered. For R3, the PR is near zero and margin-

ally negative which is likely unrealistic. The derived value of PR from R2 are most 

consistent with the value of PR typical of incompressible rubber (~+0.5). 

 

Figure 5-42 Variation of Poisson’s ratio as calculated from plane-strain modulus 

and average biaxial modulus value plotted against samples of different geometry. 
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Figure 5-43 Variation of Poisson’s ratio as calculated from plane-strain modulus 

and biaxial modulus. All samples of one aspect ratio are grouped togather. 
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5.11.3 Young’s Modulus (𝑬) measured by Tensile Test 

It is simple to extract Young’s modulus (𝐸) from a tensile test. It is the ratio of the 

tensile stress (𝜎) and the tensile engineering strain (𝑒), 𝐸 =
𝜎

𝑒
 . Figure 5-44 shows 

the variation in the value of Young’s modulus measured from a tensile test from 

samples cut at three different orientations. It has been observed that the value of 

Young’s modulus also varies slightly over the stretch ratio, 𝜆1. Therefore, the val-

ues of Young’s modulus have been averaged over the range of the stretch ratios. 

The mean value of 𝐸, hence calculated is 1.066 ± 0.24 𝑀𝑃𝑎. 

 

Figure 5-44 Variation of Young’s modulus calculated from the tensile test at three 

different orientations. 
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5.12 Calibrating a Hyperelastic Material Model using a commercial 

FEA Software 

ANSYS is one of the commercial FEA softwares available. It provides many hy-

perelastic material models for FEA simulations. These models can be easily cal-

ibrated using at least one or more of the uniaxial tensile test, pure shear test and 

equibiaxial test. Figure 5-45 shows stress-strain data of these three tests. The 

order in which the three types of loading curve are shown in the figure is con-

sistent will the same curves reported in the literature (Steinmann et al., 2012). 

The Figure 5-45 also shows the initial gradients of these stress-strain curves, 

which show initial values of Young’s modulus (𝐸), plane-strain modulus (𝑀𝑟) and 

biaxial modulus (𝑀𝑐) of their respective curves. It is clear from the figure that 

these three stress-strain curves are nonlinear. The least nonlinear (almost 

straight) being the tensile curve and the most nonlinear being the equibiaxial 

curve whereas the pure shear curve is in the middle. Therefore, it is not surprising 

to see that the initial value of Young’s modulus (1.192 𝑀𝑃𝑎) is very close to its 

value calculated from circular bulge test (1.145 𝑀𝑃𝑎). The other parameters val-

ues (𝑀𝑟 𝑎𝑛𝑑 𝑀𝑐) lie in the range between initial and final gradients of stress-strain 

curves (Table 5). 

Table 5 Showing values of initial and final gradients of three stress-strain curves 

Loading Type Initial Value [MPa] Final Value [MPa] 

Tensile 1.192 0.509 

Pure Shear 2.266 0.419 

Equibiaxial 3.350 0.112 
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A circular bulge test creates a true state of equibiaxial stress at the centre of the 

bulged surface. Therefore, this stress-strain data can be used to fine-tune a hy-

perelastic model in ANSYS instead of a biaxial extension test.  

A state of plane-strain is achieved in a bulge test with a long rectangular window 

along the width axis of the rectangle. The state of plane-strain resembles a pure 

shear test. Therefore, stress-strain data from plane-strain test can similarly be 

used to fine-tune a hyperelastic model in ANSYS instead of a shear test. 

 

Figure 5-45 Engineering stress-strain data for uniaxial tensile test, equibiaxial test 

(circular bulge test) and pure shear test (plane-strain bulge test). Initial gradients 

of these curves are also shown. 

Several ANSYS hyperelastic models have been fitted to the experimental data 

(Appendix B). The quality of a model is based upon the value of normalised error 

of fit (residual). 
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Table 6 showing thirteen ANSYS hyperelastic models calibrated using stress strain 

data from this study. These models have been ranked with respect to normalized 

error of fit (residual) 

# Model names residual 

1 MR9  0.36 

2 MR5  0.70 

3 Yeoh 3rd Order (Y3) 0.83 

4 Yeoh 2nd Order (Y2) 1.16 

5 MR3 Parameters 1.23 

6 MR2 Parameters 2.30 

7 Ogden 1st Order (O1) 2.31 

8 Neo-Hookean (NH) 2.52 

9 Yeoh 1st Order (Y1) 2.52 

10 Arruda-Boyce (AB) 2.52 

11 Ogden 2nd Order (O2) 77.20 

12 Ogden 3rd Order (O3) 77.50 

13 Gent (Ge) 79.38 

Mooney-Rivlin models with nine and five parameters (MR9 and MR5) and the 

Yeoh 3rd order models have the first three lowest values (below one) of residual 

error of fit. 

Figure 5-46 shows Mooney-Rivlin model with nine parameters (MR9). It is clear 

that it is only the biaxial stress strain data, which is responsible for most of the 

residual value otherwise MR9 predicts other types of stress strain data reasona-

bly well.  
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Figure 5-46 comparison of experimental and modelled stress data for Mooney-

Rivlin 9 parameters (MR9) hyperelastic model. MR9 is able to predict all three 

types of deformations better than all others. 

  



136 

 

5.13 Discussion of Results 

Natural rubber is a strategic and key material for many applications because of 

its unique ability of strain-induced crystallisation (Kohjiya et al., 2014). Stretching 

a sample of natural rubber at room temperature turns the amorphous rubber into 

a semi-crystalline material. These crystallites become highly oriented along the 

tensile direction and increase the tensile strength (Yeh & Hong, 1979). 

It is important to re-examine of mechanical properties of thin latex sheets after 

decades of developments in processing techniques and improved combinations 

of secret ingredients to produce high quality products to get a competitive ad-

vantage. By precisely knowing the mechanical properties of the products, the 

manufacturers can better control the quality and performance of their products.  

Measuring strain of hyperelastic material is specially challenging because these 

material are soft and a non-contact measurement method is more suitable for 

stain measurements. DIC is one of the non-contact strain measurement tech-

niques. It not only measures maximum bulge height at a point but also the full 

deformed shape. Use of DIC is especially beneficial when used to measure strain 

in a tensile test because it can measure longitudinal and lateral strains easily. 

These strains are used to calculate poisson’s ratio of the material. 

5.13.1 DIC Subset size 

The speckle pattern and the speckle size are crucial for the proper working of a 

DIC system. DIC algorithms will not converge if a speckle pattern is not unique 

and distinguishable. The same speckled surface can give different pixel sizes 

when calibrated based upon focused area of the surface, which in turn will affect 
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the subset size used in the displacement calculations settings.  If a course subset 

size is used it tends to under estimate displacements due to averaging of dis-

placement vectors but reduces computational efforts. On the other hand, if a finer 

subset size is used and the DIC algorithm converges, then the displacements 

calculated tends to be noisier and the DIC becomes computationally very expen-

sive. A default subset size of 31 × 31 pixels, as recommended by LaVision works 

fine in most cases but a quick (if not a full) subset size convergence study around 

the default subset size should be performed to see if default size is appropriate. 

5.13.2 Alternate Methods of Calculating some Material Parameters 

The key material parameters calculated are plane-strain modulus 𝑀𝑟, biaxial 

modulus 𝑀𝑐, Young’s Modulus, 𝐸 and poisson’s ratio 𝜐. The two variants of bulge 

testing i.e. rectangular and circular, through curve fitting of their respective ana-

lytical models, have given 𝑀𝑟 and 𝑀𝑐 respectively. The tensile test, on the other 

hand, has allowed a direct measurement of 𝐸 and PR, 𝜐 in the direction of the 

sample. 

Using a combination of material characterization tests to measure a set of re-

quired mechanical properties are often employed. C. K. Huang (Huang et al., 

2007) have measured Poisson’s ratio and Young’s modulus of Poly(methyl meth-

acrylate)-based thermoplastic polymer thin film using bulge test with long rectan-

gular and square bulge windows. Galliot (Galliot & Luchsinger, 2011) have used 

a combination of uniaxial tension, biaxial extension of cruciform samples and 

bubble inflation (bulge) test with circular bulge window to characterize ETFE (Eth-

ylene Tetra Fluoro Ethylene (ETFE) foils and compared the results. Xu (D. Xu & 
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Liechti, 2010) have also measured Young’s modulus and Poisson’s ratio of Pol-

yethylene terephthalate (PET) film using bulge test with circular and rectangular 

bulge windows.  

The value of Young’s modulus 𝐸 has been derived from the values of 𝑀𝑟 and 𝑀𝑐 

using 𝜐 from tensile test. The value of 𝐸 from R1 and C (Figure 5-36) is lies in the 

range of 0.813 − 1.212  𝑀𝑃𝑎 whereas the values from R1 and R3 are relatively 

outside of ballpark of values of 𝐸. The range of values of E calculated from the 

tensile test is 0.826 − 1.306 𝑀𝑃𝑎. Similar values of Young’s modulus of natural 

rubber and related materials using various filler materials and processing meth-

ods have been reported in the literature. A value of Young’s modulus in the range  

0.49 − 1.99 𝑀𝑃𝑎 is reported by Kohjiya (Kohjiya et al., 2014). 

The initial gradient from tensile stress strain data (Figure 5-45) also gives initial 

value of 1.192 𝑀𝑃𝑎 for 𝐸. This value is in good agreement with the values from 

bulge test generally and the circular and R2 specifically. R1 does not represent 

true state of plane-strain; therefore, its value is expected to reach a true plane-

strain value when AR increases to R2 and R3. The value of 𝐸 from R3 will be 

discussed in the next section. 

The value of PR has been derived from the measured values of 𝑀𝑟 and 𝑀𝑐. For 

R1 the values are grossly overestimated and on the opposite end the values of 

PR from R3 are near zero and marginally negative which are both likely unreal-

istic. The value of R2 appears to be most consistent with the values calculated 

from tensile test and typically considered for incompressible rubber (~+0.5). 
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5.13.3 Aspect Ratio of Rectangular Bulge Tests. 

The aspect ratio of the rectangular bulge window in a bulge test plays a key role 

in the estimation of plane-strain modulus. The values of these bulge parameters 

are not independent of aspect ratio at four (R1) as reported by (Schweitzer & 

Göken, 2007). It has been noted in this study that values of these material pa-

rameters vary significantly when aspect ratio increases from four to six. An in-

creasing trend in the values of plane-strain modulus and a decreasing trend in 

the values of residual stress have been observed.  

The value of aspect ratio is increased by reducing the width of the rectangular 

bulge window and at the same time increasing its length, if possible. (Nominal 

sizes, R1: 8x32, R2: 6x36 and R3: 5x35). The analytical model equation  
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5.13.4 Poisson’s Ratio and Isotropy of the Material 

The values of 𝜐 estimated from bulge parameters (𝑀𝑟  and 𝑀𝑐) can be used to 

draw important conclusions about the material’s bulge parameters themselves. 

The only sensible value of 𝜐 presented in Figure 5-43, is 0.643 ± 0.34 calculated 

from the value of 𝑀𝑟 with aspect ratio of R2. The value of 𝜐 from R1 is too high 

and similarly that of R3 is too low and marginally negative as compared to the 

values of 𝜐 computed from tensile test data. The only reasonable explanation for 

this is that R1 does not represent a true state of plane-strain and at the aspect 

ratio of R3; the width of the rectangle is too small and possibly the bending stiff-

ness has an effect in the bulging. The bulge analytical models are derived based 

upon the assumption of negligible bending stiffness. If bending stiffness plays a 

non-negligible role in the bulging then it will tend to make the material parameters 

over stiff like observed in the values of 𝑀𝑟 (and hence 𝐸) from R3. 

From the above discussion of 𝜐, it can be concluded that the best value of plane-

strain modulus is calculated form the rectangular bulge test with an aspect ratio 

of ~6 (R2). 

If 𝜎𝑏 represents the biaxial value of 𝜎0 from a circular bulge and 𝜎𝑝 represents the 

plane-strain value of 𝜎0, for an isotropic material, the two residual stresses are 

connected through the following relation: 

𝜎𝑏 = √2𝜎𝑝 ( 50 ) 

Equation ( 50 ) is derived assuming two components of 𝜎𝑏 have the same mag-

nitudes of 𝜎𝑝 and are directed orthogonally along the width and length axes of the 

rectangular bulge samples. 
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If the nominal value of 𝜎0 is taken 0.201 MPa (R2 from Figure 5-39) then the cal-

culated value from equation ( 50 ) is 𝜎𝑝 = 0.284 MPa which is only 2.61% lower 

than the biaxial value (0.292) of 𝜎𝑏 from the bulge test (C from Figure 5-39). 

The same treatment is also applied to the values of the biaxial and plane-strain 

moduli. If 𝑀𝑏 stands for biaxial modulus and 𝑀𝑝 for plane-strain modulus, then 

using the value of 𝑀𝑝 = 1.171 𝑀𝑃𝑎 (R2 from Figure 5-34) gives the value of 𝑀𝑏 =

1.656 𝑀𝑃𝑎 which is 11.14% lower than the biaxial value of 𝑀𝑏 ( 1.863 ± 0.11 𝑀𝑃𝑎) 

from the bulge test. 

The errors outlined above can be improved by performing bulge test on larger 

dimensions of rectangular and circular bulge windows.  

Therefore, equation ( 50 ) validates the previously made assumptions of the  ma-

terial being isotropic and that the stress field in a circular bulge sample is equibi-

axial. This concept can also be used to study properties of anisotropic materials. 

For an anisotropic thin material of uniform thickness, the relation can be general-

ized be as follows: 

𝑋𝑏 = √𝑋1
2 + 𝑋2

2 ( 51 ) 

where 𝑋1 and 𝑋2 are values of a material property along the two orthogonal di-

rections (excluding the thickness axis) and 𝑋𝑏 is the value measured under biaxial 

conditions. 
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5.13.5 Hyperelastic models 

Hyperelastic models are selected based upon their ability to best-fit the material’s 

mechanical response under various loading conditions i.e. Uniaxial, Planar, Bi-

axial tests. The common practice to curve-fit is to use built-in curve-fit tools in 

commercial finite element analysis code (Ansys®, Abaqus®, Comsol®, etc.). 

Shahzad (Shahzad et al., 2015) have tested an indigenously developed rubber 

and curve-fit the test data using Abaqus® and ranked various hyperelastic mate-

rial models as shown in Table 7. They did not use higher order Mooney-Rivlin 

models (MR5 and MR9) but none the less, Y3 was the best model to simulate the 

rubber material. 

Table 7 Hyperelastic material models with their respective goodness of fit 

identified in Abaqus®. 

Models R2 

Y3 0.9962 

AB 0.9902 

O3 0.9896 

MR2  0.9881 

NH 0.9710 

In a similar study by Sasso et al. (Sasso, Palmieri, Chiappini, & Amodio, 2008) 

have characterized a type rubber using uniaxial tension and biaxial tension (a 

bulge test) and done an FEA simulation (using Abaqus®) and identified the most 

appropriate hyperelastic material models. They concluded that MR5 (second or-

der MR model) and Ogden (O3) hyperelastic models are most accurate with least 

RMS values. 
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5.14 Uncertainties in experimental data from a bulge test 

Experiments of bulging include several uncertainties. Some are due to the sen-

sors precision like the measurements of the internal bulge pressure. This uncer-

tainty has been overcome by selecting a precise pressure sensor. The pressure 

sensor used (ifm PN3097) has an accuracy of 0.5 kPa, as discussed in section 

3.1.4. 

There may be other uncertainties due to the experimental devices such as di-

mensional inaccuracies of the bulge geometries (rectangular and circular) being 

tested. Again, this uncertainty has been overcome by careful machining and 

measurements of the bulge geometries. The main uncertainties in a bulge test 

generally come from the measurements of the bulge heights when using digital 

image correlation, DIC. 

This study has used a commercially available DIC system form LaVision that has 

been developed with an experience of over two decades. The accuracy of meas-

urement using this system depends upon the following parameters: 

1. Calibration of the system 

2. Correlation control parameters 

The user manual for this system provides guidance for using the calibration plates 

and the calibration process as described in section 4.5. Therefore, reasonably 

good calibration results were achieved following the calibration guidelines. The 

maximum RMS of fit achieved during calibration is two pixels and a typical scale 

of 62.1929 pixels/mm (Figure 4-7). Using these two values, we get a maximum 

error of 32 𝜇𝑚 in bulge height calculations. 
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The other important parameters, which affect the accuracy of the DIC system, 

are settings controlling the displacement calculations as described in section 4.7. 

A convergence study on effect of subset size variations (section 5.2) has been 

used to select an optimal subset size to minimize the uncertainties in DIC calcu-

lations.  
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6. Conclusions 

A brief chapter detailing conclusions and key contributions to the knowledge. It 

also contains a brief discussion about the future work. 
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6.1 Conclusions and key Contributions to the Knowledge 

1. A new methodology to characterize a hyperelastic material using bulge 

and tensile testing have been developed and demonstrated to work. A ten-

sile test is a simple test and less prone to measurement errors and does 

not involve many assumptions as compared to a bulge test. Therefore, 

underlying assumptions of a bulge test has been examined employing a 

tensile test.  

2. Material samples from gloves have been characterized with biaxial modu-

lus of 1.863 ± 0.11 𝑀𝑃𝑎, plane-strain modulus of 1.171 ± 0.24 𝑀𝑃𝑎 and bi-

axial residual stress of 0.292 ± 0.052 𝑀𝑃𝑎. The material response has 

been proved nearly incompressible and isotropic with poisson’s ra-

tio 0.385 ± 0.003. 

3. A simple relation has been proposed and shown to work reasonably well; 

connecting a biaxial material parameter measured from two orthogonally 

cut material samples. This interesting and simple relation can be used to 

study anisotropy. 

4. Stress-stain data from uniaxial tension test and bulge tests have been 

used to calibrate ANSYS hyperelastic material models. This calibration 

shows that relatively simple hyperelastic material models with three or 

fewer parameters are generally not able to fit satisfactorily to the calibra-

tion data. 
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6.2 Future Work 

The same material should be studied using a similar methodology but using much 

larger dimensions of samples to look into the effect of aspect ratio in more details. 

The tensile tests should be carried out on larger samples and stretched upto their 

breaking point to observe the variations in martial parameters in more details. 

The method developed to measure properties of anisotropic materials biaxial 

modulus and residual stress is based upon stress-strain data for a plane-strain 

condition and from an equibiaxial data. This method requires further evaluation 

for other materials, specifically anisotropic materials. 
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Appendix A. Geometrical Considerations of Cylindrical Bulge 

Shape 

Consider a cylindrical bulge-profile symmetrical about y-axis plane in Figure A1 

‘a’ is the radius of circular bulge die (window). 

 

Figure A1 Circular bulge-profile for derivation of geometric strain 𝒆. 

Considering Hoop stress in the cylindrical bulge shape, gives. 

𝑠𝑥 =
𝑝𝑅

𝑡
 ( A1 ) 

Consider a right-angle triangle in Figure A1, 

𝑅2 = (𝑅 − ℎ0)2 + 𝑎2 ( A2 ) 

⇒ 𝑅 =
ℎ0

2 + 𝑎2

2ℎ0
 ( A3 ) 

 

From Eq. ( A3 ) put in ( A1 ), we have 
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𝑠𝑥 =
𝑝(𝑎2 + ℎ0

2)

2ℎ0𝑡
 ( A4 ) 

An expression for strain can be derived based upon pure geometric considera-

tions: ratio of stretched arc length (𝑅𝜃) and half-width of rectangle (𝑎): 

𝑒 =
𝑅𝜃 − 𝑎

𝑎
=

𝑅𝜃

a
− 1 ( A5 ) 

From Figure A1, sin 𝜃 =
𝑎

𝑅
 ⇒ 𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑎

𝑅
 ) and putting value of 𝑅 from equation 

( A3 ). 

𝑒 =
𝑅

a
𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑎

𝑅
) − 1 =

ℎ0
2 + 𝑎2

2aℎ0
𝑎𝑟𝑐𝑠𝑖𝑛 (

2aℎ0

ℎ0
2 + 𝑎2

 ) − 1 ( A6 ) 

From Figure A1, sin 𝜃 =
𝑎

𝑅
 and using Taylor series, 

⇒ 𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑎

𝑅
) = (

𝑎

𝑅
) +

1

6
(

𝑎

𝑅
)

3
+

3

40
(

𝑎

𝑅
)

5
+ ⋯  ( A7 ) 

Ignoring higher power terms of (
𝑎

𝑅
) 

⇒ 𝑒 =
𝑎2

6𝑅2
 ( A8 ) 

Putting value of 𝑅, 

𝑒 =
2𝑎2ℎ0

2

3(𝑎2 + ℎ0
2)2

 ( A9 ) 

Now if ℎ0 ≪ 𝑎 which makes 𝑎2 + ℎ0
2 ≅ 𝑎2 and stress-strain relations simplify to 

the following relation: 

𝑠𝑥 =
𝑝𝑎2

2ℎ0𝑡
 ( A10 ) 
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𝑒 =
2ℎ0

2

3𝑎2
 ( A11 ) 
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Appendix B. Hyperelastic Models calibration data (ANSYS) 

Table B 1 Values of the Mooney-Rivlin 5 parameters hyperelastic material 

constants. 

MR 5 Parameters 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Material Constant C01 83965.66 Pa 

Material Constant C02 109364.25 Pa 

Material Constant C10 150332.01 Pa 

Material Constant C11 -308795.15 Pa 

Material Constant C20 133484.82 Pa 

Residual 0.70   
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Figure B 1 Comparison of experimental and modelled stress strain data for 

Mooney-Rivlin 5 parameters hyperelastic model.  
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Table B 2 Values of Yeoh 3rd Order hyperelastic material constants. 

Yeoh 3rd Order 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Incompressibility Parameter D2 0.00 Pa-1 

Incompressibility Parameter D3 0.00 Pa-1 

Material Constant C10 236319.99 Pa 

Material Constant C20 -72085.06 Pa 

Material Constant C30 19003.29 Pa 

Residual 0.83   

 

 

Figure B 2 Comparison of experimental and modelled stress strain data for Yeoh 

3rd order hyperelastic model. 
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Table B 3 Values of the Mooney-Rivlin 3 parameters hyperelastic model constants. 

MR 3 Parameters 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Material Constant C01 55804.41 Pa 

Material Constant C10 164594.56 Pa 

Material Constant C11 -26306.49 Pa 

Residual 1.23   

 

 

Figure B 3 Comparison of experimental and modelled stress strain data for 

Mooney-Rivlin 3 parameters hyperelastic model. 
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Table B 4 Values of Yeoh 2nd Order hyperelastic material constants. 

Yeoh 2nd Order 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Incompressibility Parameter D2 0.00 Pa-1 

Material Constant C10 224504.79 Pa 

Material Constant C20 -31801.77 Pa 

Residual 1.16   

 

 

Figure B 4 Comparison of experimental and modelled stress strain data Yeoh 2nd 

order hyperelastic model. 
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Table B 5 Values of Ogden 1st Order hyperelastic material constants. 

Ogden 1st Order 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Material Constant A1 1.43   

Material Constant MU1 577086.46 Pa 

Residual 2.31   

 

 

Figure B 5 Comparison of experimental and modelled stress strain data Ogden 1st 

order hyperelastic model. 
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Table B 6 Values of Mooney-Rivlin 2 Parameters hyperelastic material constants. 

MR 2 Parameters 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Material Constant C01 -25278.68 Pa 

Material Constant C10 231941.76 Pa 

Residual 2.30   

 

 

Figure B 6 Comparison of experimental and modelled stress strain data for 

Mooney-Rivlin 2 parameters hyperelastic model. 
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Table B 7 Values of Neo Hookean hyperelastic material constants. 

Neo Hookean 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Initial Shear Modulus Mu 407663.41 Pa 

Residual 2.52   

 

 

Figure B 7 Comparison of experimental and modelled stress strain data for Neo-

Hookean hyperelastic model. 
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Table B 8 Values of Yeoh 1st Order hyperelastic material constants. 

Yeoh 1st Order 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Material Constant C10 203831.71 Pa 

Residual 2.52   

 

 

Figure B 8 Comparison of experimental and modelled stress strain data for Yeoh 

1st order hyperelastic model. 
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Table B 9 Values of Arruda-Boyce hyperelastic material constants. 

Arruda-Boyce 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Initial Shear Modulus Mu 407663.41 Pa 

Limiting Network Stretch -68815754.45   

Residual 2.52   

 

 

Figure B 9 Comparison of experimental and modelled stress strain data data for 

Arruda-Boyce hyperelastic model. 
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Table B 10 Values of Ogden 3rd Order hyperelastic material constants. 

Ogden 3rd Order 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Incompressibility Parameter D2 0.00 Pa-1 

Incompressibility Parameter D3 0.00 Pa-1 

Material Constant A1 16.23   

Material Constant A2 16.25   

Material Constant A3 16.25   

Material Constant MU1 316.28 Pa 

Material Constant MU2 316.28 Pa 

Material Constant MU3 316.28 Pa 

Residual 77.50   
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Figure B 10 Comparison of experimental and modelled stress strain data for Ogden 

3rd order hyperelastic model. 
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Table B 11 Values of Ogden 2nd Order hyperelastic material constants. 

Ogden 2nd Order 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0.00 Pa-1 

Incompressibility Parameter D2 0.00 Pa-1 

Material Constant A1 16.13   

Material Constant A2 16.09   

Material Constant MU1 502.58 Pa 

Material Constant MU2 502.58 Pa 

Residual 77.20   
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Figure B 11 Comparison of experimental and modelled stress strain data for Ogden 

2nd order hyperelastic model. 
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Table B 12 Values of Gent hyperelastic material constants. 

Gent 

Coefficient  Name Calculated Value Unit 

Incompressibility Parameter D1 0 Pa-1 

Initial Shear Modulus Mu 54845.09 Pa 

Limiting Value 0.8098698   

Residual 79.38   

 

 

Figure B 12 Comparison of experimental and modelled stress strain data for Gent’s 

hyperelastic model.  
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Appendix C. Key Plots of Data 

1. Bulge Linearization plots 

 

Figure C 1 Linearizaton result of R1S1 showing a 73% fit to the experimental data 

 

Figure C 2 Linearizaton result of R1S2 showing a 77% fit to the experimental data 
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Figure C 3 Linearizaton result of R1S3 showing a 77% fit to the experimental data 

 

Figure C 4 Linearizaton result of R1S4 showing a 75% fit to the experimental data 
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Figure C 5 Linearizaton result of R2S2 showing a 81% fit to the experimental data 

 

Figure C 6 Linearizaton result of R2S3 showing a 76% fit to the experimental data 
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Figure C 7 Linearizaton result of R2S4 showing a 80% fit to the experimental data 

 

Figure C 8 Linearizaton result of R2S5 showing a 81% fit to the experimental data 
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Figure C 9 Linearizaton result of R3S2 showing a 85% fit to the experimental data 

 

Figure C 10 Linearizaton result of R3S3 showing a 87% fit to the experimental data 
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Figure C 11 Linearizaton result of R3S4 showing a 86% fit to the experimental data 

 

Figure C 12 Linearizaton result of R3S5 showing a 86% fit to the experimental data 
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Figure C 13 Linearizaton result of C20S3 showing a 90% fit to the experimental 

data 

 

Figure C 14 Linearizaton result of C20S4 showing a 80% fit to the experimental 

data 
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2. Tensile Test key plots of Poisson’s ratio 

 

Figure C 15 The transverse strain vs. longitudinal strain for 2nd cycle for two 

samples (S2 and S3) 

 

Figure C 16 The transverse strain vs. longitudinal strain for 3rd cycle for two 

samples (S2 and S3)  
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3. Tensile Test key plots of Young’s Modulus 

 

Figure C 17 Variation of Young’s Modulus with longitudinal stretch for the two 

samples and three orientations (00°, 45°, and 90°) for 2nd stretching cycle. 

 

Figure C 18 Variation of Young’s Modulus with longitudinal stretch for the two 

samples and three orientations (00°, 45°, and 90°) for 3rd stretching cycle 

.  
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Appendix D. Engineering Drawings of Fixtures 
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Appendix E. Matlab Codes 

1. Reading raw data from DIC experiment (Rectangular bulge) 

% This script will read n number of *.dat files and store the result in data array 
variables. 
clear, clc, close all 
Export_path = fullfile(pwd,'Export'); 
Cycles_D = dir([Export_path, '\*W']); 
nCycles = numel(Cycles_D); 
%% Reading data from DAT files 
for cycle = 1:nCycles 
    Cycles_path = fullfile(Export_path,Cycles_D(cycle).name); 
    D = dir([Cycles_path, '\*.Dat']); 
    RawData = cell(1, 1);     
    t_profiles = length(D(not([D.isdir]))); 
    for p = 1:t_profiles 
        fid = fopen(fullfile(Cycles_path,sprintf('%s', D(p).name))); 
        n = 1; 
        tLine = fgetl(fid); 
        while ischar(tLine)     % checks if end has already reached 
            RawData(n,p) = {tLine}; 
            tLine = fgetl(fid); 
            n = n + 1; 
        end 
        [~] = fclose(fid); 
        n = n - 1;     
    end 
    clear D fid Cycles_path tLine 
    %% Converting and storing RawData into another variable 
    for p = 1:t_profiles 
        A = zeros(1,1);         
        for r = 4:n   % three header lines 
            A(r-3, 1:3) = str2num(RawData{r,p});     
        end 
        if p == 1 
            B = A; 
            B(:,2) = []; 
        else 
            B(:, p+1) = A(:,3); 
        end     
    end 
    DataLines = n-3; 
    while ~any((B(:,end))) 
        B(:,end) = []; 
    end 
    [~,t_profiles] = size(B); 
    t_profiles = t_profiles - 1; 
    clear A n p RawData 
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    %% copy non zero values of height. 
start_idx = zeros(t_profiles,1); 
end_idx = zeros(t_profiles,1); 
for p = 2:t_profiles+1     
    heights = B(:,p); 
    for r = 1:DataLines 
        if (~heights(r)==0) 
            start_idx(p-1) = r; 
            break 
        end     
    end 
    for r = 1:DataLines-1     
        if (~heights(end-r)==0) 
            end_idx(p-1) = DataLines - r; 
            break 
        end 
    end 
end 
start_idx = min(start_idx); 
end_idx = max(end_idx); 
    % Invert signs, if necessary. 
    B = B(start_idx:end_idx,:); 
    eval(sprintf('%s = B;',Cycles_D(cycle).name)) 
end 
clear B cycle* Cycle* t_* Data* Exp* end* heights n* r start_idx p 
% save a_HX_W 

2. Processing the bulge height data 

% this script will set noise (negative heights) to 
% zero, smooth the data and find max bulge heights. 
clear, clc, close all 
load('a_HX_W'); 
W_names = who('*W'); 
nCycles = length(W_names); 
profiles = 251; 
%% Processing all cycles in W (X) 
max_bulge_heights = zeros(1,1); 
% for cycle = 1:nCycles 
for cycle = 1:nCycles 
    eval(sprintf('HX = %s;', W_names{cycle})) 
    [row,col] =size(HX);    
    A = zeros(1,1); 
    %% setting negative values to zeros and smoothing length data 
    for c = 2:col 
        HX(:,c) = smooth(HX(:,c), 0.2, 'lowess'); 
        for r = 1:row 
           if(HX(r,c)<0) 
               HX(r,c) = 0; 
           end 
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        end 
        trim = 4; % to trim a quarter from each end 
        row_ll = round(row/trim); 
        row_ul = round((1-1/trim)*row); 
        if any(HX(:,c)) 
            A(c-1,:) = max(HX(row_ll:row_ul,c)); 
        end 
    end 
    clear row* trim 
    eval(sprintf('%s = HX;',W_names{cycle})); 
    clear HX 
    %% read max bulge heights from width data 
    for c = 1:length(A)-1 
        if abs(A(c)-A(c+1))>2 
            break 
        end 
    end 
    if c~=length(A)-1 
        A(c+1:end)=[]; 
    end 
    max_bulge_heights(1:length(A),cycle) = A; 
end 
clear A c* del_col HX_W i PinC profiles_in_cycles 
clear r row W_names P_start P_end 
%% check if 'Figures' folder exists, if nor creat one 
if ~(exist('Figures')==7) 
    mkdir('Figures') 
end 
%% Aligning the peaks of max bulge heights  and plotting 
fig = figure('units', 'Normalized', 'OuterPosition', [0 0 1 1]); 
hold on 
temp_array = zeros(profiles,nCycles); 
% for cycle = 1:nCycles 
for cycle = 1:nCycles 
    array1 = zeros(profiles,1); 
    Temp = max_bulge_heights(:,cycle); 
    [~, idx] = max(Temp);         
    start_idx = round(profiles/2)-idx; 
    end_idx = start_idx + length(Temp)-1; 
    array1(start_idx:end_idx) = Temp; 
    plot(array1, '-*') 
    temp_array(:,cycle) = array1; 
    grid on 
end 
hold off 
xlabel('Profiles (L/U)') 
ylabel('Max. Bulge Height [mm]') 
legend('C1','C2','C3','C4','C5','C6','C7') 
figurepath = fullfile(pwd,'\Figures', 'Heights (L_U) raw'); 
print(fig,figurepath,'-dtiff', '-r300') 
saveas(fig, figurepath); 
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%% Delete all the empty rows 
while(~any(temp_array(1,:))) 
    temp_array(1,:) = []; 
end 
while(~any(temp_array(end,:))) 
    temp_array(end,:) = []; 
end 
max_bulge_heights = temp_array; 
clear array1 cycle end_idx fig* idx nCycles profiles start_idx Temp temp_array 
% save d_max_bulge_heights max_bulge_heights 
% clear max_bulge_heights 
% save e_clean_cycles C* 

3. Reading pressure data 

% This script will read n number of *.dat files and store the result in data array 
variables. 
clear, clc, close all 
FileName = '20161212194429R2S2.dat'; 
f_ard = strcat('C:\Users\b2039788\Documents\MEGA\Mega local\_PhD Docs',... 
    '\_Results with Matlab\Rectangular_Samples'); 
ard_cal_path = fullfile(f_ard, 'f_Arduino_ADC_Cal_new'); 
load(ard_cal_path); 
clear f_ard ard_cal_path 
%% Fit a linear relation to ADC calibration 
x = Arduino_ADC_Cal_new.ADC(1:62); 
y = Arduino_ADC_Cal_new.mVdc(1:62); 
[fof_adc, GOF] = fit( x, y, 'poly1' ); 
clear Arduino_ADC_Cal_new x y y_pred fit GOF 
%% Reading data from DAT files 
fid = fopen(FileName,'r'); 
RawData = cell(1,1); 
n = 1; 
tLine = fgetl(fid); 
while ischar(tLine)     % checks if end has already reached 
    RawData(n,1) = {tLine}; 
    tLine = fgetl(fid); 
    n = n + 1; 
end 
[~] = fclose(fid); 
n = n - 1; 
clear fid FileName tLine 
%% Converting and storing RawData into double values 
A = zeros(1,1); 
i = 1; 
for row = 1:n 
    temp = str2num(RawData{row}); 
    if (~isempty(temp)) 
        A(i,1:3) =  temp; 
        i = i + 1; 
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    end 
end 
A = A(:,2); 
clear RawData temp 
%% sorting data into cycles 
profiles = length(A); 
col = 1; 
i = 1; 
profiles_in_cycles = zeros(1); 
for row = 1:profiles 
    Cycles_ADC(i,col) = A(row); 
    i = i + 1; 
    if (row > 1 && row < profiles - 2) 
        diff1 = A(row) - A(row-1); 
        diff2 = A(row+1) - A(row); 
        if (diff1 < 0 && diff2 >= 0 ) 
            profiles_in_cycles(col) = i-1; 
            col = col + 1;             
            i = 1; 
        end 
    end     
end 
while(~any(Cycles_ADC(:,end))) 
    Cycles_ADC(:,end) = []; 
end 
[~, nCycles] = size(Cycles_ADC); 
if (nCycles ~= length(profiles_in_cycles)) 
    profiles_in_cycles(col) = i-1; 
end 
 
clear A col diff1 diff2 i n profiles row 
%% Aligning the ADC peaks with same number of profiles in each 
rows = 251;     % a large odd number 
figure('units', 'Normalized', 'OuterPosition', [0 0 1 1]); 
hold on 
Array1 = zeros(rows,nCycles); 
for cycle = 1:nCycles 
    temp_array1 = zeros(rows,1); 
    Temp = Cycles_ADC(:,cycle); 
    [~, idx] = max(Temp);         
    idx = idx; 
    start_idx = round(rows/2)-idx; 
    end_idx = start_idx + length(Temp)-1; 
    temp_array1(start_idx:end_idx) = Temp; 
    plot(temp_array1) 
    xlabel('Profiles') 
    ylabel('Pressure ADC') 
    grid on 
    Array1(:,cycle) = temp_array1; 
    Temp = zeros(1); 
end 
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hold off 
grid on 
%% Delete all the empty rows 
while(~any(Array1(1,:))) 
    Array1(1,:) = []; 
end 
while(~any(Array1(end,:))) 
    Array1(end,:) = []; 
end 
Cycles_ADC = Array1; 
clear Array1 end_idx idx m n start_idx Temp temp_array1 
%% Bulge pressure data file names and calculating Pressure [kPa] 
for cycle = 1:nCycles 
   BP_names{cycle} = sprintf('BP_C%d',cycle); 
end 
[rows, ~] = size(Cycles_ADC); 
P_kPa = zeros(rows,1); 
for cycle = 1:nCycles 
    ADC = Cycles_ADC(:,cycle); 
    for row = 1:rows 
        if any(ADC(row)) 
            P_kPa(row) = fof_adc(ADC(row))*1e-2;             
        end 
    end 
    BP_Data(:,cycle) = P_kPa; 
    eval(sprintf('%s = P_kPa;', BP_names{cycle})) 
    P_kPa = zeros(rows,1); 
end 
figure('units', 'Normalized', 'OuterPosition', [0 0 1 1]); 
hold on 
for cycle = 1:nCycles 
    plot(BP_Data(:,cycle))       
    xlabel('Profiles') 
    ylabel('Pressure [kPa]') 
    grid on 
end 
legend('C1', 'C2','C3','C4','C5','C6','C7') 
clear ADC BP_names cycle Cycles_ADC fof_adc nCycles P_kPa row rows 
% save c_Pressure_cycles 

4. Synchronizing bulge heights and pressure 

clc, clear, close all 
load('c_Pressure_cycles', 'BP_Data'); 
load('d_max_bulge_heights'); 
[p_profiles, nCycles] = size(BP_Data); 
[h_profiles, ~] = size(max_bulge_heights); 
temp_p = BP_Data; 
temp_h = max_bulge_heights; 
temp_size = 251; 
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BP_Data = zeros(temp_size, nCycles); 
max_bulge_heights = zeros(temp_size, nCycles); 
ph_cycles = struct; 
height_corrected = zeros(temp_size, nCycles); 
max_p = ceil(max(max(temp_p))); 
%% Adjusting pressure values to a new size array 
[~, p_idx] = max(temp_p(:,1)); 
p_start = round(temp_size/2) - p_idx+1; 
p_end = round(temp_size/2) + (p_profiles-p_idx); 
BP_Data(p_start:p_end, :) = temp_p; 
clear p_* 
%% Adjusting height values to a new size array 
[~, h_idx] = max(temp_h(:,1));    
h_start = round(temp_size/2) - h_idx+1; 
h_end = round(temp_size/2) + (h_profiles-h_idx); 
max_bulge_heights(h_start:h_end, :) = temp_h; 
clear h_* temp* 
%% Correcting heights with reference to data 
for cycle = 1:nCycles 
    p = BP_Data(:,cycle); 
    h = max_bulge_heights(:,cycle); 
    if cycle == 1 
        for row_p = 1:length(p) 
            if any(p(row_p)) 
                break 
            end         
        end 
        for row_h = 1:length(h) 
            if any(h(row_h)) 
                break 
            end         
        end 
        row = max([row_p row_h]); 
        h0 = h(row-1); 
    end 
    clear row_* 
    h = h - h0; 
    % setting negative h values to zero  
    for row = 1:length(h) 
        if h(row) < 0 
            h(row) = 0; 
        end 
    end 
    % setting negative p values to zero 
    for row = 1:length(p) 
        if p(row) < 0 
            p(row) = 0; 
        end 
    end 
    height_corrected(:,cycle) = h; 
    temp_p(:,cycle) = p; 



197 

 

end 
BP_Data = temp_p; 
max_h = ceil(max(max(height_corrected))); 
clear h0 max_bulge* temp* 
%% delete leading and trailing zero rows 
while(~any(height_corrected(1,:))) 
    height_corrected(1,:) = []; 
    BP_Data(1,:) = []; 
end 
while(~any(height_corrected(end,:))) 
    height_corrected(end,:) = []; 
    BP_Data(end,:) = []; 
end 
%% Plotting styles and other configuration 
n = 1; % to plot set n = 1; 
if(n) 
plot_style = [{'-ko'}, {'-bx'}, {'-g*'}, {'-rs'}, {'-c^'}, {'-mv'},... 
    {'-kd'}, {'-bx'}, {'-g*'}, {'-rs'}, {'-c^'}, {'-mv'}]; 
MarkerFaceColor = [{'k'}, {'b'}, {'g'}, {'r'}, {'c'}, {'m'}, {'k'},... 
    {'b'}, {'g'}, {'r'}, {'c'}, {'m'}]; 
markersize = 4.0; 
%% Ploting the cycles 
figurename = 'PH Cycles'; 
figure('FileName', figurename,'units', 'Normalized', 'OuterPosition', [0 0 1 1],... 
    'PaperPositionMode','auto'); 
hold on 
for cycle = 1:nCycles 
    x = BP_Data(:,cycle); 
    y = height_corrected(:, cycle); 
    plot(x,y,plot_style{cycle},'markersize',markersize,'MarkerFaceColor',Marker-
FaceColor{cycle},... 
        'LineWidth', 1.13) 
    xlabel('Pressure [kPa]') 
    ylabel('Max. Bulge Heights [mm]') 
    grid on 
    ph_data = [x, y]; 
    string1 = sprintf('ph_cycles.ph_C%d = ph_data;', cycle); 
    eval(string1) 
     
end 
hold off 
legend('C1', 'C2','C3','C4','C5','C6','C7') 
axis([0 max_p+1 0 max_h-0.5]); 
figurepath_save = fullfile(pwd,'\Figures', 'PH_Cycles'); 
figurepath_print = fullfile(pwd,'\Figures', figurename); 
% print(figurepath_print,'-dtiff', '-r300') 
saveas(gcf, figurepath_save) 
magnify; 
end 
% clear BP_Data cycle figure* h* M* m* n* p ph_data plot* row string1 x y 
% save g_ph_cycles ph_cycles 
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5. Fit curve and read material parameters 

clear, clc, close all 
load('g_ph_cycles'); 
cycle_names = fields(ph_cycles); 
nCycles = numel(cycle_names); 
rect = 'R2'; 
sample = 'S2'; 
Mat_Para = zeros(nCycles,3); 
save_path = strcat('C:\Users\b2039788\Documents\MEGA\Mega local\_PhD 
Docs\_Results',... 
' with Matlab\Rectangular_Samples'); 
min_p = 1.0;  % pressure in kPa 
%% most important: change a 
    % R1: 2a = 7.93e-3 
    % R2: 2a = 5.85e-3 
    % R3: 2a = 4.83e-3 
    if strcmp(rect, 'R1') 
        a = (7.93e-3)/2; 
    elseif strcmp(rect, 'R2') 
        a = 5.85e-3/2; 
    else 
        a = 4.83e-3/2; 
    end 
    t = 125e-6;         % thickness of the  thicker samples 
for cycle = 1:nCycles 
    eval(sprintf('ph_data = ph_cycles.%s;', cycle_names{cycle})); 
    [~, max_idx] = max(ph_data(:,1)); 
    for r = 1:max_idx  
        if (ph_data(r,1)>min_p) 
            break             
        end 
    end 
    loading = ph_data(r:max_idx,:); 
    p = loading(:,1);        % Pressure in kPa 
    p = p.*1000;            % Pressure in Pa. 
    h = loading(:,2);        % Max. Bulge height 
    h = h./1000;            % Bulge height meters 
    X = h.^2; 
    Y = p./h; 
    [Linear_ph, GOF_Linear]=PolyFit(X,Y,1); 
    A = Linear_ph.p2; 
    B = Linear_ph.p1; 
    adjRsqr = GOF_Linear.adjrsquare; 
    p_pred = A*h+B*h.^3; 
    clear G* idx l* L* ph_data X Y 
    %% Pressure and Height back in kPa and mm for plot 
    p = p/1000; 
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    h = h*1000; 
    p_pred = p_pred/1000; 
    FigureName = sprintf('Ph_0 Fit Cycle %d', cycle); 
    h1(cycle) = figure('FileName', FigureName, 'units', 'Normalized', 'OuterPosi-
tion', [0 0 1 1],... 
        'PaperPositionMode', 'Auto'); 
    plot(h,p,'r--', 'LineWidth',1.15); 
    hold on 
    plot(h,p_pred,'k','LineWidth',1.15); 
    hold off 
    grid on 
    legend('Experimental Data', 'Curve Fit','Location','NW'); 
    xlabel('h_0 [mm]'); 
    ylabel('P [kPa]'); 
    title(FigureName); 
    clear p p_* h     
    sigma_not = A*a^2/(2*t);    % residual stress 
    M = 3*B*a^4/(4*t);          % Plain-strain modulus 
    p_text = sprintf('       \\sigma_0 = %5.3e\n        M = %5.3e\n adj R^2 = %5.4f',... 
        sigma_not, M, adjRsqr); 
    Mat_Para(cycle,:) = [sigma_not, M, adjRsqr]; 
    % Text position on diagram 
    x_lim = xlim;   y_lim = ylim; 
    x_pos = x_lim(1)+2/3*(x_lim(2)-x_lim(1));    y_pos = y_lim(1)+1/3*(y_lim(2)-
y_lim(1)); 
    text(x_pos, y_pos, p_text);     
    clear A B p_text x* y* 
    figurepath_print = fullfile(pwd,'\Figures', FigureName); 
    print(h1(cycle),figurepath_print,'-dtiff', '-r300') 
end 
figurepath_save = fullfile(pwd,'\Figures', 'PH0_cubic_fit_cycles'); 
saveas(h1, figurepath_save); 
clear a* c* f* F* h1 M p* sig* t 
data_file_name = sprintf('z_Mat_Para_%s%s', rect, sample); 
eval(sprintf('save %s Mat_Para', data_file_name))   % save to the current direc-
tory 
filesave_path = fullfile(save_path,data_file_name); 
save(filesave_path, 'Mat_Para');                    % save to Rectangular_Samples dir 
%% plot the variation of parameters and fit quality 
clc, close all 
sigma_not = Mat_Para(:,1)/1e6;  % units MPa 
M = Mat_Para(:,2)/1e6;  % units MPa 
adjRsqr = Mat_Para(:,3); 
%% plot variation of sigma_not 
FigureName = sprintf('Variation of rasidual stress (%s%s)', rect, sample); 
h1 = figure('FileName', FigureName, 'units', 'Normalized', 'OuterPosition', [0 0 1 
1],... 
    'PaperPositionMode', 'Auto'); 
plot(sigma_not, '-k*'); 
xlabel('cycles (loading)'); 
ylabel('\sigma_0 [MPa]'); 
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grid on 
title(FigureName); 
figurepath_print = fullfile(pwd,'\Figures', FigureName); 
print(h1,figurepath_print,'-dtiff', '-r300') 
%% plot variation of sigma_not 
FigureName = sprintf('Variation of Plain-strain Modulus (%s%s)', rect, sample); 
h1 = figure('FileName', FigureName, 'units', 'Normalized', 'OuterPosition', [0 0 1 
1],... 
    'PaperPositionMode', 'Auto'); 
plot(M, '-k*'); 
xlabel('cycles (loading)'); 
ylabel('M [MPa]'); 
grid on 
title(FigureName); 
figurepath_print = fullfile(pwd,'\Figures', FigureName); 
print(h1,figurepath_print,'-dtiff', '-r300') 
close all 
%% plot variation of sigma_not 
FigureName = sprintf('Variation of Adj R^2 (%s%s)', rect, sample); 
h1 = figure('FileName', FigureName, 'units', 'Normalized', 'OuterPosition', [0 0 1 
1],... 
    'PaperPositionMode', 'Auto'); 
plot(adjRsqr, '-k*'); 
xlabel('cycles (loading)'); 
ylabel('Adj R^2'); 
grid on 
axis([1 nCycles 0 1]); 
title(FigureName); 
figurepath_print = fullfile(pwd,'\Figures', FigureName); 
print(h1,figurepath_print,'-dtiff', '-r300') 
 

6. Fit curve and read material parameters 

clear, clc, close all 
sample_desig = 'R1S1'; 
FileName = sprintf('e_clean_cycles_%s',sample_desig);    % Rename these two 
names if needed 
eval(sprintf('load(''c_Pressure_cycles_%s'', ''BP_Data'')',sample_desig)); 
new_size = 251; 
%% Load Bulge Height data into Data_Files 
Height_Data_cycles = load(FileName); 
HX_names = fieldnames(Height_Data_cycles); 
nCycles = numel(HX_names); 
for cycle = 1:nCycles 
    eval(sprintf('Height_Data = Height_Data_cycles.%s;',HX_names{cycle})); 
    %% Load Bulge Height data into Data_Files 
    Pressure = BP_Data(:,cycle); 
    % Get rid of extra zeros from start and end of Pressure 
    while(Pressure(1)==0) 
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        Pressure(1) = []; 
    end 
    while(Pressure(end)==0) 
        Pressure(end) = []; 
    end 
    %% Prepare row and column headings for the final FitCircle table 
    [~, col] = size(Height_Data); 
%     Height_Data = Height_Data(Height_Data(:,1)>=-10.5 & 
Height_Data(:,1)<=8.5,:); 
    ColHeaders = {'P_kPa', 'X_mm', 'Y_mm', 'R_mm', 'Adj_Rsqr'}; 
    %% Call CircleFit function (By Pratt, based upon Least squares) 
    temp_array = zeros(col-1,5); % will contain pressure, fit circle data(x,y,r) and 
RMSE 
    if size(Pressure) >= col-1 
        temp_array(:,1) = Pressure(1:col-1); 
    else 
        temp_array(1:size(Pressure),1) = Pressure(:); 
    end 
    clear FileName Heights Pressure 
    for Profile = 1:col-1 
        Pxx = Height_Data(:,[1 Profile+1]); 
        if any(Pxx(:,2))     
            % calling CircleFit function 
            CFP = CircleFit(Pxx);   % CFD=Circle Fit Parameters 
            temp_array(Profile,2:4) = CFP; 
            [~, Adj_Rsquare] = RMSE(Pxx, CFP); % rmse is being ignored 
            temp_array(Profile,end) = Adj_Rsquare;             
        end 
    end 
    %% Align the Pressure to new size 
    FitCircle_Data = zeros(new_size,5); 
    temp_p = temp_array(:,1); 
    [~, p_idx] = max(temp_p(:,1)); 
    p_start = round(new_size/2) - p_idx+1; 
    p_end = round(new_size/2) + (Profile-p_idx); 
    FitCircle_Data(p_start:p_end, 1) = temp_p; 
    clear p_* 
    %% Align the Radius to new size 
    temp_R = temp_array(:,2:end); 
    [~, r_idx] = min(temp_R(:,3)); 
    r_start = round(new_size/2) - r_idx+1; 
    r_end = round(new_size/2) + (Profile-r_idx); 
    FitCircle_Data(r_start:r_end, 2:end) = temp_R;     
    clear r_* 
    FitCircle_Data = array2table(FitCircle_Data, 'VariableNames',... 
        ColHeaders); 
    eval(sprintf('FitCircle_%s=FitCircle_Data;', HX_names{cycle})) 
    clear FitCircle_Data temp* 
end 
clear BP_* CFP col Col* cycle h0 Height* HD_* index Profile Pressure_Data  
clear new_* Pxx RowHeaders sIndex Adj_Rsquare rmse_val 
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save d_FitCircle_Data Fit* 
%% Plotting circular fit 
vector_names = who('FitC*'); 
for cycle = 1:nCycles 
    eval(sprintf('FitCircle = %s;', vector_names{cycle})) 
    R = FitCircle.R_mm; 
    Adj_Rsqr = FitCircle.Adj_Rsqr; 
    pressure = FitCircle.P_kPa; 
    clear d_FitCircle_Data curvature string1 c row noise 
    %% radius plot figure 1 
    FigureName = sprintf('R-plot (C%02.0f)', cycle); 
    h1 = figure('FileName', FigureName, 'units', 'Normalized', 'OuterPosition', [0 0 
1 1],... 
            'PaperPositionMode', 'Auto');     % Figure 1 
    plot(R, '-pk', 'MarkerFaceColor', 'k'); 
    grid on 
    xlabel('Profiles') 
    ylabel('Bulge Radius (R) [mm]') 
    title(FigureName); 
    figurepath_print = fullfile(pwd,'\Figures', FigureName); 
%     print(h1,figurepath_print,'-dtiff', '-r300') 
%     saveas(h1, figurepath_print); 
    clear Figure* figure* h1 r 
    %% Pressure vs Adjusted R^2 
    FigureName = sprintf('adjRsqr-plot (C%02.0f)', cycle); 
    h2 = figure('FileName', FigureName, 'units', 'Normalized', 'OuterPosition', [0 0 
1 1],... 
            'PaperPositionMode', 'Auto');     % Figure 2 
    plot(Adj_Rsqr,'-pk', 'MarkerFaceColor', 'k'); 
    xlabel('Profiles') 
    ylabel('Adjusted R^2') 
    title(FigureName); 
    axis([0 length(Adj_Rsqr) 0 1.05]) 
    grid on 
    figurepath_print = fullfile(pwd,'\Figures', FigureName); 
%     print(h2,figurepath_print,'-dtiff', '-r300') 
%     saveas(h2, figurepath_print); 
end 
% clear, close all 

7. Compare all results 

clear, clc, close all 
Samples_Data = dir([pwd, '\z_*']); 
for t_s = 1:length(Samples_Data) 
    Sample_names = Samples_Data(t_s).name; 
    load(sprintf('%s', Sample_names)) 
    name1 = strsplit(Sample_names, '.'); 
    legends_str(t_s,:) = strsplit(name1{1}, '_'); 
    eval(sprintf('sigma.sigma_%s = Mat_Para(:,1)/1e6;',legends_str{t_s,4})) 
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    eval(sprintf('M.M_%s = Mat_Para(:,2)/1e6;',legends_str{t_s,4})) 
    eval(sprintf('Rsqr.adjRsqr_%s = Mat_Para(:,3);',legends_str{t_s,4})) 
    eval('clear Mat_Para') 
end 
clear legends_str 
clear name1 S* 
%% Delete values whose R^2 is below threshold 
threshold = 0.25; 
adjRsqr_names = fieldnames(Rsqr); 
for t_s = 1:length(adjRsqr_names) 
    eval(sprintf('tempR = Rsqr.%s;', adjRsqr_names{t_s})) 
    for i = 1:length(tempR) 
        if ~isempty(find(tempR(i)<threshold,1)) 
            good_fit(i,t_s) = 1;    % The fit is not so good 
        else 
            good_fit(i,t_s) = 2;    % the fit is within acceptable range 
        end 
    end     
end 
%% Delete Good fit for the first cycle 
good_fit(1,:) = []; 
clear adjRsqr_names Rsqr temp* threshold 
%% Deleting the values below the threshold R^2 and negatives 
M_names = fieldnames(M); 
sigma_names = fieldnames(sigma); 
M_avg = zeros(length(M_names),2); 
sigma_avg = zeros(length(M_names),2); 
for t_s = 1:length(M_names) 
    %% -----------copy values leaving first cycle values------------------- 
    eval(sprintf('tempSigma = sigma.%s(2:end);', sigma_names{t_s})) 
    eval(sprintf('tempM = M.%s(2:end);', M_names{t_s})) 
    GoodSigma = zeros(1); 
    GoodM = zeros(1); 
    ii = 1; 
    for i = 1:length(tempSigma) 
%         if (good_fit(i,t_s) == 2 && (tempSigma(i)>0 && tempM(i)>0)) 
        if (good_fit(i,t_s) == 2) 
            GoodSigma(ii) = tempSigma(i); 
            GoodM(ii) = tempM(i); 
            ii = ii + 1; 
        end 
    end 
    eval(sprintf('sigma.%s = GoodSigma;', sigma_names{t_s})) 
    eval(sprintf('M.%s = GoodM;', M_names{t_s})) 
end 
clear good* Good* i* temp* 
%% Calculate averages of sigma and M data 
for t_s = 1:length(M_names) 
    eval(sprintf('M_avg(t_s, 1) = mean(M.%s);', M_names{t_s})) 
    eval(sprintf('M_avg(t_s, 2) = std(M.%s);', M_names{t_s})) 
    eval(sprintf('sigma_avg(t_s, 1) = mean(sigma.%s);', sigma_names{t_s})) 
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    eval(sprintf('sigma_avg(t_s, 2) = std(sigma.%s);', sigma_names{t_s})) 
end 
%% remove any empty fields 
% For M 
field_names = fieldnames(M); 
for index = 1: numel(field_names) 
    if (M.(field_names{index}) == 0) 
        M = rmfield(M, field_names{index}); 
    end 
end 
% For sigma 
field_names = fieldnames(sigma); 
for index = 1: numel(field_names) 
    if (sigma.(field_names{index}) == 0) 
        sigma = rmfield(sigma, field_names{index}); 
    end 
end 
% For Averages 
ii = 1; 
del_row = zeros(1); 
for index = 1: numel(field_names) 
    if (M_avg(index)==0) 
        del_row(ii) = index; 
        ii = ii + 1; 
    end 
end 
if any(del_row) 
    M_avg(del_row,:)= []; 
    sigma_avg(del_row,:)= []; 
end 
sigma_names = fieldnames(sigma); 
M_names = fieldnames(M); 
% t_s = numel(M_names); 
for index = 1:numel(M_names) 
    legends_str(index,:) = strsplit(M_names{index}, '_');     
end 
legends_str = legends_str(:,2); 
clear del_row field* ii index *_names t_s 
save Final_results_All M* sigma* legends* 
clear legends_str 
%% -------------------------Important--------------------------------- 
% plot_results_all 
%% Delete any identified outlier/s 
OutLiers = {'R2S1','R3S1'};    % add names of the OL samples 
for t_s = 1:length(OutLiers)  
%     Rsqr_OL = strcat('adjRsqr_',OutLiers{t_s}); 
    M_OL = strcat('M_',OutLiers{t_s}); 
    sigma_OL = strcat('sigma_',OutLiers{t_s}); 
%     Rsqr = rmfield(Rsqr, Rsqr_OL); 
    M = rmfield(M, M_OL); 
    sigma = rmfield(sigma, sigma_OL); 
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end     
clear Out* *OL *_avg 
%% Calculate averages of sigma and M data 
M_names = fieldnames(M); 
sigma_names = fieldnames(sigma); 
for t_s = 1:length(M_names) 
    eval(sprintf('M_avg(t_s, 1) = mean(M.%s);', M_names{t_s})) 
    eval(sprintf('M_avg(t_s, 2) = std(M.%s);', M_names{t_s})) 
    eval(sprintf('sigma_avg(t_s, 1) = mean(sigma.%s);', sigma_names{t_s})) 
    eval(sprintf('sigma_avg(t_s, 2) = std(sigma.%s);', sigma_names{t_s})) 
end 
%% legends_str 
for index = 1:numel(M_names) 
    legends_str(index,:) = strsplit(M_names{index}, '_'); 
end 
legends_str = legends_str(:,2); 
%% Calculate averages of sigma and M data all samples 
c20 = 1; R1 = 1; R2 = 2; R3 = 3; 
for t_s = 1:length(M_names) 
    if ~isempty(regexp(legends_str{index}, 'C\w*', 'match')) 
        eval(sprintf('M_avg2(c20, 1) = mean(M.%s);', M_names{t_s})) 
    eval(sprintf('M_avg(t_s, 2) = std(M.%s);', M_names{t_s})) 
    eval(sprintf('sigma_avg(t_s, 1) = mean(sigma.%s);', sigma_names{t_s})) 
    eval(sprintf('sigma_avg(t_s, 2) = std(sigma.%s);', sigma_names{t_s})) 
    end 
end 
%% calculate mean of M 
Mc = [M.M_C20S3 M.M_C20S4]; 
Mc = mean(Mc); 
clear del_row field* ii index *_names t_s 
save Final_results M* sigma* legends* 
%% Plot all the results from two script fils 
% plot_results 
% plot_results_aspect_ratio  
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Appendix F. Publications and Posters 

Publications: 

1. Shakeel A. and David T. Asquith, “Strain measurement of a thin hyperelastic 

polymer sheet using 3D-Digital Image Correlation and Bulge Test”, The British 

Society for Strain Measurement  

11th International Conference on Advances in Experimental Mechanics 

29th - 31st August, 2017 University of Exeter, UK 

 

Abstract: A bulge test is commonly used to analyse equibiaxial tensile stress 

and strain usually at the pole of an inflated thin sheet. Using three dimensional 

digital image correlation (3D-DIC) technique, three dimensional surface displace-

ments can be measured and hence the corresponding strain fields. In this paper, 

strain is measured in a rectangular polymer sample with aspect ratio of four. The 

bulged profile is shown to take a 4th degree polynomial shape. Hysteresis is pre-

sent in polymer material and pressure vs. bulge height profile stabilizes after few 

cycles of loading-unloading. Since digitally image correlated results are usually 

noisy, different methods of extracting the results are discussed. An analytical 

(Vlassak & Nix, 1992) model is compared with measured strain. 

  

http://www.bssm.org/default.asp?p=6&event=193
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Posters: 

1. Shakeel Ahmed, Prof Jacques Penders and Dr. David Asquith, Gripping and 

Handling Technology for Flexible Materials. MERI Symposium, Sheffield Hallam 

University, Sheffield United Kingdom, December 2013. 
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1. Shakeel Ahmed, Prof Jacques Penders and Dr. David Asquith, Gripping and 

Handling Technology for Flexible Materials. MERI Symposium, Sheffield Hallam 

University, Sheffield United Kingdom, May 2015. 
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Appendix G. Pressure Sensor Data Sheet 
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