
Open Piping: Towards an Open Visual Workflow 
Environment

BOISVERT, Charles <http://orcid.org/0000-0002-3069-5726>, ROAST, Chris 
<http://orcid.org/0000-0002-6931-6252> and URUCHURTU, Elizabeth 
<http://orcid.org/0000-0003-1385-9060>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/24549/

This document is the Accepted Version [AM]

Citation:

BOISVERT, Charles, ROAST, Chris and URUCHURTU, Elizabeth (2019). Open 
Piping: Towards an Open Visual Workflow Environment. In: MALIZIA, Alessio, 
VALTOLINA, Stefano, MORCH, Anders, SERRANO, Alan and STRATTON, Andrew, 
(eds.) End-User Development. Lecture Notes in Computer Science book (11553). 
Springer, 183-190. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Open Piping: Towards an Open Visual1

Workflow Environment2

Charles Boisvert Chris Roast Elizabeth Uruchurtu3

Department of Computing. Communication and Computing Research Centre.4

Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK5

initial.surname@shu.ac.uk6

Abstract7

The most popular visual programming tools focus on procedural, object-oriented and8

event-based programming. This paper describes a boxes-and-wires functional programming9

tool, aimed to be accessible to novice programmers, while also supporting open access to the10

specified processes, executable programs and results for study and deployment.11

Keywords Computer science education, data science, functional programming, end-user12

programming13

1 Introduction14

Visual, block-based environments such as ALICE [4] or Scratch [17] have recently15

transformed the teaching of computing [9, 1].16

Yet this development in procedural and object-oriented programming tools has not17

disseminated to analysing and processing data. For example, the nifty assignments18

repository of computing assessment ideas [15, 14] contains 107 assignments,19

collected for their quality, but only eight of these incorporate work with a real data set.20

Of particular concern to us, at Sheffield Hallam University, is adapting our tools,21

teaching methods and resources in order to facilitate access to and process of data by22

students at any level. Specific interest areas have been working with open data23

advocacy groups [12] and making data analytic tools more available [19].24

The Open Piping project pursues this idea with an open-source functional25

programming environment and visual data flow interface for data processing1.26

1 http://boisvert.me.uk/openpiping

1



2 Project motivations 2

2 Project motivations27

Open Piping is a visual functional programming environment, based on a boxes and28

wires model, intended for data processing applications.29

Visual boxes and wires environments are common [11, 13], including some in30

commercial [8] and scientific [7] use. But in many cases, the value of the tools is31

limited due to the poor transparency of the processes and technology they implement.32

Take the case of the popular - until its end in 2015 - Yahoo pipes [13]. To execute33

pipes on systems of their choice, users had to go through a complex export process.34

This was their only option when Yahoo support ended.35

Open piping aims to propose an ease of use comparable to commercial tools, in an36

open architecture to facilitate development flexibility, reuse and allow richer37

exchanges between users.38

2.1 Open by design39

Our ambition is to propose a graphical tool for user-defined data processes, which40

would include, by design, the transparency and flexibility needed to apply user-defined41

processes in a range of languages and environments. Open piping aims to be at once:42

Open. That is, Open Source; the system’s source code is available under the GNU43

licence. But so is the notation used to define processes. Any user process can then44

be transformed from this notation into executable code in a target programming45

language.46

Interoperable. The process specification format is openly available, and uses a47

human-readable, JSON formatted S-expression. This is needed to ensure the48

interoperability of the system with any manner of services, such as alternative49

end-user interfaces, new languages or process hosting and remote execution tools.50

Easy to use. The user interface makes it easy to define data flows and shows clearly51

the relation between data flow, resulting S-expression, and executable functionality.52

With resulting processes easy to deploy. The ability to choose from multiple53

languages and standards for services and content integration, would facilitate the54

re-use of user-defined processes in different environments, such as within55

content-management systems, as web or application widgets, or within a56

service-oriented architecture.57

Altogether, these characteristics aim to ensure that users can easily define the58

processes they want to operate on data, while also retaining control of these59

processes to use them in new environments.60



3 Open piping Operation 3

Fig. 1: Open piping main interface elements

3 Open piping Operation61

3.1 System architecture62

The boxes-and-wires model describes the directed acyclic graph for a function, with63

the boxes representing functions and the wires, the data to which they apply.64

Configuration data defines base functions available to the end-user. This information65

at once determines primary graphical blocks, provides access to basic processing66

capabilities, and limits that access, for security, to a chosen set with defined67

functionality.68

The end-user defines a function by wiring elementary blocks. This function is69

translated into an S-expression in JSON, which can be compiled into an executable70

function in any number of languages, provided that calls to the primitive functions can71

be defined.72

The interface elements presented fig. 1 sum up the use of Open Piping. The end-user73

chooses elementary blocks (1) to define a flow (2) which is translated to a symbolic74

expression (3) encoded in JSON to use the many existing tools for this format. The75

expression is then interpreted (4) and executed (5).76

3.2 Defining and encoding a data flow77

The block description and interface configuration also uses the JSON format. For78

instance, fig. 2 shows the configuration lines to define the box representing arithmetic79

operations. The user can choose add, subtract, divide, or multiply from a single80

‘arithmetic’ box.81

Fig. 2: Defining and representing graphically a box of arithmetic functions

An example data flow is presented fig. 3. The web interface uses the JSPlumb library82

[10] to manipulate and represent the screen objects. Traversing the graph recursively83

provides a symbolic expression. An advantage of symbolic expressions is that code84



3 Open piping Operation 4

remains close to existing languages such as LISP or Scheme. For instance, in a85

LISP-like language, the workflow figure 3 results in the structure:86

(if (isNumber 15) (plus 1 15) "not a number") [1]87

88

Fig. 3: An example workflow

Another benefit of S-expressions is the original argument for this notation: executable89

code and data follow the same conventions. This facilitates the processing of an90

expression like line [1] in multiple environments.91

The expression is encoded in JSON, to provide to the interpreter. JSON’s wide use92

and readability make it particularly suitable to this purpose. The encoding follows93

these simple rules:94

• JSON notation defines objects, arrays, strings, numbers and the values true,95

false, and null. Our encoding relies on all but objects.96

• Atomic values are strings, numbers and the values true, false, and null.97

• Lists are represented by a JSON array. Each element of the list can be an98

atomic value or a list, and so on recursively.99

Respecting this convention, the process shown fig. 3 is written:100

["if", ["isNumber",15], ["plus",1,15], "Not a number"] [2]101

102

3.3 Interpret a symbolic expression in executable language103

To allow the execution of the same expression in diverse environments, we rely on104

characteristics present in most programming languages - use of variables, of a means105

of conditional execution, of functions - but we must provide elementary information to106



3 Open piping Operation 5

support the interpretation in each language. These data are themselves written in107

JSON.108

To illustrate the interpretation process, let us study the case of interpreting expression109

[2] above in JavaScript and JQuery.110

The interpretation relies on a list of predefined functions and string substitutions for111

the language:112

"plus": {"args": "a,b", "sub": "(@a+@b)"}
"if": {"args": "a,b,c", "sub": "@a?@b:@c"}
"isNumber": {"args": "n", "body": "return $.isNumeric(n);"}

[3]113

114

Some operators are interpreted by substituting character chains to form the target115

code. Arithmetic operators like + use this technique, but so do conditionals, which we116

interpret in JavaScript with the ternary operator. Functions are identified and117

composed from arguments and body information. So [4] contains all the information118

needed to interpret the example completely.119

Using this data, the expression is interpreted recursively. First the expression120

["isNumber", 15] [4]121

122

results in the definition of function isNumber,123

function isNumber(n) {return $.isNumeric(n);} [5]124

125

and into one function call. The plus function is then interpreted by substituting strings,126

and finally if to compose the overall result:127

process(isNumber(15)?(1+15):"Not a number"); [6]128

129

We can see that the interpretation of a user-defined function is simple; to be able to130

execute a process in a given language, we simply need to define and execute safely131

the primitive functions required.132

3.4 Overcoming visual limitations133

The graphical model shown above should support end-user’s understanding and134

programming of simple processes. However, based on our experience and prior135

research such as [18, 3, 2], we speculate that several aspects of the visualisation are136

not easily represented in ways that end-users spontaneously understand. Here, we137

present a number of potential solutions to support end-users as programs become138

more complex.139



3 Open piping Operation 6

3.4.1 Coordinating visual code with results140

Visual programming can support end-users with a number of displays - the results of141

a program, of its code, of its execution. The wires and boxes model is a form of visual142

code, but many systems show a visual representation of execution results.143

Coordinated views can also apply to viewing code. Yahoo pipes [16] is an example of144

this approach: its visualisation showed code, in boxes and wires form, along with a145

sample of the data resulting from it. Users could also select subsets of the code to146

view its result. This supported end-users with a presentation of the code, of some147

results, and of execution information (as partial execution results), as well as148

debugging support by means of choosing code subsets to test.149

Fig. 4: Viskell shows data type explicitly

3.4.2 Data Typing150

The boxes and wires model shown in our example fig. 3 does not show any type151

information. Typing has many advantages for novice programmers, in particular152

limiting errors by constraining the validity of constructs, ensuring security, and153

facilitating debugging.154

Typing can be presented in textual form, a solution adopted by Viskell as shown in fig.155

4 [20]. An alternative is visual clues, such as colour, shape, or icons: languages like156

MIT Scratch [17] adopt this approach, and use the added advantage of shape as a157

metaphor for syntactic validity. Type can also be implemented in the language and158

enforced in the interaction, yet not presented visually: that is the solution adopted by159

Yahoo pipes, which enforces type checking with the impossibility of connecting a wire160

to a box if types do not match, but give no visual typing clue.161

3.4.3 Representing Conditionals162

Conditional execution is one of the basic elements of programming. A three-argument163

function, for the Boolean that determines which branch is executed, and each of the164



4 Conclusion and future work 7

two branches, is a suitable technical answer, but as the prototype workflow shown165

earlier in fig. 3, visual clues in support of the user are clearly lacking.166

Fig. 5: Prograph shows the conditional branches within two frames for clarity.

Prograph [5] solves this problem by adding to boxes and wires a third construct,167

frames, for sections of code that are end-users should consider separately.168

3.4.4 First class functions169

First-class functions are a fundamental benefit of functional programming, but also a170

difficult concept to represent in ways that users can understand and control. The171

earlier illustration of Viskell (fig. 4), shows a lambda-expression within the model,172

supported by textual type annotation: not every end-user will find it clear.173

An alternative relies on the same notion of frames as for conditionals: a function that174

accepts another as a parameter, represents that parameter within a frame. Yahoo175

pipes adopts that solution, albeit for a limited use of first-class functions: it implements176

user actions to drop a box into a functional parameter slot. [6] have investigated the177

primitives needed to represent completely the power of first-class functions within178

frames, but the solution is not an easy visualisation of the notion.179

4 Conclusion and future work180

The structure of our system lets users retain control of their processes. In particular:181

Limits to processing capabilities are not inherent to the system, but instead to the182

environment in which the process is deployed, for example by setting a processing183

time limit.184

The visual language is loosely coupled to the execution environment, by producing a185

function definition in an open intermediate representation; this ensures that changes186

to the visual interface, to the target language, and to the execution environment are187

independent.188

Risks of code injection are limited by transmitting the symbolic expression to an189

interpretation environment hosted with the execution environment, rather than190

communicate executable code, as well as by defining in the interpreter what primitive191

functions are allowable.192



4 Conclusion and future work 8

We believe that these characteristics can support adoption and self-learning through193

greater open access to computation.194

Currently our prototype ensures that end-users can define processes, and195

demonstrates the compilation from the S-expression to JavaScript and execution.196

Multiple environments common on web servers and clients are considered - e.g.197

JQuery, PHP, node.js, etc, as well as deployment of executable results in new198

systems.199

Developing this prototype’s capabilities to support users further, will require a balance200

of technical feasibility, theoretical clarity and empirical evidence to identify the most201

appropriate solutions.202

References203

[1] D. Adshead, C. Boisvert, D. Love, and P. Spencer. Changing culture: Educating204

the next computer scientists. In Proceedings of the 2015 ACM Conference on205

Innovation and Technology in Computer Science Education, pages 33–38. ACM,206

2015.207

[2] A. F. BLACKWELL. Pictorial representation and metaphor in visual language208

design. Journal of Visual Languages Computing, 12(3):223 – 252, 2001.209

[3] A. F. Blackwell. The reification of metaphor as a design tool. ACM Trans.210

Comput.-Hum. Interact., 13(4):490–530, Dec. 2006.211

[4] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool for introductory212

programming concepts. In Journal of Computing Sciences in Colleges,213

volume 15, pages 107–116. Consortium for Computing Sciences in Colleges,214

2000.215

[5] P. Cox and T. Pietrzykowski. Advanced programming aids in prograph. In216

Proceedings of the 1985 ACM SIGSMALL symposium on Small systems, pages217

27–33. ACM, 1985.218

[6] A. Fukunaga, W. Pree, and T. D. Kimura. Functions as objects in a data flow219

based visual language. In Proceedings of the 1993 ACM Conference on220

Computer Science, CSC ’93, pages 215–220, New York, NY, USA, 1993. ACM.221

[7] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn.222

Taverna: a tool for building and running workflows of services. Nucleic acids223

research, 34(suppl 2):W729–W732, 2006.224

[8] N. Instruments. What is labview. http://www.ni.com/en-gb/shop/labview.html.225

Accessed: 2019-30-04.226

[9] S. P. Jones, T. Bell, Q. Cutts, S. Iyer, C. Schulte, J. Vahrenhold, and B. Han.227

Computing at school. International comparisons. Retrieved May, 7:2013, 2011.228



4 Conclusion and future work 9

[10] I. JSPlumb. Jsplumb toolkit documentation. https://jsplumbtoolkit.com/docs.html.229

Accessed: 2017-13-04.230

[11] D. Le-Phuoc, A. Polleres, G. Tummarello, and C. Morbidoni. Deri pipes: visual231

tool for wiring web data sources. )ˆ(Eds.):‘Book DERI pipes: visual tool for wiring232

web data sources’(2008, edn.), 2008.233

[12] M. Love, C. Boisvert, E. Uruchurtu, and I. Ibbotson. Nifty with data: Can a234

business intelligence analysis sourced from open data form a nifty assignment?235

In Proceedings of the 2016 ACM Conference on Innovation and Technology in236

Computer Science Education, ITiCSE ’16, pages 344–349, New York, NY, USA,237

2016. ACM.238

[13] T. O’Reilly. Pipes and filters for the internet. http://radar.oreilly.com/2007/02/239

pipes-and-filters-for-the-inte.html. Accessed: 2016-10-10.240

[14] N. Parlante. Nifty assignments. http://nifty.stanford.edu. Accessed: 2016-01-12.241

[15] N. Parlante, J. Popyack, S. Reges, S. Weiss, S. Dexter, C. Gurwitz, J. Zachary,242

and G. Braught. Nifty assignments. In ACM SIGCSE Bulletin, volume 35, pages243

353–354. ACM, 2003.244

[16] M. Pruett. Yahoo! pipes. O’Reilly, 2007.245

[17] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,246

K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:247

programming for all. Communications of the ACM, 52(11):60–67, 2009.248

[18] C. Roast, R. Leitão, and M. Gunning. Visualising formula structures to support249

exploratory modelling. In Proceedings of the 8th International Conference on250

Computer Supported Education, CSEDU 2016, pages 383–390. SCITEPRESS -251

Science and Technology Publications, Lda, Portugal, 2016.252

[19] C. Roast, D. Patterson, and V. Hardman. Visualisation —- it is not the data, it is253

what you do with it. In P. Kommers and P. Isaı́as, editors, e-Society 2018254

Conference Proceedings, pages 231–238. IADIS, 2018.255

[20] F. Wibbelink. Interacting with conditionals in viskell. 2016.256


