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ABSTRACT
A simple discrete-time two-dimensional dynamical system is constructed and anal-
ysed numerically, with modelling motivations drawn from the zombie virus of pop-
ular horror fiction, and with suggestions for further exercises or extensions suitable
for an introductory undergraduate course.
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investigation.

1. Introduction

It is well-documented that discrete-time population models are convenient to handle,
display rich dynamic behaviour given their simplicity (see May’s classic paper ([1])),
and have some reasonable biological justifications ([2]). Bifurcation analysis from dy-
namical systems theory has proved a popular approach to analysing low-dimensional
discrete or continuous models of this kind ([3–10]). By modelling a disease from
popular fiction, zombies help to provide a motivation for students to learn about
formulating a model from real ecological assumptions, analysing it using the methods
of dynamical systems, and then interpreting the physical meaning of their results.

We have previously demonstrated how to investigate a similar population model with
cannibalistic tendencies ([11]). Other authors have looked at zombies in particular
in varying degrees of detail: Adams’ very readable half-novel, half-textbook has a
particularly educational focus ([12]); others have performed a serious analysis from an
infectious diseases and SIR modelling perspective using a three-dimensional system
of ODE’s ([13]); and a follow-up study ([14]) further explored the potential for
humanity’s survival given the slow, undirected movement of zombies that are not
well-mixed with the human population by considering the diffusion equation in detail.
However, despite this increased attention from the scientific community, we note with
concern that Mr Brooks’ rigorous text ([15]) is not yet required reading for military
or university recruits, and humanity as a whole remains dangerously unprepared for
the nightmare that awaits.

This material could be employed as a supplement to a first course in chaos
and complex systems, illustrating to students the following skills in applied mathe-
matics:
(a) Formulating and changing a model to reflect various assumptions; simple popula-
tion dynamics using the logistic map and various common functional responses.



(b) Numerical investigation, with a scientific programming language of choice.
(c) Chaos, strange attractors as well as other kinds of dynamical behaviour in the
phase space, Lyapunov exponents, fractals in science/nature by considering the
parameter space.
(d) Analysis of dynamical systems by analytically locating and determining the linear
stability of fixed points.
(e) Demonstrating the practical application of mathematics to non-specialists, in
medical, sociological and ecological fields.

2. Constructing a Simple Discrete Model

We let xn denote the human population density as a fraction of it’s natural carrying
capacity in the absence of predators (zombies), and yn denote the zombie population
relative to human density (0 ≤ xn, yn∀n). Unlike humans, zombies do not require
sustenance, mates, water, shelter to maintain their existence, so they do not have a
carrying capacity.

Assume that the following occurs, in this order during each timestep:
1. Zombies hunt for humans.
2. The human population undergoes variation in the simplest reasonable manner,
according to the logistic map (xn+1 = αxn(1− xn)).
3. Zombies waste away from natural degredation and accidents. They make no
deliberate attempt to protect themselves from environmental hazards.

For the first step, we have a nice advantage here. In addition to the motiva-
tional element, zombies are actually ideal predators for an introduction to population
dynamics for two reasons: As they are non-sentient, at least in this interpretation,
they are unlikely to utilise a sophisticated hunting strategy, prey switching, or
require a learning time. This rules out any need for a Holling “Type III” functional
response, which lowers the rate of feeding for very low prey populations as the
predators try to adapt. Second, as they do not eat for sustenance, there is not going
to be a saturation point in terms of the number of human prey, so even a “Type
II” response ([16]), which limits the rate of feeding for large prey populations, is
unnecessary. To be more precise, we assume that a timestep is sufficiently large that
the actual time required to physically consume a caught human is negligible. Together,
these assumptions make the choice of the simplest functional response possible, the
Lotka-Volterra or unbounded linear functional response βxnyn, seem quite reasonable.

Constructing the model in order, using these three discrete substeps, has two
advantages. It is is clear and self-consistent from a modelling perspective, with
each action occurring at a certain point. Second, it can model zombie predation
taking place constantly over a long time period, during which the human population
otherwise remains static, and then the human population subsequently increases with
childbirth over a distinct time period short enough to be negligible with respect to
zombie feeding. Beginning a given timestep with xn human density and yn zombie
population, and performing these three steps in order, we obtain:
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xn+1 = αxn(1− βyn)(1− xn(1− βyn)) (1)

yn+1 = (1− δ)yn(1 + βxn) (2)

where α is the control parameter for the logistic map, which governs the rate of
human reproduction; β is the feeding control parameter which in this case controls
the frequency of interaction between humans and zombies (in all cases, this results in
the death of the human, who then immediately becomes a zombie); and 0 ≤ δ ≤ 1 is
the fraction of the zombie population which perishes each timestep.

To ensure that negative population values are not permitted,

xn+1 = Ω

(
max

(
αxn(1− βyn)(1− xn(1− βyn)), 0

))
(3)

yn+1 = Ω

(
max

(
(1− δ)yn(1 + βxn), 0

))
(4)

where

Ω(z) =

{
z for ε ≤ z;
0 otherwise.

Here, ε is a minimum population density added for computation purposes so that orbits
converging to zero get there in finite time, and can be interpreted as the threshold
beneath which there is the equivalent of fewer than one human or zombie.

3. Fixed Points

First, we locate the fixed points of this system. At such points, xn+1 = xn = x and
yn+1 = yn = y. Therefore,

x = αx(1− βy)(1− x+ βxy) (5)

y = (1− δ)y(1 + βx) (6)

Solving these simultaneously yields several distinct possibilities:
i) (x, y) = (0, 0)
ii) (x, y) = (x, 0). In this case, where there is a non-zero human population but the zom-
bie virus has been completely eradicated, we obtain the solution to the one-dimensional
logistic map x = αx(1− x) embedded in the system, which yields x = 1− 1

α .
iii) Since if there are no humans, the zombies will all eventually perish (for 0 < δ)
also, there is no solution lying on the y-axis (i.e. y = 0 =⇒ x = 0), and so the only
other solution is (x∗, y∗) where x∗, y∗ 6= 0. This has the following solution:

x, y, β 6= 0 =⇒ x =
1

β
(

1

1− δ
− 1) =

δ

β(1− δ)
(7)
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Hence, since x 6= 0:

1 = α(1− βy)(1− x(1− βy)) (8)

= α(1− x(βy)2 − x− βy + 2βxy) (9)

Solving the quadratic in βy

x(βy)2 + (1− 2x)(βy) + (x+
1

α
− 1) = 0 (10)

yields

y =
2x− 1±

√
1− 4x

α

2βx
(11)

Substituting in our solution for x, we obtain:

x∗ =
δ

β(1− δ)
(12)

y∗± = =
2δ − β(1− δ)±

√
β2(1− δ)2 − 4

αβδ(1− δ)
2δβ

(13)

3.1. Linear Stability Analysis

We find the Jacobian Matrix of this system. Setting f(xn, yn) = xn+1, g(xn, yn) =
yn+1,

∂f

∂x
= α− 2αx+ 4αβxy − αβy − 2αβ2xy2 = α(1− 2x− βy + 4βxy − 2β2xy2)(14)

∂f

∂y
= 2αβx2 − αβx− 2αβ2x2y = αβx(2x− 1− 2βxy) (15)

∂g

∂x
= (1− δ)βy (16)

∂g

∂y
= (1− δ)(1 + βx) (17)

Hence, for the fixed point at the origin,

J(0, 0) =

(
α 0
0 1− δ

)
(18)

so the eigenvalues are ∆1 = α and ∆2 = 1 − δ. Assuming that 0 < δ < 1, then this
fixed point is stable and attracting when 0 < α < 1, and a saddle point otherwise.

For the axial fixed point,
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J(1− 1

α
, 0) =

(
2− α β(α− 3 + 2

α)

0 (1− δ)(1 + β − β
α)

)
(19)

and so the eigenvalues are ∆1 = 2−α and ∆2 = (1−δ)(1+β− β
α). For this fixed point

to be stable and attracting, we require that both |∆1,∆2| < 1. The first condition

gives 1 < α < 3, and the second that |(1 − δ)(1 + β − β
α)| < 1. Let us then consider

three possibilities:

• When 0 < α < 1, we have 1 < ∆1 and 1 + β − β
α < 1 so ∆2 < 1. Therefore

this is a saddle point if δ−2
1−δ < β(1− 1

α) and so −1 < ∆2, and a repellor otherwise.

• For 1 < α < 3, |∆1| < 1 is satisfied. This prevents the sufficient condi-

tion 0 < 1 + β − β
α < 1 for |∆2| < 1 from being fulfilled, so we instead

require 0 < β(1 − 1
α) < δ

1−δ for a stable, attracting fixed point. Otherwise

( δ
1−δ < β(1− 1

α)) it is a saddle point.

• For 3 < α, we obtain ∆1 < −1 and −1 < 0 < ∆2. For a saddle point, we require
β(1− 1

α) < δ
1−δ to ensure ∆2 < 1, and it is a repellor otherwise.

3.2. The Interior Fixed Points for δ = 0.1

Applying the same method of analysis to the interior fixed points is clearly going to be
tedious, and this is a motivating factor in turning instead to the methods afforded by
computational simulations. However, before we do that we shall study the interior fixed
points when δ = 0.1. In general (0 < α, β and 0 < δ < 1), x∗ is always real and positive.

When δ = 0.1, the zombie co-ordinate becomes

y∗± =
2− 9β ± 3

√
9β2 − 4β

α

2β
(20)

Therefore, both solutions are real if and only if

9β2 − 4β

α
≥ 0 (21)

and since α, β > 0, this is satisfied for

αβ ≥ 4

9
. (22)

We do not require the zombie population to satisfy y∗± < 1, but we do still require

that they are positive. Given that αβ ≥ 4
9 for the solution to exist, y∗+ > 0 if

2− 9β + 3

√
9β2 − 4β

α
> 0 (23)
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This is immediately satisfied if β < 2
9 . If β ≥ 2

9 then we require√
9β2 − 4β

α
> 3β − 2

3
> 0 (24)

and so

9β2 − 4β

α
> 9β2 − 4β +

4

9
(25)

9β(1− 1

α
) > 1 (26)

This inequality then gives two possibilities for α 6= 1:
If 0 < α < 1, this requires that

β <
1

9(1− 1
α)

< 0 (27)

which we discard as we only consider β > 0, and thus we are left with

0 <
1

9(1− 1
α)

< β, for 1 < α. (28)

For α = 1, we obtain the condition z+ = 2 − 9β + 3
√

9β2 − 4β > 0. This is not real
for 0 < β < 4

9 , and the positivity condition is never satisfied for β ≥ 4
9 , thus yielding

no additional solutions.
Therefore we find that y∗+ is real and positive if:

4

9α
≤ β < 2

9
, which requires that 2 < α. (29)

or

1 < α and max

{
1

9(1− 1
α)
,

4

9α

}
< β. (30)

However, since 1
9(1− 1

α
)

= 4
9α has only one repeated solution at α = 2, we deduce that

1
9(1− 1

α
)
≥ 4

9α throughout the range and so this second possibility simplifies to

1 < α and
1

9(1− 1
α)

< β. (31)

For the other fixed point, y∗− > 0 if αβ ≥ 4
9 for existence and:

2− 9β − 3

√
9β2 − 4β

α
> 0 (32)
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This requires that β < 2
9 , and then that

9β(1− 1

α
) > 1 (33)

If 0 < α < 1, then 1
9(1− 1

α
)
< 0 and we need

β <
1

9(1− 1
α)

< 0 (34)

which has no solutions for β > 0.

For α = 1 then, the fixed point is positive if and only if z− = 2−9β−3
√

9β2 − 4β > 0.
As with z+, this has no solutions in the range β ≥ 4

9 , as illustrated in Figure 1.

Figure 1. Conditions for y∗± > 0 when δ = 0.1, α = 1. Red is z+, blue is z−.

Finally, for 1 < α, we need 1
9(1− 1

α
)
< β in addition to β < 2

9 . To conclude then, y∗−
is real and positive if:

1 < α and max

{
1

9(1− 1
α)
,

4

9α

}
< β <

2

9
(35)

which requires 2 < α, and for this range 4
9α ≤

1
9(1− 1

α
)
, so we are left with:

2 < α and
1

9(1− 1
α)

< β <
2

9
(36)

as the only suitable region.

To analyse the linear stability of the interior fixed points, rather than explic-
itly determining the eigenvalues of the Jacobian matrix we instead will use the Jury
conditions ([17]). Let z ∈ C, then defining:

F (z) = z2 − tr(J∗)z + det(J∗), (37)
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where tr and det denote the trace and determinant, and J∗ = J |(x∗,y∗), then x∗ is
linearly stable if and only if the following conditions are met simultaneously:

F (−1) > 0, F (1) > 0, 1− det(J∗) > 0. (38)

Given δ = 0.1 and x = x∗|δ=0.1 = 1
9β , then we obtain:

tr(J∗) =

(
∂f

∂x
+
∂g

∂y

)∣∣∣∣
(x∗,y∗)

=

(
−2αβ

9

)
y∗2 + α

(
4

9
− β

)
y∗ + α− 2α

9β
+ 1 (39)

and

det(J∗) =

(
∂f

∂x

∂g

∂y
−∂f
∂y

∂g

∂x

)∣∣∣∣
(x∗,y∗)

=

(
−αβ

5

)
y∗2+α

(
19

45
−9β

10

)
y∗+α

(
1− 2

9β

)
(40)

Clearly, obtaining analytic solutions to these inequalities is going to be difficult, or
impossible. Therefore for each of the two points (x∗, y∗±)|δ=0.1, in order to understand
their stability we shall conduct a numerical search of the two-dimensional (α, β) pa-
rameter space and (a) classify regions according to the eight possible combinations of
satisfied Jury conditions, and (b) search for boundaries of each of the three conditions.

We perform this procedure for 10,000 values of α in (0, 5] and β in (0, 6] (Fig-
ure 2).

(a) Jury Conditions combinations for y∗+ (b) Jury Conditions combinations for y∗−

Figure 2. Purple: Solution is not real and the conditions cannot be evaluated.

Dark Blue (not pictured): F (−1) ≤ 0, F (1) ≤ 0, 1− det(J∗) ≤ 0.

Medium Blue (not pictured): F (−1) > 0, F (1) ≤ 0, 1− det(J∗) ≤ 0.
Light Blue (not pictured): F (−1) ≤ 0, F (1) > 0, 1− det(J∗) ≤ 0.

Teal ((b), β ≈ 0.25, α > 3): F (−1) ≤ 0, F (1) ≤ 0, 1− det(J∗) > 0.

Green: F (−1) > 0, F (1) > 0, 1− det(J∗) ≤ 0.
Gold: F (−1) > 0, F (1) ≤ 0, 1− det(J∗) > 0.

Orange: F (−1) ≤ 0, F (1) > 0, 1− det(J∗) > 0.

Yellow: F (−1) > 0, F (1) > 0, 1− det(J∗) > 0.

In the regions where the fixed point exists and could be stable (regardless of
whether it takes a biologically-appropriate value), coloured yellow, we see there are
three possible ways of leaving this state (aside from changing to complex solutions
in the purple region) which correspond to crossing boundaries of different Jury
conditions, and giving rise to different types of bifurcation. For y∗+, if α and β increase
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further we enter the green region, passing through 1 − det(J∗) = 0. This causes
the eigenvalues of the Jacobian matrix to leave the unit circle simultaneously as
complex conjugates, known as Neimark-Sacker (or Hopf) bifurcation, and resulting in
quasiperiodic orbits. If instead α decreases and we enter the gold region, we traverse
F (1) = 0 and this results in a fold or saddle-point bifurcation as the fixed point, with
one real eigenvalue of the Jacobian equal to 1, produces two distinct fixed points. For
y∗−, the main occurence is a period-doubling bifurcation as α and β increase and we
enter the orange region by passing F (−1) = 0 as a real eigenvalue leaves the unit
circle with value -1. There is also the possibility of a saddle-point bifurcation for a
narrow band of β / 0.2 and 2 < α.

By plotting the numerically-identified boundaries of these stability conditions,
together with the conditions for existence and positivity located above, we identify
the (filled-in green) regions where the fixed points exist, have positive y-coordinate,
and possess linear stability (Figure 3).

(a) y∗+ Boundaries of Jury conditions (b) y∗− Boundaries of Jury conditions

(c) y∗+ all boundaries (d) y∗− all boundaries, zoom

Figure 3. Boundaries:

Blue = Stability (Jury Conditions),

Red = Existence (αβ = 4
9

),

Yellow/Purple = Positivity. Yellow denotes 9β(1− 1
α

) = 1 and Purple denotes β = 2
9

.

We see that the comparatively small region where y∗− is an attractor (the green
region in Figure 3(d)) overlaps with that of y∗+, so in this case the final behaviour of a
given orbit will be determined by the basins of attraction for each interior fixed point.
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4. Numerical Analysis of Lyapunov Exponents for δ = 0.1

The spectrum of Lyapunov exponents provide one tool for examining the system
through numerical experiments. The maximal or characteristic Lyapunov exponent,
λ1, quantifies the “stretching” of nearby orbits under the action of the map, and so
provides a quantifiable measure for the “sensitivity to initial conditions” element of
chaotic dynamics. For a discrete orbit (xn)n under the map f , the largest exponent is
defined by:

λ1 = lim
n→∞

1

n

n−1∑
k=0

ln(|f ′(xk)|) (41)

However, in order to calculate it practically, we will use the following algorithm found
in Sprott’s textbook ([18]):
Let

Jn = J(x)|(xn,yn) =

(
A B
C D

)
(42)

so that A,B,C,D are the entries of the Jacobian matrix evaluated at the nth iteration.
Next we define a rescaled variable:

y
′

n+1 =
C +Dy

′

n

A+By′n
. (43)

The maximal Lyapunov exponent is then obtained by:

λ1 = lim
n→∞

1

2n

n∑
k=1

log

(
(A+By

′

k)
2 + (C +Dy

′

k)
2

1 + y
′

k
2

)
(44)

We will use the Lyapunov exponent, along with examining whether orbits have
settled to a fixed point, to experimentally classify the behaviour of the dynamical
system across the (α, β) parameter space for the range 0 ≤ α ≤ 5 and 0 ≤ β ≤ 6 by
performing high-precision numerical simulations. Assume that the zombie mortality
rate is one tenth of the existing population at each timestep, i.e. δ = 0.1. For each
parameter set, we start with a moderate human population density x0 = 0.5 and
a small zombie population density y0 = 0.01, and perform 105 iterations to remove
transient behaviour. This is followed by 106 iterations during which the algorithm given
above is used to estimate the maximal Lyapunov exponent. As noted in the original
set of equations ((3),(4)), if either species’ population density falls below ε = 10−6 it
is considered to have gone extinct and is set to zero.
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(a) Full (b) Zoom

Figure 4. Qualitative behaviour across the parameter space: Purple = Extinction, Dark Blue = x-only period-
1, Medium Blue = x-only periodic, Light Blue (boundary at α ≈ 3) = x-only λ ≈ 0, Teal (small β, α > 3.57)

= x-only chaos, Green = Coexistence period-1, Olive Green = Coexistence periodic, Orange = Coexistence

quasiperiodicity, Yellow = Coexistence chaos.

Observe (Figure 4) first that the region of either coexistence or human-only survival
is bounded. Total extinction occurs if α < 1 as the origin is attracting in that region,
for α > 4 due to the regular behaviour of the logistic map causing xn to eventually
leave the unit interval and thus be set to zero at that or the next iteration, or if α and
β are sufficiently large. Like many straightforward discrete-time maps ([19,20]), this
model also displays complex two-dimensional dynamics in the parameter space, and
the quasiperiodic route to chaos in particular. As α and β increase, the interior fixed
point undergoes a Neimark-Sacker bifurcation in accordance with the study of the
fixed points’ stability in the previous section. If the rotation number of the resulting
curve is rational, we land in one of the Arnol’d tongues of periodic behaviour, within
which the period-doubling route to chaos occurs. Otherwise, the bifurcation gives
rise to a dense ring-like quasiperiodic attractor around the fixed point where λ1 ≈ 0.
Moving further still from the origin, these curves break up and chaotic dynamics
are reached regardless. The pattern of Arnol’d tongues themselves form a fractal-like
structure in the parameter space, and we note that although too thin to be fully
visible, they extend all the way to the boundary with the region of an interior
(co-existence) fixed point from which they originate.

Most of the behaviour is therefore explained by our investigation of the fixed
points’ existence and stability, seemingly combined with total extinctions that (aside
from the region where (0, 0) is attracting) is simply due to the biological restraint
of discarding populations that map to a negative value at any iteration. This is
confirmed by conducting a study of 10,000 values each of α and β in the range,
testing whether they escape the range R+ × R+ within the first 200 timesteps and
how rapidly if so (Figure 5).
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(a) First n for which xn ≤ 0 (b) First n for which yn ≤ 0

(c) First n for which both xn ≤ 0 and yn ≤ 0

Figure 5. Escape Sets showing how rapidly orbits with δ = 0.1, x0 = 0.5 and y0 = 0.01 reach (0, y), (x, 0)
and (0, 0) within the first 200 iterations

Next, fix β = 0.4, and we shall consider the behaviour of the largest Lyapunov
exponent in more detail. As before, this is calculated over 106 iterations after 105

transients. This is performed for 100,000 values of 1 < α ≤ 4.5 (Figure 6).

(a) Full (b) Zoom

Figure 6. Maximal Lyapunov Exponent, β = 0.4
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For this range, we also consider the corresponding bifurcation diagram (Figure 7) of
the post-transient dynamic behaviour. This is found by testing the first 1000 iterations
for periodicity after 108 transients for 20,000 values of 0 < α ≤ 5.

(a) Full (b) Zoom

Figure 7. Feigenbaum diagram, β = 0.4. Blue = humans, xn; Red = zombies, yn.

We see that at α ≈ 2.77 the largest Lyapunov exponent becomes zero, corre-
sponding to the attractor bifurcating from the fixed point to a quasiperiodic orbit
around the point. Periodic windows are observed as we cut into an Arnol’d tongue in
parameter space. As with the standard Feigenbaum diagram of the one-dimensional
logistic map, in some cases we observe period-doubling to chaos as we remain inside
the Arnol’d tongue, for example this is just visible at α = 3.58. However, in other
cases we instantaneously drop back to quasiperiodic orbits as we exit the Arnol’d
tongue in parameter space. This could be used to illustrate the qualitative effects of a
predator in introducing entirely new dynamics to the system, that are absent in the
one-dimensional case.

Finally, to illustrate this topological relationship between the attractors (Figure
8), we choose three close values of α (keeping β = 0.4) that give rise to a (a) periodic,
(b) quasiperiodic and (c) strange (that is, corresponding to a chaotic orbit) attractors.
The difference between (a) and (b) is then simply a matter of their rotation numbers
being rational and irrational respectively, and the strange attractor is formed from a
twisting of the curve given by quasiperiodic orbits.

13



(a) α = 3.567, λ1 < 0 (b) α = 3.540, λ1 ≈ 0

(c) α = 3.599, λ1 > 0 (d) α = 3.599, zoom

Figure 8. Selection of periodic, quasiperiodic, and strange attractors, for β = 0.4, δ = 0.1.

5. Conclusion

Whilst this model was not difficult to formulate, it nonetheless illustrated a rich va-
riety of dynamic behaviour and the potential for various avenues of analysis. In fact,
because of its intuitive meaning, it is easy propose many changes of varying complexity
to the model, by considering different possible interactions between the populations,
additional stages of the disease, or even extending to spatial metacommunity of con-
nected cells. In the final section, we suggest some exercises that will test a student’s
understanding of the biological meaning of the model, and provide opportunities to
conduct independent numerical investigations of its dynamics.

6. Exercises

1. Rather than the model derived in equations (1) and (2), consider the simpler pop-
ulation model:

xn+1 = αxn(1− xn)− βxnyn (45)

yn+1 = (1− δ)yn + βxnyn (46)
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(a) What differences in modelling assumptions are involved in constructing this
model?
(b) By means of numerical simulation, investigate the behaviour of this system across
the (α, β, δ) parameter space. Do the changes in modelling assumptions significantly
alter the likelihood of human survival?

2. What would the set of equations look like if some fraction of the humans
caught by zombies are totally consumed rather than successfully converted to joining
the zombie population?

3. The discrete Ricker map models reproduction and population dynamics of
population desnity xn using the form:

xn+1 = xne
α(1−xn) (47)

(a) What are some advantages and disadvantages of using this form, compared to the
discrete logistic map, for the reproduction of the human population?
(b) Reformulate the set of equations for our dynamical system, assuming that the
order is preserved but that the humans reproduce according to this map. Numerically
investigate the behaviour of this system across the (α, β) parameter space.

4. Suppose the humans organise themselves and start fighting back, so that the
zombie mortality rate is now a function of the human and zombie populations.
(a) How would we amend the equations to take into account this new possibility?
(b) Suppose that the new term in this function is directly proportional to the
random probability of a human-zombie “collision” (i.e. β 7→ β + ωxn+1yn+1). For
the parameter space considered, using analytic techniques or numerical simulation,
determine how large ω would have to be (i.e. how effective the human hunting parties
must be) in order to save the human race at any point in the parameter space which
would otherwise result in extinction.
(c) Choose and justify another, more sophisticated response than this linear one.
(d) Instead of this three-step method (zombies hunt, humans reproduce, zombies are
hunted by humans and also die naturally), we could assume a simpler model where
the humans generally resist an encounter with the zombie. Thus, revert to the plain
zombie mortality β, and assume that an encounter during the zombie hunting step
now has two possibilities: either the human becomes a zombie or else the zombie is
destroyed. Formulate the set of equations corresponding to such a model.
(e) Generalise the equations in (d) to also take into account the possibility of the
third outcome to an interaction, discussed in Question 2.

5. Humanity has successfully eradicated this particularly nightmarish strain of
the zombie virus, where infection resulted in definite, immediate, conversion to the
horde of the dead. However, a new, lesser strain has emerged which has a delay of one
time step between infection and, unless treated with probability ℵxn+1 or killed by
other causes (with a constant, density-independent probability), becoming a zombie.
(a) Devise a possible set of equations for the three-dimensional parameter space, and
be careful to explain the order of occurrences (zombie infection, human reproduction,
conversion from infected to zombie etc.) within each time step and ensure that your
equations are mutually consistent in this regard.
(b) Why is this version of the model, in the current form at least, fatally flawed?
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Consider the timescales of events. (Time to succumb to the disease is equated with
an entire human reproductive cycle from conception to, at least, adolescense.)

6. Extending the model to a spatial variant by means of a two-dimensional
Coupled Map Lattice ([21–26]) should provide a suitable level of difficulty for a
short undergraduate research project. Consider a fully-connected metacommunity of
Xmax × Ymax cells. This affords many modelling possibilities, but we shall choose
the following: hunting within cells (based on in-cell population density) is followed
by migration of both humans and zombies between adjacent cells at a constant rate
µx and µy respectively. This is then followed by human variation and natural zombie
mortality as before.

For a 2 × 2 metacommunity, where all four cells are adjacent to each other,
the equations for this system are as follows:

x
(i,j)
n+1 = α

(
2∑

k=1

2∑
l=1

µ(k,l,i,j)
x x(k,l)

n (1− βy(k,l)
n )

)(
1−

2∑
k=1

2∑
l=1

µ(k,l,i,j)
x x(k,l)

n (1− βy(k,l)
n )

)
,(48)

y
(i,j)
n+1 = (1− δ)

2∑
k=1

2∑
l=1

µ(k,l,i,j)
y y(k,l)

n (1 + βx(k,l)
n ) (49)

where

µ(k,l,i,j)
x =

{
1− 3µx for i = k, j = l;
µx otherwise,

and similarly for µ
(k,l,i,j)
y .

(a) For fixed values of α, β, δ, numerically investigate the effect of the global
rates 0 ≤ µx, µy ≤ 1

3 of human and zombie migration on human survival.
(b) What would the set of equations be if the metacommunity is not fully-connected,
and instead, migration can only occur between cells with horizontal or vertical adja-
cency (i.e. migration between diagonal cells is disabled)? This could be implemented
either by changing the double summation’s limits to be dependent on the current cell,

or simply by altering the migration functions µ
(k,l,i,j)
x and µ

(k,l,i,j)
y .

(c) Zombies are unguided hunters who are incapable of strategising. However, humans
have some knowledge of their surroundings and do not move randomly. Suggest a

more sophisticated migration function for the humans to replace µ
(k,l,i,j)
x , so that they

try to avoid regions with large zombie populations.
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