
Parallelization of formal concept analysis algorithms

KODAGODA, Gamhewage Nuwan

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/24465/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/24465/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


 

 
 

PARALLELIZATION OF FORMAL CONCEPT 
ANALYSIS ALGORITHMS 

  
 

 

 

Gamhewage Nuwan Kodagoda 

 

 

 

A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam 

University�for the degree of Doctor of Philosophy 

 

 

 

 

 

 

November 2018



 

i 

 

Abstract 

 

Formal Concept Analysis provides the mathematical notations for representing concepts and 

concept hierarchies making use of order and lattice theory.   This has now been used in 

numerous applications which include software engineering, linguistics, sociology, information 

sciences, information technology, genetics, biology and in engineering.  The algorithms 

derived from Kustenskov's CbO were found to provide the most efficient means of computing 

formal concepts  in several research papers.  In this thesis key enhancements to the original 

CbO algorithms are discussed in detail.   The effects of these key features are presented in both 

isolation and combination.  Eight different variations of the CbO algorithms highlighting the 

key features were compared in a level playing field by presenting them using the same notation 

and implementing them from the notation in the same way.   The three main enhancements 

considered are the partial closure with incremental closure of intents, inherited canonicity test 

failures and using a combined depth first and breadth first search.   The algorithms were 

implemented in an un-optimized way to focus on the comparison on the algorithms themselves 

and not on any efficiencies provided by optimizing code.  

One of the findings were that there is a significant performance improvement when partial 

closure with incremental closure of intents is used in isolation.   However there is no significant 

performance improvement when the combined depth and breadth first search or the inherited 

canonicity test failure feature is used in isolation.  The inherited canonicity test failure needs 

to be combined with the combined depth and breadth first feature to obtain a performance 

increase.  Combining all the three enhancements brought the best performance. 

The main contribution of the thesis are the four new parallel In-Close3 algorithms. The shared 

memory algorithms Direct Parallel In-Close3, the Queue Parallel In-Close3 algorithm and the 

Distributed Memory In-Close3 algorithm showed significant potential.  The shared memory 

algorithms were implemented using OpenMP and the distributed memory algorithm was 

implemented using MPI. All implementations were validated and showed scalability.  

Experiments were carried to test the features of the parallel algorithms and their 

implementations using the UK National Super Computer Archer and Colfax Clusters. The 

thesis presents the key parallelization strategies used and presents experimental results of the 

parallelization. 
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1 INTRODUCTION 

1.1 Introduction 
There is a huge amount of raw data that is produced each day.  Since this raw data cannot be 
used as it is, knowledge in form of structures or patterns needs to be extracted from the data.  
This extraction of knowledge from data is known as data mining, and data analysis is the term 
used for further analysis and transformation of the structures found (Poelmans, Elzinga, 
Viaene, & Dedene, 2010; Poelmans, Ignatov, Kuznetsov, & Dedene, 2013a; Wille, 2002). 

Formal Concept Analysis (FCA) is a contemporary data mining and data analysis technique 
for object-attribute relational data. FCA can be used to generate a concept hierarchy from a 
collection of objects and their properties (Stumme, 2009).  Philosophically a concept can be 
considered as a unit of thought (Wille, 2005).  Concepts allow us to generalize real world or 
abstract ideas enabling higher level of thinking (Strahringer, Wille, & Wille, 2001).  In FCA 
concepts are precisely defined mathematically and these concepts are known as formal 

concepts.  The sub concept, super concept relationships between concepts found in a given 
domain can be represented in a concept hierarchy.  Concept hierarchies are generally 
represented as trees, although a lattice structure is the preferred representation in FCA (Wille, 
2005).  Traditionally concept hierarchies are created by human experts in a given domain, there 
are obvious benefits in having an automated way of generated concept hierarchies (Alani et al., 
2003; Uschold & Gruninger, 1996).  Formal Concepts which are the elementary output 
generated by FCA algorithms can in turn be transformed to association rules using data mining 
algorithms. There are many applications of FCA in diverse fields including data mining, 
machine learning, knowledge management, semantic web, software engineering, chemistry 
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and biology (Andrews, 2015; Poelmans et al., 2010; Poelmans, Ignatov, Kuznetsov, & Dedene, 
2013b; Tilley, Cole, Becker, & Eklund, 2005).   

In order to define the complexity of the algorithms that generate formal concepts a brief 
introduction of the terms are described in this chapter, these are formally covered in depth in 
Chapter 3 of the thesis.  In Formal Concept Analysis, a formal context is defined as a set of 

structure K	=	 (G,	M,	 I) where G and M are sets representing all the objects and attributes 

respectively for a given dataset. 	I represent a binary relationship between G and M.  All the 

generated concepts of a context can be represented in a Lattice represented by L.  Then the total 

number of concepts can be represented by |L|.  If we consider |G| to be the number of objects 

in a given dataset, then number of concepts is at most 2|G|. The time complexity of generating 

all concepts is in general a polynomial function with respect to the number of objects (Hitzler 
& Schärfe, 2009).  For example, Kuznetsov’s CbO algorithm has a time complexity of 

O(|G|2|M||L|) and is therefore computationally time consuming. Here |M| represents the 

number of attributes in the given context (Kuznetsov & Obiedkov, 2002).  This is significant 
for large datasets having millions of objects.  Hence there is a need for faster algorithms that 
are able to tackle large datasets (Old & Priss, 2004).  

Classical FCA algorithms for example Chein, NextClosure, Norris, Bordat were only capable 
of handling smaller datasets running upto only thousands of objects (Bordat, 1986; Chein, 
1969; Ganter, 1984; Norris, 1978). There have been numerous attempts to build upon the 
classical FCA algorithms.  Recent algorithms such as AddIntent, Berry, FCbO and the In-Close 
family of algorithms, improve upon the classical algorithms (Andrews, 2009, 2015; Berry, 
Bordat, & Sigayret, 2007; Outrata & Vychodil, 2012; van der Merwe, Obiedkov, & Kourie, 
2004).    

Almost all the FCA algorithms proposed in the literature to date are serial algorithms.  Out of 
the few attempts to parallelize FCA algorithms, most of them have been theoretical prototypes 
(Fu & Foghlu, 2008; Fu & Nguifo, 2004; Kengue, Valtchev, & Djamegni, 2007; Xu, de Fréin, 
Robson, & Foghlú, 2012).  The only notable parallelization effort have been Krajca’s and 
Outrata’s PCbO and PFCbO (Krajca, Outrata, & Vychodil, 2008, 2010b, 2010a; Outrata & 
Vychodil, 2012).  
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1.2 Research Questions 
The fundamental research question this thesis addresses is: what is the best parallel solution 
for computing formal concepts? Is there a parallel solution that outperforms all other parallel 
and serial solutions? The most important feature of performance is the speed of computation, 
but factors such as scalability should also be considered. It may be that the ‘best’ solution 
involves some compromise between speed, scalability and memory requirements. Clearly, an 
exhaustive comparison of all solutions is beyond the scope of this work, but a sufficient answer 
to the research question will be provided by defining and examining a representative subset of 
all solutions. 

The fundamental research question will be answered by answering the following sub-
questions: 

1)      What is the most appropriate existing serial algorithm to choose for parallelization? This 
may simply be the most efficient serial algorithm, but it is possible that some algorithms are 

not suitable for parallelization and appropriateness should also consider scalability and 
memory requirements. 

2)      What are the options for parallelizing the chosen serial algorithm (e.g. shared memory, 
distributed solutions) and which options may be the best in terms of speed and scalability? 

3)      How do parallel versions of the chosen serial algorithm compare with each other and 
with existing parallel solutions? 

These three questions are answered in the thesis and a guide on where these questions are 
addressed are given in Section 1.3 

1.3 Objectives and Structure of the Thesis 
To answer the first sub question, what is the most appropriate existing serial algorithms to 
choose for parallelization the thesis presents an analytical and empirical comparison of 
contemporary serial formal concept analysis (FCA) algorithm with the aim of selecting the 
fastest serial FCA algorithm.  The selected algorithm was compared with the rest of the 
algorithms to check if it had any specific disadvantage for parallelization.  Next the selected 
algorithm was parallelized using both shared memory and distributed memory parallelization 
strategies.  Finally, the different variations of the parallel implementations were compared to 
determine the best parallel FCA algorithm. 
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The second sub question on parallelizing the chosen serial algorithm is answered in Chapter 5 
and Chapter 6.  These two chapters present detail descriptions of new, shared memory and 
distributed memory parallel FCA algorithms.  The parallel algorithms presented in this thesis 
are parallel variants of the fastest serial FCA algorithm.  Several researches have concluded 
through empirical testing that the CbO family of algorithms provides the best performance 
(Andrews, 2009, 2011, 2015, Krajca et al., 2008, 2010a; Outrata & Vychodil, 2012; Strok & 
Neznanov, 2010). The first sub question on identifying the best serial algorithm is presented in 
detail in Chapter 4. This chapter describes the comparison of eight different variants of the 
CbO algorithm in a level playing field.  The algorithms, which highlight the key features found 

in contemporary CbO based algorithms, are presented using the same pseudocode notation, 
and implemented from the pseudocode notation in the same way.  The fastest serial FCA 
algorithm selected by analytical and empirical comparison was selected as the algorithm to be 
parallelised. The final sub question on the comparison of the parallel versions is addressed in 
Chapter 5 and Chapter 6.  Here the implementations of the new parallel algorithms are 
compared with their serial counterparts and other parallel implementations. 

1.3.1 Methodology 
Details of the methodology used in this research is presented in Chapter 2.  This include details 

of how key serial FCA algorithms were compared, and the evaluation and comparison of the 
new parallel algorithms presented in this thesis. 

1.3.2 Formal Concept Analysis 
A background to formal concept analysis is presented in Chapter 3.  Many serial algorithms 
generate all the formal concepts of a given context.  The limitations of serial formal concept 
analysis algorithms are presented in Section 3.3.  A brief summary of existing parallel 
algorithms is presented in Section 3.4.  The rational for developing parallel formal concept 
analysis algorithms and the research work carried out is also presented in Chapter 3. 

1.3.3 Comparison of existing serial algorithms 
In Chapter 4, existing serial FCA algorithms that generate formal concepts are compared 
analytically and empirically.  The algorithms and their implementations are compared in a level 
playing field.  Here a similar notation is used to represent each algorithm and their 
implementations.  Specifically eight variations of the CbO based algorithms are compared in 
detail.  Contemporary CbO based family of algorithms performed better than other algorithm 
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according to several researchers.  The eight variations highlight the three key features that are 
prominent in recently developed CbO algorithms (FCbO, In-Close, In-Close II, In-Close III).  
The fastest serial FCA algorithm found in this analysis was selected as the candidate algorithm 
for parallelization efforts.  The selected algorithm was also checked to ensure that it was 
suitable for parallelization. To validate that the fastest serial algorithm produces the best 
performance, two other serial algorithms that were considered were also parallelized and their 
results compared.   

1.3.4 Shared Memory Parallel Algorithms  
Modern computers are shared memory parallel machines with multiple cores.  A program that 
fully utilizes the modern computer hardware has to be explicitly programmed using a shared 
memory programming framework.  Chapter 5, presents three new shared memory FCA 
algorithms that parallelize the best serial FCA algorithm found in Chapter 4.  These algorithms 
were implemented in C++ using the OpenMP shared memory framework.  A detail empirical 
comparison of several additional parallel algorithms that are based on key serial algorithms 
presented in Chapter 4 is also made.  Finally, this chapter presents optimization strategies used 
in the parallel implementation. 

1.3.5 Distributed Memory Parallel Algorithms  
Shared memory machines have limitations when it comes to scaling.  Clusters that consist of 
several independent computers connected through a high bandwidth network are commonly 
used to build powerful parallel machines.  Clusters, which are scalable parallel computers, are 
essentially distributed memory computing machines with each computer (node) in the cluster 
having its own private memory.  Distributed parallel algorithms typically use message passing 
between computing nodes to coordinate parallel computation.  A new distributed parallel FCA 
algorithm and its implementation is presented in Chapter 6.  This parallel algorithm is also 
based on the fastest serial FCA algorithm selected from Chapter 4. 

1.4 New FCA algorithms presented in this Thesis 
The thesis presents seven new FCA algorithms (See Table 1.1).  The major contribution of the 
thesis are the four new Parallel algorithms presented in Chapter 6 and Chapter 7.  They are the 
Naïve Parallel In-Close3, Direct Parallel In-Close3, Queue Parallel In-Close3 and the 

Distributed Parallel In-Close3 algorithms.  In addition, there are three new FCA algorithms 
presented in Chapter 4.  These three new serial FCA algorithms helped in identifying the impact 
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of the three enhancements used in modern CbO based FCA algorithms.  The three algorithms 
are the CbO Full Closure  Combined Depth First and Breadth First Search Algorithm (CbO-
FC-DBF), CbO Full Closure Inherited Canonicity Test Failure and Depth First Search 
Algorithm (CbO-FC-ICF-DF) and the CbO Partial Closure Inherited Canonicity Test Failure 
and Depth First Search Algorithm (CbO-PC-ICF-DF).   The algorithms are summarized in 
Table 1.1, in the order they are presented in the thesis. 

 

Table 1.1, List of new algorithms presented in the thesis 

 

 

 

 

 

 

 
  

New Algorithm Type of Algorithm Presented In 
CbO-FC-DBF Serial Figure 4.6 
CbO-FC-ICF-DF Serial Figure 4.8 
CbO-PC-ICF-DF Serial Figure 4.11 
Naïve Parallel In-Close3 Parallel Shared Memory Figure 5.1 
Direct Parallel In-Close3 Parallel Shared Memory Figure 5.8 
Queue Parallel In-Close3 Parallel Shared Memory Figure 5.9 
Distributed Parallel In-Close3 Parallel Distributed Memory Figure 6.6 
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2. METHODOLOGY 

2.1 Introduction 
 

This research involved developing new algorithms and optimizing existing algorithms that can 
generate formal concepts for large data sets.  This required a systematic methodology in 
initially identifying the best serial candidate algorithms which exist.  The selected algorithms 
were taken forward into making parallel versions.  At the end of the research, the performance 
of these newly modified algorithms, were systematically compared with existing algorithms. 

The comparison of the efficiencies of different algorithms needed to be conducted at both the 
theoretical and practical level (Balakirsky & Kramer, 2004).  

To theoretically compare several algorithms the asymptotic analysis of each algorithm needs 
to be carried out separately.   In essence a complexity function is estimated for a large input, 
the Big O notation, Big omega notation and the Big theta notation can be used for this purpose 
(Cormen, Leiserson, Rivest, & Stein, 2001).  However, the algorithms compared in this thesis 

have the same theoretical complexity of O(|G|2|M||L|) .  Where |)|, |*| and |+| represents the 

number of objects, the number of attributes and the number of concepts respectively. Here ), 

* and + represents all the objects, attributes and the concepts in a given dataset.  A detail 

complexity analysis of each of these recursive algorithms is a complex task and beyond the 
scope of this thesis.  An analytical comparison of the different serial algorithms was carried 
out instead (See Section 4.6).   The approach used in the analysis is based on the fundamental 
method used by Cormen (Cormen et al., 2001).  The purpose of the analytical comparison was 
to compare the complexity of the algorithms considered. This theoretical analysis was adequate 
to supplement the experimental results.   
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To compare different algorithms practically, carefully designed experiments needed to be 
carried out to test the running time of actual programs that implement these algorithms 
(Balakirsky & Kramer, 2004). 

The experimental research methodology was used in this research to practically compare the 
different algorithms considered and presented.  This methodology is the basis of the scientific 
method where the researcher manipulates one or more variables, and controls and measures 
any changes in other variables (Kumary, 2005; Ross, Morrison, & Mahwah, 2004). Here a 
series of carefully controlled experiments were designed and conducted.  Andrews, 2015; 
Krajca, Outrata, & Vychodil, 2010; Kuznetsov & Obiedkov, 2002; Outrata, 2015; Strok & 
Neznanov, 2010  have all used a similar approach to compare actual programs that implement 
a set of algorithms.   

Here the dependent variable time was measured varying each one of the independent variables, 
the number of objects, the number of intents and the density of a context while keeping the 
other two independent variables fixed. 

2.2 Method of Sampling 
 

The basic technique used for measuring time in a computer system is similar to how a stop 
watch can be used to measure a running experiment (Lilja, 2005).  A computer system has an 
internal counter that measures the number of clock ticks from the time the computer was 
switched on.  To measure the time taken for an experiment to run, the researcher would have 
to use a library function that would return the number of clock ticks.  The difference of two 
measurements one taken one at the beginning and the second at the end of the experiment is 
the number of clock ticks taken for the experiment.  This can be then converted using another 
library function to a wall clock time (Lilja, 2005).   

A program’s execution time is non deterministic, hence the measurement needs to be taken 
multiple times.  It is misleading to represent the summary of multiple readings using a single 
statistical value such as the mean or the median.  Appropriate statistical rigor is needed to 
ensure that the measurements can be relied upon to infer a decision regarding the different 
algorithms that are measured.  This includes identification and removal of outliers. 

There are two types of errors that can happen when measuring the time taken to run a program 
(Lilja, 2005).   
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1. Experimental Mistake 

2. Random Errors 

Care was taken to avoid experimental mistakes by double checking the exact part of the code 
that needed to be measured was consistent across the different programs.  The algorithms were 
implemented using common code blocks which ensured that all the programs considered were 
written in a similar level of complexity and represented the high-level logic of the algorithms 
that they represented. 

Random errors on the other hand are completely non-deterministic and needs to be handled 
using a statistical approach.   These could be due to the result random processes within the 
system at both hardware and software level. 

Vladimirov had noted that the first run of a program is slower than its subsequent runs.  In the 
experiments carried by Colfax the first three timing results were ignored to eliminate this 
known outlier (Vladimirov, Asai, & Karpusenko, 2015).  In this research every experiment was 
measured 13 times, the first 3 sample reading were ignored as outliers.  The remaining 10 
sample reading was used to represent the timing of running the program. 

Total Program Execution time = ,1	 + 	,2	 + 	,3 

Where  

       ,1 = Time taken to read sample data set  

       ,2 = Time taken to execute the algorithm  

       ,3 = Time taken to store and display the results 

Both ,1 and ,3 required Input/Output from secondary storage devices but was the same across 

all algorithms for a given dataset.  To further eliminate potential random errors due to 

Input/Output only ,2 was measured for all programs.  Instrumented code was placed in the 

main program just before and after the function call to execute the complete algorithm. 

The mean, median, Interquartile Range, Outlier Boundaries and   95% level confidence values 
were computed for each of the samples assuming the samples follow a T Distribution. 
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Table 2.1, Statistical Analysis carried out for one raw experimental result 

Dataset : Mushroom - Algorithm : CbO.PC.DBF (In-Close 2) 
Sample Concepts Time 

1   226921  0.9184910 
2   226921  0.8537550 
3   226921  0.8541490 
4   226921  0.8537010 
5   226921  0.8534310 
6   226921  0.8540500 
7   226921  0.8534830 
8   226921  0.8534220 
9   226921  0.8539590 
10   226921  0.8536050 
11   226921  0.8536480 
12   226921  0.8539750 
13   226921  0.8534100 

   
 mean 0.8536684 
 median 0.8536265 
 min 0.85341 
 max 0.85405 
 IQR 0.00067575 
 95% confidence error 0.000176484 
 Outlier Boundary 1 = 

(Q1 - 1.5 x IQR)  
0.85276825 

 Outlier Boundary 2 = 
(Q3 – 1.5 x IQR) 

0.85457025 

 

Table 2.1 shows how statistical analysis was carried out for one single experimental reading.  
Raw readings are presented as timing in this Table.  From the 95% confidence level from this 
sample we can conclude that the measurements in this specific instance is accurate to the first 

3 decimal places.  This specific sample was for the timing result ,2 for running the program 

representing the algorithm CbO-PC-DBF (In-Close2).  The program was run 13 times, the first 
three results were excluded from the statistical analysis as outliers.  We can clearly see in the 
above example that first reading is an outlier.   

The mean, median, inter quartile range, the outlier boundaries the minimum and maximum of 
the last ten values were computed.  If the minimum or maximum values were outside the outlier 
boundaries such samples were eliminated and all statistical values were re-computed using the 
available data set.  In the majority of the samples all the values were within the permissible 
boundaries.  The 95% confidence level was computed assuming that the distribution followed 
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a T-Distribution.  This was because the sample size was less than 30 (Georges, Buytaert, & 
Eeckhout, 2007) 

The 95% confidence levels are shown in Tables that represent real datasets.  One can observe 
that the experimental data cluster around the mean.  This is because the programs were 
compiled and run using the C language which doesn’t require any runtime environment to 
execute the programs.   In addition, the computer used for the experiment was a node in a 
cluster running a minimalistic Linux based operating system.  The executable programs and 
the datasets were submitted to the computer using a login terminal node.  The Colfax cluster 
which was used to run the system ensured that the computational nodes only ran the submitted 
program at a given point in time.  This ensured that there were no side effects during the 
experiment due the execution of other background programs. 

2.3 Statistical Significance of empirical results 

2.3.1 Introduction 
The one-way analysis of variance (one way Anova) and the t-Test for Two sample assuming 
unequal variances were used to show that the empirical results were statistically significant. 

2.3.2 One-way analysis of variance  
To demonstrate that the empirical timing results between the implemented algorithms were 
statistically significant Kruskal-Wallis one way analysis of variance (one way Anova) was used 
(Kruskal & Wallis, 1952).  An example is provided to describe how this analysis was carried 
out.  Table 2.2 contains the actual experimental data of the 10 sample runs for the mushroom 
dataset using the eight serial implementations of the algorithms described in Chapter 4 of the 
thesis. 

The null hypothesis 12 assumes that means of experimental run time of all the implemented 

algorithms are the same.  The alternative hypothesis is that there exists at least one mean which 
is different from another mean. 

12: 45 = 47 = 48 = ⋯	= 4: 

1;:	∃	=, ?: 4@ ≠ 4B	 
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Table 2.2, Empirical Timing (seconds) for each serial algorithm running the mushroom dataset 

  
CbO-FC-
DF (CbO) 

CbO-PC-
DF (In-
Close) 

CbO-PC-
DF (In-
Close2) 

CbO-FC-
ICF-DBF 
(FCbO) 

CbO-PC-
ICF-DBF            

(In-Close3) 
CbO-PC-
ICF-DF 

CbO-FC-
ICF-DF 

CbO-FC-
DBF 

 1.082110 0.865881 0.853701 0.301187 0.252722 0.460980 1.067110 1.041970 

 1.020000 0.865915 0.853431 0.301344 0.252731 0.460640 1.067110 1.042270 

 1.022090 0.865790 0.854050 0.301287 0.252843 0.461190 1.066770 1.042280 

 1.019840 0.865446 0.853483 0.301485 0.252766 0.460650 1.066840 1.041910 

 1.019860 0.865822 0.853422 0.301174 0.253228 0.465750 1.067080 1.042090 

 1.020130 0.866199 0.853959 0.301353 0.253242 0.460570 1.066540 1.042130 

 1.020020 0.865580 0.853605 0.301196 0.253294 0.461650 1.066630 1.041920 

 1.019940 0.865664 0.853648 0.301207 0.253263 0.462210 1.066520 1.041860 

 1.020170 0.865446 0.853975 0.301416 0.253274 0.460730 1.066440 1.041870 

 1.019770 0.866199 0.853410 0.301313 0.253302 0.460500 1.066930 1.041910 

         
Mean 1.026393 0.865794 0.853668 0.301296 0.253067 0.461487 1.066797 1.042021 

Rank 6 5 4 2 1 3 8 7 
 

The one-way Anova which is also known as the single factor analysis of variance was carried 
out using Microsoft Excel.  The output generated from the analysis using Excel is shown in 
Table 2.3 with the significance level set to 5%. 

Table 2.3, One Way Analysis of variance (one way anova) for dataset in Table 2.2 

SUMMARY       
Groups Count Sum Average Variance   
CbO-FC-DF  10 10.263930 1.026393 0.000383718   
CbO-PC-DF  10 8.657942 0.865794 7.28848E-08   
CbO-PC-DF  10 8.536684 0.853668 6.08649E-08   
CbO-FC-ICF-DBF  10 3.012962 0.301296 1.11922E-08   
CbO-PC-ICF-DBF   10 2.530665 0.253067 6.85845E-08   
CbO-PC-ICF-DF 10 4.614870 0.461487 2.54153E-06   
CbO-FC-ICF-DF 10 10.667970 1.066797 6.60456E-08   
CbO-FC-DBF 10 10.420210 1.042021 2.57656E-08   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups (B) 8.156074 7 1.165153365 24112.95822 1.2384E-118 2.139655512 
Within Groups (W) 0.003479 72 4.83206E-05    
       
Total (T) 8.159553 79         
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The Summary Section of Table 2.3 calculates the sum, average and variance of the experiment 
of the dataset presented in Table 2.2. 

In the ANOVA section of Table 2.3 of the analysis the following definitions and formulae is 
used. 

The sum of squares CCB, CCD, CCE and CCF are defined as follows. 
 

CCB =G(H@B − H̅B)7

@

 

 
CCD =GG(H@B

@

− H̅)7

B

 

 
CCE =GG(H@B

@

− H̅B)7

B

	 

 
CCF =GKB(H@B − H̅B)7

L

 

Where K	is the sample size of jth sample,	H̅B 	is the mean of the jth group sample and H̅	is the mean 

of the entire sample.  

n is defined as follows.  

K = 	GKB

M

BN5

 

Where O	is the number of samples. 

The degrees of freedom PQD , PQF  and  PQE  are defined as follows. 

PQD = K − 1 

PQF = O − 1 

PQE =G(K − 1)

M

BN5

= K − O 
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The mean square is defined as follows. 

*C = CC/PQ 

The mean square *CD , *CF and *CE are defined as follows. 

*CD = CCD/PQD  

*CF = CCF/PQF  

*CE = CCE/PQE  

The S value is defined as follows. 

S = 	
*CF
*CE

 

The TUVWXY for the (right tailed) F probability distribution for two data can be computed using 

the SZ=[\]=^_\=`K() function which requires S, PQF  and 	PQE  as parameters. 

TUVWXY = SZ=[\]=^_\=`K(S, PQF, PQE)	 

The Sab@cvalue is the inverse of the (right tailed) F probability distribution and can be obtained 

using the SdKef][f() function which requires g, PQF  and PQE as parameters. 

Sab@c = SdKef][f(g, PQF, PQE) 

Here g is the significance level.   

We can reject the null hypothesis 12 if S > Sab@c and TUVWXY < g 

2.3.3 t-Test for Two sample assuming unequal variances 
To show that the empirical timing results obtained for the two algorithms which needed to be 
compared has statistical significance the t-Test for two sample assuming unequal variances 
(Boslaugh, 2012) was used.  In most cases the comparison was between the two algorithms 
that produced the best results.  It was also used to compare the newly developed parallel 
algorithms with existing parallel algorithms. 

The null hypothesis H0 assumes that the means of experimental run time of both the 
implemented algorithms are the same. The alternative hypothesis is that there is a statistically 
significant difference between the two sample means that are considered. 
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12: 45 = 47 

1;:	4@ ≠ 47	 

Table 2.4, shows the output of the Excel analysis of the t-Test for the timing results of the In- 
Close3 and FCbO algorithms from Table 2.2.  

Table 2.4, t-Test: Two-Sample Assuming Unequal Variances for the two fastest algorithms  (Rank 1 and Rank 2 in Table 2.2) 
In-Close3 and FCbO 

  

CbO-PC-ICF-
DBF                     

(In-Close3) 

CbO-FC-
ICF-DBF 
(FCbO) 

Mean 0.2530665 0.3012962 

Variance 6.85845E-08 1.11922E-08 

Observations 10 10 

Hypothesized Mean Difference 0  
df 12  
t Stat -539.9786481  
P(T<=t) one-tail 5.47963E-28  
t Critical one-tail 1.782287556  
P(T<=t) two-tail 1.09593E-27  
t Critical two-tail 2.17881283   

 

The \jcVcis calculated as follows.  H̅5and H̅7 are the means of sample1 and sample2 respectively. 

K5and K7 are the sample size for sample1 and sample2 respectively. [5 and [7 represent the 

sample deviations. 

\jcVc = 	
H̅5 − H̅7

kl
[5
7

K5
+
[7
7

K7
m

 

The degrees of freedom PQ is calculated as follows.  

PQ = 	
l
[57

K5
+
[77

K7
m
7

1
K5 − 1

l
[5
7

K5
m +

1
K7 − 1

l
[7
7

K7
m
 

The TcnopcV@W for the student’s T distribution can be found by using the T	,Z=[\]=^_\=`K() 

function which requires \jcVc and PQ as parameters. 

TcnopcV@W = ,Z=[\]=^_\=`K(\jcVc, PQ) 
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The \ab@c@aVW	cnopcV@W 	value is the inverse of the student’s T probability distribution and can be 

obtained using the ,dKef][f()	function which requires g	and PQ	as parameters.  

\ab@c@aVW	cnopcV@W = ,dKef][f(g, PQ) 

Here g	is the significance level.  

We can reject the null hypothesis 12	if |\jcVc| > 	 \ab@c@aVW	cnopcV@W and TcnopcV@W < g  

2.4 Detail activities undertaken in this research 
After the literature review was carried out, a set of potential serial algorithms were identified.   
Each serial algorithm was implemented in a similar manner, taking care that any difference in 
performance could be only due to algorithm design and not due to implementation details or 
different optimizations.  Next, they were tested on a 'level playing field'. Test data was carefully 
selected and prepared so that the algorithms could be tested on a number of key independent 
parameters, such as context density, number of attributes and number of objects. Details of the 
tests carried out are described in Section 2.5 

The experiments were designed to determine the best candidate algorithm/s to take forward for 
parallelization.  Next code profiling was used to identify parts of the program that could be 
optimized further.   This resulted in new algorithms that can efficiently handle large datasets.   

A literature review on parallel computing was carried to identify the parallel architectures that 
needed to be considered for implementing the parallel algorithms.  A common approach used 
to parallelize serial algorithms is to consider hotspots in a serial implementation and to apply 
parallelization strategies to the serial implementation.   A literature review was necessary to 
identify parallelization strategies adopted by other researchers for similar classes of algorithms.  
These strategies were distinct for different parallel architectures.   Finally, the newly proposed 
parallel algorithms were tested with existing algorithms using an experimental approach 
similar to what was used earlier. 
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2.5 Benchmarking of the implementations 
Other research have reiterated the importance of having a set of publically available standard 
datasets for comparing FCA algorithms (Andrews, 2009; Kuznetsov & Obiedkov, 2002). 
Although there are no standard dataset established for testing FCA algorithms several research 
studies have used publicly available datasets for this purpose (Andrews, 2009, 2011, 2015; 
Frank & Asuncion, 2010; Krajca, Outrata, & Vychodil, 2008; Krajca et al., 2010; Strok & 
Neznanov, 2010).   In this research several popular public datasets such as the mushroom 
dataset, adult dataset from the UCI learning repository were used.   

Table 2.5, shows how the performance of different algorithms for benchmarked datasets used 
in FCA literature would be depicted.  In addition, random data experiments were also carried 
out. 

Table 2.5, Sample test cases for actual datasets (timing in seconds) 

 

 

 

 

 

 

 

 

A random dataset generator used in the FCA community was used to generate random datasets 
of particular characteristics.  The generator can be used to generate a random dataset that 
matches the given number of objects, number of attributes and density.  The generated dataset 
has a filename that indicates its characteristics.  For instance, the random dataset 
n100m20000d5s1000.cxt has 100 attributes (n), 20,000 objects (m) and has a density of 5%.  
The number 1000 after the latter ‘s’ indicates the random generator seed used.   The same 
generated dataset file was used in all experiments that required a dataset of 100 attributes, 
20,000 objects with a density of 5%.  The number of concepts that is there for a given dataset 
is dependent on the number of attributes, number of objects and the density.   It is also 
dependent on the arrangement of crosses that are there in the dataset that represents the binary 

Data Set Mushroom (UCI) Adult (UCI) Internet Ads 
(UCI) 

Student 
(SHU) 

|G| x |M| 8,124x125 32,561x99 3279 x 1565 587 x 145 

Density 17.4% 11.29% 0.97% 24.50% 

# Concepts 226,920 80,332 16,570 22,760,242 

Algorithm 1 t11 t21 t31 tn1 

Algorithm 2 t12 t22 t32 tn2 

…     

Algorithm m t1m t2m t3m tnm 
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incidence relationship between the number of objects and the number of attributes.  In general, 
given a dataset of |G| number of objects the number of concepts at most would be 2|G|.   

The following large random datasets used in the FCA community was also used as 
benchmarking datasets.  The M7X10G120K, M10X30G120K and the T10I4D100K datasets 
have the following characteristics (See Table 2.6).  Here |G| and |M| represent the number of 
objects and the number of attributes respectively. 

Table 2.6, Random Benchmarking datasets 

Data Set M710G120K  M10X30G120K  T1014D100K 

|G| x |M| 120,000 x 70 120,000 x 300 100,000 x1,000 

Density 10.00% 03.33% 01.01% 

# Concepts 1,166,343 4,570,498 2,347,376 

 

2.6 Unit Testing the Implementations 
All the implementations developed had a common core handling reading the dataset and 
generating an output file containing all the generated concepts. 

The following datasets were used in order to unit test the implementations.  Sample Dataset 
(Andrews, 2015), Tealady dataset, Water Lilies dataset (Ganter & Wille, 1999), 
n100m100d5s1000.cxt, n200m100d5s1000.cxt and the mushroom.  These datasets have 10,  
65, 112, 395, 1,062, 226,921 concepts respectively.  The output file generated from the 
implementations were compared using the diff utility with the output file generated by an open 
source implementation of InClose1 for each of the datasets.  If there was any deviation noted 
in diff it was assumed that the unit test had failed.  In a majority of cases the difficulty was to 
get the implementation to pass the simpler datasets upto Water Lilies.  Later once the artificial 
dataset unit tests were passed, the implementations usually passed the mushroom real-world 
dataset without any modification. This approach was used to test all the serial, shared memory 
parallel and the distributed parallel algorithm implementations. 

2.7 Comparison of Serial Implementations of FCA 
Here eight variants of Kuznetov’s CbO algorithms were compared.  The eight algorithms 
considered were implemented in a level playing field.  Five of the algorithms were based on 
the re-specification of the algorithms by Andrews (2014).  The remaining three new algorithms 
were also represented using the same notation used by Andrews.  The importance of comparing 
algorithms which are represented in the same level of abstraction was highlighted by 



 

19 

Kuznetsov and Obedkov (2001). Andrews (2014) re-specification of the algorithms are 
described in the same level of abstraction.  Each of the different code blocks used in the eight 
CbO algorithms were implemented as C++ functions. The eight algorithms had 17 unique code 
blocks which were implemented as 16 separate C++ functions.  (Two code blocks mapped into 
one C++ function.)  The algorithms were finally implemented in C++ by assembling the C++ 
functions developed.  The algorithms were implemented in an un-optimized way to focus on 
the comparison of the algorithms themselves and not on any efficiencies provided by 
optimizing the code.  All implementations used the same data structures for representing 
objects, attributes and the context.  The details of the different data structures used are given in 
Table 4.2,   Kuznetsov and Obedkov (2001) also raised the importance of using similar data 
structures when comparing different algorithms.     

The eight algorithms were implemented in an un-optimized way.  An un-optimized 
implementation of an algorithm is also a very good starting point for subsequent optimization 
and parallelization.  Knuth (1974) famously said that premature optimization is the root of all 
evil. Jackson (1975) has also cautioned against early optimization which can result in a design 
that is not as clean as it could have been or code that is not correct, as a result of the complicated 
code due to the optimizations carried out.   

The approach used to implement the eight algorithms using common code blocks ensured that 
the programs correlated to the algorithms in a similar way.  Empirical testing was carried out 
on the code compiled with the Linux Intel C++ Compiler version 15.  The implemented 
algorithms were tested on Intel ® AI Cloud2 running in a Colfax Cluster3 on a Compute Node 
that used an Intel® Xeon ® Gold 6128 @ 3.7 GHz, six core processor with 96GB RAM, 
running a stripped down version of Suse Linux.  Benchmarking of the programs were carried 
out by making use of three real world datasets (Mushroom, Adult, Internet Ad) which have 
been used widely by the FCA community and a series of artificial datasets.    The artificial 
datasets were collected to highlight the variation of the independent parameters density, the 
number of objectes and the number of attributes.  To see the effect of the variation of density 
across the five programs, a series of artificial datasets were used where the density varied from 
25 to 50.  In each of these datasets the number of attributes and the number of objects were 
fixed to 100 (See Table 4.5). The variation of objects were examined by a series of artificial 
datasets where the number of objects varied from 10,000 to 100,000.  Here the number of 
attributes and the density were fixed at 100 and 5% respectively (See Table 4.6).  Finally, the 
variation of attributes was observed by a series of artificial datasets where the number of 
attributes varied from 1000 to 2000.  The number of objects and the density were fixed at 100 
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and 5% respectively (See Table 4.7), All the programs used in comparing the serial 
implementations were compiled in debug mode with no optimization (compiled using the Intel 
Compiler flags –O0 –g)  to ensure that the compiled code represented a true reflection of the 

high level algorithms that were compared.  To verify that the computer and compiler used for 
the experiments had no side effect in the results the three real world datasets were tested again 
on three other computers (an Intel Core i5-5210M CPU @ 2.5GHz, with 8GB RAM, running 
a Microsoft Windows 7 - 64 bit operating system and a Core i7-4650U CPU @ 3.3GHz with 
8GB RAM running Microsoft Windows 8 – 64 bit operating system) with two windows 
compilers (Microsoft Visual Studio 2010 and Intel C++ Compiler version 16).  Each machine 
ran each of the programs compiled by both the Intel and the Microsoft compilers. The 
experiments were also executed on the Archer Super Computer which has a node consisting of 
two two 2.7 GHz, 12-core Intel ® Xeon ® E5-2697 v2  processors with 64GB RAM each. A 
Cray compiler was used for the compilation. The results obtained had the same variation as the 
results shown in Section 4.4. 

2.8 Experimental Testing of Parallel Algorithms 
The parallel algorithms that are proposed were experimentally validated and tested using a 
similar approach to the Serial programs.  The scalability of parallel programs is represented by 
the following formulae. 

Cq = 	
,5
,q

 

Where T1 is the time taken to execute a program in one processor and Tp the time taken to 
execute a program on p number of processors.  A graph can be used to show how scalable the 
implementation is. 

Here too all samples were statistically analysed as mentioned in Section 2.2. 

The OpenMP shared memory implementations were tested using the Intel ® AI Cloud 
mentioned in Section 2.7 

The MPI implementation of the Parallel In-Close3 algorithm was executed on 12 nodes of the 
ARCHER Super Computer.   An ARCHER node has two 2.7 GHz, 12-core E5-2697 v2 (Ivy 
Bridge) series Xeon processors.  The two processors are connected by two QuickPath 
Interconnect (QPI) links. The memory is arranged in a non-uniform access (NUMA) form, 
where each 12-core processor has a single NUMA region with local memory of 32 GB. The 
Cray Aries interconnect links all compute nodes in a Dragonfly topology. In the Dragonfly 
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topology four compute nodes are connected to each Aries router; 188 nodes are grouped into a 
cabinet; and two cabinets make up a group. (Turner & McIntosh-Smith, 2017).  By nature a 
super computer provides dedicated access of the compute nodes required to run a program.  
This ensures that during the empirical testing that all the test results reflects only the execution 
time of the programs that were run. 
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1 https://sourceforge.net/projects/inclose/  
2 https://ai.intel.com/devcloud/  
3 https://colfaxresearch.com  
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3. FORMAL CONCEPT ANALYSIS 

 

3.1 Formal Concept Analysis Background 
 

Knowledge Representation is the field in artificial intelligence which focuses on the 
representation of information, that can be used by a computer to solve complex problems.  
Ontologies, which capture the relationships between concepts is a knowledge representation 
technique. Ontologies are generally created by domain experts (Uschold & Gruninger, 1996).  
There are significant advantages if ontologies can be created automatically from structured 
data (Alani et al., 2003).  A form of clustering algorithms called biclustering algorithms can be 
essentially used for this purpose. Clustering is the task of grouping related sets of data together 
(Kaytoue, Kuznetsov, & Napoli, 2011).   Even in situations where the clustering algorithms 
are only able to capture simpler relationships such as an is-a relationship, this still has 
significant practical applications in many domains.  

Formal Concept Analysis can be thought of as a form of biclustering which can generate is-a 
relationships from structured binary tabular data.   The is-a relationship forms the basis of 
grouping concepts into super concepts and sub concepts and is represented as a concept lattice.   
Implications and Associate Rules are direct by products of a concept lattice (Wille, 2005b). 

The origins of concept hierarchies go way back to Aristotle (384 BC – 322 BC) who introduced 
the important concept of taxonomies in his books Metaphysics and Categories.  His objects 
were hierarchically organised according to properties (Cimiano, 2009).  The concepts defined 



23 
 

in the “classical theory of concepts” are mathematically represented as formal concepts in 
formal concept analysis (FCA).  In psychology/philosophy concepts are formally definable by 
its features. This approach is still a popular way to represent concepts although the “classical 
theory of concepts” doesn’t accurately represent human cognition.  The concepts found in FCA 
are called “formal concepts” to avoid confusion non-mathematical definition of concepts(Priss, 
2006).   

Knowledge is represented in formal concept analysis as a formal context.  This describes a 
binary relationship between a set of objects and a set of attributes of a domain. 

A precise definition of a formal context is given below. 

A formal context is defined as  ! ∶= (%,', () 

Where % is a set of objects, ' a set of attributes and ( a binary incidence relationship between 

G and ' with  (	 ⊆ % ×'. 

Since formal contexts are a binary relationship, they can be represented as cross tables.  Here 
each object and attribute is represented as a row and a column respectively (Ganter, Stumme, 
& Wille, 2002; Wille, 1982). 

Let’s take an example borrowed from Krötzsch to illustrate formal concept definitions making 
use of the planets in our Solar System (Krötzsch & Ganter, 2009).  Figure 3.1 shows the Formal 
Context of eight major planets in our Solar System with details of seven different properties.  
The table has the eight planet as rows and the seven properties as columns.  A cross is used to 
mark the presence of a property against a planet.  For example, the planets Jupiter, Saturn, 
Uranus, and Neptune are considered gas giant planets.  This is denoted in the table with crosses 
marked against each of the planets mentioned earlier for the property gas giant planet.  The 
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rows are known as objects and the columns are known as attributes.  A formal concept is 
defined as a pair of maximum of a set of objects and a set of attributes.  For the earlier example 

 

Figure 3.1, A Formal context about planets in our solar system  (Krötzsch & Bernhard, 2009) 

we can also see that the four planets also have the property Has Some Moon checked.  So the 
formal concept consisting of gas giants is defined as ({Jupiter, Saturn, Uranus, Neptune}, {Gas 

Giant, Has Some Moon}).  Similarly, we can define a formal concept of planets that has some 
moon.  From Figure 3.2 we can find the following concept ({Earth, Mars, Jupiter, Saturn, 

Uranus, Neptune}, {Has some Moon}).  Unlike the previous example, there are no additional 
common properties for the planets considered.  The planets Earth, Mars, Jupiter, Saturn, 
Uranus, and Neptune are the planets that has some moon.  The planets mentioned are the extent 
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of this formal concept and the attribute form the intent.  A mathematical definition of Formal 
Concepts is given below. 

For a set of objects  - ⊆ %	the set -¢    is defined as 

-. ∶= {0 ∈ '	|	0	(	3		for	all	3 ∈ -} 

Similarly for a set of attributes   : ⊆ % the set :¢    is defined as 

:. ∶= {3 ∈ %	|	0	(	3		for	all	0 ∈ :} 

(-, :) is a formal concept if -′	 = 	: and :′ = 	-.   

There are many formal concepts in a formal context.  All the possible formal concepts that are 
there in a formal context can be generated and be represented in a concept hierarchy.  A concept 
lattice can be used to represent a concept hierarchy (See Figure 3.2).   

 

 

 

 

 

 

Figure 3.2, The Concept Lattice for the Formal Context given in Fig 3.1  (Krötzsch & Bernhard, 2009) 
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Here the object and attribute indices 1 to 8 and a to g are used for brevity.  The two examples 
mentioned earlier map to the concepts ({5,6,7,8},{a,b}) and ({3,4,5,6,7,8},{a}) respectively in 
the Lattice.  They are the left most vertex of the lattice and the vertex immediately above.  In 
the example taken the concept ({Earth, Mars, Jupiter, Saturn, Uranus, Neptune}, {Has some 

Moon}) (Shown as ({3,4,5,6,7,8},{a}) in lattice) is the sub concept of ({Jupiter, Saturn, Uranus, 

Neptune}, {Gas Giant, Has Some Moon}) (Shown as  ({5,6,7,8},{a,b} in lattice). Accordingly 
in the concept lattice the concept ({3,4,5,6,7,8},{a}) is above the concept ({5,6,7,8},{a,b}) as it 
is more general.  A mathematical definition of the relationships between formal concepts is 
given below. 

Let    ! ∶= (%,', ()  define a formal context.   Assuming (-<, :<) and (-=, :=) are formal 

concepts of !. 

(-<, :<) ≤ (-=, :=) ∶= -< ⊆ -=(⟺ :< ⊇ :=) 

(-<, :<)  is called the sub concept of  (-=, :=), and  (-=, :=) is called the super concept of 

(-<, :<).  In the Concept Lattice the more general concepts are above and the specific concepts 

are below. The set of all formal concepts of ! together with the defined order relation is 

denoted by A(%,', (), which can be represented as a Concept Lattice (See Figure 3.2) 

FCA has evolved into an unsupervised learning method for discovering conceptual structures 
in data. Conceptual hierarchies allow the analysis of complex structures and the discovery of 
dependencies within the data (Sarmah, Hazarika, & Sinha, 2015).  Unsupervised learning is a 
sub branch of artificial intelligence.  FCA has been applied a wide range of disciplines.   Wille 
who developed FCA in the 1980s presents details of the initial applications of FCA by members 
of his TU Darmstadt research group.  These mainly were applications that support knowledge 
communication (Wille, 2005a). A comprehensive survey of the usage of FCA in the area of 
Knowledge Processing in a wide range of domains which includes  software mining, web 
analytics, medicine, biology and chemistry data are presented in (Poelmans, Ignatov, 
Kuznetsov, & Dedene, 2013b, 2013a). Carpineto and Rodmano outline the use of FCA in 
applications that use information retrieval, text mining and rule mining (Carpineto & Romano, 
2004). FCA has also been used extensively in Software Engineering.  These include 
applications in Requirement Analysis, Architectural Design, Detail Design and Software 
Maintenance (Tilley, Cole, Becker, & Eklund, 2005).  FCA has been used to analyse the body 
of knowledge in Software Architecture by analysing research papers in that domain (Couto, 
Oliveira, Ferreira, & Bouwers, 2011).  Use of FCA in interactive user applications are 
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described in the development of interactive museum applications for searching virtual objects 
and physically navigating museum exhibits by Wray and Eklund (Wray & Eklund, 2011, 
2014).  

3.2 FCA Algorithms 
There are several well-known algorithms that generate a set of all the formal concepts that are 
there in a formal context.   The number of concepts is known to be exponential of the size of 
the input context (Kuznetsov & Obiedkov, 2002).  Algorithms that generate formal concepts 
broadly fall into two categories 

(a) Generate only the list of concepts  
(b) Generate a concept lattice.   

Kuznetsov compares the efficiency of ten algorithms that generate formal concepts (Kuznetsov 
& Obiedkov, 2002).  Some of the algorithms compared included NextClosure (Ganter, 1984), 
Bordat (Bordat, 1986), Close by One (Kuznetsov & Obiedkov, 2002), Lindig (Lindig, 2000), 
Chein (Chein, 1969), Nourine (Nourine & Raynaud, 1999), Godin (Godin, Missaoui, & Alaoui, 
1995),  Dowling (Dowling, 1993) and Titanic (Stumme, Taouil, Bastide, Pasquier, & Lakhal, 
2000). Different algorithms use different strategies to generate a new intent.   Some algorithms 
compute an intent explicitly by intersecting all the objects of the corresponding extent.  Others 
intersect a generated intent with some object’s intent (Kuznetsov & Obiedkov, 2002).   

A canonicity test is used by FCA algorithms to check if the current concept is being generated 
for the first time.  In some of the algorithms complete closure of a concept is needed before  
the canonicity test, and in some the testing of the canonicity can take place before the complete 
closure (partial closure).  Certain algorithms also keep track of the canonicity test failures 
which can be applied before closure (Andrews, 2015; Outrata & Vychodil, 2012).   

The algorithms presented in this thesis focus only on generating all the concepts of a given 
context. It is sufficient to generate all the concepts of a given context instead of the generation 
of concept lattices in certain situations.  These include applications where visual representation 
of concepts hierarchies are not required, to situations where alternative graphical 
representations can be used. An example of an alternative graphical representation to a lattice 
is concept trees (Andrews & Hirsch, 2016).  In any case concept lattices are effective as a visual 
representation of concept hierarchies for representing only a small number of concepts. 
Computing formal concepts is a fundamental study in its own right and there are a number of 
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algorithms that focus on this without computing the lattice (Outrata & Vychodil, 2012; Strok 
& Neznanov, 2010). 

3.3 Limitations of Serial FCA Algorithms 
Old and Priss have highlighted the need of developing algorithms that can handle large contexts 
(Old & Priss, 2004).   There is no formal definition of what a large context is, however based 
on recent benchmarks a large context can be taken as consisting of over 100,000 objects and 
over 100 attributes resulting in millions of concepts (Andrews, 2017; Outrata, 2015). In real 
world datasets the size of attributes are limited in size.  There is an explosion of data that is 
produced daily.  In 2012, a study carried out by IBM estimated that 2.5 exabytes of data are 
produced daily (Wall, 2014). Structured data is still a significant type of data that is used in 
organizations (Desiere, 2015). FCA has been extended into areas such as data mining, web 
mining which involves large data sets  (Fu & Nguifo, 2004).  Datasets in domains such as 
genomics, internet of things, log analysis are significantly large and are growing at a rapid 
pace. For instance Genomics dataset sizes have been doubling every 18 months (Langmead & 
Nellore, 2018).  There is a necessity for FCA algorithms to handle this volume of data. The 
possession of a fast algorithm for computing or updating the underlying concept lattice is an 
essential prerequisite in many applications for instance rule discovery, document ranking and 
program analysis (de Moraes, Dias, Freitas, & Zárate, 2016; Poelmans et al., 2013a, 2013b).   

All computing devices used today are parallel machines.  The introduction of multicore 
processors commenced around the year 2004 to solve the so-called power wall problem (See 
Figure 3.3).  Prior to this CPU manufacturers resorted to increase the clock speed of each new 
generation of CPU eventually reaching the critical power consumption of 130 Watts around 
2004.  Beyond this point, it was not economically possible to dissipate the heat produced by 
the CPU’s.  Over the last decade CPU manufacturers have kept the clock speed and core size 
of a CPU as constants and have resorted instead to add extra cores to a single die in the CPU 
to get better performance (Chappell & Stokes, 2012).  

Today’s laptops, desktop machines have at least two to four cores in the CPU.  High end Xeon 
Processors have up to 24 cores (Jeffers et al., 2016).  Computer programs must be designed 
and implemented using a parallel approach to leverage on the multiple cores available in the 
CPU (Sutter, 2005). Traditional serial programs can make use of only one CPU core of the 
computer.  In essence, an algorithm that needs its implementation to fully utilize the hardware 
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of a modern computer needs to be a parallel algorithm.  With the rapid increase of datasets that 
require analysis, the next generation FCA algorithms should be parallel in nature. 

 

 

 

Figure 3.3, Processor/coprocessor core/thread parallelism (log scale) (Jeffers, Reinders, & Sodani, 2016) 

3.4 Existing Parallel FCA Algorithms 
 

Huaiguo Fu had created a parallel implementation of the NextClosure algorithm but it was 
limited to 50 attributes (Fu & Nguifo, 2004) this was subsequently greatly extended (Fu & 
Foghlu, 2008).  Krajca (Krajca, Outrata, & Vychodil, 2008) presented a parallel algorithm 
called PFCbO which parallelizes the FCbO algorithm.  This is also a variation of the CbO 
algorithm (Kuznetsov & Obiedkov, 2002).  Krajca has also presented a distributed version of 
this algorithm that uses the Map Reduce distributed framework (Krajca & Vychodil, 2009).   

The main contribution of the thesis are the new parallel FCA algorithms for shared memory 
and distributed memory models which are presented in Chapter 5 and Chapter 6 respectively. 
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4. COMPARISION OF FCA SERIAL ALGORITHMS 

 

4.1 Existing FCA Algorithms 
 

Many of the classical algorithms such as Bordat, NextClosure, Chein, Lindig and Nourine are 
batch algorithms. These algorithms generate the entire context from scratch.  Some of the other 
algorithms including Godin, Downling, Norris, Close by One (CbO),  Kracja and In-Close are 
incremental algorithms.  Incremental algorithms produces the concept set for the first ith 
concepts at the ith step.(Chang-Sheng, Jing, Hai-Long, Long-chang, & Bing-ru, 2013; Gajdoš 
& Snášel, 2014; Sarmah et al., 2015).   

The generation of formal concepts involves looking at how to generate all the formal concepts 
and avoiding the generation of the same concept.   FCA algorithms such as Chein, Norris 
(Norris, 1978), Lindig and Godin avoided the regeneration of concepts by searching through 
generated concepts (Berry, Bordat, & Sigayret, 2007).  Algorithms such as NextClosure, Close 
by One (CbO) makes use of a lexicographical order in the generation of concepts and thus 
avoids searching through the generated concepts (Berry et al., 2007).  Out of the many 
algorithms that have been developed (Andrews, 2009, 2011, 2015, Krajca, Outrata, & 
Vychodil, 2008, 2010; Outrata & Vychodil, 2012; Strok & Neznanov, 2010), have noted that 
the CbO based algorithms produce the best results for different types of datasets. 
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 Algorithms are described by their authors at different levels of abstraction.  Some algorithms 
such as CbO are described by Kuznetsov using an abstract mathematical set notation 
(Kuznetsov & Obiedkov, 2002), while others such as FCbO (Outrata & Vychodil, 2012) or In-
close (Andrews, 2009) are described in pseudo code which is closer to the implementation level 
in a programming language.  Algorithms which are described in a higher abstract notation 
would be interpreted subjectively when other researchers implement them.  A proper 
comparison of a set of algorithms can be carried out if they are described at the same level of 
abstraction.  Andrews (2014) presents the five variations of the CbO algorithms using the same 
level of abstraction.   In order to highlight the effects of the key features used in recent 
variations of the CbO algorithm this thesis introduces three new variations of the CbO 
algorithm presented using the same notation used by Andrews. They are the CbO full closure 
using a combined depth first and breadth first search (CbO-FC-BDF), CbO full closure using 
inherited canonicity test failures and depth first search (CbO-FC-ICF-DF), and CbO partial 
closure with incremental closing of intents using inherited canonicity test failures and depth 
first search (CbO-PC-ICF-DF).  

This chapter presents the detail comparison of the three main enhancements that have been 
applied to Kusnotsov’s CbO algorithm.  The three main enhancements considered are the 
partial closure with incremental closure of intents, inherited canonicity test failures and using 
a combined depth first and breadth first search.    Eight variations of the CbO algorithm are 
presented and implemented in an un-optimised way allowing the identification of the best 
algorithms to select for future algorithmic enhancement such as parallelization.  

Krajca, Outrata, and Vychodil (2010);  Andrews (2014); Outrata and Vychodil (2012) have 
recently compared optimized implementations of the CbO family of FCA algorithms.  The 
optimized implementations were developed by their respective authors. Because the 
implementation and the optimization of the algorithms can be done in many ways, the 
implementations may not be a true representations of the high level algorithms described in 
pseudo code to carry out a scientific comparison of the algorithms. Kuznetsov & Obiedkov 
(2002) compared existing FCA algorithms in 2002 making use of a similar approach used in 
this thesis.  Five of the algorithms compared in this thesis are contemporary algorithms which 
have been developed during the last six years (Since 2009).  The older algorithms do not fare 
well with the contemporary ones (Outrata & Vychodil, 2012; Strok & Neznanov, 2010) 
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Table 4.1 highlight the summary of the eight CbO variants presented in this paper.  CbO-FC-
DF is the base algorithm used, the rest are carefully selected variants that highlight the three 
key enhancements used.  

Table 4.1, Eight Variations of CbO 

Algorithm Originally Described in Use of a 
Queue 

Partial 
Closures 

Inheritance of 
failed canonicity 

tests. 

CbO-FC-DF Krajca (Vychodil, 2008) 
   

CbO-PC-DF In-Close (Andrews, 2009)  X  

CbO-FC-DBF New X   

CbO-PC-DBF In-Close2 (Andrews, 2011) X X  

CbO-FC-ICF-DF New   X 
CbO-PC-ICF-DF New  X X 

CbO-FC-ICF-DBF FCbO (Krajca, Outrata, & 
Vychodil, 2010) X  X 

CbO-PC-ICF-DBF In-Close3 (Andrews, 2014) X X X 

 

The algorithms have been named making use of the following abbreviations FC – full closure, 
PC – partial closure with incremental closure of attributes, DF – depth first search, DBF – 
combined depth and breadth search and ICF – inherited canonicity test failure.  Algorithms that 
use the combined depth and breadth search feature (DBF) make use of a queue data structure. 

The CbO-PC-DF, CbO-FC-DBF and the CbO-FC-ICF-DF algorithms make use of the three 
enhancements, partial closure with the incremental closure of attributes (PC), combined depth 
and breadth search (DBF) and the inherited canonicity test failure (ICF) respectively in 
isolation.    The CbO-PC-DBF, CbO-PC-ICF-DF and CbO-FC-ICF-DBF algorithms make use 
combining two of the three enhancements as shown in Table 4.1. Finally the algorithm CbO-
PC-ICF-DBF combines all the three enhancements.  The CbO-FC-DBF, CbO-PC-ICF-DF and 
CbO-FC-ICF-DF are new algorithms presented in this thesis.  The remaining five algorithms 
are existing algorithms and details of their original sources are given in Table 4.1. 
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4.2 Details of the Eight CbO based Algorithms 

 CbO-FC-DF (CbO – Full Closure, Depth First Search Algorithm)  

 

Figure 4.1, CbO-FC-DF (CbO) algorithm pseudo code (Vychodil, 2008) 

The CbO-FC-DF (CbO – Full Closure, Depth First Search) algorithm shown in Figure 4.1, was 
originally described by Vychodil (2008).  In our discussion we will use this as our base 

algorithms.   Here (", $) is the concept generated where " is the extent and $ is the intent. & 

is the number of attributes in the context and '	is the attribute that is currently being considered.  

The algorithm is invoked with	(", $) = (*, *↑).  Where *	represents a complete set of extents. 

Recalculation of already computed concepts can be avoided by the statements in line 3 and line 
6. 

, ∉ $ 
 

, ∉ $ enables skipping attributes in the current intent (Vychodil, 2008).  Here if the currently 

considered attribute , is already a member of the currently considered intent then the extent of 

this has already been computed.  This is due to the following observation. 

{0,1,2, , , 2, , &}↓ = {0,1,2, , , 2, , &}↓ 	∩ {2}↓ 

The canonicity test is defined by the condition given in line 6.   

$ ∩ 67 = 8 ∩ 67 
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Here 67 is a set containing all the attributes upto attribute ,.  Due to the lexical order of 

computing the concepts, the above condition becomes false only if 8 is lexically before $. 

Thus it implies that the concept has been computed before and can be skipped.  The extents 
and the intents are computed in line 4 and 5 respectively.  A full closure is used in calculating 
the intent in line 5. 

8 ← :↑ 

The complexity of CbO family of algorithms are ;(|=|>. |@|) (Kuznetsov & Obiedkov, 2002).  

The implementation of CbO is given in Figure 4.2 to illustrate how the common code blocks 
are used in the actual algorithm implementation.  Lines 2 to 8 of the implementation of CbO-
FC-DF contain declaration of variables.   Lines 10 to 19 directly correspond to the CbO-FC-
DF algorithm given in Figure 4.1.  Table 4.2, shows details of the 17 code blocks used in the 
algorithms and their corresponding C++ functions used in the implementation.  The 
VECTOR_TYPE used in the code is a macro representing an unsigned 64 bit integer which is used 
to store binary values. 

Table 4.2, List of Functions used to implement the common code blocks 

Code Blocks Common Function used in Implementation of the five algorithms 

, ∉ $ bool isMember(int j, VECTOR_TYPE *BBit) 

: ← " ∪ {,}↓ void aIntersectionColj(int **C,int &CSize,int *A ,int ASize,int j) 

8 ← :↑ void deriveIntentsBit(short int **B, int &BSize, VECTOR_TYPE *BBit, 

                  int *A, int ASize) 

$ ∩ 67 = 8 ∩ 67 bool isBequalToDuptojBit(VECTOR_TYPE *BBit, VECTOR_TYPE *DBit, int j) 

" = : bool isEqual(int I1[],int I1Size,int I2[], int I2Size) 

$ ← $ ∪ {,} void insert(VECTOR_TYPE *BBit, short int B[], int &BSize, int j) 

$ = :↑BC bool buptoJisEqualtoPartialClosureOfCuptoJBit(VECTOR_TYPE *BBit,  

           int C[], int CSize, int j)int C[], int CSize, int j) 

$ ∩ 67 = :↑BC bool buptoJisEqualtoPartialClosureOfCuptoJBit2(VECTOR_TYPE *BBit,  

           int C[], int CSize, int j) 

DEFG&HEIEI(:, ,) void put(TQueue &q, int *Av, int ASize,  int BSize, int j) 

=IFJKLMHEIEI(:, ,) bool get(TQueue &q, int Av[], int &ASize, int &BSize, int &j) 

@7 ← N7 void copyRowArrMN(VECTOR_TYPE **M, VECTOR_TYPE *D) 



 

 

 

35 

 

 

Figure 4.2, Listing of CbO-FC-DF program code 

 

We will next apply the three enhancements in isolation to the base algorithm CbO-FC-DF.  
First we will apply the partial closure with incremental closure of intents to the base algorithm.  
The resulting algorithm CbO-PC-DF (CbO – Partial Closure, Depth First Search) algorithm 
was originally described by Andrews (2009) as the In-Close algorithm (See Figure 4.3) The 
key difference in CbO-PC-DF compared to CbO-FC-DF are the incremental closures given in 
line 4, 7 (See Figure 4.4) and the new partial closure canonicity test given in line 6.  This is 
tested before the concept is closed. 

$ = :↑BC  

N7⋂67 	⊂ $ ∩ 67 
bool isNjSubSetofBuptoJBit(VECTOR_TYPE *NBit, VECTOR_TYPE *BBit, 

             int j) 

@7 ← 8 void copyRowArrMN(VECTOR_TYPE **M, VECTOR_TYPE *D) 

DEFG&HEIEI((:, 8), ,) void put(TQueue &q, int *Av, int ASize, short int *Bv, int BSize, 

             VECTOR_TYPE *BBitv, int j) 

=IFJKLMHEIEI((:, 8), ,) bool get(TQueue &q, int **Av, int &ASize, short int **Bv, int &BSize, 

             VECTOR_TYPE **BBitv, int &j, short int &level) 

@7 ← :↑BC void copyRowArrMPartialClosure(VECTOR_TYPE **M,  int j, int A[], 

             int ASize) 

8 ← $ ∪ {,} void copyInsert(VECTOR_TYPE *BBit, short int D[],int &DSize, 

           short int B[], int BSize, int j) 

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize, VECTOR_TYPE *BBit,  
                                     int y) { 
2.     int C[OBJECTSIZE]; 
3.     short int D[ATTRIBUTESIZE]; 
4.     VECTOR_TYPE DBit[VECTOR_MAX_COLS_CELLS]; 
5.     int CSize, DSize; 
6.     // Print Concept  
7.     conceptno++; 
8.     int concept = conceptno;  
9.                                                                            
10.    for (int j=y; j<n; j++) {                                                  
11.       if (! isMember(j, BBit)) {                                           
12.      aIntersectionColj(C,CSize,A,ASize,j);                           
13.      deriveIntentsBit(D,DSize, DBit, C, CSize);                       
14.      if (isBequalToDuptojBit(BBit, DBit, j)) {                      
15.         ComputeConceptsFrom(C, CSize, D, DSize, DBit, j+1);   
16.      }      
17.       }  
18.    } 
19. } 
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Here the context G is examined upto the current attribute ,.  A full closure operator ­ is 

equivalent to ­6 where 6 is the set of all attributes in context G.  The partial closure operator 

­6 is defined as follows (Andrews, 2014). 

"↑Q ∶= {' ∈ T	|	∀V ∈ " ∶ V	G	'	} 

 CbO-PC-DF (CbO – Partial Closure, Depth First Search Algorithm)  

 

Figure 4.3, CbO-PC-DF (In-Close) algorithm pseudo code (Andrews, 2009) 

Due to the incremental closure of intents, it’s not possible to skip attributes as in the algorithm 

CbO.  Hence , ∉ $ which appears in Line 3 of the CbO-FC-DF (See Figure 4.1) cannot be 
used in the CbO-PC-DF algorithm.  The implementation of the CbO-PC-DF algorithm is given 
in Figure 4.4.  Lines 9 to 23 correspond directly to the CbO-PC-DF algorithm given in Figure 
4.3 
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Figure 4.4, Listing of CbO-PC-DF program code 

Both CbO-FC-DF and the CbO-PC-DF algorithms use a depth first search stratergy by 
invoking the recursion call to compute the next concept as soon as details of the next intent to 
be considered is found.  Figure 4.5(a) shows a depth first recursive call tree.  The number 
represents the order in which the recursive function is called.  The second enhancement is to 
consider the effects of delaying the recursive call by using a combined depth first and breadth 
first search stratergy.  Figure 4.5(b) shows how a combined depth first and breadth first 
recursive stratergy works. This can be implemented by storing the intents to be considered in 
a queue and calling the recursive function only once all the intents to be consided in a given 
level of recursion are computed.   

 

Figure 4.5, (a) Depth First Recursive Tree and Depth and (b) Breadth First Recursive Tree 

 

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize,  
                               VECTOR_TYPE *BParentBit, int y) { 
2.     int C[OBJECTSIZE]; 
3.     short int D[ATTRIBUTESIZE];  
4.     int CSize, BSize; 
5.     VECTOR_TYPE BChildBit[VECTOR_MAX_COLS_CELLS]; //the current intent in Boolean form 
6.     memcpy(BChildBit,BParentBit,nArray* VECTOR_SIZE_BYTES);  
7.     int concept = conceptno; // keeps track of the current concept  
8. 
9.     for (int j=y; j<=n; j++) {                                                       
10.       aIntersectionColj(C,CSize,A,ASize,j); 
11.       if (isEqual(A, ASize, C,  CSize)) {           
12.          insert(BChildBit,B,BSize,j); 
13.       } 
14.       else {              
15.          if (buptoJisEqualtoPartialClosureOfCuptoJBit(BChildBit,C,CSize,j)) {     
16.             copyInsert(BChildBit, D, DSize, B, BSize, j)     
17.             ComputeConceptsFrom(C,CSize, D, DSize, BChildBit, j+1);      
18.      } 
19.       } 
20.    } 
21.    // Print Concept 
22.    conceptno++; 
23. } 
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The next algorithm presented CbO-FC-DBF (CbO – Full Closure, Combined Depth First and 
Breadth First Search) (See Figure 4.6) extends the CbO-FC-DF algorithm by incorporating a 
combined depth first and breadth first searching stratergy by incorporating a queue.  The 
PutInQueue() function in line 7 of the algorithm stores the next intent to be considered in a 
queue.  The recursive call to compute the next concept is carried out later in line 9 of the 
algorithm.   

 CbO-FC-DBF (CbO – Full Closure, Combined Depth First and Breadth 
First Search  Algorithm) 

 

Figure 4.6, CbO-FC-DBF algorithm pseudo code 

The implementation of CbO-FC-DBF is given in Figure 4.7.  Line numbers 11 to 23 
correspond directly to the CbO-FC-DBF algorithm given in Figure 4.6.  TQueue listed in line 
6 represents the Queue data structure used in the implementation. 
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Figure 4.7, Listing of CbO-FC-DBF program code 

 

Next we will consder the effects of introducing the inherited cannocity test failure enhancement 
to the basic CbO-FC-DF algorithm.   The key concept here is to capture details of intents that 
fail the cannocity tests and to prevent recomputation of such intents in the next level of 
recursion.  This feature was originally introduced by Krajca et al. (2010) in their FCbO 
algorithm which also uses a breadth first search stratergy. 

The new CbO-FC-ICF-DF (CbO – Full Closure, Inherited Cannocity Test Failure, Depth First 
Search) algorithm presented in Figure 4.8 extends the CbO-FC-DF algorithm by incorporating 
the inherited cannocity test failure stratergy. 

1. void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize, VECTOR_TYPE *BBit,  
                            int y) { 
2.     int C[OBJECTSIZE]; 
3.     short int D[ATTRIBUTESIZE]; 
4.     int CSize, DSize; 
5.     VECTOR_TYPE DBit[VECTOR_MAX_COLS_CELLS]; 
6.     TQueue q; 
7.     // Print Concept 
8.     conceptno++; 
9.     int concept = conceptno; // keeps track of the current concept                                                                            
10.    int j; 
11.    for (j=y; j<n; j++) {                                                         
12.       if (! isMember(j,BBit)) {                                                                                                                 
13.        aIntersectionColj(C,CSize,A,ASize,j);                            
14.      deriveIntents(D, DSize, DBit, C, CSize);                    
15.      if (isBequalToDuptojBit(BBit, DBit,j)) {                         
16.         put(q,C,CSize,D, DSize,DBit,j);                        
17.      } 
18.       }  
19.    }                                                                               
20.    while (get(q,C,CSize,D,DSize, DBit, j)) {                       
21.       ComputeConceptsFrom(C,CSize, D,DSize, DBit, j+1, MBit);          
22.    } 
23. } 
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 CbO-FC-ICF-DF (CbO – Full Closure, Inherited Canonicity Test Failure, 
Depth First Search Algorithm) 

 

Figure 4.8, CbO-FC-ICF-DF algorithm pseudo code 

 @7 and  N7 are used to capture the intent of failed cannocity tests in the algorithm.  Initially 

@7 is set to the intent of the previously failed cannocity test  N7 in line 3.  If there are failed 

cannocity tests at attribute level ,, the value of 8	is captured in  @7 in line 10.  This is passed 

to the algorithm during the recursion call as parameter N7.  The key feature of this algorithm 

is the inheritence of failed cannocity tests.  The failed cannocity test is checked at the next level 
of recursion in line 4 using the following statement. 

N7⋂67 ⊆ $⋂67 

In essence the cannoncity test in line 7 and the computation of :	and	8 (in lines 5 and 6) is 

avoided in situations where the cannocity test has failed before. The implementation of CbO-
FC-ICF-DF is given in Figure 4.9.  Lines 11 to 26 correspond directly to the CbO-FC-ICF-DF 

algorithm given in Figure 4.8. The parameter N7is represented by an array of bit array pointers.  

In the code N7 is represented as VECTOR_TYPE *NBit[] in line 1.  Where VECTOR_TYPE 

represents an unsigned 64 bit integer in this implementation.  The function call 
isNjSubSetofBuptoJBit() in line 14 of the code corresponds to the inherited canonicity 

failure test N7⋂67 ⊆ $⋂67 which is  given in line 4 of the pseudo code. 
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Figure 4.9, Listing of CbO-FC-ICF-DF program code 

 

Next we will consider combining the three enhancements.  The combination of adding partial 
closure with incremental closure of intents with the combined depth and breadth first searching 
features results in the CbO-PC-DBF algorithm (CbO – Partial Closure, Combined Depth First 
and Breadth First Search) which is presented in Figure 4.10. This is a redefinition of the In-
Close2 algorithm originally described by Andrews (2011).  Due to the incremental closure of 
intents the introduction of the queue enables a feature called attribute inheritence which allows 
attributes of the parents intents to be passed to the next level.  Due to the breadth first approach 
to recursion used here it is possible to skip attributes in the current intent, hence the 

reintroduction of , ∉ $ in line 2. The implementation of CbO-PC-DBF is given in in Appendix 

A,  Figure A.1. Line numbers 10 to 30 correspond directly to the CbO-PC-DBF algorithm given 
in Figure 4.10 

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize,  
                                 VECTOR_TYPE *BBit, int y,  VECTOR_TYPE *NBit[]) { 
2.     int C[OBJECTSIZE]; 
3.     short int D[ATTRIBUTESIZE]; 
4.     int CSize, DSize; 
5.     VECTOR_TYPE DBit[VECTOR_MAX_COLS_CELLS]; 
6.     VECTOR_TYPE *MBit[ATTRIBUTESIZE]; 
7.     // Print Concept 
8.     conceptno++; 
9.     int concept = conceptno; // keeps track of the current concept                                                                     
10.    int j; 
11.    for (j=y; j<n; j++) {                                                         
12.       CopyRowArrMN(&MBit[j],NBit[j]);  
13.       if (! isMember(j,BBit)) {                                             
14.      if (isNjSubSetofBuptoJBit(NBit[j],BBit,j)) {                    
                                                                      
15.           aIntersectionColj(C,CSize,A,ASize,j);                            
16.         deriveIntents(D, DSize, DBit, C, CSize);                
17.         if (isBequalToDuptojBit(BBit, DBit,j)) {                         
18.            ComputeConceptsFrom(C,CSize, D,DSize, DBit, j+1, MBit); 
19.         } 
20.         else {                                                                                                                     
21.            copyRowArrMN(&MBit[j],DBit);  
22.         } 
23.      } 
24.       } 
25.    }                                                                             
26. } 
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 CbO-PC-DBF (CbO – Partial Closure, Combined Depth First and Breadth 
First Search Algorithm) 

 

Figure 4.10, CbO-PC-DBF (In-Close2) algorithm pseudo code (Andrews, 2011) 

The combination of adding partial closure with incremental closure of intents with inherited 
canonicity test failure results in the new CbO-PC-ICF-DF (CbO – Partial Closure, Inherited 
Cannocity Test Failure, Depth First Search) algorithm is presented in Figure 4.11. Here the 

partial closure of : is stored in @7 when there are failed cannocity tests in line 12.  The 
implementation of the algorithm is given in Appendix Figure A.2  Lines 12 to 35 of the 
implementation directly correspond to the CbO-PC-ICF-DF algorithm given in  Figure 4.11. 
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 CbO-PC-ICF-DF (CbO – Partial Closure, Inherited Canonicity Test 
Failure, Depth First Search Algorithm) 

 

Figure 4.11, CbO-PC-ICF-DF algorithm pseudo code 

We will next consider an algorithm that combines the inherited cannocity test failure with depth 
and breadth first search to the CbO-FC-DF algorithm. The resulting CbO-FC-ICF-DBF (CbO 
– Full Closure, Inherited Cannocity Test Failure, Combined Depth First and Breadth First 
Search) algorithm presented in Figure 4.12  is a redefinition of the FCbO algorithm originally 
described by Krajca et al. (2010).    
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 CbO-FC-ICF-DBF (CbO – Full Closure, Inherited Canonicity Test 
Failure, Combined Depth First and Breadth First Search Algorithm) 

 

Figure 4.12, CbO-FC-ICF-DBF (FCbO) algorithm pseudo code (Krajca, Outrata, & Vychodil, 2010) 

The code listing in the Appendix A, Figure A.3 shows the implementation of the CBO-FC-
ICF-DBF algorithm.  The inherited canonocity test failure and the use of the queue is shown 
in line 4 and 8 of the pseudo code (Figure 4.12) 

Finally lets consider an algorithm that combine all three features. Figure 4.13 , lists the CbO-
PC-ICF-DBF (CbO – Partial Closure, Inherited Cannocity Test Failure, combined Depth First 
and Breadth First Search). This is essentially Andrew’s In-Close3 algorithm.  This incorporates 
a best of breeds approach by incorporating the partial closures with incremental closure of 
intents, depth and breadth search and  inherited canonicity test failures.   The implementation 
of the CbO-PC-ICF-DBF algorithm is given in Appendix A, Figure A.4, Lines 10 to 36 of the 
implementation directly correspond to the algorithm. 
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 CbO-PC-ICF-BF (CbO – Partial Closure, Inherited Canonicity Test 
Failure, Combined Depth First and Breadth First Search Algorithm) 

 

Figure 4.13, CbO-PC-ICF-BF (In-Close3) algorithm pseudo code (Andrews, 2014) 

4.3 Implementation Details  
 

In essence each of the eight algorithms was built up by assembling blocks out of a library of 
reusable functions (See Table 4.2) this ensured that the implementations were carried out in a 
level playing field.  Each of the code blocks were implemented as C++ functions.   The 

implementation of the canonicity test  $ ∩ 67 = 8 ∩ 67	is taken as an example to illustrate the 

implementation of the common block code blocks.  The canonicity test given above is used in 
CbO and FCbO algorithms.  This was implemented at code level using the function 
isBequalToDuptojBit() which is listed in Figure 4.14.  The condition in line 2 checks if j 
is zero.  Lines 13-19 of the code makes use of bitwise operations to compare the intents BBit 
and DBit which are stored in binary format.  The variable mask is used to filter this operation 
only upto the jth element.  Lines 8-11 are used to setup the variable mask.  Variables appearing 
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in uppercase are macros representing constant values used for the bitwise operations specific 
to the platform used.  For instance VEC_MAX, VECTOR_1 and VECTOR_SIZE2POW have the values 
0xFFFFFFFFFFFFFFFF, 1i64 and 6 which are specific for a 64bit Windows platform using the 

Microsoft and Intel compilers.  The details of the common data structures used are given in  

Table 4.3.  The context and the intents were stored in binary format making use of bitwise 
operations on 64 bit integer arrays.  The data type VECTOR_TYPE which appears in the 

implementation code is essentially a macro to an unsigned 64 bit integer.  The context was 
represented as a two dimensional array and the intents as a single dimensional array.  The 
extents were stored as integers.   The intents were also duplicated in integer format to facilitate 
storage of the generated intents.    A simple integer based arrays were used in the algorithms 
that used full closures.  Algorithms that used partial closures used a BTree structure to store 
the integer values of the intents. This was to accommodate the incremental generation of 
intents.  This BTree structure was used only for storing the generated intents and was not used 
for any computations.  In all algorithms computations involving intents were carried out only 
using the bit array representations.  The implementation of algorithms which used a combined 
depth first and breadth first search strategy used the same queue data structure which appears 
as TQueue in the implementation code, and the ones that used the inherited canonicity test 
failure as a feature used an array of bit array pointers as the data structure (VECTOR_TYPE 
*NBit[] in the code).   

 

Table 4.3, Main data structures used in the implementations 

Implementation Data structures 
used for extents 

Data structure 
used for intents 

Data structures 
used for context 

Additional Data Structures 

CbO-FC-DF  integer array  bit array 2D bit array - 

CbO-PC-DF  integer array bit array 2D bit array - 

CbO-FC-DBF  integer array bit array 2D bit array Queue 

CbO-PC-DBF  integer array bit array 2D bit array Queue 

CbO-FC-ICF-DF integer array bit array 2D bit array array of bit array pointers 

CbO-PC-ICF-DF integer array bit array 2D bit array array of bit array pointers 

CbO-FC-ICF-DBF  integer array bit array 2D bit array Queue and an array of bit array pointers 

CbO-PC-ICF-BF  integer array bit array 2D bit array Queue and an array of bit array pointers 
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Figure 4.14, Listing of function isBequalToDuptoj() 

 

Table 4.4, Test results for real world datasets (time in seconds) with 95% confidence levels 

 

 

 

 

 

 

 

 

 

 

  

Data Set Mushroom 
(Frank & 
Asuncion, 

2011) 

Adult  Internet Ads 

|G| x |M| 8,124x125 32,561x99 3279x1565 

Density 17.36% 11.29% 0.97% 

# Concepts 226,920 80,332 16570 

CbO-FC-DF (CbO) 1.026 ± 0.0014 0.428 ± 0.0016 1.205 ± 0.0007 

CbO-PC-DF (In-Close)  0.866 ± 0.0001 0.357 ± 0.0000 0.220 ± 0.0000 

CbO-FC-DBF  1.042 ± 0.0001 0.430  ± 0.0000 1.209 ±  0.0009 

CbO-PC-DBF (In-Close2) 0.854 ± 0.0002 0.359 ± 0.0009 0.232 ± 0.0002 

CbO-FC-ICF-DF 1.067 ± 0.0002 0.437 ± 0.0002  1.536 ±  0.0006 

CbO-PC-ICF-DF 0.461± 0.0010 0.398 ± 0.0011 0.461 ± 0.0011 

CbO-FC-ICF-DBF (FCbO) 0.301± 0.0003 0.196 ± 0.0004 0.308 ± 0.0003 

CbO-PC-ICF-DBF (In-Close3) 0.253 ± 0.0002 0.167 ± 0.0000 0.166 ± 0.0001 

1.  bool isBequalToDuptojBit(VECTOR_TYPE *BBit, VECTOR_TYPE *DBit, int j) { 
2.     if (j==0) { // Special case 
3.        return true; 
4.     } 
5.     VECTOR_TYPE mask[VECTOR_MAX_COLS_CELLS]; 
6.     VECTOR_TYPE result; 
7.     int pos = j>>VECTOR_SIZE2POW; 
8.     mask[pos] = (VECTOR_1 << j)-1;  // set the current mask element to the correct value 
9.    
10.    for (int r = pos-1; r >=0; r--) 
11.       mask[r] = VEC_MAX;  // pad trailing masks with 1 
12.     
13.    for (int r=pos; r>=0; r--) { 
14.       result = (BBit[r] ^ DBit[r]) & mask[r]; 
15.       if (result != 0) 
16.          return false; 
17.    } 
18.    return true; 
19. } 
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4.4 Empirical Results 

 Introduction 
The algorithms were implemented in C++ and compiled on a Linux Intel C++ Compiler version 
15 in debug mode without any optimization (the compiler flags –g –O0 were used).  All the 
algorithms were implemented in a similar way.  The implemented algorithms were tested on 
the Intel ® AI Cloud running in a Colfax Cluster on a Compute Node that uses an Intel® Xeon 
® Gold 6128 @ 3.7 GHz, six core server with 96GB RAM, running a stripped down version 
of the SUSE Linux Enterprise Server 11 - 64 bit operating system. Section 2.6 of the 
Methodology Chapter contains the details of the methodology used in carrying out these 
experiemnets.  Table 4.4 summarizes results of real world datasets with 95% confidence level 
intervals. In general we can see the following relationships for the real world datasets CbO-
PC-ICF-DBF < CbO-FC-ICF-DBF <CbO-PC-DBF < CbO-PC-DF.   However CbO-FC-ICF-
DBF is placed fourth in the Internet Ad dataset.  CbO-PC-ICF-DBF which incorporates all the 
three features gets the best results for all three datasets. 

Table 4.5 lists the detail results for artificial datasets where the density is a variable changing 
from 25 to 50.  The attributes and objects were both fixed at 100 for this experiment.  In general 
we can see the following relationship CbO-PC-ICF-DBF < CbO-PC-DF < CbO-PC-DBF < 
CBO-PC-ICF-DF < CbO-FC-ICF-DBF < CbO-FC-ICF-DF < CbO-FC-DBF < CbO-FC-DF.    

Table 4.6 lists the detail results for artificial datasets where the values of the object were 
changed from 10,000 to 100,000.  The attributes and density were fixed at 100 and 5% 
respectively for this experiment.  Here we observe the following relationship CbO-PC-DF <  
CbO-PC-DBF < CbO-PC-ICF-DBF < CBO-PC-ICF-DF < CbO-FC-ICF-DBF < CbO-FC-DF 
<  CbO-FC-DBF < CbO-FC-ICF-DF.   Here CbO-PC-DF performs better than CbO-PC-ICF-
DBF.  
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Table 4.5, Results for artificial datasets where density is a variable, 
|M| = 100 and |G| = 100 (timing in seconds) 

 

Density Concepts 
CbO.F
C.DF 

CbO. 
PC.DF 

CbO.FC. 
ICF.DF 

CbO.PC
.DBF 

CBO.FC
.DBF 

CbO.PC. 
ICF.DF 

CbO.FC. 
ICF.DBF 

CbO.PC. 
ICF.DBF 

25         44,834  0.172 0.036 0.174 0.037 0.177 0.050 0.078 0.029 

28         76,366  0.319 0.066 0.321 0.068 0.325 0.090 0.133 0.050 

30       120,555  0.499 0.104 0.501 0.106 0.508 0.138 0.205 0.076 

33       232,966  1.104 0.224 1.093 0.228 1.112 0.289 0.403 0.151 

35       342,210  1.476 0.303 1.463 0.307 1.488 0.391 0.555 0.206 

38       703,002  3.533 0.707 3.476 0.719 3.526 0.901 1.146 0.438 

40   1,082,618  5.074 1.022 4.994 1.040 5.075 1.295 1.632 0.625 

43   2,275,996  11.789 2.330 11.569 2.378 11.688 2.922 3.305 1.318 

45   3,913,430  20.137 4.012 19.832 4.093 20.126 4.992 5.373 2.171 

48   8,524,316  41.653 8.782 42.317 8.956 42.475 10.874 11.053 4.574 

50 14,709,875 75.121 15.145 74.413 15.496 74.536 18.799 18.186 7.624 
 

Table 4.6, Results for artificial datasets where |G| is a variable, |M| = 100 (timing in seconds) and Density = 5% 

Objects Concepts 
CbO.FC.

DF 
CbO.PC.

DF 
CbO.FC. 
ICF.DF 

CbO.PC.
DBF 

CBO.FC.
DBF 

CbO.PC. 
ICF.DF 

CbO.FC. 
ICF.DBF 

CbO.PC. 
ICF.DBF 

10,000       125,304  0.185 0.065 0.197 0.069 0.246 0.098 0.165 0.085 

20,000       254,304  0.391 0.139 0.415 0.147 0.423 0.201 0.361 0.181 

30,000       374,438  0.589 0.213 0.624 0.230 0.633 0.304 0.520 0.256 

40,000       511,907  0.797 0.294 0.849 0.315 0.851 0.413 0.677 0.333 

50,000       666,102  1.015 0.378 1.089 0.399 1.071 0.535 0.844 0.418 

60,000       824,485  1.229 0.464 1.319 0.484 1.294 0.660 1.014 0.505 

70,000   1,002,296  1.462 0.556 1.577 0.577 1.530 0.804 1.203 0.611 

80,000   1,193,271  1.712 0.657 1.844 0.675 1.787 0.931 1.422 0.726 

90,000   1,385,125  1.958 0.760 2.113 0.776 2.023 1.085 1.633 0.851 

100,000   1,581,947  2.218 0.862 2.399 0.897 2.317 1.241 1.871 0.983 

 

The detail results of varying the attributes from 1000 to 2000 while keeping the objects and the 
density fixed at 100 and 5% respectively are given in Table 4.7.  Here we observe the following 
relationship in general CbO-PC-ICF-DBF < CbO-PC-DF < CbO-PC-DBF < CBO-PC-ICF-DF 
< CbO-FC-ICF-DBF < CbO-FC-ICF-DF < CbO-FC-DF  < CbO-FC-DBF. 
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Table 4.7, Results for artificial datasets where |M| is a variable, |G| = 100 (timing in seconds) and Density = 5% 

Attribs.  
Concepts 

  
CbO.FC. 
DF 

CbO.PC
.DF 

CbO.FC. 
ICF.DF 

CbO.PC. 
DBF 

CBO.FC.
DBF 

CbO.PC.
ICF.DF 

CbO.FC. 
ICF.DBF 

CbO.PC. 
ICF.DBF 

1,000          7,801  1.073 0.068 0.806 0.071 1.143 0.150 0.321 0.063 

1,100          8,690  1.483 0.091 1.077 0.101 1.577 0.204 0.431 0.082 

1,200          9,277  1.894 0.111 1.417 0.114 2.032 0.256 0.548 0.102 

1,300         10,086  2.414 0.130 1.792 0.142 2.560 0.309 0.690 0.120 

1,400         10,914  3.066 0.157 2.250 0.171 3.265 0.378 0.856 0.142 

1,500         12,026  3.905 0.190 2.830 0.205 4.130 0.465 1.051 0.170 

1,600         12,529  4.532 0.218 3.389 0.228 4.826 0.549 1.250 0.198 

1,700         13,319  5.572 0.251 4.020 0.267 5.897 0.658 1.508 0.234 

1,800         14,263  6.587 0.282 4.813 0.296 6.994 0.761 1.718 0.266 

1,900         15,001  7.859 0.327 5.577 0.344 8.259 0.858 1.998 0.301 

2,000         16,577  9.683 0.391 6.765 0.399 10.244 1.008 2.434 0.354 

 
One interesting observation is that CbO-FC-ICF-DBF performs poorly in the artificial datasets 
compared to the real datasets.  This could be due to the randomness in the artificial datasets.   

 Statistical Significance of the empirical results 
The results obtained in Table 4.4, Table 4.5, Table 4.6 and Table 4.7 were checked to see if 
they had statistical significance by first carrying out one-way analysis of variance (one way 
Anova).  For the latter three tables the largest dataset used was analyzed for statistical 
significance.  Specifically, the three datasets considered from Table 4.5, Table 4.6 and Table 
4.7 are n100m100d50s1000 (density = 50), n100m100000d5s1000 (objects = 100,000) and 
n2000m100d5s1000 (attributes = 2000) respectively.   

The null hypothesis in one-way analysis [\ is that the means of the empirical timing of all the 

eight algorithms for a given dataset are the same.  We can clearly see that the conditions J >

Ĵ _`a and Dbcdef < h is valid for all six datasets that were analyzed (See Table 4.8).  Here h 

was taken as 0.05.   

Table 4.8 shows a summary of the one-way analysis.  Hence according to one-way analysis we 

can reject [\ the null hypothesis.  We can conclude that for each dataset there exists at least 

one algorithm that has a mean which is statistically different from others.  Section 2.3.2 shows 
how the one-way analysis was carried out. 
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Table 4.8, One-way Analysis of the major datasets used in the analysis 

 

 

 

 

Next to show that the means of the top two algorithms for each dataset has statistical 
significance the t-Test for two sample assuming unequal variances analysis was carried out.  
Table 4.9, shows a summary of the t-Test. 

Table 4.9, t-Test for two sample assuming unequal variances analysis of the major datasets used in the analysis 

 

The null hypothesis in the t-Test analysis [\ is that the mean values of the two fastest 

algorithms considered are the same.  For first five datasets in Table 4.9 we can clearly see that 
|Fiaca| > 	 F^_`a`^cd	ajklac`d and Dajklac`d < h is valid.  Here h was taken as 0.05.  Here based 

on the t-Test we can reject [\ the null hypothesis.  Hence, we can conclude that In-Close3 is 

the fastest algorithm for the datasets ad, mushroom, adult, n2000 and d50.  For the last dataset 
n100m100000d5s1000, both the conditions are invalid.  For the random dataset results shown 
in Table 4.6 where we increased the number of objects In-Close (CbO-PC-DF) and the In-
Close2 (CbO-PC-DBF) algorithms produced better results than In-Close3.  This was the only 
dataset series where In-Close3 wasn’t the fastest.  In-Close3 was the fastest for all the real-
world datasets that were considered as well. Section 2.3.3 shows how the t-Test for two sample 
assuming unequal variances analysis was carried out. 

dataset F Fcrit Pvalue 
ad      3,755,529.9  2.1397  1.49E-197 
mushroom           24,113.0   2.1397  1.24E-118 
adult         132,049.8   2.1397  3.26E-145 
n2000m100d5s1000    10,829,084.8   2.1397  4.13E-214 
n100m100d50s1000  151,826,683.3   2.1397  2.15E-255 
n100m100000d5s1000                402.1   2.1397  4.82E-55 

dataset tstat mean1 mean2 t critical two tail Ptwo-tail algo1 algo2 
ad 1004.02 0.2197 0.1664 2.1788 6.42E-31 In-Close In-Close3 
mushroom -539.98 0.2531 0.3013 2.1788 1.10E-27 In-Close3 FCbO 
adult -144.07 0.1674 0.1961 2.2622 1.90E-16 In-Close3 FCbO 
n2000m100d5s1000 -130.33 0.3538 0.3907 2.1448 5.39E-23 In-Close3 In-Close 
n100m100d50s1000 -8276.50 7.6245 15.1448 2.1098 1.37E-57 In-Close3 In-Close 
n100m100000d5s1000 -1.86 0.7147 0.8969 2.2622 9.64E-02 In-Close In-Close2 
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 Impact of the three enhancements in isolation 

4.4.3.1 Introduction 
Let’s initially consider the impact of the three enhancements in isolation. Figures 4.15 to 
Figure 4.21 are used to compare algorithms two at a time to show the impact of the three 
enhancements.   

 

Figure 4.15, Highlighting the effects of Partial Closures by comparing the results of CbO-FC-DF vs CbO-PC-DF, CbO-FC-
DBF vs CbO-PC-DBF, CbO-FC-ICF-DF vs CbO-PC-ICF-DF and CbO-FC-ICF-BDF vs CbO-PC-ICF-BDF 
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Due to the significant variation in the timing results of the eight algorithms considered in Tables 
4.5, Table 4.6, Table 4.7 it is difficult to represent these results using only three separate graphs.  
The comparison of experimental results between two carefully selected algorithms will help in 
the better interpretation of the empirical results obtained.   

4.4.3.2 The impact of using partial closures with incremental closure of intents 
To examine the impact of using partial closures with incremental closure of intents in CbO 
based algorithms we can compare the results of the CbO-FC-DF algorithm vs CbO-PC-DF 
algorithm, CbO-FC-DBF algorithm vs CbO-PC-DBF algorithm, CbO-FC-ICF-DF algorithm 
vs CbO-PC-ICF-DF algorithm and the CbO-FC-ICF-BDF algorithm vs CbO-PC-ICF-BDF 
algorithm.  In each of the four cases the only difference between the considered algorithms is 
that one of the algorithm uses full closures and the other uses partial closures with incremental 
closure of intents.   

Figure 4.15 shows a detail comparison of these four sets of algorithms for the artificial datasets 
where the density, objects and attributes are varied respectively.  The details values shown in 
the graphs are presented in Table 4.6 and Table 4.7 respectively. Figure 4.15(a)(b)(c) compares 
the CbO-FC-DF algorithm and the CbO-PC-DF algorithm for variations of Density, Objects 

and Attributes respectively.  The symbols � and r are used to represent the algorithms CbO-
FC-DF and CbO-PC-DF respectively in the graphs.  We can see clearly that CbO-PC-DF 
performs significantly better compared to CbO-FC-DF in all three cases.   Figure 4.15(d)(e)(f) 
compares the CbO-FC-DBF algorithm and the CbO-PC-DBF algorithm for the same 
variations. Here the symbols Ç and Ï are used to represent the algorithms CbO-FC-DBF and 
CbO-PC-DBF respectively in the graphs.  Here the CbO-PC-DBF algorithm performs 
significantly better compared to CbO-FC-DBF in all three cases.   Figure 4.15(g)(h)(i) 
compares the CbO-FC-ICF-DF algorithm and the CbO-PC-ICF-DF algorithm for the three 

variations.  The symbols ¯ and s are used to represent the CbO-FC-ICF-DF and CbO-PC-
ICF-DF algorithms respectively in the graphs.  CbO-PC-ICF-DF performs significantly better 
compared to CbO-FC-ICF-DF in all three cases.  Finally Figure 4.15(j)(k)(l) compares the 
CbO-FC-ICF-DBF algorithm and the CbO-PC-ICF-DBF algorithm for the same variations.  
Here the symbols T and á are used to represent the CbO-FC-ICF-DBF and CbO-PC-ICF-
DBF algorithms in the graphs.  The CbO-PC-ICF-DBF algorithm is faster compared to CbO-
FC-ICF-DBF in all three cases.  In the four sets of comparisons we can clearly see the 
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performance improvement in using partial closures with the incremental closure of intents 
instead of using full closures.    

4.4.3.3 The impact of using combined depth first and breadth first search 
The impact of the combined depth first and breadth first approach can be observed by 
comparing the performance of the CbO-FC-DF vs CbO-FC-DBF algorithms, CbO-PC-DF vs 
CbO-PC-DBF algorithms, CbO-FC-ICF-DF vs CbO-FC-ICF-DBF algorithms and CbO-PC-
ICF-DF vs CbO-PC-ICF-DBF algorithms.  In each of the comparison one of the algorithms 
uses a pure depth first approach and the second algorithm uses a combined depth first and 
breadth first approach.   Figure 4.16 shows a detail comparison of these four sets of algorithms 
for the artificial datasets where the density, objects and attributes are varied respectively.  
Figure 4.16(a)(b)(c) compares the CbO-FC-DF algorithm and the CbO-FC-DBF algorithm for 
the three variations.  Here we do not see a significant difference between the two algorithms.  
The same symbols used in Figure 4.15 are used to represent each algorithm in the remaining 
graphs that presented.  Figure 4.16(d)(e)(f), compares the CbO-PC-DF algorithm and the CbO-
PC-DBF algorithm for the same variations.  Here too the results are similar.   Figure 
4.16(g)(h)(i) compares the CbO-FC-ICF-DF algorithm and the CbO-FC-ICF-DBF algorithm 
for the variations.  The CbO-FC-ICF-DBF algorithm performs significantly better than the 
CbO-FC-ICF-DF algorithm.   Finally Figure 4.16(j)(k)(l) compares the CbO-PC-ICF-DF 
algorithm and the CbO-PC-ICF-DBF algorithm.  In this comparison CbO-PC-ICF-DBF 
algorithm performs better than the CbO-PC-ICF-DF algorithm.    
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Figure 4.16, Highlighting the effects of Combined Depth First and Breadth First Search by comparing the results of CbO-FC-
DF vs CbO-FC-DBF, CbO-PC-DF vs CbO-PC-DBF, CbO-FC-ICF-DF vs CbO-FC-ICF-DBF and      CbO-PC-ICF-DF vs 
CbO-PC-ICF-DBF 

These results imply that the impact of the combined depth first and breadth first search feature 
is significant when used in conjunction with the canonicity test failure feature.   

4.4.3.4 The impact of the inherited cannocity test failure 
Finally the impact of the inherited canonicity test failure can be determined by comparing the 
performance of the CbO-FC-DF vs CbO-FC-ICF-DF algorithms, CbO-PC-DF vs CbO-PC-
ICF-DF algorithms, CbO-FC-DBF vs CbO-FC-ICF-DBF algorithms and CbO-PC-DBF vs 
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CbO-PC-ICF-DBF algorithms.  In each comparison one algorithm uses the inherited canonicity 
test failure and the other algorithm does not. 

 

Figure 4.17, Highlighting the effects of the Inherited Canonicity Test Failure by comparing the results of CbO-FC-DF vs 
CbO-FC-ICF-DF, CbO-PC-DF vs CbO-PC-ICF-DF, CbO-FC-DBF vs CbO-FC-ICF-DBF and CbO-PC-DBF vs CbO-PC-
ICF-DBF 

Figure 4.17 shows a detail comparison of these four algorithms where density, objects and 
attributes are varied for random datasets.  Figure 4.17(a)(b)(c) compares the CbO-FC-DF 
algorithm and the CbO-FC-ICF-DF algorithm for these three variations.  The results are similar 
for the three graphs.  Figure 4.17(d)(e)(f) compares the CbO-PC-DF algorithm and the CbO-
PC-ICF-DF algorithm.  Here we observe that CbO-PC-ICF-DF algorithm performs poorly 
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compared to CbO-PC-DF.   We can note that the inherited canonicity test failure doesn’t 
perform well with partial closures used in combination with a depth first search approach.  
Figure 4.17(g)(h)(i) compares the CbO-FC-DBF algorithm and the CbO-FC-ICF-DBF 
algorithm.  In here the CbO-FC-ICF-DBF algorithm performs significantly better than CbO-
FC-DBF algorithm.  Finally Figure 4.17(j)(k)(l) compares the CbO-PC-DBF algorithm and the 
CbO-PC-ICF-DBF algorithm.  Here the CbO-PC-ICF-DBF algorithm performs better than 
CbO-PC-DBF algorithm.   

This is significant for variations of density and attributes.   From the comparisons of the graphs 
shown in Figure 4.17(g)(h)(i)(j)(k)(l) and Figure 4.16(g)(h)(i)(j)(k)(l) we can conclude that 
inherited canonicity test failure works well in combination with the combined depth first and 
breadth first search approach.    

4.4.3.5 The impact of the combination of the partial closure with the 
incremental closure of intents joined with the combined depth first and breadth 
first search 
To see the effects of the three enhancements in combination, let’s first consider the effect of 
partial closures with incremental closures of intents joined with combined depth first and 
breadth first search.  A comparison of the results of the algorithms CbO-FC-DF vs CbO-PC-
DBF and CbO-FC-ICF-DF vs CbO-PC-ICF-DBF will allow us to observe the combined effect 
of these two features.  Figure 4.18 gives a detail comparison between these two sets of 
algorithms.  Figure 4.18(a)(b)(c) compares the CbO-FC-DF, CbO-PC-DBF algorithms and 
Figure 4.18(d)(e)(f) compares the CbO-FC-ICF-DF, CbO-PC-ICF-DBF algorithms.  In both 
cases the algorithm which has the combined features (CbO-PC-DBF and CbO-PC-ICF-DBF) 
performs significantly than the other algorithm.   This leads us to conclude that partial closures 
with incremental closures of intents works well with combined depth first and breadth first 
search combination. 
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Figure 4.18, Highlighting the effects of Partial Closures with Incremental Closure of Intents and the Combined Depth First 
and Breadth First approach by comparing the results of CbO-FC-DF vs CbO-PC-DBF and CbO-FC-ICF-DF vs CbO-PC-
ICF-DBF 

4.4.3.6 The impact of the combination of the combined partial closure with the 
incremental closure of intents joined with the inherited cannocity test failure 
The effects of the combined partial closure with the incremental closure of intents with the 
inherited canonicity test failure can be examined by comparing the algorithms presented in 
Figure 4.19.  The algorithms CbO-FC-DF and CbO-PC-ICF-DF are compared in Figure 
4.19(a)(b)(c).  The CbO-FC-DBF algorithm and the CbO-PC-ICF-DBF algorithm are 
compared in Figure 4.19(d)(e)(f).  Both CbO-PC-ICF-DF and CbO-PC-ICF-DBF perform 
significantly better than the other algorithm.  We can conclude that partial closure with the 
incremental closure of intents works well with inherited canonicity test failures. 

4.4.3.7 The impact of the combination of the combined depth first and breadth 
first search joined with the inherited cannocity test failure 
Finally, we can make further observations regarding the effects of using the combined depth 
first and breadth first search with the inherited canonicity test failure in detail by comparing 
the algorithms presented in Figure 4.20. The algorithms CbO-FC-DF and CbO-FC-ICF-DBF 
are compared in Figure 4.20 (a)(b)(c). 
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Figure 4.19,Highlighting the effects of Partial Closures combined with the Inherited Canonicity Test Failure by comparing 
the results of CbO-FC-DF vs CbO-PC-ICF-DF and CbO-FC-DBF vs CbO-PC-ICF-DBF 

The CbO-FC-ICF-DBF algorithm performs significantly better than the CbO-FC-DF 
algorithm.  The CbO-PC-DF algorithm and the CbO-PC-ICF-DBF algorithm are compared in 
the graphs given in Figure 4.20 (d)(e)(f). Here the CbO-PC-ICF-DBF algorithm performs 
better than the CbO-PC-DF algorithm.  For variations of objects (See Figure (e)) CbO-PC-
ICF-DBF is slower than CbO-PC-DF.   These results and the observations made earlier 
regarding the combined depth first and breadth first search with the inherited canonicity test 
failure show that performance improvements with this combination is more apparent for full 
closures as opposed to partial closures.   

4.4.3.8 The effect of the combination of all three features 
To observe the effect of combining all the three enhancements that are considered we can 
compare the performance of the algorithms CbO-FC-DF with CbO-PC-ICF-DBF (See Figure 
4.21).   The graphs clearly indicate that CbO-PC-ICF-DBF performs significantly better than 
CbO-FC-DF. 
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Figure 4.20, Highlighting the effects of Combined Depth First and Breadth First Search used in combination with the Inherited 
Canonicity Test Failure by comparing the results of CbO-FC-DF vs CbO-FC-ICF-DBF and CbO-PC-DF vs CbO-PC-ICF-
DBF 

 

Figure 4.21, Highlighting the effects of combining all three enhancements by comparing CbO-FC-DF with 
CbO-PC-ICF-DBF 

 Figure 4.16(a)(b)(c)(d)(e)(f) and Figure 4.17 (a)(b)(c)(d)(e)(f) clearly show there is no 
significant performance enhancement with the combined depth first and breadth first search or 
the inherited canonicity test are used in isolation.   

 Analysis of the effects of the three variations 
Table 4.10 presents the speedup obtained for the algorithm combinations considered in the 
graphs for the following datasets Density - n100m100d50s1000 (density = 50%, #objects = 
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100, #attributes = 100),  Objects - n100m100000d5s1000 (#objects = 100,000, #attributes = 
100, density = 5%), and Attributes – n2000m100d5s1000 (#attributes = 2,000, #objects = 100, 
density = 5%).   

Table 4.10(a)(b)(c)(d)(e)(f)(g)(h) represents each of the seven cases that were considered in 
the graphs which looked at the effects the of three features partial closures with incremental 
closure of intents (PC), combined depth and breadth first search (DBF), the inherited canonicity 
test failure (ICF) and the four combinations that were considered. For instance the speed up 
6.71x shown in Table 4.8(a) for the third row ICF+DF under the attributes column means that 
when the attributes were varied for the dataset n2000m100d5s1000.cxt the speedup observed 
by keeping ICF and Depth First (DF) constant and varying PC only was 6.71x.  This 
corresponds to the ratio of the last values plotted in the graph in Figure 4.15(i) for the 
algorithms CbO-FC-ICF-DF and CbO-PC-ICF-DF.  We can clearly see a significant speedup 
when partial closure with the incremental closure of intents is considered in isolation (See 
Table 4.10(a)).  There is in fact a negative impact when the inherited canonicity test failure is 
considered in isolation keeping partial closure with incremental closure of intents and depth 
first search constant (See the values less than one in Table 4.10(c) row 2 and Figure 
4.17(d)(e)(f)).   

Table 4.10, Speedup of the comparison of algorithms for the Density - n100m100d50s1000.cxt, Objects - 
n100m100000d5s1000.cxt, Attributes – n2000m100d5s1000.cxt 

              
Partial Closure  Depth first and Breadth first search Inherited Cannoccity Test Failure 

 Densi
ty 

Extents Intents  Density Extents Intents  Density Extents Intents 

DF 4.96 2.57 24.78  FC 4.85 0.96 0.95  FC+DF 1.01 0.92 1.43 

DBF 4.81 2.58 25.68  PC 0.98 0.96 0.98  PC+DF 0.81 0.69 0.39 

ICF+DF 3.96 1.93 6.71  ICF+FC 4.09 1.28 2.78  FC+DBF 4.10 1.24 4.21 

ICF+PC 2.39 1.90 6.88  ICF+PC 2.47 1.26 2.85  PC+DBF 2.03 0.91 1.13 

 (a)         (b)      (c)  

PC+DBF    PC+ICF    DBF+ICF   

 Densi
ty 

Extents Intents  Density Extents Intents  Density Extents Intents 

* 4.85 2.47 24.27  DF 4.00 1.79 9.61  FC 4.13 1.19 3.98 

ICF 9.76 2.44 19.12  DBF 9.78 2.36 28.96  PC 7.62 0.88 1.10 

 (d)             (e)           (f)   

     PC+DBF+ICF       

      Density Extents Intents     

     * 9.85 2.26 27.37      

      (g)        
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 This is true even for the instance when full closures and depth first search are kept constant 
when inherited canonicity test failure is considered in Table 4.10(c) row 1 and Figure 
4.17(a)(b)(c)). 

Table 4.10(d)(e) highlights the performance improvements obtained when partial closure with 
incremental closure of intents is combined respectively with the combined depth first and 
breadth first search feature and the inherited canonicity failure feature.  We do not see the same 
levels of speedup when we consider the inherited canonicity test failure is combined with the 
combined depth and breadth first search (See Table 4.10(f)).  We also can observe that the 
speedup obtained for partial closures is lower than that of full closures in this instance. 

 Validating the results of instrumenting closures and intersections 
The programs were instrumented to count the number of closures and intersections carried out 
to get further insights of the timing results obtained earlier.  These are presented in  

Table 4.11 and Table 4.12 for real world and artificial datasets respectively.   Algorithms that 
use partial closure with incremental closure of intents have significantly less number of 
intersections confirming the timing results obtained earlier.  The number of intersections for 
CbO-FC-DBF compared to CbO-FC-DF and CbO-PC-DBF compared to CbO-PC-DF shows 
that the total number of intersections are almost the same as of the original.  This confirms that 
the combined depth and breadth first search used in isolation has no significant performance 
improvement.  In addition both CbO-FC-ICF-DF and CbO-PC-ICF-DF show a similar number 
of intersections with their counterparts without the inherited canonicity test failure algorithms 
(CbO-FC-DF and CbO-PC-DF respectively) confirming that using the inherited canonicity test 

failure in isolation has no significant performance improvement.  N, Density used in  

Table 4.11 and Table 4.12, is an instrumentation value that computes the average percentage 
of inherited canonicity test failures that each recursion level gets from its parent.  We can 
clearly see this percentage is very low for CbO-FC-ICF-DF and CbO-PC-ICF-DF algorithms.   
However when inherited canonicity test failure is used in combination of  the combined depth 
first and breadth first strategy (CbO-FC-ICF-DBF and CbO-PC-ICF-DBF) the algorithm is 
able to compute all the inherited canonicity test failures for that level of recursion before 

sending it to the child recursion.  Hence we see a higher percentage N, density for CbO-FC-

ICF-DBF and CbO-PC-ICF-DBF algorithms.  This confirms the timing results that were 
obtained earlier that inherited canonicity test failure gives better performance only when 
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combined with the combined depth and breadth first search feature.  The lowest number of 
intersections in the instrumentation results is for the algorithm CbO-PC-ICF-DBF confirming 
that there is a significant performance increase when all three features are used in combination. 

 

Table 4.11,Comparison of closures and intersections for the real datasets. 

Mushroom Full Closure/Partial 
Closures Intersections Extent 

Intersections Total Intersections Nj Density (%) 

CbO-FC-DF 3,810,933 476,366,625 3,810,932 480,177,557 - 

CbO-PC-DF 3,810,932 398,366,498 4,094,444 402,460,942 - 

CbO-FC-DBF 3,810,971 476,371,375 3,810,971 480,182,346 - 

CbO-PC-DBF 3,810,932 398,366,498 3,830,027 402,196,525 - 

CbO-FC-ICF-DF 3,810,971 476,371,375 3,810,971 480,182,346 17 

CbO-PC-ICF-DF 3,810,932 398,366,498 4,094,444 402,460,942 17 

CbO-FC-ICF-DBF 402,301 50,287,625 402,301 50,689,926 70 

CbO-PC-ICF-DBF 402,295 42,480,969 421,390 42,902,359 69 

Adult      

CbO-FC-DF 3,260,451 322,784,649 3,260,450 326,045,099 - 

CbO-PC-DF 3,260,450 250,928,223 3,293,914 254,222,137 - 

CbO-FC-DBF 3,260,450 322,784,550 3,260,450 326,045,000 - 

CbO-PC-DBF 3,260,450 250,928,223 3,279,787 254,208,010 - 

CbO-FC-ICF-DF 3,260,450 322,784,550 3,260,450 326,045,000 7 

CbO-PC-ICF-DF 3,260,450 250,928,223 3,293,914 254,222,137 7 

CbO-FC-ICF-DBF 330,674 32,736,726 330,674 33,067,400 94 

CbO-PC-ICF-DBF 330,674 22,004,443 350,011 22,354,454 94 

Ad      

CbO-FC-DF 6,307,712 9,871,569,280 6,307,711 9,877,876,991 - 

CbO-PC-DF 6,307,711 6,911,051,986 6,355,808 6,917,407,794 - 

CbO-FC-DBF 6,307,711 9,871,567,715 6,307,711 9,877,875,426 - 

CbO-PC-DBF 6,307,711 6,911,051,986 6,335,635 6,917,387,621 - 

CbO-FC-ICF-DF 6,307,711 9,871,567,715 6,307,711 9,877,875,426 29 

CbO-PC-ICF-DF 6,307,711 6,911,051,986 6,355,808 6,917,407,794 29 

CbO-FC-ICF-DBF 323,540 506,340,100 323,540 506,663,640 96 

CbO-PC-ICF-DBF 323,540 376,435,030 351,464 376,786,494 96 
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Table 4.12, Comparison of closures and intersections for artificial datasets. 

      

n100m50000d5s1000.cxt Full Closure/Partial 
Closures Intersections Extent 

Intersections 
Total 

Intersections 
Nj Density 

(%) 

CbO-FC-DF 14,554,321 1,455,432,100 14,554,320 1,469,986,420 - 

CbO-PC-DF 14,554,320 1,179,770,310 14,673,051 1,194,443,361 - 

CbO-FC-DBF 14,554,320 1,455,432,000 14,554,320 1,469,986,320 - 

CbO-PC-DBF 14,554,320 1,179,770,310 14,671,479 1,194,441,789 - 

CbO-FC-ICF-DF 14,554,320 1,455,432,000 14,554,320 1,469,986,320 12 

CbO-PC-ICF-DF 14,554,320 1,179,770,310 14,673,051 1,194,443,361 12 

CbO-FC-ICF-DBF 5,435,185 543,518,500 5,435,185 548,953,685 59 

CbO-PC-ICF-DBF 5,435,185 434,151,688 5,552,344 439,704,032 59 

n1500m100d5s1000.cxt     

CbO-FC-DF 8,530,332 12,795,498,000 8,530,331 12,804,028,331 - 

CbO-PC-DF 8,530,331 8,743,545,457 8,557,266 8,752,102,723 - 

CbO-FC-DBF 8,530,331 12,795,496,500 8,530,331 12,804,026,831 - 

CbO-PC-DBF 8,530,331 8,743,545,457 8,556,927 8,752,102,384 - 

CbO-FC-ICF-DF 8,530,331 12,795,496,500 8,530,331 12,804,026,831 22 

CbO-PC-ICF-DF 8,530,331 8,743,545,457 8,557,266 8,752,102,723 22 

CbO-FC-ICF-DBF 1,103,074 1,654,611,000 1,103,074 1,655,714,074 87 

CbO-PC-ICF-DBF 1,103,074 1,088,468,535 1,129,670 1,089,598,205 87 

n100m100d45s1000.cxt     

CbO-FC-DF 77,957,720 7,795,772,000 77,957,719 7,873,729,719 - 

CbO-PC-DF 77,957,719 6,425,280,534 80,220,058 6,505,500,592 - 

CbO-FC-DBF 77,957,719     7,795,771,900  77,957,719     7,873,729,619  - 

CbO-PC-DBF 77,957,719 6,425,280,534 79,550,133 6,504,830,667 - 

CbO-FC-ICF-DF 77,957,719 7,795,771,900 77,957,719 7,873,729,619 12 

CbO-PC-ICF-DF 77,957,719 6,425,280,534 80,220,058 6,505,500,592 12 

CbO-FC-ICF-DBF 17,193,707 1,719,370,700 17,193,707 1,736,564,407 72 

CbO-PC-ICF-DBF 17,193,707 1,379,000,449 18,786,121 1,397,786,570 72 
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4.5 Analysis of the Eight CbO based Algorithms 

 Introduction 
The theoretical complexity of the original CbO algorithm has been shown to be ;(|=|>|@||m|).  

The eight other variations although improvements, have same theoretical complexity of 

;(|=|>|@||m|).  A detail complexity analysis of each of these recursive algorithms is a complex 

task and beyond the scope of this thesis. Instead an analytical comparison between the eight 
different variations of CbO is presented.   The results of the analysis tallies with the 
experimental results obtained earlier in the chapter. 

The eight different variations of the CbO algorithm are made up of 17 common code blocks 
which are presented in Table 4.2. The algorithmic complexity of each block is shown in Table 
4.13 using Big O notation.   The algorithmic complexity of each code block would be 
dependent on the data structures used to implement the solutions. For instance, the code block 

, ∉ $’s efficiency is ;(1) because the intents were stored in a bitwise array.  If an integer array 

was chosen as the preferred data structure, then a binary search algorithm with an efficiency of 

;(nLo	|@|) would have to be used.   

In the analysis of the specific building blocks that make up the eight different algorithms it can 
be seen clearly from in Table 4.13 that the code blocks 3,7,8 and 16 have the highest complexity 

of ;(|@||=|).  These code blocks correspond to the computation of full closure and partial 

closures.  For the analytical comparison in addition to the full and partial closures we will also 
consider the complexity of computing the extents as it plays a major part in the algorithm. 

 



 

 

 

66 

Table 4.13, Algorithmic Complexity of Code Blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Analysis of CbO-FC-DF (CbO) 
 

Let o	 = 	 |=|,M	 = 	 |@|, p	 = 	 |m|	

Let q = r
^
∑ |"_|^
_tr   

Always q	 < 	o 

Let q be the number of times the statements inside the main if statement runs (line 4,5,6) (See 
Figure 4.1). Due to the similarity of the algorithms this number is a constant across the five 
variations of CbO. 

Cost of the computation of intents (Line 5) = u.M. q (1) 

Cost of the computation of extents (Line 4) = u. q (2) 

No Code Blocks Algorithmic 
Complexity of Code 

Block 
1 , ∉ $ ;(1) 

2 : ← " ∪ {,}↓ ;(|=|) 

3 8 ← :↑ ;(|@||=|) 

4 $ ∩ 67 = 8 ∩ 67 ;(|@|) 

5 " = : ;(1) 

6 $ ← $ ∪ {,} ;(1) 

7 $ = :↑BC ;(|@||=|) 

8 $ ∩ 67 = :↑BC ;(|@||=|) 

9 DEFG&HEIEI(:, ,) ;(1) 

10 =IFJKLMHEIEI(:, ,) ;(1) 

11 @7 ← N7 ;(1) 

12 N7⋂67 	⊂ $ ∩ 67 ;(1) 

13 @7 ← 8 ;(1) 

14 DEFG&HEIEI((:, 8), ,) ;(1) 

15 =IFJKLMHEIEI((:, 8), ,) ;(1) 

16 @7 ← :↑BC ;(|@||=|) 

17 8 ← $ ∪ {,} ;(1) 
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 Analysis of CbO-PC-DF (In-Close) 
CbO-PC-DF (In-Close) (See Figure 4.3) uses partial closure in line 6 as part of its canonicity 
test.  The intents are actually calculated by using incremental closures with each operation 

taking the complexity of ;(1). In the CbO-FC-DF (CbO) algorithm, a concept is fully closed 

before the canonicity test.  It is however sufficient to close the concept up to the current element 

j for the canonicity test (Andrews, 2014). There is a computational saving of q(& − ,) attributes 

for each iteration. 

The definition of the partial closure operator is given below. 

 "↑Q ∶= {' ∈ T	|	∀V ∈ " ∶ V	G	'	} 

Let ' = r
w
∑ (M − ,_)
w
_tr   

Here jr corresponds the value of ,	in the inner loop for each time the partial closure is computed 

in line 6. ' is the average number of attribute comparisons reduced in computing the partial 

attribute closure.  

Always  0	 < 	'	 < 	M 

Cost of the computations of intents (Line 6,4,7)  

	 =	u. (M − '). q	 + 	u	»	u. (M − '). q   (3) 

Cost of the computations of extents (Line 2)  

	 =	u¢. q	»	u. q           (4) 

Here u¢ is the number of times the for loop runs.  u¢	 > 	u	(as u is the number of times the 

statements inside the if statement executes). Because u. (M − '). q	 < 	u.M. q	(See (1) and (3)) 

we can conclude that the computational cost of CbO-PC-DF (In-Close) is lower than CbO-FC-
DF (CbO). 

 Analysis of CbO-PC-DBF (In-Close2) 
A queue is used in CbO-PC-DBF (In-Close2) (See Figure 4.10) for a combined breadth first 
and depth first approach. Due to the delayed recursion calls the intent calculation is complete 
before the recursive call.  This is known as the attribute inheritance where a child element will 
get the parents attributes (Andrews, 2015). 
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Let y be the total saving in the attribute calculations in the children nodes for the entire set of 

concepts.   

Cost of the computations of intents (Line 5,11,7)  

	 =	u. (M − '). q	 + 	u	 − 	y	»	u. (M − '). q		  (5) 

Cost of the computations of extents (Line 3)  

	 =	u. q      (6) 

Thus we can conclude that the computational cost of CbO-PC-DBF (In-Close2) is lower than 

that of CbO-PC-DF (In-Close). Since  u. (M − '). q	 + 	u	– 	y	 < 	u. (M − '). q	 + 	u (See (3) 

and (5)) and  u. q	 < 	u¢. q (See (4) and (6)) 

 Analysis of CbO-FC-ICF-DBF (FCbO) 
CbO-FC-ICF-DBF (FCbO) (See Figure 4.12) introduces inherited canonicity failures.  The 

cannoncity test shown in line 7, fails for an attribute ,	 ∉ 	$, then the test will also fail for each 

$¢	 ⊇ 	$ where ,	 ∉ 	$¢, as long as ((8\$) ∩ 6,) contains an attribute which is not in $¢. This 

information can be passed from one level to the next by recording the intent 8	of a failed 

canonicity test for an attribute	,. This is stored in @, in line 10 and in turn represented in N,	
when the recursive call is made.  This reduces the execution of the inner loop.   

Let } be the total number of successful inherited canonicity failures(Andrews, 2015).  

CbO-FC-ICF-DBF (FCbO) also uses a combined breadth first and depth first approach in 
recursion by using a queue. 

Cost of the computations of intents (Line 6)  

	 =	(u − }).M. q	– 	y	»	(u − }).M. q  (7) 

Cost of the computations of extents (Line 5)  

	 =	(u − }). q       (8) 

Thus we can conclude that the computational cost of CbO-FC-ICF-DBF (FCbO)  is faster than 

CbO-FC-DF (CbO).  Since (u − }).M. q	 < 	u.M. q  (See (1) and (7)) and (u − }). q	 < 	u. q 

(See (2) and (8)). 
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 Analysis of CbO-FC-DBF  
Thus the cost of the computations of intents and extents in CbO-FC-DBF (See Figure 4.6) is 
given below. 

Cost of the computations of intents (Line 5) =	u.M. q	– 	y    (9) 

Cost of the computations of extents (Line 4) =	u. q     (10) 

Because u.M. q	– 	y		 < 	u.M. q (See (9) and (1)) we can conclude that CbO-FC-DBF has a 
lower computational cost than CbO-FC-DF (CbO). 

 Analysis of CbO-FC-ICF-DF  
Thus the cost of the computations of intents and extents in CbO-FC-ICF-DF (See Figure 4.8) 
is given below. 

Cost of the computations of intents (Line 6)  

 =	(u − }).M. q	    (11) 

Cost of the computations of extents (Line 5)  

 =	(u − }). q	     (12) 

Because (u − }).M. q	– 	y	 < 	 (u − }).M. q (See (9) and (11)). We can conclude that CbO-

FC-ICF-DBF (FCbO) has a lower computational cost than CbO-FC-ICF-DF 

 Analysis of CbO-PC-ICF-DF  
Thus the cost of the computations of intents and extents in CbO-PC-ICF-DF (See Figure 4.11) 
is given below. 

Cost of the computations of intents (Line 8,6,9)  

	 =	(u − }). (M − '). q + (u − })		»	(u − }). (M − '). q	  (13) 

Cost of the computations of extents (Line 5)  

	 =	(u − }). q	         (14) 

CbO-PC-ICF-DF has a lower computational cost compared to CbO-FC-ICF-DF because	(u −

}). (M − '). q	 < 	 (u − }).M. q	(See (13) and (11)) 
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 Analysis of CbO-PC-ICF-DBF (In-Close3) 
In-Close3 also has inherited canonicity failures.  The major difference between CbO-FC-ICF-
DBF (FCbO)   and CbO-PC-ICF-DBF (In-Close3) is that the latter uses partial closures.  Thus 
the cost of the computations of intents and extents in CbO-PC-ICF-DBF (In-Close3) (See 
Figure 4.13) is as follows. 

Computations of intents (Line 8,6,14)  

 =	(u − }). (M − '). q	 +	(u − })	– 	y	»	(u − }). (M − '). q  (15) 

Computations of extents (Line 4)  

 =	(u − }). q	        (16) 

Because (u − }). (M − '). q	 < 	u. (M − '). q (See (5) and (15)) and   (u − }). q	 < 	u. q	(See 

(6) and (16)).   We can conclude that CbO-PC-ICF-DBF (In-Close3) has a lower computational 
cost than CbO-PC-DBF (In-Close2). We can also conclude that CbO-PC-ICF-DBF (In-Close3) 

has a lower computational cost than CbO-FC-ICF-DBF (FCbO) Since	(u − }). (M − '). q		 <

	(& − }).M. q (See (7) and (15)). We can assume that the value of  :↑B7	which is needed for 
line 11 is cached when it is originally computed for line 8.CbO-PC-ICF-DBF (In-Close3) has 

a lower computational cost than CbO-PC-ICF-DF because (u − }). (M − '). q	 +	(u −

})	– 	y		 < 	 (u − }). (M − '). q + (u − })  (See (15) and (13)). Finally CbO-PC-ICF-DBF (In-

Close3) has a lower computation cost than CbO-FC-DBF since (u − }). (M − '). q	 +	(u −

})	– 	y		 < 	u.M. q	– 	y (See (15) and (9)). 
 

Table 4.14, Analytical Results obtained 

No Analytical Results presented 

1 CbO-PC-DF (In-Close) < CbO-FC-DF (CbO) 

2 CbO-PC-DBF (In-Close2) < CbO-PC-DF (In-Close) 

3 CbO-FC-ICF-DBF (FCbO)  < CbO-FC-DF (CbO).   

4 CbO-FC-DBF <  CbO-FC-DF (CbO) 

5 CbO-FC-ICF-DBF (FCbO) <  CbO-FC-ICF-DF 

6 CbO-PC-ICF-DF < CbO-FC-ICF-DF 

7 CbO-PC-ICF-DBF (In-Close3) < CbO-PC-DBF (In-Close2) 

8 CbO-PC-ICF-DBF (In-Close3) < CbO-FC-ICF-DBF (FCbO) 

9 CbO-PC-ICF-DBF (In-Close3) < CbO-PC-ICF-DF 

10 CbO-PC-ICF-DBF (In-Close3) < CbO-FC-DBF 
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The analytical results obtained in the paper are summarized in Table 4.14.  These can be 
combined to produce the following results.  

CbO-PC-ICF-DBF (In-Close3)  < CbO-PC-DBF (In-Close2)  < CbO-PC-DF (In-Close) < 
CbO-FC-DF (CbO) 

CbO-PC-ICF-DBF (In-Close3) < CbO-FC-ICF-DBF (FCbO) < CbO-FC-DF (CbO).   

CbO-PC-ICF-DBF (In-Close3) < CbO-PC-ICF-DF < CbO-FC-ICF-DF   

CbO-FC-ICF-DBF (FCbO) <  CbO-FC-ICF-DF 

CbO-FC-DBF <  CbO-FC-DF (CbO) 

Eight of the ten analytical results presented in hold true for both the real world datasets and the 
random artificial datasets presented in Section 4.4.   The second and fourth analytical results 
CbO-PC-DBF (In-Close2) < CbO-PC-DF (In-Close) and CbO-FC-DBF <  CbO-FC-DF (CbO) 
both don’t hold for the artificial random dataset results presented in Tables.  However both 
hold true for the random datasets where the attribute size is 1000 and above (See Table 4.7).  
The main difference the algorithms in questions is depth first search vs a combined depth first 
and breadth first search feature used in isolation.  The two results hold true for the Mushroom, 
Internet Ads and Adult, Internet Ads real world datasets respectively.  Interestingly Internet 
Ads is the only real world dataset with over 1,000 attributes (See Table 4.4).  This suggests 
that the combined depth first and breadth first feature requires larger attributes to make an 
impact. 
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5 – SHARED MEMORY PARALLEL ALGORITHMS 

5.1 Different types of Parallel Machines 
All computing devices used today are parallel machines.  The introduction of multicore 

processors commenced around the year 2004 to solve the so called power wall problem.  Prior 

to this CPU manufacturers resorted to increase the clock speed of each new generation of CPU 

eventually reaching the critical power consumption of 130 Watts around 2004.  Beyond this 

point it was not economically possible to dissipate the heat produced by the CPU’s. Over the 

last decade CPU manufacturers have kept the clock speed and core size of a CPU as constants 

and have resorted instead to add extra cores to a single die in the CPU to get better performance 

(Chappell & Stokes, 2012) 

Today’s laptops, desktop machines have at least two to four cores in the CPU.  High end Xeon 

Processors have up to 24 cores.   The latest high end Xeon Phi processors have up to 72 cores, 

where each core has the power of a single Intel Atom processor (Jeffers, Reinders, & Sodani, 

2016). 

Computer programs must be designed and implemented using a parallel approach to leverage 

on the multiple cores available in the CPU (Sutter & Larus, 2005).  Traditional serial programs 

can only make use of one CPU core of the computer. 

Today’s computers are essentially Shared Memory Multiple Instructions, Multiple Data 

(MIMD) machines.  They typically also support vector operations which are Single Instruction, 

Multiple Data (SIMD).  The shared memory model simplifies the transactions between the 

CPUs.  However this also constitutes a bottleneck and limits the scalability of the system 

(Barlas, 2014). Intel’s new highly parallel many core CPU the Xeon Phi processor family have 

up to 72 cores running up to 288 threads with 512 bit vector instructions (Jeffers et al., 2016).  

Distributed memory Multiple Instructions, Multiple Data (MIMD) machines are the other type 

of parallel machines that are available.  These machines are made up of processors that 

communicate by exchanging messages. The communication cost is high, but since memory is 

not shared, such machines can scale well. Clusters and Supercomputers are examples of such 

machines (Barlas, 2014).  
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5.2 Developing Parallel Programs 
Due to the nature on how shared memory and distributed memory parallel machines work there 

are two fundamentally different programming approaches that are used.   

Shared memory parallel machines can be programmed by generating threads, where each 

thread is executed on a separate core.  Shared memory programming models such as ArBB, 

TBB, OpenMP, Intel Cilk Plus have a built in scheduler which spawns the parallel processes 

based on the intent of parallelization given by the developer.  The language constructs allow 

the developer to specify that a repetition structure such as the for loop should execute in 

parallel.  Using this approach for instance a matrix manipulation which uses a for loop can be 

distributed across multiple core, where each core executes part of the computation.  The code 

needs to be written in such a way that within the for loop there are no dependencies between 

the iterations.  Another language construct allows the developer to give the intent of spawning 

the execution of a function on a separate core.  The actual execution of this spawn function is 

carried out by the built-in scheduler, when resources are available.   A common cause of errors 

in shared memory programming is sharing variables across cores.  Typically, when a shared 

memory variable is updated only one of the cores should have the privilege to do so.  However 

since frequent locking of shared memory variables degrades overall performance, developers 

make use of programming techniques where access to shared memory variables in code is 

minimized (Diaz, Munoz-Caro, & Nino, 2012; Jeffers & Reinders, 2015; Jeffers et al., 2016). 

Another common type of shared memory programming technique is vectorization.  Modern 

CPUs support data parallel instructions where one vector instruction can be executed on 

multiple data items.  For instance, one vector addition instruction can be executed involving 

multiple numbers simultaneously.  A typical Intel Xeon processor could execute eight 32 bit 

integer operations simultaneously using vector instructions.  General Purpose Graphics 

Processing Units (GP-GPU) processors produced by Nvidia on the other hand are exclusively 

vector processors where thousands of integers can be used in a single vector instruction 

simultaneously (Alessandrini, 2015; Yang, Huang, & Lin, 2011). 

Distributed Memory parallel computers do not share memory, so the only communication 

mechanism is to pass messages to invoke parallel processes and to send and receive data.  

Message Passing programming frameworks is the predominant programming model in 

distributed memory parallel computers.  These computers are referred to as clusters.  A cluster 

is made up of multiple stand-alone computers connected through a fast network and typically 

each computer that is used in the execution of the parallel program in the cluster is loaded with 
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the same program.  The term node is used to denote each computer in the cluster.  Each node 

has a unique identification and it is used to group computers into workers and masters.  In a 

typical arrangement the master node would generate parallel computational tasks which are 

sent through message passing to the worker nodes.  The workers would perform the 

computation and the send the results back to the master nodes.  MPI is the standard 

programming framework used in programming distributed parallel computers (Pacheco, 1997; 

Prasad, Gupta, Rosenberg, Sussman, & Weems, 2015; Snir, Otto, Huss-Lederman, Walker, & 

Dongarra, 1998). 

It is also possible to develop hybrid parallel solutions; increasingly even super computers have 

nodes which consist of general CPUs and GP-GPUs.  A parallel program could for instance be 

written using MPI, OpenMP and CUDA to leverage the capabilities of the nodes attached to a 

cluster (Kedia, 2009; Yang et al., 2011). 

The parallel algorithms presented in this chapter are shared memory parallel algorithm. 

5.3 Selection of Technology Stack for Shared Memory Parallel 
Implementation 

The OpenMP command task was used to spawn new threads.  High level shared memory thread 

programming frameworks such as OpenMP, Intel Cilk Plus have built in schedulers that are 

used to spawn threads.  Developers only implicitly specify the intention of parallelization using 

appropriate commands in the code (Chappell & Stokes, 2012).  A sophisticated runtime 

scheduler in the background handles the creation, assigning work and deletion of threads.  

OpenMP is an industry standard shared memory programming framework which is supported 

by all the major C++ compilers.  OpenMP is used widely as a shared memory parallel 

programming environment. On the other hand Intel Cilk Plus is proprietary, although some of 

its features have crept into the GNU compilers, it has now been officially depreciated from the 

Intel 2018 C++ compiler (Anoop, 2017). 

The developer starts with a serial implementation of a code base and gradually converts it to a 

parallel program by inserting OpenMP directives which produces multithreaded code. This is 

one of the reasons that OpenMP is still popular. OpenMP implements a fork-join execution 

model.  When a single running thread comes across a parallel directive, it activates a group of 

threads to execute multiple work.  The OpenMP task command introduced in OpenMP 3 

departs from the normal execution of having one task per thread allowing a mechanism for 

tasks to be queued to be executed later (Alessandrini, 2015).   
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5.4 Introduction on the Shared Memory Algorithms introduced 
This chapter introduces three new shared memory algorithms.  The selected serial algorithm 

for parallelization is the recursive In-Close3 algorithm.  Since the concepts generated in each 

recursion sub tree is independent a naïve parallelization approach would be to spawn each 

recursive call as a thread running on a separate core.  The Naïve Parallel In-Close3 algorithm 

is presented in Figure 5.1.  This algorithm doesn’t scale well. 

The next two algorithms presented Direct Parallel In-Close3 and Queue Parallel In-Close3 gets 

its inspiration from the PFCbO algorithm. (Krajca, Outrata, & Vychodil, 2010a). In PFCbO 

the recursion level is used as a cutting point to spawn new threads.  A predefined level is 

considered as a design optimization and each time the recursion level reaches this predefined 

level, a new thread would be spawned to compute all the concepts in that specific recursive sub 

tree.  Krajca used a queue to store all the possible recursive sub trees that required computation.  

This was computed serially and once it was completed, the computation of concepts for each 

recursive sub trees were delegated to the different cores of the parallel machine.  A similar 

approach was used in the Queue Parallel In-Close3 algorithm which is presented in Figure 5.9.  

This is the function executed in by the master or the main process.  Once all the recursive sub 

tree calls are recorded in the queue, they are delegated to the different cores of the computer.  

Each core would run the original In-Close3 serial algorithm presented in Figure 5.6.  The Direct 

Parallel In-Close3 algorithm presented in Figure 5.8 doesn’t require a queue, it directly spawns 

a thread to compute the concepts that are there in a given recursive sub tree.  Here too the 

original serial In-Close3 algorithm given in Figure 5.6 is used.  These threads are executed on 

the different cores of the Shared Memory Computer. 

The three new shared memory algorithms are presented in Section 5.5 and Section 5.6 

5.5 Naive Parallel Algorithm for In-Close3 

5.5.1 Introduction 

The algorithm described in Algorithm 5.1 (See Figure 5.1) is the same serial In-Close3 

algorithm described in Chapter 4 (See Figure 4.13).  The only difference is in line 16 where 

the recursive call to the In-Close3 algorithm is invoked in parallel.   
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Figure 5.1, Algorithm 5.1 : Naïve Parallel In-Close3 

Here principally the algorithm spawns each recursive call as a separate thread running on a 

separate core.  The word spawning is used in parallel computing to denote invocation of a new 

child process concurrently.  High level shared thread programming frameworks such as 

OpenMP, Intel Cilk Plus support task parallelism where you can specify that a certain part of 

code needs to be executed in parallel.  In OpenMP this is achieved through the omp task 

command, which however does not guaranty the execution order of the tasks.  The Intel Cilk 

Plus shared memory library which uses the spawn command to achieve a similar effect using 

a different scheduling algorithm guaranties the order in which the given tasks are executed 

(Vladimirov, Asai, & Karpusenko, 2015). 

5.5.2 Performance Evaluation of Naïve Parallel In-Close3 
Table 5.1 shows the performance of the Naïve Parallel In-Close3 algorithm on a Colfax cluster 

node that used an Intel® Xeon ® Gold 6128 @ 3.7 GHz, six core processor with 96GB RAM, 

running a stripped down version of Suse Linux.  This configuration is further described in the 

methodology Section 2.7. 

 

 

Chapter 5

chapter5

number for one line

Algorithm 5.1: Naive Parallel In-Close3

1 ParallelComputeConceptsFrom ((A,B), y, {Ny | y 2 Y })
2 for j  y upto n� 1 do

3 M j  N j

4 if j 2 B and N j [ Yj ✓ B \ Yj then

5 C  A \ {j}#
6 if A = C then

7 B  B [ {j}
8 else

9 if B \ Yj = C"Yj then

10 PutInQueue(C, j)

11 else

12 M j  C"Yj

13 ProcessConcept((A,B))
14 while GetFromQueue(C, j) do
15 D  B [ {j}
16 spawn ParallelComputeConceptsFrom((C,D),
17 j + 1, {My | y 2 Y })

11
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Table 5.1, Average Time obtained for different real datasets, with 95% confidence levels 

Data Set Mushroom  Adult  Internet Ads Student 

|X| x |Y| 8,124 x 125 32,561 x 99 3279 x 15652 587 x 145 

Density 17.36% 11.29% 0.97% 24.50% 

# Concepts 226,920 80,332 16,570 22,760,242 

Time (seconds) 0.518 ± 0.0068  0.182 ± 0.0049 0.107 ± 0.0042 44.470 ± 0.6656 

 

Table 5.2, Average Time obtained for different large artificial datasets, with 95% confidence levels 

Data Set M710G120K  M10X30G120K  T1014D100K 

|X| x |Y| 120,000 x 70 120,000 x 300 100,000 x1,000 

Density 10.00% 03.33% 01.01% 

# Concepts 1,166,343 4,570,498 2,347,376 

Time (seconds) 2.734 ± 0.1127 18.442 ± 0.1101 12.818 ± 0.1297 

The graphs in Figure 5.2 and Figure 5.3, shows that there is no scalability in the Naïve Parallel 

In-Close3 solution.  Speedup is defined as the time taken to run the parallel application using 

one process divided by the time taken to run the parallel process using n number of cores. The 

poor performance of the naïve algorithm implementation can be explained by the fact that 

newly spawned process only produces one concept. Another process is spawned to generate 

the next concept. The overhead of spawning a new thread frequently is significant compared 

to the gains in running the concept generation in parallel. 

 

Figure 5.2, Naïve Parallel In-Close3, Timing 
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Figure 5.3, Naïve Parallel In-Close3, Speedup 

5.6 Existing Parallel FCA Algorithms 
Huaiguo Fu had created a parallel implementation of the NextClosure algorithm but it was 

limited to 50 attributes (Fu & Nguifo, 2004) but this was subsequently greatly extended (Fu & 

Foghlu, 2008).  Krajca (Krajca, Outrata, & Vychodil, 2008) presented a parallel algorithm 

called PFCbO which parallelizes the FCbO algorithm.  This is also a variation of the CbO 

algorithm(Kuznetsov & Obiedkov, 2002).  Andrews’s best of breeds In-Close3 is an 

improvement over the serial FCbO algorithm, where the key difference is the use of partial 

closures instead of full closures (Andrews, 2015).  Krajca had used a queue specific to each 

thread to capture parameters of recursive sub call trees of a specific level of recursion (Krajca 

et al., 2008).  Once all the sub call trees are captured, instances of threads are spawned in a 

round robin fashion to compute the remaining concepts in parallel.   
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Figure 5.4, Algorithm 5.2 : GenerateFrom – Parallel FCbO (Krajca) 

 

Figure 5.4 Algorithm 5.2 is essentially the serial version of FCbO as described by Krajca 

(Krajca et al., 2008). A general parallelization strategy described in (Keutzer & Mattson) is the 

Master Worker pattern where a master process generates a set of tasks which are later executed 

by delegating them to worker processes. Krajca, Outrata, & Vychodil, 2010 presented the 

PFCbO developed based on this pattern.  The Master process ParallelGenerateFrom() 

initially generates a set of tasks by storing them in a queue which is shown in line 2 and 3 (See 

Figure 5.5). Once all the tasks are generated the algorithm proceeds to spawn workers by taking 

one item at a time from the queue.  This is shown in lines 26 to 36 in Figure 5.5.  The tasks are 

broken by a runtime optimization parameter L which represents the level of the recursion call 

sub tree.  Each worker process computes all the concepts at that given level of the recursion 

subtree by calling GenerateFrom() (See Figure 5.4) in lines 29 and 34. 

Procedure GenerateFrom(�A, B�, y)
process B (e.g., print B on screen);1

if B = Y or y > n then2

return3

end4

for j from y upto n do5

if B[j] = 0 then6

set �C, D� to ComputeClosure(�A, B�, j);7

set skip to false;8

for k from 0 upto j � 1 do9

if D[k] �= B[k] then10

set skip to true;11

break for loop;12

end13

end14

if skip = false then15

GenerateFrom(�C, D�, j + 1);16

end17

end18

end19

return20

is true. Note that the “�”-part of (5) is trivial. Moreover, (5) is true iff D agrees
with B on the attributes 0, 1, . . . , y � 1. In other words, (5) is true iff, for each
i � {0, 1, . . . , y � 1}: i � D iff i � B. Thus, condition (5) expresses the fact that
the closure D of B � {y} does not contain any new attributes which are “before
y”. Condition (5) will be used to check whether we should process D. If (5) will
be false, we will not process D because due to the depth-first search method, D
has already been processed.

Description of the Algorithm The algorithm is represented by a procedure Gen-
erateFrom that accepts two arguments. First, a formal concept �A, B� repre-
sented by characteristic vectors of objects A and attributes B covered by the
concept. Second, an attribute y which is the first attribute to be added to B.
�A, B� serves as an initial concept from which we start generating other formal
concepts. After its invocation, GenerateFrom proceeds as follows:

– It processes the formal concept �A, B� (e.g., it prints A and B on screen).
– Then, the procedure checks whether B contains all the attributes from Y , i.e.

whether B represents the greatest intent, in which case we exit current branch
of recursion (lines 2–4).

– The main loop (lines 5–20) iterates over all remaining attributes, starting with
the attribute y. In the body of the main loop (lines 6–18), j denotes the current
attribute which we are about to add to B. The if-condition at line 6 checks
whether j is already present in B. If so, we proceed with another attribute. If
j is not present in B, we try to generate new intent from B � {j} (lines 7–17).

Parallel Recursive Algorithm for FCA 75
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Figure 5.5, Algorithm 5.3 : ParallelGenerateFrom – Parallel FCbO (Krajca) 

 

 

 

Procedure ParallelGenerateFrom(�A, B�, y, l)
if l = L then1

select r from 0 to P � 1 (e.g. r = (
PP�1

s=0 queue[s]) mod P );2

store (�A, B�, y) to queue[r];3

return4

end5

process B (e.g., print B on screen);6

if B = Y or y > n then7

goto line 25;8

end9

for j from y upto n do10

if B[j] = 0 then11

set �C, D� to ComputeClosure(�A, B�, j);12

set skip to false;13

for k from 0 upto j � 1 do14

if D[k] �= B[k] then15

set skip to true;16

break for loop;17

end18

end19

if skip = false then20

ParallelGenerateFrom(�C, D�, j + 1, l + 1);21

end22

end23

end24

if l = 0 then25

for r from 1 upto P � 1 do26

new process27

while set (�C, D�, j) to load from queue[r] do28

GenerateFrom(�C, D�, j);29

end30

end31

end32

while set (�C, D�, j) to load from queue[0] do33

GenerateFrom(�C, D�, j);34

end35

end36

return37

25 after exiting the loop between line 10–24. Here, it either exits the current
branch of recursion (if l �= 0) or continues if the top recursion level (l = 0) has
been reached (i.e., no more branches of recursion are on the call stack).

– On the top recursion level (l = 0), it runs new P � 1 processes running in
parallel (lines 26, 27) and the last step is performed by the new processes too.

– Finally, still on the top recursion level only, in each process, it calls original
GenerateFrom for each formal concept �C, D� and attribute j in the queue

78 Petr Krajca, Jan Outrata, Vilem Vychodil
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5.7 Two additional Parallel variations of In-Close3 

 

Figure 5.6, Algorithm 5.4 – ComputeConceptsFrom – Parallel-In-Close3 

Two additional shared memory parallel In-Close3 algorithms are presented in this thesis.  They 

are the Direct Parallel In-Close3 algorithm (See Figure 5.8) and the Queue Parallel In-Close3 

(See Figure 5.9) algorithm.  Both algorithms have got inspiration from Krajca’s approach of 

parallelization where an entire recursion subtree is assigned to each thread.  The Direct Parallel 

In-Close3 algorithm consists of two functions Parallel_ComputeConceptsFrom() (See 

Figure 5.8) and ComputeConceptsFrom() (See Figure 5.6).  ComputeConceptsFrom() is 

essentially Andrews’s serial version of In-Close3 (Andrews, 2015) with the exception of the 

additional parameter called level which keeps track of the current recursion level.   

In addition the Parallel_ComputeConceptsFrom() function (See Figure 5.8) is identical to 

the ComputeConceptsFrom() function (See Figure 5.6) with the omission of the first two 

lines. The dashed lines shown in Figure 5.8, indicate the lines which are different from Figure 

5.6).  Similar to Krajca’s approach the Parallel_ComputeConceptsFrom() function is 

executed serially by the main process.  This algorithm calls the ComputeConceptsFrom() 

function in parallel (line 3 of Figure 5.8).   The Parallel_ComputeConceptsFrom() 

function is invoked with (", $) = (', '↑).  Where X represents a complete set of objects. Initial 

attribute *	 = 	0	and a set of empty 	-., {-*	 = 	∅	|	*	 ∈ 	3} and 56765	 = 	0.  These values are 

13

Algorithm 5.4: ComputeConceptsFrom - Parallel-In-Close3

1 ComputeConceptsFrom ((A,B), y, {Ny | y 2 Y } , level)
2 for j  y upto n� 1 do

3 M j  N j

4 if j 2 B and N j [ Yj ✓ B \ Yj then

5 C  A \ {j}#
6 if A = C then

7 B  B [ {j}
8 else

9 if B \ Yj = C"Yj then

10 PutInQueue(C, j)

11 else

12 M j  C"Yj

13 ProcessConcept((A,B))
14 while GetFromQueue(C, j) do
15 D  B [ {j}
16 ComputeConceptsFrom((C,D), j + 1, {My | y 2 Y } , level + 1)

Algorithm 5.5: Direct Parallel-In-Close3

1 ParallelComputeConceptsFrom ((A,B), y, {Ny | y 2 Y } , level)
2 if level = LEV EL then

3 spawn ComputeConceptsFrom((C,D), j + 1, {My | y 2 Y } , level)
4 for j  y upto n� 1 do

5 M j  N j

6 if j 2 B and N j [ Yj ✓ B \ Yj then

7 C  A \ {j}#
8 if A = C then

9 B  B [ {j}
10 else

11 if B \ Yj = C"Yj then

12 PutInQueue(C, j)

13 else

14 M j  C"Yj

15 ProcessConcept((A,B))
16 while GetFromQueue(C, j) do
17 D  B [ {j}
18 ParallelComputeConceptsFrom((C,D), j+1, {My | y 2 Y } , level+1)
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the same as that is used for the serial algorithm presented in Figure 4.13.  The parameter level 

is used to keep track of the level of recursion.  The constant LEVEL is an optimization 

parameter that is used to determine the recursion level at which separate processes are spawned 

with the task of computing all the concepts in a given recursive subtree (See line 2 of Figure 

5.8).  For instance if the constant LEVEL is set to two for the recursive call tree given in Figure 

5.7, the tasks that would be assigned to the parallel threads would be 

{5, {6, {8,9,10}},7, {11, {14}},12, {13, {15,16}},17, {18, {19,20}}.  The first available thread 

would be assigned the task of computing concepts of the recursive sub tree 5.  However, since 

there are no children in this sub tree the thread would complete the task as soon as the concepts 

of 5 are computed.  The next available thread in the meantime would have been assigned the 

task of computing the concepts of the recursive sub tree 6.  During the computation the same 

thread is used to compute the concepts of 8,9 and 10 which are discovered and computed at 

runtime.  It is clear in this example that the workloads given to each thread would be different.  

This is one of the disadvantages of this proposed solution.  Another is the fact that concepts 

upto LEVEL two are computed serially.  In the above example the concepts for 1,2,3 and 4 are 

computed serially.  The same disadvantages are there in Krajca’s parallel solution as well. 

 

Figure 5.7, Combined Depth and Breadth First Recursive Call Tree 

 

Krajca used separate queues to store each of the recursive call subtree workloads that were later 

distributed to separate threads in a round robin fashion (Krajca et al., 2008).   The storing of 

tasks was done serially and the spawning of threads was carried out only after the computation 

of all the recursive call subtrees.  The Direct Parallel In-Close3 algorithm spawns new threads 

as soon as they are discovered. 



 

 

83 

 
Figure 5.8, Algorithm 5.5 - Direct Parallel In-Close3 (the dash lines show the difference with Figure 5.6) 

The second parallel In-Close3 algorithm proposed Queue Parallel In-Close3 (see Figure 5.9) 

is closer to Krajca’s PCbO parallel algorithm where a queue is used to store tasks and are later 

assigned to workers.  This algorithm also uses the same ComputeConceptsFrom() function 

(see Figure 5.6) for the worker processes to execute and to a lesser extent by the master process 

in computing concepts above the recursion call tree LEVEL.  In essence in both Direct Parallel 

In-Close3 algorithm (See Figure 5.8) and the Queue Parallel In-Close3 algorithm (See Figure 

5.9) the function ParallelComputeConceptsFrom() is executed serially by the master 

process while the ComputeConceptFrom() function is executed in parallel by worker 

processes. 

 

13

Algorithm 5.4: ComputeConceptsFrom - Parallel-In-Close3

1 ComputeConceptsFrom ((A,B), y, {Ny | y 2 Y } , level)
2 for j  y upto n� 1 do

3 M j  N j

4 if j 2 B and N j [ Yj ✓ B \ Yj then

5 C  A \ {j}#
6 if A = C then

7 B  B [ {j}
8 else

9 if B \ Yj = C"Yj then

10 PutInQueue(C, j)

11 else

12 M j  C"Yj

13 ProcessConcept((A,B))
14 while GetFromQueue(C, j) do
15 D  B [ {j}
16 ComputeConceptsFrom((C,D), j + 1, {My | y 2 Y } , level + 1)

Algorithm 5.5: Direct Parallel-In-Close3

1 ParallelComputeConceptsFrom ((A,B), y, {Ny | y 2 Y } , level)
2 if level = LEV EL then

3 spawn ComputeConceptsFrom((C,D), j + 1, {My | y 2 Y } , level)
4 for j  y upto n� 1 do

5 M j  N j

6 if j 2 B and N j [ Yj ✓ B \ Yj then

7 C  A \ {j}#
8 if A = C then

9 B  B [ {j}
10 else

11 if B \ Yj = C"Yj then

12 PutInQueue(C, j)

13 else

14 M j  C"Yj

15 ProcessConcept((A,B))
16 while GetFromQueue(C, j) do
17 D  B [ {j}
18 ParallelComputeConceptsFrom((C,D), j+1, {My | y 2 Y } , level+1)
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Figure 5.9, Algorithm 5.6 - Queue Parallel In-Close3, (Dashed lines highlight the differences with Figure 5.8) 

The only difference between the two algorithms is that in the Queue Parallel In-Close3 

algorithm the tasks generated are executed only after all the tasks are computed.  Whereas the 

Direct Parallel In-Close3 algorithm the tasks are ready to be executed as soon as they are 

generated, there is no separate explicit queue that is used for this purpose.  In both OpenMP 

and Intel Cilk Plus the decision to spawn a thread is handled by the scheduling algorithm in the 

runtime environment of these parallel programming frameworks.  Both frameworks can store 

a list of tasks that needs to be spawned. 

The Queue Parallel In-Close3 algorithm was implemented using two strategies. The first 

approach called Simple Queue Parallel In-Close3 implementation uses an approach closer to 

Kraja’s approach where in line 20 and 21 represent the queue of tasks (see Figure 5.9).  The 

second variation called OpenMP Queue Parallel In-Close3 runs both line 20 and 21 as separate 

parallel threads and doesn’t use the OpenMP task command. 

14 CHAPTER 5. CHAPTER5

Algorithm 5.6: Queue Parallel-In-Close3

1 ParallelComputeConceptsFrom ((A,B), y, {Ny | y 2 Y } , level)
2 if level = LEV EL then

3 EnQueue(A,B), y, {Ny | y 2 Y } , level)
4 for j  y upto n� 1 do

5 M j  N j

6 if j 2 B and N j [ Yj ✓ B \ Yj then

7 C  A \ {j}#
8 if A = C then

9 B  B [ {j}
10 else

11 if B \ Yj = C"Yj then

12 PutInQueue(C, j)

13 else

14 M j  C"Yj

15 ProcessConcept((A,B))
16 while GetFromQueue(C, j) do
17 D  B [ {j}
18 ParallelComputeConceptsFrom((C,D), j+1, {My | y 2 Y } , level+1)

19 if level = 0 then

20 while DeQueue(C,D, j, {My | y 2 Y } , level) do
21 spawn

ComputeConceptsFrom((C,D), j + 1, {My | y 2 Y } , level)
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5.8 Comparison of the four proposed parallel variations of In-Close3 
The OpenMP implementation of the Parallel In-Close3 algorithms were executed on a single 

node of a Colfax cluster.  By nature, a high end cluster provides dedicated access of the 

compute nodes required to run a program.  This ensures that during the empirical testing that 

all the test results obtained are only as a result of the experimental program that was run. The 

values were computed with the LEVEL set as two.  Table 5.3 and Table 5.4 and shows the 

average time obtained for each of the different real-world datasets and artificial datasets with 

LEVEL set as two and cores set to 12.  The details of the compute node used in the experiments 

is the same that was used in Section 5.5.2.  The 95% confidence level values are also shown in 

results.  The Direct Parallel In-Close3 is the fasted algorithm based on the timings presented in 

Table 5.3 and Table 5.4.  The parallel FCbO (PFCbO) algorithm’s parallelization strategy is 

similar to the strategy used by OpenMP Queue Parallel In-Close3.  Hence to carry out a proper 

comparison the PFCbO algorithm was implemented similar to the OpenMP Queue Parallel In-

Close3 coding.  The comparison between these two algorithms clearly show that the proposed 

OpenMP Queue Parallel In-Close3 is faster for all datasets that were considered.  A proper 

statistical analysis of the results presented in Table 5.3 and Table 5.4 are presented in Section 

5.9.2 

Table 5.3, Real World Dataset Results  (average timing in seconds) for In-Close3 and FCbO parallel algorithms for LEVEL 

= 2 and Cores = 12 with 95% confidence level 

Data Set Mushroom  Adult  Internet Ads Student 

|G| x |M| 8,124x125 32,561x99 3279x1565 587 x 145 

Density 17.36% 11.29% 0.97% 24.50% 

# Concepts 226,920 80,332 16570 22,760,242 

Naïve Parallel In-Close3 

Direct Parallel In-Close3 

Simple Queue Parallel In-Close3 

OpenMP Queue Parallel In-Close3 

OpenMP Queue Parallel FCbO 

0.518 ± 0.0068 

0.105 ± 0.0049 

0.115 ± 0.0041 

0.114 ± 0.0033 

0.176 ± 0.0005 

 

0.182 ± 0.0049 

0.045 ± 0.0024 

0.052 ± 0.0018  

0.054 ± 0.0025 

0.088 ± 0.0073 

 

0.107 ± 0.0042 

0.024 ± 0.0011 

0.063 ± 0.0020 

0.064 ± 0.0032 

0.247 ± 0.0002 

44.470 ± 0.6656 

11.325 ± 0.0226 

11.229 ± 0.0523 

10.776 ± 0.0426 

11.157 ± 0.1108 
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Table 5.4, Artificial Dataset Results (average timing in seconds) for In-Close3 and FCbO parallel algorithms for LEVEL = 

2 and Cores = 12 with 95% confidence level 

Data Set M710G120K  M10X30G120K  T1014D100K 

|G| x |M| 120,000 x 70 120,000 x 300 100,000 x1,000 

Density 10.00% 03.33% 01.01% 

# Concepts 1,166,343 4,570,498 2,347,376 

Naïve Parallel In-Close3 

Direct Parallel In-Close3 

Simple Queue Parallel In-Close3 

OpenMP Queue Parallel In-Close3 

OpenMP Queue Parallel FCbO 

2.734 ± 0.1127 

0.659 ± 0.0007 

0.749 ± 0.0013 

0.698 ± 0.0008 

0.966 ± 0.0018 

18.442 ± 0.1101 

07.002 ± 0.0140 

07.353 ± 0.0099  

08.015 ± 0.1331 

25.580 ± 0.1635 

12.818 ± 0.1297 

04.187 ± 0.0059 

04.992 ± 0.0090 

05.306 ± 0.1081 

16.554 ± 0.1542 

 

The graphs shown in Figure 5.10, Figure 5.11 and Figure 5.12 shows the relative speedup of 

running the datasets M10X30G120K and T1014D100K for the Direct Parallel In-Close3, 

Simple Queue Parallel In-Close3 and the OpenMP Queue Parallel In-Close3 implementations.  

There is a clear drop in performance when then core count reaches four (See Figure 5.10, 

Figure 5.11 and Figure 5.12).  This can be seen across all datasets that were considered.  This 

could be explained due to the fact that the Intel® Xeon ® Gold 6128 processor used in the 

experimental setup has only six physical cores. 

Figure 5.13 shows how the implementation behaved for different values of LEVEL. The best 

results are obtained when LEVEL is set to one.  Krajca had reported best results when LEVEL 

had the value of two (Krajca et al., 2008).  Here too the behaviour of the Internet ad, 

M10X30G120K and T1014D100K dataset is slightly different where it picks up an improved 

performance for LEVEL = 4 and 5. Table 5.5, shows the number of threads called for different 

values of LEVEL for the Mushroom, Adult and Internet Ad datasets.   

 

Table 5.5, No of threads called in parallel for different values of LEVEL 

Level Mushroom Adult Ad Example 

0    1         1        1  1 

1     35      91  371  3 

2       398     1,505     2,041  8 

3    2,307     8,722    4,051  8 

4     8,261     22,259    4,138  0 

5     20,358      26,167    3,003  0 
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    Figure 5.10, Direct Parallel In-Close3 

 

 

 

 

 

 

 

 

 

Figure 5.11, Simple Queue Parallel in-Close3 
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Figure 
Figure 5.12, OpenMP Parallel In-Close3 

For example for LEVEL = 1, the mushroom dataset produces 35 parallel threads.  For LEVEL 

= 2 the number of parallel threads called increases to 398.  The values for LEVEL = 0 and 1 

are computed serially.  Hence 36 recursive calls are handled serially.  For LEVEL = 3 the 

number of parallel threads increases to 2307 and 398+35+1 calls are carried out serially.  The 

reduction of performance as the LEVEL increases can be explained by the increase of the serial 

component of the computation and that the work assigned to each parallel process gets smaller 

as LEVEL increases.  For instance, in LEVEL = 2, 398 processes were responsible for the 

computation of roughly 200,000 concepts, where as in LEVEL = 3, the amount of processes 

had increased to 2,307 to compute a lesser amount of concepts. 

Figure 5.14, show details of an experiment of a series of artificial datasets where the density 

of the context was varied from 20 to 50 and the attributes and objects kept at 100 each. All the 

algorithms show an exponential growth as the density increases for LEVEL = 2 and the number 

of processes = 12. 
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Figure 5.14, Time vs Density for LEVEL = 2, Cores - 12 

 

Figure 5.15 show details of how the algorithms perform in an experiment where the objects of 

the context was varied from 10,000 to 100,000 for LEVEL = 2 and the number of processes = 

12.  The growth shows a linear relationship.  Here the attributes were fixed at 100 and the 

density was fixed at 5%. 

 

Figure 5.15 , Time vs Objects for LEVEL = 2, Cores - 12 

Finally, Figure 5.16 show the performance of the algorithms as attributes were varied from 

1000 to 2000.  The objects and density of the contexts were fixed to 100 and 5% respectively.  
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The OpenMP version of PFCbO performed poorly justifying the relatively poor results it 

obtained for the Internet Ads dataset in Table 5.3. 

 

Figure 5.16, Attributes vs Time for LEVEL = 2, Cores - 12 

5.9 Comparison with PFCbO 

5.9.1 Introduction 

To compare the parallel In-Close3 algorithm’s performance with contemporary parallel CbO 

algorithms, a parallel version of FCbO (PFCbO) was also developed.  Both implementations 

were derived from the serial codebase for In-Close3 and FCbO which was presented in Chapter 

4.  The data structures used were modified for the FCbO variation using exactly the same 

approach as of parallel In-Close3.  Since the Parallel version of FCbO used a queue two 

implementations of the parallel algorithms were made.  OpenMP Queue Parallel FCbO and 

Simple Queue Parallel FCbO are identical to their In-Close3 variants OpenMP Queue Parallel 

In-Close3 and Simple Queue Parallel In-Close3 respectively with the exception of the recursive 

algorithms ComputeConceptsFrom() and ParallelComputeConceptsFrom(). The 

PFCbO variants had their specific implementations of these recursive functions.   

Table 5.3, Table 5.4, Figure 5.14, Figure 5.15 and Figure 5.16 show the comparison of the 

PFCbO algorithm implementations with the In-Close3. The variation is similar to the serial 

implementation comparison presented in Chapter 4.  In-Close3 parallel variations performed 

better than parallel FCbO variations in both random and real world datasets. The PFCbO 

implementation performed comparatively better for the Mushroom and Adults datasets 
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compared to the Internet Ad dataset (See Table 5.3). The graph shown in Figure 5.15  

highlighting the variation of attributes also shows that the PFCbO implementation performs 

poorly when attributes are varied. 

5.9.2 Statistical Significance of the empirical results 

The results obtained in Table 5.3 and Table 5.4 were checked to see if they had statistical 

significance by first carrying out one-way analysis of variance (one-way Anova). 

The null hypothesis in one-way analysis AB is that the means of the empirical timing of all the 

seven algorithms for a given dataset are the same.  We can clearly see that the conditions C >

CEFGH and IJKLMN < P is valid for all six datasets that were analyzed.  Here P was taken as 0.05.   

Table 5.6 shows a summary of the one-way analysis.   

Table 5.6, One-way Analysis of the real-world datasets used in the analysis 

dataset  F  Fcrit Pvalue 

M10X30G120K    35,087.5  2.5787 5.66E-78 

T10I4D100K    11,572.8  2.8663 9.21E-54 

M7X10G120K      1,584.1  2.5787 9.01E-48 

Student    12,443.2  2.5787 7.53E-68 

Ad      7,879.5  2.8663 9.23E-51 

Mushroom    12,239.1  2.5787 1.09E-67 

Adult         987.9  2.5787 3.36E-43 

 

Hence according to the Anova analysis we can reject AB the null hypothesis.  We can conclude 

that for each real-world dataset there exists at least one algorithm that has a mean which is 

statistically different from others.  Section 2.3.2 shows in detail how the one-way analysis was 

carried out. 

To show that the means of the top two algorithms for each dataset has statistical significance 

the t-Test for two sample assuming unequal variances analysis was carried out.  Table 5.7, 

shows a summary of the t-Test. 
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Table 5.7, t-Test for two sample assuming unequal variances analysis for the best two algorithms for each dataset 

dataset tstat mean1 mean2 tCritical two-tail Ptwo-tail algo1 algo2 
M10X30G120K -49.96 7.0021 7.3531 2.1098 6.89E-20 Parallel Direct Parallel Simple 

T10I4D100K -172.81 4.1875 4.9923 2.1314 3.65E-26 Parallel Direct Parallel Simple 

M7X10G120K -97.08 0.6585 0.7005 2.1098 8.95E-25 Parallel Direct Parallel OpenMP 

Student -8.21 10.7766 11.1604 2.1788 2.89E-06 Parallel OpenMP PFCbO  

Ad -17.74 0.0476 0.0634 2.2622 2.61E-08 Parallel Direct Parallel Simple 

mushroom -4.03 0.1041 0.1143 2.1199 9.59E-04 Parallel Direct Parallel OpenMP 

Adult -5.47 0.0460 0.0516 2.1098 4.17E-05 Parallel Direct Parallel Simple 

 

The null hypothesis in the t-Test analysis AB is that the mean values of the two fastest 

algorithms considered are the same.  For all the datasets in Table 5.7 we can clearly see that 

|QRHKH| > 	 QEFGHGEKL	HSTUHKGL and IHSTUHKGL < P is valid.  Here P was taken as 0.05.  Here based 

on the t-Test we can reject AB the null hypothesis.  Hence, we can conclude that Parallel Direct 

In-Close3 is the fastest algorithm for the all the datasets with the exception of the Student 

dataset where the OpenMP Queue Parallel In-Close3 is the fastest algorithm. 

To show that the OpenMP Queue Parallel In-Close3 is faster than the OpenMP Queue Parallel 

implementation of PFCbO the t-Test analysis was carried out for those result sets. 

Table 5.8, t-Test for two sample assuming unequal variances analysis for parallel In-Close3 and parallel FCbO 

dataset tstat mean1 mean2 t Critical two tail Ptwo-tail algo1 algo2 

M10X30G120K -201.95 8.0154 25.5723 2.1009 1.17E-31 In-Close3 Parallel PFCbO 

T10I4D100K -198.15 5.3060 16.5543 2.1314 4.69E-27 In-Close3 Parallel PFCbO 

M7X10G120K -336.15 0.7005 0.9658 2.1604 5.40E-27 In-Close3 Parallel PFCbO 

student -8.21 10.7766 11.1604 2.1788 2.89E-06 In-Close3 Parallel PFCbO 

Ad -17.74 0.0476 0.0634 2.2622 2.61E-08 In-Close3 Parallel PFCbO 

mushroom -41.91 0.1143 0.1764 2.2622 1.25E-11 In-Close3 Parallel PFCbO 

Adult -10.59 0.0541 0.0888 2.2010 4.17E-07 In-Close3 Parallel PFCbO 

 

For all the datasets in Table 5.8 we can clearly see that |QRHKH| > 	 QEFGHGEKL	HSTUHKGL and 

IHSTUHKGL < 0.05 is valid.  Here we can reject AB the null hypothesis.  We can conclude that 

OpenMP Queue Parallel In-Close3 is faster for the all the datasets than the OpenMP Queue 

PFCbO. 
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5.10  Implementation Details 
For the serial implementation of the CbO algorithms predefined large one dimensional arrays 

were used to store the extents and intents of the concepts that were being incrementally 

generated.  A structure was used to capture the other variables would be needed to support 

storing the extents and intents in a one dimensional array.  These structures are referred to as 

scratchpads in this section.  They effectively eliminated the need to use dynamic memory 

allocation to allocate memory on the fly whenever a new concept was computed. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 

typedef struct  { 
 int *values; 
 unsigned int *Start; 
 unsigned int *End; 
 unsigned int mstack; // pointer to last storage 
 unsigned int maxIndex; // Maxindex 
} TLa; 
 
 
typedef struct  { 
 short int *values; 
 unsigned int *Start; 
 unsigned int *End; 
 unsigned int mstack; // pointer to last storage 
 unsigned int maxIndex; // Maxindex 
} TLb; 

Figure 5.17 , Structure of Scratchpad used to store concepts generated 

In Figure 5.17 TLa is the scratchpad that captures the extents while TLb captures the intents. 

The values, Start and End are dynamically allocated arrays and are predefined during 

program initialization. The values property stores the actual data values. The Start and End 

store the starting and end point of each generated concept. 

For instance, if we take a variable of the TLa datatype as defined in the main program La. A 

sample set of values for La is shown in Figure 5.18. 

   La.values 

1 2 7 10 4 11 2 5 9 11 1 2 6 13 22   

    La.Start 

0 4 6 10   

   La.End 

3 5 9 14   

Figure 5.18 , Sample values of Scratchpad 
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The generated concepts in the serial implementation is stored in an integer arrays with the 

names extents[] and intents[] 

For the above example sample values for extents[0] = 0, extents[1] = 2, 

extents[2] = 3, extents[3] = 1.  These correspond to indices of La.Start and La.End. 

For instance the second generated extent (extents[1] has the value 2 which correspond to 

La.Start[2] = 6 and La.End[2] = 9.  The extent is the values stored in indices 6,7,8,9 

of the array La.values {2,5,9,11}. 

A direct approach to do this would have been to use pointers for extents[] and intents[] 

and directly point to the specific values in La.values.  However using pointers has potential 

drawback in vectorization and cannot be directly used in distributed memory solutions. 

For parallel programs using a single common scratchpad such La for storing the extents being 

incrementally generated will create a bottleneck as concepts are generated in parallel.  If such 

an approach is required a mutex would be required allowing only one process to access the 

La.values array, for storing extents. 

A better strategy would be to have separate scratchpads and the approach used in parallelization 

is to have an array of scratchpads.  For instance, La for the shared memory implementation is 

an array of the TLa structure having the array size equal to the number of processors that are 

used.   

Algorithms that use partial closures incrementally build the intents and a B-Tree structure is 

used to capture the intent being generated for storage purposes. For computations a bit array 

version of the complete intent being generated is used.  With the parallel implementation of 

the algorithms that use partial closures, parts of the intent can be stored in different processes.  

In building up the intents that are stored during concept generation, the process in which part 

of the intent was built needs to be captured. 

For the naïve parallel implementation, each recursion call can run in any available processor.  

This requires the capture of the processor id of each part of the intent that is computed in the 

B-Tree structure. 

In the other three implementation strategies, where a complete recursive sub tree is computed 

by one process guaranties that parts of the intent at most is computed by only two processes.  

The later part of the intent will be in the process where the concept is generated, and the initial 

part of the intent will be in the main process.  It is also possible for an intent to be completely 
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defined in the main process or be completely defined in a separate process.  The modification 

needed for B-Tree structure to capture this is far simpler than the naïve parallel implementation. 

The size of the scratchpad is a startup constant, before storing a new intent or extent the code 

would check if there is sufficient room in the scratchpad to store the values, if it is in sufficient 

the program would abort with a suitable error message indicating that the startup value for the 

scratchpad needs to be increased. 

5.11  Implementation details of the Naïve Parallel In-Close3 
Algorithm 

Figure 5.19 shows how the recursive function Parallel_ComputeConceptsFrom() is called 

from the main() function. It is executed in the main master thread. 

 

Figure 5.20 shows the coding that was used to implement the lines 14 to 16 of the Naïve 

Parallel In-Close3 algorithm (See Figure 5.1). Line 8 of the Implementation (See Figure 5.20) 

shows the use of the omp task command that used to spawn a new process. The parameters that 

are used to send the recursive function in line 12 needs to be copied to duplicate variables (See 

line 3, 4) so that they can be persisted by OpenMP in an internal queue.  The OpenMP 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 

if (level == LEVEL) { 
   int *tA; 
   VECTOR_TYPE tBChildBit[VECTOR_MAX_COLS_CELLS]; 
   VECTOR_TYPE *tMBit[ATTRIBUTESIZE]; 
   tA = A; 
   tid = id; 
   memcpy(tBChildBit, BParentBit, nArray*VECTOR_SIZE_BYTES); 
   memcpy(tMBit, NBit, ATTRIBUTESIZE*sizeof(VECTOR_TYPE *)); 
  // Capture the parameters of the function so that it can be called on later 
#pragma omp task firstprivate(tA, ASize, tBChildBit,y, c,level,tMBit,tid) { 
      tid = omp_get_thread_num(); 
      nodeParent[tid + 1][highC[tid + 1][0]] = c + 50000000; 
      ComputeConceptsFrom(tA, ASize, tBChildBit, y, highC[tid + 1][0]++, 
tMBit, level); 
 } 
     return; 
} 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13  

 
while (get(q, &C, CSize, tc, tj, level)) { 
   int *tC;  
   ALIGNED_VECTOR_TYPE(tBChildBit[VECTOR_MAX_COLS_CELLS]); 
   ALIGNED_VECTOR_TYPE(*tMBit[ATTRIBUTESIZE]); 
   tC = C; 
   memcpy(tBChildBit, BChildBit, nArray*VECTOR_SIZE_BYTES); 
   memcpy(tMBit, MBit, ATTRIBUTESIZE*sizeof(VECTOR_TYPE *)); 
   #pragma omp task firstprivate(tC, CSize, tBChildBit,tj, tc,level,tMBit,tid) { 
       tid = omp_get_thread_num(); 
       nodeParent[tid + 1][highC[tid + 1][0]] = c; 
       nodeParentID[tid + 1][highC[tid + 1][0]] = id; 
       Parallel_ComputeConceptsFrom(tC, CSize, tBChildBit, tj+1, highC[tid + 1][0]++, 
tMBit, level); 
} 

 

1 
2 
3 
4 
5 

#pragma omp parallel 
#pragma omp master 
{ 
    Parallel_ComputeConceptsFrom(A, ASize, BBit, 0, 0, NBit, 0); 
} 

 

Figure 5.20, Recursive Call from Naive Parallel In-Close3 Implementation  

Figure 5.19 , OpenMP Initial parallelization code used to call recursive function from main program 
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scheduling engine will execute line 12 only when certain conditions are met.  This implies that 

several omp task requests can be made to OpenMP and this operation is asynchronous  in 

nature.  The nodeParentID array is a new array that was introduced to capture the current 

thread id (processor id). This enables the intents to be reassembled correctly from the BTree 

data structure. 

5.12  Implementation details of the Direct Parallel In-Close3 
Algorithm 

Figure 5.21 corresponds to the lines 2 and 3 of the Direct Parallel In-Close3 algorithm (See 

Figure 5.8). The OpenMP task command is used here as well.  Since an incrementally 

generated intent can reside only on two processes there is no need to use a separate array to 

capture the process id. Instead the nodeParent array (See line 12) which is used to link the 

parent node to the child node has a unique number (50,000,000) added to the current concept 

number c. The algorithm that traverses the BTree easily identifies this and know that the initial 

part of the intent is in the master process. 

Figure 5.21 ,  Directly spawning parallel tasks in Direct Parallel In-Close3 Implementation 
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if (level == LEVEL) { 
   int *tA; 
   VECTOR_TYPE tBChildBit[VECTOR_MAX_COLS_CELLS]; 
   VECTOR_TYPE *tMBit[ATTRIBUTESIZE]; 
   tA = A; 
   tid = id; 
   memcpy(tBChildBit, BParentBit, nArray*VECTOR_SIZE_BYTES); 
   memcpy(tMBit, NBit, ATTRIBUTESIZE*sizeof(VECTOR_TYPE *)); 
  // Capture the parameters of the function so that it can be called on later 
#pragma omp task firstprivate(tA, ASize, tBChildBit,y, c,level,tMBit,tid) { 
      tid = omp_get_thread_num(); 
      nodeParent[tid + 1][highC[tid + 1][0]] = c + 50000000; 
      ComputeConceptsFrom(tA, ASize, tBChildBit, y, highC[tid + 1][0]++, 
tMBit, level); 
 } 
     return; 
} 
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5.13  Implementation details of the Queue Parallel In-Close3 
Algorithm 

The code in Figure 5.22, corresponds to line 2 and 3 of the Queue Parallel In-Close3 algorithm 

(See Figure 5.9).  Here too the number (50,000,000) appears to handle the traversal of the 

BTree.  It’s used to indirectly connect to a child node which resides on a different process that 

of a parent node that resides in the main process.  An explicit queue is used to capture the 

parameters to be sent. 

The code in Figure 5.23 corresponds to lines 19 to 21 of the Queue Parallel In-Close3 algorithm 

(See Figure 5.9).  Here too the OpenMP task command is used for spawning the parallel 

process.  The code in Figure 5.23 spawns the tasks in a different order from that it was captured. 

Finally, the code in Figure 5.24 also corresponds to lines 19 to 21 of the Queue Parallel In-

Close3 algorithm.   Here lines 3 to 17 are run in parallel.  This implementation does not use the 

OpenMP task command.  Line 3 commences a pool of threads which are available and uses 

line 12 to access the specific queue assigned for a given thread. The parallel recursive process 

is spawned within the same thread. 

 

1 
2 
3 
4 
5 
6 
7 
8 

if (level == LEVEL) { 
#pragma omp critical { 
    int thtemp = queItemNo % NO_PROCESSORS; 
    put(que[thtemp], A, ASize, BParentBit, y, c + 50000000, NBit, level); 
    queItemNo++; 
  } 
  return; 
} 

 
Figure 5.22 , Generating parallel tasks in Queue Parallel In-Close3 algorithms 
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5.14  Optimising carried out in the parallel implementations  
The serial In-Close3 implementation was optimised prior to parallelization efforts.  The Intel® 

VTune™ Amplifier XE 2017 was used to identify hotspots which are the parts of the code that 

consumes the most time during execution.  These are the parts the code where optimisation 

will bring the biggest impact on performance. 

 

 1 
 2 
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14 
15 
16 
17 
18 
19 

if (level == 0) { 
   // Spawn new threads for each queue, recursive call from queue 
   for (int thID = 0; thID < NO_PROCESSORS; thID++) { 
      // for each loop one each for each thread 
      int *tA; 
      int tASize; 
      VECTOR_TYPE tBChildBit[VECTOR_MAX_COLS_CELLS]; 
      short int tlevel; 
      int tc, ty; 
      VECTOR_TYPE *tMBit[ATTRIBUTESIZE]; 
      while (get(que[thID], &tA, tASize, tBChildBit, ty, tc, tMBit, tlevel)) { 
      #pragma omp task firstprivate(tA, tASize, tBChildBit,ty, tc,level,tMBit) { 
          id = omp_get_thread_num(); 
          nodeParent[id + 1][highC[id + 1][0]] = tc; 
          ComputeConceptsFrom(tA, tASize, tBChildBit, ty, highC[id + 1][0]++,tMBit, 
tlevel); 
      } 
   } 
} 

 
Figure 5.23, Spawning parallel tasks in Simple Queue Parallel In-Close3 Implementation 
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if (level == 0) { 
  // Spawn new threads for each queue, recursive call from queue 
#pragma omp parallel { 
   // for each loop one each for each thread 
   int thID = omp_get_thread_num(); 
   int *tA; 
   int tASize; 
   VECTOR_TYPE tBChildBit[VECTOR_MAX_COLS_CELLS]; 
   short int tlevel; 
   int tc, ty; 
   VECTOR_TYPE *MBit[ATTRIBUTESIZE]; 
   while (get(que[thID], &tA, tASize, tBChildBit, ty, tc, MBit, tlevel)){ 
        nodeParent[thID + 1][highC[thID + 1][0]] = tc; 
        ComputeConceptsFrom(tA, tASize, tBChildBit, ty, highC[thID + 1][0]++, MBit, 
tlevel); 
    } 
} 
} 

 
Figure 5.24, Spawning parallel tasks in OpenMP Queue Parallel In-Close3 Implementation 
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The hotspot analysis given in Table 5.9, shows that the functions 

IsNjSubSetofBuptoJBit() and AIntersectionColj() take the most time in the 

implementation. 

 

Figure 5.25 , Hotspot Analysis of the Serial InClose3, AIntersectionColj() function 

 

Figure 5.25, shows the Hotspot Analysis of the AIntersectionColj() function.  We can 

also clearly see that the CheckBit() function occupies the most amount of time.  Vladimmirov 

describes in detail strategies that can be under taken to optimize serial code to parallel  

(Vladimirov & Karpusenko, 2013).  These are general instructions that will work well for all 

types of Intel processors including the Intel Xeon Phi many core processors.  The key strategies 

that worked in the optimization of the serial code are data aligning, and using vectorization.  

Data aligning is the process of padding structures so they match the default word sizes of the 

processors.  Vectorization is the process in which a compiler can generate instructions to work 

on multiple data items at once in parallel for certain arithmetic operations. For instance, modern 

Intel Xeon Processors support AVX2 instructions which support 256 bits.  This implies if there 

Function Module CPU Time 

 
IsNjSubSetofBuptoJBit  
 

CBO5.exe  0.667s  

 
AIntersectionColj  
 

CBO5.exe  0.627s  

 
ComputeConceptsFrom  
 

CBO5.exe  0.392s  

 
BuptoJisEqualtoPartialClosureOfCuptoJBit  
 

CBO5.exe  0.325s  

 
malloc  
 

ucrtbased.dll  0.188s  

[Others]  N/A*  0.367s  

 

Table 5.9, VTune™ Amplifier XE 2017, Hotspot analysis of the serial version of In-Close3 
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is a loop that uses a matrix manipulation that involves 32 bit integers then 256/32 number of 

integers can be manipulated by one vector instruction.  Due to variation in vector based 

assembly instructions a programmer would specify the intent of vectorization using compiler 

directives such as #pragma simd or force vectorization using directives such as #pragma 

ivdep (Chappell & Stokes, 2012; Vladimirov & Karpusenko, 2013).   

Once parallelization was carried out by using OpenMP, the VTune™ Amplifier XE 2017 was 

used to see the occupancy of the cores during parallel execution.  OpenMP has a scheduling 

algorithm which handles the parallelization.  This can be tuned using directives. The static, 1 

setting produced the best parallelization results. 

 

Table 5.10, VTune™ Amplifier XE 2017,analysis of Paralel Impleentation 

CPU Utilization: 16.0% 

    Average CPU Usage: 0.641 Out of 4 logical CPUs 

Memory Bound: 21.3% 

    Cache Bound: 0.219 

    DRAM Bound: 0.005 

 

Table 5.10 shows an analysis of running a parallel version of In-Close3 on a Windows Laptop.  

FCA algorithms by nature are memory bound as the computation involved can be handled by 

bitwise operations.  In memory bound applications the bottleneck is the memory access, in 

essence the CPU is starving for data to reach its registers from memory. 

5.15  Discussion and Conclusion 
The current codebase has further room for optimization by removal of mutexes which are locks 

placed when accessing shared memory variables.  The use of mutexes can be limited.  False 

memory sharing is a phenomenon that occurs when multiple cores accesses data which are 

close by, for instance array elements which are close by.  Due to caching these adjacent values 

are loaded to multiple cores, which causes caches to be refreshed during parallel execution 

when one core updates one element.  This can be easily avoided by padding data or ensuring 

that there is a gap between the data items being processed simultaneously (Vladimirov et al., 

2015).   

What are the options for parallelizing the chosen serial algorithm (e.g. shared memory, 

distributed solutions) and which options may be the best in terms of speed and scalability. 
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This chapter introduced three new shared memory parallel algorithms Direct Parallel In-

Close3, Queue Parallel In-Close3 and Naïve Parallel In-Close3.  The limitations of the Naïve 

Parallel In-Close3 algorithm was shown using the scalability graphs presented in Figure 5.3.  

The Direct Parallel In-Close3 and Queue Parallel In-Close3 algorithms scale well and the 

scalability graphs are shown in Figure 5.10 and Figure 5.11.  The Queue Parallel In-Close3 

algorithm was implemented using strategies OpenMP Queue Parallel In-Close3 and Simple 

Queue Parallel In-Close3.  In general the Direct Parallel In-Close3 implementations gave the 

overall best results. 
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6   DISTRIBUTED MEMORY PARALLEL ALGORITHMS 

6.1 Distributed Memory Machines 
Distributed Memory Architecture is a common type of Parallel Computing Architecture.  The 
simplest form of creating a distributed memory architecture type parallel machine is to connect 
multiple computers together through a network. 

 

Figure 6.1, Distributed Memory System (P. Pacheco, 2011) 

Figure 6.1, Shows a typical distributed memory architecture type parallel machine 
configuration (Pacheco, 2011).  Each CPU has a separate Memory, which is not shared.  The 
term Cluster is used to describe such an arrangement of computers.  According to Fynn’s 
classification clusters are Multiple Instruction Multiple Data (MIMD) machines (Flynn, 1966).  
Each CPU can run different instructions working on different data. In Cluster computing each 
computer connected through a high speed network is a commodity computer.   The computers 
that forms the cluster runs a cluster based operating system, which allows the computers to 
work in unison to run parallel applications.   

Purpose built cluster computers are assembled by combining stripped down versions of servers 
which are called blade servers.  Each blade server is built using a modular design and optimizes 
the space and power consumption.  A blade server is fitted to a blade enclosure that can 
accommodate multiple blade servers.  A typical blade server may have multiple CPUs attached.  
A CPU is typically named as a Node (Mani & Jee, 2007). 
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Figure 6.2, shows how a parallel application runs on top of a cluster middleware. A cluster 
based operating system provides the user of the cluster a unified view.  Typically each server 
runs a stripped down version of an operating system that is optimized for performance (Silva 
& Buyya, 1999). A majority of vendors including super computers now prefer a customized 
version of linux distribution for this purpose (Strohmaier, Dongarra, Simon, & Meur, 2018). 

 

 

Figure 6.2,Cluster computer architecture�(Silva & Buyya, 1999) 

 

Figure 6.3, shows the different components and users who interact with a cluster.  A user 
typically remotely logs into the cluster and submits an application to run to a Batch Scheduler. 
The scheduler is responsible for prioritizing the jobs in the queue and to allocate resources in 
the cluster to the application.  A typical job submission will contain the parallel application 
executed, location of the data files and the number of nodes that should be utilized in running 
the application.  In a heterogeneous cluster it will be possible to specify the specific nodes that 
are needed to execute the parallel application (Hussain et al., 2013). 

High Performance Computing (HPC) is an area in computer science where scientists and 
engineers use supercomputers to solve complex computationally heavy applications in a 
multitude of fields.  Typical application scenarios include simulation of natural phenomena 
using numerical methods.  Super Computers are specialized clusters that are highly optimized 
for computations and can perform computations exceeding petaflops (1016 floating point 
operations per second) (Saecker & Markl, 2013). 
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Figure 6.3,A cluster computing system architecture (Hussain et al., 2013) 

6.2 Distribued Memory Parallel Programs 
One general approach that we can use to program such a system is to write separate programs 
that run on different CPU’s.  Each program carries out a specific task similar to members of a 
project team that work independently on different aspects of the project.  If the team is small 
the project leader can individually assign the work to each of the members of the project.   
However, this arrangement is not possible to manage if the team grows to a larger number.  A 
simple scalable approach the project manager can adopt is to keep a generated list of tasks that 
needs to be completed and randomly assign it to members. 

Due to scalability and performance reasons, distributed memory computers typically adopt a 
similar strategy of the project manager.  Single Program Multiple Data (SPMD) is the 
technique used to achieve parallelism where all nodes running the parallel application run the 
same program, where the main node (master) distributes work to the other nodes (workers) 
based on their availability.   

These programs would need to communicate the work to be assigned, and the results computed 
by sending messages similar to how the project members who would use email as their 
communication mechanism. 

6.3 Existing Parallel FCA Algorithms 
Huaiguo Fu had created a parallel implementation of the NextClosure algorithm (Fu & Foghlu, 
2008; Fu & Nguifo, 2004).  Krajca (Krajca, Outrata, & Vychodil, 2008) presented a parallel 
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algorithm called PFCbO which parallelizes the FCbO algorithm. There have been several 
attempts to develop distributed parallel FCA algorithms.  Krajca and Hu have presented Map 
Reduce versions of FCA algorithms (Krajca & Vychodil, 2009; Xu, de Fréin, Robson, & 
Foghlú, 2012). Kengue has developed a MPI implementation for Closed Itemsets and 
Implication Rule Bases (Kengue, Valtchev, & Djamegni, 2007).  

6.4 Proposed Distributed Memory Algorithms 
The key criteria that was considered in the technology to be used in developing the distributed 
parallel algorithm was the selection of an implementation that produces the fastest 
computational speeds.  Today’s Big Data buzz word technologies such as Apache Spark which 
is 100 times faster than Hadoop, is still extremely slow compared to MPI which is the defacto 
programming standard in High Performance Computing (HPC) (Reyes-Ortiz, Oneto, & 
Anguita, 2015). 

Mattson, details Patterns that can be used for distributed parallel computing.  These patterns 
are best practices that have been developed in the industry. The Master Slave Pattern using the 
SPMD model is ideal for the implementation of recursive algorithms (Mattson, Sanders, & 
Massingill, 2004). Figure 6.4 shows the flowchart of the Master/Worker Pattern. One of the 
processors in the distributed system acts as the Master and all other processes act as workers. 
The master process computes a set of tasks that need to be computed. These are delegated to 
each worker that is available until all tasks are carried out. In the implementation, all the 
processors run the same program.  Each processor is identified by a unique number called the 
rank.  The parallel program has different sections for the Master Process and the Worker 
Process based on the rank. 

 



 
107 

 

Figure 6.4, Master Worker Pattern (Mattson, Sanders, & Massingill, 2004) 

The flowchart shown in Figure 6.5 gives a high-level view of how the distributed version of 
In-Close3 algorithm is implemented.  The solution involves the use of one Master Node, one 
Result Node and multiple Worker nodes.  When parallelizing a serial algorithm, a shared 
memory implementation requires less refactoring compared to a distributed memory 
implementation.  This is partly due to how one writes shared memory programs using a library 
such as OpenMP compared to a distributed parallel programming library such as MPI.  The 
major difference in distributed memory parallel programs is that data and results cannot be 
shared among the different processors directly using the same variables. 

In parallelizing In-Close3 initially the shared memory algorithm and implementations were 
developed.  Subsequently a distributed memory parallel algorithm and implementation was 
developed. In transforming the shared memory algorithm to the distributed memory algorithm 
it was decided to spawn worker nodes as soon as parallel task was identified.  Due to this 
decision, the Master Process will serially compute a set of parallel tasks and may continue to 
still work on the generation, when a Worker completes the allocated task.  A Result Process is 
introduced to capture incoming results from workers after their allocated task is completed.  In 
the algorithm presented only one Result Process was used, this could however be extended to 
multiple nodes as part of an optimizing process. 

The master node reads the context file which contains the data to be processed and broadcasts 
this to all nodes in the distributed parallel computer.  This is then broadcasted to all the workers 
as a message which allows each of the worker nodes to keep a local copy of the entire context 
which is needed in the computation.  Figure 6.16, shows a visual representation of how data is 
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transmitted between the node.  The think lines represent the one off broadcast sent from the 
Master Node to the Worker nodes to transfer the dataset (context).  The dashed lines from the 
Master Node to the Worker nodes represents the parameters sent to invoke the recursive sub 
tree computation of concepts.  Finally the Worker to Result Node dashed lines show the flow 
of the concepts generated from the workers to the result node.  This is further described in 
Section 6.5. After the broadcast has been done the master node starts computing concepts 
starting from the root of the recursive call tree.  The decision to send part of the recursion sub 
tree to a worker is based on a parameter (LEVEL) which keeps track of the recursion level.  A 
similar approach was used in the shared memory algorithm as well.  When a suitable task which 
can be parallelized (i.e. a recursive call subtree) is found, the task is sent as a message to a 
Worker Node who is ready to undertake the given task.  The Master Node continues to do this 
until it has exhausted all parallel tasks that need to be sent.   
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Figure 6.5, Flowchart of Distributed Memory Parallel In-Close3 
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A worker who gets a message containing a task that needs to be computed, starts computing 
the concepts until all the concepts which come under the specific recursive call sub tree is 
completed.  The result set are sent to the Results Process. The Result Process takes the result 
set obtained and stores the results to disk.   

Figure 6.6 shows detail pseudo code of the distributed memory parallel In-Close3 algorithm.  
The main function listed in Figure 6.6 shows how the Master Process reads the context and 
broadcasts it to all the nodes available.  It also shows how the Master Process, Worker 
Processes and the Results Process executes their respective functions MasterProcess(), 
WorkerProcess() and the ResultProcess().  

The MasterProcess() function described in Figure 6.6 (see line 17), initially calls the In-
Close3’s MainRecursiveFunction() (see line 54) with details of the first concept and 
recursion level zero.  Once the main recursive function has completed the computation the final 
results are sent to the Result Process using the SendResultMessage() function.  Next the 
MasterProcess() iterates through all workers to check if they are ready to accept a task and 
then sends a message to terminate the Worker.  Finally, a message is sent to the Result Process 
to terminate the Result Process.  
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Figure 6.6(a), Pseudocode - Part 1 - Distributed Memory Parallel In-Close3 
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int function main() 
   // mpi initializations 
   if master then 
      read context 
   endif 
   broadcast context 
   if master then 
      MasterProcess() 
   elseif worker then 
      WorkerProcess() 
   elseif resultsprocess then 
      ResultsProcess() 
   endif 
   // mpi closures 
end 
 
void function MasterProcess()  
    MainRecursiveFunction(parameters,0) 
    SendResultMessage()  
    // after we have got all child results (they may be still working) 
    foreach worker 
       readmessage 
       if ready then 
          sendmessagetoworker to quit 
       endif 
    endforeach 
    sendmessagetoresultsprocess to quit 
end 
 
void function WorkerProcess()  
   while (true)  
      SendMessage(ready) 
      ReceiveMessage(); 
      if workload then 
         WorkerRecursionFunction() 
         SendResultMessage() // concatnated results 
      elseif exit then 
         break; 
      endif 
   endwhile 
end 
 
void function ResultsProcess()  
    while (true)  
       SendMessageToProcess(ready) 
       ReceiveMessageResults(); 
       if results then 
          ProcessResults() 
       elseif exit then 
          break; 
       endif 
    endwhile 
end 
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The MainRecursiveFunction() described in Figure 6.6 (See line 54) accepts the parameters 
of the concept being handled and the recursion level as parameters. When the recursion level 
reaches the predetermined LEVEL the details of the parameters which is effectively the starting 
point of the recursion sub tree will be sent to a Worker Process using the 
SendMessageToWorker() function. This function which is also in Figure 6.6, initially sends 
a message requesting for a worker process who is ready to respond and sends a message 
containing the recursive subtree to the worker process. 

Each worker runs the WorkerProcess() function which is shown in line 30. This process runs 
in an infinite loop. Inside the loop a worker initially sends a message to the master process 
indicating that it is ready to accept a task.  Once it receives a message from the master process, 
it checks if the message contains a task to be processed or whether it is a termination signal.  If 
the worker has received a task to process it invokes the WorkerRecursiveFunction() in 
line 35.  The WorkerRecursiveFunction() described in line 67 is similar to the 
MainRecursiveFunction() with the exception that it processes all the concepts that comes 
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void function MainRecursiveFunction(parameters, 
        recursionlevel)  
   if recursionlevel = LEVEL then 
      SendMessagetoWorker(parameters) 
      return 
   endif 
   // body of recursive function 
   if isCanonical()  then 
      MainRecursiveFunction(parameters, recursionlevel+1) 
   endif 
   storeResults() 
end 
 
void function WorkerRecursionFunction(parameters)  
   if isCanonical() then 
      WorkerRecursionFunction(parameters) 
   endif 
   storeResults() 
end 
 
bool function isCanonical()  
   if concept is new then 
      return true 
   else 
      return false 
   endif 
end 

void function SendMessagetoWorker()  
   ReadMessagefromWorker() 
   if workerready then 
      SendMessage() 
   endif 
end 

 

Figure 6.6(b), Pseudocode - Part I1 - Distributed Memory Parallel In-Close3 
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under the purview of the recursion subtree. The WorkerRecursiveFunction() is recursively 
called in line 69 based on the cannocity test.  The isCanonical() function in line 74 
essentially is used to check if a new concept has been generated.  If the concept is new this 
function returns true otherwise it returns false.  At the end of computing all the concepts that it 
can compute, the WorkerRecursiveFunction() calls StoreResults() in line 71 to send 
the results to the Result Process. 

In the MainRecursiveFunction() (See line 54) for concepts at the higher level of the 
recursion subtree concepts are computed similar to the WorkerRecursiveFunction().  The 
recursion occurs in line 62 based on the same cannocity test. 

The Result Process runs the ResultProcessorFunction() (see line 67) which is shown in 
line 43.  Like the Worker Process this too runs in an infinite loop.  First it sends a message to 
the workers and the master process that it is ready to receive a result set.  Once it receives a list 
of results from a worker it processes the results, saves them to the hard disk and gets ready to 
receive another result set.  The Result Process can also receive a result set from the master as 
well.  Finally the master process will send a terminate signal which the Result Process will use 
to wrap up operations. 

 

 

 

 

 

In distributed memory parallel algorithms, the parameters of functions that are spawned in 
parallel needs to be serialized into messages and sent. The parameters in the 
WorkerComputeConceptsFrom() function shown in Figure 6.8 needed to be sent from the 
Master Process to the worker processes. A C structure which contains an aggregation of all the 
parameters called tParaCompund was defined (See Figure 6.7).  The serialization process 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
  

// Parameters for recursive function 
typedef struct { 
 int A[OBJECTSIZE];   
 int ASize;  
 VECTOR_TYPE BParentBit[VECTOR_MAX_COLS_CELLS];  
 int y;  
 int c;  
 short int level;  
 int flag; //  (TRUE -  valid, FALSE (exit)) 
 VECTOR_TYPE NBitFlag[VECTOR_MAX_COLS_CELLS];  
 VECTOR_TYPE NBit[(VECTOR_MAX_COLS_CELLS) * ATTRIBUTESIZE];  
} tParaCompound; 

 
Figure 6.7, User defined type representing the Recursive Algorithm Parameters 

 
 
void WorkerComputeConceptsFrom(int A[], int ASize, VECTOR_TYPE *BParentBit, 
             int y, int c, VECTOR_TYPE *NBit[],short int level )  

 
Figure 6.8, WorkerComputeConceptsFrom() function prototype 
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involves copying all the parameters into this C Structure.  The MPIPackData() function listed 
in the Appendix Figure B.1 shows in detail how the parameters in the Master Process are copied 
to a variable of the tParaCompund structure type. Section B.1 describes in depth how the data 
structures needed for message passing are defined in MPI and how the data is packed 

(serialized) and unpacked (de-serialized) by the sender node and receiver node respectively. 
The SendMessageToWorker() function listed in Figure 6.9, shows how the parameters that 
needs to be sent to the worker processes are copied to a variable of the tParaCompound C data 
structure and sent to workers using the MPI_Ssend() MPI method.  Initially the 
SendMessageToWorker() function gets details of a worker process that is ready to accept a 
task through the ReceiveWorkerMessage() function which is shown in Figure 6.11.   

 

 

 

 

 

The MPI_ANY_SOURCE parameter used in line 4 of the MPI_Recv() MPI function in  Figure 

6.11, allows the Master Process to select any one of the free Worker Processes.  The status 
parameter which it returns captures the rank of the selected worker process.  A message that 
the Master Process receives with the flag set to true, is a validation to check that the sender is 
truly readly to accept a workload.  Only a worker process will send a message to the master 
process indicating that it is ready to accept a new workload.  In the SendMessageToWorker() 
function the MPIPackData() function does the actual copying of the parameters to the C 
Structure. The NBit[] array which is used to capture the canonicity test failures can contain 
blank values.   
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// Master Process Sends Message with Tasks to spawn to the Worker Processes 
void SendMessageToWorker(tParaCompound &msg, const int *Av, const int &ASize, const VECTOR_TYPE 
*BParentBit, const int &y, const int &c,  VECTOR_TYPE *NBit[], const short int &level) { 
   MPI_Status status; 
   if (ReceiveWorkerMessage(status)) { 
 MPIPackData(msg, Av, ASize, BParentBit, y, c, NBit, level); 
    mpidebugflag = false; 
 
 MPI_Ssend(&msg, 1, TaskType, status.MPI_SOURCE, 0, MPI_COMM_WORLD); 
   } 
} 

 Figure 6.9, SendMessageToWorker() function 

Figure 6.10, ReceivePayload() function 
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// Master getting a message from a worker that he is ready 
bool ReceiveWorkerMessage(MPI_Status &status) { 
   int flag; 
   MPI_Recv(&flag, 1, MPI_INT, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status); 
   if (flag) 
      return true; 
   else 
      return false; 
} 
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The MPIPackData() function, shown in the Appendix B copies the parameters used in the 
Master Process to the C++ structure parameter called msg which is of the tParaCompound 
type. The ReceivePayload() function shown in Figure 6.10, calls the MPIUnPackData() 
function to de-serialize the data that it receives.  

All valid messages that contain data are sent with the flag set to true.  The two kill process 
functions SendKillMessageToWorker() and SendKillMessageToResults() sends a 
message with the flag set to false (See Figure 6.12 ).  This is checked by the main loops running 
the worker and results processes (See Figure 6.6).  These functions are called by the Main 
Process once all the computations have been completed. 

In the current implementation the Result Process dumps the computed results (concepts) to the 
disk enabling the Master Process to finally assemble and display all the computed concepts. 

The Distributed Parallel In-Close3 implementation was tested on the Archer Super Computer1.  
Each Node has two Intel Xeon E5-2697v2 processors connected with each processor having 
12 cores. A single node has 64GB of RAM.   The graphs containing the performance results of 
running the real world datasets Mushroom, Adult and Internet Ad are shown in Figure 6.13, 

                                                
 

 

 

 

 

 

1 http://www.archer.ac.uk 
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// Worker Processes Receive Payload from the Master Process with task details to  
// spawn or a Kill Message from the Master Process 
bool ReceivePayload(int *Av, int &ASize, VECTOR_TYPE *BParentBit, int &y, int &c, VECTOR_TYPE 
*NBit[], short int &level) { 
 tParaCompound msg; 
 MPI_Status status; 
 MPI_Recv(&msg, 1, TaskType, MPI_ANY_SOURCE, MASTER, MPI_COMM_WORLD, &status); 
 
 bool flag = MPIUnPackData(msg, Av, ASize, BParentBit, y, c, NBit, level); 
 return flag; 
} 

 

Figure 6.11, ReceivePayload() function 
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Figure 6.14. The peak performance obtained varied with the datasets used. Mushroom gave 
the best results at 18 cores, Adult at 12 cores and Internet Ad at 6 cores.  A detail expanded 
version of the experiments carried out for the Mushroom dataset is presented in Figure 6.15.   

We can see clearly that the performance of the Mushroom dataset increases upto 18 cores and 
then it subsequently decreases. 

 

Figure 6.12 , SendKillMessageToWorker() and SendKillMessageToResults() functions 
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void SendKillMessageToWorker(const MPI_Status &status) { 
   tParaCompound msg; 
   msg.flag = false; 
   MPI_Ssend(&msg, 1,TaskType, status.MPI_SOURCE, 0, MPI_COMM_WORLD); 
} 
 
// Master Process sends the kill Message to the Results Process 
void SendKillMessageToResults() { 
   int position = 0; 
   int flag = false; 
   MPI_Pack(&flag, 1, MPI_INT, resultsBuffer,4, &position, MPI_COMM_WORLD); 
   MPI_Ssend(resultsBuffer, position, MPI_PACKED, RESULTS, 0, MPI_COMM_WORLD); 
} 
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Table 6.1 shows the running times of the mushroom dataset for different processor 
configurations. From the above results, we can see that the implementation runs without issues 

Figure 6.13, Real World data sets, Distributed Memory Parallel In-Close3 Time vs Processors 

Figure 6.14, Mushroom, Distributed Memory Parallel In-Close3 Time vs Processors and Speedup vs Processors 
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Figure 6.15, Mushroom, Distributed Memory Parallel In-Close3 Time vs Processors and Speedup vs Processors 
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up to 48 physical processors simultaneously.  In the above example each processor was loaded 
upto two cores only.  There is no significant variation in the timing given the same number of 
cores.  The overhead due to message passing is seen with the increase of the number of cores. 

Table 6.1, Running Times of Mushroom of Distributed Parallel In-Close3 on the Mushroom dataset 

 

 

 

 

 

 

Table 6.2 shows a comparison of the distribution of running the Direct Parallel In-Close3 
implementation and the Distributed Parallel In-Close3 Implementation running on one 
compute Node in the Archer super computer. In both instances all the cores were utilized.  We 
can see that the Distributed Memory Implementation performs better than the shared memory 
Implementation in this specific instance where the Mushroom dataset is computed.    

 
 
 

Table 6.2, Comparison of the Shared Memory implementation (Direct Parallel In-Close3)  and  
the Distributed Parallel In-Close3 Implementations running on the Archer Super Computer Intel Xeon E5-2697v2 

 

 

 

 

 

 

 

Nodes Processors Cores Time (s) 
01 02 24 0.0537 
12 24 24 0.0540 
02 04 48 0.0615 
12 24 48 0.0589 
24 48 48 0.0593 
03 06 72 0.0667 
04 08 96 0.0834 
24 48 96 0.0737 

 
Implementation Nodes Processors Cores Time (s) 

 
Shared Memory 01 02 24 0.1135 

 
Distributed 01 02 24 0.0537 
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6.5 Discussion of the Distributed Memory implementation of In-
Close3 

6.5.1 Experiments carried out 
  

The main outcome of developing the distributed memory algorithm was to develop a 
functioning implementation.  Table 6.1 clearly shows that the implementation scales well upto 
even 24 nodes, which means that the distributed implementation ran on 48 processors 
simultaneously.  The mushroom dataset is a real word dataset. 

The implementations were tested on the UK National Super computer Archer2 which is a Cray 
XC30 which has a Cray Aries interconnect connecting 4 Nodes.  The MPI latency using the 
Cray Aries interconnect is 1.3 micro seconds.  When using more that 4 Nodes the optical cables 
with a latency of 100 nano seconds needs to be used.  The hard disk space allocated to the 
compute nodes is a high performance parallel luster file system. 

The experimental setup for getting timing results is described briefly.  Figure 6.16, shows a 
visual representation of the execution of the distributed memory implementation of parallel In 
Close3.  The double arrows show the secondary storage Input/Output operations and the single 
arrow from Master to Worker shows the single broadcast operation where the entire dataset 
(context) is copied to all worker nodes.  The dashed arrows represent the data message that are 
sent from the Master Node to the Worker nodes and the Worker nodes to the Result nodes.  
The messages sent from the Master Node to the Worker Node contain the parameters sent to 
the Worker to execute part of the recursive sub tree.  The Worker to Result node contain the 
generated concepts. 

                                                
 

 

 

 

 

 

2 http://www.archer.ac.uk 
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Figure 6.16, Visual Representation of the execution of the distributed memory implementation of parallel In-Close3 

To be consistent with the serial and shared memory timing results the Secondary Storage 
input/output operations were excluded. Before the algorithm can start execution properly, all 
worker nodes need to have a complete copy of the context.  The context is broadcast by the 
Master Node to all the worker nodes at the beginning.  This too was not considered as part of 
the timing as both the serial and shared memory experiments, the time taken to load the context 
to memory was not considered.  For timing purposes, the results were not stored to in the 
secondary storage.   

One of the major reasons for non-deterministic behaviour for a distributed system are 
input/output operations and network operations.  By eliminating the disk I/O operations and 
broadcast operations, the experimental results show less variability.  

Each worker node gets a complete copy of the context at the very beginning and requires only 
the specific parameters needed to compute a specific sub tree of the recursive solution.  
Technically the algorithm running inside the worker node could be any FCA algorithm which 
can compute the concepts for the given sub tree.  It requires no further interaction with other 
nodes until all the concepts in the recursive sub tree is computed.  Thus, the worker node should 
contain the fastest serial implementation of generating concepts.  Serial implementations of the 
Next Closure and other simpler algorithms were found to be slower than the serial CbO based 
algorithms. 
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Results 

Master

Worker

Worker

Worker

Result

Broadcast 
dataset 

Messages



 
115 

6.5.2 Validation and Testing of the Implementation 
The key aspect of developing distributed memory solutions is to initially ensure that the 
implementations work 100% correctly serially.  After message passing is introduced to send 
data across nodes, unit tests need to be carried out to ensure that the data is marshalled correctly 
from the sender to the receiver.  Unlike web service calls, where one doesn’t need to worry 
about packing and unpacking data, MPI requires the developer to pack and unpack the data 
that is sent across nodes.  Minor mismatches on the data formats of the messages is a common 
cause of errors. 

Debugging parallel programs is extremely difficult compared to serial programs.  Distributed 
memory applications has its own unique set of challenges to identify the cause of errors.  When 
a program crashes a set of log print statements may help identify the statement that caused the 
system to break.  The Cray ATP (Abnormal Termination Processing) was used to identify the 
exact location that caused a program to crash.  Once enabled the tool generates a report which 
can be used to infer the root cause for the program crash. 

Once the implementations were producing results without any errors, a similar approach used 
in serial programs was used validate the results.  The output of the complete concept listing 
was compared with known results using the linux diff utility. 

6.5.3 Optimization of the Implementation 
The distributed Memory Parallel implementation of In-Close3 can be optimized by logging the 
performance of each of the specific workers.  In the current implementation only one node is 
assigned to act as the Result Worker, this could be a bottleneck with the increase of 
computational nodes.  The code can be easily refactored to take into account multiple Result 
Worker.  Another major bottleneck in distributed memory algorithm implementations is the 
message passing.  The master process, worker process and result process should ideally be able 
send messages with minimum delays.  An analysis of a log containing the timing of messages 
which are sent through and forth different processes could reveal insights of potential 
bottlenecks. 

A hybrid solution where a shared memory version of the algorithm runs in the worker node 
can also be considered to improve performance.  However hybrid solution consisting of 
distributed and shared memory algorithms is in general complicated to optimize (Kedia, 2009). 
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7  CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

7.1.1 Major Contributions of the Thesis 

The major contribution of the thesis was the presentation of seven new FCA based algorithms.  

The three parallel algorithms Distributed Parallel In-Close3, Queue Parallel In-Close3 and 

Direct Parallel In-Close3 are the significant algorithms that are described.  The Naïve Parallel 

Algorithm demonstrated the simplest approach in parallelizing a recursive algorithm.  However 

its scalability is limited due to the less amount of computation each processor has to perform.  

The three serial algorithms presented in Chapter 4 were useful to explore all permutations of 

the three major enhancements to the CbO family of algorithms. 

The implementation of the three parallel algorithms showed scaling with increase number of 

processors.  However the distributed parallel In-Close3 algorithm should show the highest level 

of scalability.  It was found that the algorithms by nature were memory bound, this is due to 

the fact that the computations required to generate concepts were not significant compared to 

compute bound problems.   In general memory bound algorithms do not scale well compared 

to compute bound problems. 

The implemented shared memory algorithms were compared with PFCbO and found to be 

faster.  The serial and shared memory implementations were run on multiple computer 

configurations including a Laptop, High-end Cluster and a Super Computer.  Similar results 

were obtained all three configurations validating the experiments carried out didn’t depend on 

the Hardware. 

7.1.2 Analysis of Serial CbO based algorithms  

This thesis presented a thorough investigation of the state-of-the-art serial Formal Concept 

Analysis (FCA) algorithms.  The CbO family of FCA algorithms were selected and the core 

features of the variations of existing CbO algorithms were isolated and combined in different 

permutations to analyse each of the core features and the algorithms. Both empirical and 

theoretical analysis were carried out for the eight different CbO variants that were considered. 

This included three new algorithms CbO-FC-DBF, CbO-FC-ICF-DF and CbO-PC-ICF-DF.  

These combined the three core features, combined depth and breadth search, partial closures 
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and the inheritance of failed canonicity tests in a unique way compared to existing CbO 

algorithms.  For the empirical analysis all the eight CbO variants were developed in a level 

playing field ensuring changes in the implementations were only due to the variations in the 

high level algorithm.  Out of the three features considered there is a significant performance 

improvement when partial closure with incremental closure of intents is used in isolation.   

However, there is no significant performance improvement when the combined depth and 

breadth first search or the inherited canonicity test failure feature is used in isolation.  The 

inherited canonicity test failure combined with the combined depth and breadth first feature 

produces better performances. It was also observed that partial closure with incremental closure 

of intents combined with depth and breadth first search also produces positive results.  Partial 

closure with incremental closure of intents combined with the inherited canonicity test failure 

feature also produces positive results. Both empirical and theoretical analysis that was carried 

out confirmed that the best performance was gained by combining the three core features. This 

is essentially the CbO-PC-ICF-DBF algorithm presented in Chapter 4 which is Andrews In-

Close3 algorithm. 

7.1.3 Parallelization of In-Close3 

The In-Close3 algorithm was the basis for the parallelization effort.  Both shared memory and 

distributed memory parallel solutions were explored.  This resulted in three shared memory 

parallel In-Close3 algorithms and one distributed memory parallel In-Close3 algorithm. All the 

proposed algorithms were implemented in a level playing field and tested empirically making 

use of the UK National Super Computing Service Archer1 and Colfax Clusters2. 

The results demonstrate that CbO based algorithms which are naturally recursive by nature, 

can be easily parallelized with only minor changes to the codebase.  OpenMP tasks can be used 

for this purpose where an entire recursive call sub tree can be assigned to separate threads.   

Out of the three shared memory parallel In-Close3 presented the direct parallel In-Close3 and 

OpenMP queue parallel In-Close3 provided the best performances.  The scalability of the 

parallel algorithms depended on the dataset being used. 

                                                

1 http://www.archer.ac.uk 

2 https://colfaxresearch.com 
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7.1.4 Analytical Analysis of Serial CbO based Algorithms 

Chapter 4 presents an analytical analysis of serial CbO based Algorithms. An analytical 

comparison method can be carried out to compare similar classes of algorithms.  This can 

provide a better insight on how a specific algorithm behaves as opposed to traditional 

algorithmic analysis based on Big O notation.  In addition, a proper theoretical analysis of a 

series of similar class of algorithms is a complicated task.  The empirical results obtained 

confirm the analytical results obtained.  The implementations presented in Chapter 4 were not 

optimized and were also compiled in debug mode to ensure that the compiled code was an 

accurate representation of the source code, which in turn directly corresponded to the 

algorithm. 

7.2 Discussion 

7.2.1 Debugging Parallel Programs 

There was a significant investment in time debugging the parallel implementations of In-

Close3.  One of the major challenges was the lack proper debugging tools to debug parallel 

programs compared to serial ones.  This is due to the complex and unpredictable way a given 

parallel program is executed on a parallel computer. Each time you run a parallel program the 

way workloads are distributed to different cores vary.  This is because for scalability reasons a 

parallel programmer does not explicitly state how different tasks are parallelly allocated to the 

cores available on a given computer.  Instead a runtime scheduler handles the actual job of 

spawning tasks to available cores. 

One of the main lessons learnt during the development of parallel implementations was the 

importance of doing thorough testing of the serial implementations.  A significant number of 

the bugs discovered in the parallel implementations were found to be minor bugs which 

manifest in serial implementations only under specific circumstances.  The importance of 

proper software engineering practices such as test-driven development cannot be further 

understated when one is moving on to writing parallel code. 

The most challenging debugging issues came with the MPI implementations.  This was because 

the code needed to be completely rewritten to handle the message passing.  It was very easy to 

introduce errors by not coding the messages that are sent and received.  The debugging tools 

in the Archer supercomputer could tell you where a program crashed but not the reason for it 

to fail.  Since messages are the key components in MPI, unit tests can be developed to see if a 
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message that is sent from one node is received correctly at the receiving end.  Data that is sent 

needs to be serialized (packed) and deserialized (unpacked). 

7.2.2 Cross platform Development and Parallel Architectures used for 
experiments 

An early attempt was made to make the codebase that was implemented to be platform 

independent and compiler independent.  Part of the requirement came with the nature of the 

computers that were to be used for testing the parallel algorithms.  Both the Archer 

Supercomputer and Colfax Clusters used a variety of Intel based Processors running the Linux 

operating system.  The development of the serial and parallel versions of the CbO algorithms 

used for empirical testing was originally carried out on a Windows Computer and during the 

latter part of the research on a Mac OS.  The compilers used for development were Microsoft 

Visual C++, Intel C++ Compilers and GNU C++ compilers.  For the testing environment the 

Archer Super Computer which is a Cray XC30 MPP Supercomputer had a Cray C++ Compiler 

as the preferred compiler. 

The implementations were tested on a cluster node containing two Intel Xeon E5-2697v2 with 

12 cores each connected through a NUMA configuration.  Both Archer and Colfax have these 

processors.  In addition, the implementations were also tested on the older Intel Xeon Phi 7120P 

coprocessor and the latest Knights Landing Intel Xeon Phi 7120P processor.  These processors 

are optimized for highly parallel workloads and Intel’s offering for High Performance 

Computing.  Xeon Phi Processors have a larger core count, typically ranging from 60 to 72 

cores per processor and it enables the simultaneous execution of 256 threads.  Each core is a 

simplified Intel X86 processor enabling it to run existing X86 code.  However, to get maximum 

output from the Xeon Phi processors the programs need to be optimized for parallelism. 

7.3 Future Work 
A Hybrid distributed memory (MPI) and shared memory (OpenMP) implementation can be 

developed to further improve performance.  In this configuration, each physical processor will 

have one MPI process running while the rest of the cores use the shared memory OpenMP 

implementation. 

The current implementations for the parallel versions of In-Close3 made use of a statically 

defined large scratchpad for storing concepts.  This was originally seen as an optimization to 

lower the overhead of dynamically allocating memory to store generated and temporary 

concepts.  With the global scratchpad approach for storing generated concepts additional 
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memory needs to be allocated for each core due to the uneven distribution of computational 

tasks.  This can be significant in shared memory parallel implementations as the memory of 

the computer is shared among all processors in some form.  This can be significant for certain 

datasets where the concepts are generated from specific segments of the recursive call tree.  

The implementation can be modified to handle dynamic memory allocation and tested with 

different datasets. 

To handle extremely large datasets that cannot be handled at present by one node a combination 

of the hybrid MPI and OpenMP with dynamic memory allocation can be developed. This will 

ensure the best performance in terms of memory usage.  By parallelizing across multiple 

physical processors, the overhead of the dynamic memory allocation could be minimized. 

The In-Close3 serial algorithm makes use of a bit array to capture the intents that it is 

computing incrementally.  For storing the intents of the generated concepts, a BTree structure 

is used where integer values of the intent are stored.  When In-Close3 is parallelized parts of a 

given concepts intent is computed by different cores.  In the distributed memory parallel 

implementation, the computed intent resided in multiple memory locations and needs to be 

assembled by the results process once all computations are done.  A quicker way to handle this 

is to store only the bit array version of the intent as it fully describes the complete intent in the 

parallel implementation. 

The distributed Memory Parallel implementation of In-Close3 can be optimized by logging the 

performance of each of the specific workers.  In the current implementation only one node is 

assigned to act as the Result Worker, this could act as a bottleneck with the increase of 

computational nodes.  The code can be easily refactored to take into account multiple Result 

Worker.  Another major bottleneck in distributed memory algorithm implementations is the 

message passing.  The master process, worker process and result process should ideally be able 

send messages with minimum delays.  An analysis of a log of timing of messages which are 

sent through and forth different processes could reveal insights of potential bottlenecks. 
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Appendix – A – Serial Algorithm Implementations 
 

Figure A.1, Listing of CbO-PC-DBF program code 

 

Figure A.2, Listing of CbO-PC-ICF-DF program code 

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize,  
                            VECTOR_TYPE *BParentBit, int y) { 
2.     int C[OBJECTSIZE]; 
3.     short int D[ATTRIBUTESIZE];  
4.     int CSize, DSize; 
5.     VECTOR_TYPE BChildBit[VECTOR_MAX_COLS_CELLS]; //the current intent in Boolean form 
6.     memcpy(BChildBit,BParentBit,nArray*VECTOR_SIZE_BYTES);  
7.     TQueue q; 
8.     int j 
9. 
10.    for (j=y; j<n; j++) {                                                               
11.       if (! isMember(j,BChildBit)) {                                                                                                                           
12.          aIntersectionColj(C,CSize,A,ASize,j);                       
13.          if (isEqual(A, ASize, C,  CSize)) {                                        
14.             insert(BChildBit,B,BSize,j); 
15.          } 
16.          else {              
17.             if (buptoJisEqualtoPartialClosureOfCuptoJBit2(BChildBit,C,CSize,j)) {  
18.             put(q,C,CSize,j);                                       
19.         } 
20.          }   
21.       } 
22.    } 
23.    // Print Concept 
24.    conceptno++; 
25.    int concept = conceptno;                                                                                 
26.    while (get(q,C,CSize,j)) {                                           
27.       copyInsert(BChildBit, D, DSize, B, BSize, j); 
28.       ComputeConceptsFrom(C,CSize, D, DSize, BChildBit, j+1);                  
29.    }                                                                               
30. } 

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize,  
                              VECTOR_TYPE *BParentBit, int y, VECTOR_TYPE *NBit[]) { 
2.     int C[OBJECTSIZE]; 
3.     short int D[ATTRIBUTESIZE];    
4.     int CSize,  DSize; 
5.     VECTOR_TYPE *DBit; 
6.     int concept = conceptno; 
7.     VECTOR_TYPE BChildBit[VECTOR_MAX_COLS_CELLS]; //the current intent in Boolean form 
8.     memcpy(BChildBit,BParentBit,nArray*VECTOR_SIZE_BYTES);  
9.     TQueue q; 
10.    VECTOR_TYPE *MBit[ATTRIBUTESIZE]; 
11.    int j; 
12.    for (j=y; j<n; j++) {   
13.       copyRowArrMN(&MBit[j],NBit[j]);  
14.       if (! isMember(j,BChildBit)) { 
15.      if (isNjSubSetofBuptoJBit(NBit[j],BChildBit,j)) {                                                                                      
16.         aIntersectionColj(C,CSize,A,ASize,j);      
17.            if (isEqual(A, ASize, C,  CSize))  {        
18.           insert(BChildBit,B,BSize,j); 
19.         } 
20.         else {  
21.     if (buptoJisEqualtoPartialClosureOfCuptoJBit2(BChildBit,C,CSize,j)) {      
22.        copyInsert(BChildBit, D, DSize, B, BSize, j); 
23.                  ComputeConceptsFrom(C,CSize,D, DSize, BChildBit, j+1, MBit);            
24.               } 
25.     else {           

26.        copyRowArrMPartialClosure (&MBit[j], j, C,CSize);  
27.      } 
28.         } 
29.      } 
30.       } 
31.    }   
32.    // Print Concept 
33.    conceptno++; 
34.    concept = conceptno; // keeps track of the current concept      
35. } 
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. 

 

Figure A.3, Listing of CbO-FC-ICF-DBF program code 

  

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize,  
                           VECTOR_TYPE *BParentBit, int y, VECTOR_TYPE *NBit[]) { 
2.      int C[OBJECTSIZE];; 
3.      short int D[ATTRIBUTESIZE];    
4.      int CSize,  DSize; 
5.      VECTOR_TYPE *DBit; 
6.      int concept = conceptno; 
7.      VECTOR_TYPE BChildBit[VECTOR_MAX_COLS_CELLS]; //the current intent in Boolean form 
8.      memcpy(BChildBit,BParentBit,nArray*VECTOR_SIZE_BYTES);  
9.      TQueue q; 
8.      VECTOR_TYPE *MBit[ATTRIBUTESIZE]; 
9.      int j; 
10.     for (j=y; j<n; j++) {   
11.        copyRowArrMN(&MBit[j],NBit[j]);  
12.        if (! isMember(j,BChildBit)) { 
13.        if (isNjSubSetofBuptoJBit(NBit[j],BChildBit,j)) {                                                                                      
14.           aIntersectionColj(C,CSize,A,ASize,j);      
15.             if (isEqual(A, ASize, C,  CSize))  {   
16.                insert(BChildBit,B,BSize,j); 
17.             } 
18.             else {  
19.                if (buptoJisEqualtoPartialClosureOfCuptoJBit2(BChildBit,C,CSize,j)) {      
20.                   put(q,C,CSize,j) 
21.                } 
22.                else { 
23.                   copyRowArrMPartialClosure (&MBit[j],j, C,CSize);   
24.                } 
25.             } 
26.          } 
27.       } 
28.    }   
29.    // Print Concept 
30.    conceptno++; 
31.    concept = conceptno; // keeps track of the current concept                                                                                        
32.    while (get(q,C,CSize, j)) { 
33.       copyInsert(BChildBit, D, DSize, B, BSize, j); 
34.       ComputeConceptsFrom(C,CSize,D, DSize, BChildBit, j+1, MBit);                    
35.    }                                                                                                                                                                                    
36. } 
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Figure A.4, Listing of CbO-PC-ICF-DBF program code 

 

  

1.  void ComputeConceptsFrom(int *A, int ASize, short int *B, int BSize,  
                           VECTOR_TYPE *BParentBit, int y, VECTOR_TYPE *NBit[]) { 
2.      int C[OBJECTSIZE];; 
3.      short int D[ATTRIBUTESIZE];    
4.      int CSize,  DSize; 
5.      VECTOR_TYPE *DBit; 
6.      int concept = conceptno; 
7.      VECTOR_TYPE BChildBit[VECTOR_MAX_COLS_CELLS]; //the current intent in Boolean form 
8.      memcpy(BChildBit,BParentBit,nArray*VECTOR_SIZE_BYTES);  
9.      TQueue q; 
8.      VECTOR_TYPE *MBit[ATTRIBUTESIZE]; 
9.      int j; 
10.     for (j=y; j<n; j++) {   
11.        copyRowArrMN(&MBit[j],NBit[j]);  
12.        if (! isMember(j,BChildBit)) { 
13.        if (isNjSubSetofBuptoJBit(NBit[j],BChildBit,j)) {                                                                                      
14.           aIntersectionColj(C,CSize,A,ASize,j);      
15.             if (isEqual(A, ASize, C,  CSize))  {   
16.                insert(BChildBit,B,BSize,j); 
17.             } 
18.             else {  
19.                if (buptoJisEqualtoPartialClosureOfCuptoJBit2(BChildBit,C,CSize,j)) {      
20.                   put(q,C,CSize,j) 
21.                } 
22.                else { 
23.                   copyRowArrMPartialClosure (&MBit[j],j, C,CSize);   
24.                } 
25.             } 
26.          } 
27.       } 
28.    }   
29.    // Print Concept 
30.    conceptno++; 
31.    concept = conceptno; // keeps track of the current concept                                                                                        
32.    while (get(q,C,CSize, j)) { 
33.       copyInsert(BChildBit, D, DSize, B, BSize, j); 
34.       ComputeConceptsFrom(C,CSize,D, DSize, BChildBit, j+1, MBit);                    
35.    }                                                                                                                                                                                    
36. } 



 
 130 

Appendix – B – Distributed Memory Algorithm Implementations 

Figure B.1, MPI CreateDataType() function 

On the MPI side of things the message structure that is used to capture the C structure needs to 
be created.  The MPI_Data type allows the definition of both simple and structure type 
variables which can be serialized.  The MPI_Type_create_struct() function shown in line 
43 (See Figure B.1) allows to create a user defined MPI data structure which is the equivalent 
of a C Structure.  To do this the individual members of the structure needs to be defined, this 
is achieved in lines 7 to 22 where each member is defined as an array of MPI_Datatype called 
array_of_types.  The size of each of the data types also needs to be defined MPI and the 
integer array defined in line 3 is used for this purpose.  The MPI_Get_address is a function 
that can be used to find the memory locations of each member of a C structure.  Lines 29 to 37 
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void MPICreateDataType() { 
 int const max = 9; 
 int array_of_blocklengths[max]; 
 MPI_Aint array_of_displacements[max]; 
 
 MPI_Datatype array_of_types[max]; 
 array_of_blocklengths[0] = OBJECTSIZE; 
 array_of_types[0] = MPI_INT; 
 array_of_blocklengths[1] = 1; 
 array_of_types[1] = MPI_INT; 
 array_of_blocklengths[2] = VECTOR_MAX_COLS_CELLS; 
 array_of_types[2] = MPI_LONG_LONG_INT; 
 array_of_blocklengths[3] = 1; 
 array_of_types[3] = MPI_INT; 
 array_of_blocklengths[4] = 1; 
 array_of_types[4] = MPI_INT; 
 array_of_blocklengths[5] = 1; 
 array_of_types[5] = MPI_SHORT; 
 array_of_blocklengths[6] = 1; 
 array_of_types[6] = MPI_INT; 
 array_of_blocklengths[7] = VECTOR_MAX_COLS_CELLS; 
 array_of_types[7] = MPI_LONG_LONG_INT; 
 array_of_blocklengths[8] = (VECTOR_MAX_COLS_CELLS) * ATTRIBUTESIZE; 
  
 array_of_types[8] = MPI_LONG_LONG_INT; 
  
 tParaCompound msg; 
 MPI_Aint addr[max]; 
 MPI_Get_address(&msg, &addr[0]); 
 MPI_Get_address(&msg.ASize, &addr[1]); 
 MPI_Get_address(&msg.BParentBit, &addr[2]); 
 MPI_Get_address(&msg.y, &addr[3]); 
 MPI_Get_address(&msg.c, &addr[4]); 
 MPI_Get_address(&msg.level, &addr[5]); 
 MPI_Get_address(&msg.flag, &addr[6]); 
 MPI_Get_address(&msg.NBitFlag, &addr[7]); 
 MPI_Get_address(&msg.NBit, &addr[8]); 
 
 array_of_displacements[0] = 0; 
 for (int r = 1; r < max; r++) 
  array_of_displacements[r] = addr[r] - addr[0]; 
 
 MPI_Type_create_struct(max, array_of_blocklengths, array_of_displacements, 
  array_of_types, &TaskType); 
 MPI_Type_commit(&TaskType); 
 // Declare memory for results Buffer 
 maxResultsBufferSize = maxSizeOfVars + maxLinearSize; 
 resultsBuffer = new char[maxResultsBufferSize]; 
} 
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capture the memory locations of all the members of the C structure tParaCompound. Lines 39 
to 42 are used to calculate the offset of each of the structure members. 

Finally in line 43 and 45 a MPI Data type that represents a structure is created using the 

MPI_Type_create_struct() and MPI_Type_commit() MPI functions.  Creation of a 
structure type in MPI is a one time process and this needs to be executed in all nodes. MPI 
function in line 43 requires the number of items in the structure (max), the size of each element, 
the member (array_of_displacements) contains the offset of each member from the 
beginning of the structure (array_of_displacements), the data types of each member 
(array_of_types) and the MPI_DataType variable which will be defined (TaskType).  

Figure B.2, MPIPackData() function 

 

To optimize message passing a NBitFlag variable was introduced (See Figure B.2), it keeps 
track of which NBit[] array elements contains values and which contain NULL values. The 
memcpy() function in line 22 is carried out only for entries that have values. This enables 
packing of NBit[] elements when serialization and deserialization takes place. 
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// Used by the Master Process pack the Task details to be spawned, this 
//   is later sent to a Worker Process who is ready 
void MPIPackData(tParaCompound &msg, const int *Av, const int &ASize, const VECTOR_TYPE *BParentBit, 
const int &y, const int &c,  VECTOR_TYPE *NBit[], const short int &level) { 
 memcpy(msg.A, Av,ASize*sizeof(int)); 
 msg.ASize = ASize; 
 memcpy(msg.BParentBit, BParentBit, nArray*sizeof(VECTOR_TYPE)); 
 msg.y = y; 
 msg.c = c; 
 int count = 0; 
 // Set NBitFlag to zero 
 
 for (int k = 0; k < VECTOR_MAX_COLS_CELLS; k++) 
  msg.NBitFlag[k] = 0; 
 VECTOR_TYPE NBitFlag[VECTOR_MAX_COLS_CELLS] = { 0 }; 
 for (int r = 0; r < MAXATTRIBUTES; r++) { 
  if ((NBit[r]) == NULL) { 
   ClearBit1(NBitFlag, r); 
  } 
  else { 
   SetBit1(NBitFlag, r); 
   memcpy(&msg.NBit[count*nArray], NBit[r], nArray * sizeof(VECTOR_TYPE)); 
   count++; 
  } 
 } 
 memcpy(msg.NBitFlag, NBitFlag, (VECTOR_MAX_COLS_CELLS)*sizeof(VECTOR_TYPE)); 
 msg.level = level; 
 msg.flag = true;  // Valid Data 
} 

 


