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Human Activity Recognition Making Use of Long 

Short-Term Memory Techniques 
 

By Richard Wainwright
*
 & Alex Shenfield

†
 

 
The optimisation and validation of a classifiers performance when applied to real 

world problems is not always effectively shown. In much of the literature describing 

the application of artificial neural network architectures to Human Activity 

Recognition (HAR) problems, postural transitions are grouped together and treated as 

a singular class. This paper proposes, investigates and validates the development of 

an optimised artificial neural network based on Long-Short Term Memory techniques 

(LSTM), with repeated cross validation used to validate the performance of the 

classifier. The results of the optimised LSTM classifier are comparable or better to 

that of previous research making use of the same dataset, achieving 95% accuracy 

under repeated 10-fold cross validation using grouped postural transitions. The work 

in this paper also achieves 94% accuracy under repeated 10-fold cross validation 

whilst treating each common postural transition as a separate class (and thus 

providing more context to each activity). 

  
Keywords: LSTM, Neural Networks, Postural, Recurrent Neural Network; Human 

Activities.  

 

 

Introduction 
 

Human activity recognition (HAR) is an old concept. Similar to ubiquitous 

computing, a sensor is used to collect data from the user to try and assist a user 

with a given task. HAR has a vast number of applications, including in the military 

domain, medical facilities, fitness tracking and in regular daily life. Nike have 

produced running shoes that contain integrated motion sensors to provide feedback 

and running statistics for athletes (Johnson 2018).
1
  Similarly, Apple’s latest watch 

OS update contains automatic activity/fitness detection to alert a user on their 

watch that they are working out and should begin to track this information 

(Hardwick 2018). 

It is apparent that HAR is becoming more common in all aspects of daily life 

and therefore, this topic has become very attractive to researchers. Ongoing work 

means that basic activities including sitting and walking can be monitored and 

tracked reliably with a high level of accuracy if the user wears a high number of 

sensors nodes - unfortunately, it is not realistic to wear a large number of sensors. 

The introduction and popularity of the smartphone has helped to push research in 

this field, as these devices are usually equipped with both Gyroscopes and 

accelerometers; with some high-end devices providing 3 axial velocities from the 

accelerometer. People carry these devices with them all the time, so it provides an 
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obvious non-intrusive way of monitoring activities. Moreover, these devices are 

generally carried all day, so data can be collected anywhere. This allows us to 

obtain realistic data from real life situations.  

This paper outlines an effective approach of detecting human activities 

making use of Long-Short Term Memory techniques with the novel aspect of 

additionally classifying postural transitions. Results presented show that this novel 

classification method is extremely effective as it provides high accuracy detection 

with a small number of false positives. 10-Fold repeated cross validation is 

introduced to validate the results obtained from the model.  

The rest of the paper is organised as follows: The next section provides a brief 

background to existing HAR techniques within the smartphone/smart watch 

industry and introduces Long-Short-Term Memory recurrent neural network 

techniques. Section “Human Activity Recognition on Given Dataset” outlines the 

model setup and describes what validation methods were used and how they were 

applied to the proposed model. Section “Results” then describes the major 

milestones of the research completed and some potential developments for further 

work. 

 

 

Background and Previous Work 

  

Machine Learning Methods / Related Works  

 

Machine learning techniques have been used for automatic classification of 

HAR throughout the literature. These ML techniques have been supervised, semi-

supervised and unsupervised with all different methods proposed. Standard models 

such as Frequentist and Bayesian models (for example, binary decision tree and 

threshold-based classifiers) have been implemented (Ermes et al. 2008, Coley et 

al. 2005). In addition, geometric models were introduced to detect HAR with 

papers describing K-Nearest Neighbours, Artificial Neural Networks and also 

Support Vector Machines (Maurer et al. 2006, Khan et al. 2010). Liu et al. (2016) 

made use of single frame images from Microsoft Kinects and RNN LSTM 

classifiers to correctly identify the activities in the images. The results obtained 

95% peak accuracy when making gate modifications to the LSTM. 

Currently, no obvious model or classifier is the most appropriate for HAR as 

all the different techniques have established performances that are comparable. In 

ML, the most effective classification method is generally application specific with 

additional considerations including computing power, energy consumption and 

memory requirements all are considered trade-offs for producing a reliable model.   

 

Evaluation Metrics and Performance  

 

The validation and evaluation of HAR classification algorithms is generally 

made by using statistical analysis methods and readily available datasets. 

Confusion matrices are widely used in the ML community as a quick way of 

evaluating a classification model. Confusion Matrices allow clear insight in to the 
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types of errors made by the systems (false positives and true negatives) and 

correctly predicted results. Furthermore, the matrix allows the extrapolation of 

additional information including model accuracy, precision and F1-score. 

Confusion matrices, overall confusion matrix accuracy, best loss and best accuracy 

per fold will described and compared in this paper, they can be reviewed in the 

results section.  

 

Long Short-Term Memory 

 

Hochreiter and Schmidhuber (1996) proposed Long Shot Term Memory 

(LSTM) Units in the mid-90s as an alternative method of recurrent neural 

networks in order to combat the vanishing gradient problem 

Unlike other networks, LSTMs preserve and maintain the errors so that they 

can be easily backpropagated through layers, which also make LSTMs useful for 

time series problems as this error can also be backpropagated through time. 

Preserving the error allows the recurrent network to continue to learn and train the 

model over a vast number of time steps. This solution opens a channel that allows 

causes and effects to be linked therefore removing the error at the source.  

Analog gates are used in LSTMS where information can be stored, written to 

or read from – similarly to data stored within a computer. This gated cell contains 

information outside the regular flow of the recurrent neural network (RNN). The 

use of anlaog gates are implemented with element wise multiplication by varying 

functions such as sigmoids which are always in the range of 0-1. The 

implementation of analog over digital functions means that they are easily 

differentiated, therefore, making them suitable for backpropagation.  

Each gate acts on the information/signals once they receive them, information 

can be blocked or passed on based on its strength and import. These signals are 

also filtered with each gates weight. These weights behave similarly to normal NN 

input and hidden states as they are adjusted throughout the RNN learning process. 

The cells learn when to permit data to: enter, be deleted or leave through the 

iterative processes found from backpropagating the errors, adjusting the weights 

and making informed guesses.  

 

Architecture of LSTMs 

 
LSTMs networks are unlike other networks as they comprised of memory 

blocks that are called cells. Each cell has two different states which are transferred 

to the next cell, the cell state and also the hidden state. Three major mechanisms 

called gates are responsible for remembering things and manipulations to the 

memory. These gates are known as the Forget gate, Input gate and Output gate. 

Each of these gates is discussed below but the overall architecture is shown in 

Figure 1 (Staudemeyer and Omlin 2016). 
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Figure 1. LSTM Architecture Overview 

 
 

Forget Gate 

 

A forget gate is designed for eradicating information from the current cell 

state. The LSTM performance is optimized by the removal of any unnecessary 

information that is no longer needed by the LSTM to understand things or to 

remove any information that isn’t important anymore. The forget gate removes 

this information by the multiplication of a filter. A forget gate will take in two 

different inputs: 

 

 (1) 

 (2) 

Equation (1) is the notation used to describe the hidden state from the 

previous cell whereas (2) is the input at that given time step. The two inputs are 

multiplied by the weight matrices at those times with an additional bias added. The 

resulting value then has a sigmoid function applied to it. Subsequently a vector 

with values from 0 to 1 is produced. The sigmoid function is responsible for telling 

the forget gate whether to discard or maintain the values. A resultant ‘0’ means 

that the values will be forgotten along with the information it contains. 

Alternatively, a ‘1’ means that the forget gate should retain that entire piece of 

information. The cell state and the vector output of the sigmoid are multiplied 

together.  

 

Input Gate 

 

The input gate is used to make sure that the all of information that is added 

to the cell stated is important and not redundant. The input gate can be 

described in a three-step process. 

 

A) The first step of the process is similar to the forget gate as it filters 

information from (1) and (2). Values are regulated as to what values 
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should be added to the cell state by multiplying by another sigmoid 

function.  

B) The results are then multiplied by a tanh function which creates another 

output vector with values from -1 to +1. 

C) Lastly, the values from the regulatory filter (A) and the values of the vector 

produced from tanh (B) are multiplied together with any additional useful 

information from the cell state added on via an addition operation. 

 
Output Gate 

 

The selection of useful information from the current cell state and 

presenting it as an output is done with the output gate.  

 

A) A vector is produced by apply the tan function again to the cell state. 

Therefore, producing another vector with values in the range of -1 to 

+1. 

B) A filter that uses a sigmoid function and that makes use of values 

from both (1) and (2) is developed so that it can regulate the values 

from (A) is created.  

C) The multiplication of steps (A) and (B) and using them as outputs is 

required for the final step. The information is also used as the hidden 

state in the next cell (Srivastava 2017). 

 

Human Activity Recognition 

 

HAR is a thriving research topic in deep learning. In order to design an 

effective HAR system each of the steps of data acquisition must be 

considered. The steps are defined as: data acquisition from the sensor, pre-

processing the data, feature extraction and training/classification an 

overview of the HAR process is shown in Figure 2. The dataset used in this 

problem was captured by making use of an android smartphone attached to 

the user’s body at which point they were asked to complete a list of 12 

different human activities that make up each of our classes and is available 

at (Dua and Karra Taniskidou 2017). The performance of any HAR research 

will be affected by the techniques used at each of the activity recognition 

process steps. Moreover, in any monitoring system the performance will be 

greatly affected by the sensor used (Hassan et al. 2017).   

 

Figure 2. HAR Process Diagram 
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The experiments were carried out, using 30 volunteers with ages between 19 

and 48. Each volunteer performed the twelve activities that included: walking, 

standing, sitting, walking upstairs, walking downstairs, laying, standing to sitting, 

sitting to standing, sitting to laying, laying to sitting, standing to laying and laying 

to standing whilst the smartphone was attached to their waist. The experiments 

were all recorded in order to make the process of labelling the activities easier. The 

chosen smartphone for the experiments was a Samsung Galaxy S2 smartphone as 

it contains both an accelerometer and a gyroscope that helps capture angular 

velocity and 3-axial linear acceleration at a constant 50Hz this sampling rate is 

high enough to accurately capture the change in movements during the human 

activity. The following sections describe the signal processing of the data and any 

filtering used on the raw signals. The resulting dataset was divided up in to two 

different sets 70% was described as the training data set for training the model 

whereas the remaining 30% was used as the test data in order to validate the 

trained model (Reyes-Ortiz et al. 2012).  

 

Signal Processing 

 

The incoming gyroscope and accelerometer was put through many stages of 

pre-processing before it was input in to the training model. Noise was reduced by 

making use of both a median and third order low pass Butterworth filter. The filter 

has a cut off frequency of 20Hz. The frequency threshold was selected as literature 

describes that the energy spectrum of the human body lies in the range between 0 

Hz and 15 Hz. Following this pre-processing we obtained a triaxial acceleration 

signal that was clean. The clean signal can also be conveyed as the summation of 

two acceleration vectors which can be named as gravitational component G and 

BA which is the body motion acceleration. These signals were segmented making 

use of another low pass filter with an optimal cut off of 0.3 Hz (Reyes-Ortiz et al. 

2014). 

After segmentation, the signals were divided up using fixed-width sliding 

windows; each window has a span of 2.56s with a 50% overlap (Reyes-Ortiz et al. 

2016).  

 

 

Human Activity Recognition on Given Dataset  

 

Problem Domain 

 

Detecting human activities making use of gyroscope readings poses many 

challenges due to the inconsistency of the data, therefore introducing interclass 

variability in to the dataset. For example, the action of sitting to standing and then 

standing to sitting can be different in different environments and between different 

users. Moreover, human behaviour changes and multiple tasks can be completed 

simultaneously therefore making it harder to correctly recognise an activity.  

The work presented in this paper offers an alternative to existing research 

completed on the dataset by using various methods of Deep learning and machine 
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learning techniques to create a reliable and robust model of human activity 

recognition.  

 

LSTM Design 

 

The data was divided up in to training and validation data in a 70:30 split. 

Preliminary visualisation of the data showed that there were different general 

trends and patterns for different activities although there was variability between 

gyroscope data of the same class.  

The LSTM model for the experiments was developed making use of the 

Keras LSTM (Brownlee 2017) classifier with all of the code written in python. 

Repeated 10-fold cross validation was used in order to effectively evaluate the 

classifier. Figure 3 shows how cross validation is applied to a system over each 

iteration. 

 

Keras 

 

Francois Chollet (a Google engineer) developed and maintains Keras. Keras 

is a python library for deep learning capable of using multiple backends. It was 

developed in order to make it fast and easy to develop models and complete 

research on different techniques. It is designed to run on any version of python 

later than 2.7 however it is recommended to run on version 3.5. It can run on any 

GPU with only a small amount of set up required (Keras 2018).
2
 

 

Tensorflow 

 

A Tensorflow environment in order to make use of Kera’s deep learning 

classifiers was used for this research. Tensorflow is a ML framework developed 

by Google. It is the second one they have developed, it is used to build, test and 

train different deep learning models. Tensorflow can be used to complete complex 

numerical computations making use of dataflow graphs (Tensorflow 2018). 

 

K Fold Cross Validation 

 

In k-fold cross-validation the original dataset is partitioned randomly into 

equal sizes, the number of these partitions is defined by the K variable. The data is 

then further divided so that a single K sample of the data is retained and kept 

unseen; this is used as the validation data for testing the model. The remaining K-1 

subsets are used as the main training data. This cross-validation process can then 

be repeated K number of times (the folds) with each different K sub sets used once 

as the validation data. This has many advantages over other validation techniques 

as all of the observations are made making use of both the training and validation 

data at the same time. Furthermore, each validation set is used exactly once means 

that the models are not just trained for the same test and train data sets. Figure 3 

shows how the data for each fold is partitioned for each fold. 

                                                      
2
Keras: The Python Deep Learning Library. [Online]. https://keras.io. 

https://keras.io/
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Stratified K-fold cross validation was introduced to try and combat datasets 

that are not evenly balanced between the different classes. Each fold is selected so 

that each fold contains a similar proportion of class labels.  

Repeated cross-validation repeated the cross-validation n number of times. 

With n random portions of the original sample yielded. The n results are then 

averaged out in order to produce a singular estimation of the model (Brownlee 

2018). 

 

Figure 3. Cross Validation Model 

 
 

 

Results  

 

Figure 4. Histogram of Activities and Postural Transitions 

 
 

In this section, the LSTM framework presented in this paper is validated using 

the HAR dataset from (Reyes-Ortiz et al. 2016). Based on the amount of data and 

number of inputs and output classes, three different experiments are performed. 

The data used is the pre-processed train and test data with all of the data labels 

given to the outputs. The three tests are designed to show the trade-offs between 

time taken to train the model and the number of neurons for each layer. Confusion 
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matrices are used to analyse the results. A fourth test was introduced to combat the 

imbalanced data by grouping together all of the postural transitions. Figure 4 

shows a histogram of the different classes, with classes 1-6 representing standard 

activities and classes 7-12 are the postural transitions. It can be clearly seen that 

the data set contains significant class imbalance towards the standard activities. 

Reyes-Ortiz et al. (2016) balance the data by grouping together all of the postural 

transitions; however, for the purposes of these experiments we will keep them 

apart.  

Each experiment comprised of a consistent number of epochs with varying 

number of neurons, the details of which can be read in Table 1. 
 

Table 1. Number of Epochs and Neurons per Experiment 
 Number of Epochs Number of Neurons Number of 

Classes  

Experiment 1 50 350 12 

Experiment 2 50 100 12 

Experiment 3 50 10 12 

 

Each experiment was completed by using cross validation methods as 

described previously. Each test used ten-fold cross validation, with the best loss 

and accuracy per fold reported below. It is evident that the accuracy and the loss of 

the model improve as the number of neurons increases, with 350 LSTM neurons 

providing the best results. The accuracies presented represent the classification 

accuracies for each of the 12 different classes that were considered. It is important 

to note that these values will change for each iteration of the test as the NN does 

not always follow the same path. Tables 2 and 3 present the average performance 

for each test and the results from each fold. It can be seen that there is a clear 

trade-off between the time taken to train the model and the number of neurons 

used. As a direct result, it can be considered that continual training or online 

training of the model as outlined in Reyes-Ortiz et al. (2014) could be an 

acceptable way to improve the accuracy. 

 

Table 2. Best Accuracy and Best Loss per Fold in Each Different Test 

 Experiment 1 Experiment 2 Experiment 3 

Fold Accuracy Loss Accuracy Loss Accuracy Loss 

1 0.94723 0.19128 0.91892 0.21641 0.82368 0.51748 

2 0.93179 0.18562 0.90991 0.22369 0.75933 0.60864 

3 0.92921 0.19149 0.90090 0.24912 0.77477 0.57704 

4 0.94080 0.18151 0.91763 0.23443 0.72844 0.69128 

5 0.95882 0.12116 0.93694 0.21028 0.75289 0.64023 

6 0.92798 0.18684 0.93308 0.19595 0.75289 0.64865 

7 0.94594 0.16575 0.91634 0.24413 0.79794 0.56883 

8 0.91366 0.20554 0.90077 0.26693 0.75902 0.60082 

9 0.94459 0.18222 0.90980 0.23877 0.81959 0.50970 

10 0.94329 0.16544 0.89819 0.27480 0.80026 0.56522 
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Table 3. The Average Best Loss and Accuracy 

Experiment 1 
Average Best Accuracy 0.9383270973630582 

Average Best Loss 0.17768648393192576 

Experiment 2 Average Best Accuracy 0.9142482320317372 

Average Best Loss 0.23466352699422233 

Experiment 3 Average Best Accuracy 0.7768827370225013 

Average Best Loss 0.5927918261168678 

 

Results presented in Reyes-Ortiz et al. (2013b) have shown that they can 

accurately determine HA with an overall 96% accuracy making use of SVM. 

These results are comparable to those obtained from the tests completed; however, 

they have introduced two alternative classes: a class of unknown – where the SVM 

cannot accurately predict the class - and a class where they have grouped together 

all of the postural transitions. 

 

Confusion Matrix Experiment 1 

 

Table 4. Confusion Matrix without Normalisation for Experiment 1 

T
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Walking 1211 8 7 0 0 0 0 0 0 0 0 0 

Walking 

Upstairs 
30 1013 25 0 1 0 3 0 1 0 0 0 

Walking 

Downstairs 
16 30 941 0 0 0 0 0 0 0 0 0 

Sitting 1 0 1 1150 136 2 1 0 2 0 0 0 

Standing 0 1 0 116 1305 0 0 1 0 0 0 0 

Laying 0 0 0 0 0 1407 0 0 0 4 1 1 

Standing 

to sit 
0 6 2 1 0 0 31 3 0 0 4 0 

Sit to 

Stand 
1 0 0 1 0 0 3 12 3 1 2 0 

Sit to Lie 0 0 0 2 0 1 1 2 42 2 24 1 

Lie to Sit 0 0 0 0 0 2 0 0 2 37 4 15 

Stand to 

Lie 
1 4 1 1 1 2 4 1 26 2 46 1 

Lie to 

Stand 
0 0 0 0 0 3 0 0 5 25 1 23 
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Confusion Matrix Experiment 2 

 

Table 5. Confusion Matrix without Normalisation for Experiment 2 
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Walking 1195 21 10 0 0 0 0 0 0 0 0 0 

Walking 

Upstairs 

61 959 45 0 2 0 5 0 0 0 1 0 

Walking 

Downstairs 

27 45 914 0 0 0 0 0 0 0 1 0 

Sitting 0 0 1 1119 165 5 0 0 1 0 2 0 

Standing 2 5 0 121 1295 0 0 0 0 0 0 0 

Laying 0 0 0 0 0 1406 0 0 0 6 0 1 

Standing to 

sit 

3 7 2 0 2 0 26 4 0 0 3 0 

Sit to Stand 1 1 0 1 0 0 5 7 5 0 3 0 

Sit to Lie 0 0 2 0 0 0 1 2 44 1 23 2 

Lie to Sit 0 0 0 1 0 5 0 0 4 26 5 19 

Stand to Lie 1 11 5 0 1 1 3 1 28 1 35 3 

Lie to Stand 0 0 0 1 0 2 0 0 1 21 4 28 
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Confusion Matrix Experiment 3 
 

Table 6. Confusion Matrix without Normalisation for Experiment 3 
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Walking 737 283 206 0 0 0 0 0 0 0 0 0 

Walking 

Upstairs 

157 780 118 2 12 0 0 0 2 0 2 0 

Walking 

Downstairs 

212 109 666 0 0 0 0 0 0 0 0 0 

Sitting 3 1 0 1084 197 8 0 0 0 0 0 0 

Standing 8 10 0 137 1268 0 0 0 0 0 0 0 

Laying 0 0 0 0 0 1403 0 0 0 7 0 3 

Standing to 

sit 

32 11 0 1 3 0 0 0 0 0 0 0 

Sit to Stand 12 2 0 1 1 1 0 0 6 0 0 0 

Sit to Lie 20 4 2 12 0 0 0 0 33 2 0 2 

Lie to Sit 0 1 0 2 0 17 0 0 7 14 0 19 

Stand to Lie 38 15 9 2 1 1 0 0 20 3 0 1 

Lie to Stand 0 0 0 1 0 16 0 0 8 15 0 17 
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Tables 4, 5 and 6 represent the confusion matrices of each the LSTM model 

for different experiment respectively. Because of the significant class imbalance 

(as shown in Figure 4) there is lots of confusion around the postural transitions. 

This is because there is not enough data to accurately train the model to identify 

these classes. In order to combat this and see if the results could be further 

improved, the postural activities were grouped together as done in Reyes-Ortiz et 

al. (2016) - giving only 7 classes in total.  

 

Grouping Postural Transitions 

 

Using the same parameters as the most accurate model (experiment 1, all of 

the postural transitions were grouped into a singular class. Therefore, seeing the 

effects of an LSTM model comparing it directly with those completed in literature 

under similar conditions. Table 7 shows the LSTM parameters used and the 

number of training epochs and number of classes. 

 

Table 7. Number of Epochs and Neurons for Grouped Experiment 
 Number of Epochs Number of Neurons Number of 

Classes  

Experiment 4 50 350 7 

 

The classification results on the HAR dataset when postural transitions are 

grouped together are shown in Table 8 and Table 9. They show an average best 

loss of 0.1430 and an average accuracy of 0.95% using 10-fold cross validation. 

This is comparable to the work completed by Reyes-Ortiz et al. (2013a). 

 

Table 8. Best Accuracy and Best Loss per Fold in during Group Postural 

Transition Training 

 Experiment 4 

Fold Accuracy Loss 

1 0.94465 0.16102 

2 096525 0.10930 

3 0.94079 0.17676 

4 0.95238 0.13211 

5 0.96267 0.11365 

6 0.93822 0.16284 

7 0.94337 0.15059 

8 0.94974 0.17733 

9 0.95876 0.13726 

10 0.95360 0.10990 

 

Table 9. Average Best Accuracy & Average Best Loss for Experiment 4 over the 

10 Folds 

Experiment 4 
Average Best Accuracy 

0.9509475049500213 

Average Best Loss 0.14307998480867862 
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Comparing the confusion matrix for grouped postural transitions (Table 10) to 

those shown in Tables 4, 5, and 6 demonstrates that the grouping of postural 

transitions reduces the misclassifications shown in the confusion matrices. It is 

clear that the number of false positives and true positives has been greatly reduced.  

The results obtained and detailed in Table 9 and Table 10 have been shown to 

outperform Karantonis et al. (2006) as their work which makes use of special 

purpose sensors has produced accuracies in the range of 90%-96%. Our work has 

shown accuracy in the range 93%-96%, and moreover it is more convenient to 

carry a smartphone that have bespoke sensors than sensors attached to different 

parts of the body. Similarly the work completed by Hanai et al. (2009) where a 

chest mounted accelerometer was used to record the HA has achieved an accuracy 

of 90.8% which is not as good as our results obtained using smartphone data. The 

argument for use of smartphones to for HAR is greatly increased as a direct result 

of these tests as on all occasions we have either outperformed or produced 

comparable results to those with bespoke sensors worn on the body.  

 

Table 10. Confusion Matrix without Normalisation for Experiment 4 
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 Walking 307 4 17 3 9 2 10 

Walking Upstairs 1 1198 19 13 0 0 0 

Walking Downstairs 3 23 1026 21 0 0 0 

Sitting 1 10 19 957 0 0 0 

Standing 5 0 0 0 1147 140 1 

Laying 2 2 1 0 139 1279 0 

Postural Transitions 3 0 0 0 0 0 1410 
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  Predicted Values 

 

Device Utilisation 

 

Table 11. Device Utilisation Table 
Device Utilisation 

Epochs Used 350 

Time Per Epoch (s) 14 

Times Repeated Cross Validation: 10 

NVIDIA INFORMATION GeForce GTX1050 

 

 

Conclusions & Further Work  

 

Throughout this work an alternative and novel approach to reliably detect 

human activities making use of smartphones has been presented. The classification 

architectures presented in this paper make use of Long Short-Term Memory 
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techniques to classify both standard activities and postural transitions. The final 

model proposed considers the trade-offs of the time needed to train the model 

against the performance of the classifier. This paper then also compares the 

proposed model with existing literature.  

The scope of the work is to apply existing technology to real world situations 

whilst still maintaining comparable results but improving processing times and use 

of the systems resources. The continual development of this research could then be 

applied to a wide range of industries including: the military, assisted living 

facilities and health & fitness tracking.  

The results of the experiments confirm that is possible to make use of LSTM 

classifiers to correctly identify human activities, although further experimentation 

should be completed to evaluate the model with more representative conditions 

(such as a smartphone held by a user under real-world conditions throughout the 

day). These tests would allow further refinement of the model. 
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