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Abstract 

 

Water droplet erosion (WDE) protection of Ti6Al4V turbofan blades is of paramount 

importance to the aviation industry. A novel CrAlYN/CrN nanoscale multilayer coating 

deposited by the HIPIMS technique was evaluated as a potential candidate for this 

application. Literature suggests a strong correlation in performance ranking under WDE and 

cavitation erosion (CE) tests. Hence, the WDE performance of the CrAlYN/CrN coating on 

Ti6Al4V was investigated with an ultrasonic cavitation device.  

The results show excellent adhesion and superior erosion resistance of the CrAlYN/CrN 

coating (erosion rate lower by a factor of 14 compared to the bare Ti6Al4V substrate) and 

compared to coatings reported in the literature with spallation as their main erosion 

mechanism. Cross-sectional FIB studies revealed formation of substrate cracks underneath 
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the coating when CE generated stresses exceeded the fatigue strength of the Ti6Al4V alloy. 

The interfaces of the nanoscale multilayers protected the substrate by forming an effective 

barrier against shock waves, delayed fatigue crack formation, deflected and arrested any 

cracks formed impeding the overall coating damage. The research shows that the CE 

resistance is influenced by the coating's texture and elastic properties, (Young's modulus).  

The paper discusses the erosion mechanisms of the coating and the excellent CE protection it 

offers.  

Key words: HIPIMS, Cavitation, Water droplet erosion, Nanoscale multilayers. 
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1. Introduction: 

Water droplet erosion (WDE) causes progressive material loss from a solid surface by 

continuous impingements of water droplets [1]. It has become a great concern for power 

generation industry as the leading edge of steam and wind turbine blades suffer from WDE 

during operation. In the case of aviation industry, WDE takes place when an aircraft flies 

through rain storm or clouds, the leading edge of turbofan blades suffer from high-speed, 

(300-400 m/s) impingements of water droplets, resulting in material removal that 

subsequently changes the leading edge profile. This affects the aerodynamic performance of 

turbofan blades, which eventually leads to efficiency drop of the aircraft engine.  

 

The rate of erosion due to water droplet impact is not constant with time but exhibits several 

erosion rate-time patterns. According to ASTM G73-10 standard [2], the evolution of WDE 

process can be mainly divided in three stages: incubation period, in which there is no 

measurable erosion damage; maximum erosion rate stage, where the erosion rate increases to 

its maximum and remains constant; and the deceleration stage, in which the erosion rate starts 

to decline. This study has an emphasis on the incubation period of WDE, in which the 

primary damage mechanism is induced by water-hammer pressure (the magnitude of which 

ranges in hundreds of MPa). Upon impingement the high impact pressure and stress waves 

exerted into the exposed surface results in structural damage that contributes to the drastic 

increase of erosion rate in the later stages [1, 3-5]. Previous research indicates a correlation in 

damage mechanism of WDE and cavitation erosion (CE) [6, 7]. During the CE process, 

microjets are formed by asymmetric implosion of cavitation bubbles on solid surface, 

generating high impact pressure and stress waves [8]. It is reported that material performance 

ranking display similarity under the WDE and CE tests, hence, CE has frequently been 

considered by investigators to predict WDE behaviour. Additionally, it is proposed as a 
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screening process for WDE in ASTM G73 [2]. Therefore, in this study CE test has been 

introduced. 

Many attempts have been made to correlate the WDE resistance to single mechanical 

property; however no universal agreement has been established. Researchers [5, 9–13] 

propose that WDE is a complicated process and that a combination of material properties 

should be considered when combatting such a phenomenon. Additionally, water droplet 

impingement is a dynamic loading process with a high strain rate, hence, dynamic 

mechanical properties are applicable [14]. In the case of coating applications, in addition to 

the premise of a strong adhesion to the substrate, a hard yet tough surface is desired. The 

ideal coating surface should not only resist the high impact pressure, but also inhibit stress 

wave reinforcements at the interface [15]. Employment of various hard coatings for WDE 

resistance has been tried in the past studies, however, their failure caused by brittle fracture 

and delamination due to poor adhesion have been reported. Improvement of toughness while 

maintaining the hardness is the challenge for such application. Deposition of nanoscale 

multilayer microstructure is one of the most advantageous approaches to improve toughness 

of thin films and is achieved via the following three main mechanisms: crack deflection at 

interfaces between layers, ductile interlayer ligament bridging and crack tip blunting due to 

nanoplasticity at the interface [16]. Furthermore, it was shown that in superlattice structured 

coatings a significant fracture toughness enhancement can be achieved (for e.g. by factor of 

two for the TiN/CrN system) in a way similar to the superhardening effect reported for these 

structures [17]. With the introduction of the novel High Power Impulse Magnetron Sputtering 

(HIPIMS) technique, very dense and defect free nanoscale multilayer coatings with high 

adhesion can be deposited. The unique properties of the layered structures deposited by 

HIPIMS technique, such as crack deflection at the sharp and flat interfaces and their role as 

sites for elastic energy dissipation, also add to the established mechanisms responsible for the 
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enhancement of the mechanical properties. HIPIMS utilises transient impulse (short pulses) 

glow discharge with a very high power and current density which translates to high plasma 

densities and ionised metal particles [18]. The utilisation of highly ionised metal fluxes 

during the surface pre-treatment and coating deposition stages allow fine-tuning of the 

metallurgical reactions at the coating-substrate interface as well as precise control over the 

coating structure, crystallographic orientation, and surface morphology.  

This study will investigate the potential usage of HIPIMS deposited nanoscale multilayer 

CrAlYN/CrN coatings to protect Ti6Al4V substrate against WDE. The results will be 

compared with monolayer TiN which is one of the most established and popular coatings due 

to its high hardness and wear resistance, [19].   

 

2. Materials and methods: 

2.1 Coating deposition. 

Nanoscale multilayer CrAlYN/CrN coatings were deposited in an industrial size HTC 1000-4, 

coating system, (Hauzer Techno Coatings, Europe B.V., Venlo, The Netherlands) equipped  

with four unbalanced magnetron sources, which can be operated in HIPIMS mode. The 

HIPIMS plasma was generated using dedicated High-pulse 4008 power supplies (Hüttinger 

Elektronik Sp. z o.o., Warsaw, Poland). Prior to coating deposition, adhesion enhancing pre-

treatment of substrates was carried out with the help of HIPIMS plasma sustained on a Cr 

target [20]. Coating deposition was carried out using CrAlY, CrAl and Cr targets in a mixed 

reactive Ar+N2 (ratio 1:1) atmosphere at 400 °C. The coating architecture comprises of 

CrAlYN base layer followed by alternating nanoscale CrAlYN and CrN multilayers. In this 

study 2 sets of multilayer coatings were deposited by manipulating the ion energies available 

from the depositing flux; one with high and one with low ion bombarding energies and 
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henceforth will be referred to as coating C1 and coating C2 respectively. The substrates were 

subjected to three-fold rotation to assist uniform distribution of depositing flux over the 

surface of substrates. Various types of polished samples from Ti6Al4V, 304 L stainless steel 

(SS) and HRc = 62 hardened high speed steel (HSS) were coated for thorough 

characterisation of the coatings.  

 

2.2 Coating characterisation. 

Various analytical techniques were employed to characterise the coatings. 

Coating adhesion was measured by the Daimler Benz (DB) Rockwell indentation test, (ISO 

26443) as well as a progressive loading scratch test (maximum load: 80 N) conducted on 

CSEM-Anton Paar REVETEST, (ISO 20502). Coated HSS and Ti6Al4V alloy substrates 

were used for these tests.  

The Knoop hardness of the coatings (HSS substrate) was investigated with the help of 

Mitotoyo microhardness tester using a 0.25 N load (hold time of 10 seconds). 

The texture of the nanoscale multilayer structure (304L SS substrates) was investigated using 

Brag-Brentano (BB) geometry (20°-130° with a scan rate of 0.008 degrees per second) X-

Ray Diffraction (XRD) technique (PHILIPS XPERT). Texture coefficient (T*) was 

calculated using the following equation [21, 22]: 

�∗ =
���� ����⁄

(� �⁄ )∑ (���� ����⁄ )�
�

            (1), 

where I(hkl) is the measured peak intensity from the (hkl) reflections, Rhkl is the reference 

standard (random) peak intensity from the (hkl) reflections and n is the number of reflections 

considered. The JCPDS values of peak intensity were used as the standard reference (Rhkl) 



7 

 

intensity values since it was not possible to determine Rhkl intensity values for a randomly 

oriented coating material.  

Detailed analysis of the coating microstructure in terms of its nanoscale multilayer 

architecture, interfaces, epitaxy and density among the columnar grains was carried out using 

bright field Transmission Electron Microscopy (Philips STEM 420 equipped with a LaB6 

filament). Coatings deposited on SS substrates were used for TEM work whereas a FEI 

QUANTA 3D FEG - SEM was used for the focused ion beam (FIB) milling and imaging 

cross-sections of the coatings deposited on Ti6Al4V alloy at the point of interest after the CE 

tests.  

Glancing angle geometry XRD technique was used for determining the residual stress in the 

coatings (SS substrates). The angle of incidence to the substrate was fixed at a low angle of 2º 

where a scan rate of 0.008 degrees per second was employed. Residual Stress (σ) was 

calculated from the slope of the least-squares fit of the plot of aΨ versus sin
2
Ψ and using the 

following expression 

σ =
�����	�

��	(���)
     (2), 

where E is the elastic modulus, aΨ is the lattice parameter and ν (0.3) is the Poisson's ratio 

[22]. The elastic modulus E was determined by nanoindentation test. A nano hardness tester 

(CSEM-Anton Paar) with a Berkovich indenter was used to evaluate the elastic modulus of 

the coatings. The applied load for all of the elastic modulus measurements was 30 mN. The 

lattice parameter aΨ can be calculated for each diffraction peak where Ψ is the angle between 

the diffraction vector of planes (hkl) and the normal to the surface, such that Ψ= θ-γ  where θ 

is the Bragg angle and γ is the angle of incidence of the X-ray beam relative to the specimen 

surface.  
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2.3 Cavitation erosion test. 

An ultrasonic induced cavitation device (UIP 1000 hdt) was used to carry out the CE tests. 

The tests were performed in distilled water bath maintained at laboratory temperature (~ 25 ± 

2 °C); procedures followed the ASTM G32-92 standard. The CrAlYN / CrN coated and 

uncoated Ti6Al4V specimens were set opposite to a vibrating tip of titanium sonotrode. 

Cavitation was induced by longitudinal oscillation at 20 kHz at peak-to-peak amplitude of 50 

µm. The titanium tip (grade 5) of the vibrating horn was 18 mm in diameter. A stand-off 

distance between the tip of the sonotrode and surface of the specimen was set to 1 mm using 

filler gauge. Experiments were performed on one sample of each type (coated and uncoated). 

After each test interval, the specimens were rinsed, dried and weighed by an analytical 

balance with a sensitivity of 0.1 mg to determine mass loss. To plot the erosion curve an 

average of 5 readings taken for the tested specimen after each interval were used. The 

topographical characterisation of the post-test coatings was conducted using an Alicona 

infinite focus microscope (IFM) G4 with 20 x objective at 75 nm vertical resolution.  

For comparison of coatings performances, CE experiments were also carried out on 

commercially deposited monolithic TiN coatings deposited on Ti6Al4V substrates. 

 

3.0 Results and discussions: 

3.1 Coating mechanical properties. 

The adhesion strength of CrAlYN/CrN deposited on HSS and Ti6AlV substrate was 

measured by Rockwell C indentation and scratch tests and the results are presented in Figure 

1 (a-d). For both coatings, deposited with high and low ion bombarding energies (C1 and C2 

coating respectively), optical microscopic observation showed no cracks, delamination or 

spallation of the coatings around the Rockwell indents confirming superior adhesion between 
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the coating and the substrate. This superior adhesion strength of the coatings can be rated as 

grade Class 0 (ISO 26443) equivalent to HF1 (DB test). This is especially important 

considering the Ti6Al4V substrate (hardness of HK0.25 N = 405 and Young's Modulus (E) = 

152.3± 7.2 GPa) is comparatively softer (Figure 1b). Similarly no spallation of the coatings 

was evident under scratch tests even though the normal load progressively reached 80 N 

leading to through thickness perforation (Figure 1d). This excellent adhesion behaviour is 

mainly attributed to the well-defined crystal structure at the coating-substrate interface 

provided by the HIPIMS metal ion etching, which promotes the localized epitaxial growth of 

the coating. Both C1 and C2 coatings had a similar thickness of around 4 µm. The hardness 

of C1 coating was in the range of 3000 HK0.25N whereas the Young's modulus value (E) was 

calculated to be around 300 GPa. The C2 coating was found to have a hardness value in the 

range of 2700 HK0.25 N as well as reduced Young's modulus (E) value of 275 GPa. Both 

coatings had nearly similar compressive residual stress values in the range of - 4 ± 0.5 GPa. 

The commercially sourced TiN coatings had a hardness of 2200 HK0.25N, and compressive 

residual stress value of -2 ± 0.5 GPa. The thickness of the TiN coating was 2.7 µm. 
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Figure 1 Rockwell C adhesion tests (a) C2 coating  on HSS substrate (b) C2 coating on 

Ti6Al4V substrate, (c) C1 coating on HSS substrate and (d) Scratch test C2 coating on HSS 

substrate. 

3.2 Coating microstructure. 

Figure 2a shows the low magnification TEM image of the whole CrAlYN/CrN coating (C2) 

obtained in a bright field imaging mode. The image shows a surface of the substrate which 

has been pre-treated (etched) with a metal ion enriched HIPIMS plasma followed by the 

deposition of a dense CrN base layer (around 250 nm). The interface between the substrate 

and the base layer was found to be very smooth, sharp and without any defects (neither 

droplets nor any voids in the interface region), often observed in arc and Argon ion etching 

respectively, is a typical feature of HIPIMS etching [23]. On top of the base layer, alternating 

layers of CrAlYN and CrN (bi-layer thickness of approximately 3 nm) have been deposited, 

Figure 2b, to form the nanoscale multilayer coating. The implantation of metal ions during 

the etching step leads to the formation of a superior epitaxial coating microstructure that not 

only is limited to the adjacent base layer but also extends to the top of the coating, [23]. In 

(c) 

(d) 

(a) (b) 
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this case the epitaxy was evident in Figure 2a wherein wide portions of coating columnar 

microstructure with a similar colour contrast could be seen extending right from the bottom 

of the base layer to the top of the coating as the coating synthesised uninterruptedly. The 

epitaxial microstructure along with smooth, defect free substrate-coating interface leads to 

superior adhesion bonding. The effect of the high metal ion irradiation during coating 

synthesis was also visible from the growth of dense and wide columns with flat tops (Figure 

2a) as well as the presence of flat and sharp interfaces within the nanoscale multilayers 

(Figure 2b). This superior dense microstructure along with high adhesion imparts superior 

barrier and mechanical properties to the coating. The microstructure of the C1 coating also 

had similar multilayer architecture with anticipated minute changes in the bi-layer thickness, 

columnar width (figures not included) and texture of the coating due to the different intensity 

of the ion bombardment during the growth. The monolithic TiN coatings in general had 

smooth surfaces without any macro-particle defects. FIB cross-sectional studies confirmed 

the microstructure to be made-up of dome shaped columnar grains, which are typical for 

sputtered coatings (see Figure 9) but without the nanoscale multilayer stacking as observed in 

the C1 and C2 coatings.  

 

     
(a) (b) 
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Figure 2 (a) Bright field TEM image of the whole C2 coating; (b) High magnification bright 

field TEM image of the multilayer structure consisting of alternating CrAlYN (light contrast) 

and CrN (dark contrast) nanoscale layers. 

3.3 Coating texture. 

The texture evolution in CrAlYN/CrN coatings was analysed using X - ray diffraction (θ-2θ, 

BB geometry) technique. Figure 3 shows BB XRD patterns of the C1 and C2 coatings (SS 

substrates) deposited with high and low ion bombarding energies. The results indicate that the 

coatings had a NaCl type f.c.c crystal structure. The CrAlYN/CrN coating deposited with low 

ion bombarding energy exhibited a strong {111} preferred orientation (as shown in Figure 3 

a), in contrast to {200} (as shown in Figure 3 b) for the coating deposited with high ion 

bombarding energy. It was reported in the literature that the texture in HIPIMS deposited TiN 

coatings transformed from {111} to {200} while increasing the ion bombardment energy [24]. 

The increased ion energy influenced the texture of the coatings by enhancing the ad-atom 

mobility and increasing the flux of atomic nitrogen created by a kinetically-induced 

dissociation of nitrogen molecules at the substrate surface. The {200} orientation was found 

to be dominant in the presence of atomic nitrogen and ionized metal flux due to the trapping 

of Ti on {200} sites through the formation of TiN clusters. It was also reported that {111} 

orientation was promoted under deposition conditions in which the incident particles are 

mainly metal atoms and N2 molecules (non-ionised flux) and Ti is trapped predominantly on 

{111} sites [24]. Thus compositionally similar C1 and C2 coatings show difference in texture 

owing to the difference in ion bombardment levels during the coating growth stage.  

In turn, the crystalline texture plays a significant role in CE behaviour, grains with (111) 

orientations resist CE better [8, 25, 26]. The effect of the texture of HIPIMS coating on the 

CE performance will be further discussed in section 3.5. XRD results on the commercially 
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sourced monolithic TiN coating also exhibited a f.c.c NaCl structure with a strong {111} 

texture (Figure 3c). 

 

 

Figure 3 XRD results used for texture analysis of different coatings in this study. 

 

3.4 Cavitation erosion performance of HIPIMS coatings. 

Results of the CE tests show that both HIPIMS coated specimens outperform the bare 

Ti6Al4V substrate, Figure 4. The C2 coating demonstrates significant improvement of CE 

performance with reduced maximum erosion rate of 0.002 mg/min, comparing to 0.024 

mg/min for the substrate material. Furthermore, the incubation period is prolonged more than 

twice (>240 min) with comparison to that of the substrate Ti6Al4V (120 min), as listed in 

Table 1. In the case of C1 coating, the incubation period also indicates an improvement of 60 

minutes (180 min); however, the erosion rate starts to increase after 150 mins of CE exposure 

and reaches up to the maximum value of 0.030 mg/min by the end of the test. Both HIPIMS 

coatings present excellent CE behaviour comparing to the multilayer coatings manufactured 

by traditional PVD process [27, 28]. This can be attributed to the synergy between 
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superhardness and a special crack propagation mechanism that enhances the toughness. 

Additionally, the thin HIPIMS coatings (about 4 microns) outperform thick coatings reported 

in the literature, such as those deposited by Chemical Vapour Deposition (CVD) [29] and 

High Velocity Oxy Fuel (HVOF) [30, 31] processes. It is revealed that the thick but porous 

HVOF coatings demonstrate almost no incubation period under CE. Surface and cross-

sectional analysis was conducted to further understand the coating behaviour under CE. 

 

 

 

Figure 4 CE results of HIPIMS coatings versus Ti6Al4V substrate and TiN coating. 

 

Coatings 

Test  

facility 

Incubation 

period (min) 

Maximum 

erosion rate 

(mg/min) 

Manufacturing 

process 

Thickness 

(µm) 

Test 

period 

(hour) 

Ti6AlV4 

Vibratory 

cavitation 

apparatus 

120 0.027 / / 

4.5 C1 180 0.013 

HIPIMS 4 

C2 240+ 0.002 

CrN/CrCN [27] Cavitation 30 0.020 PVD 4.3 10 
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Ti/TiN-4 [28] 
tunnel 

60 0.004 3.7 

(NiTi/TiCN)0.5 

[32] 

Vibratory 

cavitation 

apparatus 

60 0.004 3.32 12 

Nanocrystalline 

diamond [29] 

30 0.011 HF-CVD 1 2.5 

M6-HV [29] 15.6 0.027 

HVOF 

134 ± 6 8 

WC-CoCr [29] 61.8 0.041 107 ± 12 8 

Cr
3C2-NiCr [31] 0 0.050 30 - 40 8 

CoMoCrSi [33] 0 0.125 Plasma spray / 2 

FeNiCrBSiNbW 

[34] 

0 0.150 Arc spray 230 2 

 

Table 1 Comparison of CE performance of HIPIMS coatings with those reported in 

literatures. 

3.5 Cavitation mechanisms. 

3.5.1 Incubation period 

The CE behaviour of both HIPIMS coatings during incubation period was investigated with 

FIB/SEM analysis. Figure 5(a-c) show areas of the C1 coating which were subjected to 

erosion tests conducted for 90 minutes (incubation period) and then subsequently chosen for 

FIB milling. As observed in Figure 5a, the C1 coating surface was found to be intact without 

any evidence of intergranular cracking or cohesive fracture or similar coating removal 

mechanisms. Formation of pits due to localised removal of deposition chamber related 
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nodular, open void and cone shape coating defects [35] can be seen. On closer inspection at 

the cross-sectional view, cracks were found at the substrate (as labelled in Figure 5b) and 

propagating into both the substrate and the coating (Figure 5c). In the case of C2 coating, 

Figure 5 (d-f), no cracks were found on the surface or on the cross-sections during incubation 

period.  

The coated specimens construct a system with a hard and tough coating applied on a 

compliant substrate. The hardness of the coatings is nearly up to 8 times higher than those of 

the substrate. The high impact pressure and stress waves induced by implosion of cavitation 

bubbles cause deformation in the target material [36–38]. The dislocation density is increased 

during this process [37]. The nanoscale multilayer structure restrains the mobility of the 

dislocations; hence, limited plastic deformation occurs. Additionally, the enhanced toughness 

of the superlattice structured coatings can also contribute to better resistance to cavitation 

impulse [16, 17]. As the stress waves propagate through the coatings and reach the interface, 

they would be partially transmitted and partially reflected. The magnitude of the stress waves 

reaching the interface can vary due to the different coating textures, which will be further 

discussed in the following section. The transmitted stress waves then interact with the 

substrate material. The Ti6Al4V substrate demonstrates more compliance with larger grain 

size (average size 5µm measured by SEM), which can promote the dislocations with more 

space to move and lead to plastic deformation. The repetition of the process of loading and 

unloading induced by clouds of microjet impingements leads to a fatigue-like phenomenon, 

eventually forming cracks in the Ti6Al4V substrate. The fact that we observed subsurface 

cracks on the C1 coating cross-sections indicates that more stress waves transmitted to the 

substrate material. While for C2 coating, the crack initiation is delayed. More detailed 

discussion shown in the following section.  
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Figure 5 (a), (b) and (c): FIB cross-sections of C1 coating during incubation period; arrows 

indicate cracks (d), (e) and (f): cross-sections of C2 coating during incubation period. 

(d) 

(e) 

(f) 

(b) 

(c) 

(a) 
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3.5.2 Advanced stage 

The surface profile of the two coatings tested under CE for 270 mins are shown in Figure 6. 

Material removal was detected at the edge and the centre of the exposed surface of C1 

coating (Figure 6a). Whereas for the C2 coating, the surface profile presented in Figure 6b 

indicates that the damage was localised. These observations were further supported by SEM 

analysis presented in Figure 7. Coating removal leading to the exposure of substrate surface 

and its subsequent erosion could be observed in larger quantities in the case of C1 coating 

(Figure 7a). Whereas in the case of C2 coating (Figure 7b), material removal was much 

localised and in general very limited damage was observed.  

 

 

 

Figure 6 Surface profiles of 270 mins of CE tests: (a) C1 coating; (b) C2 coating. 

 

 

(a) 

(b) 
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Figure 7 Exposure surface of 270 mins of CE tests: (a) C1 coating; (b) C2 coating. 

Cross-sectional investigation through FIB/SEM was conducted to further understand the CE 

mechanisms of both nanoscale multilayer coatings, as shown in Figure 8. It shows a variation 

in the level of protection offered by the two coatings in the advanced stages of CE. In the 

case of C1 coating, lateral growth of the subsurface cracks (near the coating-substrate 

interface) into the Ti6Al4V substrate was prominently observed, as shown in Figure 8a and 

8b. Some of these cracks were also found to traverse into the coating, as labelled in Figure 8a. 

An erosion crater was formed inside the substrate due to the removal of the substrate material 

together with the coating, Figure 8c. It can be seen that the coating at the surrounding area 

was still attached to the substrate surface which clearly indicates that the damage is not 

adhesion related. In the case of C2 coating, initiation of subsurface cracks (initially absent in 

the incubation period) was also observed. However, compared to the C1 case the subsurface 

cracks were much smaller in size and their number density was lower. As expected for a 

nanoscale multilayer structured coatings crack propagation in a lateral manner was observed 

due to deflection at the interfaces between the individual nanolayers, see Figure 8d.   

It was widely reported that the most common failure mode with coated substrates under CE is 

through coating delamination, [27, 28, 39]. This is due to the high impact pressure and stress 

(a) (b) 
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wave reinforcement induced by repeated implosion of the cavitation bubbles at the coating-

substrate interface. The same damage mechanism is also reported in the multilayer coating 

systems, such as CrN/CrCN [27] and Ti/TiN [28]. It should be noted that the coating- 

substrate interface of the referenced coatings was not engineered by metal ion implantation. 

In contrast, both C1 and C2 nanoscale multilayer coatings deposited by HIPIMS 

demonstrated excellent bonding strength with no coating delamination from the substrate due 

to the metal ion surface pre-treatment, [20, 23].  

It can be further proposed that one of the damage mechanisms in both coatings can be 

induced by the surface defects formed during the deposition process. These nodular, open 

void and cone shape coating defects [35] can act as stress raisers for implosion of cavitation 

bubbles. Then, the continuous actions of shearing and tearing at these sites lead to subsequent 

material removal, eventually contributing to enhanced local erosion rates. However, this is 

not considered as the main failure mechanism, since both coatings have similar surface 

defects but exhibit different CE performance. 

It is believed that the formation of cracks in the sub-surface region in the incubation period 

and the way these cracks propagate, both into the substrate and coating during the advanced 

stage, seems to be the key to understand the wear mechanism in such system in CE 

conditions.  

 As discussed, after a test period of 270 mins, prolonged plastic deformation and crack 

formation in the substrate of C1 coating was observed, as shown in Figure 8a. This could be 

attributed to the less effective dissipation of the exerted impact pressure and the stress waves 

on the {200} oriented crystallographic structure. As the cracks developed in the substrate and 

coalesce at the subsurface (Figure 8b), material removal can then take place that leads to the 

formation of erosion craters inside the Ti6Al4V substrate, as seen in Figure 8c. On the other 

hand, the results indicate that the C2 coating appears to be better equipped to dissipate the 
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stress waves. This can be correlated to the denser atomic packing of the 

{111}crystallographic planes, which delay crack initiation in the substrate more effectively as 

compared to the lower atomic density {200} planes of the C1 coating. This phenomenon has 

been observed in the past studies on CE applications suggesting that materials with certain 

crystal orientation demonstrate better resistance to wear and CE [8,25,26]. The experiments 

further revealed that the efficiency of the elastic energy transport through the material, which 

depends on its elastic properties, also needs to be considered. In our case, the Young's 

modulus value (E) of the C1 coating, (EC1= 300 GPa) is greater than that of the C2 coating, 

(EC2= 275 GPa) therefore we observe more effective elastic energy transport through the C1 

coating, resulting in more damage to the underlying substrate material. 

 

 

 

 Figure 8 Cross-sectional FIB SEM analysis after 270 mins of CE tests, white arrows 

indicate the cracks observed in: (a,b,c) C1 coating; (d) C2 coating. 

(a) (b) (c) 

(d) 
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Thus superior coating microstructure, along with the engineered coating texture ({111} 

dominant) and lower Young's modulus, (E) value seems to define the superior CE resistance 

of the C2 coating as compared to C1 coating. 

 

3.6 Comparison with monolithic coating. 

The beneficial effect of nanoscale multilayer structure can be further demonstrated when 

comparing the CE performance with a monolithic magnetron sputtered TiN coating on the 

same Ti6Al4V substrate. The investigated TiN coating exhibits a strong {111} texture. 

Figure 9(a-b) shows SEM image of the eroded areas of the coating after subjecting it to 

similar testing conditions as those employed for C1 and C2 coating. The TiN coating failed 

after 5 mins of CE exposure and the erosion rate exceeded that of the Ti6Al4V substrate after 

270 mins of CE tests. As seen in Figure 9a, the TiN coated specimen shows severe damage 

and loss of coating on large areas of the surface. Formation of inter-columnar cracks as seen 

in the Figure 9b and eventual coating delamination seems to be the dominant mode of failure. 

However, unlike the C1 and C2 coating, these cracks appear to originate at the top and 

propagate vertically along the columnar boundary towards the substrate without any 

deflection or hindrance. Despite its more favourable {111} texture, owing to the weak 

bonding between columnar grains, which is an inherited problem of the standard magnetron 

sputtering deposition renders the coating weak. The results clearly demonstrate that in this 

case, the monolithically grown TiN PVD coating does not prevent the crack initiation due to 

the shearing forces encountered in CE as effectively as compared to the nanoscale multilayer 

structures.  
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Figure 9 Cavitation erosion studies on TiN coating (a) SEM image of the eroded coating in 

plan view (b) FIB cross-sectional analysis showing vertical cracking in the coating indicated 

by white arrows. 

4.0 Conclusions: 

 

1. High Power Impulse Magnetron Sputtering (HIPIMS) technology was successfully used to 

deposit CrAlYN/ CrN coatings utilising nanoscale multilayer structure with high hardness, 

HK0.25N = 2750, enhanced adhesion (scratch adhesion critical load, LC= 80 N) and high 

coating density as shown by FIB/SEM and TEM analyses. In Cavitation Erosion (CE) tests 

the novel coatings show a factor of 14 lower erosion rates than the base Ti6Al4V substrate 

and outperformed a range of coatings reported in the literature deposited by PVD, CVD, 

Plasma spray, HVOF and Arc spray techniques. 

2. The research shows that in CE conditions there are significant differences in the coating 

failure mechanisms between monolithically grown and nanoscale multilayer structured 

coatings: 

(a) (b) 
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- Monolithically grown TiN coatings with {111} texture deposited by standard magnetron 

sputtering exhibited severe damage after only a few minutes in the CE test where the main 

failure mechanism was coating delamination due to the weak adhesion bonding and opening 

of tensile stress inter-columnar cracks due to the sub-dense columnar coating structure. 

- The HIPIMS-deposited CrAlYN/CrN nanoscale multilayer structured coatings show no 

signs of delamination due to the strong metallurgical bonding between the coating and the 

substrate. Crack initiation was significantly delayed with a 240 minute incubation period 

achieved in CE tests. FIB/ SEM analyses show clear evidence that the crack propagation 

mechanism involved crack deflection at the interfaces between the nanolayers, which was 

highly beneficial for the coating life time.  

3. HIPIMS-deposited CrAlYN/CrN coatings with {111} texture grown in conditions of low 

ion bombardment shows better protection of the substrate material against sub-coating 

substrate deformation and crack formation as compared to coatings with {200} 

crystallographic orientation deposited in conditions of higher ion bombardment. It is 

suggested that the denser atomic packing of the (111) crystallographic planes in the nanoscale 

multi layered coating better extinguishes the propagation of the elastic shock waves produced 

in the cavitation attack through the coating material. 

4. CE tests revealed that CrAlYN/CrN coatings with lower Young's modulus, (EC2 = 275 

GPa) provide better protection of the substrate material against crack formation as compared 

to coatings with higher Young's modulus, (EC2 = 300 GPa) due to the less effective elastic 

energy transport through such materials.    
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