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Abstract 

Hair differs from other human materials used for toxicological analysis, such as blood 
or urine, because of its substantially longer window of detection (months to years) 
enabling retrospective investigations of drug consumption. Due to its solid and durable 
nature, hair may be analysed centuries after growth with little degradation. Other 
advantages of hair analysis include the non-invasiveness of its collection, which is of 
particular importance in infant/child investigations and the ease of sample storage.  

Although hair analysis offers the potential to reveal information which is not possible 
with other biological matrices, it also suffers from some unique limitations that can 
make interpretation of findings challenging. These are largely due to exposure of hair 
to the environment before analysis can take place. 

Current analytical techniques allow detection and quantification of cannabinoids in 
hair samples. Frequently used techniques include gas chromatography mass 
spectrometry and liquid chromatography mass spectrometry. The majority of studies 
exclusively analyse the natural products Δ9-tetrahydrocannabinol (THC), Cannabinol 
(CBN), cannabidiol (CBD) or the metabolite 11-nor-9-carboxy-tetrahydrocannabinol 
(THC-COOH).  

In this thesis THC, CBD, CBN, THC-COOH and the additional metabolite 11-Hydroxy-
delta-9-tetrahydrocannabinol (11-OH-THC) have been simultaneously detected and 
quantified in authentic hair samples using a novel atmospheric pressure chemical 
ionisation method coupled to gas chromatography mass spectrometry. The results of 
these findings are compared to self-report data and are largely found to be in 
concordance, with some anomalies. In addition, several strategies to overcome the 
complication of external contamination of hair samples were trialled and compared to 
self-report data.    

In this thesis there is also an investigation presented to demonstrate the in-situ 
derivatisation of cannabinoids using matrix-assisted laser desorption ionisation 
(MALDI).  This is the first time a hair has been analysed for cannabinoids using MALDI 
and the first example of in situ derivatisation for hair samples. 

The addition of an N-methylpyridium group results in improved ionisation efficiency, 
permitting both detection and mapping of Δ9-tetrahydrocannabinol (THC), Cannabinol 
(CBN), cannabidiol (CBD) and the metabolites 11-nor-9-carboxy-tetrahydrocannabinol 
(THC-COOH), 11-Hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-
delta(9)-carboxy-tetrahydrocannabinol glucuronide (THC-COO-gluc) in single hair 
samples.  

Additionally, for the first time an in-source re-arrangement of THC is reported and 
characterised in this thesis, thus contributing new knowledge in the analysis of this 
drug by MALDI mass spectrometry.  
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CHCA   α-Cyano-4-hydroxycinnamic 

CID  collision-induced dissociation 

CNS   central nervous system  

CTAB   cetyltrimethylammonium bromide 

DEA   drug enforcement administration  

DHB  2,5-Dihydroxybenzoic acid 

ECCI                  electron capture chemical ionisation 

ECS   endocannabinoid System 

EI   electron impact ionisation  

ESI   electrospray ionisation  

FMPTS  2-Fluoro-1-methylpyridinium-p-toluene-sulfonate 

GC  gas chromatography 

GC-MS  gas chromatography mass spectrometry  

GC-MS/MS  gas chromatography tandem mass spectrometry  

ICR   incorporation rate  

LC  liquid chromatography  

LC-MS   liquid chromatography-mass spectrometry  

LiTFA   lithium trifluoroacetate 
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LLE  Liquid-liquid extraction  

LOD   limit of detection  

LOQ   limit of quantitation  

m/z   mass to charge ratio  

MALDI-MSP  matrix assisted laser desorption ionisation-mass spectrometry profiling 

MALDI-MSI  matrix assisted laser desorption ionisation- mass spectrometry imaging  

MDMA  3,4-Methylenedioxymethamphetamine 

MIPSE  molecularly imprinted solid phase extraction  

MS/MS tandem mass spectrometry 

MTBSTFA  N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide 

ND   not detected  

NICE   national institute for heal and care excellence  

PFOH   2,2,3,3,3-pentafluoropropanol 

PFPA    Pentafluoropropionic anhydride 

Q  quadrupole 

QqQ   triple quadrupole  

Q-ToF  quadrupole time-of-flight 

QUALY  quality adjusted life years  

RT   retention time  

SAMHSA  substance abuse and mental health services administrator  

SoHT   society of hair testing  

SCRA  synthetic cannabinoid receptor agonists  

SPE  solid phase extraction 

TFA   trifluoroacetic acid 

TFAA   trifluoracetic acid anhydride  

THC   Δ⁹-tetrahydrocannabinol 

THCA-A  Δ9-Tetrahydrocannabinolic Acid A 

THC-COO-glu   Δ9-Tetrahydrocannabinolic acid-glucuronide  

THC-COOH  11-Nor-9-carboxy-Δ⁹-tetrahydrocannabinol 

TMS   trimethylsilyl  

TOF   time of flight  

UPLC-MS/MS  ultra-performance liquid chromatography tandem mass spectrometry 
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Matrix (Disambiguation) 
 

In relation to matrix assisted laser desorption ionisation the term matrix refers to a 
solvent containing one or more small organic molecules which is fundamental to the 
ionisation process. 

In toxicology (in this thesis in relation to the use of gas chromatography-mass 
spectrometry) the term matrix refers to hair extracts. 
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Chapter 1. General introduction 
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The field of forensic toxicology encompasses analysis of biological specimens for 

substances such as alcohol, drugs and poisons, which are related to a medico-legal 

investigation.  

Recent Home Office data indicates that, in England and Wales, cannabis remains the 

most commonly encountered illicit drug, where it accounted for 72% of the 138,955 

drug samples seized by police in the financial year ending March 2017 [1]. As in 

previous years, cannabis was the most commonly used drug in 2016/17, with an 

estimated 6.6% of adults aged 16 to 59 having used it in the last year (around 2.2 

million people) [2]. Due to its widespread use and popularity, the detection of cannabis 

use is important in the field of forensic toxicology.  

 
In this introductory chapter, cannabis, including its mechanism of action and 

interpretational issues will be discussed in detail. In addition, the use of hair as an 

alternative biological matrix with advantages and pitfalls will also be discussed. Finally, 

current analytical techniques used to detect cannabis use in hair samples will be 

described.  

 

1.1 Cannabis 
 
Cannabis is a highly variable plant species in terms of botany, genetics, and chemical 

constituents. The precise number of species in the Cannabis genus has long been 

disputed [3]. Some reports proposed Cannabis as a polytypic genus, however, based 

on morphological, anatomical, phytochemical, and genetic studies, it is generally 

accepted as having a single, highly polymorphic species known as Cannabis sativa 

Linnaeus [4].  
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Cannabis has been used for recreational and medicinal purposes for centuries. For the 

purpose of this research, the term cannabis refers to the dried flower tops of the 

female plant. This product is also commonly known as marijuana or marihuana. The 

most common way to administer cannabis is by smoking, although it can also be 

ingested [5].  

 

1.1.1 Chemical components of cannabis 

 
The cannabis sativa L. plant contains more than 500 chemicals of which 61 are 

cannabinoids, a further 1500 compounds are produced by pyrolysis during smoking of 

cannabis [6]. Of the naturally occurring compounds delta-9-tetrahydrocannabinol 

(THC) is considered to be the main psychoactive component.  

The THC content in cannabis plant material is extremely variable. In America the mean 

concentration of THC in plant material seized by the Drug Enforcement Agency (DEA) 

has increased year-on-year from 4 to 12% in the years 1995 to 2014, although 

concentration ranges are not reported [7].  

In 2005 a study of 247 cannabis samples collected from street level users in the UK 

revealed a wide concentration range of 1.16-23% with a median level of 14% [8]. In a 

more recent UK study conducted in 2016, the concentration range was highly variable, 

from 1.9% to 22.5%, with a median value of 14.2% for the 400 samples tested [9].  
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1.1.2 Tetrahydrocannabinol formation and metabolism  

 
In the growing Cannabis sativa plant, most cannabinoids are initially formed as 

carboxylic acids (e.g., Δ9-THCA and CBDA) that are decarboxylated to their 

corresponding neutral forms as a consequence of drying, heating, combustion, or aging 

[10] (Figure 1-1). CBN is often analysed in hair samples. It is not formed 

biosynthetically but is an oxidative degradant of Δ9-THC [11]. 

 

Figure 1-1. The biosynthetic pathway for the production of cannabinoids and breakdown products of THC. 

Compounds highlighted with a red box are target analytes in this research project.  
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When ingested or inhaled, THC undergoes complex hepatic metabolism based on 

oxidation and subsequent glucuronidation [6]. Since this is an enzymatic pathway only 

present in vivo, metabolite detection has been suggested as a solution to external 

contamination difficulties associated with solely analysing THC, CBD and CBN content 

in hair samples (see Section 1.3.7). The main oxidative metabolites of THC are 11-

hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-delta-9-

tetrahydrocannbinol (THC-COOH) which are shown in Figure 1-2. THC-COOH 

subsequently undergoes glucuronidation to form 11-nor-delta(9)-carboxy-

tetrahydrocannabinol glucuronide (THC-COO-gluc). 

 

Figure 1-2. The in vivo metabolic pathway of THC. 

 

1.1.3 Mechanism of action  
 
The effects of THC are triggered by the compound binding to receptors in the 

endogenous cannabinoid system.  

The endocannabinoid system (ECS) is a widespread neuromodulatory system that plays 

important roles in central nervous system development, synaptic plasticity, and the 
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response to endogenous and external stimuli [12]. The ECS comprises of cannabinoid 

receptors, endogenous cannabinoids, and the enzymes responsible for the synthesis 

and degradation of the endocannabinoids.   

Two cannabinoid receptors have been identified in humans (CB1 and CB2) [13]. CB1 

receptors are found mainly on neurons in the brain and are present in high densities in 

other areas of the central nervous system (CNS). CB1 is activated by the endogenous 

cannabinoids anandamide and 2-arachidonylglycerol (shown in Figure 1-3), among 

others. The pre-synaptic CB1 receptor inhibits the release of both excitatory and 

inhibitory neurotransmitters in the CNS and peripheral nervous system. Activation of 

the CB1 receptor produces a sensation of euphoria, along with other effects such as 

antiemetic and analgesic [14] which will be discussed further in Section 1.1.4.  

T 

Figure 1-3. Structures of cannabinoid receptor agonists. a) plant cannabinoid THC, b) plant cannabinoid CBD, c) 

endocannabinoid anandamide, d) endocannabinoid 2-arachidonylglycerol e) synthetic cannabinoid JWH-018  f) 

synthetic cannabinoid CP47,497 

 



 
22 

 

The CB2 receptor is predominantly expressed in the immune system, for example in 

the tonsils and spleen. CB2 receptors appear to be involved in inflammatory processes 

[15], and so targeting this receptor may be a new approach to treat inflammatory 

diseases. Whilst activation of the CB1 receptor produces psychotropic effects, the 

activation of the CB2 receptor does not [16]. THC has approximately equal affinity for 

the CB1 and CB2 receptor whilst CBD has a very low affinity for both cannabinoid 

receptors. Interestingly, CBD antagonizes cannabinoid receptor agonists [16].  

Recently there has been a rapid growth in the detection of synthetic cannabinoid 

receptor agonists (SCRAs). These are becoming increasingly chemically diverse, with 

169 detected from 2008 to 2016. In 2015, just over 22 000 seizures of synthetic 

cannabinoids were reported across Europe [17]. These seizures amounted to more 

than 2.5 tonnes of the substances.  

SCRAs were originally developed to research the CB1 and CB2 receptors. SCRAs include 

compounds such as JWH-018 and CP47,497 (shown in Figure 1-3) which are now sold 

under the brand names such as “spice”,” K2”, and “black mamba” for recreational use. 

Many SCRAs have a higher CB1 binding affinity than THC, and so have been known to 

cause severe adverse effects  [18].  

A more detailed review on downstream cellular responses to CB1 and CB2 activation 

can be found by Ibsen et al.[19].  
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1.1.4 Desired effects and therapeutic uses of cannabis 
 
It is widely accepted that cannabis can have many therapeutic properties including as a 

treatment for chronic pain [20–22], muscle spasticity in multiple sclerosis patients 

[23,24] and as an anti-sickness (antiemetic) treatment for patients undertaking 

chemotherapy [25,26]. There is also some evidence to suggest cannabis can be used as 

a treatment for Tourette’s syndrome [27]. In light of these findings, the use of medical 

marijuana has been legalised in several American states, and in September 2018 the 

law in the UK was changed to allow its use in some specific treatments [28]. 

 
In 2010, GW Pharmaceuticals released a cannabis-derived medicine in the form of an 

oromucosal spray marketed under the brand name of Sativex. It is used to treat muscle 

stiffness/spasm due to multiple sclerosis. The formulation contains a 1:1 ratio of THC 

and CBD as active ingredients and can be prescribed in the UK [29]. However, NICE 

(National Institute for Health and Care Excellence) recommend that Sativex should not 

be prescribed as it is not cost effective [30].   

 
In 2018, Epidiolex was approved as a prescription medicine by the FDA. Epidiolex is 

used to treat severe forms of epilepsy and is also produced by GW Pharmaceuticals. In 

contrast to Sativex, the active ingredient of Epidiolex is solely CBD [31].  

1.1.5 Adverse effects of cannabis use 
 
The recreational use of cannabis is illegal in most countries (including the UK). This is 

due to the adverse effects associated with cannabis usage including anxiety, 

depression, panic reactions and psychotic symptoms including an increased risk of 

developing schizophrenia [32]. However, despite some recent sensationalist media 

coverage, it is important to highlight the fact that cannabis consumption alone is not 
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enough to cause mental health problems, but in combination with other compounding 

factors such as a family history of mental health issues, the age of exposure to 

cannabis, and genetic factors cannabis can increase the risk of developing mental 

health problems. A detailed review of the link between cannabis use and mental 

health problems can be found by Radhakrishnan et al. [33]. Some studies suggest that 

CBD intake may mitigate adverse effects of THC usage including 

hallucinations/delusions and social withdrawal (introvertive anhedonia) [34]. 

 
In addition to possible adverse effects on mental health, a link between cannabis 

consumption and reaction time impairment has been established and it is thought that 

people who drive under the influence of cannabis are around twice as likely to be 

involved in a serious car accident [35–38]. Other negative traits associated with 

cannabis use include risk taking, antisocial behaviour, and poor academic performance 

[39]. 

 

1.2 Biological matrices for the detection of cannabis use 
 
The biological matrices blood, urine, hair, oral fluid and sweat have been proposed for 

the detection of cannabis use. Each matrix has its own advantages and limitations 

associated with it, as summarised in Table 1-1. A detailed review of biological matrices 

used for determining cannabis use can be found by Musshoff and Madea [40].  
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Biological 
sample 

Advantages Limitations 

Blood  Preferred for the interpretation of 
acute effects after cannabis abuse. 
Able to distinguish between 
occasional and regular users [41]. 

Invasive. Sample collection needs to 
be performed by a trained medical 
professional. Shortest window of 
detection compared to other 
biological samples. Blood samples 
should be stored at -20°C [42].  

Urine Non-invasive. Commonly used in 
workplace testing, well-established 
technique.  

Procedure is limited to samples 
obtained within a few days after the 
last consumption [40] (up to months 
if sample is taken from a chronic 
user). Concerns around privacy 
during collection. Samples must be 
stored at -20°C[43]. 

Sweat Non-invasive. Usually collected 
weekly over several weeks, giving a 
long detection window and insights 
into drug use patterns [44].  
 
 

 

Possibility of time-dependent drug 
loss from the patch by drug 
degradation on the patch or skin, 
reabsorption into the skin and 
volatile losses through the covering 
membrane of the patch [44]. 

Hair Non-invasive, long window of 
detection (depending on hair 
length) stored at room 
temperature. 

Possibility of external contamination. 
Low incorporation rates of 
metabolites [45] .  

Oral fluid Non-invasive. Fast, simple sample 
collection. Compatible with point-
of-collection-testing making rapid 
analysis possible at the roadside 
[46].  

Only able to detect recent cannabis 
use unless sample is provided by a 
chronic cannabis smoker [47]. THC 
can reduce salivation, leading to 
reduced sample volume. 
Confirmatory testing still needed 
after a roadside positive test.  

 

Table 1-1. Advantages and limitations of several biological matrices used for the detection of recent or ongoing 

cannabis use.  
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1.3 Hair testing for the analysis of cannabis use  

1.3.1 Hair  
 
Hair is a feature common to all mammals. Its main biological function is to facilitate 

thermoregulation, but additional functions include camouflage and increasing sensory 

perception. The main function of human hair is for protection (eyelashes stop things 

entering and irritating the eyes whilst scalp hair prevents physical damage from 

sunlight to the head and neck) [48].  

As described in Table 1-1, hair differs from other human materials used for 

toxicological analysis such as blood or urine because of its substantially longer 

detection window (months to years) enabling retrospective investigation of chronic 

and past consumption. Because of its solid and durable nature, hair analysis can be 

performed even centuries after growth [49]. Other advantages of hair analysis include 

the non-invasiveness of its collection; eradicating the need for special restroom 

facilities and same-sex collectors (as with urinalysis) or medically trained sample 

collectors (as with blood analysis). Finally, the ease of sample storage is an additional 

benefit of hair analysis as samples can be stored at room temperature and take up 

relatively little storage space.  

 

1.3.2 Applications of hair testing  
 

Despite the analytical pitfalls of hair testing with regards to external contamination, 

there are many applications which call for retrospective intake analysis which is not 

possible with other testing methods such as blood, urine or saliva analysis. 
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The first report of this type of retrospective analysis came in 1858 when arsenic was 

detected in the hair of a corpse exhumed 11 years after burial [50]. Perhaps one of the 

most famous uses of elemental analysis in hair was arsenic found in the hair of 

Emperor Napoleon Bonaparte over 100 years after his death [51]. Whilst elemental 

analysis of hair is still an important tool in forensic science today, modern hair analysis 

has much wider applications since the advent of chromatographic techniques allow for 

the detection of a wide variety of compounds.  

Applications of modern hair testing include workplace drug testing programmes [52], 

drug facilitated crime investigations [53,54], post-mortem investigations [55–59], 

driving licence renewals [60]  and even the detection of chemical warfare agents [61].  

One of the most common reasons for undertaking hair testing in the UK is for evidence 

in family courts as to whether a parent has abstained from drugs and/or alcohol. The 

Times newspaper claimed that in 2010 over 10,000 hair tests had been conducted for 

UK family courts over the course of a year [62].  

Clinical applications of hair testing have become more prevalent in recent years. This 

includes investigating patient compliance to prescribed medications. To date, research 

has primarily focused on the detection of drugs used to treat HIV [63–67]. The testing 

of neonatal hair to determine in-utero exposure has also been studied for both alcohol 

[68–70], nicotine [71] and illicit drugs [71–81].  Another possible clinical application of 

hair testing is to determine the suitability of a patient to receive an organ 

transplantation by determining drug and alcohol use or abstinence [82,83]. It has also 

been suggested that hair cortisol levels can be used as a biomarker for chronic stress, 

and a recent review article by Steudte-Schmiedgen concluded that hair cortisol 
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analysis is a promising addition to trauma and posttraumatic stress disorder (PTSD) 

related research [84]. 

1.3.3 Anatomy of hair 
 
To understand the incorporation of xenobiotics into hair, an understanding of the 

anatomy of hair is also needed. Initially hair can be divided into two main sub groups, 

the hair shaft which is seen externally as flexible tubes of dead, fully keratinized 

epithelial cells and the living hair follicle which is located 3-5 mm below the surface of 

the skin. 

 Anatomy of the hair shaft 
 
The hair shaft has three structural areas; the innermost of these is the medulla as can 

be seen in Figure 1-4. It may be continuous across the hair shaft, discontinuous or even 

completely absent. The cortex represents the majority of the hair fibre composition 

and plays an important role in the physical and mechanical properties of hair [85].  The 

outermost region of the hair shaft is the cuticle; it covers the hair from the root to the 

tip of the epidermis and is formed of 5-10 layers of flat overlapping cells. The cuticle 

can become damaged due to hair treatments, such as bleaching, dying, perming and 

the use of styling techniques such as straightening and curling which exposes the hair 

to intense heat.  
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Figure 1-4. The anatomy of the hair shaft showing the three distinct areas. Reproduced from [86]. 

 

 Anatomy of the hair follicle  
 
The structure of the hair follicle can be seen in Figure 1-5. At the base of the hair bulb 

is the dermal papilla which contains the blood supply to the follicle. This is the main 

source for transport and supply of metabolic fuel and hence of drug molecules. The 

cell membranes of the matrix cells (that are localized in a cone-shaped region around 

the papilla) and the cell membranes of the melanocytes (that are situated at the apex 

of the papilla) are exposed to the circulating blood, lymph and extracellular fluids [87]. 

As the hair grows from the bulb it dehydrates and keratinisation takes place.  
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Figure 1-5. The structure of the hair follice. Reproduced from [88]. 

 

1.3.4 Hair growth rates and hair growth cycle 
 
Other important factors in the interpretation of hair analysis results include the hair 

growth rate and the hair growth cycle. Hair grows in a cycle composed of the anagen 

(active growing), catagen (transition) and telogen (resting) stages. At any one time, 

approximately 85% of adult scalp hair is in the growing phase (anagen) with the 

remaining 15% in the resting phase (telogen). In the telogen phase the dermal papilla 

contains no capillaries [89]. The rate of hair growth can vary between individuals, with 

studies showing a five-fold difference in head hair growth rate from 0.6 to 3.36 cm per 

month [89]. However, as can be seen in Table 1-2 reproduced from the review article 

by LeBau et al., the average growth rate is approximately 1 cm per month [90]. Despite 

the wide range in growth rates between individuals the Society of Hair Testing (SoHT) 

recommends using the 1 cm per month average when interpreting results for head 

hair [91]. This can cause assessments of a timeline of usage/abstinence to be 

inaccurate. For example, for an individual with a hair growth rate of 0.65 cm per 
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month a 1 cm section would equate to approximately 47 days of usage. However, for 

an individual with a hair growth rate of 2.2 cm per month a 1 cm section would equate 

to approximately 14 days of usage.  

Year of 

publication 

Growth rate (cm/month) 

 Minimum Maximum Average Reference 

1951 0.84 1.15 0.98 [92] 

1964 0.76 0.96 0.86 [93] 

1992 0.84 1.37 1.12 [94] 

1993 0.6 3.36 Not reported [89] 

1996 0.65 2.2 1.4 [95] 

2004 0.95 1.12 1.04 [96] 

2007 0.73 1.48 1.11 [97] 

Table 1-2. Published growth rates of human head hair, adapted from a review article by LeBeau et al. [98]. 

It is worth noting that other hair types such as chest, pubic, axillary, beard, arm and leg 

can be used in testing however head hair is preferred because it has the fastest growth 

rate with the highest percentage of follicles in the anagen phase [99]. 

1.3.5 Mechanisms of drug incorporation into hair 
 
There are several possible mechanisms of incorporation of drug compounds into hair. 

Whilst for interpretational purposes it would be advantageous for compounds only to 

be incorporated from the blood stream, there are several other possible mechanisms. 

These include sweat, sebum, smoke, contaminated hands and secondary transfer 

(Figure 1-6). In this section each model will be discussed, including an evaluation of 
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how each possible route of incorporation can affect the interpretation of hair testing 

results. 

 

Figure 1-6. Possible methods of cannabinoid incorporation into hair samples, in addition to incorporation via the 

bloodstream. Adapted from [100].  

 

 Incorporation from blood 
 

Incorporation models typically assume that drugs or chemicals enter hair by passive 

diffusion from blood capillaries into growing cells within the hair bulb and then 

becomes “trapped” in the keratinised cells as the hair dehydrates [101]. 

For a drug molecule to permeate a cell it must cross the plasma membrane. Therefore, 

the physicochemical properties of both the cell membrane and drug molecule largely 

dictate the amount of drug which is incorporated into the hair from the bloodstream. 

Nakahara et al. studied the effects of melanin affinity and lipophilicity on the 

incorporation rate (ICR) of twenty drugs of abuse using a rat model. They concluded 
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that both melanin affinity and lipophilicity were positively correlated with the ICR, 

except for in the case of 11-nor-9-carboxy-THC (THC-COOH) where the ICR was low 

despite having high lipophilicity [45].  

The pKa of the drug molecule is also important in the passage of the drug from the 

plasma into the melanocytes of the hair bulb as the molecule must be non-ionised to 

cross the cell membrane. There is a pH gradient from plasma (pH 7.3) to the 

melanocytes of the hair bulb (pH 3-5) [99] this in turn means that basic compounds 

incorporate preferentially to acidic compounds. This is described in more detail in  

Figure 1-7 reproduced from Pragst et al. [99]. 

It should be noted that it is only possible for drugs to be incorporated into the hair 

bulb when the hair is in the anagen phase of the growth cycle (see Section 1.3.3).  

 

Figure 1-7. Influnce of acidic/basic properties of drugs on the incorporation of xenobiotics from the bloodstream 

into the cells of the hair bulb reproduced from [99]. 
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Ideally, the passage from blood to the hair follicle would be the only incorporation 

route of xenobiotics into hair, allowing for a clear dose-response correlation; however, 

this is not the case, and interpretational issues arising from this are summarised in 

Section 1.3.6.1   

    

 Incorporation from sebum and sweat 
 
As sebum is secreted directly on to the hair surface this is thought to play a role in the 

detection of drugs in hair samples [99]. Stout and Ruth found that sebum had a 

nominal effect on incorporation in their study of cocaine, nicotine and flunitrazepam in 

mouse hair [102], however there is a lack of literature of the effect of sebum on 

incorporation of cannabinoids. 

It is well known that drugs and their metabolites are excreted in sweat. In fact, sweat-

testing is becoming a popular alternative sampling technique [103] (see Section 1.2). 

Sweat bathes scalp and other hair and this presents interpretational difficulties in the 

context of hair analysis, as it is difficult to determine whether drugs came from 

incorporation via the blood stream or via sweat. Whilst this may not seem 

problematic; as drugs present in sweat are a direct consequence of intake, it could lead 

to elevated levels detected in hair (possibly taking samples beyond a cut-off). In 

addition, it will skew the results of segmental analysis, as shown by Henderson et al., 

where deuterated cocaine was detected in multiple hair segments suggesting multiple 

intakes of the drug however only a single dose of the drug was administered [104]. 

This was found in 74% of the 23 individuals tested, despite washing the hair prior to 

analysis.   
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 Incorporation from external sources 
 
In addition to incorporation from the bloodstream and sweat, external sources of 

contamination must also be considered when analysing hair since the hair shaft is 

exposed to the environment.  

Likely sources of external contamination include powders from drugs such as cocaine 

and smoke contamination from drugs such as crack cocaine, heroin and cannabis. It is 

possible that contamination can also occur from touching drugs and then touching hair 

directly after [100,105].  In fact, in 2009 the FBI ceased all hair testing for cocaine citing 

the likelihood of external contamination as the reason [106]. Testing was then re-

instated in 2014 due to new guidelines which included extensive wash protocols and 

the detection of metabolites [107].  

Washing procedures have been used to help eliminate externally bound drugs, along 

with monitoring of metabolites. These can be useful in reducing false positives, 

however may not prevent them entirely.  This is discussed further in Section 1.3.8.  

1.3.6 Analysis of hair to detect cannabis use  
 
Several cannabinoids, including THC and its metabolites can be detected in hair 

samples using standard analytical techniques such GC-MS and LC-MS. Between the 

year 2000 and 2014 there was just one publication on the detection of cannabinoids 

using LC-MS and 15 publications using GC-MS. These and their findings are 

summarised Table 1-3. 

There are a wide range of concentrations of each cannabinoid detected in the hair of 

cannabis users. Differences in amounts and frequency of usage and in individual 

smoking style (depth of inhalation, puff duration, and breathhold) will be a factor. 
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Analytical reasons for variations could also include differing sample preparation, 

analytical technique, and differing concentration of cannabinoids in the original plant 

material.  

In most studies summarised in Table 1-3 the concentration of THC is greater than other 

cannabinoids. This is not always the case, as some studies found CBD to be at higher 

concentration than THC [108,109]. In the study conducted by Salomone et al. 29% of 

individuals had CBD concentrations higher than THC [110]. 

In all cases where both THC and THC-COOH are analysed in the same sample, the 

concentration of THC is much higher. This could be explained by the fact that peak 

plasma concentrations are approximately three times higher for THC than for THC-

COOH after cannabis is smoked, as shown in Figure 1-8. However THC-COOH was 

detected for on average 11 times longer in blood than THC in a study conducted by 

Heustis et al. [111]. 

Some studies found that samples had low THC concentrations but high CBN 

concentrations [108,112,113]. This may be explained by the pyrolytic degradation of 

THC to CBN when cannabis is smoked [112,114].  
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Figure 1-8. Mean plasma levels of THC, 11-OH-THC and THC-COOH during and after smoking a single 3.55% THC 

marijuana cigarette reproduced from [111].  



 
 

THC 
(ng/mg) 

CBD 
(ng/mg) 

CBN 
(ng/mg) 

THC-COOH 
(pg/mg) 

No. of 
samples  

Mass of sample 
used (mg)  

Instrumentation LOD/LOQ 
THC (ng/mg) 

LOD/LOQ  
CBD (ng/mg) 

 LOD/LOQ 
CBN (ng/mg) 

LOD/LOQ  
THC-COOH (pg/mg) 

Ref 

<LOQ-
0.070 

0.013-0.02 0.031-0.300 N/A 10 10 GC–EI-MS/MS 0.031, 0.062 0.007, 0.012 0.011, 0.030 N/A [115] 

0.02-0.232 <LOQ-0.018 0.009-0.107 N/A 23 10 GC-EI-MS/MS 0.015, 0.20 0.0005, 0.001 0.0005, 0.001 N/A [113] 

<LOQ-4.2 <LOQ-12.1 <LOQ-0.85 N/A 77 50 GC-EI-MS 0.012, 0.037 0.013, 0.038 0.016, 0.048 N/A [116] 
0.09-0.72 ND-0.57 <LOQ-0.34 N/A 12 50 GC-EI-MS Not reported Not reported Not reported N/A [117] 
0.06-0.27 <LOQ-0.05 0.05-1.38 N/A 22  50 GC-EI-MS 0.006, 0.05 0.005, 0.05 0.002, 0.05 N/A [118] 
<LOQ-0.73 0.81-19.02 0.12-1.48 N/A 20 10 GC-EI-MS 0.05, 0.27 0.08, 0.27 0.14, 0.51 N/A [109] 

0.29-2.2 0.53-18.36 0.55-4.54 N/A 25 10 GC-EI-MS 0.05, 0.27 0.08, 0.27 0.14, 0.51 N/A [108] 
0.13-7.25 0.23-2.79 0.05-2.27 N/A 9 Not reported GC-MS 0.001 

Not reported 
0.02 
Not reported 

0.02 
Not reported 

N/A [119] 

0.054-
0.553 

0.018-1.862 0.031-0.205 N/A 14 50 UHPLC-MS/MS 0.0012, 
0.0039 

0.0054, 0.018  0.0016, 
0.0053  

N/A [110] 

0.003-
0.438 

N/A N/A 0.03 -1.53 93 70-100 strands GC-NCI-MS/MS Not reported  N/A N/A not reported  [120] 

ND-0.11 N/A N/A ND-7.3 53 20 GC-NCI-MS/MS 0.001 N/A N/A 0.1 [121] 

N/A N/A N/A ND-9.01 18 20 GC-NCI-MS/MS N/A N/A N/A 0.025, 0.05 [122] 
N/A N/A N/A 0.05-9.38 224 25 GC-NCI-MS/MS N/A N/A N/A 0.015, 0.05 [123] 

N/A N/A N/A 0.6-1.39 4 20 GC-NCI-MS N/A N/A N/A 0.3, 0.4 [124] 
N/A N/A N/A 0.09-1.94 12 20 GC-GC-ECCI-MS N/A N/A N/A Not reported 

0.05 
[125] 

N/A N/A N/A 0.06-14.23 23 20 GC-NCI-MS/MS N/A N/A N/A 0.025, 0.5 [126] 
   Table 1-3. Summarised results from publications investigating cannabinoid detection in user hair samples, including reported Limits of Detection (LOD), limits of quantification (LOQ) and  

concentration ranges of various cannabinoids(N/A= cannabinoid not included in the study ND= not detected). 

 



 
 

 Dose/concentration correlation studies  
 
Often in the context of medical or legal settings, toxicologists are asked to determine 

how much, or how often, a drug was used. To give an accurate answer to this question 

there must be a strong dose-concentration correlation for the biological sample being 

analysed.  

In a study conducted by Huestis et al. it was found that 36% of confirmed cannabis 

users by urinalysis and self-report (n=38) had no detectable levels of THC or THC-COOH 

in their hair samples (LOQ 1.0 and 0.1 pg/mg of hair respectively). They also discovered 

that the median concentrations of THC and THC-COOH were not statistically different 

between daily and non-daily cannabis users [121]. Whilst a link between dose and 

concentration of cannabinoids in hair was not found, it should be noted that it was 

more likely for THC and THC-COOH to be detected in daily user’s hair than in non-daily 

users.  

Similarly, in 157 cases where cannabinoids were detected in hair samples as part of a 

study conducted by Sachs and Dressler [127] they concluded that: "a dose-

concentration relationship does not exist either for THC or THC-COOH, or even both".  

Despite Sachs and Dressler publishing these findings in the year 2000, the 

interpretation issue of a lack of dose/concentration correlation is still heavily debated 

today. For example, in the 2016 SoHT annual meeting one attendee asked the 

following question: "What actually is the merit of quantification? Why do we strive to 

quantify we cannot compare inter-person, we cannot compare inter-lab? We cannot say the 

higher dose will give a higher result." 
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The President of the SoHT, Markus Baumgartner replied: "I think we should apply what 

the SoHT suggested many many years ago and that is low, medium or high range, not to say 

anything about the doses but to compare low medium or high. I think this is very helpful from 

my viewpoint." 

Without further investigation it is difficult to know if low, medium or high 

concentrations can be reliably reported. For this type of reporting to be effective there 

would need to be a uniform approach to sample preparation and analysis techniques. 

In addition, a shared database of results from all laboratories undertaking hair analysis 

would need to be available to overcome the problem of small or non-representative 

databases, which is not yet the case.  

1.3.7 External contamination studies  
 
As one of the main methods of drugs becoming incorporated into the hair is through 

external contamination, it is important to have an evidence base to aid in 

interpretation of analytical results. There are few studies that have been conducted in 

this area of research, as summarized below.  

 Contamination due to cannabis smoke 
 
Since THC is present in the smoke produced when the plant material is combusted, the 

presence of THC in body fluids can be due to passive exposure to smoke, and not 

necessarily direct or intentional usage. As a result of this passive exposure to cannabis 

smoke has successfully been used as a defence in UK courts [128].  

 Several studies have been conducted into the passive exposure of cannabis smoke in 

relation to cannabinoid levels in blood [129–133] , urine [129–138] and oral fluid [139–

142]. Early studies suggested that passive exposure to cannabis smoke could give 
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positive results, however these studies were heavily criticised due to the extreme, 

unrealistic conditions used [143]. This included the simultaneous burning of multiple 

marijuana cigarettes and the use of very small, unventilated rooms. In some studies 

participants even had to wear goggles to prevent eye irritation [133,136].  

One recent study conducted by Röhrich et al. focused on investigating more realistic 

conditions of passive exposure on blood and urine samples [132]. The study was 

carried out in a Netherlands coffee shop where cannabis was legally being smoked. 

Eight non-smoking participants stayed in the coffee shop for three hours. The results 

showed that none of the urine samples produced immunoassay results higher than the 

cut-off concentration of 25 ng/mL, therefore none of the participants would be 

accused of cannabis use in a routine drug screen. GC-MS analysis revealed trace 

amounts of THC and THC-COOH in both urine and plasma. However, the highest 

concentration of THC-COOH found in urine was less than half of the cut-off 

concentration recommended by the Substance Abuse and Mental Health Services 

Administration (SAMHSA) guidelines for federal workplace drug testing programmes of 

15 ng/mL, and so again, none of the eight participants would be reported positive for 

cannabis consumption. 

Whilst it has been widely reported that marijuana smoke elevates the THC levels found 

in hair samples, investigations into the level of incorporation and/or factors effecting 

this incorporation are extremely limited as discussed below:  

The first in vitro study was performed by Strano-Rossi and Chiarotti where hair 

samples were exposed to marijuana smoke to evaluate decontamination procedures 

[112]. Further to this Thorspecken et al. adapted a desiccator to contaminate hair 
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samples with marijuana smoke to investigate the effect of moistening the hair and hair 

treatments on the level of THC detected. The authors concluded that moistening the 

hair before exposure raised the concentration of THC and CBN, whilst bleaching and 

perming the hair lowered the concentration of THC and CBN. This study was limited by 

that fact that only one, pooled sample of dark blonde hair of Caucasian origin was 

used, and similarly only one time point was used (sixty minutes of exposure).  

The first and as yet only in vivo marijuana smoke contamination study was conducted 

in 2014 by Moosmann et al. In this study three participants were exposed to the 

smoke of one marijuana cigarette whilst breathing through SCUBA regulators [144]. 

The exposure was repeated every weekday over a three-week period in a relatively 

small room (2.5 m2).  

The authors stated that the degree of contamination differed with length of hair, with 

shorter hair being less affected by contamination than medium and longer hair. 

However, it should be noted that the sample size was small (n=1 for each hair length) 

and differences could also be due to personal washing technique of the hair as neither 

this nor the brand of shampoo used was standardised in the study.  

The authors also cast doubt over the Society of Hair Testing recommended sampling 

site of the posterior vertex region [145] , claiming that this sampling site suffers from 

the highest degree of contamination. However, again it must be noted that only one 

participant was used for this part of the study, and personal hair washing procedure of 

this individual could contribute to the finding. 

Interestingly, THC was detected in all three of the participant’s hair samples after the 

exposure period with a concentration range of 140-1700 pg/mg of hair. This is well 
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above the SoHT cut-off of 50 pg/mg. Two out of the three participants had levels of 

THC above the cut-off four weeks after exposure and one participant even had levels 

above the cut off seven weeks after exposure, despite daily washing of the hair with 

shampoo and a decontamination procedure prior to analysis.   

 

 Contamination due to handling of cannabis plant material  
 
Since THC is present in plant material, it is reasonable to assume that contamination of 

hair samples could be due to touching plant material or contaminated surfaces. 

Moosmann et al. showed that THC could be detected in the hair samples of non-

cannabis users after the handling of plant material, even after extensive washing for 

four weeks post exposure [146].  

Contamination of synthetic cannabinoids was further investigated by Moosmann et al.. 

Hair samples of laboratory analysts who had been in contact with synthetic 

cannabinoid herb mixtures were tested. All of the hair samples were positive for at 

least one synthetic cannabinoid, despite the implementation of a decontamination 

wash procedure and gloves and laboratory coats being worn throughout the handling 

period [147].  

Concentrations of synthetic cannabinoids in hair samples ranged from trace amounts 

up to a maximum of 170 pg/mg. It was also shown that subjects without direct contact 

with the synthetic cannabinoids, but who were co-habiting with the analysts also had 

cannabinoids detected in their hair. One of the analysts had a concentration less than 

0.5 pg/mg in his hair, his girlfriend who did not have direct contact with the synthetic 

cannabinoids had a concentration of 11 pg/mg in her hair.  This could be partially 
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explained by previous findings showing that longer hair is more susceptible to external 

contamination [144], however, much more research into the secondary transfer of 

cannabis plant/synthetic cannabinoid herb material needs to be conducted to fully 

understand the implications when interpreting results. One other possible explanation 

for the result is usage of the drug, as participants were not screened for drug use prior 

to the study.  

Interestingly, it was also shown in this study that hair samples from other parts of the 

body (leg, chest and pubic region) tested positive for the synthetic cannabinoids, 

despite being completely covered up during the handling experiment. It should be 

noted that not all the participants gave a positive result for the same sampling site. A 

limitation is that and only three individuals took part in this part of the study. Further 

studies are clearly needed for a better understanding of this type of contamination for 

both synthetic and non-synthetic cannabinoids.  

 

1.3.8 Strategies to overcome the issue of external contamination of 
cannabinoids 

 
As mentioned previously in Section 1.3.7, external contamination is one of the main 

causes of interpretational issues in relation to hair analysis. In this section a review of 

literature citing a variety of published strategies to overcome this issue is presented. 

   

 Identification of metabolites 
 
One strategy to reduce the number of false positives test results is to also identify THC 

metabolites, since these are only produced in vivo, as discussed in Section 1.1.2).  
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THC-COOH is by far the most frequently targeted metabolite of THC in hair samples. 

The Society of Hair Testing  recommend that this is the metabolite detected to confirm 

cannabis usage [145]. In many cases THC-COOH is the only metabolite that is targeted 

for detection [121,148–151]. Recently there has been some debate as to the suitability 

of THC-COOH to identify THC usage in hair samples since Moosmann et al. reported 

that THC-COOH could be detected in segments correlating to a period 2-3 months 

before THC was orally ingested (n=2) [100]. The authors attributed this to 

contamination from sweat/sebum as sweat patches remained positive for THC-COOH 

for up to 25 days after oral intake of THC. However, Gambelunghe et al. did not detect 

THC-COOH in the sweat patches of cannabis users [152] which was also the finding of 

Kintz et al. [153].  

Moosmann et al. postulated that since THC-COOH is present in sweat, it could be 

transferred from the hair of a user to the hair of another person, through touch 

contamination or from sleeping on the same pillow[100]. Hill et al. recently tested this 

theory [154] and concluded: 

"Our experiments attempting to transfer THC-COOH in the presence of moisture from 
THC-COOH positive hair to either fabric or negative hair have shown that such transfer 
does not occur easily and, if it should occur, is readily removed by an extended aqueous 
washing procedure". 

 

THC-COOH is not the only metabolite to be detected in hair; 11-OH-THC was first 

reported to be detected by Wicks and Tsanaclis [155]. In a large study (n=1272), 11-

OH-THC was detected in 77 samples (6%) where the metabolite THC-COOH was not. 

THC-COOH was detected in a total of 543 samples.  
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In a further study of 6838 samples by Tsanaclis and Wicks, 11-OH-THC was again 

detected in a large number of hair samples (n=2016). In this study, THC-COOH was 

detected in more samples (n=2303) and at a higher median concentration (0.003 

ng/mg) than 11-OH-THC (0.002 ng/mg) [156].  

Pinchini et al. have recently reported a method to detect THC-COO-gluc in cannabis 

user hair samples (n=20) using UPLC-MS-MS [157]. Interestingly, this metabolite was 

found to be at least three times more concentrated than THC-COOH and was detected 

in four cases where THC-COOH was not. Whilst the authors warn that this data is 

"absolutely preliminary" the use of THC-COO-gluc as a biomarker for cannabis use in 

hair samples seems promising.  

 Limitations of metabolite analysis  

 
The main limitation with metabolite analysis is that metabolites are not always 

detected, even when cannabis consumption is confirmed [158,159]. This has been 

attributed to poor incorporation rates of the metabolites into the hair [45]. Conversely, 

there are several examples where hair samples are considered to be positive for THC 

metabolites, yet negative for the parent drug [120,160]. The likelihood of the presence 

of THC metabolites in hair after passive exposure to cannabis smoke has yet to be fully 

understood since studies to date have either been conducted in vitro or such that 

participants were not able to inhale the second-hand smoke produced [144], which is 

unrealistic. 

 Decontamination/ Wash analysis 
 
Washing hair samples before analysis is suggested by the SoHT to be a mandatory 

process. Ideally, this step should remove any trace of drugs present on the exterior of 



 
47 

 

the hair shaft but not remove any drug compounds that are incorporated into the 

cortex of the hair.  

A comprehensive review into the many different washing procedures was recently 

conducted by Vogliardi et al. They concluded that the washing procedures most 

frequently used are those which utilise one or two washes with non-protic solvents, 

such as dichloromethane or a single short wash with a protic solvent such as methanol.  

However, some laboratories reverse the washing procedure, using a sequence of non-

protic solvent followed by a protic one [161]. Additional solvents routinely used for the 

decontamination of hair samples for the analysis of cannabinoids include isopropanol, 

water, ether and acetone [161].  There is no universally recognised procedure for the 

decontamination of hair samples, nor is there any indication of which procedure is 

most or least optimal for removing external contamination whilst keeping internally 

bound cannabinoids in place.   

Tsanaclis and Wicks proposed analysing the wash residue obtained from the 

decontamination procedure as a strategy to differentiate between external 

contamination cannabis use when metabolites are not detected [162]. The 

concentration of THC in the wash residue was compared to the concentration of THC 

in the hair after the completion of washing procedures. The authors suggest that wash: 

hair ratios of zero (i.e. no drug found in the wash procedure) suggested drug use was 

likely, while ratios greater than 0.1 and less than 0.5 indicated drug use was 'possible' 

and ratios greater than 0.5 meant that drug use was 'questionable'.  

In a larger study conducted by Tsanaclis et al. 46 samples from the medico-legal sector 

were analysed for cannabis consumption [163]. In 21 of these samples (45.7%) THC 
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and THC-COOH were detected above the cut-off level and so consumption was 

confirmed. Wash ratio analysis was then performed on the samples where THC was 

detected but THC-COOH was not. Of these 21.7% were in the category of drug use 

'likely', 17.4% were in the category drug use 'possible' and 15.7% were in the category 

of drug use 'questionable'.   

 Limitations with the assessment of wash residue  

 
The Society of Hair Testing recognise that there is no standard washing procedure and 

accept that "different washing procedures will affect the remaining amount of drug in 

the hair" [145]. This will almost certainly affect the THC wash to hair ratio. In addition, 

the fact that metabolites of THC were found in wash residues in this study (see Section 

4.4.2) could suggest that the wash procedure used by Tsanaclis and co-workers caused 

leaching of the metabolites that are incorporated into the hair into the wash residue. If 

this is also the case for THC, the wash residue concentration could be greater simply 

due to greater amounts being removed from the hair cortex. In addition, the authors 

recognise that the bands 0-0.1, 0.1-0.5 and greater than 0.5 are arbitrary numbers, 

which are not based on studies conducted to determine which ratio correlates to 

which usage conclusions. 

Results from hair wash analysis can still only be put into three categories; 'likely', 

'possible' and ‘questionable'. Arguably this is no better than reporting an ‘inconclusive’ 

result.  However, this approach could prove useful in cases where a ruling is made on 

the ‘balance of probability’ (i.e. a civil case) rather than ‘beyond reasonable doubt’ (i.e. 

a criminal case). The validity of the wash analysis approach would also depend on case 
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circumstances and other evidence available, for example urine analysis would also 

need to be taken into consideration.  

Others have also suggested wash values have limited validity. Thorspecken et al. stated 

that a positive cannabinoid finding in the last wash step of the solution did not imply a 

positive cannabinoid finding in hair. In contrast a negative result in the last wash 

solution did not always entail a negative result in the hair. Therefore the criterion that 

a negative wash solution assures a complete removal of external contamination does 

not seem universally valid [164].  

Moosmann et al. studied the hair/wash ratio for synthetic cannabinoids after 

participants had handled herbal mixtures [147]. The results showed that whilst some 

samples had a high ratio (correctly suggesting external contamination) others had a 

negative wash result and a positive hair result (wrongfully suggesting drug use). This 

study shows that the notion of a wash to hair ratio may be too simplistic. The authors 

advise the concurrent analysis of additional body fluids to prove drug usage in cases 

where metabolites are not detected in hair.  

 

 THCA-A as an indication of "touch" contamination   
 
The biogenetic precursor of THC, Δ9-tetrahydrocannabinolic acid A (THCA-A) has been 

identified as a possible marker of contamination due to the touching of marijuana 

plant material. This is because THCA-A is not incorporated significantly into hair 

through the bloodstream after oral intake of THCA-A [165], and it is only detected in 

negligible amounts in cannabis smoke [144]. As a consequence of this Moosmann et al. 

postulated that the presence of high THCA-A concentrations in the hair samples of 



 
50 

 

known cannabis users could be linked to handling plant material or touching 

contaminated surfaces, and then touching head hair [146]. 

This hypothesis was tested in a recent study where ten volunteers rolled one cannabis 

cigarette each day for five consecutive days whilst refraining from smoking or being in 

contact with cannabis for the rest of the study period.  At the end of the exposure 

period all hair samples tested positive for THC and THCA-A. 

Four weeks after the first exposure period nine out of ten hair samples were still 

positive for THCA-A and five out of ten were still positive for THC [146]. One limitation 

with this study however is that the participants self-reported not to have used or been 

exposed to cannabis smoke within the last six months. Unfortunately, the usage of 

cannabis cannot be ruled out as body fluid analysis was not carried out prior to the 

study being conducted, nor was it carried out during the study period.  

In a previous study conducted by Moosmann et al. hair samples from children and 

their cannabis consuming parents were analysed [159]. The authors found that there 

was no significant difference in the concentration ratio THCA-A/THC between the two 

separate groups of adults and children if the specific relationship between child and 

caregiver was not considered. However, comparison of the THCA-A/THC concentration 

ratio within families showed that in 9 out of the 10 cases studied there was a 

significant statistical difference with the ratio being greater for the children than the 

adults. The authors concluded that the higher the THCA-A /THC ratio in relation to 

their caregivers, the more likely that THC is present due to external contamination. 

This could be possibly from adults touching plant material and then touching the 

child's hair. 
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It was suggested that this method could not only be useful in the case of child 

exposure, but also in law enforcement handling or in the case of cannabis growers. 

However, the main limitation of this method is the varying amounts of THCA-A and 

THC found within the plant material itself [159] and so unfortunately one general cut-

off value to differentiate between this type of contamination and usage in terms of a 

THCA-A/THC ratio is not yet feasible.  

1.4 Instrumentation for drug testing in hair  
 
In this section the current methodology in hair analysis of chromatographic separation 

followed by detection using a mass spectrometer will be discussed. A review of 

methods previously used was shown in Table 1-3.  

1.4.1 Chromatographic separation  
 
Since hair samples are complex matrices (containing many compounds in addition to 

analytes of interest), they generally require the separation of their components by 

liquid chromatography (LC) or gas chromatography (GC) prior to their introduction to 

the ion source.  

In chromatography, separation is based on different affinities to a mobile and 

stationary phase.  

 Gas Chromatography  
 
In gas chromatography (GC) the process of separation is based on a two-step 

sequence. First, the components of a mixture are adsorbed onto a coating that lines 

the inner wall of a column located in an oven. Next, the oven is progressively heated, 

and the adsorbed components are sequentially transferred into a gaseous mobile 

phase before moving into the mass spectrometer (Figure 1-9). The temperature at 
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which a compound elutes from the column is a function of the vapour pressure of the 

compound. The higher the vapour pressure of the compound the more rapidly it will 

transverse the column, carried by the mobile phase.  

 

Figure 1-9. Separation process on a capillary GC column adapted from [166]. The orange path represents a 

compound of high volatility. The purple path represents a compound of relatively low volatility,  

 

 Liquid Chromatography  
 
Liquid chromatography (LC) was first developed to expand the range of compounds 

that could be analysed as its predecessor, GC, is not suitable for involatile, polar and 

high molecular mass analytes.   

The principle of separation in LC is that organic compounds in an aqueous mobile 

phase will adsorb preferentially onto an organic stationary phase. Compounds are then 

eluted sequentially using a gradient of the composition of the mobile phase from 

aqueous to organic (e.g. from water to acetonitrile). The order of elution of the 

components is a function of the preference of the particular compound to be 

associated with either the stationary or the mobile phase as the composition of the 

mobile phase changes during the gradient [166].  
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The column used in liquid chromatography is different to that used in GC as it contains 

porous particles coated with an organic stationary phase. The mobile phase carries 

analytes around and through the particles. The order of elution is determined by the 

length of time individual analytes remain adsorbed on the stationary phase.  

 

1.4.2 Mass Spectrometry (MS)  
 
Mass spectrometry is an analytical technique which has far reaching applications. Ions 

are produced in the gas phase which can then be analysed in term of a mass to charge 

(m/z) ratio. This mass to charge ratio along with additional information such as 

fragmentation pattern can then be used to identify the analyte. Many different mass 

spectrometry instruments are used for the analysis of elements, isotopes, small 

molecules (such as drug compounds) and macromolecules (such as proteins). In this 

section the theory behind the different mass spectrometry techniques used in this 

thesis will be discussed.  

A basic diagram of a mass spectrometer is depicted in Figure 1-10. MS instruments 

generally have at least four main features; a) an inlet (sample introduction) b) an 

ionisation source (production of ions from an analyte) c) one or multiple mass 

analysers (for separation of ions based on a mass-to-charge ratio) and d) a mass 

detector (for conversion of separated ions into electrical signals that can be 

represented in the form of a mass spectrum [167].  
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Figure 1-10. The general layout and main components of any mass spectrometer, including; (a) sample inlet, (b) 

an ionisation source, (c) one or more mass analysers, (d) a mass detector along with a data system displaying the 

mass spectrum.  Adapted from  [166]. 

 

 Ionisation  
 
For analytes to be detected they must first be ionised. Ions can be formed using a 

variety of methods, the choice of technique varies depending on the target analyte 

and application (see Figure 1-11). In this section the ionisation techniques used in this 

thesis will be discussed. Namely Electron Ionisation (EI), Matrix-Assisted Laser 

Desorption Ionisation (MALDI), Atmospheric Pressure Chemical ionisation (APCI) and 

Electrospray Ionisation (ESI).  
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Figure 1-11. Mass spectrometric techniques for different needs arranged by main fields of application and 

estimated relative hardness or softness reproduced from [168]. Techniques used in this PhD project have been 

circled. 

 

  Electron Ionisation  
 
Electron ionisation (EI), sometimes referred to as electron impact, was first developed 

by A.J Dempster in 1918 [169]. EI was the first commercially available ionisation 

method and is still widely used today, often in the analysis of small organic molecules. 

It is known as a “hard” ionisation technique, high energy impacts mean more 

fragmentation of the analyte. This means that molecular ion peaks are not always 

observed in mass spectra. This makes the technique unfavourable in the analysis of 

large molecules or trace levels.  

In EI, molecules in the gas phase are bombarded with energetic electrons obtained 

from a heated filament located inside the vacuum. The bombardment removes an 

electron from the sample molecules, thus ionising them. The initial product is a 
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positively charged molecular ion, a radical cation [M]+·. The more common annotation 

is [M]+ and will be used hereafter to denote a positively charged molecular ion. Excess 

energy imparted during the ionisation process is distributed along the bonds of the 

ions formed and often leads to fragmentation of the parent molecule [167]. 

Fragmentation is generally predictable and provides information on the structure of 

the analyte. A major disadvantage of EI is that it is limited to molecules with molecular 

masses of <1kDa.  

Ion Formation            M+ e-→  M+· + 2e- 

Fragmentation           M+· → m1
+ +n· or m1

+· + n 

 Electrospray ionisation  
 
Electrospray ionisation (ESI) was first introduced by Dole and co-workers in 1968 [170] 

and was later coupled to a quadrupole mass analyser in 1984 by Yamashita and Fenn 

[171]. 

ESI is accomplished by passing a solution of analyte through a needle held at high 

electrical potential into a chamber at atmospheric pressure. The high electrical 

potential in the range of 2-5kV is applied between the capillary and cone and causes an 

accumulation of positively charged ions at the tip of the capillary, to form what is 

known as a Taylor cone [167]. When the imposed electric field is high enough the cone 

elongates which then breaks and forms a spray of charged droplets. The solvent 

component of the droplet begins to evaporate with the aid of a stream of nitrogen gas 

and the diameter of the droplets is reduced, until eventually only charged analyte 

molecules remain.  A schematic of an ESI source is shown in Figure 1-12.  
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Figure 1-12. Schematic representation of an electrospray ionisation source reproduced with permission from 

[166]. 

 

 Atmospheric Pressure Chemical Ionisation  
 
Atmospheric Pressure Chemical Ionisation (APCI) was developed in the 1970s by the 

Horning group [172]. APCI is an ionisation technique which utilises gas-phase ion-

molecule reactions at atmospheric pressure. In APCI, primary ions are produced by a 

corona discharge.  

When using nitrogen, nitrogen plasma is created by the corona discharge needle. N2
+. 

and N4
+. ions react directly with analyte molecules [173] (Figure 1-13). Each ionisation 

event liberates a further electron and can thereby initiate a chain of ionisation events, 

sustaining the corona discharge.  

 

Figure 1-13. Ion formation when using nitrogen in an APCI source. Reproduced from Portoles et al. [174].  
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The same sequence of reactions, although initiated by different sources of primary 

ionisation, is observed not only in APCI but also in atmospheric pressure photonisation 

(APPI) and direct analysis in real time (DART)[175].   

 

  Matrix-Assisted Laser Desorption Ionisation   
 
Matrix-Assisted Laser Desorption ionisation (MALDI) was first introduced in the late 

1980s [176,177]. The main purpose of the work at that time was to develop a mass 

spectrometric technique that employed “soft” ionisation, decreasing the 

fragmentation of analytes and increasing the range of masses to be successfully 

analysed.  

MALDI makes use of the absorption of laser light by a solid sample layer. The energy 

uptake upon laser irradiation then causes desorption and ionisation of the sample in a 

two-step process (Figure 1-14). Although lasers of both ultraviolet (UV) and infrared 

(IR) wavelengths are available, UV lasers are most commonly used. Of these nitrogen 

lasers and frequency tripled or quadrupled Nd:Yag lasers serve the majority of 

applications [178].  

In MALDI-MS profiling (MALDI-MSP) analysis, the analyte is first co-crystallised with an 

excess of matrix that has a constituent aromatic component able to absorb photons 

from a UV laser beam (a more detailed discussion of matrix compounds can be found 

in Chapter 2).  When dried the analyte-matrix mixture is exposed to a sudden input of 

energy from a laser pulse, the matrix evaporates carrying with it the analyte molecules 

which then enter the mass analyser. A schematic of this process can be found in Figure 

1-14.  
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Figure 1-14. A schematic diagram of the process of MALDI-MS showing laser irradiation, desorption and 

subsequent ionisation of matrix and analyte molecules. Reproduced with permission from [166]. 

 

MALDI MSP experiments generate mass spectra in discrete areas of a sample. MALDI-

MSP can be performed on sample solutions which are co-crystallised with matrix on a 

MALDI target as shown in Figure 1-15 A and directly on biological tissues which are co-

crystallised with matrix as shown in Figure 1-15 B.  

 

Figure 1-15. The principle of MALDI MS profiling from A) dried sample spots on a target plate and B) dried sample 

spots deposited directly onto a biological sample. Arrows represent laser shots. Reproduced with permission 

from [179]. 

The ionisation mechanisms in MALDI are not fully understood, with several proposed 

theories of ionisation [180–183]. Originally, it was thought that positively charged ions 
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were produced solely by a proton transfer reaction since most ions generated in 

MALDI are singly charged. However, it is now thought to be a complex process 

involving several stages 

 A two-step framework is generally accepted as useful model for many MALDI 

experiments. The steps are primary ionisation during or shortly after the laser pulse, 

followed by secondary reactions in the expanding plume of desorbed material [184]. 

Molecules generate a dense gas plume as they desorb from the surface. Collisions in 

the gas plume may result in additional reactions.  

Charge transfer takes place from the protonated matrix to any compound with a 

higher proton affinity yielding protonated molecules, [M+H]+. The reactions likely to 

occur in the gas phase are ion generation and ion-ion recombination. Ion 

recombination leads to a proposed “lucky survivor” model [182]. Most ions resulting 

from excitation by the laser are re-neutralised as cationic and anionic components re-

combine. Therefore, singly charged ions are the lucky survivors of the re-neutralisation 

conflict. Neutralization probability strongly increases with the charge state and so 

singly charged ions have the greatest chance of “surviving”. The model developed by 

Karas et al. offers an explanation to the phenomenon of almost exclusively M+H peak in 

MALDI spectra. A more detailed review of alternative MALDI ionisation theories can be 

found by Lu et al. [183]. 

 MALDI imaging (MALDI MSI) 
 
MALDI-MSI was first reported in 1997 by the Caprioli group [185]. This technique 

utilises the sensitivity and selectivity of MS to provide information on chemical 

composition.  
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Unlike with traditional techniques such as GC-MS and LC-MS (the most commonly used 

mass spectrometry method in the analysis of hair samples), MSI can give spatial 

information on the compounds observed in the mass spectrum as homogenisation of 

the hair sample is not required. This feature has made MSI an unique tool for clinical, 

pharmacological, and forensic science research. 

The MALDI-MS images presented within this thesis were acquired in raster mode 

which was developed by AB Sciex. This method of data acquisition is achieved by 

continuously firing the laser in rows across a sample.  The sample preparation is similar 

to MALDI-MSP; however, the matrix is sprayed rather than spotted on top of the 

sample. A schematic of MALDI-imaging workflow can be seen in Figure 1-16.  

 

 

Figure 1-16. The MALDI MSI workflow showing a) matrix application b) laser irradiation c) the reconstruction of 

molecular image maps from specific ions. 
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 Mass analysers 
 
Following ionisation, ions are then separated based on their mass to charge ratio (m/z) 

by one or more mass analysers. The principles of the mass analysers used in this PhD 

project (quadrupole and time-of-flight) as well as their hybrid and tandem couplings 

(quadrupole time-of-flight and triple quadrupole) will be detailed in this section.   

 Quadrupole  
 
Quadrupole (Q) analysers consist of a set of four rods. The rods, which are metal or 

metal-coated ceramic are placed parallel to each other with opposite pairs connected 

electrically (Figure 1-17). The voltage placed on one pair of rods is comprised of a 

positive direct current (dc) combined with a superimposed radio frequency (rf) voltage. 

The other pair of rods carries a negative dc voltage with an rf component that is 180˚ 

out of phase with that of the first pair. Whilst for simplicity Figure 1-17 represents the 

rods as either positive or negative, the rods in fact constantly oscillate between 

positive and negative polarities.  

Mass separation is based on the fact that ions begin to oscillate upon entering the field 

produced by the superimposed rf and dc voltages. For any field derived from the 

combination of voltages, only ions with one specific m/z value have a stable trajectory 

along the axis of the quadrupole to the detector. All other ions with different m/z 

values develop unstable oscillation patterns perpendicular to the flight path and are 

lost by collision with, and discharge onto, the rods. Changing the dc and rf voltages 

progressively while keeping their ratio constant, enables the scanning of a mass range 

yielding spectra comprised of different m/z values.  
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Figure 1-17. Schematic representation of quadrupole mass analyser; ions pass through four parallel rods, those 

with a stable trajectory (red line) pass through to the detector whereas ion with an unstable trajectory (purple 

line) collide with the rods.  Reproduced with permission from [166]. 

 

 Triple quadrupole 
 
The triple quadrupole (QqQ) consists of two quadrupole analysers (Q1 and Q3), and a 

central section between Q1 and Q3 that is an Rf-only component (designated with a 

lower-case q) as shown in Figure 1-18. The rf field in q2 acts to constrain the ions, 

enabling their transfer between the two analytical quadrupoles. The central cell is the 

location where the collision gas is introduced to effect collision-induced dissociation 

(CID). The products of the CID process are analysed in Q3 by scanning to collect full 

spectra or by recording the intensity of a specific ion.  

 

Figure 1-18. Schematic of a triple quadrupole mass analyser. Reproduced with permission from [166]. 
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QqQ instruments are versatile because the Q1 and Q3 analysers can be used in 

conjunction with each other in either scanning or static (selected ion monitoring 

mode). The various scan modes are shown in Figure 1-19. 

 

Figure 1-19. Representation of the different scan modes available for a triple quadrupole mass analyser 

reproduced from [167]. 

 

 Quadrupole-Time of flight  
 
In this PhD project, when a time-of-flight (ToF) mass analyser in reflectron mode was 

used it was solely used coupled to a quadrupole mass analyser. Therefore, the 

description that follows is written with this application in mind. A schematic of the Q-

ToF analyser is shown in Figure 1-20. 

The basic principle of a linear time-of-flight mass analyser is that ions formed in the 

MALDI source are accelerated towards a flight tube by a potential applied between the 

sample plate and the extraction grid. This imparts a constant kinetic energy on the ions 
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as they enter the field-free flight tube. The ions will then separate according to their 

velocities which will depend on their respective mass before reaching the detector 

[167]. Briefly, ions will a lower mass will have a shorter flight time than ions with a 

higher mass. The relationship between velocity (v), mass (m) and kinetic energy (Ek) is 

shown below: 

௄ܧ =
1
2

 ଶݒ݉

In reflectron mode, an ion mirror corrects for the small variations in kinetic energy 

imparted to individual ions and helps to re-focus the ions before they reach the 

detector. 

For conventional ToF-MS analysis all three quadrupoles are operated in RF-only mode 

and act as ion guides allowing the passage of ions with a pre-selected range of m/z 

values. The ions are then focused into the orthogonal time-of-flight mass spectrometer 

for detection [167].  

For ToF-MS/MS analysis the quadrupoles are used as described in the previous section 

before the resulting product ions are focused into the orthogonal time-of-flight mass 

spectrometer and detected [186]. 
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Figure 1-20. Schematic of a hybrid Quadrupole Time-of-flight hybrid mass analyser. The red line represents the 

path of ions through the quadrupoles and time-of-flight mass analyser. Reproduced from [187]. 
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1.5 Aims of this project 
 
Despite cannabis being the most commonly used illicit drug, at commencement of this 

study there were no methods published for detection of cannabinoids using MALDI, in 

hair or in other biological matrices. Since MALDI-MSI can provide unique information 

regarding the spatial distribution of cannabinoids within a sample, it is important that 

a method is established. 

There was also a lack of consistency in the traditional GC-MS/MS methods available for 

cannabinoid detection in hair samples, with some methods describing detection of 

parent compounds only, and others detecting only a single metabolite. Often it was 

reported that metabolites could not be detected due to poor incorporation into the 

hair matrix, and so trace analysis with low detection limits is needed.  

In addition, there was no consensus in the interpretation of cannabinoid findings in 

hair samples, with several different methods of determining whether a sample 

contained cannabinoids due to cannabis use or due to external contamination. Since 

the implications of false positive and false negative samples can be life changing, this 

inconsistent area of practice needs to be addressed. 

This project sought to investigate the above issues by:  

1. developing a method to detect cannabinoids in intact hair samples using both 

MALDI profiling and MALDI imaging techniques  

2. applying the developed methods to hair exposed to cannabis smoke 

contamination  
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3. developing a GC-MS/MS method to simultaneously detect and quantify THC, 

CBN, CBD, THC-COOH and the rarely studied 11-OH-THC metabolite 

simultaneously in hair samples  

4. applying this method to cannabis user and non-user hair samples to study the 

correlation between the results of mass spectrometric analysis and self-report 

data with a variety of methods of interpretation  
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Chapter 2. Development of Matrix-Assisted laser 
desorption ionisation Mass Spectrometry to 
detect cannabinoids in hair samples  
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2.1 Introduction 
 
Matrix Assisted Laser Desorption Ionisation-Mass Spectrometry (MALDI-MS) has been 

highlighted as a potential hair analysis method due several advantages over current 

techniques including improved chronological information [188], simpler sample 

preparation and less sample needed compared to traditional GC-MS and LC-MS 

methods of analysis. Several drugs have already been analysed in hair samples using 

MALDI imaging techniques including methamphetamine [189], cocaine [190], ketamine 

[191], zolpidem, [192] and nicotine[193].  

For analytes to be ionised and detected using MALDI-MS, a matrix (a solvent 

containing small organic molecules) must be applied. The matrix must have two main 

properties: it must have the ability to absorb at the wavelength of the laser used and 

have the ability to transfer protons during the ionisation process [194]. Selection of the 

correct matrix for MALDI-MS detection is of utmost importance as using the optimal 

matrix can improve the sensitivity of a method, whilst using an unsuitable matrix can 

lead to the inability to detect an analyte which is present, even in high concentration. 

The selection of the correct matrix is of particular importance in this study due to the 

extremely low concentration of cannabinoids and metabolites found in hair samples.  

In a recent review into MALDI approaches for the analysis of low molecular weight 

compounds Bergman et al. concluded that there is no easy way to determine which 

matrices or methods will work and without a set president of the analysis of similar 

molecules, a "trial and error" approach is often needed [195].   

In this study several different approaches including matrix selection, the use of 

additives (see Section 2.4.1) and derivatisation (see Section 2.5) were investigated to 
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develop a suitable method to detect cannabinoids in hair samples using MALDI-MS. In 

addition to this an in-source re-arrangement of the THC is reported for the first time, 

confirmed with the use of LC-MS.   

In addition, the developed method was applied to cannabis smoke contaminated hair. 

Since THC is present in the smoke produced when the plant material is combusted, the 

presence of THC in hair can be due to exposure to cannabis smoke, and not necessarily 

direct or intentional usage. The exact mechanism of smoke contamination is not yet 

understood as discussed in detail in Section 1.3.7.1.  

 

2.2 Methods and Materials 

 

2.2.1 Chemicals and reagents 

 
Matrices. α-Cyano-4-hydroxycinnamic acid (CHCA), 2,5-Dihydroxybenzoic acid (DHB), 

6-Aza-2-thiothymine (ATT), 3-Hydroxycoumarin (3-HC) and were purchased from 

Sigma-Aldrich (Poole, UK). 

Additives. trifluoroacetic acid (TFA), Lithium chloride (LiCl), lithium trifluoroacetate 

(LiTFA),  Hexadecyltrimethylamnium bromide (CTAB) and aniline were purchased from 

Sigma-Aldrich (Poole, UK). 

Derivatisation reagents. 2-Fluoro-1-methylpyridinium-p-toluene-sulfonate (FMPTS) 

and triethylamine (TEA) were both purchased from Sigma-Aldrich (Poole, UK). 

Drug Standards. Cannabinol (CBN), cannabidiol (CBD) Δ9-tetrahydrocannabinol (THC), 

11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) 11-Hydroxy-delta-9-
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tetrahydrocannabinol (11-OH-THC) and 11-nor-delta(9)-carboxy-tetrahydrocannabinol 

glucuronide (THC-COO-gluc) were purchased as analytical references from Cerilliant 

(Sigma-Aldrich, Zwijndrecht, The Netherlands).  

Solvents. Acetonitrile (ACN) and Methanol were purchased from Fisher Scientific. 

2.2.2 Sample Preparation  

 

 Matrix Preparations 

 
CHCA was prepared at either 10 mg/mL or 5mg/mL concentrations with the solvent 

composition being  ACN:0.2% aqueous TFA (70:30).  

DHB was prepared at 10 mg/mL dissolved in acetonitrile and 0.2% aqueous TFA (1:1). 

3-HC was prepared at 10 mg/mL in 50% ACN with 0.2% aqueous TFA. ATT was 

prepared at 10 mg/mL in 50% ACN with 0.2% aqueous TFA.  

The 3-HC ATT binary matrix was prepared according to Shanta et al. with 10 mg/mL of 

both ATT and 3-HC matrices dissolved in 50% acetonitrile (ACN) with 0.2% TFA [196]. 

Cannabinoid standards (100 µg/mL unless otherwise stated) were mixed 1:1 with 

matrix solutions and deposited in triplicate on the MALDI target. The spots were left to 

dry at ambient temperature before analysis.   

 

 Addition of Additives to the matrix  
 
Aniline was added in equimolar amounts to CHCA. Two different matrix compositions 

with added aniline were prepared; ACN:0.5% TFA (70:30) as suggested by Groeneveld 

et al.[197] and  ACN:0.5% TFA (75:25) as proposed by Kuyawama et al.[198].  
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CTAB was added to the CHCA matrix mixture in a ratio of 1:1000 in a water-acetonitrile 

solution (50/50, v/v) as described by Su et al.[199]  

Lithium salts were added as described by Cerruti et al.[200]. Briefly, CHCA was 

prepared at 10 mg/mL in acetonitrile/ water/trifluoroacetic acid (70/30/0.1, ν/ν/ν) and 

Lithium solutions at 25, 50 and 100 mM were mixed with the matrix solution for each 

lithium salt. 

2.2.3  Derivatisation 

 
Derivatisation was carried out according to Thieme et al.[201]. Briefly, 40 µl of 10 

mg/mL 2-Fluoro-1-methylpyridinium-p-toluene-sulfonate (FMPTS) and 10 µl of 

trimethylamine was mixed using a vortex. This caused the colourless solution to turn 

"canary yellow" as previously observed by Thieme et al. THC standard (20 µL, 0.1 

µg/µL) was added to the mixture and left at room temperature for five minutes before 

spotting (1 µL) onto a target plate. 

 

2.2.4 Microscopy of hair samples  
 
Hair samples were placed on glass slide using double-sided Sellotape® Super Clear 

tape before imaging with an Olympus BX60 microscope.   

 

2.2.5 Spiking of hair 

 
Hair samples from an individual who reported not to have used any illicit drugs were 

collected by cutting and washed with methanol and water by vortexing.  The samples 

were then cut into 5 cm sections and placed into the bottom of a well in a 24-well cell 

culture plate to keep the spiking solution volume to a minimum whilst still submerging 
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the hairs. Spiked samples were prepared by soaking in cannabinoid standard solutions 

(300 µL, 0.5 µg/mL). Blank hair samples were prepared by soaking in methanol (300 

µL). The plate was sealed with tape to avoid evaporation of the standards.  All hairs 

were soaked for two hours, removed and allowed to dry for one hour at room 

temperature.  

 

2.2.6 In situ derivatisation of cannabinoids  
 
The hair was placed on glass slide using double-sided Sellotape® Super Clear tape. 

Derivatisation reagent (2.5 mL) was then sprayed using a neo for Iwata® air-brush at a 

pressure of 30 psi onto an area of 9 cm2 with the sample in the centre of the area. This 

step was carried out in a fume hood due to hazards associated with the use of the 

triethylamine catalyst.  

 

2.2.7 Deposition of matrix for imaging 
 
The hairs were coated in CHCA (5 mg/mL) with the solvent composition ACN:0.2% 

Aqueous TFA (70:30) using the SunCollect autospraying system (SunChrom GmbH, 

Friedrichsdorf, Germany). Fifteen layers were sprayed at a flow rate of 2 µL/min.  

 

2.3 Instrumentation  
 

2.3.1 MALDI Instrumentation and analytical conditions  
 
All data was acquired in positive ion mode on an Applied Biosystems/MDS Sciex hybrid 

quadrupole time-of-flight mass spectrometer (Q-Star Pulsar-i) with an orthogonal 

MALDI ion source (Applied Biosystems, Foster City, CA, USA) and a Neodymium-doped 

yttrium aluminium garnet (Nd: YAG) laser (355 nm, 1 KHz). The laser power was 30 % 

(1000 Hz, 3.2 µJ), which had an elliptical spot size of 100 × 150 µm [202]. Image 

acquisition was performed using the “raster image” mode [203]. The MALDI-MS/MS 

images were obtained using argon as the collision gas; the collision energy and the 

collision gas pressure were set at 20 and 5 arbitrary units, respectively. 
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Images were acquired using ‘oMALDI Server 5.1’ software supplied by MDS Sciex 

(Concord, Ontario, Canada) and processed using Biomap 3.7.5 software (www.maldi-

msi.org) to generate black and white images for each m/z ratio of interest. Further 

Image analysis and processing was performed using the public domain software ImageJ 

(http://rsb.info.nih.gov/ij); where the previous black and white images were assigned 

different colours and overlaid to create one final image.  

 

2.3.2 LC-MS/MS Instrumentation and analytical conditions 

 
All experiments were performed on a Thermo Finnigan LCQ™ ‘classic’ quadrupole ion 

trap liquid chromatography mass spectrometer with electrospray ionisation (ESI) 

interfaced to a liquid chromatography system. The system used also consisted of an 

auto sampler and auto injector. The column used was a Phemonex Lunar® C18 (150 

mm x 1 mm, 5 μm) with a corresponding guard column. LC-MS/MS Chromatographic 

separation was realised using gradient elution according to a previously published 

method by  Roth et al. [204]. Briefly, 0.1% HCOOH in water was used as mobile phase A 

and ACN+ 0.1% HCOOH was used as mobile phase B. Mobile phase A was gradually 

reduced over time whilst mobile phase B was increased from 20 to 95%. The total run 

time was 15 minutes with the THC molecule eluting at 4 minutes.  

All experiments were performed on a Thermo Finnigan LCQ™ ‘classic’ quadrupole ion 

trap liquid chromatography mass spectrometer equipped with an electrospray 

ionisation (ESI) source, interfaced to a liquid chromatography system. The system used 

also consisted of an auto sampler and auto injector.  

2.4 Profiling of THC with multiple matrices  
 
The use of α-Cyano-4-hydroxycinnamic acid (CHCA) resulted in the greatest intensity 

response as shown in Figure 2-1. However, upon inspection of the mass spectra it is 

evident that a peak associated with the matrix is unresolved with the peak associated 

with THC (m/z 315). This could explain why using 10 mg/mL CHCA decreased the THC 

intensity observed as with larger concentrations of the matrix present, a greater 
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suppressant effect from the matrix peak will be observed. This finding is in agreement 

with Zhang et al. who also observed a suppressant effect and much stronger matrix 

clusters at concentrations higher than 5 mg/mL when analysing peptides [205]. 

 

Figure 2-1. Absolute intensity of THC peak (m/z 315.2) with a range of different matrices.  

The binary matrix of 6-aza-2-thiothymine (ATT) and 3-hydroxycoumarin (3-HC) 

proposed by Shanta et al. as a new combination matrix for the analysis of small 

molecules [196] gave the lowest intensity response. 2,5-Dihydroxybenzoic acid (DHB) 

did not crystallise uniformly and this is reflected in the large standard deviation of 

intensities observed. Crystal inhomogeneity is a well-documented problem with using 

the DHB matrix  [206].  

2.4.1 The use of matrix additives 

 
Matrices can cause signal interference, or suppression of the analyte signal in the 

region below 1,000 Da [207]. This is due to the most frequently used matrices, e.g., 

CHCA and DHB, being small organic molecules themselves. When ionized, the matrix 
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usually forms clusters at low masses, which can interfere with the detection of low 

molecular weight analytes [195]. In MALDI, an additive is any compound which is 

added to the matrix/solvent composition. Additives have been proposed to eliminate 

or reduce ion suppression effects [208], and thereby improve the signal-to-background 

ratio. Some examples of additives include sugars [209], acids [210], surfactants, 

[211,212] and weak bases [213].  

 Addition of CTAB 
 
The addition of the surfactant cetrimonium bromide (CTAB) to the CHCA matrix has 

previously been reported to supress CHCA-related ion signals in the low mass 

region[211]. However, in this study it was found that the relative intensity of the THC 

peak decreased with the addition of CTAB as can be seen in Figure 2-2, the absolute 

intensity also decreased with the addition of CTAB. One explanation for the fact that 

the CHCA-CTAB matrix performed poorly with the THC is that it does not contain an 

amine group, this method has been successfully used to analyse compounds found in 

clandestine tablets, however all compounds reported contained amine groups such as 

MDMA[199]. Guo et al. also reported that non-amine containing drugs such as benzoin 

and warfarin gave weaker peak intensities than drugs containing amine groups using 

the CHCA-CTAB matrix [211]. 
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Figure 2-2. a) Relative intensity of THC peak (m/z 315) with CHCA used as the matrix. b) Relative intensity of THC 

peak with CHCA-CTAB used as the matrix. THC peak intensities were normalised with the [CHCA+H]+ peak of m/z 

190.05.  

 

2.4.2 Addition of aniline and matrix composition  

 
As shown in Figure 2-3, the relative intensity of the peak corresponding to THC (m/z 

315.2) was greater when using 5 mg/mL CHCA rather than 10 mg/mL CHCA.  

At both CHCA concentrations the addition of the ionic liquid aniline improved the 

relative intensity of the THC peak. This was not entirely unexpected as improved signal 

intensity using CHCA-Aniline has previously been reported for a range of compounds 

including proteins, peptides and amino acids [206,214]. However, this is the first time 

this matrix additive has been reported for the use of cannabinoid detection.  
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Figure 2-3. Effect of matrix composition and the addition of aniline on the relative intensity of the THC peak 

normalised to the CHCA dimer of m/z 379. 

 

2.4.3 Addition of Lithium Salts  

 
The addition of lithium salts to CHCA in order generate lithium-analyte adducts to 

improve the detection of lipids both in profiling and imaging experiments is well 

documented [200,214,215]. In this study two common lithium salts, LiCl and LiTFA 

were added to CHCA and analysed with THC. As shown in Figure 2-4, the addition of 

either salt decreased the THC signal intensity greatly. Figure 2-4a shows that an 

increase in lithium chloride concentration had little effect on the intensity of the THC 

signal. Figure 2-4b shows that an increase in lithium trifluoroacetate concentration 

caused the THC signal intensity to decrease. However, the expected peak of the 

Lithium adduct [M+Li]+ (m/z 321) was not observed with either lithium salt, suggesting 

that the adduct had not formed. This was also the case when CHCA without the 

addition of aniline was used as the matrix (data not shown).   
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This could be explained by the lack of a phosphate group in THC molecule, as it is 

thought that the lithium ion exhibits a high affinity to phospholipids due to the 

presence of an exchangeable hydrogen on the phosphate group forming strong ion-

dipole interactions with a strong covalent character [200]. This result suggests that the 

lithium ion does not have a high affinity for the hydroxyl group of the THC molecule, 

but that the addition of lithium salts supresses the THC signal.  

 

Figure 2-4. Intensity of THC peak (m/z 315.2) after the addition of lithium chloride (a) lithium trifluoacetate (b) to 

CHCA matrix in a range of different concentrations. 

 

2.4.4 The laser-induced rearrangement of THC 

 
Whilst investigating the optimum matrix compositions it was noted that there was not 

a singular peak associated with THC at m/z 315 as expected, but rather a "cluster" of 

peaks as shown in Figure 2-5A. Whilst peaks at m/z 316 and 317 can be partially 

explained by the presence of 13C isotopes within the molecule, the origin of the peaks 

observed at m/z 311-314 are not apparent. The lack of these peaks in the matrix 

blanks and the similar spectrum obtained with DHB matrix shown in figure 2-5B 

supports the theory that the peaks are associated with the THC molecule.  
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To investigate this phenomenon further, LC-MS/MS analysis of the THC standard was 

carried out.  

A single peak in the chromatogram confirmed the purity of the THC standard. The 

mass spectrum of the peak can be seen in Figure 2-6, showing the M+H at m/z 315. 

Interestingly, the peak previously seen at m/z 314 is no longer present. In addition to 

this the peak at m/z 313 has now reduced to 3% of the intensity of the m/z 315 peak 

(previously seen at 50-110% of the 315 peak depending on matrix used, see Figure 2-

5B and 5C). Since this LC-MS system uses a softer ionisation source it is reasonable to 

Figure 2-5. A- m/z region 310-318 of THC with CHCA matrix. B- m/z region 310-318 THC with DHB matrix. 
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assume that the cause of the THC "cluster" is the MALDI ionisation process, in 

particular the use of laser energy. To further investigate the influence of laser power 

on the molecule an experiment was carried out with increasing laser power. It can be 

seen in Figure 2-7 that increasing laser power causes the ratio of m/z 313 to 315 signal 

intensity to increase, showing increasing m/z 313 formation. 

 

Figure 2-6. LC-MS mass spectrum of THC standard.  

 

Figure 2-7. Ratio of signal intensity of m/z 313.2 to 315.2 at increasing laser energies (n=3 per point). 

 
One possible explanation for this observation is a laser induced re-arrangement of the 

THC molecule as depicted in Figure 2-8. The loss of hydrogens as free radicals would 
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increase the conjugation of the THC molecule, making the molecule more stable and 

the reaction favourable. MS/MS spectra obtained by direct infusion shown in Figure 2-

9 also support this theory.  

 

Figure 2-8. Re-arrangement of THC molecule. 

 
The MS/MS spectra of the parent ion at m/z 315.1 is shown in Figure 2-9A and the 

MS/MS spectra of the re-arranged parent ion at m/z 313.1 is t is shown in Figure 2-9B. 

The spectra are very similar with many fragments forming from common mass losses 

(peaks labelled with a star). These peaks have a mass shift of -2 from spectrum A to 

spectrum B, reaffirming the loss of two hydrogens from the THC molecule. One 

notable difference between the spectra is a shift of -2 from m/z 259.1 in spectrum 2-

9A to m/z 257.1 in spectrum 2-9B. The suggested structures of these fragments can be 

seen the insert of Figures 2-9A and 2-9B, the latter of which was first proposed by 

Bijlsma et al. based on MSE accurate mass data[216]. These structures agree with the 

proposed re-arrangement shown in Figure 2-8. In addition to this both mass spectra 

have a common fragment ion at m/z 193, the structure of which is shown in Figure 2-9-

B. The fragment does not contain the re-arrangement, so appears identical in each 

MS/MS experiment. 
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Figure 2-9. (A) MS/MS spectra of THC. Product ion mass spectrum of (i) m/z 315 and (ii) m/z 313 are shown. Both 

spectra were obtained by direct infusion. Peaks with a star symbol denote a mass shift of 2 Da. (B) Proposed re-

arrangement of THC and structures of fragments present at m/z 259 and 257 and 193.  
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2.5 Derivatisation of cannabinoids 
 
Since the laser is an essential component in MALDI-MS, the only way to analyse THC 

and avoid the unwanted re-arrangement is to chemically modify THC before analysis. 

Derivatisation of analytes has previously been identified as a possible strategy to 

improve signal strength when analysing small molecules using MALDI [195], however 

this approach had not previously been investigated for cannabinoids.  

Whilst derivatisation of analytes is undesirable due the additional time and reagents 

needed, this approach can be highly advantageous. Derivatisation results in analyte 

peaks shifted to a higher mass region, and so by use of a suitable reagent, it is possible 

to avoid matrix peak interferences for the analyte signal.  

Moreover, derivatisation with a reagent that can provide a permanent charge is 

particularly useful for non-charged compounds, which may not be possible to analyse 

otherwise [195]. Another advantage of derivatisation is that the signal strength can be 

increased, because the derivatised compound may have different chemical and 

physical properties, which can provide beneficial changes in volatility and higher 

ionization efficiency.  

In this study, the target for the derivatisation was the hydroxyl group, since all 

cannabinoids of interest contain this functional group. After carefully reviewing the 

literature, the derivatisation method using 2-Fluoro-1-Methylpyridinium p-

tolunesulfonate (FMPTS) to form an N-methylpyridinium derivative (shown in Figure 2-

10), as reported by Quirke et al. for the detection of alcohols using electrospray 

ionisation mass spectrometry, was chosen [217]. FMPTS derivatisation has previously 

been reported to improve the detection of a range of compounds with alcohol 
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moieties, in various sample types including surfactants [218], oestrogens [219] and the 

narcotic analgesic buprenorphine [220], using LC-MS analysis, and  polyamides [221] 

and sterols [222] in MALDI profiling experiments.  

 

Figure 2-10. Expected FMTPS derivatisation scheme with A) generic cannabinoid and B) THC. 

 
This strategy was selected due to the simplicity of the nucleophilic substitution 

reaction which occurs readily at room temperature [223], the stability of the products 

formed [218,224] and also the addition of a permanent charge to the analytes. This is 

of particular importance as it allows all cannabinoids to be analysed in positive mode 

analysis (despite the non-derivatised THC-COOH being theoretically more suited to 

negative mode) [225]. 

 
Derivatisation was successful for all cannabinoids of interest, with all expected peaks 

being observed and in agreement with the expected monoisotopic m/z values (Table 2-

1). The derivatised species show an addition of 92 a.m.u. as first observed by Quirke et 

al. [217] and confirmed by others [219,222].  
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Table 2-1. Theoretical and experimental m/z ratios for derivatised and non-derivatised cannabinoid standards. 

After derivatisation the ions corresponding to non-derivatised cannabinoids were not 

observed, suggesting that reaction went to completion (or such that non-derivatised 

cannabinoids remained present at concentrations below the limit of detection). The 

expected derivatised THC peak at m/z 406.28 was the most abundant in the spectrum 

(Figure 2-11a). However, there was evidence that rearrangement still occurred as the 

peak at m/z 404.27 was observed, though it was present at only 6% of the intensity of 

the m/z 406.28 peak, as opposed to approximately 100% when analysed without 

derivatisation. This suggests that the derivatisation largely protects THC from the re-

arrangement, possibly due to steric hindrance, or increasing the required amount of 

laser energy to re-arrange the molecule.  

The peak at m/z 406.28 was also observed in the mass spectrum of the derivatised CBD 

molecule. This was anticipated as THC and CBD are isobaric species, however an 

additional peak at m/z 483.32 was also detected in the CBD spectrum (Figure 2-11b); 

CBD gains two N-methyl-pyridinium groups as it has two hydroxyl groups, rather than 

the one for THC. The peak at m/z 483.32 corresponds to the loss of a methyl group 

from the doubly-derivatised molecule expected to be observed at m/z 498.32. 

Cannabinoid  [M+H] 
Theoretical 

[M+H] 
Experimental  

Derivatised 
[M+92] 
Theoretical 

Derivatised 
[M+92] 
Experimental 

THC 315.23 315.23 406.27 406.28 

CBN  311.20 311.20 402.24 402.24 

CBD 315.23 315.23 406.27 406.28 

11-OH-THC 331.23 331.23 422.27 422.26 

THC-COOH 345.21 345.21 436.25 436.25 

THC-COO-gluc 521.24 521.25 612.28 612.28 
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CBN was detected at the expected mass of 402.24 (Figure 2-11c).  

Whilst theoretically there could be two additions of the N-methyl-pyridinium group to 

11-OH-THC only one addition was observed corresponding to a mass of 422.26 (Figure 

2-11d).  

THC-COOH was observed at the expected mass of 436.26. However, an additional peak 

at m/z 450.27 was observed in greater abundance (Figure 2-11e). This peak is not 

observed in the mass spectrum of the FMPTS derivatisation reagent with CHCA and so 

it is assumed that it is associated with the THC-COOH analyte. The mass does not 

correlate to a doubly derivatised THC-COOH molecule and so the structure of the 

compound correlating to this mass is unknown.  

The THC-COO-gluc molecule could have up to five N-methyl-pyridinium additions on 

molecule because of multiple hydroxyl groups being present, though only the 

corresponding m/z value for one addition, at m/z 612.28 was observed (Figure 2-11f). 

The peak at m/z 436.25 was more abundant, suggesting the glucuronide group readily 

fragments from the parent molecule during analysis resulting in the detection of THC-

COOH.  



 
 

 

Figure 2-11. Mass Spectra of derivatized cannabinoids a) THC b) CBD, c) CBN, d) 11-OH-THC,  e) THC-COOH and f) THC-COO-glucuronide standards derivatised with FMPTS.  



 
 

A further experiment increasing the laser power used for analysis showed that the 

ratio of the peak pertaining to THC-COO-gluc to the peak corresponding to THC-COOH 

decreased sharply from 10 to 20% with an overall decrease of 28% when the laser 

power was increased from 15 to 30%, suggesting laser energy is at least partially 

responsible for the fragmentation observed (Figure 2-12).  

 
Figure 2-12. The effect of laser power on fragmentation of THC-COO-gluc to THC-COOH (n=3). 

 

2.5.1 Profiling of derivatised analytes with a range of matrices 
 
Since derivatisation changes the structure and functional groups of the cannabinoids, 

matrix selection was re-investigated. The addition of aniline to the derivatised THC 

molecule no longer improved the signal intensity when using the matrix CHCA. This 

could be because the addition of 92 a.m.u. means that the THC peak is no longer 

supressed by a matrix peak, as was previously observed.  

Following the results from the underivatised THC compound with a range of matrices 

(Figure 2-1), CHCA, ATT and a binary THC-DHB matrix proposed by Laugesen and 
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Roepstorff to improve crystal inhomogeneity [226] were spotted with all derivatised 

cannabinoids and metabolite standards and  profiled.  

The ATT matrix gave low intensities of analytes or had large standard deviations and so 

was excluded from future experiments, as shown in Figure 2-13. CHCA gave the 

highest intensities for CBD, CBN, and THC-COOH. The CHCA-DHB combined matrix gave 

the highest intensity for THC and 11-OH-THC, with CHCA only slightly lower. Following 

these results, the CHCA matrix was selected for future experiments.  
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Figure 2-13. Absolute intensity of peaks pertaining to derivatised cannabinoids and metabolites with a range of 

different matrices. 
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2.6 On-hair derivatisation 
 
Following the development of a method for detection of the derivatised cannabinoid 

standards, this section will discuss application of the method to hair samples.  

 

2.6.1 Microscopy of derivatised hair samples 
 
The derivatisation of THC was performed on spiked hair samples by spotting 1 µL of 

derivatisation reagent on top of the hair, followed by 1 µL of the 5 mg/mL CHCA matrix. 

Without derivatisation, profiling experiments indicated that 5 mg/mL concentration of 

CHCA was found to be optimal (see Figures 2-1 and 2-3). However, there was very little 

instrumental response for any m/z value on the derivatised hair sample.  

Microscopy of the hair showed that at a CHCA concentration of 5 mg/mL there was 

very little matrix crystallisation (Figure 2-14), explaining the absence of instrumental 

response. Further investigations were conducted in order to ascertain the optimum 

matrix concentration and volume placed directly onto the hair are presented in Figure 

2-14. 

Using 5 mg/mL CHCA there were very few matrix crystals on the hair sample, whilst 

increasing the concentration of CHCA to 15 and 20 mg/mL led to the formation of 

crystals. Usefully it was seen that the addition of the derivatisation reagent appeared 

to help the CHCA matrix adhere to the hair sample (Figure 2-15). 



 
 

 

Figure 2-14. Microscope images of derivatised hair samples with different concentration and volumes of matrix applied 



 
 

 

Figure 2-15. Derivatised and underivatised hair with 20 mg/mL CHCA matrix spotted on top.  
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2.7 Profiling and imaging of cannabinoids in hair samples  
 
Following the evaluation of the matrix application under the microscope, CHCA (2 µL, 

20 mg/mL) was used as the matrix to analyse hair spiked with THC. Unlike with 

previous experiments where CHCA (1 µL, 5 mg/mL) was used, the analyte could now 

be detected during profiling experiments.   

Following the evaluation of microscopy and profiling experiments, 15 mg/mL and 20 

mg/mL concentrations of CHCA were selected and a MALDI-MSI experiment was 

performed. Samples were prepared as described in Section 2.2.5. A schematic of the 

experiment can be seen in Figure 2-16 and the mass spectrometry image can be seen 

in Figure 2-17. 

At all concentrations and volumes of CHCA the THC compound had been delocalised 

from the hair and into the surrounding matrix. This can be seen most prominently in 

the first hair sample with 15 mg/mL CHCA where signal intensities directly on top of 

the hair are lower than those in the surrounding area.  However, signal intensities for 

THC were also highest at the 1 µL volume 15 mg/mL CHCA concentration. 

Delocalisation of the THC compound could be due to THC being soluble in the 

derivatisation reagent and so it spreads out as far as the spot of the derivatisation 

solution.  

The delocalisation of analytes is undesirable as it may lead to interpretational 

difficulties. For example, the analyte may delocalise into a region of the hair that 

originally did not contain the analyte. This could lead to misleading results when trying 

to estimate a timeline of usage.  
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Figure 2-16. Schematic of imaging experiment. 

 

Figure 2-17. MALDI image of peak 406.2 corresponding to derivatised THC. 

 

2.7.1 Spraying of derivatisation reagent  
 
It was hypothesised that the delocalisation of the analyte could be due to the relatively 

large volume of derivatisation reagent being spotted. To test this hypothesis a hand 

sprayer (see Section 2.2.6) was used to supply a fine mist of the derivatisation reagent 

before spraying the sample with CHCA matrix using an automated sprayer (see Section 

2.2.7). A hand sprayer was chosen due to hazards associated with the trimethylamine 

component of the derivatisation reagent, as it was easily used in a fume hood. The 

result of using a spray for the derivatisation reagent can be seen in Figure 2-18. Since 
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previously the delocalisation was equal in all directions (see Figure 2-17) it is 

reasonable to assume that delocalisation is not occurring along the hair sample, 

although this cannot be ruled out.  

Once the derivatisation and spraying of analytes was optimised blank and cannabinoid 

spiked hairs were imaged to verify efficiency of the derivatisation method for imaging 

purposes and were compared to hairs which had not gone through the derivatisation 

step, the results of which can be found in Figure 2-18. 

 
Figure 2-18. Comparison between derivatised and non-derivatised hairs. Hair A soaked in methanol and 

derivatised. Hair B soaked in THC standard then derivatised. Hair C soaked in THC-COOH standard and 

derivatised. Hair D soaked in a 1:1 mixture of THC standard and THC-COOH standard and derivatised. Hair E 

soaked in methanol and not derivatised. Hair F soaked in THC standard and not derivatised. Hair G soaked in THC-

COOH standard and not derivatised. Hair H soaked in a mixture of THC and THC-COOH and not derivatised.   

 

Unless dramatic modifications are made to contrast and brightness, underivatised hairs 

soaked in THC standard could not be visualised in the 2D molecular map as the ion 

signals of the underivatised THC were of extremely low intensity. Interestingly THC-

COOH could be visualised in the 2D molecular ion map (Cyan colour) in hairs G and H 

which were soaked in THC-COOH standard and a mixture of THC and THC-COOH 

standard respectively, however this was also at relatively low intensity. The peak at m/z 

406.2 corresponding to derivatised THC is clearly seen in the hair that was spiked with 
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THC and subsequently derivatised (red in colour). Similarly, the expected ion at m/z 

436.2 was observed in the hair spiked with THC-COOH and subsequently derivatised 

(green colour); the hair which was spiked with a mixture of THC and THC-COOH and 

then derivatised appears yellow in colour as both THC and THC-COOH ions are present 

(a mixture of red and green gives yellow).  

Since it was established that derivatisation enhances both the THC and THC-COOH 

signal in imaging experiments (as shown in Figure 2-18), a second mapping experiment 

with the other cannabinoids shown in was carried out (Figure 2-19). The peak at m/z 

406.2 corresponding to derivatised THC is clearly seen in the hair which was spiked 

with THC and then derivatised (red m/z map), the peak at m/z 483.2 was observed in 

the hair spiked with CBD and derivatised (yellow m/z map), the peak at m/z 402.2 was 

corresponding to the derivatised CBN was observed in the hair which was spiked with 

CBN and derivatised (blue m/z map), the peak at m/z 436.2 corresponding to the 

derivatised THC-COOH was observed in the hair which was spiked with THC-COOH and 

derivatised (green m/z map) and finally the peak at m/z 422.2 corresponding to the 

derivatised 11-OH-THC was observed in the hair which was spiked with 11-OH-THC and 

derivatised (magenta m/z map). As with the profiling experiments, THC-COO-gluc 

fragmented to give THC-COOH at a m/z of 436.2 (green m/z map) and its image 

intensity reflect a 5X lower concentration compared to the other standards due to the 

concentration in which it is supplied.    

 

1 cm 
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Figure 2-19. Simultaneous imaging of several cannabinoids of interest. Hair A soaked in Methanol. Hair B soaked 

in THC. Hair C soaked in THC. Hair D hair soaked in CBD. Hair E soaked in THC-COOH. Hair F soaked in 11-OH-THC. 

Hair G soaked in THC-COO-gluc. All hairs were derivatised with FMTPS prior to analysis.  

 
Once verified the efficiency of the derivatisation method coupled with the MALDI MSI 

analyses, users' hair was investigated employing this optimised method. MALDI MS/MS 

images were obtained of hairs collected from a volunteer who self-reported to use 

cannabis once a week and the transition m/z 406.2 derivatised THC parent ion 

compound to m/z 110.0 was monitored (Figure 2-20). The product ion at m/z 110.0 

corresponds to the hydrated methylpyridinium fragment which is common to all 

FTMPS derivatives and have previously been used for confirmation [218]. 

 

 

1 cm 
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Figure 2-20. MS/MS image of user hairs. 6A shows derivatised THC parent ion at m/z 406.2 6B shows the map of 

the fragment ion at m/z 110. 

 

2.8 MALDI Imaging to detect hair exposure to cannabis smoke  
 
Since THC is present in the smoke produced when the plant material is combusted, the 

presence of THC in hair can be due to exposure to smoke, and not necessarily direct or 

intentional usage. The exact mechanism of smoke contamination is not yet fully 

understood. Mapping the THC compound and its location in the hair sample after 

exposure to cannabis smoke could therefore offer new insights into the mechanism of 

contamination and the most appropriate procedure to remove external 

contamination. In this section preliminary results of hairs exposed to cannabis smoke 

and subsequently analysed using MALDI-MSP and the MALDI-MSI methods developed 

in Section 2.7 will be presented.  

2.8.1 Methods and Materials  
 
Methods for the matrix preparation, deposition of matrix, spiking of samples hair 

samples, and derivatisation were performed as previously described in Section 2.2. The 

1 cm 
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instrumentation was also used as described in Section 2.3. Additional methods and 

materials unique to this section can be found below.  

 Spraying of derivatisation reagent 
 
For imaging experiments in this section the derivatisation reagent was sprayed using a 

Bruker ImagePrep (Bruker Daltonics, Bremen, Germany). 

    Preparation of plant extracts  
 
The plant extract was prepared according to De Backer et al. [227]. The plant material 

(purchased from a coffee shop in Maastricht, The Netherlands) shown in Figure 2-21A 

was dried for 24 h in a 35 °C forced ventilation oven. The sample was then ground to a 

fine powder. 200 mg of powder (shown in Figure 2-21C) was extracted with a mixture 

of 20 mL mixture methanol/chloroform (v/v: 9/1) by agitation for 30 minutes. The 

extract was then filtered (shown in Figure 2-21D) and used for subsequent analysis.  

In addition to the "fresh" plant extract a 3-year-old plant extract which had been 

stored at 5°C was also analysed. The origin of the plant and process of extraction for 

this sample is unknown.  
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Figure 2-21. A-Cannabis plant material as bought from a coffee shop. B-Cannabis plant material after grinding. C-

Cannabis plant material after drying at 30 °C for 24hr and grinding with pestle and mortar. D-Cannabis plant 

material filtrate.  

 

 Preparation of cannabis cigarettes 
 
Cannabis cigarettes were prepared by a regular user, who was asked to make 

cigarettes as they normally would. Briefly, the plant material shown in Figure 2-21A 

was ground using a herb grinder to separate the cannabis bud from small stems which 

were still attached. This resulted in a consistency that is more amenable to rolling into 

a cigarette (Figure 2-21B).  Each cannabis cigarette contained approximately 130 mg of 

plant material and 700 mg of Lucky Strike tobacco and was rolled using Rizla green 

regular rolling paper.  

 

 Smoke exposure conditions 
 
A hair sample (approximately 5 g) from an individual who reported that they did not 

use cannabis was placed inside a desiccator. Hairs were approximately 12 cm in length. 

The cannabis cigarette was placed inside the tap of the desiccator as shown in Figure 

2-22. The contents were then placed under vacuum and the cigarette was then lit. The 
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tap was turned on and off at regular intervals to mimic inhalation and keep the 

cigarette alight. After 15 minutes in the desiccator under smoke conditions the hair 

was removed and stored in foil at room temperature before analysis.  

 

Figure 2-22. Experimental set up of cannabis smoke exposure experiments. 

 

2.8.2 Instrumentation 
 
Profiling and high-speed imaging was performed on a Bruker RapifleX MALDI 

TissuetyperTM system (Bruker Daltonik GmbH, Bremen, Germany). The instrument was 

operated in reflectron mode in positive ion mode in the mass range m/z 100-600. The 

instrument was calibrated prior to analysis using red phosphorus clusters. Images were 

acquired using a 50 × 50 µm raster (25 × 25 µm beam scan area). The images were 

generated using the FlexImaging 5.0 software (Bruker Daltonik GmbH) and were 

normalized to the total ion current (TIC). 
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2.8.3 Results 
 

 Profiling of plant extracts and hair samples 
 
In the three-year-old plant extract, peaks at m/z 406 and 402 were detected which 

correspond to FMTPS derivatised THC and CBN respectively (Figure 2-23A). The relative 

intensities of the peaks were high, being the largest two peaks in the spectrum. The 

peak corresponding to THC was also detected in the fresh plant extract; however, the 

peak corresponding to CBN was not (Figure 2-23B). This could be due to the fact the 

THC is known to degrade to CBN [228–230], or that the two extracts were of different 

plant strains (discussed in detail in Section 1.1.2). The three-year-old plant extract 

mass spectrum also contained an additional peak at m/z 438 which was not detected 

in the fresh plant extract and is of unknown origin. It does not correspond to 

theoretical values of FMTPS derivatised cannabis plant constituents reported in the 

study from which the extraction procedure was reproduced [227]. 

The profile of a hair exposed to THC smoke also contained m/z 406 in the mass 

spectrum. Interestingly, the peak corresponding to CBN is also detected (denoted with 

an arrow on Figure 2-23C) but at a much lower abundance than in the aged plant 

extract. This suggests that the degradation of THC to CBN is accelerated due to 

exposure to high temperature when burned in the cigarette.  

The peak at m/z 438 is detected in the hair sample exposed to cannabis smoke and the 

aged plant extract, but not in the fresh plant extract, suggesting it also may be a 

degradation product of the plant material induced by pyrolysis.   

A peak was observed at m/z 420 in the hair sample that was exposed to cannabis 

smoke but was not detected in either the plant material extracts or the blank hair 
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sample. It is hypothesised that this corresponds to a compound in the tobacco or the 

rolling paper used to make the cannabis cigarette.  

Peaks corresponding THC, CBD and CBN were not detected in the blank hair sample 

from the non-user (Figure 2-23D). The peak corresponding to the doubly-derivatised 

CBD (m/z 483) was not detected in any sample.



 
 

 

Figure 2-23. MALDI-MSP mass spectrum of A) 3-year-old plant extract. B) Freshly prepared plant extract. C) cannabis smoke contaminated hair sample. D) hair sample not exposed to cannabis 

smoke  



 
 

 Imaging of smoke contaminated hairs  
 
In addition to a smoke contaminated hair prepared as described in the previous 

section, a blank hair from the non-user and a hair spiked with fresh plant extract as 

described in Section 2.2.5 were subsequently imaged using MALDI-MSI. During spray 

optimisation experiments the peak at m/z 324 was found to be a suitable marker for 

the derivatisation reagent due to high signal intensity, and was used to deduce 

whether the derivatisation reagent was sprayed heterogeneously on the sample. The 

results from Figure 2-24A suggests a good coverage of the derivatisation reagent on 

the hairs; however, there are some regions where the mass correlating to the 

derivatisation reagent has a lower intensity due to inhomogeneity in the spraying of 

the derivatisation reagent. This is reflected in lower abundance of analytes in the 

regions where the derivatisation is at a lower intensity as seen in Figure 2-24B and 2-

24C.  

As with the profiling experiments, m/z 406 corresponding to THC was observed in both 

the plant extract spiked hair and the hair exposed to cannabis smoke.  m/z 420 was 

only detected in the smoke contaminated hair. As before, the hair not exposed to 

cannabis smoke (control) did not have m/z 406 or m/z 420 detected. 
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Figure 22-24. MALDI-MSI  A) map of derivatisation reagent (m/z 324). B) map of THC (m/z 406). C) map of m/z 

420.   

 

2.9 Further work   
 

2.9.1 Optimisation of FMTPS spray  
 
At present, the spray method can cause inhomogeneities in the volume of 

derivatisation reagent across the hair sample. Therefore, additional optimisation of the 

FMTPS spray method should be conducted. A homogeneous spray is needed to reliably 

identify relative intensities within the sample so that any assignment of high or low 

intensities of cannabinoid peaks are in fact due to the relative abundance of 

compounds in that area, and not due to inhomogeneity of the derivatisation reagent.  

If homogenous spraying of the derivatisation reagent is not achieved, investigations 

into normalising any image to a peak associated with the derivatisation reagent should 

be investigated.  
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2.9.2 Longitudinal sectioning of hair samples  
 
The methods developed in this study have been applied to intact hairs, however there 

are limitations associated with this type of analysis. As drugs are considered to be 

entrapped inside the keratin matrix of the hair (described in detail in Section 1.3.5), it is 

difficult to know whether a) the drug is completely extracted out of the hair by the 

MALDI matrix solution or b) if the detected drug originates from external 

contamination or metabolic incorporation [231]. 

To be able to make a distinction between external contamination and intake, 

examination of drug distribution inside the hair itself is required and so should be 

investigated in future work. Whilst methods for the preparation of longitudinal sections 

of hair samples have previously been described [189,191,193,231,232] analysis of 

cannabinoids in sliced hair samples has not yet been reported.  

In relation to smoke contamination, an assessment of whether the cannabinoids found 

in cannabis smoke remain on the cuticle of the hair (indicating external contamination) 

or are found inside the cortex (indicating usage) should be a priority along with an 

assessment of the effectiveness of current decontamination procedures.  

 

2.9.3 Quantification of cannabinoids in hair samples  
 
Quantification of analytes was not attempted in this study and is a logical next step for 

future work. This may be achieved by utilising a method developed in collaboration 

with Flinders et al.  during the course of this study to determine the amount of cocaine 

detected in hair samples [233]. The full text of this article can be found in Appendix II.  

 

2.9.4 Use of realistic smoke contamination procedures  
 
Realistic smoke contamination conditions should be used in future studies, with 

additional investigations into whether the method is sensitive enough to detect 

cannabinoids under these conditions. 
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One such exemplar method was conducted by Röhrich et al. to investigate the levels of 

cannabinoids in urine and blood after exposure to cannabis smoke.  The exposure to 

cannabis smoke by non-users took place in a coffee shop in Maastricht in the 

Netherlands. Coffee shops in the Netherlands are pubs where cannabis can be 

consumed legally. The coffee shop in which exposure took place had no windows but 

relatively efficient ventilation and, therefore, was not very smoky during the exposure.  

This type of experiment would create a more realistic method of contaminating hair 

samples than the one used currently used in this PhD study. Findings form a realistic 

experiment would be more applicable to interpretation of cannabinoid findings in 

authentic hair samples.  

2.9.5 Analysis of different hair types  
 
The hair cuticle is the region affected by stress caused by the external environmental 

and physical factors. Undamaged hair has a smooth cuticle and outer layer, while 

damaged hair has a dull and dry cuticle with a rough outer layer [234]. Morphological 

characteristics such as roughness, pores, pits, and cracks, holes, or overall severe 

peeling (desquamation) occur in the cuticle layers and can be observed and classified 

using scanning electron microscopy (SEM) [235].   

In relation to cannabinoid detection in hair samples, future work should focus on 

establishing whether there is a link between hair damage and cannabinoid 

concentrations found in hair samples after exposure to cannabis smoke by analysing 

samples using both SEM and MALDI-Imaging.  
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2.9.6 Further Analysis of user hairs  
 
Finally, prior to integration into a toxicology workflow a much larger sample of user 

hairs, from different levels of users and with different hair types should be analysed 

and the relative levels of each metabolite reported. Initially these analyses should be 

carried out in parallel with well-established techniques such as GC-MS/MS to assess 

whether the techniques are comparable.  

 

2.10 MALDI-MS optimisation discussion and Conclusions  
 
In this study several approaches to detecting cannabinoids using MALDI Mass 

spectrometry were investigated. A range of different matrices and matrix compositions 

were evaluated, and it was shown that CHCA yielded the greatest signal intensity for 

the THC molecule at a concentration of 5 mg/mL in a solution of 70:30 ACN:0.2% 

aqueous TFA.  It was also shown that the neither the addition of cetrimonium bromide 

nor lithium salts improved the detection of THC. In contrast, the addition of the ionic 

liquid aniline did improve the relative intensity of the THC peak significantly.  

During the development of this method an interesting, laser induced, THC 

rearrangement was detected and reported. This resulted in two peaks which 

corresponded to the THC molecule (m/z 131 and m/z 315) and hence lower ability to 

detect the molecule without derivatisation.   

The derivatisation of several cannabinoids and metabolites of interest with the 

addition of N-methylpyridium was found to be successful.  

The novel in situ derivatisation, completed in minutes at room temperature using 

FMPTS, showed a greatly increased signal intensity over the non-derivatised analytes, 

enhancing the ability to detect THC, CBD, CBN and THC metabolites.  The ability to 
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detect the metabolites of THC only formed in vivo THC-COOH, 11-OH-THC and THC-

COO-gluc will enhance the ability of the analyst to distinguish between use and 

exposure. During analysis the THC-COO-gluc fragments to form THC-COOH, with the 

consequence that if the m/z 436.2 is detected it cannot be determined which of the 

analytes was present. The m/z 612 is however unique to the THC-COO-gluc. This is an 

advantage over traditional GC-MS methods where the glucuronide is not generally 

detected as a parent compound due to the common practice of hydrolysis or digestion 

of the hair sample which converts it into the THC-COOH [236].  

Due to the processing in this method the limits of detection for the analysis are not 

reported. The main limitation of the study the inability to assess LODs due to the 

spiking procedure as it is not possible to ascertain how much of the spiking solution the 

hair has taken up. 

The method reports a sample preparation workflow, notwithstanding the derivatisation 

step, which is less complicated than the traditional GC-MS or LC-MS methods. This 

method also gives the opportunity to simultaneously detect THC and metabolites in a 

single workup and analysis. Application to a single user hair has shown applicability to 

real life samples. The traditional method of segmenting the sample into 1 cm pieces 

means a one-month history can be obtained, using MALDI-IMS experiments the 

resolution will be much smaller than that, allowing possibly isolating use on a single 

day.  

 

2.11 Smoke contamination discussion and conclusion  
 
The preliminary findings in this study suggest that MALDI-MS could be a useful tool to 

differentiate between the THC and CBN content in plant extracts which can be an 

indicator of degradation. This could be an advantage over commonly used techniques 

such as LC-MS due to the rapid nature of MALDI-MSP analysis.  
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THC was detected on hair contaminated with cannabis smoke using MALDI-MSP and 

MALDI-MSI. This is an important finding as MALDI-MSI could also be used to 

distinguish whether a compound is in the cortex or cuticle of the hair, which is not 

possible in current analysis techniques as GC-MS and LC-MS. This may be beneficial as 

the major pitfall of hair analysis is the presence of external contamination, making 

interpretation of analytical findings problematic.  
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Chapter 3. Development of Gas Chromatography-Mass 
Spectrometry to detect cannabinoids in hair samples 
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This chapter includes a discussion of current GC-MS methodologies used to analyse 

hair for cannabis use. The novel work in this chapter introduces a sample preparation 

technique optimised for the simultaneous detection and quantification of THC, CBD, 

CBN, 11-OH-THC and THC-COOH using GC-MS in hair samples.   Additionally, the use of 

atmospheric pressure chemical ionisation (APCI) for detection and quantification of 

cannabinoids in hair samples will be investigated for the first time.   

 

3.1 Introduction 
 
GC-MS was first used to detect cannabinoids in hair samples in the 1990s, specifically 

THC and THC-COOH were initially targeted [237]. A comprehensive review of sample 

preparation methods from literature published between 2000 to 2014 was conducted 

by Vogliardi et al. [161] and is summarised in Table 3-1.  Ideally a method would 

simultaneously detect THC, CBD and metabolites. This review revealed that only 12% 

of studies analysed both the parent compound THC and the metabolite THC-COOH. 

Without the analysis of metabolites cannabis consumption cannot be confirmed due to 

potential contamination issues which are outlined in Section 1.3.7. Similarly, only a 

third of studies detected both THC and CBD. The detection and quantification of CBD is 

becoming increasingly relevant due to possible clinical applications of CBD (see Section 

1.1.4) and changes in the potency of cannabis plants.  

There are no published methods included in the review article which analyse the 

metabolite 11-OH-THC, or simultaneously analyse THC, CBD and THC-COOH. This 

amounts to a distinct lack of scope in current methodology, possibly limiting the 

amount of information gained before the difficult process of interpretation of 

analytical findings can take place.  



 
117 

 

This lack of coverage of analytes is also reflected in more recent literature [238]. The 

previously reported limits of detection and quantitation of several instrumental 

methods can be seen in Table 1-2 of Chapter 1.  

Compound(s) Analysed Number of studies References  

THC  3 [239–241] 

THC, CBD and CBN 8 [108,109,113,115–

117,119,242] 

THC and THC-COOH 3 [121,165,243] 

THC-COOH  12 [122–127,160,244–248] 

11-OH-THC 0  

Total 26  

Table 3-1. Total number of published methods for each combination of cannabinoids and/or metabolites taken 

from the years 2000-2014. 

Due to low incorporation rates of THC metabolites [45], highly sensitive 

instrumentation is needed for successful analysis.  Many GC methods utilise EI 

ionisation, however this this considered to be a “hard” ionisation technique which is 

prone to fragmentation of analytes. This can result in sub-optimal amounts of the 

intact compound reaching the detector, making the method less sensitive.  

In contrast, APCI is considered a low energy “soft” ionisation technique. This promotes 

ionisation with very little fragmentation, resulting in the formation of M+H+ or M+ ions 

as the base peaks of the mass spectrum (see Section 1.4.2. for more information). The 

reduced fragmentation observed by using this relatively new source can have a 

significant impact on target analysis at trace levels. In recent years the usefulness of 

the interface has been demonstrated in several fields including environmental analysis 

[249,250], food safety [251–253], and metabolic profiling [254]. However, it has not 
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been applied to the detection of cannabinoids in any sample type. It has also not been 

evaluated for the detection of any compounds in hair samples.  

 

3.2 Sample preparation  
 
There are several sample preparation steps that are required before a hair sample can 

be analysed using GC-MS. Briefly, this includes: 

 washing of the hair to remove external contamination (see Section 1.3.8 for 

more information) 

 digestion of hair to liquify the sample or soaking the hair to extract the drugs  

 clean up and extraction of analytes from the digest (see Section 3.2.6) 

 derivatisation to make the analytes more amenable to GC (see Section 3.2.3) 

 

3.2.1 Decontamination of hair samples  
 
The wash protocol chosen for decontamination of hair samples was taken from a 

recent study conducted by Duvier et al. [255].  After extensive testing of both single 

and sequential decontamination protocols, the authors concluded that three 

sequential wash protocols were found to perform equally well regarding the removal 

of external cannabis contamination originating from smoke or indirect contact. In 

addition, these methods did not remove incorporated THC. These steps were: (1) 

methanol, SDS; (2) methanol, SDS, methanol and (3) methanol, methanol. Due to 

reagent availability and the additional preparation time needed for a 3-step 
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decontamination procedure, the methanol-methanol decontamination step reported 

by Duvier et al. was chosen for future experiments in this PhD project.  

Hair samples were washed with MeOH (5 mL) before drying at room temperature and 

washing with a further 5 mL. After vortexing (10 s) and ensuring that all the hairs were 

in the solvent, the test tubes were shaken (15 min at 100 rpm). The hair samples were 

then removed from the test tube using tweezers and placed on paper to dry in a fume 

hood.  

It is, however, important to note that the main limitation of the above study is that 

only THC was analysed. 

3.2.2 Digestion of hair samples  
 
For substances that are stable in alkaline conditions, a useful method for extraction of 

analytes from the hair matrix consists of digestion in an aqueous solution of NaOH. 

Under these conditions, there is complete dissolution of the hair. Whilst the hydrolysis 

of morphine, heroin and cocaine occurs in alkaline conditions, cannabinoids have been 

found to be stable [161]. Since this is a well-established method it was chosen for use 

without alteration.  

 

 

 

 

 Figure 3-1. 20 mg of hair a) before and b) after 30 minutes at 70°C with NaOH (1 mL, 1 M). 



 
120 

 

3.2.3 Derivatisation  
 
Derivatisation of cannabinoids before GC analysis is necessary to increase their 

volatility. A recent literature review into plant cannabinoid derivatisation techniques 

by Monlár and Molnár-perl showed that alkylsilyation of cannabinoids was the most 

common technique, followed by acylation and/or esterification [256]. In this section a 

range of derivatisation reagents, taken from published methods or potentially of use 

for cannabinoids will be assessed to identify the most suitable for further experiments.  

Before derivatisation experiments analytical standards (10 ng/µL) were dried under a 

flow of nitrogen at 45°C and reconstituted in ethyl acetate (50 µL). Experiments were 

conducted without derivatisation by reconstituting analytical standards in ethyl 

acetate (50 µL).   

 Derivatisation methods  
 
The expected m/z of derivatised analytes using different derivatisation reagents can be 

found in Table 3-2. The ion of greatest abundance for each compound was used, 

where this is not the [M]+ ion, [M]+ ions were also monitored for confirmatory 

purposes. Illustrative examples of THC and THC-COOH derivatised with each regent 

used in this study can be found in Figure 3-2. 
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Derivatisation 
reagent 

THC THCOOH 

None  

 

 

BSTFA 

  

MTBSTFA 

 
 

BSTFA/MTBSTFA 

 

 

PFPOH/PFOH 

 
 

Figure 3-2. Representative structures of THC and THC-COOH after derivatisation with BSTFA, MTBSTFA, a mixture 

of BSTFA and MTBSTFA and a mixture of PFPOH and PFOH. 
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Table 3-2. m/z values monitored for each compound with different derivatisation reagents  

 BSTFA 

 
BSTFA derivatisation was performed as per Han et al. Extracts were reconstituted in 

BSTFA (50 µL) and heated at 70°C for 30 min. The sample was then dried under N2 and 

reconstituted in ethyl acetate (50 μL) [257].  

 MTBSTFA 

 
MTBSTFA derivatisation was performed according to Uhl and Sachs. Dried extracts 

were heated in MTBSTFA (75 μL) at 90°C for 1 hour. The sample was dried under N2  

and reconstituted in ethyl acetate (50 μL) [160]. 

 BSTFA/MTBSTFA mixture 

 
The BSTFA/MTBSTFA mixture was prepared according to Brewer et al. Dried extracts 

were reconstituted in equal parts of BSTFA:MTBSTFA:ACN (50 μL) at 90°C for 1 hour 

[258]. The sample was dried under N2 and reconstituted in ethyl acetate (50 μL) prior 

to analysis. 

 

 

 Ions monitored 
Compound No  

Reagent 
BSTFA MTBSTFA BSTFA/MTBSTFA 

mix 
PFPA/PFOH 

THC 299 371 371 371 377 
CBD 231 390 371 390 377 
CBN 295 367 424 367 295 
11-OH-THC 330 371 444 374 622 
THC-COOH 344 371 515 371 489 
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 PFPA/PFOH 
 
For derivatisation with PFPA/PFOH, dried extracts were heated in PFPA (50 μL) and 

PFPOH (25 μL) at 65°C for 30 min. The sample was dried under N2 and reconstituted in 

L ethyl acetate (50 µL) prior to analysis. This method was proposed by Baptista et al. 

[259].  

 

3.2.4 Instrumental parameters  
 
All analyses were conducted using the following method: 

A 1 µl sample was injected into a Hewlett Packard (HP) GC/MS system: HP 6890 series 

GC system (USA) with an Agilent Technologies DB-5MS column (crosslinked 5% phenyl 

methylsiloxane, 30 m x 250 µm x 0.25 µm film thickness) coupled to a Waters 

Micromass® Quattro MicroTM  GC tandem mass spectrometer (Manchester, UK) using 

an Agilent Technologies 7683B series autosampler (CA, USA) 

The inlet temperature was 220°C with a splitless injection. The carrier gas was helium 

(1.0 mL/min). The column oven temperature was programmed to rise from an initial 

temperature of 150°C, held for 1 minute, to 270°C, at 20°C per minute and then held 

for 5 min. To determine the retention times and characteristic mass fragments, the 

primary electron ionization (EI) mass spectra were recorded in full-scan mode (m/z 50–

650).  
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3.2.5 Results of derivatisation experiments 
 
Whist THC, CBD and CBN could be detected without derivatisation, the metabolites 11-

OH-THC and THC-COOH could not. Once derivatised THC and CBD showed increased 

peak areas, whilst 11-OH-THC and THC-COOH could be detected, with all reagents 

when compared to no derivatisation. CBD showed an increase in peak area with all 

derivatisation reagents compared to without, except PFPA/PFOH. BSTFA derivatisation 

gave the largest peak area for all cannabinoids, as shown in Table 3-3. BSTFA also gave 

the largest peak height for all analytes. As an illustrative example, an overlaid 

chromatogram of THC under all the investigated derivatisation conditions can be seen 

in Figure 3-3. 

Table 3-3. Summary of the peak area of analyte when injected underivatised and under different derivatisation 

methods (10 ng/µL) to three significant Figures (n=3). 

THC and CBD both have the same retention time and mass spectrum with PFPA/PFOH 

derivatisation, this also reported by Baptista et al.[259].  Andrews and Paterson also 

reported this phenomenon with HFIP/TFAA derivatisation [260]. This is thought to be 

due to conversion of CBD to THC under acidic conditions [260].  

The importance of measuring THC/CBD ratios to establish potency and due to possible 

clinical applications of CBD (described in detail in Section 1.1.8) means differentiation 

between the two compounds is highly desirable in any current method of analysis. In 

 Peak areas with varying derivatisation reagents 

Compound No Reagent BSTFA MTBSTFA BSTFA/MTBSTFA mix PFPA/PFOH 

THC 55600 761000 261000 97800 103000 

CBD 50100 1100000 304000 292000 45300 

CBN 517000 4850000 867000 184000 813000 

11-OH-THC ND 1390000 50800 219000 288000 

THC-COOH ND 590000 355000 359000 209000 
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addition, the conversion of CBD to THC raises the possibility of over-estimation of the 

true value of THC in a sample as the value obtained is in fact THC+CBD [259,261].  

For the above reasons, derivatisation with PFPA/PFOH and HFIP/TFAA reagents were 

excluded from further investigation in this study. 

 

Figure 3-3. Overlay of chromatograms obtained from the derivatisation of THC with a variety of reagents 

Based on peak shape, retention time and response BSTFA was chosen as the 

derivatisation reagent for future experiments.  

3.2.6 Extraction of analytes from hair 
 
The purpose of the extraction procedure is to selectively extract and concentrate the 

analytes of interest from the hair digest. This is necessary to reduce the presence of 

possible interference caused by organic compounds in high abundance from the hair 

matrix. This is generally carried out by liquid-liquid extraction (LLE) or solid phase 

extraction (SPE) [161].  

Initially the hair digest was extracted using SPE cartridges (Bond Elut Certify, Varian 

Inc., Palo Alto, CA, USA). The method was adapted from Sears [262] with the addition 
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of a conditioning step taken from Guthery et al. to buffer the sample to pH 7 before 

extraction [263]. THC, CBD, CBN and 11-OH-THC could be extracted using this protocol. 

However, THC-COOH was not detected after SPE extraction, despite the utilisation of 

separate elution steps as described by Sears [262]. 

Considering this, an LLE extraction protocol was then selected after careful review of 

the literature. The chosen method was developed by Han et al. [243] and allowed for 

the sequential extraction of neutral and acidic analytes. 

Briefly, hair digests were extracted with n-hexane:ethyl acetate (2 mL 9:1) for 10 

minutes by quick mechanical shaking (250 rpm) for the extraction of THC, CBD, CBN 

and 11-OH-THC. The organic layer was then transferred into a screw-cap tube. This 

procedure was performed twice.  

For the extraction of THC-COOH buffer (1 mL of 0.1M sodium acetate buffer, pH 4.5) 

and acetic acid (200 µL) were added. Hair digests were re-extracted with n- 

hexane:ethyl acetate (2 mL, 9:1) and the organic extract was transferred into the screw 

cap tube. Hair samples were extracted with n-hexane:ethyl acetate (2 mL, 9:1) one 

more time and the organic extract was transferred into the same screw-cap tube and 

evaporated to dryness at 45◦C under a gentle stream of nitrogen. 

This method of extraction allowed for the detection of all analytes of interest.  
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3.3 GC-EI-MS/MS method development 
 
In this section the optimisation of GC oven temperature and development of a 

selected reaction monitoring (SRM) method will be discussed.  

3.3.1 Oven temperature parameters.  
 
A review of literature revealed a range in GC oven temperature parameters for the 

separation of trimethylsilyl derivatives of cannabinoids [108,160,241,248]. Start 

temperatures ranged from 60 °C [160] to 120 °C [248] depending which cannabinoids 

were analysed. Final oven temperatures ranged from 250 °C [241] to 300 °C [108,160]. 

At the commencement of this work no studies had been conducted on simultaneous 

detection of THC, CBD, CBN, THC-COOH and 11-OH-THC in hair samples, and so oven 

temperature parameters were optimised for peak shape, peak separation and total run 

time.  

Figure 3-4 demonstrates the chromatographic separation of analytes at A) 300°C final 

temperature and B) 320°C final temperature. All analytes are well separated with both 

oven temperature parameters; however, at a 300°C end temperature the latest eluting 

peak THC-COOH (5) is broad.  This can be seen in Figure 3-4Aii. At a final temperature 

of 320°C peak 5 becomes narrower and is now much closer in peak height to analyte 

11-OH-THC (4). The narrowing of the peak also means that signal to noise increases, 

improving the limit of detection (LOD) of the analyte. This is imperative since 

metabolites are found in low concentrations in hair samples.  Increasing the starting 

temperature from 40°C to 150°C decreased the retention time of the latest eluting 

peak (THC-COOH) from 15.4 minutes to 9.7 minutes, reducing the overall time for each 

run,awhichaisaveryaadvantageousainaaahighathroughputalaboratory.  



 
 

 

Figure 3-4. GC oven programme starting A) 40°C start ending at 300°C at 20°C/min (B) 150°C start ending at 320°C degrees 20°C/min. 1- CBD 2-THC 3-CBN 4-11-OH-THC 5-THCCOOH i) full 

chromatogram ii) compounds 4 and 5.   



 
 

3.3.2 Tandem mass spectrometry analysis 
 
The use of tandem mass spectrometry (MS/MS) greatly increases selectivity and 

sensitivity, especially when analysing complex matrices such as hair. This then enables 

low limits of detection for the analytes (see Section 1.4.2 for more information). The 

precursor ion in tandem MS is ideally of relatively high mass and abundance to obtain 

a product ion mas spectrum of analytical significance. This allows for identification of 

the analyte and will help to achieve a good signal-to-noise ratio with low detection 

limits. 

The selected reaction monitoring (SRM) transitions for CBN, THC, and CBD previously 

reported by Lachenmeier et al. [264] were found to give a high response, as shown in 

Figure 3-5c, 3-5d and 3-5e respectively. Similarly, the SRM transition for THC-COOH, 

reported by Niedbala et al. gave a relatively high response (Figure 3-5a).  

No SRM transition for 11-OH-THC had been previously reported; however target ions 

of m/z 459 and m/z 371 had previously been described by Sears [262]. Based on the 

literature and the successful transition of 488 → 371 for the structurally similar THC-

COOH compound, for 11-OH-THC an SRM transition of 459 → 371 was chosen. 

However, it yielded a relatively low response (Figure 3-5b) and so required further 

optimisation.          
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Figure 3-5. SRM chromatograms of 10 ng/µL of a) THC-COOH, b) 11-OH-THC, c) CBN, d) THC, e) CBD. On each 

chromatogram the MS/MS transition (quadrupole 1 to quadrupole 3) m/z can be found. 

 

 Optimisation of selected reaction monitoring for 11-OH-THC 
 
Upon inspection of the full scan mass spectrum for 11-OH-THC, it was observed that 

the [M]+ ion at m/z 459 was in relatively low abundance (circled in Figure 3-5A). The 

ion of the greatest abundance in the mass spectrum was m/z 73, however, this ion has 

low specificity as it is also observed in septa bleed [265]. As 73 is a low m/z it is also 

doubtful that significant further fragmentation, or unique fragmentation, would occur. 

Consequently, the second most abundant peak in the spectrum at m/z 371 was 

selected to undergo a product ion scan, shown in Figure 3-5B. The most abundant ion 

in the product ion scan was at m/z 305, and so the chosen SRM transition was 371  

305, a chromatogram of which can be seen in Figure 3-6. 
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Figure 3-6. A) Full scan mass spectrum of 11-OH-THC, the M+. ion m/z 459 is circled. The second most abundant 

peak m/z 371 is indicated with an arrow. B) product ion scan of m/z 371. The most abundant peak m/z 305 is 

circled.   
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The optimised precursor and production ions selected for SRM along with retention 
times for each analyte, including isotopically standards, using the GC temperatures as 
optimised in Section 3.3.1 can be found in Table 3-4.  

Compound name  Precursor ion (m/z) Product ion (m/z) RT (min) 

THC 386 371 8.17 

CBD 390 301 7.57 

CBN 387 310 8.54 

11-OH-THC 371 304 9.15 

THC-COOH 488 371 9.69 

THC-d3 389 374 8.16 

CBD-d3 393 304 7.55 

CBN-d3 340 313 8.52 

11-OH-THC-d3 374 308 9.13 

THC-COOH-d3 491 374 9.67 

Table 3-4. Precursor and product ions chosen for SRM and retention times for all analytes 

 

Figure 3-7. Comparison of 11-OH-THC chromatograms of SRM a) the original transition 459371 and b) the 

optimised transition 371305 
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3.3.3 GC-EI-MS/MS Calibration of spiked hair extracts 
 
A matrix-matched calibration was constructed using hair samples from a self-reporting 

non-user. Samples (20 mg) were washed, digested, and extracted as described (Section 

3.2). The extracts were then spiked with THC, CBD and CBN at 0.02, 0.05, 1, 2.5, 5, 7.5 

and 10 ng/mg. In addition, samples were spiked with the metabolites 11-OH-THC and 

THC-COOH at 0.1, 0.2, 0.5, 1, 2, 5 and 10 pg/mg. Deuterated internal standards were 

added to each sample, one per analyte. THC-d3, CBD-d3, CBN-d3 were added at a 

concentration of 2.5 ng/mg per sample whilst 11-OH-THC-d3 and THC-COOH-d3 were 

added at 2 pg/mg.  

The calibration ranges were based on reported concentrations of cannabinoids the hair 

of cannabis users (see Table 1-3) and also to be in line with cut-off concentrations 

recommended by the SoHT [145].  

After spiking with analytes and deuterated standards, hair extracts were derivatised 

with BSTFA as described in Section 3.2.3. 

Calibration curves were constructed for each analyte by plotting concentration against 

response ratio. The response ratio was calculated as the peak area of the analyte 

divided by the peak area of deuterated standard.  

 Results of GC-EI-MS/MS calibration of spiked hair extracts 
 
The exact limit of detection for THC, CBD and CBN was not determined, as the lowest 

calibrant (0.02 ng/mg) had a signal to noise ratio greater than three. This is below the 

SoHT recommended cut-off of 0.05 ng/mg and so was deemed adequate for the 

application of hair testing. However, when calculated, the linear range (within 15%) did 

not include the lowest two calibrants. Whilst 11-OH-THC and THC-COOH were both 
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detected at the SoHT suggested limit of 0.2 pg/mg neither analyte gave a linear 

response at any three points in the calibration range (r2=0.566 and 0.724 respectively).  

Without the hair matrix 11-OH-THC gave a linear response between 0.16 and 10 pg/µL 

(r2 0.998), THC-COOH gave a linear response between 0.31 and 10 pg/µL (r2 0.996). It is 

likely that this is due a phenomenon known as the matrix effect.  

Matrix effects and selectivity issues have long been associated with bioanalytical 

techniques. The matrix effect is a change in MS signal of an analyte due to co-eluting 

matrix [266]. The analyte signal can be enhanced or suppressed resulting in inaccurate 

performance characteristics of the method. Matrix effect is a parameter of concern 

during method development and/or validation as it can lead to over or 

underestimation of the analyte concentration.  

It is suggested that the ion interface can also affect matrix effect as physiochemical 

processes of ion formation vary depending on the ionization technique [266]. 

However, a comparison of matrix effect with different ionisation modes has not been 

reported for the analysis of cannabinoids in hair samples.  

Table 3-5. Linear range and coefficient of correlation for THC, CBD and CBN in spiked hair samples 

 

 

Analyte  Linear range (ng/mg) Coefficient of correlation (r2) 

THC 1-10 0.980 

CBD 1-7.5 0.984 

CBN 1-10 0.956 
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3.4 GC-APCI-MS/MS methods 
 

3.4.1 Sample preparation  
 
Sample preparation was as in Section 3.3.3. Hair samples (20 mg) of a self-reporting 

non-user were washed, digested and extracted before spiking with analytes and 

deuterated standards.   

3.4.2 Instrumentation   
 
Sample analysis was performed using a Xevo TQ-XS equipped with an atmospheric 

pressure ionization source coupled to a triple quadrupole mass spectrometer (Waters 

Corporation, Wilmslow, England), an Agilent 7890A gas chromatograph and 7693 

autosampler (Agilent Technologies, Santa Clara, CA), and a Restek Rxi-5Sil (30m x 

0.25mm x 0.25µm, Restek UK LTD Buckinghamshire, UK) column was used for the 

analysis. Samples were injected with a volume of 1 µL. The GC oven parameters were 

as follows: initial temperature of 150 °C increasing at 20 °C/min to a final temperature 

of 320 °C. The Xevo TQ-XS triple quadrupole mass spectrometer was operated under 

dry conditions to promote charge transfer ionisation. Nitrogen was supplied by an 

INMATEC PN6000 (Inmatec GaseTechnologie, Germany) nitrogen generator and was 

used as the auxiliary gas, maintained at a flow rate of 200 L/hr. Argon was used as the 

collision gas and maintained at 0.23 mL/min. Cone gas flow was initially set at 290 L/h. 

Corona voltage was set at 2.0 μA. The cone voltage was maintained at 10 V for all 

compounds with a source offset at 30 V. The APGC source was kept at 150°C.  
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3.4.3 GC-APCI-MS/MS analysis of analytes  
 
The applicability of the “soft” ionisation method of the APCI source was tested using 

TMS derivatised cannabinoid standards. As an illustrative example, a comparison of 

the full mass spectrum of THC in EI and APCI ionisation modes can be seen in Figure 3-

8. Unlike with EI, the molecular ion peak of THC (m/z 386) is the most abundant in the 

spectrum when APCI is utilised. This was also the case for all other analytes. A 

comparison of optimised SRM transitions for EI and APCI and their theoretical 

derivatised mass can be found in Table 3-6.  

 

Figure 3-8. A) EI full scan spectrum of THC standard B) APCI full scan spectrum of THC standard 
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Cannabinoid  Theoretical 

Derivatised mass (m/z) 

EI transition 

(m/z) 

APCI transition 

(m/z) 

THC 386.1 386.1 → 371.1 386.1 → 371.1 

CBD 458.3 390.1 → 301.1 458.2 → 390.1 

CBN 382.2 367.1 → 310.1 382.1 → 367.1 

11-OH-THC 474.3 371.1 → 305.1 474.2 → 371.1 

THC-COOH 488.2 488.2 → 371.1 488.2 → 371.1 

Table 3-6. Theoretical m/z for each alanyte with optimised EI and APCI SRM transitions. 

3.4.4 GC-APCI-MS/MS Cannabinoid Standard Calibrations 
 
A calibration rage from 100 ag/µL to 50 pg/µL of all analytes was prepared to assess 

the LOD, LOQ and linear range of the APCI method. Deuterated standards of each 

analyte were added to each calibrant at a concentration of 1 pg/µL. 

Calibration curves were constructed for each analyte by plotting concentration against 

response ratio. The response ratio was calculated as peak area of analyte/peak area of 

d3 standard.  

As can be seen in Table 3-7, all analytes had a LOD ≤ 10 fg/μL, with THC and CBN 

having LODs of 1 fg/μL. All analytes also had a wide linear range across several orders 

of magnitude; the widest being 25-25000 fg/μL for CBD and the narrowest being 5-

1000 fg/μL for THC-COOH and 11-OH-THC. An example of calibration points, standard 

deviation and % error for THC can be found in Table 3-8, all points being less than 

±10%. Figure 3-9 is an example chromatogram of blank BSTFA (a), the derivatised THC 

standard at 1 fg/μL (b) and 1pg/μL (c).    
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Analyte  Limit of detection 
(fg/µL) 

Linear range 
 (fg/µL) 

Coefficient of 
correlation  

THC 1 25-10000 0.998 

CBD 10 25-25000 0.997 

CBN 1 25-1000 0.996 

11-OH-THC 5 
 

5-1000 0.999 
 

THC-COOH 2.5 5-1000 0.998 
 

Table 3-7. Limits of detection, linear range and coefficient of correlation for THC, CBD, CBN,11-OH-THC and THC-

COOH 

Analyte Concentration fg/μL SD % Bias 

THC 25 0.0006 6.3 
 

50 0.0006 1.2 
 

250 0.0029 2.8 
 

500 0.0076 8.2 
 

2500 0.0157 0.27 
 

5000 0.0686 0.13 
 

10000 0.3400 0.47 

Table 3-8. Example of THC standard calibration (n=3) 
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Figure 3-9. Chromatogram SRM transition 378.9→374.2 of a) BSTFA blank (ND) b) 1fg/µL (S:N 8.39), c) 10pg/µL 

(S:N 20341). Retention time and S/N shown above the peak on each Figure. 

 

3.4.5 Spiked hair calibration with GC-APCI-MS/MS 
 
Washed and dried hair extracts of a self-reporting non-user were spiked to prepare the 

following concentrations:  

THC, CBD, CBN - 50, 100, 250, 500, 2500, 10000 fg/µL 

11-OH-THC and THC-COOH - 5, 10, 25, 50, 250, 1000 fg/µL  

All d3 analogues were added at a concentration of 1000 fg /µL 
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 Results of spiked hair calibration with GC-APCI-MS/MS 
 
In contrast to the standard calibrations in section 3.5.2, the deuterated analogues of 

the cannabinoids in a matrix-matched calibration did not give a consistent response at 

1 pg/μL, sometimes being undetectable. The THC d3 analogue was not detectable in 

any of the samples, making quantitation unreliable.  

One approach proposed to minimise matrix effects is to dilute the final extract to be 

injected onto the analytical column. In some instances this method has been reported 

to be effective for reducing signal suppression, while achieving acceptable sensitivity 

during electrospray ionisation of wastewater [267,268].  

In this study diluting the sample from 20 μL to 100 μL improved the signal to noise of 

all analytes, as can be seen in Table 3-8. However, the values were still much lower 

than the standards without the hair matrix. As an illustrative example, chromatograms 

of the d3 analogue without hair matrix (A) in 20mg of hair (B) and diluted 1 in 5 (C) are 

shown in Figure 3-10. 

The hair matrix also affected the retention time of analytes, the most affected being 

CBD with a shift of 0.06 minutes and the least affected being THC-COOH with a shift of 

0.01 minutes.  
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Figure 3-10. A) 1pg/µL THC-d3 standard. B) 20 mg hair extract spiked with 1pg/µL THC-d3 standard. C) sample B 

diluted 1 in 5. Retention times and signal to noise is shown above each peak.    

 

Analyte Without hair Spiked hair sample  Spiked hair sample 

after 1 in 5 dilution 

THC-d3 815 ND 279 

CBD-d3 560 13 45 

CBN-d3 1440 19 228 

11-OH-THC-d3 6869 81 467 

THC-COOH-d3 4188 42 127 

Table 3-9. Signal to noise ratio (1 pg/µL) cannabinoids without hair, in 20mg hair extract, and after 1 in 5 dilution.  

 

Due to these findings a new six-point calibration was made by spiking 20 mg hair 

extracts from a self-reporting non-user to the following: 

THC, CBD, CBN - 50, 100, 250, 500, 2500, 10000 fg/μL  

THC-COOH and 11-OH-THC 25, 50, 100, 500, 5000, 25000 fg/μL  
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All d3 analogues were added at a concentration of 10000 fg/µL  

The final volume of all samples was 100µL. The conversion from fg/µL to pg/mg was 

calculated using the equations below: 

(݃݉/݂݃) ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ =
(ܮߤ/݂݃) ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ × (ܮµ) ݁݉ݑ݈݋ݒ ݈݁݌݉ܽݏ

(݃݉) ݈݁݌݉ܽݏ ݎℎܽ݅ ݂݋ ݏݏܽ݉  

(݃݉/݃݌) ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ =
(݃݉/݂݃) ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ

1000
 

CBD no longer gave a linear response when in the matrix-matched calibration. This 

suggests that CBD suffers from matrix-related irreproducibility. In addition, repeat 

injections of the same CBD calibrant gave a high standard deviation. All other analytes 

(THC, CBN, THC-COOH and 11-OH-THC) gave a linear response as shown in Table 3-10.  

THC had a limit of detection of 0.5 pg/mg which is lower than the SoHT cut-off of 50 

pg/mg. The upper limit of quantification in this method is 50 pg/mg and so user 

samples may need diluting into the linear range, as THC concentrations in the order of 

ng/mg have been reported previously (see Table 1-3).  

The exact limit of detection for CBD, CBN was not determined, as the lowest calibrant 

(0.25 pg/mg) had a signal to noise ratio greater than 3. This is well below previously 

reported limits of detection (see Table 1-3). Similarly, the lowest calibrant (0.125 

pg/mg) for metabolites THC-COOH and 11-OH-THC also had a signal to noise ratio 

greater than 3. This is higher than some previously reported limits of detection but was 

deemed acceptable as is lower than the SoHT cut-off of 0.2 pg/mg.  

As shown in Table 3-10, the analytes CBN and 11-OH-THC were linear across the whole 

calibration range however, THC and THC-COOH were only linear within the highest 3 
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calibrants. An example of standard deviation and % error for a THC calibration curve is 

given in Table 3-11. 

Analyte  Linear range (pg/mg) Coefficient of correlation (r2) 

THC 2.5 -50 0.999 

CBD N/A 0.869 

CBN 0.25-50 0.999 

11-OH-THC 0.125-125 0.998 

THC-COOH 2.5-125 0.992 

Table 3-10. Linear ranges and coefficient of correlation of THC, CBD, CBN, 11-OH-THC and THC-COOH in spiked 

hair samples  

 

Concentration (pg/mg) SD % Bias 

2.5 0.002 5.9 

12.5 0.005 0.26 

50 0.016 1.17 

Table 3-11. Example of calibration for THC in spiked hair sample (n=3) 

 

3.4.6 Further work 
 

 Investigation and reduction of matrix effect 
 
One area for future investigation is the occurrence of matrix effects and whether these 

vary substantially between different hair donors. The closeness of a match between 

the matrix to be used for calibration and the samples to be investigated is of great 

importance in achieving reliable and accurate results [266]. Matuszewski et al. 

demonstrated a high variability of matrix effect among different lots of plasma and 
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highlighted the need to investigate the relative matrix effect which can reveal 

differences in response among various lots of the same matrix [269]. It is reasonable to 

assume that hair, which is a complex matrix, may also result in variability of matrix 

effects between different hair types (ethnic groups, colour, damage, heat and chemical 

treatment) and should be thoroughly investigated before this technique is 

incorporated into casework.  

Another strategy to reduce matrix effects is to ensure that the maximum amount of 

analyte is extracted from the digest with minimal matrix. This may be achieved by 

using a more specific extraction method such as molecularly imprinted solid phase 

extraction (MISPE). A method for the extraction of THC, CBD, CBN and THC-COOH from 

oral fluid and urine using MIPSE has recently been reported by Cela-Perez et al. [270]. 

In addition, Gonzalez et al. have also recently utilised MIPSE to extract THC,CBD,CBN, 

THC-COOH and 11-OH-THC from plasma and urine [271]. The use of MIPs as SPE 

sorbent allows a rapid, simple, and effective and selective extraction compared to 

traditional SPE since they are materials prepared in the presence of a target analyte or 

closely related species that serves as a mold for the formation of complementary 

binding sites. Both studies reported increased sensitivity when using MISPE.  

Matrix effects may also be reduced by utilising two-dimensional (GCxGC) gas 

chromatography. Comprehensive GC×GC allows the whole chromatogram to be 

transferred onto a secondary column. It has been recognised as a technique capable of 

providing improved resolution of complex matrices compared to conventional single 

dimensional GC (1D-GC) [272]. This was demonstrated for a variety of drugs (including 

CBN) in hair samples in a study conducted by Guthery et al. In the study, endogenous 
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compounds, long chain fatty acids, and amides were detected with much greater signal 

intensities than the drug and metabolite compounds. However, drug compounds were 

clearly resolved from the interfering matrix compounds when compared to 1D-GC 

[263].  

Prior to introduction into a toxicology workstream there are several steps that need to 

be taken for the method to be fully validated. These include the determination of 

inter-day and intra-day accuracy and precision and the use of using quality control (QC) 

samples. A full review of the steps needed for method validation has been conducted 

by Peters et al.[273]. 

3.4.7 Discussion and conclusions  
 
The use of APCI has been evaluated as an alternative source for GC-MS/MS analysis of 

cannabinoids in hair samples. In contrast to EI ionisation, molecular ions were the most 

abundant in the mass spectrum. The molecular ions are highly favourable as a 

precursor ion in MS-MS and in this study improved sensitivity compared to GC-EI-

MS/MS. Instrumental LODs of between 1 and 10 fg/µL were achieved for all analytes. 

The response was repeatable and linear (<15% error) over several orders of 

magnitude.  

The hair matrix was found to affect detection for all analytes, causing suppression of 

signals and a retention time shift. Signal suppression of up to a factor of 85 was 

observed in certain cases. After dilution, LODs of 0.125 pg/mg could be achieved in 

matrix-matched samples for some analytes. All analytes were detected at 

concentrations well below SoHT requirements (50 pg/mg and 0.2 pg/mg for THC and 

THC-COOH, respectively) and therefore this study demonstrates the advantages and 
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applicability of APCI as new source for GC-MS/MS detection of cannabinoids in hair 

sampels. The main limitation of the technique was the fact that CBD could not be 

quantified due to matrix-related irreproducibility. Reducing matrix effects should 

therefore be a priority in future investigations.  
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Chapter 4. Application of atmospheric pressure chemical 
ionisation gas chromatography mass spectrometry to detect 
cannabinoids in hair samples  
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4.1 Introduction  
 
In this section the GC-APCI-MS/MS method developed in Chapter 3 will be applied to 

participant-derived hair samples. These samples were collected in the context of a 

study into the age of onset of cannabis use and executive function. The researcher 

sought to use hair samples to confirm participant answers from lifestyle questionnaires 

on recent cannabis use. 

Recent studies to detect cannabis use in hair samples exclusively analyse THC, CBD, 

CBN or the metabolite THC-COOH, possibly limiting the amount of information gained 

before the difficult process of interpretation of analytical findings can begin.  

Due to difficulties in simultaneous detection of THC and metabolites several studies 

have solely analysed THC-COOH [122–125] and so the presence of THC in addition to 

THC-COOH has not been considered in interpretation of  analytical findings.  

In this study all the previously detected analytes and an additional THC metabolite (11-

OH-THC) are simultaneously analysed and reported for the first time in real user hairs. 

There is currently no consensus in the scientific community about what constitutes a 

positive result for the detection of cannabis use.  Therefore, this study will include an 

evaluation into the different strategies proposed in literature: 

 Detection of metabolites 

 The use of cut-offs 

 Wash residue analysis 
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4.2 Methods and Materials  
 
Methods for decontamination of hair, extraction of analytes and derivatisation prior to 

analysis were performed as previously described in chapter 3. The instrumentation 

was also used as described in Chapter 3. Additional methods and materials unique to 

this chapter can be found below.  

 

4.2.1 Hair Samples 
 
Hair samples were obtained from individuals in the context of a study into the age of 

onset of cannabis use and executive function. The hair sample collection was approved 

by the Sheffield Hallam University Research Ethics committee (SHU ethics number 13-

2011). Written and informed consent was obtained from all participants. All results 

were anonymised.  

Some participants had self-reported cannabis use, some had not and were included in 

the studies' control group. In the interest of preventing bias, self-report data was not 

available until after GC-APCI-MS/MS analysis.  

Hair was stored at room temperature in foil to prevent UV damage for approximately 5 

years before analysis. 10-20 mg of hair was analysed, due to a lack of samples weighing 

20 mg or more.  

Of the 70 samples submitted for analysis, 63% (44) were excluded as sample weighed 

less than 10 mg which is presumed to be insufficient for analysis [274].  

Based on self-report data, samples were divided into three categories for 

interpretation. Non-user, infrequent user (fewer than 10 lifetime cannabis cigarettes) 

and frequent users (greater than 10 lifetime cannabis cigarettes, with a mean of 1000).  
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4.2.2 Preparation of wash residue  
 
The wash residues obtained from the decontamination procedure as described in 

Section 1.3.8.3 were transferred into a new vial and dried under nitrogen at 45°C 

before derivatisation with BSTFA as described in Section 4.2.4 prior to analysis.  

 

4.3 Results of hair analysis and concordance with self-report data 
 
Of the 70 participants originally recruited, 26 had hair samples above 10 mg and were 

included in the analysis. Over one third (43%) of the samples (n=11) were non-users of 

cannabis, 38% (n=10) were infrequent users and 19 (n=5) were frequent users. Full 

details of the concentrations of THC, CBD, CBN, 11-OH-THC and THC-COOH in each 

usage grouping can be found in Appendix I.   

The results of the GC-APCI-MS/MS analysis are summarised in Table 4-1. 

Concentrations of THC and CBN were substantially lower than had been reported 

previously (in the pg/mg rather than ng/mg range as shown in Table 1-2). The 

concentration of THC-COOH was also lower than previously reported, with none of the 

detected concentrations being above 0.5 pg/mg. 

It is not possible to compare 11-OH-THC concentration with literature values since this 

compound is rarely reported in literature. Moreover, where 11-OH-THC has previously 

been detected in hair samples, the limit of detection was 1 pg/mg of hair [155] which 

is greater than the concentrations detected in this study. In other studies, the limit of 

detection was not reported [156]. 
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Table 4-1. Concentration ranges and mean concentrations of THC, CBD, CBN, 11-OH-THC and THC-COOH detected 

in participant hair samples analysed with GC-APCI-MS/MS.  

Out of a total of 26 samples, only three did not have any of the analytes detected. Of 

these, two were from self-reported non-cannabis users and one was from a self-

reported frequent user (an average of 2 joints a day); CBD, CBN and THC-COOH was 

detected in the wash residue of this sample.   

Conversely, only one sample had all analytes detected. This individual had self-

reported to use an average of one joint a day and had reported 2-3 days between last 

use.    

In 10 samples THC was detected, however metabolites were not, suggesting external 

contamination or infrequent usage of cannabis. Of these 30% fell into the frequent 

cannabis user category, 40% in the infrequent user category and 30% in the non-user 

category. This suggests that THC detection alone is not a reliable usage discriminator. 

No samples had metabolites detected without also having THC detected. However, in 

three out of the seven samples in this group THC was only detected in trace amounts 

(below the LOQ). This poses an interesting interpretational dilemma, if the metabolites 

are only generated in-vivo should the detection of these metabolites indicate usage, 

Analyte Detected 

samples 

Samples below 
LLOQ 

Concentration 
ranges 
(pg/mg hair) 

Mean 
Concentration 
(pg/mg hair) 

THC 18 9 1.28-31.40 9.20 

CBN 23 1 1.30-18.19 3.56 

11-OH-THC 3 0 0.21-0.32 0.27 

THC-COOH 5 0 0.16-0.42 0.32 



 
152 

 

even if the parent compound is detected only at trace levels? It is worth noting that 

two out of three of these samples were from self-report non-users.  

CBD was detected in six samples, due to non-linearity of response with hair samples 

(see Section 3.4.5) quantitation of CBD was not possible. In all cases where CBD was 

detected, CBN and THC were also detected. Four of these samples were from self-

declaring frequent users, however two of these samples were from self-reporting non-

users of cannabis. 

The metabolite 11-OH-THC was detected in three samples. All samples in this category 

came from declared cannabis users. In only one of the three samples where the 

metabolite 11-OH-THC was detected, THC-COOH was also. This would result in a false 

negative by interpretational methods which only use the results of THC-COOH analysis.  

CBN was detected in all but three samples. Whilst CBN is known to be a degradation 

product of THC in resin [228,229] and plant material [230] it was surprising to detect 

CBN on 82% of hair samples provided by individuals who self-report never to have 

used cannabis.  

Carryover of CBN was excluded due to the lack of signal in blank samples which were 

put into the run after every four participant samples. In addition, 12% of samples (n=3) 

did not have CBN detected, which suggests that the reagents used were not the cause 

of the signal. Chromatographic separation with additional MS-MS data is thought to be 

gold standard in compound identification and so further investigations whether the 

source of CBN is a commonly encountered interference or exposed hairs should be 

conducted.  
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There is a lack of research articles on the degradation of THC in hair samples. Skopp et 

al. conducted a study where hair samples were exposed to sunlight for 10 weeks. 

Contrasting to studies in plant and resin material, the authors found that 

concentrations of THC, CBD and CBN decreased over the course of the study and 

hypothesised that CBN was further degraded to other compounds.   

There are no studies on the stability of cannabinoids in hair samples stored for 5 years 

or stored in darkness. In the absence of this literature, it may be reasonable to assume 

that: 

a) the original concentrations of THC in the hair samples decrease over time 

b) THC degrades to other products in addition to CBN, therefore the THC and CBN 

concentration in degraded material will not equal the original THC 

concentration of the fresh sample   

In addition to CBN being a degradation product of THC, several other studies of have 

reported a higher concentrations of CBN than THC or CBD [108,113,242], possibly due 

to hair being exposed to sunlight before sample collection.  

In two studies which had control groups CBN was not detected, however limits of 

detection were much higher than the GC-APCI-MS/MS  (LODS of 0.025 ng/mg [117] 

and 0.15 ng/mg [108] compared to 0.00025ng/mg with GC-APCI-MS/MS).  
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4.4 Discussion of published reporting criteria  
 

4.4.1 Recommended cut-offs.  What is their value?  
 
Cut-off levels are essential in any toxicological analysis. The cut-off is the point at 

which a result is either reported to be positive or negative. This value should optimise 

drug detection but minimise the number of false positives. It is important to note that 

a sample which is reported to be negative does not have to be drug-free but it may 

have the drug detected at a concentration below the defined cut-off.  

The society of hair testing recommend a THC-COOH cut off of 0.2 pg/mg [145], the FDA 

recommends a cut off of 0.1 pg/mg [275] whilst SAMSHA recommend a cut off of 0.05 

pg/mg  for the detection of THC-COOH [276].  

The SoHT also recommend cut off of 50 pg/mg for THC. There are no reported 

guidelines for CBN, CBD or 11-OH-THC but since CBN and CBD are also found in plant 

materials and cannabis smoke it is reasonable to assume the cut-off for these analytes 

would be 50 pg/mg. Similarly, there are no guidelines for the cut-off value of 11-OH-

THC. It is assumed the cut off would be 0.2 pg/mg of hair as with the metabolite THC-

COOH.   

In this study four samples had a THC-COOH concentration greater than 0.2 pg/mg of 

hair; two of these samples belonged to regular users and two belonged to self-

reporting non-users.  

Two additional samples had a concentration of 11-OH-THC greater than the assumed 

0.2 pg/mg of hair cut off, both samples belonged to self-reporting regular cannabis 

users.  
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No samples in this study had a THC, CBD or CBN concentration greater than the 

recommended cut off for THC, possibly due to the age of the hair samples.  

In the case of hair samples, the origin of recommended cut-offs is questionable. The 

SoHT guidelines state that the cuts offs are: 

"Based on previous guidelines and the available literature on drug concentrations in 
hair from drug users"- Cooper, G.A., Kronstrand, R. and Kintz, P., 2012. Society of Hair 
Testing guidelines for drug testing in hair. Forensic Science International, 218(1-3), pp.20-24. 

 
It is important to note that these guidelines were published in 2012 and have not been 

updated since. It is unclear exactly which literature the guidelines were based on, 

however given the available literature at the time it can be assumed that there was a 

relatively small number of studies, each with differing wash, extraction, derivatisation, 

and analytical techniques. Moreover, studies are often based on results of individuals 

who are suspected to be drug users, and so are not necessarily reflective of the 

general population. It also appears that the cut-offs are heavily influenced by the 

sensitivity of instrumental methods at the time of writing, rather than based on 

scientific evidence as can be seen from the following quote: 

"The higher sensitivity of the instrument method enables us to lower the cut off of THC 
from 0.1 to 0.05 ng" - Nadulski, T. and Pragst, F., 2007. Simple and sensitive determination of 
Δ9-tetrahydrocannabinol, cannabidiol and cannabinol in hair by combined silylation, headspace 
solid phase microextraction and gas chromatography–mass spectrometry. Journal of 
Chromatography B, 846(1-2), pp.78-85. 

 

Since the GC-APCI-MS/MS method reported in this study allows detection of 

cannabinoids at concentrations much lower than the recommended cut-offs it begs 

the question, should the recommended cut-offs be amended? Is it possible for an 

instrument to be too sensitive when it comes to analysing cannabinoids in hair, given 

the compounds low incorporation rate [45]? It also asks the question what does it 
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mean to detect such a low level of cannabinoids (usage, association with, or the 

amount that can be expected in the general population)?  

 

4.4.2 Wash residue analysis 
 
Tsanaclis and Wicks proposed using the wash residue obtained from the 

decontamination procedure as a strategy to differentiate between external 

contamination and usage of cannabis when metabolites are not detected [162]. In the 

study, the concentration of THC in the wash residue was compared to the 

concentration of THC in the hair after the completion of washing procedures. It was 

claimed that wash ratios of zero (i.e. no drug found in the wash procedure) suggested 

drug use was likely, while ratios greater than 0.1 and less than 0.5 indicated drug use 

was 'possible' and ratios greater than 0.5 meant that drug use was 'questionable' 

(Table 4-2).  

 

Table 4-2. Guidelines for the interpretation of results of the analysis of hair samples and wash residues based on 

the authors’ laboratory results in cases when parent drug is present and the relevant metabolite is not Taken 

from Tsanaclis and Wicks [162]. 

 
The method as proposed by Tsanaclis and Wicks was used to analyse samples in this 

study and findings are reported below: 

 THC wash residue analysis  
 
Of the eligible samples (n=4) where THC was quantifiable in both wash and hair, three 

samples had a wash to hair ratio greater that 0.5 therefore have "questionable" drug 
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use and so the interpretation should be "Not sure of drug use; indicates association 

with drugs". All the samples in this category were from frequent cannabis users.   

One sample had a wash to hair ratio of 0.26 which puts the sample in the "possible" 

drug use category. The interpretation should be "might have used drug; indicates 

association with drug". This sample was the only sample to have all 5 analytes detected 

and was from a frequent cannabis user.  

 CBN Wash residue analysis  
 
Whilst the method in the Tsanaclis and Wicks study was only applied to THC 

concentrations, in this study the method is also applied to CBN. Since the samples were 

stored a long time prior to analysis it is possible that THC present in the hair at the time 

of collection has degraded to CBN (see Section 4.3.2).  

CBN was detected in the wash and hair of 23 of the 26 samples. The majority (16) had 

a hair to wash ratio greater than 0.5 and so were in the "questionable; not sure of drug 

use” category. These samples belonged to participants in all three groupings of usage. 

Four samples had a ratio between 0.1 and 0.5 and so were in the "possible" drug use 

category, both samples were from frequent users.  

Three samples had a CBN wash to hair ratio <0.1 and so are in the "drug use likely" 

category. Two out of three of these samples were from non-users and one was from an 

infrequent user, suggesting the wash ratio of CBN for aged samples is not an accurate 

indicator of usage.  

  Metabolite wash residue analysis 
 
Whist THC-COOH was detected in some hair samples, 11-OH-THC was detected in 

more wash samples, as shown in Figure 4-1. 11-OH-THC was detected in both the wash 
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residue and hair of some samples whereas THC-COOH was exclusively detected in the 

hair or the wash residue.  

Two cannabis users had metabolites present in the wash residue, but not in the 

corresponding hair sample. On the other hand, three non-users had metabolites in 

wash residue. Therefore, assuming self-report is correct, wash residue analysis of 

metabolites is not an accurate indicator of usage.  

In this study there was a greater concentration of metabolites found in wash residues 

than in hair samples as shown in Figure 4-2. Since metabolites are not produced in the 

cannabis smoke it could be suggested that the detection of metabolites in wash 

residue is also indicative of cannabis usage, however further investigations with a 

larger sample size is needed to test this hypothesis.  

 
Figure 4-1. Number of samples where THC-COOH and 11-OH-THC are detected in the wash residue, hair sample, 

and in both hair and wash. 
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Figure 4-2. Mean concentrations detected of (left) 11-OH-THC in har samples (n=3) and washes (n=6) and (right) 

THC-COOH hair (n=6) and washes (n=4)  

 

4.5 Determination of positive samples  
 
There are many different methods of interpretation which can make assigning a hair 

sample as positive or negative for cannabis use problematic. These methods include 

the detection of metabolites, the use of cut-offs, and the analysis of wash residue. In 

this study each method of interpretation has been applied to the participants of the 

psychology study and compared with the self-report data using methods described 

above. A summary of the evaluations can be seen in Table 4-3.  

Of note is detection of metabolites in relation to the number of "positive" samples. 

Whilst the detection of any metabolite in hair or wash residue yields 12 positive 

samples, only one of these samples remains positive if both THC-COOH and 11-OH-THC 

are both detected in the hair sample. This sample belongs to a frequent cannabis user.  

On the other hand, five non-users would be reported as having a positive sample if 

either metabolite was detected in wash or hair, however none of these samples would 
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remain positive criteria was that both THC-COOH and 11-OH-THC had to be detected in 

the hair sample.  

There is also a discrepancy between the number of positive samples depending on 

which metabolite cut off is applied. Given the potentially life changing consequences 

for a positive sample, a consensus based on scientific investigation should be reached.  

The THC hair/wash residue analysis technique did not identify any participants and 

being likely to use drugs. This may in part be due to the time elapsed between sample 

collection and analysis (5 years).  

Table 4-3. Comparison of self-report data with different methods of interpretation for frequent cannabis users 

(n=10), infrequent users (n=5) non-users (n=11) 

 

 

Interpretation method Total No. 
of positive 
samples  

Total No. 
of positive 
(frequent 
users) 

Total No. of 
positive 
(infrequent 
users) 

Total No. of 
positive 
(non-users)  

Any Cannabinoid or metabolite detected 23 9 5 9 

Any metabolite detected hair or wash  12 6 1 5 

Any metabolite detected in hair  7 5 0 2 

THC-COOH only detected hair 4 2 0 2 

11-OH-THC only detected hair 2 2 0 0 

THC-COOH and 11-OH-THC detected in hair  1 1 0 0 

Metabolites above SoHT cut-off  6 4 0 2 

Metabolites above FDA cut-off  7 5 0 2 

Metabolites above SAMHSA cut off  7 5 0 2 

THC, CBD and CBN detected in hair  6 4 0 2 

THC, CBD, CBN above SoHT cut-off  0 0 0 0 

THC Wash ratio >0.1 and <0.5 (possible 

dug use) 

1 1 0 0 

THC Wash ratio 0 and <0.1 (likely drug use)  0 0 0 0 
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4.5.1 Further work 
 
One area for further research is to investigate whether certain wash protocols remove 

metabolites from hair, rather than just removing externally bound smoke 

contamination. As yet there are no specific guidelines on wash protocols for the 

detection of cannabis use in hair, and the few studies that have been conducted in this 

area have exclusively investigated THC and not metabolites.   

Given the lack of current literature, another avenue for future investigation is to study 

whether cannabinoids in hair samples are in fact stable, and if so, for how long.  

Finally, an additional biomarker of cannabis use (such as urine testing) would be useful 

in this type of investigation to confirm or refute self-report data as it is known that it 

can be unreliable.  

4.5.2 Conclusions 
 
The GC-APCI-MS/MS method previously optimised in Chapter 3 was successfully 

applied to authentic user hair samples for the first time. No single analysis method 

could identify all 10 self-declared users. According to self-report data, 11-OH-THC was 

the only indicator of cannabis use without also incurring false positives, on the other 

hand there were many false negatives using this interpretation method (n=7). THC-

COOH was detected in 18% (n=2) of the self-reporting non-cannabis users.  

Evaluation of the reporting criteria for cannabinoids in hair samples showed that a 

different number of samples would be considered to be positive for cannabis use 

depending on which interpretation method was used.  
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Chapter 5. Overall Conclusions 
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5.1 Background to investigations 
 

Hair differs from other human materials used for toxicological analysis such as blood or 

urine because of its substantially longer detection window (months to years) enabling 

retrospective investigations of drug consumption. Due to its solid and durable nature, 

hair analysis can be performed even centuries after growth. Other advantages of hair 

analysis include the non-invasive nature of collection, which is of particular importance 

in infant/child investigations, and also the ease of sample storage.  

Although hair analysis offers the potential to reveal information which is not possible 

with other biological matrices, it also suffers from some unique limitations that can 

make interpretation of findings challenging. These are largely due to exposure of hair 

to the environment before analysis takes place.  

Existing analytical techniques allow detection and quantification of cannabinoids in 

hair samples. These techniques include GC-MS/MS and LC-MS/MS. Recent studies 

exclusively analyse THC, CBD, CBN or the metabolite THC-COOH, limiting the amount 

of information gained before the difficult process of interpretation of analytical 

findings.  

Recently, MALDI-MS analysis of hair samples has been suggested as an alternative 

technique to traditional methods such as GC-MS. This is due to reduced sample 

preparation, the ability to detect a narrower time frame of drug use and a reduction in 

sample amount required for analysis. In addition, MALDI-MS offers the unique 

opportunity of being able to analyse a longitudinally sliced hair to detect xenobiotics 

inside the hair itself, possibly eliminating the interpretational issues associated with 

exposure to the environment.  
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However, despite cannabis being the most commonly used illicit drug worldwide, a 

MALDI-MS method for the detection of cannabinoids in a single hair had not been 

reported. At the commencement of this research MALDI-MS had only been applied to 

the analysis of cocaine, methamphetamine, ketamine and nicotine in relation to hair 

testing. These compounds are both more readily incorporated into hair [45] and more 

easily ionisable using MALDI than cannabinoids [277];  posing a difficult challenge in 

the development of a technique to detect cannabinoids using MALDI-MS.   

 

5.2 MALDI-MS and MALDI-MSI method optimisation  
 

5.2.1 CHCA was the optimal matrix for the detection of THC 
 

An in depth literature review revealed that MALDI matrix is the "key to success" [175], 

however finding the right matrix for analytes is unfortunately a trial and error process 

[195]. During this study the matrix selection and the use of additives were investigated 

to develop a suitable method for detection of cannabinoids in hair samples using 

MALDI-MS. It was found that CHCA with the additive aniline gave the highest signal 

intensities for THC, however ionisation efficiencies for underivatised cannabinoids 

were poor, as also described by Groeneveld et al. [197].  This led to an investigation 

into in situ derivatisation. 

 

5.2.2 THC underwent a laser induced in-source re-arrangement  
 

THC underwent an in-source re-arrangement producing another species which was 

detected at approximately the same intensity as the analyte. This would theoretically 
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have the effect of impairing detection. To investigate this phenomenon further, LC-

MS/MS analysis of the THC standard was performed. A single peak in the 

chromatogram confirmed the purity of the THC standard and MS/MS analysis support 

the hypothesis that the THC molecule loses two hydrogens as free radicals during an 

in-source re-arrangement as a result of the energy from the laser source. To further 

investigate the influence of the laser on the molecule an experiment was carried out 

with increasing laser power. As the laser power increased the ratio of m/z 313 

(corresponding to the re-arranged THC molecule) to 315 (corresponding to THC) signal 

intensity increased.  

 

5.2.3 Derivatisation of THC improved signal intensity  
 

Derivatisation had been identified as a possible strategy to improve signal strength and 

decrease matrix interference [142]. Despite the derivatisation of cannabinoids being 

commonplace for GC-MS analysis, a review of the literature revealed that this 

approached had not been tried for MALDI-MS.   

The target for the derivatization was the hydroxyl group since all cannabinoids of 

interest contain this functional group. After carefully reviewing the literature, 

derivatization using 2-Fluoro-1-Methylpyridinium p-tolunesulfonate (FMPTS) to form 

N-methylpyridinium derivatives was chosen. Derivatisation was successful and 

improved signal intensities of peaks corresponding to the analytes. CBD has two 

hydroxyl groups whereas THC has only one, so the detection of a peak at m/z 483.32 

(related to CBD with the addition of two derivatisation groups) in the CBD spectrum 
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allowed for differentiation between THC and CBD, which would not be possible 

without derivatisation.  

 

5.2.4 Spaying of derivatisation reagent allowed in situ derivatisation and 
MALDI-MS-imaging  

 

During initial MALDI-MSI experiments the THC compound had been delocalised from 

the hair and into the surrounding matrix. It was hypothesised that the delocalisation of 

the analyte could be due to too large a volume of derivatisation reagent being spotted 

on top of the hair sample. To test this hypothesis a hand sprayer was used to supply a 

fine mist of the derivatisation reagent before spraying the sample with CHCA matrix 

using an automated sprayer. Following this method of derivatisation, delocalisation of 

the analyte did not occur. Hairs spiked with THC, CBD, CBN, 11-OH-THC, THC-COOH 

and THC-COO-gluc were successfully derivatised and imaged for the first time.  

 

 THC can be detected on single hairs exposed to cannabis smoke using 
MALDI-MSP and MALDI-MSI  

 

In both MALDI-MSP and MALDI-MSI experiments, m/z 406 corresponding to THC was 

observed on hair exposed to cannabis smoke.  No m/z 406 was detected on blank 

unexposed hair. Whilst these are preliminary findings in unrealistic smoking 

conditions, the result suggests that MALDI could be used to investigate how exposure 

to cannabis smoke affects the levels of cannabinoids found in hair samples. In 

particular, analysing longitudinal slices of hair exposed to cannabis smoke could give 
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insight into whether or cannabinoids penetrate the hair cortex, and which 

decontamination procedures are most effective.  

 

5.2.5 MALDI-MS and MALDI-MSI Further work  

 Matrix selection and application  
 

Whilst several different approaches including matrix selection and the use of additives 

were investigated in this study to develop a suitable method to detect cannabinoids in 

hair samples using MALDI-MS, many more remain untried. Of particular interest could 

be halogen-substituted CHCA [278,279] and other liquid ionic matrices [280]. 

Investigation into a more suitable matrix could yield greater signal intensities, which 

could in turn lower the limit of detection.  

There are also many matrix application techniques that have not been assessed in this 

body of work. These include sublimation and acoustic matrix deposition. In future 

experiments these application techniques should be trailed alongside the automated 

spraying method described in this work to determine the optimum technique in terms 

of matrix homogeneity and signal intensity of analytes, whilst avoiding delocalisation 

of analytes.   

 

 Derivatisation 
 

Further work includes optimisation of the derivatisation method to assess whether it is 

possible to completely derivatise CBD. In this current study CBD is detected as both a 

singularly and doubly derivatised compound. The singular derivatisation m/z is 
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identical to singularly derivatised THC, and so complete derivatisation of CBD is 

necessary for differentiation of the two analytes. Experiments could include 

investigating the effect of different time points and reaction temperatures in solution.  

 

 Quantitation 
 

In the MALDI aspect of this study quantitation of cannabinoids was not attempted. 

MALDI-MSP and MALDI-MSI both have limitations in terms of quantitation. These 

include the inability to control for tissue-specific ion suppression and the 

irreproducibility of ion signals from scan to scan [281]. These limitations can be caused 

by numerous factors including tissue heterogeneity, matrix crystal heterogeneity and 

laser power fluctuations.  

In recent years the use of internal standards has facilitated the quantitation of a 

variety of analytes in a range of tissue types [193,282–293] and so quantitation of 

cannabinoids in hair samples using MALDI-MSI could be possible future line of 

investigation. 

 Direct comparison with established techniques  
 

Prior to integration into a toxicology workflow a larger sample of user hairs, from 

different levels of users and with different hair types should be tested and the relative 

levels of each metabolite reported. Initially these should run in parallel with well-

established techniques such as GC-MS/MS or LC-MS/MS to validate the MALSI-MSI 

method.   
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 Smoke and plant material contamination experiments 
 

Preliminary studies suggest that contamination with cannabis smoke can be detected 

using MALDI-MS and MALDI-MSI. Further investigations using more realistic smoking 

conditions such as those proposed by Röhrich et al. [132] should be conducted. These 

investigations could lead to the detection of new markers of smoke exposure.  

 

 Application of technique to other sample types  
 

Further work includes the application of the derivatisation method proposed in this 

thesis to other compounds and tissue types.  

Since derivatisation occurs with phenol moieties, this technique could be extended to 

other biologically relevant analytes such as oestrogen, or xenobiotics including 

synthetic cannabinoids.    

In addition, the method developed in this study could be used on tissues other than 

hair. For example, preliminary studies on finger marks suggest that the derivatisation 

technique enhances the signal from THC that was on the finger, whilst keeping ridge 

detail intact. Furthermore, finger marks were also shown to contain THC after handling 

of plant material (data not shown).  

 

5.3 GC-MS/MS method optimisation  
 

Since MALDI-MS is not yet a quantitative method of analysis of cannabinoids in hair 

samples, the well-established technique of GC-MS/MS was optimised and used to 
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investigate cannabinoids in hair samples collected for a psychology study. The use of 

GC-MS/MS also allowed for comparisons with previously reported values.  

 

5.3.1 BSTFA was the optimal derivatisation reagent 
 

Whist THC, CBD and CBN could be detected without derivatisation 11-OH-THC and 

THC-COOH could not. THC, CBD, 11-OH-THC and THC-COOH showed an increased peak 

area with all derivatisation techniques compared to no derivatisation. CBN showed an 

increase in peak area with all derivatisation reagents apart from with PFPA/PFOH. 

BSTFA derivatisation gave the largest peak area and peak height for all cannabinoids. 

Based on peak shape, retention time and response BSTFA was chosen as the 

derivatisation reagent for future experiments.  

 

5.3.2 GC-APCI-MS/MS improved limits of detection and quantitation 

compared to GC-EI-MS/MS  

 

During GC-EI-MS/MS investigations, the limit of detection for THC, CBD and CBN was 

below the SoHT recommended cut off. However, the linear range was narrow. Whilst 

11-OH-THC and THC-COOH were both detected at the SoHT limit of 0.2 pg/mg, neither 

analyte gave a linear response using any three points in the calibration range and so 

quantitation using this method was not possible.  

Without the hair matrix 11-OH-THC gave a linear response between 0.16 and 10 pg/µL 

THC-COOH gave a linear response between 0.31 and 10 pg/µL. This suggests that 

matrix effects are larger at lower analyte concentrations, and that the higher 
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concentrations of THC, CBD and CBN mean matrix effects has less of an effect on 

overall analysis.  

During GC-APCI-MS/MS experiments all analytes and were detected and quantifiable 

in the fg/µL range, with linear ranges spreading several orders of magnitude. However, 

in spiked hair calibrants matrix effects were apparent as concentrations that could be 

detected using standards (1 pg/µL) were undetectable when the matrix was added. 

Matrix effects were in part lessened by the dilution of hair samples. Limits of detection 

and quantitation were below the suggested SoHT cut off.  

 

5.3.3 THC, CBD, CBN THC-COOH and 11-OH-THC were simultaneously 
detected in authentic hair samples    

 

Hair samples were collected in the context of a study into the age of onset of cannabis 

use and executive function.  

Out of 26 samples, three did not have any analytes detected. Only one sample had all 

analytes detected. Concentrations of THC, CBD and CBN were substantially lower than 

had been reported previously (in the pg/mg rather than ng/mg range). The 

concentration of THC-COOH was similar to previously published articles with two 

sample concentrations being above 0.2 pg/mg, the cut off recommended by the 

society of hair testing. 
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 Concordance with self-report   
 

Out of a total of 10 samples in the self-report "cannabis user" group, THC-COOH was 

detected in just 20%. The metabolite 11-OH-THC was detected in a different 20% of 

samples whilst 10% of samples had both THC-COOH and 11-OH-THC detected.  

Therefore, 50% of the samples in the cannabis user group were identified by the 

presence of THC metabolites in the hair. Analysis of the washes to determine the ratio 

of cannabinoids in wash residue compared to that detected in the hair samples, 

proposed as an additional way of identifying positive samples, failed to identify any 

additional positive samples in this group.  

Metabolites were not detected in any of the infrequent cannabis users (n=5) and as 

above, the wash ratio analysis did not identify any samples as positive.   

Surprisingly, metabolites were detected in 2 of the 11 samples provided by individuals 

who self-reported not to have used cannabis in their lifetimes.  

If the self-report data is accurate, this reveals a worrying number of both false 

positives and false negatives in the various interpretation methods to detect cannabis 

use. A limitation of this study is that the time since last use was not known beyond one 

week prior to collection.  

 

5.3.4 Further work for GC-MS/MS analysis 
 

Further work includes an in-depth analysis of matrix effects in hair samples and 

strategies to reduce them. For example, a lower initial amount of hair may help to 
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overcome matrix effects, as well as having the practical advantages associated with 

smaller sample size. 

There is a distinct lack of research published relating to how the physical condition of 

the hair could affect matrix effects. Other aspects such as dyeing, bleaching, heat 

damage and ethnicity of hair should also be assessed in future work.    

Further work may also include investigations into whether two-dimensional-GC could 

separate hair matrix interferences away from analytes and allow for more efficient 

ionisation, which is less prone to matrix effects. This was suggested as a potential 

analytical technique for use in hair samples by Guthery et al. [294], however its 

application to cannabinoids in authentic hair samples has not yet been explored.  

Finally, with current technologies allowing for lower limits of detection and 

quantitation of cannabinoids in hair samples, experiments need to be conducted into 

assessing scientifically derived cut-offs, rather than instrumental ones.  

 

5.4 Concluding remarks 
 

The scientific findings in this thesis have contributed novel research and furthered 

knowledge in the fields of matrix-assisted laser desorption mass spectrometry and in 

the analysis of cannabinoids in hair samples. In addition, the PhD project has raised 

questions around the reporting criterion for positive hair samples and highlighted new 

avenues for future study.  
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Publications, presentations and posters  

Peer review publications  
Full copies of these publications can be found in Appendix II 

Beasley, E., Frances, S. and Bassindale, T., 2016. Detection and mapping of 

cannabinoids in single hair samples through rapid derivatization and matrix-assisted 

laser desorption ionisation mass spectrometry. Analytical chemistry, 88(20), pp.10328-

10334. 

Flinders, B., Beasley, E., Verlaan, R.M., Cuypers, E., Francese, S., Bassindale, T., Clench, 

M.R. and Heeren, R.M., 2017. Optimization of sample preparation and instrumental 

parameters for the rapid analysis of drugs of abuse in hair samples by MALDI-MS/MS 

imaging. Journal of the American Society for Mass Spectrometry, 28(11), pp.2462-2468. 

Oral presentations  

Rapid derivatisation for the detection of cannabinoids in hair samples using MALDI-

Imaging Mass Spectrometry presented at the British Mass Spectrometry Society 

Special Interest Group meeting for Imaging Mass Spectrometry, Sheffield, UK 

5.5 Poster Presentations 

Beasley, E., Frances, S. and Bassindale, T. Detection and Mapping of Cannabinoids in 

Single Hairs Through Rapid derivatisation MALDI-Imaging Mass Spectrometry 

presented at the International Association of Legal Medicine, Venice, Italy, 2016. 

Beasley, E. Morgan G., Bassindale, T. Development of Offline and Fully Automated 

Sample Preparation Methods for Analysis of Cannabinoids in Hair Samples. Presented 

at the 65th American Society for Mass Spectrometry, IdIndianapolis, USA.
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Appendix I



 
 

 

 Sample THC 
(H) 

CBD 
(H) 

CBN 
(H) 

11-OH 
(H) 

COOH 
(H) 

THC 
(W) 

CBD (W) CBN (W) 11-OH 
(W) 

COOH 
(W) 

Time since last use Est lifetime use  
(cannabis 
cigarettes) 

A 27.84 + 18.19 0.21 ND 22.57 59.31 229.86 1.90 ND 2-3 days 1350 

B 13.65 + 9.25 0.27 ND 6.98 115.66 246.38 6.68 ND 2-3 days 1800 

C <LOQ ND 1.4 ND 0.16 ND 6.59 1.08 ND ND >1 week 10 

D 31.39 + 15.45 0.32 0.32 8.24 ND 6.85 ND ND 2-3 days 2214 

E 2.12 + 3.12 ND 0.38 ND 268.43 3.27 <LOQ ND >1 week 126 

F ND ND ND ND ND ND 9.60 0.37 ND 0.05 >1 week 3280 

G ND ND 1.72 ND ND ND 10.46 0.28 ND ND 4-5 days 1440 

H 1.30 ND 1.70 ND ND ND ND 1.02 ND ND >1 week 216 

I 1.94 ND 4.07 ND ND ND ND 43.36 ND ND 4-5 days 264 

J 1.56 ND 4.87 ND ND 2.47 14.05 12.43 ND ND >1 week 168 

Table A-1 cannabinoid concentrations (pg/mg) in hair (H) and wash (W) of self-report frequent cannabis users. ND not detected, + shows that CBD was detected, <LOQ shows that the 

concentration was above the limit of detection and lower than the limit of quantification. 

 



 
202 

 

 

 Sample THC 
(H) 

CBD (H) CBN 
(H) 

11-OH 
(H) 

COOH 
(H) 

THC 
(W) 

CBD (W) CBN (W) 11-OH 
(W) 

COOH 
(W) 

Time since last use Est lifetime use 
(cannabis 
cigarettes) 

k <LOQ ND 1.70 ND ND ND 124.28 1.99 ND ND  n/a 2 

l <LOQ ND 2.15 ND ND ND 923.34 35.14 ND ND >1 week 4 

m ND ND 1.53 ND ND ND 11.65 0.13 ND ND >1 week 3 

n <LOQ ND 1.62 ND ND ND 41.42 2.55 0.09 ND  n/a 3 

o <LOQ ND 1.56 ND ND ND 1144.70 5.14 ND ND  n/a 2 

Table A-2  cannabinoid concentrations (pg/mg) in hair (H) and wash (W) of self-report infrequent cannabis users. ND not detected, + shows that CBD was detected, <LOQ shows that the 

concentration was above the limit of detection and lower than the limit of quantification. 

 

 

 



 
203 

 

 

Table A-3 cannabinoid concentrations (pg/mg) in hair (H) and wash (W) of self-reporting non-cannabis users. ND not detected, + shows that CBD was detected, <LOQ shows that the concentration 

was above the limit of detection and lower than the limit of quantification. 

 Sample THC 
(H) 

CBD 
(H) 

CBN 
(H) 

11-OH 
(H) 

COOH 
(H) 

THC 
(W) 

CBD (W) CBN (W) 11-OH 
(W) 

COOH 
Wash (W) 

Time since last use Est. lifetime use 
(cannabis 
cigarettes) 

p ND ND 1.512 ND ND ND ND 17.03 ND ND n/a 0 

q ND ND 2.578 ND ND ND 30.904 0.20 ND ND n/a 0 

r ND ND <LOQ ND ND ND ND 0.10 ND ND n/a 0 

s ND ND 1.902 ND ND ND 29.620 0.12 ND 0.10 n/a 0 

t <LOQ ND 1.578 ND ND ND ND 13.17 ND ND n/a 0 

u <LOQ + 1.297 ND 0.423 ND ND 0.44 ND ND n/a 0 

v <LOQ ND 1.536 ND 0.304 ND 76.903 2.63 ND ND n/a 0 

w ND ND ND ND ND ND 75.285 0.99 ND ND n/a 0 

x <LOQ ND <LOQ ND ND ND ND 3.91 ND ND n/a 0 

y 1.567 + 2.09 ND ND ND 15.941 7.07 0.53 2.11 n/a 0 

z ND ND ND ND ND 22.57 211.415 23.26 8.80 5.84 n/a 0 
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Detection and Mapping of Cannabinoids in Single Hair Samples
through Rapid Derivatization and Matrix-Assisted Laser Desorption
Ionization Mass Spectrometry
Emma Beasley, Simona Francese, and Tom Bassindale*

Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, S1 1WB
Sheffield, United Kingdom

ABSTRACT: The sample preparation method reported in this work has permitted
for the first time the application of matrix-assisted laser desorption ionization mass
spectrometry (MALDI-MS) profiling and imaging for the detection and mapping of
cannabinoids in a single hair sample. MALDI-MS imaging analysis of hair samples
has recently been suggested as an alternative technique to traditional methods of
GC/MS and LC/MS due to simpler sample preparation, the ability to detect a
narrower time frame of drug use, and a reduction in sample amount required.
However, despite cannabis being the most commonly used illicit drug worldwide, a
MALDI-MS method for the detection and mapping of cannabinoids in a single hair
has not been reported. This is probably due to the poor ionization efficiency of the
drug and its metabolites and low concentration incorporated into hair. This research
showed that in situ derivatization of cannabinoids through addition of an N-
methylpyridium group resulted in improved ionization efficiency, permitting both
detection and mapping of Δ9-tetrahydrocannabinol (THC), cannabinol (CBN),
cannabidiol (CBD), and the metabolites 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), 11-hydroxy-Δ9-
tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol glucuronide (THC-COO-glu). Addition-
ally, for the first time an in-source rearrangement of THC was observed and characterized in this paper, thus contributing to new
and accurate knowledge in the analysis of this drug by MALDI-MS.

The use of hair as an alternative biological sample in
toxicological analysis is well documented. This is due to

the fact that hair offers a longer time frame to detect drug use
than the more traditional blood or urine. By measuring the
length of the hair and approximating the rate of hair growth (1
cm/month on average),1 it is possible to estimate when specific
drug intake occurred, over a time period as long as the length of
the hair allows (weeks, months, or even years).2 This is in stark
contrast to blood and urine analysis, where most drugs cannot
be detected beyond a few hours to days after intake.3 Some
important applications of hair samples for retrospective
detection of drug intake include investigating drug-facilitated
crime, workplace testing, child protection cases, and therapeutic
monitoring.
Hair analysis is often used to identify cannabis consumption.

Cannabis continues to be the most widely used illicit drug in
England and Wales, with an estimated 6.7% of adults having
used cannabis in the last year,4 a higher percentage than the
European average of 5.7%.5 Δ9-Tetrahydrocannabinol (THC)
is the main psychoactive constituent of cannabis. THC
undergoes a complex hepatic metabolism based on oxidation
and subsequent glucuronidation.6 Since this enzymatic pathway
is present only in vivo, metabolite detection has been suggested
as a solution to external contamination problems associated
with solely analyzing THC content in hair samples.1 The main
oxidative metabolites of THC are 11-hydroxy-Δ9-tetrahydro-

cannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahy-
drocannbinol (THC-COOH). This molecule then undergoes
glucuronidation (phase II metabolism) to form 11-nor-9-
carboxy-Δ9-tetrahydrocannabinol glucuronide (THC-COO-
glu)7 as shown in Figure 1. Other cannabinoids routinely
analyzed in hair samples include the Cannabis sativa plant
degradation products cannabinol (CBN) and cannabidiol
(CBD).8−13
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Figure 1. Degradation (ex vivo) and metabolic (in vivo) pathways of
THC.
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THC and associated cannabinoids and metabolites can
already be detected in hair samples by standard analytical
techniques such as gas chromatography (GC)/mass spectrom-
etry (MS)12,14−18 and liquid chromatography (LC)/MS.19−23

However, GC/MS requires multiple laborious and time-
consuming steps before chromatographic analysis can take
place, including digestion, extraction, sample cleanup, and
derivatization.
LC/MS has gained in popularity over recent years, as the

aforementioned derivatization step is often not needed for
successful analysis. However, both methods require a large
amount of hair sample (10−50 mg). GC/MS and LC/MS
analyses typically give a time of intake accuracy of 1 month due
to the common practice of segmenting the hair into 1 cm pieces
before analysis.
More recently, direct analysis in real time (DART) has been

proposed as a method for the analysis of cannabinoids and
cocaine in hair samples;2,24 however, this method is not able to
distinguish between the two isobaric species of THC and CBD,
despite tandem mass spectrometric (MS/MS) analysis, because
both compounds result in the same product ions. In addition to
this, a large sample size is required, and currently the method is
applicable only to high levels of THC associated with chronic
users because the detection limit is approximately 5 ng/mg of
hair. The authors stated that DART “should only be considered
as a rapid pre-screening method”; however, this could result in
false negative results for lower-level users.
Matrix-assisted laser desorption ionization mass spectrometry

(MALDI-MS) has been highlighted as a potential hair analysis
method due to several advantages over current techniques,
including improved chronological information,25 simpler
sample preparation, and ability to detect drugs on one single
hair. Several drugs have already been analyzed in hair samples
by MALDI-MS, including methamphetamine26 and ana-
logues,27 cocaine,28−31 ketamine,32 Zolpidem,33 and nicotine34

by utilizing an α-cyano-4-hydroxycinnamic acid (CHCA)
matrix without the need for analyte derivatization. Cannabis
products were determined in the work of Musshof et al.,29 but
they were unable to determine the difference between the
isobaric THC and CBD and did not look for any in vivo
metabolites.
In this study, initial experiments suggested the occurrence of

an in-source rearrangement of the THC molecule; in addition
to low analyte ionization efficiency, this highlighted the low
probability of success in mapping cannabinoids in hair samples
by MALDI-MS imaging. However, the final method developed
included the novel use of 2-fluoro-1-Methylpyridinium p-
tolunesolfonate (FMTPS) derivatization of hair samples in situ
and showed greatly improved detection of cannabinoids and
metabolites, allowing these species to be mapped by MALDI-
MS imaging.

■ EXPERIMENTAL SECTION
Materials and Reagents. α-Cyano-4-hydroxycinnamic

acid (CHCA), trifluoroacetic acid (TFA), 2-fluoro-1-methyl-
pyridinium p-toluenesulfonate (FMPTS), and triethylamine
(TEA) were purchased from Sigma−Aldrich. Cannabinol
(CBN), cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC),
11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), 11-
hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), Δ9-tetrahy-
drocannabinolic acid A (THCA-A), and 11-nor-9-carboxy-Δ9-
tetrahydrocannabinol glucuronide (THC-COO-glu) were
purchased as analytical references from Cerilliant (Sigma−

Aldrich). Acetonitrile (ACN) and methanol were purchased
from Fisher Scientific.

Sample Preparation. CHCA was prepared at 5 mg/mL
with the solvent composition being 70:30 ACN/0.2% aqueous
TFA. Cannabinoid standards were mixed 1:1 with the matrix
solution and deposited in triplicate on the MALDI target. The
spots were left to dry at ambient temperature before analysis.
Cannabinoid concentrations were 100 μg/mL.

Derivatization of Standards for MALDI Profiling
Analysis. Derivatization was carried out according to Thieme
et al.35 Briefly, 40 μL of FMPTS (10 mg/mL in acetonitrile)
and 10 μL of triethylamine were mixed by vortexing. This
caused the colorless solution to turn canary yellow as previously
reported.35,36 A 20 μL aliquot of each cannabinoid standard
(100 μg/mL) was then added, and the solutions were left at
room temperature for 5 min. A sample (1 μL) of each solution
was then spotted onto a target plate.

Spiking of Hair. Hair samples from an individual who
reported not using any illicit drugs were collected by cutting
and washed with methanol and water by vortexing. The
samples were then cut into 5 cm sections and placed into the
bottom of a well in a 24-well cell culture plate in order to keep
the spiking solution volume to a minimum while still
submerging the hairs. The limitation of 5 cm is due to the
size of a MALDI target plate. Spiked samples were prepared by
soaking in 300 μL of 0.5 μg/mL cannabinoid standard solution.
Blank hair samples were prepared by soaking in 300 μL of
methanol. The plate was sealed with tape to avoid evaporation
of the standards. All hairs were soaked for 2 h, removed, and
allowed to dry for 1 h at room temperature.

User Hair Sample. The hair sample collection was
approved by the Sheffield Hallam University Research Ethics
committee (SHU ethics number 13-2011). The hair sample was
provided from a male volunteer who self-reported smoking
cannabis once a week. The hairs were less than 5 cm in length.
To wash, the hairs were placed in a clean test tube with
methanol (5 mL) and briefly vortexed before being removed.
This was repeated twice and the hairs were then left for 2 h at
room temperature to dry.

In Situ Derivatization of Cannabinoids. The hair was
placed on a glass slide by use of double-sided Sellotape Super
Clear tape. Derivatization reagent (2.5 mL) was then sprayed
by use of a Neo for Iwata airbrush at a pressure of 30 psi onto
an area of 9 cm2, with the sample in the center of the area. This
step was carried out in a fume hood due to hazards associated
with use of the triethylamine catalyst.

Deposition of Matrix for Imaging. The hairs were coated
in CHCA at 5 mg/mL, with the solvent composition being
70:30 ACN/0.2% aqueous TFA, by use of the SunCollect
autospraying system (SunChrom GmbH, Friedrichsdorf,
Germany). Fifteen layers were sprayed at a flow rate of 2
μL/min.

■ INSTRUMENTATION
MALDI Instrumentation and Analytical Conditions. All

data were acquired in positive-ion mode on an Applied
Biosystems/MDS Sciex hybrid quadrupole time-of-flight mass
spectrometer (Q-Star Pulsar-i) with an orthogonal MALDI ion
source (Applied Biosystems, Foster City, CA) and a neo-
dymium-doped yttrium aluminum garnet (Nd:YAG) laser (355
nm, 1 kHz). The laser power was 30% (1000 Hz, 3.2 μJ), with
an elliptical spot size of 100 × 150 μm.37 Image acquisition was
performed in raster image mode.38 Declustering potential 2 was
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set at 15 arbitrary units and the focusing potential at 20
arbitrary units, with an accumulation time of 0.999 s. The
MALDI-MS/MS images were obtained with argon as the
collision gas; the declustering potential 2 was set at 15 and the
focusing potential at 20, and the collision energy and collision
gas pressure were set at 20 and 5 arbitrary units, respectively.
Images were acquired with oMALDI Server 5.1 software

supplied by MDS Sciex (Concord, Ontario, Canada) and
processed with Biomap 3.7.5 software (www.maldi-msi.org) to
generate black and white images for each m/z ratio of interest.
Further image analysis and processing was performed with the
public domain software ImageJ (NIH; http://rsb.info.nih.gov/
ij), where the previous black and white images were assigned
different colors and overlaid to create one final image.
LC/MS Instrumentation and Analytical Conditions. All

experiments were performed on a Thermo Finnigan LCQ
classic quadrupole ion-trap liquid chromatography mass
spectrometer with electrospray ionization (ESI) interfaced to
a liquid chromatography system. The system used also
consisted of an autosampler and autoinjector. The column
used was a Phemonex Lunar C18 (150 mm × 1 mm, 5 μm)
with a corresponding guard column. LC/MS/MS chromato-
graphic separation was realized by gradient elution according to
a previously published method by Roth et al.39 Briefly, 0.1%
HCOOH in water was used as mobile phase A, and ACN +
0.1% HCOOH was used as mobile phase B. Mobile phase A
was gradually reduced over time while mobile phase B was
increased from 20% to 95%. The total run time was 15 min,
with the THC molecule eluting at 4 min.

■ RESULTS AND DISCUSSION
Profiling of THC. In preliminary MALDI-MS profiling

experiments, analyses were carried out on the cannabinoid
standard THC as purchased from the supplier. We immediately
observed a detection issue due to interference from a matrix ion
peak (m/z 315.10 as seen in Figure 2A, which is more apparent
at concentrations lower than 100 μg/mL) in addition to a
general low ionization yield in MALDI, as previously
reported.40 For this reason, different matrix systems were
tried, including type and amount of matrix [2,5-dihydrox-
ybenzoic acid (DHB), 6-aza-2-thiothymine (ATT), 3-hydrox-
ycoumarin (3-HC), and 2′,4′,6′-trihydroxyacetophenone
monohydrate (THAP)], different solvent compositions, differ-
ent amounts of trifluoroacetic acid (TFA), and the addition of
additives [cetrimonium bromide (CTAB), lithium salts, and
aniline]. In addition, negative mode analysis was conducted
with 9-aminoacridine (9-AA) matrix. None of these experi-
ments improved the detection of THC beyond that achieved
with CHCA, and they will not be discussed further in this
paper. Another observation from these MALDI profiling
spectra was the presence of m/z peaks at 313.22 and 315.23
(Figure 2A). While the peak at 315.23 fitted the expected
monoisotopic m/z of THC, the peak at 313.22 was
unexplained. However, the absence of a peak at m/z 313.22
in the matrix blanks suggests that it is in fact associated with the
THC molecule.
In order to investigate this phenomenon further, LC/MS/

MS analysis of the THC standard (100 ug/mL) was carried
out. A single peak in the chromatogram confirmed the purity of
the THC standard. Interestingly, the peak at m/z 313.22 had
3% of the intensity of the m/z 315.23 peak (seen on MALDI at
approximately 110%; Figure 2A), and the isotopic peak at m/z
314.23 was no longer detected. In addition, since this LC/MS

system utilizes electrospray ionization, it is reasonable to
assume that the additional peak at m/z 313.22 is specific to the
MALDI ionization process, and we hypothesized that it could
be dependent on the laser energy. In fact, experimentally it was
observed that increasing laser power causes the ratio of m/z
313.22 to 315.23 signal intensity to increase (Figure 2B).
One possible explanation for this observation is a laser-

induced rearrangement of the THC molecule. The loss of
hydrogens as free radicals would increase the conjugation of the
THC molecule, making it more stable and so the rearrange-
ment would be more favorable. MS/MS spectra of m/z peaks
313.1 and 315.1 obtained by direct infusion of the THC
standard also support this theory; the MS/MS spectrum of the
parent ion at m/z 315.1 is shown in Figure 3A(i), and that of
the rearranged parent ion at m/z 313.1 is shown in Figure
3A(ii). The spectra are very similar to many fragments formed
from common mass losses (peaks labeled with stars),
demonstrating that these peaks refer to the same (THC)
species. Both the parent ions and many of the product ions
have a mass shift of −2 Th, suggesting the loss of two
hydrogens from the THC parent ion.
Bijlsma et al.41 reported the fragmentation pathway of THC-

COOH, including fragments at m/z 193 and 257, based on
MSE accurate mass data. These fragments would be identical for
THC-COOH and THC due to loss of the COOH group from
the molecule. In this analysis the m/z 259 and 193 ions were
observed in the MS/MS spectrum of the 315.1 parent ion,
while we also observed a shift to m/z 257 in the MS/MS
spectrum of the 313.1 parent ion. The 193 fragment was

Figure 2. (A) m/z region 311−317 of THC standard with CHCA
matrix. (B) Ratio of signal intensity of peaks m/z 313.22 to 315.25 at
increasing laser energies.
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present in both MS/MS spectra, indicating this fragment does
not contain the proposed site of the rearrangement (see Figure
3B).
Derivatization of Cannabinoids. Once the nature of the

peak at m/z 313.22 was elucidated, in order to avoid
rearrangement due to the laser energy, a chemical modification
of THC was carried out. Derivatization has previously been
identified as a possible strategy to improve signal intensity and
decrease matrix interference.42,43

The target for derivatization was the hydroxyl group, since all
cannabinoids of interest contain this functional group. After
careful review of the literature, the derivatization method using
2-fluoro-1-methylpyridinium p-tolunesolfonate (FMPTS) to
form an N-methylpyridinium derivative, as reported by Quirke
et al.36 for the detection of alcohols by ESI-MS, was chosen.
FMPTS derivatization has previously been reported to improve
the detection of a range of compounds with alcohol moieties in
various sample types including surfactants,44 estrogens,45 and
the narcotic analgesic burprenorphine,35 by LC/MS analysis,
and polyamides42 and sterols46 in MALDI profiling experi-
ments.
This strategy was also selected due to the simplicity of the

nucleophilic substitution reaction (which occurs readily at
room temperature),47 the stability of the products forme-
d,44,48and also the addition of a permanent charge to the
analytes. This is of particular importance, as it allows all
cannabinoids to be analyzed in positive-ion mode (despite the
nonderivatized THC-COOH being theoretically more suited to
negative mode).
Derivatization was successful for all cannabinoids of interest,

with all peaks being observed and in agreement with the
expected monoisotopic m/z values (Table 1). The derivatized

species show an addition of 92 amu, as first reported by Quirke
et al.36 and confirmed by others.45,46

After derivatization, the ions corresponding to nonderivat-
ized cannabinoids were not observed, suggesting that reaction
went to completion (or such that nonderivatized cannabinoids
remained present at concentrations below the limit of
detection). The expected derivatized THC peak at m/z
406.28 was the most abundant in the spectrum. However,
there was evidence that rearrangement still occurred, as a peak
at m/z 404.27 was observed, though it was present at only 6%
of the intensity of the m/z 406.28 peak, as opposed to
approximately 100% when run without derivatization. This
suggests that the derivatization largely protects THC from
rearrangement, possibly due to steric hindrance or increasing
the required amount of laser energy to rearrange the molecule.
The peak at m/z 406.28 was also observed in the mass
spectrum of the derivatized CBD molecule. This was
anticipated as THC and CBD are isobaric species; however,
an additional peak at m/z 483.32 was also detected in the CBD
spectrum; CBD gains two N-methylpyridinium groups, as it has
one more hydroxyl group than THC. The peak at m/z 483.32
corresponds to the loss of a methyl group from the doubly
derivatized molecule expected to be observed at m/z 498.32.
Theoretically there could be two additions of the derivatization
group to 11-OH-THC and THC-COOH and up to five
additions on the THC-COO-glu molecule as a result of
multiple hydroxyl groups being present, though corresponding
m/z values were not observed. THC-COO-glu was detected at
m/z 612.28 in the mass spectrum, corresponding to a single
addition, though the peak at m/z 436.25 was much more
abundant, suggesting that the glucuronide group readily
fragments from the parent molecule during analysis, resulting
in detection of THC-COOH. A further experiment in which
the laser power used for analysis was increased showed that the
ratio of THC-COO-glu to THC-COOH decreased with
increasing laser power (data not shown). Another potential
interferent in the assay was THCA-A, the biogenic prescursor
to THC. This was analyzed by the same method and showed
no trace of ions relating to THC or derivatized THC (data not
presented).
It was also noted that for all derivatized samples there was

almost complete suppression of CHCA matrix-related peaks, as
previously observed by Murgasova et al.42

Imaging of Cannabinoids in Hair Samples. Once the
detection of cannabinoids through derivatization was opti-
mized, this sample preparation method was adapted to permit
mapping of these species in single hair samples by MALDI-MS
imaging. Preliminarily, blank and cannabinoid spiked hairs were
imaged to verify efficiency of the derivatization method for

Figure 3. (A) MS/MS spectra of THC. Product ion mass spectra of
(i) m/z 315 and (ii) m/z 313 are shown. Both spectra were obtained
through direct infusion on an LCQ instrument. Peaks with a star
symbol denote a mass shift of 2 Th. (B) Proposed rearrangement of
THC and structures of fragments present at m/z 259, 257, and 193
(257 and 193 structures as proposed by Bijlsma et al.41).

Table 1. Theoretical and Experimental m/z Ratios for
Derivatized and Nonderivatized Cannabinoid Standards

[M + H] derivatized [M + 92]

cannabinoid theor exptl theor exptl

THC 315.23 315.23 406.27 406.28
CBN 311.20 311.20 402.24 402.24
CBD 315.23 315.23 406.27 406.28
11-OH-THC 331.23 331.23 422.27 422.26
THC-COOH 345.21 345.21 436.25 436.25
THC-COO-glu 521.24 521.25 612.28 612.28
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imaging purposes and were compared to hairs that had not
gone through the derivatization step (Figure 4).

Unless dramatic modifications are made to contrast and
brightness, underivatized hairs soaked in THC standard could
not be visualized in the two-dimensional (2D) molecular map,
as the ion signals of underivatized THC were of extremely low
intensity. Interestingly, THC-COOH could be visualized in the
2D molecular ion map (cyan) in hairs G and H, which were
soaked in THC-COOH standard and a mixture of THC and
THC-COOH standards, respectively; however, this was also at
relatively low intensity (Figure 4). The peak at m/z 406.2,
corresponding to derivatized THC, is clearly seen in hair B,
which was spiked with THC and subsequently derivatized
(red). Similarly, the expected ion at m/z 436.2 was observed in
hair C, which was spiked with THC-COOH and subsequently
derivatized (green). Hair D, which was spiked with a mixture of
THC and THC-COOH and then derivatized, appears yellow in
color as both THC and THC-COOH ions are present (a
mixture of red and green appears yellow).
Since it was established that derivatization enhances both

THC and THC-COOH signals in imaging experiments (as
shown in Figure 4), a second mapping experiment with the
other cannabinoids was carried out (Figure 5). The peak at m/z

406.2, corresponding to derivatized THC, is clearly seen in hair
B, which was spiked with THC and then derivatized (red); the
peak at m/z 483.2 was observed in hair C, which was spiked
with CBD and derivatized (yellow), the peak at m/z 402.2,
corresponding to derivatized CBN, was observed in hair D,
which was spiked with CBN and derivatized (blue); the peak at
m/z 436.2, corresponding to derivatized THC-COOH, was
observed in hair E, which was spiked with THC-COOH and
derivatized (green); and finally, the peak at m/z 422.2,
corresponding to derivatized 11-OH-THC, was observed in
hair F, which was spiked with 11-OH-THC and derivatized
(magenta). As with the profiling experiments, THC-COO-glu
fragmented to give THC-COOH at m/z 436.2 (green), and its
image intensity reflect a 5× lower concentration compared to
the other standards due to the concentration in which it is
supplied.
Users’ hairs were investigated by the derivatization method

coupled with MALDI-MS imaging, employing this optimized
method. In particular, MALDI-MS/MS images were obtained
of hairs collected from a volunteer who self-reported using
cannabis once a week, and the transition from m/z 406.2
derivatized THC parent ion to m/z 110.0 fragment ion was
monitored (Figure 6). The product ion at m/z 110.0
corresponds to the hydrated methylpyridinium fragment,
which is common to all FTMPS derivatives and has previously
been used for confirmation.44

■ CONCLUSIONS
The use of MALDI imaging and profiling to detect
cannabinoids in hair samples following in situ derivatization is
presented. The method shows, for the first time, potential to
detect cannabinoids from a single hair.
During the development of this method, an interesting, laser-

induced THC rearrangement was observed. This caused
increased fragmentation of THC and hence low ability to
detect the molecule without derivatization. The novel in situ
derivatization, completed in minutes at room temperature with
FMPTS, showed a greatly increased limit of detection over the
nonderivatized analytes and THC, CBD, CBN, and THC
metabolites. The ability to detect the metabolites of THC only
formed in vivo (THC-COOH, 11-OH-THC, and THC-COO-
glu) will enhance the ability of the analyst to distinguish
between use and unintentional exposure. During analysis, the
THC-COO-glu fragments form THC-COOH, with the
consequence that if m/z 436.2 is detected, it cannot be
determined which of the analytes was originally present. The
m/z 612 peak, however, is unique to THC-COO-glu. This is an

Figure 4. Comparsion between (A−D) derivatized and (E−H)
nonderivatized hairs: (A) soaked in methanol and derivatized, (B)
soaked in THC standard and derivatized, (C) soaked in THC-COOH
standard and derivatized, (D) soaked in a 1:1 mixture of THC and
THC-COOH standards and derivatized, (E) soaked in methanol and
not derivatized, (F) soaked in THC standard and not derivatized, (G)
soaked in THC-COOH standard and not derivatized, and (H) soaked
in a mixture of THC and THC-COOH standards and not derivatized.

Figure 5. Simultaneous imaging of several cannabinoids of interest:
hairs were soaked in (A) methanol, (B) THC, (C) CBD, (D) CBN,
(E) THC-COOH, (F) 11-OH-THC, and (G) THC-COO-glu. All
hairs were derivatized with FMTPS prior to analysis.

Figure 6. MS/MS image of user hairs: (A) Derivatized THC parent
ion at m/z 406.2. (B) Map of fragment ion at m/z 110.
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advantage over traditional GC/MS methods, where the
glucuronide is not generally detected due to the common
practice of hydrolysis or digestion of the hair sample, which
converts it into THC-COOH.49

Prior to integration into a toxicology workflow, a large
sample of user hairs should be tested, from different levels of
users and with different hair types. The comparison of levels of
metabolites detected by traditional methods with the results
from MALDI analysis will determine the limit of detection for
hair samples and applicability to lower-level users, as well as the
possibility of using the method quantitatively in the future. This
will allow an assessment of the suitability of the method for
users or whether it will be a screen for external contamination.
The user hair tested here, from a regular but low-level user,
provides proof that the THC at least can be detected.
The method reported has a sample preparation workflow,

notwithstanding the derivatization step, that is less time-
consuming, due to the lack of extraction step, than traditional
GC or LC methods. This method also gives the potential to
simultaneously detect THC and metabolites in a single workup
and analysis. An additional advantage is the potential of
MALDI-MS imaging resolution, allowing increased sensitivity
to the time period of use, better than the traditional month-by-
month history, although such an approach will require further
validation. Analysis of hairs from a known cannabis user has
shown applicability of the method to detect THC in real-life
samples.
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Abstract. Matrix-assisted laser desorption/ionization-mass spectrometry imaging
(MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user
hair samples for cocaine and its metabolites using continuous raster imaging. Opti-
mization of the spatial resolution and raster speed were performed on intact cocaine
contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s)
were subsequently used to examine longitudinally sectioned drug user hair samples.
The MALDI-MS/MS images showed the distribution of the most abundant cocaine
product ion atm/z 182. Using the optimized settings, multiple hair samples obtained
from two users were analyzed in approximately 3 h: six times faster than the standard
spot-to-spot acquisition method. Quantitation was achieved using longitudinally sec-

tioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM)
experiment was also performed using the ‘dynamic pixel’ imaging method to screen for cocaine and a range of
its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine,
and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS
method.
Keywords: MALDI-MSI, Cocaine, Metabolites, Raster imaging
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Introduction

H air testing is a powerful tool routinely used for the
detection of drugs of abuse in toxicology and forensic

applications [1–3]. The analysis of hair is highly advantageous
as it can provide prolonged detection and chronological infor-
mation about drug intake or chemical exposure in contrast to
the analysis of biological fluids [4]. However, current method-
ology routinely involves complex and time-consuming

homogenization, derivatization, sample-clean up, and extrac-
tion techniques followed by gas or liquid chromatography
coupled with mass spectrometry (GC-MS or LC-MS). Also
these techniques require large amounts of hair sample (10–100
mg) and can only provide the chronological information per
month (based on the average growth rate of 1 cm/mo).

Matrix-assisted laser desorption/ionization-mass spectrom-
etry imaging (MALDI-MSI) is well established for the detec-
tion and imaging of drugs and pharmaceuticals in tissues.
However, it is increasingly being used for the analysis of drugs
of abuse in hair, as it offers several advantages over the cur-
rently established techniques, such as requiring fewer hair
samples, simpler and faster sample preparation, and providing
more accurate and visual chronological information in hours or
days.
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MALDI-MSI has been used to monitor the distribution of a
wide range of compounds, including drugs of abuse, pharma-
ceuticals, and other compounds in single hair samples, such as
cocaine [5], methamphetamine [6, 7], ketamine [8], cannabi-
noids [9], tilidine [10], zolpidem [11, 12], and nicotine [13].
New techniques have also been introduced into the field, such
as infrared-matrix-assisted laser desorption electrospray
ionization-mass spectrometry imaging (IR-MALDESI-MSI),
which has been used to monitor the distribution of the antire-
troviral efavirenz in hair samples from HIV infected patients
[14]. Recently, mass spectrometry imaging techniques have
been used to address some of the current issues with forensic
hair testing, such as the process/rate of drug incorporation [15],
the effects of cosmetic treatment [16], and the consequences of
different washing procedures [17].

Whilst these examples show it is possible to monitor the
distribution of a wide range of compounds in single hair
samples, multiple hairs need to be analyzed in order to account
for the different growth phases of hair. As a result, depending
on the length and number of the hair samples or the spatial
resolution, it can take several hours to a few days to acquire
images with the conventional spot-to-spot acquisition method.
One way to overcome this and improve the speed of analysis is
to use Braster imaging^ mode. This method of data acquisition
is achieved by continuously firing the laser in rows across a
sample. The generated data is placed into a bin at selected
intervals during the raster, which is based upon the selected
spatial resolution and sampling speed [18, 19]. Another issue is
the extraction efficiency of the embedded drugs by the matrix
solution. As the drugs are considered to be bound to melanin
inside the core of the hair, it remains difficult to know whether
the drug is completely extracted from the hair by the MALDI
matrix, especially through the impermeable outer surface; this
can be overcome by longitudinally sectioning the hair samples
prior to analysis.

In the work reported here, instrumental and experimental
parameters were optimized to rapidly generate high quality
images of longitudinally sectioned drug user hair samples using
continuous raster imaging. In order to quantify the detected
drug, a novel method for preparing a calibration line on longi-
tudinally sectioned hair was developed. To further confirm if
the detected drugs and metabolites are indicative of actual
ingestion, a multiple reaction monitoring (MRM) method was
developed to screen for unique metabolites.

Experimental
Materials

Alpha-cyano-4-hydroxycinnamic acid (CHCA), cocaine
(COC), benzoylecgonine (BZE), norcocaine (NCOC),
cocaethylene (CE), ecgonine methyl ester (EME),
anhydroecgonine methyl ester (AEME), and dichloromethane
(DCM) were purchased from Sigma Aldrich (Schnelldorf,
Germany). Acetonitrile (ACN), methanol (MeOH), and

trifluroacetic acid (TFA) were purchased from Biosolve
(Valkenswaard, The Netherlands).

Sample Preparation

Hair samples were collected from volunteer drug users and hair
samples of non-users were collected from volunteers and ana-
lyzed as negative controls. Hair samples were decontaminated
using two 10 mL dichloromethane washes for 1 min by shak-
ing. After washing, the hair samples were left dry at room
temperature [20, 21]. Longitudinal sections of hair samples
were prepared using the previously reported method [22].
Briefly, the hair sample was affixed onto a metal plate that
contains grooves ranging from 20 to 80 μm.Whilst holding the
other end of the hair sample with a gloved finger, a holder with
a blade fixed at a 20° angle was run along the length of the hair.
After visual inspection using a Leica DM RX light microscope
(Leica, Wetzlar, Germany) equipped with a Nikon DM100
digital camera (Nikon, Tokyo, Japan), the hair samples were
mounted onto a glass slide using double-sided tape. Control
hair samples were placed into a 1 mg/mL solution of cocaine
(50:50 acetonitrile:water) before mounting onto a glass slide
using double sided tape.

Preparation of Standards for Quantitation

Cocaine standards were prepared from a 1 mg/mL stock solu-
tion to give the following standards: 0.1, 0.2, 0.5, 1, 2, 5, and 10
ng/μL in 70% acetonitrile. In order to achieve a homogenous
and uniform deposition, the cocaine standards were sprayed
onto longitudinal sectioned control hair samples using the
Suncollect automated pneumatic sprayer (Sunchrom,
Friedrichsdorf, Germany) with the aid of stencils made from
polylactic acid. The stencils (containing square holes that are 2
mm2) were made using a Ultimaker Original 3D printer
(Ultimaker, Geldermalsen, The Netherlands). The standards
were sprayed in a series of 30 layers. The initial layer was
sprayed at 10 μL/min, then stepped up from 20 μL/min to 30
μL/min, and subsequent layers were sprayed at 40 μL/min. The
hair samples were mounted onto a glass slide using double
sided tape.

Matrix Application

The samples were coated with 7 mg/mL CHCA in 50:50
acetonitrile:water with 0.2% TFA using a Bruker ImagePrep
(Bruker Daltonics, Bremen, Germany).

Instrumentation

All data were acquired in positive ion mode on an Applied
Biosystems/MDS Sciex hybrid quadrupole time-of-flight mass
spectrometer (Q-Star Pulsar-i) with an orthogonal MALDI ion
source (Applied Biosystems, Foster City, CA, USA) and a
neodymium-doped yttrium aluminium garnet (Nd:YAG) laser
(355 nm, 1 KHz). The laser power was 30 (1000 Hz, 3.2 μJ)
and the laser beam had an elliptical spot size of 100 × 150 μm.
Image acquisition was performed using the Braster image^

B. Flinders et al.: Rapid Analysis of Drugs of Abuse in Hair 2463



mode [18, 23]. Images were generated using the freely avail-
able Novartis Biomap 3.8.0.4 software (www.maldi-msi.org).
MALDI-MS spectra were obtained in positive ion mode in the
mass range between m/z 50 and 1000. Declustering potential 2
was set at 15 arbitrary units and the focus potential at 10
arbitrary units, with an accumulation time of 0.999 s. The
MALDI-MS/MS spectra were obtained using argon as the
collision gas; the declustering potential 2 was set at 15 and
the focusing potential at 20, and the collision energy and
collision gas pressure were set at 20 and 5 arbitrary units,
respectively.

Dynamic pixel imaging was employed to perform MRM
imaging experiments. The method was optimized using stan-
dards of cocaine and its metabolites (100 ng/μL in 70% meth-
anol), and the most abundant product ions were selected for
imaging. The laser power was 80% (1000 Hz, 8 μJ), the
instrument parameters were accumulation time of 0.4 s,
seconds/spot 2.4 s, and the mass range was ±2 u for each
product ion. Images were generated using the oMALDI server
5.1 software (MDS Sciex, Concord, ON, Canada).

Data Processing

For presentation purposes, mass spectra from the Analyst QS
1.1 software were exported in the form of text files and
imported into mMass software, an open-source mass spectrom-
etry software used for mass spectral processing [24].

Results and Discussion
In the initial phase of the study, the optimization of instrumen-
tal parameters was carried out:

Optimization of Spatial Resolution and Raster Speed
for MALDI-MS/MS Imaging

To determine the optimal spatial resolution and raster speed
intact cocaine contaminated hair samples were analyzed in
triplicate, and these results were plotted as a function of the
average intensity and time, respectively. The results from these
experiments are shown in Figure 1.

The average intensity of the product ion of cocaine at m/z
182 for each of the spiked hair samples analyzed (n = 3) was
determined using the region of interest (ROI) tool in the
Biomap 3.8.0.4 imaging software. The results shown in Fig-
ure 1 show that analysis of samples at a high spatial resolution
results in a decreased sample throughput and sensitivity. This is
due to the increased number of rasters and extensive
oversampling. Conversely, analysis of samples at a lower spa-
tial resolution results in an increased sample throughput and
sensitivity, because of the reduced number of rasters and a fresh
area being consistently sampled.

However, it should be noted that when performing the
analysis of hair samples at a lower spatial resolution, the results
from individual hairs begin to merge. This is observed in the
MALDI-MS/MS images (Figure 1c), therefore when preparing

hair samples the spacing between the hair samples needs to be
taken into account. Whilst high spatial resolution imaging is
possible, it may not be necessary, especially across the width of
the hair, as the chronological information is obtained longitu-
dinally along the length of the hair. In addition, the incorpora-
tion rate and keratinization of drug into the hair can take several
days.

Based on the findings of this study, the optimal spatial
resolution was determined to be 100 × 150 μm and the optimal
raster speed was 0.24 mm/s (416 shots/pixel). Whilst it may
appear that imaging the hair samples at 150 × 150 μm, 0.17
mm/s is optimal, the corresponding image shows the hairs
begin to merge into one; in addition, there is not much gain
in intensity. As the spatial resolution along the length of the
hair is 150 μm, each pixel is equivalent to around 12 h of
growth. This allows for a much narrower time frame of detec-
tion than the standard GC-MS and LC-MSmethods, which can
only provide information about drug use averaged over a 1 mo
period.

Determination of Optimal Sample Orientation

In order to determine if the orientation of the hair samples in
relation to the movement of the laser affects the results, six
cocaine contaminated hair samples were analyzed in different
orientations using the optimized settings. TheMALDI-MS/MS
images of the cocaine contaminated hair samples are shown in
Figure 2.

The MALDI-MS/MS images show cocaine contaminated
hair samples analyzed in both the horizontal (Figure 2a) and
vertical (Figure 2b and c) orientations. The images show that
using the optimized settings clearly differentiates between in-
dividual hairs.

The MALDI-MS/MS image shown in Figure 2a shows hair
samples analyzed in the horizontal orientation, and the insert
shows each hair consists of around to 3–4 pixels. Whereas the
image in Figure 2b shows hair samples analyzed in the vertical
orientation, the insert shows that each hair consists of 2–3
pixels. The MALDI-MS/MS image in Figure 2c shows better
separation, which could be due to the elliptical laser spot size
(100 × 150 μm). This is also observed in the insert that shows
an expanded view of a single hair prior to smoothing, which
consists of around to 2–3 pixels per hair. This experiment
shows that hair samples can be analyzed in either orientation;
however, the spatial resolution needs to be adjusted according-
ly. For subsequent experiments, the hair samples were analyzed
in the horizontal orientation with the laser running parallel (150
× 100 μm).

MALDI-MS/MS Imaging of Longitudinal Sectioned
Drug User Hair Samples

Once the spatial resolution and raster speed was optimized to
produce the best quality image in the shortest time, the method
was applied to monitor the distribution of cocaine in a number
of longitudinally sectioned hair samples from cocaine users. In
order to quantify the amount of cocaine present in the hair
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Figure 1. Graphs to determine the optimal spatial resolution and raster speed for imaging the distribution of cocaine in hair samples
by MALDI-MS/MS imaging. The graphs show (a) the average intensity of the cocaine product ion at m/z 182 at each spatial
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MALDI-MS/MS images of cocaine contaminated hair samples analyzed used to determine the optimal parameters showing the
distribution of the product ion atm/z 182. The highlighted image and areas indicated by the red arrows show the determined optimal
parameters

Laser directionLaser direction

L
a
s
e
r
 d
ir
e
c
ti
o
n

(b)

2 mm 2 mm

L
a
s
e
r
 d
ir
e
c
ti
o
n

(c)(a)

2 mm 2 mm

Figure 2. MALDI-MS/MS images of cocaine contaminated hair samples analyzed in different orientations, showing the distribution
of the product ion at m/z 182. (a) Horizontal direction (150 × 100 μm), (b) vertical direction (150 × 100 μm), and (c) vertical direction
(100 × 150 μm). The inserts show the number of pixels per hair

B. Flinders et al.: Rapid Analysis of Drugs of Abuse in Hair 2465



samples, control hair samples sprayed with a cocaine dilution
series were also analyzed. The MALDI-MS/MS images of the
cocaine user hair samples and cocaine standard hair samples
are shown in Figure 3.

The MALDI-MS/MS image (Figure 3a) shows the distribu-
tion of the most abundant cocaine product ion at m/z 182,
which is formed by the neutral loss of benzoic acid from the
intact molecule and was detected in both user hair samples. In
contrast, it was not detected in the longitudinal sectioned con-
trol hair sample; due to the number of hair samples available
from the second user, only three hairs were analyzed. The
length of the analyzed hair samples was 4 cm; given the
average growth rate of human hair is approximately 1 cm per
month, this corresponds to a growth period of 4 mo [25]. Since
the spatial resolution along the hair is 150 μm, each pixel is
equivalent to around 12 h of growth. The analysis of the
longitudinally sectioned user hair samples took 3 h and
22 min (136 s per raster). This is around six times faster in
comparison to the standard spot-to-spot acquisition method at
this spatial resolution, which takes around 18 h. Analysis with
the current methodology takes around 1 h; however, the sample
preparation takes approximately 1 d. In contrast, the sample
preparation for MALDI-MSI takes around 1 h; along with the
optimized settings it takes approximately 4 h to perform the
entire experiment. This is six times faster than the currently
established method. The insert shows a close-up view of a
longitudinally sectioned hair sample, prepared using the previ-
ously published method [22]. The image clearly shows mini-
mal damage to the hair with the medulla in the center
surrounded by the cortex and the cuticle on the edge of the hair.

In order to quantify the amount of cocaine in the longitudinally
sectioned user hair samples, a cocaine dilution series was pre-
pared.Thiswas initially spottedonto theglass slidenext to thehair
samples; however, this resulted in an uncontrollable deposition
due to spreading. Therefore, to overcome this issue, the cocaine

dilution series was sprayed onto longitudinally sectioned control
hair samples using the describedmethod, in order to reproducibly
produce uniform and homogenous standards as shown in Fig-
ure 3b. The obtained image does suggest that this method of
standard deposition has resulted in homogenous and uniform
deposition. A decreasing response with respect to the concentra-
tion is clearly observable with good reproducibility for each hair
sample (see Supplementary Figure S1). The concentration per
standard was reported in ng/mm2, which was calculated from the
parametersused tospray thecocainestandards.Theanalysisof the
quantitation hair standards took1h and10min. It should be noted
that thecontrolhair samplesusedfor thecalibrationcurvewerenot
the same color as those from the drugusers, andother information
suchas race andgenderwasnot available. Ideally thehair samples
used for quantitation should bematched based on hair color, race,
and gender.

Using the ROI tool of the Biomap 3.8.0.4 software, the
average intensity of the calibration standards (Supplementary
Figure S1) and the four segments from both of the user hairs
(Supplementary Figure S2) were determined. The calibration
curve was linear over two orders of magnitude (R2 = 0.9908).
Using the calibration curve the concentration of cocaine per
segment for the first user was determined to be 0.437, 0.389,
0.340, and 0.305 ng/mm2 (1–4), whereas the concentration of
cocaine per segment for the second user was determined to be
0.151, 0.154, 0.1720, and 0.186 ng/mm2 (1–4). These results
indicate both users have a prolonged history of cocaine use and
that the first user is a heavier user in contrast to the second user;
this is also apparent in in the MALDI-MS/MS image.

MALDI-MS/MS Imaging of Cocaine Metabolites
in Drug User Hair Samples

Oneway todetermine if adetecteddrug is present due to ingestion
rather than environmental contamination is to monitor the
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Figure 3. MALDI-MS/MS images of (a) longitudinally sectioned drug user hair samples (insert shows optical image of longitudinally
sectioned hair), and (b) longitudinally sectioned control hair samples sprayed with a cocaine dilution series. The MALDI-MS/MS
image shows the distribution of the product ion at m/z 182, derived from the precursor ion of cocaine at m/z 304
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presence of unique metabolites [20, 26]. In the case of cocaine,
cocaethylene (ametabolite formedby the simultaneousconsump-
tion of cocaine and ethanol), norcocaine (an in-vivometabolite of
cocaine), and anhydroecgonine methyl ester (a pyrolysis product
formedwhencrackcocaine issmoked).Othermetabolites, suchas
benzoylecgonine, the main metabolite of cocaine, can also be
formed by environmental degradation [27]. In order to screen
the drug user hair samples for cocaine and its metabolites, a
MRM imaging method using dynamic pixel imaging was devel-
oped.Dynamic pixel imaging is a technique that enablesmultiple
experiments tobeperformedconsecutively inasingleacquisition.
This is because the target plate ismovedaroundwithin eachpixel,
which enables longer acquisition time per pixel and thusmultiple
experiments to be performed [28]. The transitions for cocaine and
its metabolites were as follows: cocaine (m/z 304.15→182.12),
cocaethylene (m/z 318.17→196.15), norcocaine (m/z
290.13→136.09), benzoylecgonine (m/z 290.15→168.11),
ecgonine methyl ester (m/z 200.16→182.13), and
anhydroecgonine methyl ester (m/z 182.13→118.06). The
MALDI-MS/MSspectraof cocaine and itsmetabolites are shown
in Supplementary Figure S3.

Arequirementfor theuseof thedynamicpixel imagingmethod
is that thehairs needed tobe spacedas far apart as possible inorder
to distinguish individual hairs. This is due to the figure eight
movement of the sample stage during the acquisition, and as a
result the best spatial resolution that could be achievedwas 250 ×
250 μm. The MALDI-MS/MS images of cocaine and its metab-
olites in the longitudinal sectioned hair samples acquired in this
manner are shown in Figure 4.

The lengthof theanalyzedhair sampleswas3cm,andgiven the
average growth rate of human hair is around 1 cm per month, this
correspondstoagrowthperiodof3mo..Since thespatial resolution
along the hair is 250 μm, this corresponds to 18 h of growth.
Cocaine, themajormetabolitebenzoylecgonine,andthemetabolite
cocaethylene were detected in the drug user hair sample. This was
also confirmed using the routine LC-MS/MS analysis method.

Conclusions
The use of MALDI-MS/MS imaging for the rapid screening of
drugs of abuse in hair samples using continuous raster imaging
has been presented. Optimization of instrumental and experi-
mental parameters such as the spatial resolution, raster speed,
and sample orientations were performed in order to rapidly
analyze hair samples without compromising the quality of the
images. Whilst these settings are specific to this instrument,
they provide a starting point for the optimization of these
parameters on other instruments operating in raster imaging
mode. Using the optimized settings (100 × 150 μm at 0.24mm/
s), the analysis of the longitudinally sectioned hair samples of
two drug users took approximately 3 h, which is six times faster
in comparison with the standard spot-to-spot acquisition meth-
od at this spatial resolution, which takes around 18 h. In order
to quantify the amounts of cocaine in longitudinally sectioned
drug user hair samples, a novel method for the preparation of
standards was developed. In order to determine if the detected
drugs present are from actual abuse rather than external con-
tamination, a MRM imaging method utilizing ‘dynamic pixel’
imaging in combination with longitudinally sectioned hair was
developed. By screening for unique cocaine metabolites that
can only be formed in vivo, the confirmation of ingestion of
cocaine could be ascertained. Cocaine, benzoylecgonine, and
cocaethylene were present, which was consistent with the
standard LC-MS/MS method. The work presented here also
shows that if required, faster analysis is possible but the spatial
resolution and spacing between hair samples needs to be ad-
justed accordingly.
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