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Abstract

Scorpion and snake venoms consist of diverse mixtures of peptides and proteins with 

varying biological activities and offer an attractive source for the development of novel 

therapeutics. Smp24 (24 aa) and Smp43 (43 aa) are antimicrobial peptides (AMPs) that 

were identified from the venom gland of the Egyptian scorpion Scorpio 

maurus palmatus. These alpha-helical peptides showed potent activity against both 

Gram positive and Gram negative bacteria with MICs ranging from 4 to 128 pg/ml. 

Four anti-bacterial peptides were purified using HPLC chromatography from the 

venom of three different species of Egyptian snakes. The molecular masses of the 

purified proteins were identified by MALDI-TOF/MS and N-terminal sequences suggest 

that they are members of the three-finger toxin superfamily. Both SEM and TEM were 

employed to visualise morphological changes and membrane damage of E. coli and S. 

aureus in response to different concentrations of Smp peptides at different time 

intervals. Using DNA microarray, we examined the transcriptomic responses of E. coli 

to sub-inhibitory doses of Smp24 and Smp43 peptides following 5 hours of incubation. 

Differentially expressed genes in the presence of peptides or a control antibiotic 

(Polymyxin B) compared with the absence of peptides were predominantly related to 

siderophore biosynthesis and transport, as well as more generalised cation transport 

and oxidative stress responses. The antibacterial effects of Smp peptides were 

inhibited in the presence of calcium and magnesium ions, but not other cations. Smp 

peptides offer a promising starting point for the development of new antimicrobial 

agents and transcriptomic analysis can help identify metabolic processes affected by 

scorpion venom AMPs which may be beneficial in understanding their mechanism of 

action.

v
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1 Introduction



1.1 Antimicrobial resistance

Antimicrobial resistance is an increasingly serious worldwide threat associated with 

millions of illnesses and deaths annually over the world. Antimicrobial resistance is 

predicted to cause ten million deaths in 2050 (O'Neil 2014). The emergence of 

resistant strains is endangering the efficacy of a wide range of antibiotics. Resistance is 

an old phenomenon, when sulphonamide and penicillin were marketed in the first half 

of the 20th century; researchers reported that resistance patterns started to appear 

only a few years after their introduction (Rammelkamp, Maxon 1942, Damrosch 1946).

Antimicrobial resistance is a major cause of morbidity and high healthcare spending 

worldwide. Massive epidemics as a consequence of microbial resistance to antibiotics 

emerge after their widespread clinical use, misuse and overuse, resulting in selective 

pressure by allowing survival of the resistant bacteria (Yanling, Zhiyuan et al. 2013, 

Fonkwo 2008). Sub-inhibitory and sub-therapeutic antibiotic doses can promote 

changes in gene expression and mutagenesis, leading to antibiotic resistance 

(Viswanathan 2014, Ventola 2015). Resistance to a range of antibiotics is one the 

common key factors that drive Methicillin-resistant Staphylococcus aureus epidemics 

(MRSA). MRSA was reported in the United Kingdom hospitals in 1960. Thereafter, 

MRSA have spread globally and were multiply resistant to non-(3-lactarh antibiotics 

recognized as epidemic MRSA (EMRSA) associated with serious infections in hospitals 

(Barber 1961, Devons 1961, Enright, Robinson et al. 2002, Stapleton, Taylor 2002, Udo, 

Boswihi et al. 2016).

Until 2003, carbapenem-resistant strains were extremely rare in both the UK and 

Europe. However, some carbapenem-resistant clinical isolates have been recently

2



identified within the UK. The UK has launched ambitious programs to limit and control 

the development and spread of antimicrobial resistance. The major components of 

these programs include increasing the understanding of this threat among the public 

such as hand and environmental hygiene, patient isolation and patient/staff screening 

besides reducing the prescribing of antibiotics among human and animals. Accordingly, 

a significant reduction in the incidence of Methicillin-resistant Staphylococcus aureus 

(MRSA) has been achieved within hospitals in the UK and proportions of isolates of 

some resistant species has stabliblized. Nevertheless, a significant increase has 

occurred in some infections such as bacteremia which require novel antibiotics to 

control it (Shallcross, Howard et al. 2015, Hopkins 2016).

The threat of antimicrobial resistance requires an understanding of the antibiotic 

targets as well as the biochemical and genetic aspects of antibiotic resistance 

mechanisms in order to develop antimicrobial agents that are more effective against 

bacterial resistance (Figure 1.1). Bacteria have developed Various mechanisms to resist 

novel chemotherapeutics (Rodriguez-Rojas, Rodriguez-Beltran et al. 2013). Although 

the intrinsic genes that could produce resistance to certain antibiotics in bacterial 

genomes or transfer among species, bacteria can also acquire resistance via mutations 

in existing genes (Blair, Jessica MA, et al.2015). Bacterial resistance can be achieved 

biochemically in different general ways such as efflux pumps (Poole 2005), 

modification of bacterial target sites (Lambert 2005) and enzymatic degradation 

(Figure 1.1) (Vranakis, Goniotakis eta l. 2014).

Resistant pathogens require novel antibiotic classes or new generations of marketed 

antibiotics and the crisis of antibiotic resistance has increased with the decline in new

antibiotic drugs entering the clinical development pipeline (Conly, Johnston 2005).
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1.2 Antimicrobial drug discovery

Different ancient cultures have used natural products to  trea t bacterial infections. 

Many observations have revealed the antagonism effect o f Penicillium  on microbial 

growth (Burdon-Sanderson 1871, Lister 1875). However, the main breakthrough in 

antim icrobial drug research was observation by Fleming in 1921 o f the susceptibility o f 

Micrococcus lysodeikticus to lysozyme. This observation led to  Fleming's discovery o f 

the specific mold species (Penicillium notatum ) tha t inhibited the growth o f 

Staphylococcus bacteria (Fleming 1922). Following this discovery penicillin was 

eventually purified and charcterised by Florey and Chain in the 1940s (Abraham, Chain 

1942). Penicillin was the firs t antim icrobial agent isolated from  a natural source. Many 

other antibiotics were released later fo llow ing penicillin's development, although the 

sulfonamide drug Prontosil was marketed as the firs t synthetic antib io tic  in the 1930s 

(Domagk 1935).

Natural products are the main source fo r the isolation o f novel antim icrobial drugs. At

the beginning o f the antib io tic era, actinomycetes and fungi were the m ajor sources

fo r antibiotics such as penicillin derived from  Penicillium  sp and fusidic acid, from  the

fungi Fusidium griseum. Approximately 65% o f current antim icrobials are produced

from  Streptomyces species including vancomycin, fosfomycin, tetracycline,

chloramphenicol, and gentamycin (Pelaez 2006, Abdulkadir, W aliyu 2012).

Streptomycin was isolated from  Streptomyces griseus by the American scientist Stanley

Waksman. Streptomycin was the firs t successful antib io tic  against tuberculosis (Schatz,

Bugle et al. 1944), and Waksman was awarded the Nobel Prize in 1952. Many o the r

antibiotics were isolated from  bacteria tha t have evolved a biosynthetic process to

protect themselves. This is a particular trend fo r soil bacteria (e.g. Bacillus sp.) in order
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to  increase dominance in the ir own ecological niche. For examples, antib iotics such as 

bacitracin and gramicidin were identified from  Bacillus licheniform is and Bacillus brevis 

respectively (Abdulkadir, Waliyu 2012).

The golden age of antib io tic discovery was from  1943 to  1960, and in this period more 

than tw enty  classes of antibiotics were released in to  global markets. The m ajority o f 

current antib io tic classes today were developed from  this earlier era (Coates, Halls et 

al. 2011, Lewis 2013). Based on the penicillin structure, antim icrobial researchers have 

succeeded in producing semi-synthetic beta-lactam antibiotics such as cephradine, 

cephalexin and cefadroxil (Elander 2003, Thakuria, Lahon 2013). Analysis o f global 

antib io tic consumption from  the 71 countries during the period o f 2000 to  2010 

revealed tha t beta-lactam antibiotics led the field (Error! Reference source not found.) 

(Van Boeckel, Gandra et al. 2014).

Broad-spectrum penicillins 

Cephalosporins 

Macrolides 

Fluoroquinolones 

Trim ethoprim  

Tetracyclines 

IMarrow-spectrum penicillins 

Chloramphenicols 

Aminoglycosides 

Other 

Carbapcnems |  

Rifamycins J 
Glycopeptides 

Monobactams  

Polymyxins

’enicillin-streptom ycin combinations  

Carbacephems
^  2000 
□  2010

 1-------
0 -5 *  1 0 ;C 1 -0 x 1 0 '°  1 -5 x 10!C

 Standard units (log)_______

2 0 *  10 ,£
 1

2 - 5 * 1 0 K

Figure 1.2 Global antibiotic consumption in from 2000-2010 (Van Boeckel et al., 2014).
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1.3 Antibiotic innovation gap

Between the mid- sixties until the turn of the millennium, no new classes of antibiotics 

have been commercially approved, although there are some antibiotics that have been 

found in the different phases of clinical trials (Figure 1.3). Only two new classes have 

been marketed in the last fifteen years daptomycin and linezolid (Coates, Halls et of. 

2011, Gostelow, Gonzalez et al. 2014). Daptomycin (Cubicin) is a lipopeptide-based 

antibiotic produced by Streptomyces roseosporus, discovered in the 1980s and 

approved for use (Shoemaker, Simou et al. 2006, Humphries, Pollett et al. 2013, 

Kelesidis 2014). Daptomycin has a broad spectrum activity against Gram positive 

bacteria including MRSA strains and no activity against Gram negative bacteria (Streit, 

Jones et al. 2004). The most recently discovered antibiotic class is that of 

oxazolidinones, such as Linezolid. Linezolid is used to treat pneumonia, skin infection 

and bacteremia caused by vancomycin-resistant strains (Livermore 2003, Wilcox 2005).

1910 1920 1930 1940 1950 1960 1970 1980 20101990 2000

Discovery Void

Salvarsan

Penicillin

Sulfonamide

Streptomycin

Nalidixic acidBacitracin

TrimethoprimNitrofurans

LincomycinChloramphenicol

FusidicacidPolymyxin

Chlortetracydine Fosfomycin

j  | MupirociiTMetronidazoleCephalosporin

Pleuromutilin Rifamycin Carbapenem

Novobiocin OxazolidinoneErythromycin

Isoniazid Cycloserine Monobactam

DaptomycinVancomycin

Streptogramin

Figure 1.3 Illustration of the "discovery innovation gap/' (Silver 2011).
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The antibiotic drug discovery innovation gap has been caused by a combination of 

several factors (Berdy 2012) and the development of drug safety regulations has had a 

great impact on the antibiotic pipeline. These regulations have raised the cost and 

timeline of antibiotic development, resulting in a shortage of novel antibiotics in 

production. Currently, many new antibiotics are in late-stage clinical development but 

few of them belong to novel classes (Butler, Blaskovich eta l. 2016, Fernandes, Martens 

2016). More recently, the FDA has, however, announced a new, shorter and more 

feasible procedure called Special Populations Limited Medical Use (SPLMU), to 

approve some critically needed drugs to treat life-threatening diseases like resistant 

infections, allowing patients earlier access to promising new antibiotics (Spellberg

2012). Under this new program, a quinoline-based antibiotic (Sirturo ™) has been 

approved to treat multi-drug resistant tuberculosis (Dowling,-O'Dwyer et al. 2013).

From a pharmaceutical industry perspective, antibiotic drug research and development 

is unattractive economically. Most pharmaceutical companies have diminished 

investment into the discovery and development of new antibiotics due to the rapid 

increase of drug resistance caused by resistant bacteria. Pharmaceutical companies 

can gain twenty times more profit if they develop new drugs to treat chronic disease 

such as diabetes and epilepsy than generating a novel antibiotic (Figure 1.4) 

(Fernandes, Martens 2016). According to the Regional Drug and Therapeutics Centre at 

Newcastle in 2016, the cost of a 5-day treatment of antibiotics was from £0.5 to £114, 

as compared with £150 to £2500 spent on the cost of insulins for 1 year. Many novel 

antibiotic classes are urgently needed in the next fifty years to treat bacterial infection 

caused by resistant species (Coates, Halls et al. 2011).
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Figure 1.4 Drug expenditures in USA of recently launched antibiotics versus other brands 

according to the IMS Health National Sales Perspectives (NSP) database in 2016 with 

focus on Tefiaro sales over two years (Fernandes and Martens, 2016).

The decline in the antibiotic drug discovery and production pipeline may be attributed

antibiotics such as screening soil-derived actinomycetes (Lewis 2013). Recent advances 

in high throughput screening techniques may decrease costs and the time to generate 

novel antibiotics, for example, isolation chip which was used to identify a new class of 

lipid II binding antibiotics (teixobactin) (Ling, Schneider et al. 2015). Such techniques 

may encourage antimicrobial researchers and pharmaceutical companies to reinvest 

again in antibiotic drug discovery (Chan, Macarron et al. 2002, Dougherty, Barrett et al. 

2002). There is an urgent need to discover novel antimicrobial agents with different 

mechanisms of action for overcoming the life-threatening resistance of pathogenic 

microorganisms to classic antibiotics (Hancock 2001). Transcriptomic and bioinformatic 

approaches such as cDNA microarray and other sequence-based technologies may 

offer an opportunity to identify new molecular pathways, beneficial in understanding 

the mechanism of killing action of bacteria, in order to develop new antibiotic (Brazas, 

Hancock 2005, Scanlon, Postal et al. 2014).

to the limitation of some methodologies which were used previously to identify new



1.4 Antimicrobial peptides

Most living organisms are continuously exposed to a large number of pathogens and 

therefore have evolved two main defence mechanisms against infection; the innate 

immune system which constitutes the first line of non-specific host defence 

mechanism and the adaptive immune system which includes a specific recognition to a 

particular pathogen acting as a second line through generation of specific antibodies. 

The innate immune system provides a broad range of different immediate defensive 

mechanisms against the invasion by other organisms such as phagocytes, macrophages 

and natural killer cells as well as the activation and/or release of some antimicrobial 

molecules ranging from small inorganic molecules to large proteins (Ganz 2003, 

Oppenheim, Biragyn et al. 2003, Diamond, Beckloff et al. 2009).

Antimicrobial peptides (AMPs; also called host defence peptides) play a critical role in 

the innate immune defence system of all living organisms ranging from bacteria and 

other single celled organisms to plants and multicellular animals (Zasloff 2002, Zasloff 

2007, Guilhelmelli, Vilela et al. 2014). However, in organisms that have no adaptive 

immunity, AMPs represent the principal constituent of their defence mechanisms 

(Meister, Lemaitre et al. 1997). AMPs are found and secreted in varied tissues and cells 

such as epithelial surfaces, granules of phagocytic cells, haemolymph and glandular 

structures (Rosa, Barracco 2010).

Most AMPs have hydrolytic activities to kill pathogenic organisms such as bacteria, 

parasites, and viruses as well as cancer cells. They have been used as food 

preservatives and in biological control of plant pathogens and they are considered to 

be promising templates for the design of novel antibiotics. A small number of these
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peptides have been commercially developed into therapeutics such as daptomycin, 

polymyxin B and Locilex™ (an analogue of magainin 2) (Brahmachary, Krishnan et al.

2004, Jenssen, Hamill et al. 2006, Giuliani, Pirri et al. 2007, Laverty, Gorman et al. 

2011, Hintz, Matthews etal. 2015).

1.5 Antim icrobial peptide diversity, classification and structure

According to the Antimicrobial Peptide Database (APD) more than 2500 peptides have 

been discovered as of December 2015. About 75% of AMPs have been isolated from  

animal sources (Wang, Wang 2004, Wang, Li et al. 2016). In 1939 the first AMP, 

gramicidin, was discovered from the bacterium Bacillus brevis with antimicrobial 

activity on both Gram negative and Gram positive bacteria (Yamada, Shinoda et al. 

2006, Phoenix, Dennison et al. 2013).

Antimicrobial peptide research has expanded with the discovery of AMPs from multi 

cellular organisms; among the first were cecropins (Hultmark, ENGSTROM et al. 1982). 

Cecropins were initially identified in silk moth (Hyalophora cecropia) haemolymph, 

with broad spectrum activity against both Gram positive and Gram negative bacteria 

and little or no haemolytic effects (Moore, Beazley et al. 1996). Cecropins and their 

derivatives were also isolated from other insects and nematodes (Pillai, Ueno et al.

2005, Castillo, Reynolds et al. 2011).

Defensins were the first mammalian AMPs, isolated from rabbit macrophages in 1980

(Kaiser, Diamond 2000). Defensins and defensin-like peptides were also isolated from a

wide variety of organisms such as fungi (Mygind, Fischer et al. 2005), platypus venom

(Torres, Dantas eta l. 2010), and dung beetles (Hwang, Lee et al. 2009). Defensins have

also been reported in plants. However, plant defensins differ from other defensins as
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they are mainly active on fungi and yeast rather than bacteria (Stotz, Thomson et al. 

2009, de Oliveira Carvalho, Moreira Gomes 2011).

AMPs can be classified on the basis of their biological activities, biochemical properties 

or on the biological source from which have been isolated from. However, they are 

categorized based mainly on their secondary structure, into two groups namely a- 

helical structures and those with (3-sheet structures. However, some AMPs have mixed 

structures and others have non- a- or (3- structures (extended) (Figure 1.5) (Vizioli, 

Salzet 2002, Bah a r, Ren 2013).

A _  mm. ^  B

-Asp9

I.CUVal Om
Pro

^  D-Phe

D-Phc
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Ser11

m G lu 1 2

Kyn13

° A s n 2
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Figure 1.5 Structural classes of AMPs. A: a-helical magainin-2, B: 3-sheeted defensin, C: mixed 

structure of thionins, D: extended indolicidin, E: cyclic structure of gramicidin S and F: Lipopeptide 

(Daptomycin) (modified from (Ganz 2003, Lee, Hodges 2003, Jenssen, Hamill et al. 2006).
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I-a-helical AMPs

The best-studied AMPs are the a-helix peptides such as cecropins, magainins, and 

m ellitin  (Epand, Vogel 1999, Bahar, Ren 2013). Several spectroscopic studies have 

revealed tha t a-helix peptides are usually unstructured in aqueous solution and form  

helices in the presence of membrane-like models (Bechinger, Zasloff et al. 1998). The 

a-helical structure o f magainin 2 and its analogues have been abundant reported using 

circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) analysis 

(Ludtke, He et al. 1994, Mecke, Lee et al. 2005) in the presence o f membrane- 

m imicking environments such as solvents like trifluo roethano l (TFE) (Gesell, Zasloff et 

al. 1997) (Figure 1.5A). The secondary structure analysis o f m e littin  and cecropin B1 by 

CD and NMR revealed tw o helical segments (Bazzo, Tappin et al. 1988, Srisailam, 

Arunkumar et al. 2000).

II- p-sheet AMPs

Defensins are one o f the most common p-sheet AMPs, they are cationic peptides 

having six (vertebrates) to  eight (plants) conserved cysteine residues (Tu, Li et al. 

2015). Defensins are classified into tw o  subfamilies a- and p -defensins based on 

cysteine linking pattern (Ganz 2003). Secondary structure analysis o f human p- 

defensins by NMR revealed 3-stranded antiparallel p-sheets w ith  a single helical turn  

(Bauer, Schweimer et al. 2001, Qi, Xu et al. 2016) (Figure 1.5B).

III- Mixed structure AMPs

Some peptides have a-helix and P sheet mixed structures. For instance, th ionins are

cationic plant AMPs which includes tw o a-helices and double-stranded p-sheet w ith

three or four disulfide bonds (Figure 1.5C). For example, NMR analysis o f hordo th ion in -

a revealed tw o a-helical regions running in opposite directions and tw o  short
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antiparallel (3-sheets (Nawrot, Barylski et al. 2014, Tam, Wang et al. 2015).

IV- Extended AMPs

Indolicidin is an AMP that belongs to the cathelicidins family isolated from bovine 

neutrophils. CD spectra of indolicidin in 0-50% TFE, on neutral and negatively charged 

liposomes showed no distinct conformational change suggesting unordered peptide 

(Rozek, Friedrich eta l. 2000, Friedrich, Rozek et al. 2001, Hsu, Chen et al. 2005, Chan, 

Prenner et al. 2006a) (Figure 1.5D).

V- Cyclic AMPs

Gramicidin S is a cyclic broad spectrum AMP isolated firstly from the bacterium Bacillus 

brevis. It is synthesised by gramicidin S synthetase enzymes by forming thioester bonds 

to join two identical pentapeptides head to tail (Figure 1.5E) (Bredesen, Berg et al. 

1968, Abraham, Prenner et al. 2014). Other cyclic AMPs have a fatty acid chain 

attached to the peptide moiety (lipopeptides); the lipid tail facilitates peptide insertion 

into bacterial membranes which enhance their antimicrobial activities (Pirri, Giuliani et 

al. 2009, Meena, Kanwar 2015). For example, daptomycin is a cyclic anionic (-3  net 

charge) lipopeptide isolated from actinobacteria Streptomyces roseosporus made up of 

13 amino acids connected to a fatty acid side chain (Jung, Rozek et al. 2004, 

Steenbergen, Alder et al. 2005) (Figure 1.5F).

1.6 Im portant Properties o f AMPs

I- Net charge

Most AMPs are cationic peptides with a positive net charge from +1 to +10 that are

rich in arginine and/or lysine amino acids (Vizioli, Salzet 2002, Jenssen, Hamill et al.

2006, Zasloff 2007). They are amphipathic molecules as hydrophobic and positively
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charged amino acids are arranged in opposite regions of the structure (Melo, Ferre et 

al. 2009, Seo, Won et al. 2012). Binding of AMPs to pathogen membranes is crucial in 

order to disrupt lipid bilayer integrity and to permeabilise the membrane leading to 

cell death. The cationic amphipathic nature is essential for AMPs killing activity as it 

helps AMPs to interact electrostatically and hydrophobically with the bacterial 

membrane, which has an anionic surface and is rich in hydrophobic components 

(Wimley 2010, Midura-Nowaczek, Markowska 2014). A small number of aspartate-rich 

AMPs are anionic (charges -1 to -7), for example Dermcidin (-2 net charge) which is 

secreted by human sweat glands (Schittek, Hipfel et al. 2001, Fales-Williams, Brogden 

et al. 2002, Harris, Dennison et al. 2009, Paulmann, Arnold et al. 2012). Anionic AMPs 

interact with the membrane of the pathogen by forming cationic bridges with metal 

ions such as zinc (Fales-Williams, Brogden et al. 2002, Harris, Dennison et al. 2009, 

Becucci, Valensin et al. 2014).

II-Hydrophobicity

Previous studies on structure activity relationships of AMPs revealed that the 

hydrophobic face of AMPs enhances their affinity with target membrane lipid bilayers, 

which results in antimicrobial effects and leads additionally to cytotoxicity (Kim, Jang et 

al. 2014, Lee, Lee 2015). The hydrophobic face of peptides enhances their penetration 

into the hydrophobic core of membrane (Chen, Guarnieri et al. 2007, Bahar, Ren

2013). Thus, the replacement of hydrophobic residues with more hydrophilic ones or 

removal of hydrophobic C- or N-terminals of some cytotoxic peptides improve their 

selectivity toward prokaryotic membranes and reduces their toxicity toward 

eukaryotes (Skerlavaj, Gennaro eta l. 1996, Lee, Park eta l. 1997, Ciornei, Sigurdardottir 

et al. 2005).However, there is an optimal threshold of hydrophobicity for any AMP,
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beyond which its antimicrobial activity decreases or is abolished (Chen, Guarnieri et al. 

2007, Bahar, Ren 2013).

Ill-Helicity

The helicity of a-helical AMPs plays an important role in peptide specificity toward 

prokaryotic membranes (Matsuzaki 2009). Several studies have investigated the 

relationship of peptide helicity and hydrophobicity (Chen, Mant et al. 2005, Huang, He 

et al. 2014, Zhang, Song et al. 2016). Minimising the hydrophobicity of peptides to 

improve their therapeutic indices resulted in a remarkable decrease in a-helical 

content, due to the change in continuity of the hydrophobic/hydrophilic face of the 

helical structure.

1.7 Selectivity o f antim icrobial peptides

Phospholipids are the main target of cationic AMPs. The antibacterial activity of 

several AMPs was found to depend upon the binding affinity of the phospholipid 

constituents of bacterial membranes (Ntwasa 2012, Park, Kang et al. 2013). The 

phospholipid composition of bacterial membranes plays a key role in the mechanism 

of membrane disruption of AMPs, determining the susceptibility of bacteria and 

driving the specificity of AMPs.

Bacterial membranes contain varying amounts and composition of negatively charged

phospholipids such as phosphatidylglycerol (PG) and cardiolipin (CL) as well as

zwitterionic phospholipids such as phosphatidylethanolamine (PE). Gram positive

bacterial membranes contain no or lower amounts of PE and higher amounts of

negatively charged phospholipids when compared with Gram negative membranes

(Table 1.1) (Epand, Savage et a/. 2007, Epand, Epand 2009). Most cationic AMPs have
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less a ffin ity  fo r eukaryotic cell membranes which have mainly neutral lipids such as PE 

and phosphatidylcholine (PC). Also the presence of a large am ount o f cholesterol in a 

eukaryotic cell membrane inhibits membrane disruption by rig idifying the lipid bilayer 

structure compared w ith  the lack o f cholesterol in bacterial cell membranes which 

makes the membrane disruption by an AMP easier (Figure 1.6) (Sanderson 2005, 

Brender, McHenry et al. 2012, Seo, Won et al. 2012, Sani, Separovic 2016).

Table 1.1 Percentages of major phospholipid components of bacterial membranes

Bacterial species
% Total membrane 

phospholipid References

PE PG CL

Gram positive
S. aureus 0 58 42 (Epand et al., 2007, Epand and 

Epand, 2009)

B. subtilis 12 70 4 (Clejan, Krulwich et al. 1986)

Gram negative E. coli 80 10-15 0-10
(Shokri, Larsson 2004, Epand, 
Epand 2009)

Bacterial membrane Mammalian membrane
acidic Cationic, amphipathic peptide
phospholipid \

zwitterionic Cholesterol .....  ^  v ^noiesieroi
phospholipid I

\ ^  ^  /  Exterior leaflet

s t o f f l ®  m m m

Figure 1.6 Lipid bilayers mimicking bacterial and eukaryotic cell membranes

(Brender et al., 2012).
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Another significant factor driving the binding affinity of bacterial membranes is the 

asymmetric distribution of phospholipids in membrane leaflets. The outer leaflet of 

bacterial membrane consists mainly of PG, while CL is found in both membrane leaflets 

(Barsukov, Kulikov et al. 1976, Marquardt, Geier et al. 2015). Negatively charged 

phospholipids such as phosphatidylinositol (PI) and phosphatidylserine (PS) are located 

in the inner monolayer of eukaryotic membranes (Zwaal, R. F. A. 1991). PS is exposed 

externally in mammalian cells as an apoptotic signal and the presence of PS in the 

outer monolayer of cancer cell membranes play a major role in the disruption of these 

membranes by AMPs (Hoskin, Ramamoorthy 2008, Riedl, Rinner et al. 2011). Such 

asymmetry promoting electrostatic interactions of cationic peptides with negatively 

charged phospholipids in bacterial and cancer cell membranes provides another 

explanation for AMP specificity (Sato, Feix 2006).

A large number of studies have investigated AMP selectivity toward model 

membranes of various compositions, mimicking different prokaryotic and eukaryotic 

membranes. For instance, it has been found that the ability of cathelicidin AMP (LL-37) 

to induce membrane disruption is dependent on negatively charged phospholipids, as 

the peptide showed no disruptive action toward zwitterjonic membranes (Zhang, 

Ogl^cka et al. 2010). Such preferential activity toward anionic phospholipids is typical 

for abundant AMPs such as melittin (Kleinschmidt, Mahaney et al. 1997) and novicidin 

(Dorosz, Gofman et al. 2010), which showed membrane selectivity to enriched 

negative phospholipid model membranes rather than zwitterionic membranes.

Consistent with other species, several cationic AMPs from scorpion venom have been

shown to target the anionic phospholipid components in prokaryotic mimetic

membranes. For example, UyCT peptides identified from Australian scorpion venom
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Urodacus yaschenkoi induced more efficient fluorescent dye release from membrane 

bilayers mimicking E. coli and S. aureus, rather than phospholipids mimicking human 

red blood cells (Luna-Rarmrez, Quintero-Hernandez et al. 2013). From these studies, a 

strategy of how to develop these AMPs as novel antibiotics have begun to emerge, as 

the phospholipid selectivity of AMPs is used to increase their therapeutic index 

(Matsuzaki 2009, Aoki, Ueda 2013).

Some AMPs, however, are not cell-selective; they can lyse both prokaryotic and normal 

eukaryotic membranes (Shai 1999) and this represents one of the biggest barriers to 

the use of AMPs as therapeutic agents. For instance, the lytic activity of Aurein 1.2, an 

AMP isolated from the skin of the Australian tree frog is not a charge dependent as it 

has the ability to induce membrane disruption to both negative and zwitterionic 

bilayers (Shahmiri, Enciso et al. 2015). Recent studies have revealed that the 

substitution of some non-polar residues with basic and hydrophobic residues of both 

AR-23 (a melittin-related peptide) (Zhang, Song et al. 2016) and snake venom  

cathelicidin-BF (Jin, Bai et al. 2016) have resulted in a series of analogues with high 

specificity toward prokaryotic cells.

1.8 Proposed models o f m em brane disruption mechanisms o f AMPs

The interactions of AMPs with phospholipid bilayers indicate different mechanisms for 

pore formation and lysis of model membranes. The general mechanism proposed is 

that the peptides (i) interact with membranes, (ii) concentrate to reach a threshold 

concentration to (iii) permeabilise or rearrange membranes by a variety of different 

mechanisms dependent on the specific AMP (Glaser, Sachse et al. 2005, Matsuzaki 

2009, Yu, Guo et al. 2009).
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Figure 1.7 Classical models of pore forming antimicrobial peptide. (A) Barrel-stave pore: peptides 

form a bundle with a central lumen, the hydrophobic surfaces interact with the lipid core. (B) 

Carpet mechanism: a detergent-like action forming micelles which disrupt the membrane 

structure. (C) Toroidal pore: the hydrophilic portion of the peptide interacts with the phospholipid 

head groups while the hydrophobic regions associate with the lipid core. The red part of the 

peptide represents a hydrophilic surface, while blue is hydrophobic (modified from Chan, David 

I.,2006).

Several spectroscopic techniques such as CD spectroscopy and NMR, and microscopic 

techniques such as atomic force microscopy (AFM), have been used to  analyse 

membrane disruption and pore form ation mechanisms by AMPs in to  lipid bilayer 

models (Oliynyk, Kaatze et al. 2007, Fernandez, Sani et al. 2013). Three main 

mechanisms fo r artificial membrane disruption or pore form ation have been suggested 

depending on the peptide structure, membrane lipid com position and peptide 

concentration; these are the carpet, barrel-stave, and toroidal models (Figure 1.7) 

(Sengupta, Leontiadou et al. 2008, W im ley 2010).
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The carpet model is characterised by covering the membrane with the peptide parallel 

to the membrane surface via electrostatic interactions until a threshold concentration 

is reached. This is followed by a detergent-like action forming micelles, as the polar 

residues facing the hydrophilic head groups of the phospholipids lead to the disruption 

of the membrane structure (Figure 1.7) (Shai 1999, Li, Xiang et a l .2012, Teixeira, Feio 

et al. 2012). Specific peptide-peptide interactions are not included in this model 

(Melo, Ferre et al. 2009). Multiple studies have proposed the carpet mechanism to 

explain the activity of several a-helical cationic AMPs such as cecropin P I (Gazit, Miller 

et al. 1996) and aurein 1.2 (Fernandez, Le Brun e ta l. 2012, Sani, Gagne et al. 2014). 

The findings of NMR and other spectroscopic experiments revealed that AMPs which 

are proposed to act with the carpet model were incorporated parallel to the lipid 

bilayer liposome and didn't penetrate deeper into the bilayer interior (Gazit, Miller et 

al. 1996, Yamaguchi, Huster et al. 2001). The interaction of aurein 1.2 with eukaryotic- 

like bilayers was analysed using NMR and CD spectroscopy and revealed that the 

fatty acyl chains of the outer bilayer were the most affected and not the bilayer 

interior, following peptide incorporation (Fernandez, Sani et al. 2013). Liposome 

leakage assays with fluorescent markers of varying sizes on PC/PG liposomes at 

different lipid/peptide ratios have been carried out to examine the effects of aurein 

1.2. Markers were released in an uncontrolled manner following treatment with the 

peptide, indicating a carpet mechanism for membrane breakdown (Fernandez et al., 

2012).

The barrel-stave model proposes that the peptide firstly binds to the membrane as a 

monomer, and then oligomerizes to form a bundle with a central aqueous pore; the 

hydrophobic surfaces interact with the lipid core, while the hydrophilic surfaces orient
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inwardly to line the pore (Figure 1.7). This arrangement creates an aqueous channel 

resulting in disturbance of membrane function which leads to the discharge of 

cytoplasmic contents and subsequent death of the cell (Jenssen, Hamill et al. 2006, Li, 

Xiang et al. 2012, Schmidtchen, Pasupuleti et al. 2014). The Barrel stave pore model 

has been proposed firstly for alamethicin (Baumann, Mueller 1974) describing the 

channel forming properties of the peptide. Subsequently, many studies have been 

published on alamethicin pore formation using a varied composition of phospholipid 

bilayers and a variety of techniques. Such studies revealed that alamethicin induced 

pores consisting of 6 to 11 monomers, with varied outside and inside diameters from 

18 - 26 and 40 -50 A respectively (Constantin, Brotons et al. 2007, Qian, Wang et al. 

2008, Ye, Li et al. 2012, Rahaman, Lazaridis 2014).

Other peptides, such as the magainins and melittins, insert into in the phospholipid 

bilayer forming toroidal-shaped pores (toroidal or wormhole model). In this model a 

wider ranging peptides firstly aggregate, then initiate binding of the hydrophilic 

portion of the peptide with the phospholipid head groups while the hydrophobic 

regions associate with the lipid core. The peptide insertion induces inward membrane 

bending to form a pore, lined by the head groups of the bilayer together with the 

charged and polar side chains of the peptide molecules, while the peptide hydrophobic 

side chains are oriented toward the inside of the bend (Figure 1.7) (Jenssen, Hamill et 

al. 2006, Sengupta, Leontiadou et al. 2008, Li, Xiang et al. 2012, Lee, Sun et al. 2013, 

Schmidtchen, Pasupuleti et al. 2014).

Both toroidal and barrel stave models are functionally similar but differ in the

suggested structure of the pore and membrane interactions (Gee, Burton e ta l. 2013).

The barrel-stave model was the prototype before the introduction of the toroidal
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model in the mid of 1990s to describe the pore forming mechanism of magainin (Yang, 

Harroun eta l. 2001, Matsuzaki, Murase eta l. 1996).

The toroidal pore is a lipid-dependent pore as lipids play a key role in the membrane 

bending (Sengupta, Leontiadou et al. 2008, Gilbert, Dalla Serra et al. 2014, Sychev, 

Balandin et al. 2015). The NMR data of LL-37 in PC lipid bilayers reflected 

conformational changes of lipid headgroups, as they become bent in the presence of 

LL-37 in a concentration-dependent manner suggesting a toroidal pore mechanism for 

the peptide (Henzler Wildman, Lee et al. 2003). According to biophysical studies/it is 

suggested that AMP binding to some lipid bilayer models generates membrane 

curvature depending on the lipid composition; curved membranes facilitate AMP 

insertion. These suggestions are consistent with the formation of toroidal pores 

(Hallock, Lee et al. 2003, Sato, Feix 2006, Chen, Mark 2011). The same observations 

were seen in a study of Smp24 against prokaryotic-like membranes using AFM 

(Harrison, Heath et al. 2016). Toroidal pores of varying size are observed, dependent 

on the AMP; for example, the magainin-1 pores (assembled by 4 to 10 monomers) 

have diameters ranging from 0.5 - 3 nm in mammalian and bacterial membranes 

(Watanabe, Kawano 2016), while Smp 24 induced pores in PC/PG bilayers have 

diameters averaging 80 nm (Harrison, Heath et al. 2016).

Recent models have provided minor modifications for these original prototypes

models. For instance, a variant model with irregular arrangements of peptide and lipid

molecules (disordered toroidal pore model) has been revealed through the analysis of

the interaction of magainin MG-H2 with PC phospholipid bilayers. Only one molecule

of the MG-H2 peptide is found near the centre of the pore, while other peptide

molecules line the pore (Leontiadou, Mark e ta l.  2006). Only one or two melittin
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molecules were found inserted into a pore-induced PC bilayer, also suggesting the 

disordered toroidal pore as a mechanism of melittin. This pore (diameter 1.5 nm) 

contains 8 -10  lipid head-groups (Sengupta, Leontiadou et al. 2008).

The aggregate channel model is another variant that was proposed to explain 

increasing on membrane permeability without causing cell death. Cationic peptides 

destabilise areas and gain access to both outer and inner membranes by the removal 

or displacement of lipopolysaccharide (LPS)-associated cations (Mg2+ and Ca2+) 

(Giuliani, Pirri et al. 2007, Li, Xiang et al. 2012).

1.9 O ther targets o f AMPs in bacteria

The previous models propose that AMPs induce an increase in membrane permeability 

leading to cell death (Carnicelli, Lizzi et al. 2013). AMPs may have multiple modes of 

action causing lethal cell damage including additional or alternative non-membrane 

permeabilising mechanisms, such as targeting specific intracellular molecules and 

resulting in inhibition of the biosynthesis of DNA, RNA, protein and the cell wall (Bahar, 

Ren 2013, Guilhelmelli, Vilela et al. 2014, Scocchi, Mardirossian et al. 2016).

Several studies have suggested DNA and RNA as targets for the antibacterial activity of 

some AMPs. For example, fluorescein isothiocyanate (FITC)-labelled buforin II was 

observed to penetrate the cell membrane of E. coli at subinhibitory concentrations; 

the peptide also inhibited the migration of DNA and RNA in a concentration-dependent 

manner (Park, Kim et al. 1998). Similarly, gel retardation assays have revealed the 

specific interaction of indolicidin with DNA (Hsu, Chen et al. 2005).

Some AMPs can interfere with cell wall biosynthesis. For instance, bacteriocins inhibit



septum form ation in Lactococcus lactis as a primary target o f the ir killing activity. 

Lactococcin 972 did not show any imm ediate decrease in cell v iab ility  indicating tha t 

no membrane lysis occurred upon addition of the bacteriocin (M artinez, Suarez et al. 

1996). Newer studies have found tha t bacteriocins like nisin and lactococcin 972 bind 

to  Lipid II, the main component in peptidoglycan biosynthesis which leads to  cell wall 

synthesis inh ib ition (Breukink, de Kruijff 2006, Martinez, Bottiger et al. 2008).

1.10 Bacterial resistance to  AMPs

Understanding bacterial resistance mechanisms to  AMPs is crucial in the developm ent 

and use of AMPs as anti-infective agents. Although AMPs are non-specifically targeted 

antim icrobial agents and there is a relatively low potentia l o f bacterial resistance 

emerging to  AM Ps, however bacterial resistance to  AMPs should also be highlighted in 

order to  develop and use AMPs as novel antim icrobials (Gruenheid, Le Moual 2012, 

Nawrocki, Crispell et al. 2014).

One of the common resistance strategies is AMP hydrolysis by bacterial proteases. For 

example, extracellular metalloproteases are secreted by Bacillus anthracis to  catalyse 

the hydrolysis o f peptide bonds o f some AMPs such as cathelicidin-derived peptide LL- 

37. The addition of metalloprotease inhibitors significantly increases the sensitivity o f 

B. anthracis to  LL-37, which reveals the key role o f proteo lytic activity in inducing B. 

anthracis resistance (Thwaite, Hibbs et al. 2006). Also, a num ber o f proteases secreted 

by Gram negative bacteria such as Pseudomonas aeruginosa and Proteus mirabilis 

have been reported tha t they inactivate and cleave LL-37 (Gruenheid, Le Moual 2012).

Some bacteria produce extracellular polymeric substances such as exopolysaccharides 

which are involved in biofilm  and exopolysaccharide capsule fo rm ation . These
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structures protect bacteria by binding or repulsing AMPs, to reduce their access to the 

cell (Gruenheid, Le Moual 2012, Schurr 2013). S. epidermidis produces the 

polysaccharide adhesion, as an intercellular resistance mechanism against some AMPs 

such as LL-37, and dermcidin (Costa, Henriques et al. 2009, Nawrocki, Crispell et al.

2014). Also, Neisseria meningitidis and Klebsiella pneumoniae shield their cell surfaces 

by using capsule polysaccharides to reduce the amount of AMPs reaching the bacterial 

membrane such as polymyxin B, defensins and LL-37 (Gruenheid, Le Moual 2012).

Other resistance mechanisms may be implicated such as the use of efflux pumps. For 

instance, E. coli and Klebsiella pneumoniae strains lacking the AcrAB efflux pump were 

more sensitive to polymyxin B, LL-37 and human (3-defensin-l peptides than the 

parental strain (Padilla, Llobet et al. 2010, Warner, Levy 2010). ATP-binding cassette 

(ABC) transporters are one of the most efficient resistance mechanisms involved in 

AMP export by using the energy of ATP hydrolysis (Gebhard 2012). DNA microarray 

analysis of 5. aureus following exposure to Ovispirin-1 and dermaseptin K4-S4(l-16) 

revealed a significant upregulation of vraDE (encoding an ABC transporter). The 

deletion of genes that encode ABC transporters such as yejABEF (Brucella melitensis) 

and vraDE (5. aureus) resulted in significant increase in the MIC of bacitracin and 

polymyxin B respectively compared with values on the parent strains (Pietiainen, 

Frangois et al. 2009, Wang, Bie et al. 2016).

Additionally, some bacterial species alter their membrane permeability to lower their 

sensitivity to AMPs. This mechanism includes modifications to their membrane 

structure such as reducing or neutralising surface negative charges and increasing the 

concentration of the fatty acids in order to decrease the affinity of AMPs. For example, 

examination of the outer membrane of a nisin-resistant strain of Listeria
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monocytogenes revealed a higher proportion of lipids on its surface. Some bacteria 

such as Proteus mirabilis synthesise a LPS with reduced negative net charge; this 

induces resistance to the cationic polymyxin B (Gutsmann, Hagge et ol. 2005, 

Gruenheid, Le Moual 2012). Moreover, the specific aminoacylation of the polar head 

group of phospholipids in the bacterial membrane have been also used to resist AMPs, 

for examples addition of alanine or lysine to PG to neutralise its net negative charge of 

in Pseudomonas aeruginosa or Staphylococcus aureus respectively. This 

aminoacylation is mediated by aminoacyl-phosphatidylglycerol synthases results jn 

conferring several resistance phenotypes in the presence of some AMPs such as 

protamine (Roy, Dare et al. 2009, Arendt, Hebecker et al. 2012, Joo, Fu et al. 2016).

Nevertheless, most bacterial resistance to AMPs has limitations. Bacteria have not yet 

developed effective resistance to a broad range of AMPs in the way that they have 

succeeded against some classical antibiotic classes (Kraus, Peschel 2006, Greber, 

Dawgul 2017). However, the clinical use of AMPs is still limited (Section 1.11).

1.11 Antim icrobial peptides as potentia l antibiotics in clinical pipeline

Gramicidin, bacitracin, polymyxin B, colistin and daptomycin are examples o f licensed 

and commercially available peptide-based antibiotics. They have achieved widespread 

usage as successful antibiotics to treat a broad range of infections, pointing to the 

clinical potential of other similar antimicrobials in the future.

Several new AMPs are being currently investigated and developed in different clinical 

phases, suggesting promise as future antibiotic therapies. For instance, Novexatin is a 

novel cationic peptide based on human a- and 3-defensins structures. Novexatin has 

antifungal activity, particularly against Candida and Cryptococcus species. Phase II
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clinical trials established the safety and efficacy of novexatinis as topical dermal 

therapy for fungal nail infection (onychomycosis) (Fox 2013). Also, phase II clinical trial 

data has been revealed the safety and effectivity of LL-37 as a topical treatment for 

hronic leg ulcers in patient population (Gronberg, Mahlapuu et al. 2014). Further larger 

clinical studies are required to support the use of these promising AMPs as marketed 

treatments.

Although AMPs represent promising antimicrobial therapeutic agents, their clinical and 

commercial development have some challenges due to high manufacturing costs 

associated with the chemical synthesis of peptides, in comparison with conventional 

small molecule antibiotic production (Bommarius, Jenssen et al. 2010). 

Gastrointestinal enzymatic degradation (Fosgerau, Hoffmann 2015), salt and serum 

inactivation (Mohanram, Bhattacharjya 2016), as well as short half-lives and rapid 

elimination (Kovalainen, Monkare et al. 2015), are other challenges that need to be 

overcome.

Some AMPs have failed to obtain regulatory approval as they were not able to 

demonstrate improvement over current therapies. For instance, omiganan (an 

indolicidin analogue) didn't show any significant anti-infective activity compared with 

positive controls like povidone iodinein phase III trials (Sader, Fedler et al. 2004, 

Gordon, Romanowski et al. 2005). XMP.629 peptide derived from human 

bactericidal/permeability-increasing protein (BPI) failed Phase II clinical trials as a 

topical use for acne because the peptide offered no significant clinical benefit over a 

vehicle-gel control treatment (Lim, Ammons et al. 2001, Gordon, Romanowski et al. 

2005).
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1.12 Snake and scorpion venoms

Both snakes and scorpions use the ir venoms to  immobilise the prey, defend against 

predators and help in the digestion process by solubilizing food (Kuhn-Nentwig 2003). 

Snake venom is a salivary secretion, stored in the venom gland and injected through 

specialised fangs which connect to  the gland via venom ducts (Mackessy 2016). In 

contrast, the scorpion venom apparatus consists o f a pair venom glands found in the 

telson at the end of the abdomen (metasoma) which deliver venom through sharp 

stinger (Torres-Larios, Gurrola et al. 2000). Snake venom is composed mainly o f 

mixtures o f large proteins/enzymes. However, scorpion venom is prim arily 

characterised by having smaller peptides and mucopolysaccharides. Venom 

composition can vary in ter - or intraspecifically according to  age, diet, and sex as well 

as the environmental habitat o f the snake or scorpion (Blaylock 2000, Newton, Clench 

et al. 2007, Ruiming, Yibao et al. 2010).

Most snake venoms are nonlethal, while a proportion causes significant m orta lity. 

Scorpion venoms contain some of the most lethal toxins derived from  animals. 

Scorpion venom includes a wide variety o f peptides which are categorised based on 

the ir structure in to tw o  main groups; the m ajority are disulfide-bridged peptides 

(DBPs) which usually target membrane-bound ion channels. A few  non disulfide- 

bridged peptides (NDBPs) comprise a smaller group w ith in  scorpion venom tha t exhibit 

m ultifunctional activities. DBPs are fu rthe r sub-grouped according to  the ir ion channel 

targets (Na+, K+, Ca2+and Cl") which play key roles in many essential cellu lar processes, 

such as nerve conduction or muscle contraction. Scorpion venoms also contain toxic 

enzymes such as hyaluronidase and phospholipases A2 (PLA2) (Venancio, Portaro et al.

2013, Diaz-Garcia, Ruiz-Fuentes et al. 2015, Nabi, Ahmad et al. 2015, Shanbhag 2015).
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1.13 Therapeutic uses o f snake and scorpion venoms

Early Egyptian and Chinese civilisations have used bee, scorpion and snake venoms for 

various medicinal purposes, including analgesic and anti-inflammatory agents (Utkin

2015). Snake and scorpion venoms contain a variety of biologically active molecules 

with diverse potential therapeutic applications such as anticancer agents, insecticides, 

antimicrobials, anticoagulants, and painkillers (Hmed, Serria et al. 2013, Vyas, 

Brahmbhatt et al. 2013).

Some snake venoms have hypotensive properties through the combined actions of 

bradykinin-potentiating peptides, Ca2+-channel blockers and natriuretic peptides. 

These antihypertensive molecules induce the dilation of blood vessels resulting in 

lowering blood pressure (Koh, Kini 2012, Vyas, Brahmbhatt et al. 2013). Capoten, one 

of the most widely prescribed drugs used in the treatment of hypertension since 1981, 

it has been developed based on the structure o f teprotide, isolated from the snake 

Bothrops jararaca. Teprotide is angiotensin converting enzyme (ACE) inhibitor which 

inhibits the breakdown of angiotensin and therefore prevents vasoconstriction 

(Komajda, Wimart 2000).

Numerous anticoagulant drugs have been designed based on snake venom 

components such as three-finger toxins, phospholipases A2, metalloproteinases and 

disintegrins. For instance, Tirofiban and Eptifibatide are antiplatelet drugs based on 

peptides and proteins isolated from Echis carinatus and Sistrurus miliarlus barbouri 

respectively. They inhibit platelet aggregation by interfering with the binding of the 

major platelet surface receptor to integrins. Ancrod and batroxobin are procoagulant 

serine proteases isolated from the venoms of Agkistrodon rhodostoma and Bothrops
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otrox respectively, which convert fibrinogen to fibrin. Defibrase a currently licensed 

defibrinogenating drug based on the structure of batroxobin, while Viprinex is 

approved for patients with acute ischemic stroke and is based on the structure of 

ancord (Calvete, Marcinkiewicz et al. 2005, Koh, Kini 2012, Marcinkiewicz 2013).

Some snake venom peptides of the family of three finger toxins exhibited distinct in 

vivo analgesic activities that could lead to the development of new potent pain reliever 

agents. For instance, hannalgesin, isolated from the venom of king cobra (Ophiophagus 

hannah), has been found to show significant analgesia without any neurotoxic effects 

(Pu, Wong et al. 1995, Alewood, Allerton et al. 2013).

Generally, licensed snake venom-based medicines are more numerous than those 

medicines based from scorpion venoms; this might refer to difficulties in the 

characterisation of low abundance peptides generally found in scorpion venom (Hmed, 

Serria et al. 2013). A wide range of scorpion venoms peptides have potential 

therapeutic effects but these have yet to be developed into licensed drugs. Anti

hypertensive peptides have been isolated from scorpion venoms, for example 

bradykinin-potentiating peptides, first purified from Tityus serrulatus venom (Ferreira, 

Alves et al. 1993). A variety of scorpion venom peptides could lead to the 

development of novel analgesic agents. For example, several peptides with analgesic 

activities were isolated from the venom of Chinese scorpion Buthus martensii. Such 

peptides might be potential templates for new painkillers as most of them are insect 

neurotoxins with no cytotoxic effects against human cells (Guan, Wang et al. 2001, 

Shao, Kang eta l. 2007, Shao, Cui etal. 2014).

Chlorotoxins (CTX) isolated from Leiurus quinquestriatus are playing key roles in the
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diagnosis and development of treatment for several cancers. CTX specifically binds 

to matrix metalloproteinase 2 (MMP-2) which is overexpressed in many tumor cells 

and is involved in cancer progression (Dong, Li et al. 2011). CTX - anticancer conjugates 

enhance the delivery of some anticancer agents such as platinum-based anticancer 

drugs (Wang, Wang et al. 2015). Fluorescently-labelled chlorotoxin can be used in 

imaging diagnostics and l-radiolabelled toxin is in clinical trials to target gliomas 

(Veiseh, Gabikian et al. 2007).

1.14 Antim icrobial activities o f scorpion and snake venoms

Snake and scorpion food is frequently contaminated with a variety of potential prey-

borne pathogens (Bastos 2012). The main areas of infection for snakes are the mouth

and fang, while the telson of scorpions is the most accessible to a wide range of

pathogenic microbes (Gao, Tian et al. 2007). Salmonella and Bacillus sp are the most

frequently isolated bacteria from snakes (Garcia-Lima, Laure 1987, Shek, Tsui et al.

2009) There are a few reports of the prevalence of pathogenic infections in snakes

such as mouth rot infections caused Pasteurella and Proteus sp and ulcerative

dermatitis which may lead to snake death (Talan, Citron et al. 1991, Garcia-Lima, Laure

1987). The presence of potent antimicrobial constituents in snake and scorpion

venoms might contribute to antimicrobial protection as a host defence mechanism

when attacking prey. For example, a significant upregulation of the AMP BmKbl in the

venom gland of Buthus martensii has been detected when infected by E. coll and

Micrococcus luteus. Interestingly, the milked crude venom of the challenged

individuals showed greater antibacterial activity against Gram positive bacteria than

uninfected individuals. It has also been observed that B. martensii use their venoms as

antimicrobial sprays to protect their bodies against pathogens (Gao, Tian et al. 2007,
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Torres-Larios, Gurrola eta l. 2000).

The crude venoms of numerous scorpion species have been shown to inhibit the 

growth of diverse pathogens such as Gram negative, Gram positive bacteria, fungi and 

viruses (Erde§, Dogan et al. 2014). Varied bactericidal and viricidal activities have been 

reported from crude venoms of different species such as the Chinese Buthus martensii 

(Gao, Tian et al. 2007) and Egyptian species such as Leiurus quinquestriatus (Salama, 

Geasa 2014), Scorpio maurus palmatus and Androctonus australis (El-Bitar, Sarhan et 

al. 2015).

Three viperid venoms {Agkistrodon rhodostoma, Bothrops jararaca and B. atrox) have 

been shown to have potent antimicrobial activity against resistant bacteria strains such 

as Staphylococcus epidermidis and Enterococcus faecalis (Ferreira, Santos et al. 2011). 

Venoms of Bothrops alternatus (Argentina) (Bustillo, Leiva et al. 2008), Echis carinatus 

(Iran) (Fathi, Jamshidi et al. 2011), Egyptian snakes venoms (Pseudechis australis, Naja 

naja and Naja nigricollis) (Shebl, Mohamed et al. 2012) and Bothrops jararaca  (Brazil) 

(Cendron, Bertol et al. 2014, Lucas Henrique Cendron, 2014) all have significant 

antimicrobial activities against wide range of bacteria and fungi. These studies 

encourage further investigation to detect and identify other novel active antimicrobial 

peptides in snake and scorpion venoms using highly developed proteomic and genomic 

techniques.

1.15 Enzymes o f scorpion and snake venom s w ith  antim icrobial activities

The antimicrobial potential of snake venom enzymes is widely investigated. PLA2 and L- 

amino acid oxidases (LAAOl and LAA02) are among the best studied enzymes 

associated with antibacterial properties (Sarny, Pachiappan e ta l. 2006). Both PLA2 and



LAAO are usually responsible for the major toxic effects during snake envenomation. 

The phospholipid of the bacterial membranes is the main target of PLA2, as they 

hydrolyse the phospholipid by releasing the fatty acids from the second carbon group 

of the glycerol backbone of the membrane phospholipid (Toyama, Rodrigues et al. 

2012). Some PLA2es derived from snake venoms have displayed a variety of potent 

antibacterial activities. For example, PLA2 from Daboia russelii pulchella venom exerts 

antibacterial activity against both Gram positive and Gram negative bacteria 

(Sudharshan, Dhananjaya 2015); similar antibacterial activities have been reported for 

PLA2esfrom the venom of Naja naja (Sudarshan, Dhananjaya 2016).

LAAO is widely found in snake venoms in high concentrations. Several snake venom 

LAAOs have shown potential antibacterial activity. For example, Balt-LAAO-I, an acidic 

LAAO isolated from Bothrops alternatus venom inhibits S. aureus and E. coli growth in 

a dose-dependent manner (Stabeli, Marcussi et al. 2004). Several reports have 

suggested that the antibacterial action of LAAO might be caused by the generation of 

H2O2 during the deamination of L- amino acids which have induced the oxidative stress 

leading to membrane damage and consequently, bacterial cell death (Torres, Dantas et 

al. 2010, Lee, Tan et al. 2011).

1.16 Antim icrobial peptides from  scorpion and snake venom s

Scorpion venoms have an abundant supply of AMPs; although less than 1% 50

AMPs) of all described AMPS from living organisms were isolated from scorpion 

venoms (Harrison, Abdel-Rahman et al. 2014, Tarazi 2016). Scorpion venom AMPs are 

classified based on the presence of disulfide bonds in their structure into two main 

groups: the majority are NDBPs and DBPs (Table 1.2) (Luna-Rarmrez, Jimenez-Vargas et
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al. 2016). NDBPs are further sub-grouped according to their sequence length into long 

(>35 amino acids), intermediate (20-35 amino acids) and short (< 20 amino acids) chain 

peptides (Zeng, Corzo et al. 2005, Almaaytah, Tarazi et al. 2014, Harrison, Abdel- 

Rahman eta l. 2014).
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Scorpine is considered as the first antimicrobial DBPs was isolated from scorpion 

(Pandinus imperator) venom. The amino-terminal sequence of scorpine shares some 

similarities with insect cecropins (Possani, Corona et al. 2002).Other scorpine-like 

peptides have subsequently identified such as HgeScpIpl (Hadrurus gertschi) (Diego- 

Garcia, Schwartz et al. 2007) and Heteroscorpine-1 (Heterometrus laoticus) 

(Uawonggul, Thammasirirak et al. 2007).

To date approximately 34 antimicrobial NDBPs have been identified and functionally 

characterised from scorpions (Table 1.2). One of the most basic peptides among this 

subfamily is hadrurin (+5 net charge) (Zeng, Corzo et al. 2005). It was purified from the 

venom of the Mexican scorpion Hadrurus aztectu (Torres-Larios, Gurrola et al. 2000). 

CD spectra of pandinin 1 isolated from P. imperator showed the peptide adopts an a  

helical structure in different membrane mimicking solvents, it was predicted that Pinl 

should have two a helical regions separated by a random coil region (Corzo, Escoubas 

eta l. 2001).

Pandinin 2 (Pin 2) was the first intermediate chain AMPs charcterised were, has been 

purified from the venom of the scorpion P. imperator. Pin2 shares 60 to 70% homology 

with some AMPS from frog skin such as brevinin 1, pipinins and magainins (Corzo, 

Escoubas et al. 2001). HsAp considered as novel class intermediate chain peptides 

showed no significant homology to any other class of scorpion AMPs (Nie, Zeng et al. 

2012).

The first short chain AMPs were isolated from the African scorpion Opisthacanthus 

madagascarienis; IsCT and lsCT2 differ only in 3 positions (Dai, Yasuda e ta l,  2001). 

Pantinin-1, -2 and -3 are homologous peptides (61-81%) have been identified from the
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venom gland of P. imperator showed considerable sequence identities (50-64%) with 

IsCT and lsCT2 (Zeng, Zhou et al. 2013). Interestingly the emergence of Hpl404  

resistance was evaluated in 5. aureus; no significant resistance for was seen until 15 

passages (Li, Xu et al. 2014).

Few small and moderate sized non-enzymatic peptides with potent antimicrobial 

effects against a wide range of bacteria and fungi have been reported from snake 

venoms (Table 1.3). Most characterised AMPs from snake venoms belong to 

cathelicidins (Wang et al., 2008, Zhao et al., 2008, Zhang et al., 2010).
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Three-finger toxins (3FTxs) are a fam ily o f cytotoxic proteins abundantly 

present in elapid and colubrid venoms. They are relatively small proteins (6-7 

KDa) in contrast to  the o ther families o f snake venom proteins. 3FTxs have 

three (3-stranded loops in the ir structure (Figure 1.8), these loops fixed to  

central core by four or five conserved disulphide bridges (Girish, Kumar et al. 

2012, Dubovskii, Utkin 2014). 3FTxs include tw o subfamilies short-chain (four 

disulfides, 60-62 residues) and long-chain (five disulfides, 66-75 residues) 

(Tsetlin 1999). They can be structurally classified into tw o  divisions as P-type 

(have Pro30 residue at the tip  o f the second loop) and S-type (presence of a 

serine residue at position 29) (Chien, Chiang et al. 1994, Menez 2002, 

Dubovskii, Utkin 2014).

Figure 1.8 Three-dimensional structures of three-finger toxins (3FTx) showing loops 

and disulphide bridges. A) Short-chain (Erabutoxin) and B) Long-chain (x-bungarotoxin). 

The loops ('fingers') are marked with Roman numbers I—III. The extension of second loop 

in long-chain 3FTx due to fifth disulphide bridge and is shown in red color (Kini, Doley 

2010 ).
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3FTxs are multi-target proteins with a wide variety of biological activities 

including neurotoxic (Jiang, Li et al. 2011), anticoagulant (Barnwal, Jobichen et 

al. 2016)) and antiplatelet (Chanda, Sarkar et al. 2013) effects. This family is 

also one of the most cytotoxic, believed to contribute to the antibacterial and 

cytolytic properties of snake venom (Dubovskii, Utkin 2014, Florea, Andrei e ta l. 

2016).

Most 3FTxs such as short-chain cardiotoxins can induce structural and 

functional effects of the heart, rich in basic residues (mainly lysine) that flank 

the tips of the loops which are otherwise dominated by hydrophobic residues 

(Anbazhagan, Reddy et at. 2007, Dubovskii, Utkin 2014). Depending on their 

amphipathic characteristics, 3FTxs can bind and insert into anionic or neutral 

lipid bilayers (Kini, Evans 1989, Efremov, Volynsky et al. 2002, Bechinger, 

Lohner 2006). The mode of action of 3FTxs against prokaryotic and eukaryotic 

model membranes has been studied using several spectroscopic techniques 

revealing that they have a higher affinity for negatively charged model 

membranes than zwitterionic surfaces. Studies also suggest that loop I play a 

key role in cardiotoxin binding to membranes (Carbone, Macdonald 1996, 

Efremov, Volynsky et a/. 2002).
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1.17 Scope of the  present study

This present study aims to explore several Egyptian scorpion and snake venoms as a 

source for novel antimicrobial peptides. It also aims to improve our understanding the 

mechanism of action of some synthetic AMP identified previously from Egyptian 

scorpion Scorpio mourus palmatus. These findings will be useful in elucidating AMP 

mechanism of action and using these peptides templates to develop therapeutically 

useful drugs.

The objectives were to:

•  Evaluate the antimicrobial and cytotoxic activities of the purified peptides from  

snake venoms and three synthetic alpha-helical (Smp) peptides identified 

previously through the genomic analysis of the Egyptian scorpion Scorpio 

mourus palmotus.

•  Identify and characterise novel AMPs from Egyptian snake venoms.

•  Examine the morphological changes of bacterial cells in response to different 

concentrations of Smp peptides treatment at different time intervals.

•  Identify the differentially expressed genes following to  exposure of Smp24 and 

Smp43 in E. coli as a model for pathogenic Gram negative bacteria.

•  Investigate the antibacterial activity o f Smp24 in presence of different 

concentrations of various cations.
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2 Materials and Methods
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2.1 Materials

All strains used in this study were provided by SHU culture collection except the Keio 

collection and the parental E. coli BW25113 were provided by the National 

BioResource Project (NBRP), National Institute of Genetics (NIG), Japan. All chemicals 

used in this study were purchased from Sigma-Aldrich, UK.

2.2 Collection of scorpion and snake venoms.

Venoms were collected from scorpions and snakes originating from Egypt's deserts. 

Scorpion venom was collected by electrical stimulation of the telson (Ozkan, Filazi 

2004, Oukkache, Chgoury et al. 2013). Venom droplets were collected in an Eppendorf 

tube lyophilised and stored at -20 °C. Venoms were extracted in 1% acetic acid and 

centrifuged (15,000 x g) to remove insoluble matter. Snake venoms were collected by 

manual milking, lyophilized and stored at -20 °C. Snake venom was extracted in water 

and centrifuged as scorpion venoms for 15,000 x g.

2.3 Peptide synthesis

Smpl3, Smp24 and Smp43 (10-20 mg each) were synthesised by solid phase FMOC 

synthesis (Prolmmune Limited, Oxford, UK). Peptide purity was > 90% (C18 reverse 

phase HPLC and mass spectroscopy). The sequences of the three peptides are given in 

Table 2.1.
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Table 2.1 Amino acid sequences of Scorpio maurus palmatus venom gland AMPs used for 
this study

Peptide Amino acids sequence

Smpl3 ILQDIWNGIKNLF

Smp24 IWSFLIKAATKLLPSLFGGGKKDS

Smp43 GVWDWIKKTAGKIWNSEPVKALKSQALNAAKNFVAEKIGATPS

2.4  Antim icrobial activity assay and determ ination  o f m inim um  inhib itory  

concentrations

The minimum inhibitory concentrations (MICs) of the active peptides against a variety 

of organisms were determined using the BSAC broth micro-dilution method described 

by Andrews (2001) and performed on a Tecan CENios Plus (Tecan, Mannedorf, 

Switzerland). Thermo Scientific™ Nunc™ 96-Well Polypropylene MicroWell™ plates 

were used.

Serial dilutions of synthetic AMPs and purified snake venom peptides were assayed. 

Cultures without peptides were used as positive controls. Fresh uninoculated Mueller- 

Hinton broth was used as a negative control. The MIC was determined as the 

concentration of the peptides in the last well in which no growth was observed. All 

samples were tested in duplicate on two separate occasions for a total of four 

replicates. Test strains used in this project included three Gram negative bacteria, 

seven Gram positive bacteria, and one fungus and were obtained from the BMRC 

(Table 2.2).
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Table 2.2 Microorganisms used for micro-broth dilution minimum inhibitory concentration 
tests and their sources

Microorganism Source

Gram-negative Escherichia coli JM109

bacteria Klebsiella pneumoniae NCTC 13439 

Pseudomonas aeruginosa NCI MB 8295 

Staphylococcus aureus SH1000 
Staphylococcus epidermidis

Gram positive Bacillus cereus NCTC 2599 SHU culture collection

bacteria Bacillus cereus UM20.1. 
Bacillus subtilis NCIMB 8054 
Bacillus subtilis NCIMB 8056 
Bacillus subtilis NCIMB 3610

Fungus Candida albicans

2.5 Haemolytic activity assay

The haemolytic activity o f a peptide was tested using sheep erythrocytes as described 

by Corzo et al., (2001). Briefly, a 10% (v/v) suspension of washed erythrocytes in 

Phosphate-buffered saline (PBS) was incubated w ith  the purified prote in in a 96-well 

plate fo r 1 h w ith in te rm itten t shaking. The absorbance in the supernatant was 

measured at 570 nm. PBS and 10% (v/v) Triton X-100 were used as 0% and 100% 

controls respectively. The percent hemolysis was calculated using the fo llow ing 

form ula: Percent Haemolysis = 100 x [(Absorbance o f sample -  Absorbance o f negative 

control) /  (Absorbance of positive control -  Absorbance of negative contro l)].

2.6 Cytotoxicity assay

Cellular pro liferation was determ ined by measuring the am ount o f ATP generated by 

viable cells using the CellTiter-Glo luminescent cell v iability assay (Promega, Madison, 

USA) as per manufacturer's instructions. Peptides were assayed at d iffe ren t
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concentrations against a human kidney cell line (HEK293) and a human keratinocyte 

(HaCat) cell line to determine the potential toxic effects in vitro. All cell lines were 

tested routinely for mycoplasma. Cells were grown in Dulbecco's modified Eagle's 

medium (DMEM) with 5 % of fetal bovine serum (FBS), 1% penicillin/streptomycin, and 

1% glutamine. All cells were incubated at 37°C in a 5% CO2 atmosphere. The medium 

was changed twice a week. Briefly, HEK293 and HaCat cells were seeded at a density of 

2.5x l04 per well in a 96-well plate in 100 pi DMEM media and incubated with peptide 

for 24 hours. Untreated cells were used as a negative control. 10% triton (v/v) was 

used as a positive control. All treatments were performed in triplicate, in three 

independent experiments. Before cell viability was determined, plates were 

equilibrated at room temperature for 30 minutes, thereafter 100 pi CellTiter-Glo 

Reagent® was added to each well. The plate was shaken for 2 minutes to induce cell 

lysis and incubated for 10 minutes at room temperature to stabilise the luminescent 

signal. The luminescence was recorded using CLARIOstar® microplate reader and MARS 

data analysis software (BMG LABTECH, Ortenberg, Germany).

2.7 Fluorescence microscopy

Following treatment with Smp24 and Smp43 as in the previous section, HEK293 and 

HaCat cell lines were examined using Hoechst 33342 and Propidium Iodide (PI) staining 

(Sigma-Aldrich, Dorset, UK). Cells were stained with 10 pg/ml Hoechst 33342 and 10 

pg/ml PI for 30 min at 37°C and examined using a fluorescence microscope (Olympus, 

1X81, UK) and images were captured using Cell-F software.
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2.8 Purification of crude snake venoms

Individual venoms were in itia lly fractionated by size-exclusion chromatography. 

Lyophilised crude venoms (35-60 mg) were dissolved in w ater and applied to  a HiLoad 

26/600 Superdex 200 pg column (60 x2.6 cm diameter) connected to  an AKTA Prime 

system (GE Healthcare) and equilibrated w ith  10 mM sodium ch loride/50m M  sodium 

acetate buffer pH 4.3. Fractions (3 ml) were m onitored at 280/220 nm and collected at 

a flow  rate o f 0.5 m l/m in. Fractions were collected, dialysed (M W  Cut o ff 500 Da) 

against distilled w ater at 4°C using PUR-A-Lyzer™ dialysis kit (Sigma-Aldrich, USA) and 

then freeze dried. The protein concentrations were measured (NanoDrop™ 1000, 

Thermo Scientific, USA) and screened fo r antibacterial activity against d iffe ren t species 

o f bacteria.

Active fractions were resuspended in 1 ml o f w ater and fu rthe r purified by cation 

exchange chromatography w ith a SP Sepharose column (100x16 mm diameter). Prior 

to  this purification process, the column was equilibrated in buffe r (A) 10 mM sodium 

chloride/50 mM sodium acetate buffer pH 4.3. The column washed w ith  buffer A to  

remove any unbound proteins. Samples were eluted w ith  a linear gradient (20 CV) o f 

buffer (B) 1 M sodium chloride/50 mM sodium acetate buffer pH 4.3 at a flow  rate o f 

0.5 m l/m in. The chromatography was carried out at 4°C using an AKTA Prime system as 

before.

2.9 Analysis of m olecular mass by mass spectrom etry

The molecular mass of purified peptides was determ ined by mass-assisted laser

desorption ionization tim e of fligh t (MALDI-TOF) mass spectrom etry o f the fraction

obtained after separation through cation exchange chromatography. 5 pL o f fraction
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was mixed with 5 pL of matrix solution (a-cyano-4-hydroxy-cinnamic acid in 0.1% 

Trifluoroacetic acid (TFA) /acetonitrile 1:2). 0.5 -  1 pL of this mixture was transferred 

to a MALDI sample plate and allowed to dry. The molecular mass was determined 

using MALDI-TOF mass spectrometry (Voyager Spec # 1 MC) in positive ionization 

mode.

2.10 Identification of N -term inal residues

N-terminal sequencing using the Edman degradation technique was used to identify 

the first five amino acids (Alta Bioscience Ltd, University of Birmingham, Birmingham, 

UK of purified snake proteins.

2.11 Peptide homology analysis

Online bioinformatics tools were used to characterise the purified active peptides by 

comparing the N-terminal sequence to the database of published sequences of 

peptides and proteins. EXPASY BLAST software, Protein-protein BLAST (blastp) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), was used to subject the obtained N-terminal 

sequence to a similarity search.

2.12 Preparation of cells fo r scanning electron microscopy

Overnight cultures of E. coli JM109 and 5. aureus SH1000 were diluted into fresh MH 

Broth to a cell density lx lO 6 GFU/ml then incubated at 37°C until an ODeoonm of 0.3 was 

reached (mid-exponential growth phase). Bacterial cells were treated with different 

concentrations of Smp peptides for different time intervals (10 minutes, 1 hour, and 24 

hours) at 37°C . Untreated controls were prepared in free MH medium.
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The cells were harvested by centrifugation (10,000 x g, 10 mins) re-suspended in wash 

buffer (0.1 M sodium phosphate buffer, pH 7.4), and then collected by centrifugation 

(10,000 x g, 10 mins).Cells were fixed w ith  2% glutaraldehyde in 0.1 M sodium 

phosphate at 4°C fo r 24 hours. Cells were washed tw ice w ith 0.1 M phosphate buffer 

fo r 15 minutes intervals at room tem perature. To post fix the cells, 1% aqueous 

osmium tetroxide was added and the samples were le ft at room tem perature fo r one 

hour and then washed tw ice w ith 0.1 M phosphate buffer. The samples were 

dehydrated w ith  graded ethanol solutions (75% ethanol fo r 15 minutes, 95% fo r 15 

minutes, 100% ethanol fo r 15 minutes, 100% ethanol fo r 15 minutes). Samples were 

then exposed to  100% ethanol: hexamethyldisilazane (1:1) fo r 30 m inutes fo llow ed by 

30 minutes in hexamethyldisilazane. All dehydration steps were carried out at room 

tem perature. Specimens were allowed to  air dry overnight in a fum e hood and 

mounted onto a pin-stub using a Leit-C sticky tab (Agar Scientific Ltd, Essex, UK) and 

gold coated using an Edwards S150B sputter coater (BOC Edwards, UK) and examined 

in a Philips XL-20 SEM (Philips, Eindhoven, The Netherlands) at 15kV.

2.13 Preparation of cells fo r transmission electron microscopy

TEM was used to  investigate the morphology o f bacterial cells induced only by

subinhib itory concentrations o f Smp peptides fo r d iffe ren t tim e intervals (10 minutes,

1 hour, and 24 hours) at 37°C. Samples were prepared in the same manner as fo r the

SEM experiments, except that a fter dehydration in ethanol, samples were cleared in

epoxypropane (EPP) and in filtra ted in 50/50 araldite resin: EPP m ixture overnight on a

rotor. This m ixture was changed twice, over 8 hours, w ith  fresh araldite resin m ixture

before being embedded and cured in a 60 °C oven fo r 48-72 hours.U ltrath in sections,

approximately 85nm thick, were cut on a Leica UC 6 u ltram icrotom e (Leica, W etzlar,
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Germany) onto 200 mesh copper grids, stained for 30 mins with saturated aqueous 

Uranyl Acetate followed by Reynold's Lead Citrate for 5 mins. Sections were examined 

using a FEI Tecnai Transmission Electron Microscope (FEI Tecnai™, Oregon, USA) at an 

accelerating voltage of 80Kv. Electron micrographs were recorded using a Gatan Orius 

1000 digital camera and Digital Micrograph software (Gatan, Pleasanton, USA).

2 .14  D eterm ination of killing curves

Four independent cultures of the E. coli strain JM109 were exposed to different 

concentrations (zero to MIC) of each peptide. A culture of E. coli JM109 was grown 

overnight in Mueller-Hinton broth, then diluted into fresh Mueller-Hinton broth (2x l07 

CFU/ml) 2.7 ml of this suspension was then added to 0.3 ml of peptide, and incubated 

at 37°C with shaking and grown to the exponential growth phase of an optical density 

at 600 nm (OD600) of 0.6. At specific time points, OD was measured at 600 nm 

wavelength by a Jenway 6715 (UV/Vis) spectrophotometer (Jenway, Staffordshire, UK). 

Untreated bacteria were used as negative controls. The assay was repeated three 

times and the average was reported.

2.15 Isolation o f to ta l cellular RNA

Total RNA was extracted by using a SV Total RNA Isolation System (Promega

Corporation, Madison, Wl, USA). The cells were harvested by centrifugation for 2

minutes at 14,000 x g. Pellets were resuspended and incubated for five minutes in

lOOpI of freshly prepared TE containing 0.4mg/ml lysozyme. Cells were lysed with 75 pi

SV RNA Lysis buffer, then incubated at 70°C in SV RNA dilution buffer for 3 minutes,

followed by centrifugation at 14,000 x g at room temperature for 10 minutes. 200 pi of

95% ethanol was added to the cleared lysate. The lysate was passed through a SV Total
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RNA Isolation System spin column. From this point on the manufacturer's 

recommendations were followed. The extracted RNA was assessed for its 

concentration, purity and integrity using the NanoDrop Spectrophotometer and the 

Agilent 2100 Bioanalyzer instrument (Agilent, Wokingham, UK) in order to reduce 

biases in microarray analysis caused by poor RNA quality. For RNA judged suitable for 

microarray analysis, the following criteria were met (Table 2.3) (Bhagwat, Ying et al. 

2013).

Table 2.3 Recommended parameters for RNA used for microarray analysis

Parameters Range

RNA concentration 10 - 200 ng/pL

260/280 nm >1.9

260/230 nm >1.9

RNA Integrity Number (RIN) 8-9

23S rRNA /  16S rRNA > 1.5

2.16 Gene expression m icroarray analysis

Gene Expression Analysis protocol (version 6.5, May 2010) was performed using a one- 

Colour Microarray technique (Agilent, Wokingham, UK). Unless indicated, all 

microarray reagents, data analysis software were ordered from Agilent.
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2.16.1 Sample labelling and hybridisation

For each tested sample, serial dilutions of Agilent One-Colour Spike-ln Mix which 

contains 10 pre-designed positive control transcripts were mixed with a total RNA 

input amount of 100 ng/dilution. Sample RNA, together with the internal control 

transcripts, were labelled with Cyanine 3-CTP (Cy3) dye during an amplification 

reaction using the Agilent Low Input Quick Amp Kit. The generated fluorescent 

complementary RNA (cRNA) products were then purified (RNeasy Mini Kit, Qiagen). 

The yield of the linearly amplified cRNA and the Cy3 specific activity were quantified by 

absorbance at 260 nm. To reduce its structural complexity, 600 ng cRNA of each 

sample was fragmented to reduce the size of the cRNA to approximately 50-200 bases 

with a median of around 85 bases. The fragmentation step took place at 60°C for 30 

min using a Fragmentation Mix for 8- pack microarray format. Such fragmentation 

would improve cRNA specificity and binding efficiency to the oligo arrays which have 

60mers as the target probes. 25 pL of the fragmentation reaction were combined with 

25 pL hybridisation buffer and immediately loaded onto the gasket slide. The 8 x 15K 

whole E. coli K12 oligo array slide was placed on top of the gasket slide loaded with 

hybridisation mixture and the microarray slide chamber was prepared. Assembled 

slide chambers were placed in a hybridisation rotator (10 rpm, 65°C) hybridization 

oven. After 17 hours, hybridised slides were disassembled, washed and then scanned 

at 3 pm resolution using Agilent C Microarray Scanner (Agilent, Wokingham, UK) pre

set with the default settings for a 8 x 15K Microarray Format. All samples were tested 

in duplicate on each of two separate arrays.
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2.16.2 Data analysis

A fter detecting the fluorescence signals o f the hybridised slides, the Agilent Feature 

Extraction (FE) Software (version 10.7) was used to  process the generated image. A 

pre-defined protocol (GEl_107_Sep09) tha t matches the slide type was in itia ted to 

im port a set o f parameter values and settings, which allow the software to  align the 

default grid to  the image. Following identification o f the image spots, the software 

autom atically performs a background correction and dye normalisation by subtracting 

the background intensities from  the foreground intensities and scale average signal 

intensity fo r each sample to  the average signal intensity fo r all samples in order to  flag 

and reject the outliers and low quality probes. This was followed by an autom atic 

computing o f feature log ratios (Agilent's Processed Signal value) and the ir p-values. 

The FE prelim inary processing ends w ith  producing a quality control (QC) report fo r 

each array image, which includes statistical results w ith  thresholds useful fo r 

evaluating the reproducib ility and re liab ility o f the microarray, and an exportable raw 

data file in a "tx t" form at, which contains all the parameters, statistical calculations 

and the annotation inform ation associated w ith  the Agilent m icroarray used in the 

experiment.

Raw "tx t" data files were then analysed using Agilent GeneSpring GX software (version 

13.1) (http ://w w w .genom ics.ag ilent.com /artic le .isp?pageld=2141). Briefly, in tensity 

values were subjected to  a log2 transform ation and normalisation to  the 75th 

percentile-shift normalisation. The im ported data files were then grouped and 

assigned to  the experim ent parameters and conditions. For instance, data files o f cells 

treated w ith peptide were assigned to  the condition "trea ted", while the contro l cells 

were assigned to  the condition "untreated". To identify d iffe rentia lly  expressed genes,
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statistical analysis was performed by using unpaired T-test and applying a Benjamini- 

Hochberg multiple testing correction method to correct the computed p-values. 

Finally, the list of the identified genes was filtered to include only genes with a > 2 fold 

change using the built-in fold change function before exporting the list into an Excel 

file.

2 .17 Gene cluster and pathw ay enrichm ent analysis

Database for Annotation, Visualisation and Integrated Discovery (DAVID) software 

tools was used for gene and molecular pathways analysis 

(https://david.ncifcrf.gov/home.isp). In our work, the significant biological process 

terms and pathways enrichment analyses of the differentially expressed genes were 

performed using DAVID 6.7 with the thresholds of p-value <0.05 and enrichment gene 

count >2. Functional annotation clustering (FAC) allows clustering of Gene Ontology 

(GO) categories sharing a significant number of genes.

2 .18 Reverse transcriptase-polym erase chain reaction (RT-PCR)

RT-PCR was performed to confirm the microarray expression data obtained by 

bioinformatics analysis. Total RNA was isolated from cell samples as described 

previously. RNA was reverse transcribed into cDNA with a QuantiTect Reverse 

Transcription Kit (Qiagenlnc., Chatsworth, CA, USA). Manufacturer's instructions were 

followed and briefly as follows. Sample RNA was mixed with water in the presence of 

RNase and incubated at 42°C for 3 minutes, this was followed by the addition of 

polymerase and nucleotide mix plus Quantiscript RT buffer. The cocktail was incubated 

for a further 30 min at 42°C, then Incubated at 95°C for 3 minutes to inactivate the
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reverse transcriptase. Once DNA has been synthesised, a Nanodrop measurement was 

taken to  determ ine the concentration of DNA.

The RT-PCR reactions were then performed on a StepOnePlusTM Real-Time PCR 

System (Applied Biosystems, California, USA) using DNA samples in order to  investigate 

gene expression levels o f investigated genes. cysG, idnT, and hcoT were used as 

housekeeping genes. These housekeeping genes have been strongly recommended by 

(Zhou, Zhou et al. 2011) as novel reference genes fo r quantifying gene expressions of 

E. coli by RT-PCR and they were stably expressed under all the conditions investigated 

in this study. Probes fo r real-time PCR were purchased from  Applied Biosystems, 

conjugated at the 5' end to  the fluorochrom e FAM, and at the 3' end to  the non- 

fluorescent quencher w ith m inor groove binder NFQ-MGB. Two pi aliquots containing 

25 ng o f the investigated samples were used in the preparation o f the to ta l ten- 

m icrolitre  reactions using the TaqMan Universal PCR Master Mix (Applied Biosystems). 

Samples were run fo r 40 cycles and results were analysed using the 2_AACt m ethod and 

presented as relative gene expression normalised to  the average cycle threshold fo r 

the three housekeeping genes. Each sample was run in trip lica te  fo r each biological 

replicate. To test the primers fo r specificity and quality, efficiency curves were 

performed.

2.19 Screening of Keio collection

In order to  identify the essential genes whose products are involved in the response of 

E. coli when treated by Smp peptides, the susceptibility o f 79 E. coli single knockout 

m utant strains was assayed. The Keio collection and the parental E. coli BW25113 were 

provided by the National BioResource Project (NBRP), National Institu te  o f Genetics
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(NIG), Japan. The pre-selection of the mutants for the assay was based on the 

differentially expressed genes produced from microarray analysis compared with that 

of the E. coli BW25113 parent strain. Also, eight strains with genes not identified as 

significant were selected from the Keio collection, having a single deletion of either 

ihfB, uxuR, hacT, cysG, ugpQ, idnT, yghB or pbpC genes and these were assayed as 

experimental controls. This assay was performed on a TecanCENios Plus (Tecan, 

Switzerland). Thermo Scientific™ Nunc™ 96-Well Polypropylene MicroWell™ plates 

were used and carried out as described in section 2.4.

2 .20 Effect o f cations on th e  antibacterial activity o f Smp24

The effect of cation concentration on the antimicrobial activity of Smp24 was tested by 

determining the MICs of the peptides against E. coli in the presence of titrated cations. 

MICs were determined by the same method as described in Section 2.4 for 

determining the effect of the salt concentration on the activity of Smp24. The 

monovalent cation, Na+ and four divalent cations, Fe2+, Mn2+, Ca2+' and Mg2+ were 

added as chloride salts with Smp24. The concentrations of cations in the assay ranged 

from 0 to 20 mM.

2.21 Analysis o f cell surface composition o f E. coli treated  w ith  Sm p24 using X- 

ray photoelectron spectroscopy (XPS)

A culture of £  coli JM109 was grown overnight in Mueller-Hinton broth, then diluted

into fresh Mueller-Hinton broth (2x l07 CFU/ml), and incubated at 37°C with shaking

and grown to the exponential growth phase represented by an optical density at 600

nm (ODeoo) of 0.4. 0.9 ml of this suspension was then added to 0.1 ml of peptide and

then incubated for 10 minutes. The cells were harvested by centrifugation (10.000 xg,
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10 minutes). Each cell sample (cells + any retained liquid) was placed as 1 pi on the 

sample holder at room temperature and atmospheric pressure. The sample holder was 

then placed in the preparatory chamber of the XPS and the atmosphere reduced to a 

pressure of 5 x 10'7 Torr. Once the sample was under vacuum the sample holder was 

cooled to -100 °C. The samples were then transferred to the analysis chamber. The 

temperature at the beginning of the analysis was -70°C but had increased to -39 °C 

once the data had been collected. The analyses were carried out using a Kratos Supra 

XPS with the monochromated aluminum source (Kratos Analytical Ltd, UK). Survey 

scans were collected between 1200 to 0 eV binding energy, at 160 eV pass energy and 

at 1 eV intervals. The analysis area was 300 to 700 pm. The data was quantified using 

theoretical Scofield relative sensitivity factors with small angular distribution and 

kinetic energy corrections. The data was calibrated for binding energy by making the 

main carbon peak C Is  at 285.0, and correcting all data for each sample analysis 

accordingly.
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3 Characterisation of novel antimicrobial peptides from 

Egyptian scorpion and snake venoms
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3.1 Introduction

Snake and scorpion venoms have attracted some interest as a source o f novel AMPs. 

However, they have been largely unexplored fo r identification o f such agents in 

contrast to  o ther organisms (de Lima, Alvarez Abreu et al. 2005, Sarny, Stiles et al. 

2015). Thus, a w ider range of undiscovered peptides w ith potentia l antim icrobial 

activities are likely to  be found in unexplored snake and scorpion venoms.

The m ajority o f antim icrobial molecules tha t have been purified from  snake venoms 

are enzymes such as LAAO and PLA2 which constitutes the major com ponent o f snake 

venom (Torres, Dantas et al. 2010, Vargas, Londono et al. 2012, Sudharshan, 

Dhananjaya 2015). These have been purified by conventional chrom atographic 

techniques such as gel filtra tion , ion-exchange, reverse phase HPLC.

The identification and development o f therapeutic molecules from  snakes and 

scorpion venom as prototype drugs have been revolutionised by the rapid 

advancement o f new methodologies in the last tw enty years. Proteomic and genomic 

analyses have been widely used to  determ ine the d istribution o f protein fam ilies in a 

variety o f snake and scorpion venoms in order to  expand our understanding regarding 

the venom complexity.

Further insights in to venom compositions have been achieved by gene cloning by PCR- 

based methods conducted w ith  cDNA libraries o f venom gland tissue. Interestingly, 

most o f the AMPs identified from  scorpion and snake venoms have been cloned from  

the venom glands cDNA libraries combined w ith  some proteom ic analyses. A huge 

number o f antim icrobial like sequences have been recorded from  the transcriptom e
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analyses of several snake and scorpion venom glands (Ma, Zhao et al. 2009, Almeida, 

Scortecci et al. 2012).

The current study has evaluated the antimicrobial and cytotoxic activities of three 

synthetic alpha-helical peptides (Smpl3, Smp24 and Smp24), previously identified 

from Egyptian scorpion Scorpio maurus palmatus as putative AMPs using a 

combination of proteomics and transcriptome sequencing approaches (Abdel-Rahman, 

Quintero-Hernandez et al. 2013). Some of these data have been published recently by 

our group (Harrison, Abdel-Rahman et al. 2016).

Although many different species of snakes are found in Egypt, no AMPs have been 

characterised from Egyptian snake venoms. To the best of our knowledge, this study is 

the first to isolate such antibacterial peptides. This chapter examines a number of 

different venoms of Egyptian elapids and vipersin order to both purify and investigate 

the potential of some purified peptides as antibacterial agents as well as to assess 

some of their cytotoxic effects in order to increase the prospects of developing novel 

AMPs.
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3.2 Method Summary

Antimicrobial activity of Smp peptides (0-512pg/ml) was determined against Gram 

positive and Gram negative bacteria and fungi by the micro dilution method as 

described in section 2.4. The haemolytic potential was assayed against sheep 

erythrocytes and cytotoxic effects by CellTiter-Glo® assays using kidney and 

keratinocyte cell lines. Snake venoms were purified by size-exclusion and cation- 

exchange liquid chromatography. Antimicrobial activity was determined as above. 

Active fractions were characterised by MALDI-TOF mass spectrometry. N-terminal 

amino acid sequences were determined by Edman degradation. Fractions that 

displayed antimicrobial activity were assayed for their haemolytic and cytotoxic effects 

as above.
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3.3 Results

3.3.1 Antimicrobial activity of synthetic scorpion venom antimicrobial peptides

The minimum inhibitory concentrations (MICs) of Smpl3, Smp24 and Smp43 were 

determined using the broth microdilution method described in section 3.2. The test 

organisms included three Gram negative and three Gram positive bacteria as well as 

one fungi strain. The MICs are reported in Table 3.1.

No antimicrobial activities were found in Smpl3. However, Smp24 and Smp43 showed 

potent broad-spectrum activity against all organisms tested. Both peptides exhibited 

highest activity against Gram positive bacteria with MICs ranging from 4 to 64 pg/ml. 

Smp43 showed a higher activity against Gram negative bacteria (MICs 32-64 pg/ml) 

than Smp24 (MICs 32-256 pg/ml). Both Smp24 and Smp43 showed antifungal activity 

toward the yeast, C. albicans with MIC values of 32 and 128 pg/ml respectively.

Table 3.1 Minimum inhibitory concentrations (MICs of pg/ml) of synthetic Scorpio maurus 
palmatus venom antimicrobial peptides against various organisms

Microorganism Smpl3 Smp24 Smp43

Gram-negative

bacteria

Escherichia coli JM109 - 32 32

Klebsiella pneumoniae NCTC 13439 ■ - 128 64

Pseudomonas aeruginosa NCIMB 8295 - 256 64

Gram positive 

bacteria

Staphylococcus aureus SH1000 - 8 16

Staphylococcus epidermidis - 8 64

Bacillus subtilis NCIMB 8054 - 4 4

Fungus Candida albicans - 32 128

NC* Negative control was Fresh Muller-Hinton broth without peptides. -  no inhibition.
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3.3.2 Haemolytic activities of scorpion venom peptides

Smp43 showed very low haemolytic activity at the highest concentration o f 512pg/m l. 

Smp24 exhibited high haemolytic effects at the same concentration. Smp43 showed 

very low toxic ity at the maximum concentration tested (2.25 ± 0.2%) lysis at 512 

pg/m l). In comparison, Smp24 caused significant erythrocyte d isruption (88.4 ± 0.8%) 

at the same concentration. Indeed, a significant d isruption was observed between 64 

pg/m l (15.6 ± 0.5%) and 128 pg/m l (52 ± 1.7%) w ith  an increase in lysis o f 36.4% 

(Figure 3.1).

Smp24
Smp43

Peptide concentration (ug /m l)

Figure 3.1 Haemolytic activities of Smp24 and Smp43. A 10% (v/v) suspension of 

washed erythrocytes in PBS was incubated with serial dilution peptides 1 h with 

intermittent shaking. The absorbance in the supernatant was measured at 570 nm. PBS 

and 10% (v/v) Triton X-100 were used as 0 and 100% controls respectively. Error bars 

indicate SD.
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3.3.3 Cytotoxic activities of scorpion venom peptides

Smp24 caused increased damage to  HaCaT cells but only at higher concentrations (128 

and 256 pg/m l), in comparison to  Smp43 which was inactive at all concentrations 

(Figure 3.2). At 16 pg/m l no peptide caused more than 15± 1.7% HEK293 cell damage; 

however, a doubling o f the concentration caused 56 ± 6.6% cell damage w ith  Smp43 

and Smp24 showed a similar decrease in cell v iab ility  67.3 ± 3.9% (Figure 3.3). Low 

cytotoxic activity was detected fo r Smp24 against HEK293 at concentrations higher 

than MICs fo r Gram positive strains (4-8 pg/m l).

Both tested cell lines were examined by fluorescence microscopy to  assess the cell 

death pathway after incubation w ith Smp24 and Smp43. A fte r 24 h; untreated cells 

showed normal structure w ithou t any signs o f apoptosis or necrosis, whereas dead 

cells appeared red due to  staining w ith  PI which cannot cross intact cell membranes. 

Neither cell lines showed any morphological hallmarks o f apoptosis such as nuclear 

fragm entation a fter incubation w ith  Smp24 (Figure 3.4 and Figure 3.6). Only the 

highest concentration o f Smp43 (256 pg/m l) induced apoptosis in a few  human 

keratinocytes as indicated by the green arrows (Figure 3.5). Our results indicated tha t 

exposure to  increasing doses o f e ither Smp24 or Smp43 over a period o f 24 hours 

decreased the viability o f HEK293 cells in a dose-dependent fashion as the num ber o f 

Pl-stained cells increased (Figure 3.6 and Figure 3.7). The highest concentration of 

Smp43 (256 pg/m l) did not affect the v iab ility  o f HaCaT cells as evidenced by Hoechst 

staining (Figure 3.5), although the numbers o f dead cell treated w ith  Smp24 increased 

at 128 pg/m l (Figure 3.4).

Both Smp peptides decreased the viability o f HEK293 cells in a concentration-

dependent manner w ith  a noted effect seen at 32 pg/m l w ith  both peptides.

65



Interestingly, HaCaT skin cell lines were not affected by Smp43 at 4x MIC 128 pg/m l fo r 

24 hours o f incubation, while Smp24 showed a noted decrease in cell v iab ility  at the 

same concentration.

HaCaT cell line

Smp43

Smp24

Peptide concentration (ug/ml)

Figure 3.2 Evaluation of ATP-based cytotoxicity of human keratinocytes (HaCat) 

incubated with Smp peptides at various concentrations after 24 h of incubation.

Control (HaCat) cells without treatment used as a control. HaCat cells were incubated 

with the different concentrations (8-256 pg/ml) of Smp24 and Smp43. 10% (v/v) Triton 

X-100 was used as positive control. Error bars indicate SD.
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Figure 3.3 Evaluation of ATP-based cytotoxicity of human kidney cells (HEK293) 

incubated with Smp peptides at various concentrations after 24 h of incubation.

Control (HEK293) cells without treatment used as a control. HEK293 cells were 

incubated with the different concentrations (8-256 |ig/ml) of Smp24 and Smp43. 

10% (v/v) Triton X-100 was used as positive control. Error bars indicate SD.
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Smp24 and Smp43 are broad spectrum AMPs have been characterised from  the venom 

gland of the Egyptian scorpion Scorpio mourus palmotus. They have potent activity 

against both Gram positive and Gram negative bacteria (MICs 4 to  128 pg/m l). The in 

vitro  cytotoxicity assay indicated tha t HEK293 cells were more vulnerable to  the Smp 

peptides-induced cytotoxicity than HaCaT cells.

In the follow ing sections, crude snake venoms w ill be separated through HPLC 

chromatography to  purify AMPs from  snake venoms as follow:

Snake crude venom

Size exclusion chromatography

Fractions

Antimicrobial activity assaying :

Active fraction for further Purification

Cation exchange chromatography

Fractions

Antimicrobial activity assaying <-*-

Active fraction for characterisation

Cytotoxicity assaying
Mass determination

N-terminal sequencing
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3.3.4 Purification of Naja haje venom peptides by size exclusion chromatography 

and cation exchange chromatography

60 mg of the elapid snake Naja haje crude venom extract was separated by Superdex

200 gel filtration. Chromatography resulted in 6 fractions designated N H l to NH6

(Figure 3.8). Each fraction was dialysed against ultrapure water, freeze-dried and

dissolved in 1 ml of water. Fractions were assayed against Gram negative bacteria

(Escherichia coli) and Gram positive bacteria {Staphylococcus aureus and Bacillus

subtilis) (Table 3.2). Three fractions (NH2, NH3 and NH4) showed antimicrobial activity.

NHF2 exhibited full growth inhibition on all tested bacteria, whereas NH3 and NH4

showed full inhibitory activity against only Bacillus subtilis, with partial inhibitory

activity against Escherichia coli compared with negative controls.
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Figure 3.8 Fractionation of crude Naja haje venom by size-exclusion chromatography. Six

peaks were obtained from the chromatography of 60 mg Naja haje crude venom on a 

HiLoad 26/600 (60 x2.6 cm diameter) Superdex 200 pg column at pH 4.3. Sample was eluted 

at 0.5 ml/min flow rate via 1.5 column volume of buffer A. Protein concentration was 

monitored at 280 nm and the collected fractions (3 mL/tube) were numbered from NH1 to 

NH6. Peak NH3 and NH4 were pooled together (NH3/4). The peak labelled with a black 

arrow exhibited inhibitory antibacterial activity against Escherichia coli, Staphylococcus 

aureus, and Bacillus subtilis. Peaks labelled with red arrow have an inhibitory activity against 

Bacillus subtilis.
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Table 3.2 Antimicrobial activity of Naja haje fractions after gel filtration chromatography

Peak
Protein

concentration
(mg/ml)

Growth inhibition

Gram negative Gram positive

E. coli S. aureus B. subtilis

NH1 0.01 ■ - - -

NH2 0.5 ++ ++ ++

NH3 3.2 + ++

NH4 6.2 + - ++

NH5 0.5 - - -

NH6 0.02 - - -

Negative control was Fresh Muller-Hinton broth without peptides. -  no inhibition, + partial inhibition 

and ++ Full inhibition.

Growth inhibition was determined using the broth microdilution method. Fractions were 

incubated with 1X106 CFU/ml of overnight culture for 15 hours at 37°c. The optical density 

(OD) at a wavelength of 600 nm was read every 10 mins. Full inhibition was determined when 

OD =0.
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NH2 was eluted mid-way through the run when one column volume of buffer had 

passed through the column (Vt 320ml, separation range 10 - 60 kDa) suggesting that 

the protein had a MW  > 10 kDa. NH3 and NH4, with elution characteristics of low 

molecular weight peptides, were pooled (NH3/4) and further purified on a cationic SP 

Sepharose column. A NaCI gradient (0.1-1 M) was run and four peaks were collected 

(NH3/4-1 to NH3/4-4) (Figure 3.9). Each fraction was dialysed against ultrapure water, 

freeze-dried and then dissolved in 1 ml of water. Antibacterial activities were assayed 

against a range of Gram positive and Gram negative organisms (Table 3.3). Only peak 

NH3/4-4 (0.5 mg/ml) exhibited potent antibacterial activity, but, surprisingly, only 

against B. subtilis.
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Figure 3.9 SP Sepharose cation exchange elution profile of NH3/4 from size exclusion 

fractionation of Naja haje (Figure 3.8). The column (100x16 mm diameter) was washed 

with buffer A (50 mM Sodium acetate pH 4.3) to remove any unbound proteins, and the 

bound proteins were eluted with a linear gradient of 20 column volumes of NaCI (0.1-1 M) 

in the same buffer. Sample was eluted at 0.5 ml/min flow rate. Protein concentration was 

monitored at 280 nm and collected fractions (3 mL/tube) were numbered from NH3/4-1 to 

NH3/4-4. The peak labelled with a black arrow fully inhibited the growth of Bacillus subtilis. 

NaCI gradient is shown by green line.
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0.1 M
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Table 3.3 Antimicrobial activity of Naja haje fractions after SP Sepharose cation exchange 
chromatography

Growth inhibition

Microorganism NH3/4- NH3/4- NH3/4- NH3/4-

1 2 3 4

Gram- E. co//JM109 - - - -

negative Klebsiella pneumoniae NCTC 13439 - - - -

bacteria
Pseudomonas aeruginosa NCI MB 8295 - - - -

5. aureus SH1000 - - - -

S. epidermidis - - - -

Gram Bacillus cereus NCTC 2599 - - - -

positive Bacillus cereus UM20.1. - - - -

bacteria
B. subtilis NCI MB 8054 - - - ++

B. subtilis NCI MB 8056 - - - ++

B. subtilis NCI MB 3610 - - - ++

Negative control was Fresh Muller-Hinton broth w ithout peptides. -  no inhibition. ++ Full inhibition

Growth inhibition was determined using the broth microdilution method. Fractions were 

incubated with 1X106 CFU/ml of overnight culture for 15 hours at 37°c. The optical density 

(OD) at a wavelength of 600 nm was read every 10 mins. Full inhibition was determined when 

OD =0.
Naja haje crude venom

I

Size exclusion chromatography  

Fractions

Antimicrobial activity assaying

NH3 and NH4 for further Purification 

Cation exchange chromatography

Fractions NH3/4-1 to NH3/4-4

NH1 to NH6

NH3/4

Antimicrobial activity assaying

NH3/4-4 for characterisation
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3.3.5 Purification of Naja nubiae venom peptides by size exclusion chromatography 

and cation exchange chromatography

Naja nubiae (Nubian spitting cobra) crude venom (35 mg) was fractionated by gel

exclusion chromatography on a HiLoad 26/600 Superdex 200 column and resolved into

four protein peaks (Figure 3.10). Whole venom inhibited the growth of £  coli, S.

aureus, and B. subtilis. When individual peaks were screened for antibacterial activity

against the same bacterial species, only peaks NN2 and NN3 showed antibacterial

activity and only against B. subtilis. Both NN2 and NN3 were pooled, concentrated and

dialysed against ultrapure water.

rrAu *’*
200-a

Figure 3.10 Fractionation of crude Naja nubiae venom by size-exclusion chromatography.

Four peaks were obtained from fractionating 60 mg Naja nubiae crude venom on a HiLoad 

26/600 (60 x2.6 cm diameter) Superdex 200 pg column at pH 4.3. The column was eluted at 0.5 

ml/min flow rate via 1.5 column volume of buffer A. Protein concentration was monitored at 

280 nm and the collected fractions (3 mL/tube) were numbered from NN1 to NN4. Peaks 2 and 

3 were pooled together (NN2/3). Peaks labelled with red arrow have an inhibitory activity 

against Bacillus subtilis.
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The pooled fractions (NN2/3) were fu rthe r resolved in to five peaks on a SP Sepharose 

cation exchange column 16X100 column by applying NaCI gradient (Figure 3.11). Only 

peak 3 (NN2/3-3) exhibited potent antibacterial activity against B. subtilis  (Table 3.4).
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Figure 3.11 SP Sepharose cation exchange elution profile of pooled fractions NN2/3 from 

size exclusion fractionation Naja nubiae (Figure 3.10). The column (100x16 mm diam eter)

was washed with buffer A (50 mM Sodium acetate pH 4.3) to remove any unbound proteins, 

and the bound proteins were eluted with a linear gradient of 20 column volumes of NaCI (0.1- 

1 M) in the same buffer. Sample was eluted at 0.5 ml/min flow rate. Protein concentration 

was monitored at 280 nm and the collected fractions (3 mL/tube) were numbered from 

NN2/3-1 to NN2/3-5. The peak labelled with a red arrow fully inhibited the growth of Bacillus 

subtilis. NaCI gradient is shown by green line.
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Table 3.4 Antimicrobial activity of Naja nubiae crude venom and fractions

Naia nubiae
Microorganism growth inhibition

£  coli 5. aureus B. subtilis

Crude venom ++ ++ ++

NN1 - -

Superdex NN2 . _  . ++
200

NN3 - - ++

NN4 - - - '

Fractionation
NN2/3-1 - - -

NN2/3-2 - -

SP

Sepharose
NN 2/3-3

. - - ++

NN2/3-4 - -

NN 2/3-5 - . -

Negative control was Fresh Muller-Hinton broth w ithout peptides. -  no inhibition. ++ Full inhibition

Growth inhibition was determined using the broth microdilution method. Fractions were 

incubated with 1X106 CFU/ml of overnight culture for 15 hours at 37°c. The optical density 

(OD) at a wavelength of 600 nm was read every 10 mins. Full inhibition was determined when

0 0  = 0 ‘ Naja nubiae crude venom

4

Size exclusion chromatography 

Fractions
ir

NN1 to NN4

I

Antimicrobial activity assaying

NN2/3
NN2 and NN3 for further Purification

Cation exchange chromatography I

i r
Fractions NN2/3-1 to  NH3/4-5

Antimicrobial activity assaying

NN2/3-3 for characterisation 
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3.3.6 Purification of Walterinnesia aegyptia venom peptides by size exclusion 

chromatography and cation exchange chromatography

50 mg o f the Egyptian elapid Walterinnesia aegyptia (Black Desert Cobra) was

fractionated by gel exclusion chromatography on a HiLoad 26/600 Superdex 200

column and resolved in to  fou r protein peaks (Figure 3.12). The crude venom

inhibited the growth o f E. coli, S. aureus, and B. subtilis. However, when individual

fractions were screened fo r antibacterial activity, only peak WG4 showed

antibacterial activity and only against B. subtilis. WG4 was pooled, dialysed and

concentrated and subsequently purified on a SP Sepharose cation column.

W G 4

uv Cone
mAu

41 .0 —

40 .5 -

40 .0 -

39 .5 -

39 .0 -

W G 3
38 .5— W G l

W G 2

38 .0 -

37 .5 -

4003600 40 120 160 200 240 280 32080

Figure 3.12 Fractionation of crude Walterinnesia aegyptia venom by size-exclusion 

chromatography. Four peaks were obtained from fractionating 50 mg Walterinnesia aegyptia 

crude venom on a HiLoad 26/600 (60 x2.6 cm diameter) Superdex 200 pg column at pH 4.3. 

The column was eluted at 0.5 ml/min flow rate via 1.5 column volume of buffer A. Protein 

concentration was monitored at 280 nm and the collected fractions (3 mL/tube) were 

numbered from W Gl to WG4. Peaks 4 was collected for further purification. Peak labelled 

with red arrow have an inhibitory activity against Bacillus subtilis.
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Six protein peaks were obtained when WG4 (10 mg) was fractionated by SP Sepharose 

cation chromatography by applying NaCI gradient (Figure 3.13). Three protein peaks 

(WG4-2, W G4-3, and WG4-4) exhibited potent antibacterial activity exclusively against 

B. subtilis. These fractions also showed slight inh ib itory activity against d iluted (1X106 

CFU/ml) cultures o f E. coli (1X103 CFU/ml) (Table 3.5).

lMir*r4l « *

/oV

WG4-3 
! WG

WG4-5

M

Figure 3.13 SP Sepharose cation exchange elution profile of pooled peak fractions (F4) from 

SEC fractionation of Walterinnesia aegyptia venom (Figure 3.12). The column (100x16 mm 

diameter) was washed with buffer A (50 mM Sodium acetate pH 4.3) to remove any unbound 

proteins, and the bound proteins were eluted with a linear gradient of 20 column volumes of 

NaCI (0.1-1 M) in the same buffer. Sample was eluted at 0.5 ml/min flow rate. Protein 

concentration was monitored at 280 nm and the collected fractions (3 mL/tube) were 

numbered from WG4-1 to WG4-5. The peaks with dotted black circle fully inhibited the 

growth of Bacillus subtilis. NaCI gradient is shown by green line. Figure 3.13 inset: Growth 

curve of E. coli (1X103 CFU/ml) culture in the absence or presence of WG4-2 (0.4 mg/ml).
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Table 3.5 Antimicrobial activity of Walterinnesia aegyptia crude venom and fractions

Walterinnesia aeavptia
Microorganism growth inhibition

E. coli S. aureus B. subtilis

Crude venom ++ ++ ++

W Gl - - -

Superdex WG2 - - -

200 WG3 - - -

WG4 - - ++

Fractionation WG4-1 - - -

SP
WG4-2 + - ++

Sepharose
WG4-3 + - ++

WG4-4 + - ++

WG4-5 - - -

Negative control was Fresh Muller-Hinton broth without peptides. -  no inhibition, + partial inhibition 

and ++ Full inhibition.

Growth inhibition was determined using the broth microdilution method. Fractions were 

incubated with 1X106 CFU/ml of overnight culture for 15 hours at 37°c. The optical density 

(OD) at wavelength of 600 nm was read every 10 mins. Full inhibition was determined when 

OD =0.
Walterinnesia aegyptia crude venom

I

Size exclusion chromatography  

Fractions
i r

WG1 to WG4

I
Antimicrobial activity assaying

WG4 for further Purification  

Cation exchange chromatography

W G4  

1

Ir"
Fractions WG4-1 to W G4-5

J
Antimicrobial activity assaying

W G4-2 to W G4-4 for characterisation
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B.B.7 Purification of Echis carinatus venom peptides by size exclusion 

chromatography and cation exchange chromatography

The Size-exclusion chromatography o f Egyptian viper E. carinatus (saw-scaled viper)

venom on a HiLoad 26/600 Superdex 200 pg column resulted in obtaining fou r peaks

(Figure 3.14). These fractions were assayed against E. coli, S. aureus and B. subtilis.

Whole venom of E. carinatus inhibited the growth o f E. coli and S. aureus at 500 pg/m l.

Of the individual peaks, only EC3 showed slight growth inh ib itory activity against S.

aureus and B. subtilis. EC3 was collected, dialysed and loaded onto a SP Sepharose

cation column and fractionated by applying NaCI gradient fo r fu rthe r purification.
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Figure 3.14 Fractionation of crude Echis carinatus venom by size-exclusion chromatography.

Four peaks were obtained from fractionating 35 mg Naja nubiae crude venom on o HiLoad 

26/600 (60 x2.6 cm diameter) Superdex 200 pg column at pH 4.3. The column was eluted at 0.5 

ml/min flow rate via 1.5 column volume of buffer A. Protein concentration was monitored at 

280 nm and the collected fractions (3 mL/tube) were numbered from EC1 to EC4. Peak labelled 

with red arrow have an inhibitory antibacterial activity against B. subtilis and S. aureus.
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Ten eluted peaks resulted from  SP Sepharose chromatography of EC3 (Figure 3.15). No 

fractions showed any activity against E. coli, S. aureus or B. subtilis.
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Figure 3.15 SP Sepharose cation exchange elution profile of EC3 from SEC fractionation of Echis 

carinatus (Fig.3.14). The column (100x16 mm diameter) was washed with buffer A (50 mM Sodium 

acetate pH 4.3) to remove any unbound proteins, and the bound proteins were eluted with a linear 

gradient of 20 column volumes of NaCI (0.1-1 M) in the same buffer. Sample was eluted at 0.5 

ml/min flow rate. Protein concentration was monitored at 280 nm and the collected fractions (3 

mL/tube) were numbered from EC3-1 to EC3-10. NaCI gradient is shown by green line.

Echis carinatus crude venom
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3.3.8 Haemolytic activities of snake venom peptides

NH3/4-4, WG4-2, WG4-3, WG4-4 and NN2/3-3 displayed low or no haemolytic activity 

on sheep erythrocytes at concentrations o f 50 pg/m l (Figure 3.16).

Snake venom  derived  peptides

Figure 3.16 Haemolytic activities of Snake venom peptides of 50 pg/ml. A 10% (v/v) 

suspension of washed erythrocytes in PBS was incubated with serial dilution peptides 

1 h with intermittent shaking. The absorbance in the supernatant was measured at 

570 nm. PBS and 10% (v/v) Triton X-100 were used as 0 and 100% controls 

respectively. Error bars indicate SD.
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3.3.9 Cytotoxic activities of snake venom peptides

The cytotoxic potential of snake venom purified peptides and synthetic scorpion 

peptides was determined using an ATP assay, to determine the ATP content of cells 

following incubation of HEK293 and HaCaT cells for 24 hours.

Cytotoxicities of each of snake-derived venom peptide were comparable in the two cell 

lines. NH3/4-4 exhibited the lowest level of cytotoxicity towards the two cell lines; the 

percentages of cell viability were 85 ± 1% for HEK293 cells and 11 ± 1  % for HaCaT cells 

at a concentration of 50 pg/ml (Figure 3.17). However, HEK293 cells were more 

vulnerable to WG4-2 and NN2/3-3-induced cytotoxicity in dose-dependent manner 

(Figure 3.18). After 24 hours of exposure to either 50 pg/ml of WG4-2 or NN2/3-3, the 

percentage cells viability reduced to 55 ±2% and 61.5% ±2% (HEK293), and 73 ±4.9% 

and 90 ±4% (HaCaT) respectively.
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HaCaT cell line

Snake venom derived peptides concentration (ug/m l)

Figure 3.17 Evaluation of ATP-based cytotoxicity of human keratinocytes 

(HaCat) incubated with snake venom peptides at various concentrations after 

24 h of incubation. Control (HaCat) cells without treatment used as a control. 

HaCat cells were incubated with the different concentrations (8-256 |ig/ml) of 

Smp24 and Smp43. 10% (v/v) Triton X-100 was used as positive control. Error 

bars indicate SD. All treatments were performed in triplicate; in three 

independent experiments. Statistical analysis was performed by the Kruskal- 

Wallis test. *Significant P <0.05 ^^Significant P <0.01. ***Signjficant P <0.001.



HEK293 cell line

100n

Snake venom derived peptides concentration (ug/ml)

Figure 3.18 Evaluation of ATP-based cytotoxicity of human kidney cells 

(HEK293) incubated with snake venom peptides at various concentrations 

after 24 h of incubation. Control (HEK293) cells without treatment used as a 

control. HEK293 cells were incubated with the different concentrations (8-256 

Ug/ml) of Smp24 and Smp43. 10% (v/v) Triton X-100 was used as positive 

control. Error bars indicate SD. All treatments were performed in triplicate, in 

three independent experiments. The significance of differences between 

treated and untreated cells were statistically analysed by the two-way 

analysis of varience. ANOVA results were significant (P <0.05).
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3.3.10 Analysis of snake venom peptides by mass spectrometry

Active fractions from N. haje, N. nubiae, and W. aegyptia venoms were analysed by 

MALDI-TOF-MS (Table 3.6). MALDI-TOF spectra of the purified fractions are shown in 

Figure 3.19 to Figure 3.22.

Table 3.6 measured mass to charge ratio (m/z) of active snake venom peptides

SP Sepharose peak Masses m/z, Da

NH3/4-4 6870

WG4-2 6757

WG4-3 6715

NN2/3-3 6868

A single peptide with a molecular mass of 6870 Da was observed in the purified 

fraction from N. haje venom NH3/4-4, a minor peak at 2x m/z 13760 (Figure 3.19). 

Molecular masses of 6757 and 6715 Da were detected for W. aegyptia peptides WG4- 

2 and WG4-3 respectively (Figure 3.20 and Figure 3.21). WG4-3 was not pure with 

three proteins present, at 6594, 6731 and 6747 Da. WG4-4 yielded a MALDI mass 

spectrum with no detectable peaks when scanned up to 80KDa. The purified fraction 

(NN2/3-3) from the venom of N. nubiae venom had a calculated mass of 6868Da 

(Figure 3.22) with a number of minor peaks observed in the mass spectra representing 

m/2z, 2x m/z and 3x m/z.
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Figure 3.19 MALDI-TOF-TOF-MS spectra of purified N. haje venom peptide (NH3/4-

4). The molecular masses of peptides were determined using MALDI-TOF mass 

spectrometry in positive ionization mode. a-Cyano-4-hydroxycinnamic acid was 

used as MALDI matrix.
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Figure 3.20 MALDI-TOF-TOF-MS spectra of purified W. aegyptia venom peptide 

(WG4-2).The molecular masses of peptides were determined using MALDI-TOF 

mass spectrometry in positive ionization mode.a-Cyano-4-hydroxycinnamic acid 

was used as MALDI matrix.
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Figure 3.21 MALDI-TOF-TOF-MS spectra of purified W. aegyptia venom peptide 

(WG4-3). The molecular masses of peptides were determined using MALDI-TOF 

mass spectrometry in positive ionization mode.a-Cyano-4-hydroxycinnamic acid 

was used as MALDI matrix.
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Figure 3.22 MALDI-TOF-TOF-MS spectra of purified N. nubiae venom peptide 

(NN2/3-3). The molecular masses of peptides were determined using MALDI-TOF 

mass spectrometry in positive ionization mode.a-Cyano-4-hydroxycinnamic acid was 

used as MALDI matrix.
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3.3.11 Identification of N-terminal residues

The firs t five N-terminal amino acid residues o f NH3/4-4, WG4-2, WG4-3 and NN2/3-3 

were sequenced, and compared w ith those found in the ExPASY proteom ics database 

using a basic local alignm ent search too l (BLAST). The sequence o f NH3/4-4 was 

identical to  "Short neurotoxin 2" (Joubert 1975) which has been identified as a 

member o f the three-finger toxin superfamily. This sequence is present in a num ber o f 

d iffe ren t Naja species (Figure 3.23) Naja nivea (Botes, 1971), Naja haje (Joubert 1975) 

and Naja annulifera  (Joubert & Taljaard, 1978) but is unique to  Naja genus.

NH3/4-4 MI-HN

Naja haje MICHNQQSSQPPTIKTCPGETNCYKKQWRDHRGTIIERGCGCPSVKKGVGIYCCKTDKCNR 61
Naja nivea MICHNQQSSQRPTIKTCPGETNCYKKRWRDHRGTIIERGCGCPSVKKGVGIYCCKTDKCKR 61
Naja annulifera MICHNQQSSQPPTIKTCPGETNCYKKRWRDHRGTIIERGCGCPSVKKGVGIYCCKTNKCRR 61

Figure 3.23 N - terminal Sequence alignment of NH3/4-4 with full sequences of short neurotoxin2 

sequences (three-finger toxins) from some Naja genus venoms. N-terminal sequence of NH3/4-4 

was obtained by automated Edman degradation. Other protein sequences were obtained from the 

NCBI database. Conserved cysteine residues are shown in green colour. Residue (-) at position 3 is 

most likely due to cysteine as it cannot be detected using N-terminal sequencing, w ithout prior 

chemical modification.
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N-terminal sequencing o f both 6 kDa peptides WG4-2 and WG4-3 (NFh-Leu- Lys- (Cys)- 

Asn- Gin) also revealed the ir homology w ith  the three-finger toxins. The five amino 

acids residues are sim ilar to  Naja mossambica (Mozambique spitting cobra) cytotoxins 

CTX M l,  M3 and M4 (Figure 3.24). No sequence data was obtained fo r the N-term inus 

o f NN2/3-3, the most likely cause is tha t it is N-term inally blocked.

WG4-2 LK’NQ 

WG4-3 LK-NQ

Figure 3.24 N - terminal Sequence alignment of WG4-2 and WG4-3 with full sequences of 

Naja mossambica (Mozambique spitting cobra) cytotoxins CTX M1,M3 and M4. N-terminal 

sequence of WG4-2 and WG4-3 was obtained by automated Edman degradation. Other 

protein sequences were obtained from the NCBI database. Conserved cysteine residues are 

shown in green colour. Residue (-) at position 3 is most likely due to cysteine as it cannot be 

detected using N-terminal sequencing, without prior chemical modification.
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3.4 Discussion

Snake and scorpion venoms are enriched sources of some biologically active peptide 

with many therapeutic uses. The envenomation apparatus of snakes and scorpions 

which is used either for defence or to obtain food, is often contaminated with multiple 

pathogenic microbes (Garcia-Lima, Laure 1987, Shek, Tsui et al. 2009, Babalola, 

Balogun 2013). Since snakes and scorpions are associated with a low incidence of 

microbial infection (Talan, Citron et al. 1991), this suggests that venoms might contain 

potent antimicrobial agents protect against pathogens, although venoms remain 

largely unexamined as sources for AMPs (de Lima, Alvarez Abreu et al. 2005, Ferreira, 

Santos et al. 2011, Samy, Stiles et al. 2015).

A large number of putative AMPs have been identified from scorpion and snake 

venoms by proteomic or/and transcriptomic approaches from venom gland cDNA 

library. However, the antimicrobial and cytotoxic profiles of most of these peptides 

have not yet been fully investigated. The present study aimed to evaluate the potential 

biological activities of three such putative AMPs (Smpl3, Smp24 and Smp43), which 

have been identified from a cDNA library of the venom gland of 5. maurus palmatus 

(Abdel-Rahman, Quintero-Hernandez et al. 2013). Also, this study represents the first 

attempt to identify and characterise the peptides and proteins that having 

antibacterial activities from Egyptian snake venoms.

Although Smpl3 shares a high level of sequence identity with some potent AMPs such 

as UyCT3 and IsCT derived from Urodacus yaschenkoi (Inland robust scorpion) and 

Opisthacanthus madagascariensis respectively, it is likely that Smpl3 exhibited no



antim icrobial activity against tested bacterial strains because it has a net charge of 

zero. Electrostatic interactions play a crucial role in the binding o f cationic AMPs to  

negatively charged prokaryotic membranes (Yu, Guo et al. 2009, Bahar, Ren 2013). The 

enhancement o f antim icrobial potency of some AMPs is dependent on 

the increase in positive net charge and the number o f positively charged residues 

which could increase the electrostatic binding of the peptide to  anionic bacterial 

membranes (Zelezetsky, Tossi 2006, Jiang, Vasil et al. 2008, Phoenix, Dennison et al.

2012). Experimental modifications which e ither increase charge (e.g. to  Aam APl from  

Androctonus amoerux) (Almaaytah, Tarazi et al. 2014) or decrease charge (e.g. to  

ToAP2 from  Tityus pachyuru) (Guilhelmelli, Vilela et al. 2016) support this hypothesis.

Both Smp24 and Smp43 exhibit broad-spectrum antim icrobial activity against a wide 

range o f Gram positive and Gram negative bacteria and fungi. Smp43 (MIC 4 - 6 4  

pg/m l) was found to  have slight higher activity than Smp24 (MIC 4 - 256 pg/m l). Smp24 

has a net charge of +3 w ith fou r lysine residues 4 in comparison to  Smp43 which has a 

net charge +4 w ith seven lysines and greater positive. The greater positive charge on 

Smp43 m ight reflect the relative antim icrobial potency of the tw o  peptides.

Smp24 and Smp43 both possess higher activity against Gram positive (MIC 32-256 pg 

/m l) than Gram negative bacteria (MIC 8-64 pg/m l). Such preferential activ ity has also 

been reported fo r P in l and Pin2 which displayed up to  tw enty  tim es more potent 

activity against some Gram positive than Gram negative strains (Corzo, Escoubas et al. 

2001) as well as o ther AMPs from  P. im perator (Zeng, Zhou et al. 2013) and from  

Heterometrus petersii (Li, Xu et al. 2014). The bacterial selectivity o f some AMPs
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depends on the presence and distribution of abundant negatively charged 

phospholipids in the bacterial membranes where the phospholipid composition of 

Gram -negative membranes such E. coli is less anionic than Gram positive membranes 

S. aureus and B. subtilis which contain higher amounts of negatively charged 

phospholipids PG (Epand, Savage et al. 2007,McHenry, Sciacca et al. 2012, Aoki, Ueda

2013). Asymmetric lipid distribution has been reported in bacterial membranes, as 

neutral phospholipids as PE are located in the inner leaflet, while, PG is distributed in 

the outer leaflet. Whilst, CL is distributed over both leaflets in plasma membranes in 

Gram positive bacteria. Such membrane asymmetry is known to affect various bilayer 

properties, including binding affinity to AMPs (Barsukov, Kulikov et al. 1976, 

Marquardt, Geier et al. 2015).

Smp43 showed very low haemolytic activity at the highest concentration of 512pg/ml. 

While Smp24 exhibited highly haemolytic effect at the same concentration. Smp24 

shares 54% homology with Pin 2, while Smp43 sharing 86% identity with Pin 1 

(Harrison, Abdel-Rahman et al. 2016). Pin2 has high haemolytic activity is similar to 

that of Smp24, and Pinl is similar to Smp43 have less or no haemolytic activity even at 

high concentrations (Corzo, Escoubas et al. 2001). The haemolytic activity of Pinl 

depends on the Zwitterionic phospholipids (PC) and sphingomyelin (SM) ratio; it 

displayed higher haemolytic activity against guinea pig erythrocytes than sheep 

erythrocytes, which have less ratio of PC/SM. Therefore, Smp43 may show much 

higher haemolytic activity against other mammal erythrocytes such as human blood 

cells (rich in PC) than sheep cells (rich in SM) (Belokoneva, Villegas et al. 2003).
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Both peptides induced cytotoxic effects on HEK293 cells in a concentration-dependent 

manner with a decrease in cell viability seen at 32 pg/ml with both peptides. Smp43 

showed limited cytotoxic effect against keratinocyte HaCaT cell line at a highest 

concentration of 256 pg/ml, while, Smp24 showed significant decrease HaCaT cells 

viability at 128 pg/ml. Our previous work has indicated that both Smp24 and Smp43 

have cytotoxic effects on HepG2 liver cells in a concentration-dependent manner 

(Harrison, Abdel-Rahman et al. 2016). These results have been attributed to the overall 

negative charge on extracellular face of both cancer and prokaryotic cell membranes 

due to the presence of negatively charged phospholipids on the outer leaflet of 

prokaryotic membranes and the exposure of intracellular PS on the outer leaflet of 

cancer cell membrane as apoptotic signal (Riedl, Rinner et al. 2011). However, the 

electrostatic affinity of AMPs to anionic membranes is less important toward neutral 

eukaryotic membranes (Harrison, Abdel-Rahman et al. 2016) Hydrophobicity of Smp 

peptides (more than 60%) may has a stronger influence in terms of mammalian cell 

toxicity. Thus, a strong correlation \is reported between cytotoxicity and 

hydrophobicity, as hydrophobic residues of AMPs enhance their interaction with 

hydrophobic core of membrane (Chen, Guarnieri et al. 2007, Bahar, Ren 2013)

In conclusion, Smp24 and Smp43 are relatively short non-disulphide bridged peptides

with a spectrum of potent activity against a wide range of Gram positive and Gram

negative bacteria. There was a clear difference in the cytotoxicity of Smp43 when

compared to Smp24. Smp43 showed very low haemolytic and cytotoxic activities at

the maximum concentration tested against sheep red blood cells and HaCaT cells, in

contrast, Smp24 caused significant erythrocyte disruption and cytotoxic effects on
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HaCaT cells at the same concentration. However, both peptides were cytotoxic toward 

HEK293 cells.

In the current study, four proteins (NH3/4-4, WG4-2, WG4-3 and NN2/3-3) have been 

isolated from three Egyptian elapid venoms Naja haje (Egyptian cobra), Walterinnesia 

aegyptia (Black Desert Cobra) and Naja nubiae (nubian spitting cobra). The purified 

proteins displayed preferential activity against B. subtilis. It has been reported that B. 

subtilis exhibited high susceptibility toward crude elapid venoms such as N. 

melanoleuca (African cobra) and N. atra (Chinese cobra). In comparison, E. coli and 5. 

aureus are much more resistant to these venoms (Dubovskii, Utkin 2014).

Our results appear consistent with the findings of Ovadia and colleagues that has 

demonstrated the preferential activity of a cytotoxin (CT P4) isolated from Naja 

nigricoilis toward B. subtilis and Micrococcus flavus with no apparent antimicrobial 

activities against Gram negative bacteria and fungi (Mollmann, Gutsche et al. 1997). 

Unfortunately, the amino acid sequence of this toxin has not been reported.

B. subtilis is one of the most commonly isolated bacteria from the oral cavity, 

oropharynx and cloaca of diverse snakes (Shek, Tsui et al. 2009, Jho, Park et al. 2011, 

Babalola, Balogun 2013). In addition, B. subtilis has the most anionic membrane 

compared with 5. aureus and E. coli membranes. B. subtilis contain higher amounts of 

PG distributed in the outer leaflet of their membrane (Clejan, Krulwich et al. 1986, 

Epand, Savage et al. 2007, Epand, Epand 2009). This suggests that the membrane- 

damaging activity of elapid peptides that have been purified are dependant on the 

presence of anionic phospholipids in the outer leaflet of the bilayer.
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The cytotoxic effects o f the purified proteins have been evaluated against d iffe rent 

eukaryotic cells. All purified proteins showed no haemolytic activ ity at the highest 

concentration 50 pg/m l. Whereas, the ATP assay has dem onstrated tha t the purified 

protein from  N. haje venom (NH3/4-4) exhibited less cytotoxic e ffect against both 

tested cell lines (HaCaT and HEK293) at the highest concentration 50 pg/m l, but both 

WG4-2 and NN2/3-3 showed cytotoxic effect against HEK293 cell line in a 

concentration-dependent manner.

Few enzymatic peptides w ith  antim icrobial activities derived from  snake venoms such 

as cathelicidins , myotoxins and waprins (Nair, Fry et al. 2007, Wang, Hong e t al. 2008, 

Oguiura, Boni-Mitake et al. 2011, Yamane, Bizerra et al. 2013). O ther snake venom 

cytotoxic peptides such as three-finger toxins (3FTxs) (~60 amino acids) m ight 

contribute  to  the snake venom antibacterial activities profile although very few  studies 

have explored this potential (Dubovskii, Utkin 2014).

The molecular masses o f the purified proteins and N-term inal sequences suggests tha t 

they are members o f the 3FTxs family. NH3/4-4 is identical to  the N-term inal sequence 

short neurotoxin2 o f N. haje (Joubert 1975), N. nivea (Botes 1971) and N. annulifera  

(Joubert, Taljaard 1978). WG4-2 and WG4-3 have the same N-term inal sequence as 

the cardiotoxins CTX- M l  and M2 o f N. mossambica (OTTING, STEINMETZ et al. 1987, 

Chien, Chiang et al. 1994) and CTX-1 of N. nigricollis (Rees, Bilwes et al. 1990, Bilwes, 

Rees et al. 1994). Only tw o  cytotoxins have been reported fo r N. nigricollis are toxin y 

(Bilwes, Rees et al. 1994) and toxin a (Zinn-Justin, Roumestand et al. 1992). 

Interestingly, the firs t five amino acids o f the N-terminal end o f toxin y were found to
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share 100% identity with the N- terminal of both purified proteins from W. aegyptia 

venom WG4-2 and WG4-3 (Bilwes, Rees et al. 1994). Conversely, a newer study (Chen, 

Kao et al. 2011) showed that toxin y have a prominent antibacterial activity against 

both E. coli and S. aureus through a permeabilising effect of the toxin as evidenced 

from fluorescent dye leakage studies (Chen/Kao et al. 2011). The common LCK 

sequence of the peptides isolated in this chapter, unique among many cardiotoxins of 

the Naja genus (Chen, Rose et al. 1991, Dubovskii, Lesovoy et al. 2003).

The most dominant protein components of elapid venoms are 3FTxs. 3FTxs constitutes 

half the contents of the Naja venoms (Dufton, Hider 1988, Chen, Rose et al. 1991). 

Only two 3FTxs proteins (Wa-lll; 6852 Da and Wa-IV; 6782 Da) have been previously 

identified in W. aegyptia (Samejima, Aoki-Tomomatsu et al. 1997, Tsai, Wang et al. 

2008). Both Wa-lll and Wa-IV are similar in size to WG4-2 and WG4-3. However, WG4- 

2 and WG4-3 have completely different N-terminal sequences compared with Wa-lll 

and Wa-IV, suggests these proteins represent novel additions to the W. aegyptia 3FTx 

family. Although abundant 3FTxs have been isolated from other Naja species like N. 

naja, the potential short chain 3FTxs (NN2/3-3) from N. nubiae venom may represent 

the first member of the 3FTxs family from this snake.

The majority of cardiotoxins have a potent haemolytic activity such as CTX1 (Gorai, 

Sivaraman 2016) and CTX3 (Troiano, Gould et al. 2006, Kao, Lin et al. 2010). The 

haemolytic activity of the snake peptides is consistent with results of various studies 

showing that some the cytotoxins have no haemolytic effect for example, Beta-
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cardiotoxin CTX27 from Ophiophagus hannah (King cobra) venom (Rajagopalan, Pung 

eta l. 2007).

Although no previous data have investigated the cytotoxic effect of cardiotoxins on 

HaCaT and HEK293 cell lines, it has been reported that only P-type cardiotoxin can bind 

to zwitterionic membranes (Sue, Rajan et al. 1997). The analysis of the structure of 

various 3FTxs revealed that, loop I and II of 3FTxs are rich in cationic residues while 

loop III is the hydrophobic surface (Girish, Kumar eta l. 2012). Thus, P-type cardiotoxins 

(Pro30 residue at the tip of the second loop) have binding activity more strongly to 

zwitterionic membranes than S-type toxins (have serine residue) as P-type use the tips 

of all three loops in the penetration while S-type inserts via the tip of the loop I only 

(Chien, Chiang et al. 1994, Efremov, Volynsky et al. 2002).

The findings of the interactions of the purified proteins with eukaryotic cell lines 

suggest that both WG4-2 and NN2/3-3 appear to belong to P-type CTs as they able to 

induce membrane disruption of kidney cell lines. These findings are consistent with 

Chien et al., (1994) that have demonstrated that P-type cardiotoxin s such as CTX M l,  

M4 and M5 which have similar N- terminal sequence to both WG4-2 and WG4-3 have 

higher affinity to zwitterionic membranes (Louw 1974, Chien, Chiang et al. 1994). The 

full-length sequences of purified proteins are needed in order to classify it as S-type or 

P-type cardiotoxins.

Our findings indicate that NH3/4-4, WG4-3, WG4-2 and NN2/3-3 proteins have 

antimicrobial properties with limited or no cytotoxic potential. Further studies are 

needed to complete sequencing of these proteins and to investigate their mode of
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action with more details. These isolated 3FTxs may serve as starting templates for 

designing novel synthetic AMPs with enhanced antimicrobial activities and valuable 

therapeutic effect.
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4 A morphological study of the effects of Smp24 and Smp43 on 

Escherichia coli and Staphylococcus aureus using scanning 

and transmission electron microscopes.
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4.1 Introduction

Imaging the action of antimicrobial peptides on living bacterial cells can provide novel 

Insights in to the mechanism of AMP action. Different spectroscopic techniques such 

as fluorescence microscopy, AFM and electron microscopes have been used to 

demonstrate morphological changes of living cells treated with AMPs (Anderson, 

Haverkamp et al. 2004, Meincken, Holroyd et al. 2005, Torrent, Sanchez-Chardi et al. 

2010, Scheinpflug, Krylova eta l. 2015).

Fluorescence microscopy provides more detailed information about AMP-bacterial 

membrane interactions. It can analyse and determine the distribution and target of 

AMPs intracellularly or extracellularly by detecting and localising attached fluorescent 

probes (Scheinpflug, Krylova et al. 2015). The interaction of fluorescently labelled 

melittin K14 with PC vesicle and with E. coli revealed insignificant pore formation in 

live bacteria, compared with the artificial membrane system. According to (Gee, 

Burton et al. 2013) a new model is needed to explain peptide-membrane interactions 

in live bacterial cells, as they discovered the complexity o f lipid-peptide interactions in 

living cells when compared with simple artificial systems.

Scanning and transmission electron microscopes were applied in several studies to 

visualise the ultrastructural damage and morphological changes to the bacterial cell 

envelope induced by AMPs. SEM and TEM are can be used as complementary 

techniques to gain insights into AMP mechanism of action when combined with other 

findings (Matsuzaki, Sugishita et al. 1997, Matsuzaki, Sugishita et al. 1999, Avitabile, 

D'Andrea et al. 2014).
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Blebs or b lister form ation on microbial surfaces are a common effect fo r AMPs. Blister

like form ations in the outer membrane of Gram negative bacteria m ight be a ttribu ted  

to  the electrostatic interaction of cationic AMPs w ith  LPS by displacing cations from  

the ir binding sites on LPS prom oting the uptake of peptides across the outer 

membrane (Zhang, Dhillon et al. 2000, Grubor, Meyerholz et al. 2006). The appearance 

of abundant blebs has been previously reported on the surface o f Pseudomonas 

aeruginosa strains treated w ith  cathelicidin peptide SMAP29 as examined by SEM 

(Saiman, Tabibi et al. 2001a). LPS-binding studies o f full-length and truncated SMAP-29 

molecules revealed tha t presence o f m ultip le binding sites in the peptide allow binding 

LPS w ith  high a ffin ity  (Tack, Sawai et al. 2002). This a ffin ity  to  LPS has been confirmed 

by assessing the ability o f SMAP29 to  displace the fluorescent dansyl polymyxin B 

(DPX) bound to  LPS (Anderson, Yu 2005a).

The surface roughening and corrugating o f cell membrane have also been identified 

fo llow ing exposure to  several AMPs o f a wide range o f bacterial cells examined by EM 

techniques. These observations demonstrated loss o f membrane in tegrity  and the 

release o f cellular contents follow ing trea tm ent w ith  the peptides leading to  cell lysis 

and death (Lv et al., 2014, Wang et al., 2015).

EM also has been used successfully to  m onitor the action of some labelled AMPs on 

live bacteria in order to  clarify the ir antim icrobial action. Nanogold-labelled sushi 

peptide has been tracked on E. coli. Gold particles were found on the inner and oute r 

membranes, as well as in the periplasmic space and cytoplasm, while no particles were 

observed bound to  the bacteria fo r controls w ith  nanogold alone. The d is tribution  o f 

these particles has been quantified, the m ajority o f nanogold (77%) was found 

attached to  the exterior leaflet o f the outer membrane. These results suggest tha t the
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local environment at the bacterial outer surface is necessary for sushi peptide 

attachment to penetrate the membrane and enter the cell (Leptihn, Har e ta l. 2009). 

These observations were consistent with imaging of sushi peptide-treated £  coli and P. 

aeruginosa with AFM (Li, Lee et al. 2007).

Understanding the mode of action of broad spectrum Smp peptides against live 

bacterial cells will help to increase their potency and minimise their cytotoxic effects. 

Previously, AFM and quartz crystal microbalance-dissipation (QCM-D) have been used 

to study Smp peptides mechanisms on synthetic prototypical prokaryotic membranes. 

The results indicated that these peptides caused pore formation and induced the 

formation of non-lamellar lipid structures (Harrison, Heath et al. 2016). The 

interactions of AMPs against living cell membranes might be different and more 

complicated compared with simple artificial membranes (Gee, Burton et al. 2013). The 

interactions of Smp peptides with the membranes of live bacteria have not been 

clearly investigated. Therefore, one the goals of this current study is to examine 

concentration- and time-dependent effects of Smp peptides on intact E. coli and S. 

aureus cells using SEM and TEM.
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4.2 Method Summary

Both SEM and TEM were employed to examine morphological changes and membrane 

damage in E. coli and S. aureus strains in response to different concentrations of Smp 

peptides treatment across arange of time intervals. The overnight cultures of E. coli 

JM109 and S. aureus SH1000 were diluted in fresh MH Broth to a cell density lx lO 6 

CFU/ml then incubated at 37°C to grow to OD6oo=0.3 (mid-exponential growth phase). 

Bacterial cells were treated with different concentrations of either Smp24 or Smp43 

for different time intervals (10 minutes, 1 hour, and 24 hours) at 37°C. Then samples 

were prepared for SEM and TEM as described in sections 2.12 and 2.13 and then 

visualised.
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4.3 Results

4.3.1 Determination of Smp peptides concentrations used for SEM sample 

preparation

Since a high cell density is needed to observe EM images. E. coli JM109 and 5. aureus 

SH1000 were grown to mid-exponential phase then treated with Smp peptides at 

different concentrations for three time intervals (10 minutes, 1 hour, and 24 hours) to 

examine concentration- and time-dependent effects of Smp peptides on intact E. coli 

and S. aureus cells using SEM.

The inintial peptide concentration range that was used to evaluate inhibitory 

concentrations in the conditions required for SEM imaging was based on those found 

in section 2.4. Due to differences in volume and cell densities in these experiments, 

new inhibitory concentrations were defined (Figure 4.1 and Figure 4.2).

Therefore, three concentrations of each peptide; sub-MIC (one-quarter), MIC and 

supra-MIC (4x) against E. coli and S. aureus were selected for growth curves 

comparing Smp peptide exposed cultures with untreated cells (Table 4.1).
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Figure 4.2 Growth of S.aureus. Treatment with Smp24 and Smp43 at the MIC (16 pg/ml) and 

one -quarter (4 pg/ml) of the MIC concentrations.

Table 4.1 Peptide concentrations used for SEM sample preparation

Bacteria
Concentrations (pg/ml)

Sub- MIC (l/4x) MIC Supra -MIC (4x)

E. coli 8 32 128

S. aureus 4 16 64
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4.3.2 SEM of E. coli and 5. aureus incubated with Smp peptides for 10 minutes

Untreated E. coli and S. aureus cells showed normal bright smooth intact surfaces 

(Figure 4.3A and Figure 4.4 A). E. coli cells developed surface protrusions of numerous 

small nubs and blister like structures (indicated with red arrows) after incubation with 

concentration of Smp24 below the MIC and at the MIC concentrations for 10 minutes 

(Figure 4.3B and D). In comparison, E. coli cells appeared very rough, corrugated 

(marked by orange arrow) and shrunken when treated by equivalent concentrations of 

Smp43 (Figure 4.3C and E).

Distortions of the morphology of E. coli were observed in many treated cells at 

greater than MIC concentrations of both peptides with depressions and fractures on 

their surfaces. Numerous cells look corrugated as indicated by the orange arrows 

(Figure 4.3F and G).

Following exposure for the same period of time, the sub-MIC concentrations of either 

peptide resulted in the appearance of bacterial membrane blebs in 5. aureus cells 

(Figure 4.4 B and C). MIC and supra-MIC concentrations induced little cell membrane 

damage with accumulation of cell debris at this period of time (Figure 4.4 D- G).
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4.3.3 SEM of E. coli and 5. aureus incubated with Smp peptides for 1 hour

After 1 of hour incubation, most E. coli cells treated with sub-MIG concentrations of 

Smp24 showed obvious consistent with roughening and corrugating membrane 

damage, it also revealed few ruptured cells (Figure 4.5B). In comparison, damage of 

Smp43 treated cells at the same concentration was less evident; although most cells 

maintained intact cell structures, a few showed surface corrugated patterns and 

ruptured membranes (Figure 4.5C).

Many damaged E. coli cells were seen with more blebbing and corrugated surfaces 

following treatment of either peptide at MIC concentrations (Figure 4.5D and E). 

Panels F and G in Figure 4.5 showed many distinguishable lysed E. coli cells treated 

with supra-MIC concentrations of either Smp24 or Smp43.

After treatment of 5. aureus with either Smp24 or Smp43 for 1 hour, completely lysed 

cells accompanied with the intracellular material extrusion were observed in a 

concentration dependent manner, as nearly no intact cells were seen in S. aureus cells 

exposed to Supra-MICs of both peptides (Figure 4.6F and G). The damage is indicated 

by yellow arrows showed the complete loss of membrane integrity.
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4.B.4 SEM of E coli and 5. aureus incubated with Smp peptides for 24 hours

After 24 hours of incubation with concentrations of Smp peptides below the MIC and 

at the MIC, a small number of E  coli cells were shrunken and have corrugated surfaces 

(Figure 4.7B - E). Also, some blebs were seen on the surface of a few S. aureus treated 

cells at the same concentrations (Figure 4.8E). No cells were harvested after 24 hours 

of Smp peptides treatments at supra-MIC concentrations which induce cell death and 

led to cell lysis.
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4.3.5 TEM images of E. coli and S. aureus incubated with sub- MICs of Smp24 and 

Smp43

To investigate the morphological changes of bacterial cells, TEM was employed to  

study the membrane in tegrity  o f bacterial cells before and afte r trea tm ent w ith  Smp 

peptides. E .coli and S. oureus cells were treated w ith sub-MICs of Smp24 or Smp43 fo r 

10 minutes, 1 hour, and 24 hours. The samples were fixed and cut in to  th in  sections. 

For each treatm ent duplicate samples were prepared and numerous sections were cut 

from  each.

As shown in Figure 4.9 (panels A and B) and Figure 4.10 (panels A and B), the 

untreated E.coli and 5. aureus cells were all uniform ly shaped, w ith  an undamaged 

structure and intact cell envelops. W hile a fte r 10 minutes o f incubation w ith  both 

peptides, many treated E. coli cells showed morphological changes as cells w ithou t cell 

envelops and cells w ith  separated cell surface components. In some cases the 

cytoplasmic contents had leaked out o f the cells and exhibited obvious cytoplasmic 

clear zones as indicated by blue arrows in panels C and D. Some leakage o f cellular 

material was seen after the exposure o f S. aureus cells to  Smp peptides fo r 10 m inutes 

of incubation as shown in Figure 4.10 C and D

The m ajority o f the treated cells appeared severely morphologically affected a fte r 1 

hour o f incubation. They exhibited completely damaged membranes and cellular 

content spillage. Disrupted membranes were observed fo r E. coli cells being treated 

w ith Smp24 fo r 1 hour (Figure 4.9 E and F). Formation o f ghost cells which have intact 

cell envelopes w ithou t cellular contents were visualised after 10 m inutes and 1 hour 

and indicated by green arrows. It was obvious tha t S. aureus cells underwent lysis a fte r
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1 hour of incubation with SMP peptides as they exhibited damaged and ruptured 

envelops with released cellular contents (Figure 4.10 E and F).

After 24 hours of incubation, a regular cell shape was seen. A small number of E. coli 

cells showed morphological changes such as roughened membranes, zones of 

translucent cytoplasm and separation of outer membrane and cytoplasmic membrane 

(Figure 4.9 G and H). Also, the majority of the cells were indistinguishable from 

untreated cells. However, some zones of transparent cytoplasm were evident as seen 

in Figure 4.10 (panels G and H).

In conclusion, TEM images showed significant morphology changes as result of the 

exposure of bacterial cells to Smp peptides at sub-MICS up to 1 hour of incubation.
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Figure 4.9 Transmission electron microscope images taken of E. coli JM109 cells incubated with

Smp peptides at sub-MIC for different time intervals. Cells were cultured at 37 °C to mid-log phase

before treatment. (A) Untreated cells after 10 minutes; (B) Untreated cells after 1 hour; (C) Smp24-

treated cells for 10 minutes; (D) Smp43-treated cells for 10 minutes; (E) Smp24-treated cells for 1

hour; (F) Smp43-treated cells for 1 hour; (G) Smp24-treated cells for 24 hours; (H) Smp43-treated

cells 24 hours. The green arrows point to ghost cells that are not surrounded by a cell wall. Images

shown are representative of twenty images from three replicates.
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Figure 4.10 Transmission electron microscope images taken of 5. aureus SH1000 cells 

incubated with Smp peptides at sub-MIC for different time intervals. Cells were 

cultured at 37 °C to mid-log phase before treatment: (A) Untreated cells after 10 

minutes; (B) Untreated cells after 1 hour; (C) Smp24-treated cells for 10 minutes; (D) 

Smp43-treated cells for 10 minutes; (E) Smp24-treated cells for 1 hour; (F) Smp43- 

treated cells for 1 hour; (G) Smp24-treated cells for 24 hours; (H) Smp43-treated cells 

24 hours. The blue arrows indicate the cytoplasmic clear zones. Images shown are 

representative of twenty images from three replicates.



4.4 Discussion

Interactions between Smp peptides and synthetic prokaryotic membrane models have 

been previously investigated using liposome leakage assays, AFM and QCM-D. These 

data suggested tha t the bactericidal mechanism of Smp peptides against prokaryotic 

like membranes is toroidal pore form ation (Harrison, Heath et al. 2016). W hile in the 

current study, we investigated interaction o f Smp peptides w ith live bacterial cells to  

support our understanding o f the antibacterial mechanism o f these molecules in order 

to  develop the ir therapeutic potentia l as novel antim icrobial agents.

In the current study, SEM was perform ed on tw o  species of bacteria E. coli and 5. 

aureus, as representatives o f Gram positive and Gram negative bacteria to  visualise 

morphological changes fo llow ing exposure to  Smp peptides at d iffe rent concentrations 

and intervals o f tim e to  investigate the dose-dependent and tim e-dependent 

interactions o f Smp peptides against E. coli and S. aureus.

Formation o f blebs was evident fo r the tw o  species o f bacteria at sub-MIC and MIC 

concentrations after 10 minutes o f incubation. Our SEM observations provide 

morphological evidence o f the potent permeabilising activity o f Smp peptides at MIC 

and supra-MIC concentrations after 1 hour o f treatm ent. The treated cells were 

obviously roughened and disrupted when treated w ith  the peptide. Also, they 

exhibited changes to  the ir morphology such as shortening and membrane corrugating.

In addition to  SEM, TEM was employed to  study the m orphological and in trace llu la r 

changes o f E. coli and 5. aureus fo llow ing tre a tm e n t w ith  Smp peptides at sub-MIC 

concentrations a fte r 10 m inutes, 1 hour and 24 hours o f incubations. S ub-inh ib itory 

concentrations o f numerous antim icrobia l agents were com m only used to  evaluate
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the morphological and u ltrastructu ra l changes fo llow ing  antim icrobials challenge 

using TEM (Haukland, Ulvatne et al. 2001, Chen, Zhan et al. 2009, Wenzel, Chiriac et 

al. 2014). Our TEM images o f these cells treated w ith  sub-MICs concentrations o f both 

Smp peptides confirm  the interaction o f the peptides w ith  the bacterial membranes 

causing significant rupture and leakage o f cytoplasm contents which lead to  cell death. 

Apparent morphological changes were seen in the Smp treated cells such as 

cytoplasmic clear cells w ith  intact cell membranes form ing ghost cells compared w ith  

the control sample which showed regular shapes w ith  homogenous electron density.

Similarly, other cationic AMPs e.g. m elittin , magainin, moricin and King cobra venom 

AMP(OH-CATH) have induced the appearance of blebs and blisters like protusions a fte r 

a few  minutes o f trea tm ent at the Sub-MICs concentrations (Skerlavaj, Benincasa et al. 

1999, Saiman, Tabibi et al. 2001b, Mangoni, Papo et al. 2004, Chen, Zhan et al. 2009, 

Hu, Wang et al. 2013). Blebbing appears on the bacterial cell surface as a result o f 

expansion o f the outer membrane due to  the antibacterial activity o f AMP peptides 

(Hancock, Rozek 2002). Moreover, form ation o f blebs and blisters may be indicative o f 

the electrostatic interactions of Smp or o ther cationic AMPs such as LfcinB (bovine 

AMP) w ith  the anionic bacterial cell membrane. It has been suggested tha t interactions 

include displacement o f divalent cations (Ca2+, Mg2+) o f the outer bacterial membrane 

by the large peptides and tha t this results in blebs form ation (Hancock, Rozek 2002, 

Grubor, Meyerholz et al. 2006). Blebbing form ation  has also been a ttr ibu ted  to  

detachment o f cytoskeleton from  the cell membrane causing the la tte r to  swell 

(Omardien, Brul et al. 2016).

When the attached AMP aggregated on the bacterial surface at a high enough 

concentration, permeabilisation o f the cell membrane is induced leading to  cell death
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(Chan, Prenner et ol. 2006b). The permeabilisation effect o f AMPs may also be 

confirmed by the electrostatic interactions between basic residues o f the AMP and the 

negatively charged phospholipids o f the bacteria membranes (Matsuzaki, Sugishita et 

al. 1997). The 24-residue AMP GI24; a derivative o f PMAP-36, interacts w ith  anionic 

phospholipids to  induce membrane permeabilisiation. Also, the bee venom AMP 

m elittin  destabilise bacterial cell membranes by binding the anionic phospholipids 

inducing cell lysis (Oren, Shai 1997). The SEM examination o f M e littin - and GI24 

treated E. coli revealed the roughening and corrugating o f the membrane surface at 

the MIC after 1 hour o f incubation which is sim ilar to  Smp peptide effect against E. coli 

at the MIC after the same period o f tim e (Lv, Wang et al. 2014, Wang, Chou et al. 

2015).

The attraction to  phospholipids is one of the most frequently proposed mechanisms 

fo r a-helical peptides, permeablisation o f the bacterial membrane causing cell death 

(Shai 1999). Both Smp peptides are positively charged; net charge o f Smp24 is +3 and 

Smp43 is +4. The positive net charge o f the AMPs enhances the ir a ttraction  to  

phospholipids.

These findings are consistent w ith  the previous AFM micrographs o f Smp peptides 

against synthetic prokaryotic membrane models which identified the importance of the 

electrostatic attraction o f Smp peptides to  negatively charged bilayers fo r induction of 

membrane damage (Harrison, Heath et al. 2016). The same topography o f 

permeabilisation has been reported in several AFM and SEM studies o f d iffe ren t 

species o f bacteria treated by AMPs. For instance, the AFM and EM analyses o f the 21 

residue lugworm AMP arenicin interacts w ith  E .coli revealed a sim ilar e ffect on
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bacterial membranes as we have observed w ith  Smp peptides (Andra, Jakovkin et al. 

2008).

Smp peptides have more than 60% hydrophobic residues in the ir am ino acids 

sequences. The hydrophobic interactions o f AMPs and the lipid constituents o f the 

bacterial membranes have been proposed to  lead to  membrane destabilization. This 

in terpreta tion is in full agreement o f the proposed mechanism of several AMPs such as 

the 26-residue amphipathic a-helical AMP V13Kl (Chen, Guarnieri et al. 2007). 

Interestingly, in the la tte r study they found tha t there is an optim um  hydrophobicity in 

which maximum antibacterial activity o f V13Kl. Any alteration o f this hydrophobicity 

decreases its antim icrobial effect (Chen, Guarnieri et al. 2007).

Both hydrostatic and hydrophobic interactions o f AMPs w ith  the bacterial membranes 

are necessary fo r the antibacterial action o f AMPs (Shai 1999). Similarly, the 

mechanism of action o f magainins on bacterial cells determ ined against Gram negative 

bacteria can be summarised in tw o  main steps; interaction w ith  anionic 

lipopolysaccharides and then aggregation to  form  pores (Hancock, Rozek 2002, 

Grubor, Meyerholz et al. 2006). According to  (Saiman, Tabibi et al. 2001b), bacteria are 

unlikely to  develop a resistance fo r peptides w ith  this mode of action. AMPs act non- 

specifically on the entire bacterial membrane (Park, Park et al. 2011). Development o f 

microbial resistance by changing conserved targets such as the cell membrane or by 

gene m utation to  such mechanism of action is d ifficu lt requiring significant a lteration 

to  the physiology o f the cell (Zasloff 2002, Matsuzaki 2009, Aoki, Ueda 2013).

Similar micrographs o f ghost cells form ation  have been reported in TEM studies o f

bacterial cells treated w ith some cationic AMPs such as TEM studies o f E. coli treated

w ith  a variety o f AMPs (Chappie, Mason et al. 1998, Anderson, Haverkamp e t al. 2004,
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Chen, Zhan et al. 2009, Makobongo, Gancz et al. 2012) . The formation of ghost cells 

suggest that cationic AMPs induce the formation of pores which were more evident at 

the 1-hour time point of Smp24 treated E coli. It seems to be a general mechanism for 

cationic AMPs which form transmembrane pores when the peptides inserted into the 

lipid constituents of the bacterial membranes (Sengupta, Leontiadou et al. 2008, 

Makobongo, Gancz et al. 2012, Bahar, Ren 2013, Chen, Jia et al. 2013).

In addition, some extracellular electron-dense materials and sloughing of cell walls 

from some cells have been visualised using TEM following the exposure to sub-MIC 

concentrations of Smp peptides after 10 and 60 minutes. Similarly, the TEM 

micrographs of AMPs such as RRIKA, NK-2 against different species of bacteria 

revealed the same observations (Hammer, Brauser et al. 2010, Mohamed, Hammac et 

al. 2014). These findings support the permeabilisation effect of cationic AMPs against 

bacterial cells (Hartmann, Berditsch et al. 2010).

The highly disintegrated membranes of Smp peptide treated bacteria may increase the 

influx of water into the cytoplasm which induces cytoplasmic membrane rupture 

leading to a discharge of cytoplasmic materials. The cytolysis effect of Smp peptides 

was seen for supra-MICs concentrations as many E  coli lysed cells with cytoplasmic 

contents release and debris have been observed even after 10 minutes of incubation. 

Similarly, the high concentrations of other cationic AMPs; GS and PGLa lead to 

membrane damage and cell content leakage resulting in cell death (Hartmann, 

Berditsch et al. 2010).

However, the majority of £  coli and S. aureus of the mid-exponential growth phases

exposed to sub-MIC and MIC concentrations of Smp peptides showed no prominent

morphological changes after 24 hours of incubation (Figure 4.7-8). They showed
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normal cell shape w ith an undamaged structure o f the ir membranes and homogenous 

electron-dense materials. Very few  cells revealed morphological changes in the form  

o f roughened membranes and blisters on the ir surfaces at the MIC of Smp peptides. 

These results revealed tha t sub-MIC and MIC concentrations as determ ined by broth 

m icrodilution o f Smp peptides were insufficient fo r allowing the peptide binding and 

interaction w ith all of E. coli and S. aureus cells at the m id-exponential g row th phase, 

unbound viable bacterial cells continuously grew and the peptide effect declined a fte r 

longer exposure fo r 24 hours (Pacor, Giangaspero et al. 2002). These findings 

dem onstrate the dose-dependent manner o f Smp peptides against bacterial 

membranes.

Some Smp24 treated E. coli at the MIC concentration revealed electron-dense 

materials inside the cells when examined using TEM similar to  the reported effects o f 

w aterfow l cathelicidin peptide dCATH (Gao, Xing et al. 2015) and C12K- 2 3 1 2  against E. 

coli suggesting the aggregation of biological macromolecules.

In conclusion, both SEM and TEM are influentia l imaging techniques tha t a llow us to  

gain insights in to AMP action. Our findings o f EM micrographs indicated tha t Smp 

peptides and bacterial interactions m ight take place in a stepwise fashion including 

peptide binding and insertion into bacterial membranes which lead to  membrane 

permeabilisation and cytoplasmic contents leakage even at low concentrations. Firstly, 

the amphipathic properties o f Smp peptides could help peptides to  in teract w ith  the 

negatively charged bacterial membrane hydrostatically by binding to  positively 

charged amino acid residues and embedded in the non-polar components o f the 

bacterial membrane by the hydrophobic residues. Then, the embedded peptides 

aggregate and reach a threshold concentration which induces the  membrane
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permeability to from pores or rupture the bacterial membrane. Finally, the contents of 

the cells were released inducing cell death.
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5 Transcriptomic profiling of Escherichia coli following 

exposure to Smp24 and Smp43.
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5.1 Introduction

Bacteria have evolved mechanisms to  recognise and respond to  AMPs by d ifferentia lly 

expressing genes as a response to  stress or as a unique resistance mechanism against 

each AMP (Brazas, Hancock 2005, Fehri, Sirand-Pugnet et al. 2005, Pietiainen, 

Gardemeister et al. 2005). The d ifferentia lly  expressed genes of bacteria in response to  

d iffe rent types o f stress and treatm ent has been widely investigated using DNA 

microarray in order to  identify and characterise the biological processes and pathways 

most affected (Overhage, Bains et al. 2008, Monras, Collao et al. 2014).

High-density gene detection techniques like DNA microarrays can facilita te  the 

prediction o f the mode o f action o f antibiotics. For instance, m icroarray analysis has 

been used to  investigate the mechanisms of increased activity o f a com bination o f tw o 

antibiotics; Fosfomycin and tobramycin (F:T) against P. aeruginosa compared w ith  

tobramycin alone under anaerobic conditions (McCaughey, McKevitt et al. 2012). It 

was found tha t n itrate reductase genes narG  and narH  were down regulated 

significantly in response to  growth in F:T under anaerobic conditions. Interestingly, 

nitrate reductase m utant strains showed higher sensitivity to  F:T in anaerobic 

conditions compared w ith an aerobic environm ent which confirm  the role o f nar 

genes in inducing increased activity o f F:T against P. aeruginosa as revealed by 

microarray analysis (McCaughey, Gilpin et al. 2013).

Bacterial resistance mechanisms to  antibiotics can also be investigated using 

microarray. Bang-Ce Ye and colleagues (Yu, Yin et al. 2012) have investigated and 

identified the d ifferentia lly  expressed genes and pathways induced by fusaricidin 

against Bacillus subtilis by DNA microarray technique. They revealed tha t the most
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upregulated genes are known to  be regulated by owextracytoplasmic function sigma 

factor which indicate tha t this regulon may play an im portant role in B. subtilis 

resistance to  fusaricidin. Also, fusaricidin addition has led to  an increase in the 

catabolism o f fa tty  and amino acids and the loss o f some intracellular ions tha t induce 

cation transport into the cell which may point to  the mode o f action o f fusaricidin 

against B. subtilis. These findings indicate tha t a microarray-based approach allows fo r 

a more comprehensive analysis o f bacterial responses to  antibiotics.

DNA microarray has been used to  provide insights in to the mode o f action o f AMPs 

and AMP-resistance mechanisms to  understand how bacteria respond to  AMPs. E. coli, 

S. aureus, and B. subtilis have often been used as models to  study the mechanism of 

action o f AMPs as the complete genome o f these bacteria have been sequenced (Yu, 

Yin et al. 2012, Suzuki, Horinouchi et al. 2014, Kramer, van Hijum et al. 2006, Li, Lai et 

al. 2007). For instance, the responses of S. aureus, fo llow ing exposure to  some linear 

cationic AMPs, such as tem porin L, dermaseptin K4-S4 (1-16) and ovispirin-1 were 

analysed by DNA microarray. These AMPs share some upregulated genes w ith  cells 

treated by cell w a ll-inh ib ition antibiotics such as vancomycin. The functional clustering 

analysis o f gene groups induced by these peptides displayed some specific pathways 

implicated in the resistance mechanism o f 5. aureus. In particular, an ABC transporter 

encoded by the vraDE regulon was induced strongly by ovispirin-1 and dermaseptin 

K4-S4 (1-16) (Pietiainen, Francois et al. 2009). Gene expression patterns o f E. coli were 

analysed using DNA microarray in response to  d iffe ren t antim icrobial peptides derived 

from  human and animal resources (Audrain, Ferrieres et al. 2013). This study 

concluded tha t the sublethal doses an AMP derived from  human apolipoprote in  E
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induced some distinct pathways that contribute to cell wall stress resistance (Audrain, 

Ferrieres et al. 2013).

Smp peptides offer a promising starting point for the development of new 

antimicrobial agents and transcriptomic analysis can help identify metabolic processes 

affected by AMPs which may be beneficial in understanding their mechanism of action. 

The main objective of this chapter is to identify differentially expressed genes 

following exposure of E. coli to Smp24 and Smp43 as a model for pathogenic Gram 

negative bacteria. A genome-wide phenotypic profiling of Smp peptide sensitivity in 

the KEIO collection strains of E. coli single gene knockout mutants was carried out to 

address the effect of deletion of some highly differentially expressed genes identified 

by microarray.
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5.2 Method Summary

Bacteria were cultured overnight at 37°C in M uller Hinton broth, MICs and 

subinhib itory concentrations were determ ined by serial m icrodilution methods. Total 

RNA was extracted, then assessed fo r its concentration, purity and in tegrity. RNA was 

labelled w ith  Cyanine 3-CTP (Cy3) dye and the com plim entary RNA (cRNA) was 

amplified and Cy3 specific activity was quantified. The labelled cRNA was loaded onto a 

gasket slide and assembled on the microarray slide, which contains 8  x 15K whole E. 

coli K12 oligo arrays. A fte r hybridization, slides were disassembled, and then scanned 

using an Agilent C M icroarray Scanner (Agilent, Wokingham, UK). All samples were 

tested in duplicate on each of tw o  separate arrays We analysed the changes in gene 

expression of E. coli to  sub-inhib itory doses of the Smp24 and Smp43 peptides and 

polymyxin B as a positive control using Agilent GeneSpring GX software (version 13.1). 

In order to  identify genes tha t affect the susceptibility o f E. coli to  Smp peptides, the 

Keio collection o f knockout mutants o f d iffe rentia lly  regulated genes were screened 

against Smp24 and Smp43. TaqMan RT-PCR primers were used as a reference to  

evaluate the accuracy o f expression from  microarray in three experiments fo r four 

genes identified through keio collection screening (two upregulated genes, fepA  and 

f iu  and tw o down regulated genes, fdnG  and proB).
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5.3 Results

5.3.1 Determination of subinhibitory concentrations

In order to study gene expression patterns in response to Smp peptides, E. coli 

cells were exposed to subinhibitory concentrations of tested peptides. 

Subinhibitory concentrations stimulate bacterial adaptation to different stresses, 

including antimicrobial effects. These concentrations affect cellular physiology and 

genetic expression profiles which can assist in the identification of the mode of action 

of Smp peptides.

Killing curves were performed to identify subinhibitory concentrations of Smp24, 

Smp43 and Polymyxin B against E. coli. Subinhibitory concentrations were 

determined as concentrations that induce a measurable stress response without 

totally inhibiting the growth of E. coli over four to five hour time periods when 

compared with untreated cells. Subinhibitory Smp peptide concentrations ranged 

from a concentration of zero to the MIC. It was observed that the growth of E. coli 

was reduced at Smp24, Smp43, and Polymyxin B concentrations of 12, 7 and 0.18  

pg/ml respectively (Figure 5.1).
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Figure 5.1 Growth of E. coli K12. Treatment with Smp24 at concentration of 12 pg/ml (A), Smp43 

7 pg/ml (B) and Polymyxyin B 0.24 pg/ml (C),

135



5.3.2 Pre-microarray analysis quality control

Before carrying ou t the  m icroarray experim ent, the  qua lity  and p u rity  o f the  

extracted RNA samples were assessed by the  NanoDrop spec tropho tom ete r (Figure 

5.2) then confirm ed by the Agilen t 2100 Bioanalyzer (Figure 5.3). All the  tested 

samples were o f a h ighly pure and un-degraded RNA. The QC reports o f the  Agilen t 

Feature Extraction Software showed a good qua lity  hybrid isation  represented by 

the  level and d is tribu tion  o f the  detected signals (Figure 5.4), and the  Spike-ln 

L inearity Plot re flects the  accuracy and rep rodu c ib ility  o f the probes signals (Figure 

5.5).

9/12/2014 10:55 AMMeasurement completeRe-blank Print Screen Recording
Measure

OttiliePrint Report Show ReportBlank User

Overlay control Clear graph each Sample Sam ple Type

1.60

1.40 Sam ple ID

1.20

Sam ple #
S 0.80

Abs. 0.784

0.60
A-260 10 mm path 1.5-18

A-280 10 mm path

0.20
2.20260/280

0.00
260/230 1.98

- 0 .1 7 -

ng/uL 61.9W avelength nm
3.5 .2  BB749 0 .0 3 /1 1 2 /2 4

Figure 5.2 Nanodrop spectrophotometer analysis for RNA extracted from E. coli untreated at

260 nm. The concentration is shown is 61.9 ng/pl. 260/280 ratio is 2.2 and 260/230 ratio is

1.98.
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Figure 5.3 Representative electropherogram for total RNA sample using the Agilent 

Bioanalyzer of E. coli untreated. The electropherogram peaks include 16S rRNA (16S), and 23S 

rRNA (23S). Peak intensities are shown as fluorescence units (FU). (Inset: Instrument software 

generated 'virtual gel 'pattern). The RIN value is indicated.
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Figure 5.4 Representative histogram of microarray signal plot of E coli treated with 

a sub lethal dose of Smp43. Following subtraction of the background intensity, FE 

software plots the number of spots against the log of the processed signal to create a 

Histogram of Signals Plot. A bell-shape confirms a normal distribution of the (Cy3) 

signals intensity across the array.

137

8990238990232353532389



§ s §

4.90

4 40

S 340
I  2.90<D
g 2.40 

£  1.90

B  0 90 
o
-* 0 4 0

- 0.10

Log Concentration 

♦ Processed Sig Vs Concentration

Figure 5.5 Representative Agilent Spike-ln QC Report of E.coli 

treated by sub lethal dose of Smp43. Log (Signal) versus Log 

(Relative Concentration) Plot. Spike-in Linearity Plot shows the 

linear increase in the detection level from the lowest detection 

limit up to the optimal saturation point using the detection levels 

of the serially diluted spike-in internal positive controls. Small 

error bars occurs when the signal level is close to the saturation 

point, while more visible error bars indicate that the signal is close 

to the background noise. FE extracted data are considered reliable 

when falling within the signal range, while the signal increases 

linearly with the concentration of the target.

138



5.3.3 Microarray gene expression analysis

Analysis of raw data started with importing "txt" data files generated by the Feature 

Extraction software into Agilent GeneSpring software followed by an automatic 

computing of the 75th percentile-shift normalisation. In order to identify genes that 

were differentially expressed due to the presence of Smp peptides in E. coli three 

different peptides were used for the transcriptome analysis: Smp24, Smp43 and 

polymyxin B. Polymyxin B was chosen as a well characterised AMP positive control. 

Samples for transcriptome analyses were collected from bacterial cultures treated with 

sublethal concentrations of AMPs and were compared with control samples without 

peptide treatment. All genes with at least a two-fold change in expression in two 

independent array experiments with two replicates were recorded (Figure 5.6)
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Figure 5.6 Gene expression of E. coli treated by a subinhibitory 

concentration of Smp43. Volcano plot in Genespringl3.1 with P- 

values and intensity ratios (treated versus untreated) as log- 

scaled axes. Significant differences at p < 0.05 with >2-fold 

intensity ratios are shown. Red dots indicate significantly 

differentially expressed transcripts; upregulated (right) and down 

regulated (left).
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In to ta l, 313 significantly d iffe rentia lly  expressed transcripts were identified, 

d istributed over the three comparisons of each peptide against the inh ib ito r-free  

control. Comparing Smp24 treatm ent w ith  the control revealed 130 d iffe rentia lly  

expressed transcripts (109 coding fo r known RefSeq genes), Smp43 induced 84 

d ifferentia lly  expressed transcripts ( 6 8  known), and polymyxin B induced 99 

d ifferentia lly  expressed transcripts (76 known). The 25 most d iffe rentia lly  expressed 

genes fo r each peptide are listed in Table 5.1. We found tha t only 2 out o f the 313 

d ifferentia lly  expressed genes were common among all three treatm ents, and only 13 

genes were common between Smp24 and Smp43 (Figure 5.7). Smp24 and polymyxin B 

upregulated a large number o f genes (48 and 18 respectively) compared w ith  the 

num ber o f upregulated genes in response to  Smp43 where there were only three. Ten 

upregulated genes were induced commonly by Smp24 and polymyxin B and are listed 

in Table 5.2. Forty-eight unique upregulated transcripts were identified fo r Smp24 

treatm ent. W hile treatm ents w ith  Smp43 and polymyxin B induced 3 and 18 unique 

upregulated transcripts respectively (Figure 5.7).

There were also down regulated genes in the transcriptomes. Smp24, Smp43, and 

polymyxin B decreased the expression o f 56, 71 and 81 genes, respectively. There were 

only tw o genes down-regulated commonly by all peptides. 13 o f 153 genes were 

commonly down regulated by Smp24 and Smp43 treatm ent as shown in Table 5.3 

Also, Smp43 and polymyxin B share 38 out o f 152 down regulated expressed 

transcripts (25%) are listed in Table 5.4.
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Table 5.1 The most differentially expressed gene lists following exposure to Smp24, Smp43
and Polymyxin

Gene Fold Gene description

Symbol Change

cirA 56 outer membrane receptor for iron-regulated colicin 1 receptor

fepA 40 Ferrienterobactin receptor precursor

f,u 39 putative outer membrane receptor for iron transports

fepA 35 outer membrane receptor for ferric enterobactin

T3
<u ybiL 33 Probable tonB-dependent receptor ybiL precursor
(D
3W> entC 33 isochorismate hydroxymutase 2, enterochelin biosynthesis
<U
Q.
=>

ybdB 26 orf, hypothetical protein

ybdB 23 Hypothetical protein ybdB

ECs0636 20 hypothetical protein

entB 19 2,3-dihydro-2;3-dihydroxybenzoate synthetase

entA 18 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase
CM
Q.F

nrdl 19 orf, hypothetical protein
in entF 17 Enterobactinsynthetase component F

narG 45 nitrate reductase 1, alpha subunit

narJ 27 nitrate reductase 1, delta subunit, assembly function

tdcF 24 orf, hypothetical protein

TO fdnG 11 formate dehydrogenase-N, nitrate-inducible, alpha subunit
<D+->

J O
3

ftnA 9 cytoplasmic ferritin
W><D fdnl 9 formate dehydrogenase-N, nitrate-inducible,cytochrome B556
c
5o/■s

yeiT 8 putative oxidoreductase
LJ

fdnH 7 formate dehydrogenase-N, iron-sulfur beta subunit

yqeC 6 orf, hypothetical protein

yjji 6 orf, hypothetical protein

soxS 5 regulation of superoxide response regulon

ECs0981 5 anaerobic dimethyl sulfoxide reductase subunit C

Continued
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Gene Fold Gene description
■o<u+-»(0

Symbol Change

3U><U
Q.

flgG 3 flagellar biosynthesis, cell-distal portion of basal-body rod
D

ubiH 2 2-octaprenyl-6-methoxyphenol hydroxylase

lacl 948 transcriptional repressor of the lac operon

pepD 372 aminoacyl-histidine dipeptidase

betB 151 NAD+dependent betaine aldehyde dehydrogenase

frsA 111 orf, hypothetical protein [b0239]

QPt 109 guanine-hypoxanthine phosphoribosyltransferase

sopA 100 plasmid partitioning protein

yagN 92 orf, hypothetical protein

flmC 88 hypothetical protein

betl 87 probably transcriptional repressor of bet genes

m 86 cytotoxic protein LetB
Q.
£

T3QJ+->(0
ykgF 72 orf, hypothetical protein

"5M<u
69 SopB protein

' £ 
5

yahK 62 putative oxidoreductase
oQ ykfB 54 orf, hypothetical protein

lacZ 54 beta-D-galactosidase

ccdB 52 plasmid maintenance protein

gpt 50 Xanthine-guanine phosphoribosyltransferase

harH 42 nitrate reductase 1, beta subunit

narG 39 nitrate reductase 1, alpha subunit

proB 37 gamma-glutamate kinase

yahN 34 putative cytochrome subunit of dehydrogenase

ECs0346 31 putative transporter

intF 30 putative phage integrase

ECs0360 30 high-affinity choline transport

proB 29 gamma-glutamate kinase

Continued
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Gene description

dr A 39 outer membrane receptor for iron-regulated colicin 1 receptor

fepA 23 outer membrane receptor for ferric enterobactin

ybdB 18 Hypothetical protein ybdB

ybdB 17 orf, hypothetical protein

ECs0636 15 hypothetical protein

entF 14 Enterobactinsynthetase component F

entF 14 ATP-dependent serine activating enzyme

entB 12 2,3-dihydro-2;3-dihydroxybenzoate synthetase,

entE 11 2,3-dihydroxybenzoate-AMP ligase

yncE 10 putative receptor

ybdB 10 orf, hypothetical protein

feoA 9 ferrous iron transport protein A

feoC 8 orf, hypothetical protein

lad 226 transcriptional repressor of the lac operon

frsA 135 orf, hypothetical protein

betB 127 NAD+-dependent betaine aldehyde dehydrogenase

gpt 117 guanine-hypoxanthine phosphoribosyltransferase

crl 109 transcriptional regulator of cryptic csgA gene

betT 107 high-affinity choline transport

flmC 98 hypothetical protein

pepD 94 aminoacyl-histidine dipeptidase

yagN 94 orf, hypothetical protein

sopA 90 plasmid partitioning protein

sopB 80 plasmid partitioning protein

ykfB 71 orf, hypothetical protein
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Table 5.2 Upregulated transcripts induced commonly by Smp24 and Polymyxin B.

Transcript ID
Gene Peptide (FC)

Gene description
symbol Smp24 Polymyxin B

A_07_P003540 cirA 55 39 ferric iron-catecholate outer 

membrane transporter

A_07_P016680 fepA 40 23 iron-enterobactin outer 

membrane transporter

A_07_P044007 ybdB 26 19 hypothetical protein

A_07_P031332 ybdB 23 18 hypothetical protein

A_07_P054207 ECs0636 20 15 hypothetical protein

A_07_P016731 entB 19 12 isochorismatase

A_07_P031313 entF 17 14 enterobactin synthase subunit F

A_07_P016744 ybdB 14 10 conserved protein

A_07_P009354 yncE 10 10 conserved protein

A_07_P002712 fhuA 5 5 ferrichrome outer membrane 

transporter
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Table 5.3 Down regulated transcripts induced commonly by Smp24 and Smp43

Transcript ID
Gene Peptide (FC)

Gene description
symbol Smp24 Smp43

A_07_P007073 narG 45 39 nitrate reductase 1, alpha subunit

A_07_P007083 narJ 27 20 molybdenum-cofactor-assembly 

chaperone subunit (delta subunit) 

of nitrate reductase 1

A_07_P009461 fdnG 11 8 formate dehydrogenase-N, alpha 

subunit, nitrate-inducible

A_07_P009475 fdnl 9 7 formate dehydrogenase-N, 

cytochrome B556 (gamma) 

subunit, nitrate-inducible

A_07_P003491 yeiT 8 6 predicted oxidoreductase

A_07_P009468 fdnH 7 5 formate dehydrogenase-N, Fe-S 

(beta) subunit, nitrate-inducible

A_07_P000799 napC 5 4 nitrate reductase, cytochrome c- 

type, periplasmic

A_07_P004926 dmsC 5 3 dimethyl sulfoxide reductase, 

anaerobic, subunit C

A_07_P036723 hybA 5 3 hydrogenase 2 protein HybA

A_07_P002090 hypC 4 4 protein required for maturation 

of hydrogenases 1 and 3

A_07_P012100 hybD 3 3 predicted maturation element for 

hydrogenase 2

A_07_P018368 cfa 2 3 cyclopropane fatty acyl 

phospholipid synthase 

(unsaturated-phospholipid 

methyltransferase)

A_07_P041771 yhaV 2 3 Hypothetical protein yhaV
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Table 5.4 Down regulated genes induced commonly by Smp43 and polymyxin B

Gene

symbol

Peptide (FC)
Gene description

Smp43 polymyxin

betA 26 43 choline dehydrogenase, a flavoprotein

betB 151 127 betaine aldehyde dehydrogenase

betT 24 39 high-affinity choline transport

ccdA 15 26 plasmid maintenance protein

ccdB 52 44 High-affinity choline transport protein

cod A 19 9 cytosine deaminase

flmC 88 98 hypothetical protein

ECS0346 29 44 putative transporter

ECs0360 30 28 high-affinity choline transport

frsA 111 135 orf, hypothetical protein

garR 15 15 putative dehydrogenase

QPt 50 51 Xanthine-guanine phosphoribosyltransferase

intF 30 42 putative phage integrase

lad 948 226 transcriptional repressor of the lac operon

lacY 26 41 galactoside permease

lacZ 54 67 beta-D-galactosidase

mhpR 20 21 transcriptional regulator for mhp operon

mmuM 25 40 putative enzyme

norG 39 9 nitrate reductase 1, alpha subunit

norH 42 12 nitrate reductase 1, beta subunit

pepD 372 94 aminoacyl-histidine dipeptidase

proB 37 38 gamma-glutamate kinase

sopA 100 90 plasmid partitioning protein

yafY 23 18 putative transcriptional regulator LYSR-type

yogN 92 94 orf, hypothetical protein

yahB 12 18 putative transcriptional regulator LYSR-type

yahK 62 54 putative oxidoreductase

yahN 34 59 putative cytochrome subunit of dehydrogenase

yohO 17 27 orf, hypothetical protein

yeiT 6 4 putative oxidoreductase

ykfB 54 71 orf, hypothetical protein

ykgG 25 44 orf Unknown function
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5.3.4 Analysis of expressed gene lists using DAVID bioinformatics resources

To determ ine the bacterial metabolic pathways which were significantly affected by 

peptide exposure, the upregulated genes were subm itted to  the Database fo r 

Annotation, Visualisation and Integrated Discovery (DAVID) analysis too l. Functional 

annotation clustering (FAC) analysis o f 48 upregulated genes in response to  Smp24 

trea tm ent resulted in 9 enriched functional clusters under the medium stringency 

option.

Siderophore biosynthetic processing and di - tr i valent ion binding and transport were 

the most biologically im portant gene groups w ith  enrichm ent scores (ES) o f 5.45 and 

4.86 respectively (P < 0.05) fo r Smp24 (Figure 5.8A). FAC revealed fou r genes are 

included in siderophore biosynthesis processing and th irteen genes were counted in 

the second cluster o f cation binding and transport functions. The remaining FAC 

clusters o f upregulated genes were dom inated by genes o f amino-acid biosynthesis, 

magnesium ion binding, and nucleotide binding (chloride channels).

The m ajority (60%) o f enriched clusters identified fo r polymyxin B upregulated genes 

were similar to  those clustered fo r Smp24 upregulated genes, both treatm ents share 

clusters related to  cation binding, siderophore biosynthesis and nucleotide binding 

(Figure 5.8A). FAC analysis clustered the ten common upregulated genes in response 

to  Smp24 and Polymyxin B treatm ents in one enriched functional cluster including 

mainly cation binding and transport processes under the medium stringency option 

(ES= 3.82, p <0.05).

FAC analysis o f 72 down regulated genes o f Smp24 generated seven enriched clusters. 

The highest enriched gene group was cellular respiration (ES= 10.11), fo llow ed by
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cation (iron) binding and transport (ES= 5.1). Some other clusters with lower ES were 

mainly related to cellular respiration such as electron transport and formate 

dehydrogenase (NAD+) activity. All of these clusters are shown in figure 5.8B.

Smp43 down regulated genes were clustered into 14 enriched clusters, the highest two 

clusters were cellular respiration and cation (iron) binding, the same as identified for 

Smp24 and the down regulated gene clusters are cellular respiration arid cation (iron) 

binding and transport with very close ES, 4.69 and 4.31 respectively. The next highest 

Smp43 down regulated gene groups according to ES values were post-segregation 

antitoxin CcdA, stress response, electron transport chain, and some other metabolic 

pathways. Clusters such as post-segregation antitoxin CcdA (ES 3.84), Arginine and 

proline metabolism (ES 3.59), stress response (ES 3.21), cation binding (ES 1 .99), iron -  

sulfur cluster binding (ES 1.4) and electron transport chain (ES 1.1) were also identified 

for polymyxin B down regulated genes(Figure 5.8B).

Interestingly, the biological processes of cation binding, cellular respiration, and 

electron transport were the most affected processes in response to both Smp24 and 

Smp43 treatments.
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Figure 5.8 DAVID Functional Annotation Clustering (FAC) analysis of 

differentially expressed genes obtained by Microarray analysis of E. coli 

following exposures to subinhibitory concentrations of AMPs. A. Enriched 

functional gene clusters for the 58 and 28 up-regulated genes of Smp24 and 

Polymyxin B respectively. B. Enriched functional gene clusters for the 12, 81 and 

71 down regulated genes of Smp24, Smp43 and polymyxin B respectively. 

Significance is determined by corresponding enrichment scores.
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In conclusion, microarray analysis of the E. coli response to Smp peptides compared 

with the absence of peptides has revealed seventy two genes were down-regulated by 

Smp24 and eighty one genes were down-regulated by Smp43. Of these, thirteen 

genes were down-regulated in common and were associated with bacterial 

respiration. Forty eight genes were specifically up-regulated by Smp24; these genes 

were predominantly related to sideophores biosynthesis and transport as well as 

cation transport, especially iron.

These gene lists has been interpreted using DAVID, gene clusters mainly associated 

with siderophore biosynthesis, cation transport, electron transport chain, cellular 

respiration and oxidative stress responses were the most biologically important 

enriched gene groups.
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5.3.5 Screening the Kieo collection

The Keio collection is the most used genome-wide screens o f E. coli knockout strains. 

This library includes singe gene deletions fo r 3,985 genes representing more than 90% 

of the E. coli K-12 genome. This analysis method has successfully been used as a too l in 

the last decade by screening m utant cells against antim icrobial agents to  identify  and 

assess the most fundam ental genetic variant or tra it fo r antim icrobial mode o f action 

or bacterial resistance (Liu, Tran et ol. 2010, Audrain, Ferrieres et al. 2013, Stokes, 

Davis et ol. 2014).

To characterise the genes tha t effectively contribute to  the E. coli response to  Smp 

peptides, a tota l o f seventy nine strains from  the Keio collection were tested fo r 

Smp24 and Smp43 susceptibility, each o f which have a single deletion o f highly 

d ifferentia lly  expressed genes of E. coli identified by m icroarray analysis (Table 5.5). 

The BW25113 parent strain o f E. coli was assayed firs t against concentrations o f 

Smp24 and Smp43 (0-512 pg/m l) to  determ ine w ild-type MIC (32 pg/m l). The 

sensitivity profile o f Smp24 was determ ined against th irty-e ight single-gene knockouts. 

Only fifteen mutants showed d iffe rent MICs against Smp24 compared w ith  the w ild- 

type strain. Ten m utant strains were more resistant to  Smp24 and had an increased 

MIC (64 pg/m l) w ith  respect to  the parent strain. The m ajority (> 75%) o f these genes 

(fiu, entC, entA, entB, entH, fepA  and fhuA) are involved in the biosynthesis o f 

sideorphores and the transport o f ions. Also, the deletion o f the protein binding gene 

fim C  increased resistance to  Smp24. Moreover, the m utant cell o f tatE, a com ponent 

o f TatABCE protein export complex, exhibited resistance to  Smp24 (Table 5.6).
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Knocking out genes sodB,fdnG, ycgK, soxS and ccmB resulted in cellular sensitivity to  

Smp24 w ith a one fold decrease in the MIC compared w ith  the w ild type strain. Two of 

these genes sodB and soxS play an im portant role in bacterial protection from  

superoxide; however fdnG  and ccmB are involved in the n itrate reduction process 

during anaerobic respiration (Table 5.7).

Forty one strains from  the Keio knockouts were tested fo r Smp43 susceptibility. Only 

nine mutants displayed d iffe ren t MICs against Smp43. The single deletion m utants o f 

the genes nopC, garK, fdnG, dsmA, hypA and fdnH  which are involved in anaerobic 

respiration and oxidoreductase gene ubiH, implicated in response to  oxidative stress, 

exhibited increases in susceptibility to  Smp43 (16 pg/m l) (Table 5.7). Two strains 

showed increased resistance, one of these carried a deletion o f proB, a gene tha t has a 

function in magnesium ion binding and kinase activity. W hile the other resistant strain 

has a deletion of ykfB which is an uncharacterised 'hypothetical' gene (Table 5.6).

Eight genes (ihfB , uxuR, hcoT, cysG, ugpQ, idnT, yghB and pbpC) which were not 

d ifferentia lly  expressed were randomly selected to  assess single gene deletion effect 

on the susceptibility o f E. coli to  Smp peptides as experimental controls; all showed the 

same MIC fo r Smp peptides when compared w ith  the wild type strain.
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Table 5.5 MICs for Smp peptide aginst Keio strains compared with the wild type strain 

(Smp24 and Smp43 MIC= 32 pg/ml)

Smp24 (pg/ml) Smp43 (|ig/ml)

Strain MIC Strain MIC Strain MIC Strain MIC

AFiu 64 AyjjV 64 A betA 32 A nopC 16

A entC 64 AsodB 16 AbetB 32 AnarG 32

A ybdB 64 AhybA 32 A bet! 32 AnarH 32

AentA 64 AfdnH 32 AbetT 32 AnarJ 32

AentB 64 AfimC 64 Acfa 32 ApepD 32

heir A 32 Aatos 32 AcodA 32 AproB >32

Anrdl 32 AfdnG AdmsA 16 AprpB 32

AnrdE 32 Aintf 32 AfdnG 16 AprpC 32

AentF 32 AybiX 32 AfdnH 16 AprpD 32

AfepA 64 AykgL 32 AflgG 32 AubiH 16

AyncE 32 AycgK 16 AfrsA 32 AyafY 32

AfhuB 32 AccmB 16 AgarK 16 AyagN 32

AnrdF 32 AfldB 32 AgarR 32 AyagV 32

AfhuA 64 AdmsC 32 Agpt 32 AyahJ 32

AtatE 64 AhypC 32 AhypA 16 AyahK 32

Aflil 32 AhypO 32 AintF 32 AyahO 32

AfliH 32 Anfo 32 Alacl 32 AykfB >32

AbioD 32 AynfF 32 AlacY 32 AykfC 32

AsoxS 16 AyqeC 32 AmhpR 32 AykgF 32

AmmuM 32 AykgG 32

AnapB 32
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Table 5.6 Mutant strains with increased resistance to Smp24 and Smp43

Peptide Functional Group Gene Function
Gene

knockout

Putative outer membrane receptor 

for iron transport
flu

Outer membrane receptor for ferric 

enterobactin
fepA

Siderophores transport 

and biosynthesis

Outer membrane 

ferrichrometransport system
fhuA

Isochorismate synthase entC

IMQ.
E

Z,3-Dihydro-Z,3-dihydroxybenzoate

dehydrogenase
entA

in Z,3-dihydro-Z,3-dihydroxybenzoate 

synthase; Asochorismatase
entB

thioesterase required for efficient 

enterobactin production
ybdB (entH)

Protein transporter 

activity

Component of TatABCE protein 

export complex; Protein translocase
tatE

Nuclease activity Putative DNase (nuclease activity) yjjv

Protein binding Periplasmic chaperone fimC

m
Unknown Function Unknown Function ykfB

Q.
£in Magnesium ion binding

Glutamate 5-kinase, proline 

biosynthesis
proB
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Table 5.7 Mutant strains with increased susceptibility to Smp24 and Smp43

Peptide Functional Group Gene Function
Gene

knockout

Oxidative stress

Global transcription regulator for 

superoxide response
soxS

response Superoxide dismutase; response to 

oxidative stress
sodB

PMQ.
£

Formate dehydrogenase-N fdnG
m

Anaerobic respiration
Heme exporter 

subunit;cytochrome c biogenesis 

system

ccmB

Unknown Function Unknown Function ycgK

Oxidative stress 

response

2-octaprenyl-6-methoxyphenol

hydroxylase
ubiH

Dimethyl sulfoxide reductase dmsA

Formate dehydrogenase-N fdnH

m
*3"Q.

Metal ion binding hyp A

E
m Anaerobic respiration

Quinol dehydrogenase, electron 

source for NapAB; Cytochrome c- 

type protein (electron carrier)

napC

Formate dehydrogenase-N fdnG

Glycerate kinase garK
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5.3.6 Real Time PCR

Prior to  perform ing a RT-PCR analysis, the quality o f the extracted RNA was assessed 

using the NanoDrop spectrophotom eter. Only RNA samples w ith  A260/280 and 

A260/230 > 1.9 were used fo r DNA preparation and RT-PCR analysis. RT-PCR analysis 

was perform ed on fou r selected genes identified in the m icroarray analysis. The 

selected genes were d ifferentia lly  expressed fo llow ing E. coli responses to  e ither 

Smp24 or Smp43 as determ ined from  Keio collection screening. Two upregulated 

genes selected fo r RT-PCR were related to  siderophore transport functions; f lu  is an 

outer membrane siderophore receptor fo r iron transport and fepA  is an outer 

membrane receptor fo r siderophores. The tw o down regulated genes chosen fo r 

revalidation are proB, involved in magnesium ion binding in proline biosynthesis, and 

fdnG, which has metal (iron and selenium) binding functions and is involved in electron 

carrier activity in anaerobic respiration. Validation o f the m icroarray data by RT-PCR 

analysis showed tha t the expression o f most o f the assayed genes in cells treated by 

Smp24 were comparable w ith the m icroarray analysis (Figure 5.9 and Figure 5.10).
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Figure 5.9 RT-PCR analysis of the relative mRNA expression levels of selected 

upregulated genes in polymyxin B, Smp24 and Smp43 treated E. coli when 

compared with an untreated control. A: shows relative mRNA the expression of 

fepA among the different treatments, table inset shows the expression pattern of 

the gene by microarray. B: represents the relative expression of fiu among 

different treatments, table inset shows the expression pattern of the gene by 

microarray. Data are expressed as the meaniSE. Statistical analysis was performed 

by the Kruskal-Wallis test. *Significant P <0.05. **Significant P <0.01. 

***Significant P <0.001.
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Figure 5.10 RT-PCR analysis of the relative mRNA expression levels of 

selected down regulated genes in polymyxin B, Smp24 and Smp43 treated 

E. coli when compared with an untreated control. A: shows the relative 

mRNA expression of fdnG among the different treatments, table inset shows 

the expression pattern of the gene by microarray. B: represents the relative 

expression of proB among different treatments, table inset shows the 

expression pattern of the gene by microarray. Data are expressed as the 

mean±SE * P<0.05 vs. untreated control cells. Statistical analysis was 

performed by the Kruskal-Wallis test. *Significant P <0.05. **Significant P 

<0.01. ***Significant P <0.001.
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5.4 Discussion

Prior to  this study there was no data regarding the interaction o f Smp peptides and live 

bacterial membranes in living cells. The mechanism of action o f Smp peptides against 

synthetic prokaryotic membranes models have been investigated before using 

liposome leakage assays, AFM and QCM-D and revealed tha t Smp24 induced pore 

form ation in synthetic membrane models causing lipid segregation (Harrison, Heath et 

al. 2016).

In our study, transcriptom ic responses o f E. coli to  subinhibitory concentrations o f Smp 

peptides was analysed using DNA microarray. DNA microarray has been used to  

provide insights into the mode of action o f AMPs and AMP-resistance mechanisms to  

understand how bacteria respond to  AMPs. Antim icrobials at subinh ib itory 

concentrations may act as stress inducers or signalling molecules tha t induce the 

expression of specific genes tha t help in understanding the mechanism of action of 

many antim icrobial agents (Linares, Gustafsson et al. 2006, Bernier, Surette 2007, 

Fajardo, Martinez 2008, Xu 2016).

Overall, the results o f our m icroarray analysis correlated well w ith  RT-PCR results, 

indicating accurate detection o f the d iffe rentia lly  expressed genes by m icroarray from  

a to ta l o f twelve comparisons (four genes x three treatm ents). RT-PCR analysis showed 

tha t the selected down regulated genes in Smp43 treated cells showed a significant 

change in the ir expression as they exhibited lower expression than untreated cells. 

fepA  was overexpressed in Smp24 and polymyxin B treated cells as exhibited in the 

m icroarray analysis and RT-PCR analysis. Some differences between m icroarray and 

RT-PCR have been observed, however. For example, fepA  was significantly
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overexpressed in Smp43 treated cells compared w ith  control cells when analysed by 

RT-PCR, while the m icroarray analysis fo r this upregulated gene showed no significant 

expression in Smp43 treated cells (p>0.05). This type of variation is o ften seen 

between microarray and RT-PCR data. This disagreement may refer to  the differences 

between the tw o  methodological procedures such as the dyes or prim er sets. Also, the 

variability o f normalisation between both analyses has a great impact on this 

disagreement. Agilent One-Colour Microarray-based Gene Expression Analysis 

undergoes global normalisation which includes transform ing all m icroarray intensity 

values below 1 to  1 and then dividing by the median of all intensity values. This is in 

contrast to  RT-PCR which uses housekeeping genes as a reference point fo r 

normalisation which may contribute to  the lower correlations between m icroarray and 

RT-PCR results (Etienne, Meyer et al. 2004, Morey, Ryan et al. 2006).

The data in our study clearly dem onstrate tha t E. coli exhibits transcriptional 

differences in response to  sublethal concentrations o f Smp24 and Smp43. Most 

identified d ifferentia lly  expressed genes in our study responding to  Smp peptides 

stress were genes tha t have been reported w ith  increased expression during 

siderophore biosynthesis and cation binding and transport. Also, genes im plicated in 

antioxidant responses and anaerobic respiration were prom inent amongst the 

d ifferentiated genes responding to  Smp peptides.

In order to  increase iron uptake, bacteria synthesise siderophores to  chelate ferric  iron 

and make complexes (Vassiliadis, Peduzzi et al. 2007). In the present study, entC, entA, 

entB, entF and entH  were upregulated in response to  Smp24 stress. The ent gene 

cluster encode proteins related to  the biosynthesis o f enterobactin (Fischbach, Lin et

al. 2006, M iethke, Marahiel 2007, Salvail, Lanthier-Bourbonnais et al. 2010).
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Siderophore ferric complexes w ill cross Gram negative bacteria outer membrane 

through specific receptors and are translocated to  the cytoplasm by inner membrane 

transporter proteins to  deliver iron (Vassiliadis, Peduzzi et al. 2007, Stintzi, Barnes et 

al. 2000). The microarray analysis o f E. coli responses to  a sublethal dose o f Smp24 

revealed tha t four genes encoding these types o f receptors (fiu, fepA, cirA and fhuA) 

were found to  be significantly overexpressed compared w ith  untreated cells. Also, the 

siderophore transporter fepC  was upregulated.

Siderophore biosynthesis is regulated by the ferric uptake regulator (Fur) system, as 

Fur cluster genes repress the siderophore biosynthesis according to  the availability o f 

Iron (Crosa, Walsh 2002, Dale, Doherty-Kirby et al. 2004). Also Fur has roles in cellular 

oxidative stress defence such as activation o f superoxide dismutase sodB which is 

involved in oxidative stress response (Zhang, Ding et al. 2012, da Silva Neto, Braz et al. 

2009). Fur is regulated by the oxidative stress response regulon soxS (Pomposiello, 

Bennik et al. 2001). The microarray data revealed both soxS and sodB were 

significantly down regulated in response to  Smp24 treatm ent. The down regulation o f 

these oxidative stress response genes leads directly to  lower resistance to  oxidative 

stress. Additional evidence comes from  the susceptibility testing o f Keio m utants which 

support these findings by showing tha t the deletion o f genes sodB or soxS resulted in 

increased cellular sensitivity to  Smp24 compared w ith  the w ild type strain. The 

deletion o f oxidative response gene ubiH  generated higher susceptibility than seen in 

the parent stain. Accordingly, Smp peptides may induce oxidative stress causing cell 

death.

These results are in good agreement w ith  o ther recent studies which have shown the

production and upregulation o f siderophores in response to  oxidative stress (Chen,
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Yang et al. 2014, Ruiz, Bernar et al. 2015). Particularly, enterobactin plays an im portant 

role in the reduction o f the oxidative stress in E. coli. Enterobactin is hydrolysed to  

release iron which is essential fo r the activities o f antioxidants and the hydrolysed 

enterobactin can scavenge radicals d irectly (Eisendle, Schrettl et al. 2006, Chung 2012, 

Adler, Corbalan et al. 2014, Achard, Chen et al. 2013). However, both iron deficiency 

and excess free iron can induce oxidative stress (Fernaeus, Land 2005, Galaris, 

Pantopoulos 2008). Siderophores can act as a source o f hydrogen atoms and effic iently 

term inate radical chain reactions (Povie, Guillaume, et a l.2010). Our findings suggest 

tha t an imbalance in iron homeostasis and oxidative stress m ight be involved in E. coli 

response to  Smp peptide treatm ent. These suggestions are consistent w ith  o ther 

antim icrobial peptides in the lite ra ture which induce oxidative stress, such as microcin 

J25 which increase the production o f reactive oxygen species and is recognised by the 

siderophore outer membrane receptor FhuA (Destoumieux-Garzon, Duquesne et al. 

2005, Mathavan, Zirah et al. 2014). Interestingly, the m icroarray analysis o f the 

transcriptom ic response o f E. coli exposed to  Smp24 revealed the significant 

upregulation of fhuA. Polymyxin B can also produce reactive oxygen species (ROS) 

when it enters Gram negative bacterial membranes. The induced ROS by polymyxin B 

such as H2O2 affects iron homeostasis by oxidising Fe2+ to  Fe3+ through the Fenton 

reaction (Sampson, Liu et al. 2012, Yu, Qin et al. 2015).

A recent study (Dong et al., 2015) has reported tha t the trea tm en t o f E. coli w ith  

polymyxin B induce a 35-fold increase in soxS expression level compared w ith  the 

untreated strain (Dong, Dong et al. 2015). Similarly, our m icroarray data analysis 

revealed tha t soxS is down regulated when E. coli was stressed by subinh ib itory 

concentrations o f polymyxin B. Furthermore, polymyxin B induced the upregulation o f
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genes tha t encode siderophore receptors (fepA, fhuA, and cirA), siderophores 

biosynthesis (entF, entB, and entE) and iron transporters proteins [feoB, feoA  and 

feoC ) , similar to  the E. coli response to  Smp24.These finding agree w ith  o ther studies 

which have shown tha t mutants o f some siderophore biosynthesis and receptor genes 

such as fiu , fepA, fhuE cirA, fhuA, entA, entB, entC, entD, entE, feoA, feoC  and feoB  

have a higher resistance to  polymyxin B than w ild type strains (Barrios 2013, Guo, Nair 

et al. 2 0 1 1 ).

Production of ROS leads to  inactivation o f Fe -S  clusters which are involved in many 

cellular functions such as respiration (Ayala-Castro, Saini et al. 2008). 4Fe-4S Fes 

protein is required fo r iron release from  the ferric siderophore complex, there fore  Fe-S 

inactivation leads to  a loss iron which results in ROS detoxication deficiencies (Li, Wang 

et al. 2016). Our Functional Annotation Clustering (FAC) analysis results showed tha t 

the Fe-S cluster was significantly down regulated in response to  both Smp peptides 

treatm ents. These findings also support the theory tha t the mechanism o f action o f 

Smp peptides may involve oxidative stress. In addition, the susceptibility assay o f the 

Keio collection against Smp peptides revealed tha t knockout m utants o f genes related 

to  oxidative stress response showed a marginally higher level o f sensitivity to  e ither 

Smp24 or Smp43 compared w ith  the parent strain.

The oxidative stress tha t causes inactivation o f Fe-S clusters which are im portan t

components o f many proteins involved in anaerobic respirations such as DmsA, FdnH,

FdnG and NapC (Jormakka, Tornroth et al. 2002, Tang, Rothery et al. 2011).These facts

are amongst likely explanations o f the highly significant down regulation o f anaerobic

related genes follow ing exposure to  sublethal doses of both Smp peptides. Also, the

screening o f some m utant strains from  the Keio collection such as dmsA, fdnH, fdnG
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and nope) against Smp peptides revealed tha t deletions o f genes related to  anaerobic 

respiration results in slightly decreased MIC fo r e ither Smp24 or Smp43 compared w ith  

the parent strain.

Gene clusters mainly related to  the electron transport chain and cellular respiration 

were found to  be highly significantly enriched as revealed by FAC analysis o f down 

regulated genes in response to  Smp24, Smp43 and polymyxin B treatm ents. 

Disruptions in the electron transport chain which have been reported before fo r 

polymyxin trea tm ent in £. coli enhance oxidative stress by producing ROS (Sampson, 

Liu et al. 2012). In addition, polymyxin B has the ability to  inh ib it some respiratory 

enzymes such as alternative NADH dehydrogenase, quinone oxidoreductase and type II 

NADH-quinone oxidoreductases (NDH-2) (Deris, Akter et al. 2014). Consistently, o ther 

reports have found increases in the transcriptional levels o f sim ilar genes involved in 

envelope and oxidative stress responses fo r polymyxin treated bacteria (Sikora, 

Beyhan et al. 2009a, Ramos, Custodio et al. 2016).

The role o f siderophores in enhancing the antibacterial activity o f some antib iotics has 

been recently investigated. Some antibiotics such as albomycin and salmycin are linked 

naturally to  siderophores to  facilita te  the ir delivery to  the cell through iron uptake 

pathways, known as the T ro jan Horse' strategy. These s iderophore-an tib io tic  

conjugates are called sideromycin which consists o f a siderophore, a peptide linker, 

and an antib iotic (Braun, Pramanik et al. 2009, Wencewicz, Long et al. 2013, Ferguson, 

Coulton et al. 2000).

Siderophore uptake pathway is one of the most exploitable biological pathways in 

bacteria to  help antibiotics reach the ir cytoplasmic target. This strategy has been
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applied to  increase susceptibility to  antib iotics by avoiding or lim iting the exposure of 

antibiotics to  resistance mechanisms providing an opportun ity  to  recycle old 

antibiotics rendered useless by resistance (Wencewicz, Long et al. 2013). The 

antibacterial activity o f [3-lactam antibiotics such as ampicillin and amoxicillin has been 

investigated when bound to  siderophores, the conjugates exhibited high antibacterial 

activity compared w ith  parent drugs (Ghosh, Ghosh et al. 1996, Kinzel, Tappe et al. 

1998, Ji, M ille r et al. 2012) (Ji, Cheng, 2012).

The potential uptake of Smp peptides by siderophores receptors has been supported 

by assaying the susceptibility o f Smp24 against single-gene knockout m utants o f E. coli 

(Keio collection). Knockout mutants o f genes from  the Ent gene cluster (AentB , AentH, 

AentC and AentA) and iron-regulated outer membrane receptors (AfepA , Afiu, and 

AfhuA) showed a marginally higher level o f resistance to  Smp24 compared w ith  the 

parent strain. Also, the antibacterial activity o f the modified form  o f m icrocin E492, a 

pore-form ing antim icrobial peptide, is mediated by enterobactin oute r membrane 

receptors such as FepA, Cir and Fiu. MccE492m is an 84 amino acid long firs t peptide 

isolated from  Klebsiella pneumonaie. It was post-translationally m odified by binding 

the C-terminal serine residue to  a siderophore molecule via an ester linkage to  form  

conjugates w ith enterobactin w ith  a broader spectrum o f antibacterial activity 

(Thomas, Destoumieux-Garzon et al. 2004, Destoumieux-Garzon, Peduzzi et al. 2006, 

Nolan, Fischbach et al. 2007, Raines, Moroz et al. 2016). Microcins are rich in serine 

and glycine residues w ith a conserved serine-rich C- term inus (Vassiliadis, 

Destoumieux-Garzon e ta l. 2010). Both Smp24 and Smp43 have serine residues in the ir 

C-terminal tail, and are rich in serine and glycine amino acids tha t may enhance its 

binding to  siderophores to  form  Smp24 -  siderophore conjugates, tha t fac ilita te  the ir

167



delivery inside the bacterial cell leading to  cell death. Similarly, sideromycins such as 

albomycin binds to  siderophores through a serine residue (Zeng, Roy et al. 2009, Zeng, 

Kulkarni et al. 2012). Moreover, most siderphores have a backbone based on serine 

and glycine residues (Zheng, Bullock et al. 2012). Siderophore receptors are amongst 

bacterial membrane targets tha t have been suggested to  recognise AMPs (Thomas, 

Destoumieux-Garzon et al. 2004).

Despite the ir roles in iron transport, siderophores may act as a metallophores fo r a 

variety o f o ther metals and play a crucial role in the protection o f bacteria from  

oxidative stress. Some sideophores have the ability to  scavenge radicals through 

prevention o f the Fenton reaction by chelating iron (Johnstone, Nolan 2015, Peralta, 

Adler et al. 2016). AMPs prom ote the generation o f ROS and induce plasma membrane 

disruption which may contribute to  cell death (Oyinloye, Adenowo et al. 2015).

Some AMPs exert the ir effects through alternative modes o f action and may in fact act 

upon m ultip le targets, however, the activities o f AMPs are mainly dependent upon 

direct interaction w ith  the bacterial cell membrane (Jenssen, Hamill et al. 2006).

In conclusion, the microarray analysis o f Smp treated E. coli revealed some similar 

gene induction patterns w ith  polymyxin b but also some distinctly d iffe ren t ones. The 

upregulation o f siderophore biosynthesis, cation transport and oxidative stress 

response genes may increase sensitivity o f E. coli to  both Smp peptides, dem onstrated 

by deletion o f these upregulated genes, point to  the role o f oxidative stress in the 

inh ib itory effect o f Smp peptides against E. coli. This should be verified biochemically 

in fu tu re  studies.
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6 Influence of cations on antimicrobial activity of Smp24

against Escherichia coli.
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6.1 Introduction

Electrostatic binding is key to  AMP interaction w ith  the negatively charged molecules 

of bacterial cell membrane. Such interactions between AMPs and the phospholipid 

headgroups and other negatively charged molecules at numerous sites covering the 

surface of bacteria are the in itia l driving force fo r AMPs mode of action (Berglund, 

Piggot et al. 2015). A result o f the electrostatic interaction is positively charged AMPs 

destabilise bacterial membranes by interacting w ith  negatively charged structures, 

which displace or release divalent cations from  the bacterial membrane leading to  its 

d isruption (Hyldgaard, Mygind et al. 2014, Mojsoska, Jenssen 2015).

Cations are essential components o f the bacterial cell membrane, they are also 

necessary fo r a range of metabolic processes. Divalent ions such as M g2+ and Ca2+ 

electrostatically cross-link and stabilise the LPS and teichoic acids which are major 

anionic components o f Gram negative and Gram positive bacterial cell membranes 

(Baddiley, Hancock et al. 1973, Thomas III, Rice 2014, Arunmanee, Pathania et al. 

2016). These negatively charged molecules represent the firs t targets o f cationic 

AMPs leading to  the ir antibacterial effects (Sun, Shang 2015, Malanovic, Lohner 

2016). However, the attachm ent o f cations to  LPS and teichoic acids increases the 

rig id ity o f bacterial membranes and decreases or neutralises the ir negative charges 

reducing the ir a ffin ity  fo r the cationic AMPs (Hughes, Hancock et al. 1973, Sahalan, 

Aziz et al. 2013). Therefore, removal o f these ions or the ir displacement by cationic 

AMPs from  the ir relative binding sites facilitates the binding o f the peptide leading to  

perm eability o f the outer membrane, potentia lly leading to  cytoplasmic access to  the
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AMP which is defined as the self-prom oted uptake model (Giuliani, Pirri et al. 2007, 

Laverty, Gorman et al. 2011).

A num ber o f studies have shown tha t polymyxin B is taken up by the self-prom oted 

uptake route by displacing divalent cations from  the ir binding sites in the LPS 

molecules in order to  release the LPS com ponent from  the bacterial surface leading 

to  membrane disruption and subsequent cell death (Sahalan, Aziz et al. 2013). The 

role o f divalent cations in the antibacterial action o f polymyxin B has been w idely 

studied against a wide range o f Gram negative bacteria. For instance, it was found 

tha t Ca2+ and Mg2+ at 20 mM protect the outer membrane of some Pseudomonas 

strains from  the inh ib itory damage caused by polymyxin B at 25m g/m l (Chen, 

Feingold 1972). Furthermore, polymyxin B-induced leakage o f the oute r and inner 

membrane enzymes ((3-lactamase and (3-galactosidase) from  E. coli was significantly 

reduced (2 to  3 folds) in the presence of Mg2+ and Ca2+ (Sahalan, Aziz et al. 2013).

Increasing the concentration o f divalent cations reduced or inhibited the activ ity o f 

several cationic peptides against Gram negative bacteria such as Human (3 defensin 2 

(Tomita, Hitom i et al. 2000), ostricacins ((3-defensins AMPs) (Sugiarto, Yu 2007) and 

thanatin (insect defence peptide) (Wu, Ding et al. 2008). It is thought tha t basic 

residues o f the peptides are likely to  compete w ith  the cations fo r the same binding 

sites in the lipid head group region (Kandasamy, Larson 2006). The effect o f cations 

on MICs against E. coli was studied by determ ining MICs at increased concentrations 

of monovalent and divalent cations. Treatm ent w ith  divalent cations (M g2+ and Ca2+) 

at lOm M  inhibited the bactericidal activities o f three cathelicidin peptides 

significantly against E. coli. All three o f the test peptides had MICs tha t were higher
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in presence o f m onovalent cations (Na+ and K+) than in the absence o f these cations. 

These findings indicate tha t these peptides appear to  be ineffective at high salt 

concentrations, tha t may lim it the binding a ffin ity  o f LPS to  these cationic peptides 

which negatively affected the ir bactericidal activities (Anderson, Yu 2005). 

Bacteriocin peptide enterocin (Kumar, Srivastava 2011) and F12W-magainin 2 

(Matsuzaki, Sugishita et al. 1999) induced no membrane permeabilisation in LPS- 

containing liposomes in presence o f some cations such as Mg2+ and Ca2+ when 

evaluated using the calcein leakage assay as the rig id ity o f the membrane was 

increased which is probably due to  cross-linking o f adjacent LPS molecules w ith  

these cations.

The sensitivity o f some AMPs to  high salt concentrations may lim it the ir application 

as pharmaceutical agents due to  salt induced -inactivation in vivo (Yu, Tu et al. 2011). 

Several strategies were developed to  increase the salt tolerance of AMPs such as the 

incorporation o f arginine residues at the C-terminal end o f synthetic defensins which 

overcame the salt-resistance effect by increasing peptide cationic net charge which 

improved electrostatic interaction between the peptide and the anionic bacterial 

membranes (Li, Saravanan et al. 2013). Further several short amphipathic helical 

peptides w ith potent antim icrobial activities and sa lt-to lerant properties have been 

designed more recently (Mohamed, Hammac et al. 2014, Mohanram, Bhattacharjya 

2016).

Divalent metal cations increase the activity o f anionic AMPs such as kappacin (an 

AMP derived from  bovine milk) (Dashper, O'Brien-Simpson et al. 2005) and DCD-1L 

(an AMP derived from  Human Sweat) (Paulmann, Arnold et al. 2012). Interestingly,
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daptomycin has potent antibacterial activity against Gram positive bacteria rather 

than the Gram negative bacteria as the outer membrane o f Gram negative bacteria 

act as a barrier to  daptomycin. The Gram positive cytoplasmic membrane has a 

higher an anionic phospholipid content than tha t found in Gram negative 

membranes (Streit, Jones et al. 2004, Randall, M ariner et al. 2013). The insertion o f 

daptomycin in to the cytoplasmic membrane o f Gram positive bacteria is mediated 

by calcium ions causing depolarisation and leakage o f some ions to  induce cell death 

(Steenbergen, Alder et al. 2005, Straus, Hancock 2006, Mascio, A lder et al. 

2007).NMR analysis o f daptomycin in the presence o f a 1:1 molar ratio o f Ca+2 

suggested tha t calcium binds T rp l and Kynl3 residues on daptomycin in order to  

enhance its oligomerization and am phipathicity leading to  insertion into the 

membrane and the form ation o f a m icellar structure (Ho, Jung et al. 2008). These 

findings were confirmed by CD spectra as the peptide showed significant 

conform ational change in the presence o f 5 mM CaCh and PC/PG liposomes, 

indicating tha t the binding o f daptomycin to  the negatively charged model 

membrane is Ca2+ dependent (Jung, Rozek et al. 2004).

X-ray photoelectron spectroscopy (XPS) is a surface sensitive analysis technique tha t 

characterises and quantifies the elemental composition o f surfaces o f solid 

materials. XPS has been used in the last decade to  provide insights about the 

variation of bacterial surface elemental composition at various conditions such as 

over a range of pH values (Leone, Loring et al. 2006) and follow ing Zn 2+ exposure 

(Ramstedt, Leone et al. 2014). XPS has been used to  characterise the chemical 

changes w ith in  ~10 nm o f the surface in d iffe ren t E. co li LPS mutants w ith  a range
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of surface compositions. The analysis is able to  detect proteins/peptidoglycan, lipids, 

and polysaccharides which reveal the changes o f LPS content between d iffe ren t 

mutants tha t may help in explaining changes in surface hydrophobicity which play a 

crucial role in protecting bacteria against antim icrobial agents (Ramstedt, Nakao et 

al. 2011). These studies provided im portant surface compositional biochemical 

in form ation tha t can help in exploring molecular level processes at the bacterial 

surfaces in response to  external stim uli which may affect metabolic activity o f the 

cells leading to  change of the composition of cell surface molecules. However, the 

bacterial surface characterisation o f elemental composition fo llow ing the exposure 

to  AMPs has been not examined using XPS before.

The objective o f this chapter is to  gather inform ation about increasing 

concentrations o f cations tha t may enhance or decrease the activity o f Smp24 which 

may explain the upregulation of cation binding genes in response to  Smp24 

treatm ent as revealed by m icroarray analysis. In addition, the influence o f Smp24 on 

the elemental composition o f E. coli surface was analysed using XPS in order to  get 

chemical inform ation on the outerm ost portion o f bacterial cells when treated by 

Smp24 to  provide o ther insights to  help elucidate the mechanism o f action of 

Smp24.

6.2 M ethod Summary

The effect o f salt concentration on the antim icrobial activity o f Smp24 was tested by 

determ ining the MICs against E. coli at various cation concentrations. The surface 

composition o f E. coli has m onitored using XPS a fte r 10 m inutes o f incubation w ith  

Smp24 at 0 and 12 pg/m l.
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6.3 Results

6.3.1 The antimicrobial activity of Smp24 against E. coli at different
concentrations of cations.

The bactericidal activity of Smp24 against E. coli was compared under various

concentrations of ions by determining the MIC in a variety of chloride salts. One

monovalent cation, Na+at concentrations of 0 to 24 mM and four divalent cations

Ca2+, Mg2+, Fe2+ and Mn2+which were added at 0 to 3 mM. This concentration range

indicates excess concentrations of cations and doesn't represent their physiological

concentrations. The MIC of Smp24 increased with increasing the ionic strength of

Ca2+ and Mg2+. Smp24 had an eight-fold increase in MIC at 3 mM of CaCb and MgC-fe

(p-values were less than 0.05) (Table 6.1). However, the activity of Smp24 was stable

at the highest concentration used of NaCI. Also, no significant differences in the MIC

of Smp24 were obtained when determined in the presence of divalent cations Fe2+

and Mn2+. An increase in Fe2+ and M n2+concentrations was shown to have no effect

on the growth rate or viability of E. coli.
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Table 6.1 The effect of increased cation concentration on the minimum inhibitory 

concentration (MIC) of Smp24 against E. coli.

Cations
Concentrations

(mM)
MIC (|ig/m l)

No additional ions 0 32

3 32

Na+ 6 32

12 32

24 32

0.375 32

Ca2+ 0.75 64

1.5 128

3 256

0.375 64

Mg2+ 0.75 64

1.5 128

3 256

0.375 32

Fe2+ 0.75 32

1.5 32

3 32

0.375 32

M n2+ 0.75 32

1.5 32

3 32
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6.3.2 XPS Analysis of Smp24- treated E. coli.

The ion content of Smp24- treated E. coli surface was characterised by XPS to 

determine the effect of the treatment on the chemical structure of the bacterial 

membrane. Survey scans were successfully collected from bacterial cells at a 

reduced temperature. However, these scans did not show a significant change to 

surface ion content as a result of treatment with the peptide in either washed 

and unwashed samples when compared with a peptide-free control (Figures 6.1 

and 6.2). Rich oxygen content was detected in both samples. There was little 

variation in the C: N ratio between treated and untreated cells. Both Na+ and Cl" 

ions were largely removed by washing with water (Table 6.2 and Table 6.3).
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Table 6.2 Surface composition of unwashed samples determined by quantifying survey 

scans (atomic%).

Name
Na1s
01s
Ti2p
N1s
C1s
Mo3d
CI2p
S2p
P2p
Si2p

Pos.
1070.00
531.00
442.00
400.00
285.00
212.00
198.00
163.00

FWHM Area 
3.47 10188.83
3.90 27117.28
2.84 1947.04
3.77 7433.88
4.44 29175.71
2.37 16363.60
3.72 5071.57
3.92 198.27

At%
4.68

20.93
0.54
8.60

56.74
3.25
4.13
0.22

Name Pos. FWHM Area At%
Nals 1068.00 3.84 7426.40 4.00
01s 531.00 4.06 24444.29 22.08
N1s 400.00 3.78 6872.23 9.31
C1s 285.00 4.19 26131.88 59.47
CI2p 199.00 4.85 4177.01 3.98
S2p 164.00 3.59 124.71 0.16
P2p 133.00 3.76 411.53 0.73
Si2p 102.00 3.04 113.54 0.29

-------------------- 1-------------------------1------------------------ 1-------------------------1-------------------------1------------------------ ]-------------------------1-------------------------1-------------------------1-------------------------t-------------------------r

900 600 300
Binding E n erg y  (eV )

Figure 6.2 XPS survey scan from Smp24-treated E. coli after 10 minutes of incubation.

w ide

900 600 300
B inding E nergy (eV )

Figure 6.1 XPS survey scan from untreated E.coli.

Sample Na F 0 Ti N C Mo Cl S P Si

Control 4 <0.1 22.1 <0.1 9.3 59.5 <0.1 4 0.2 0.7 0.3

Treated 4.7 <0.1 20.9 0.5 8.6 56.7 3.3 4.1 0.2 0.3 0.6
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wide

Name Pos. FWHM Area 
01s 530.00 5.45 28111.'

At%

N1s 
C1s
Mo3d 204.00 2.26 15508.20 
P2p 134.00 4.71 717.98

399.00 4.82 7938.00
285.00 5.37 34428.15 65.20 

3.00 
1.05

>.95

Z 25_

10:

900 600
Bindina E n era W e V I

300 0

Figure 6.3 XPS survey scan from washed untreated E.coli

wide

Name Pos. FWHM Area
01s 531.00 5.81 28468.82 22.1'

At%

N1s 400.00 4.21 5262.80 6.15
C1s 285.00 5.79 34115.82 66.93
Mo 3d 211.00 2.91 14623.16 2.93
P2p 134.00 5.87 835.63 1.27

10:

900 600 300 0
Bindina E n era v (eV )

Figure 6.4 XPS survey scan from washed Smp24-treated E. coli after 2 hours of incubation.

Table 6.3 Surface composition of washed samples determined by quantifying survey scans 

(atomic%).

Sample Na F 0 Ti N C Mo Cl S p Si

Control/ washed <0.1 <0.1 21.1 0.7 9.0 65.2 3.0 <0.1 <0.1 1.1 <0.1

Treated/ washed <0.1 <0.1 22.2 0.6 6.2 66.9 2.9 <0.1 <0.1 1.3 <0.1
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6.4 Discussion

The functional classification o f the upregulated genes o f E. coli in response to  Smp24 

trea tm ent revealed tha t the most abundant group o f genes was predom inantly 

related to  cation binding and transport. These findings indicated tha t cations may 

play a role in the mechanism o f action o f Smp24 against E. coli.

The current study showed tha t the monovalent cation sodium ions Na+ had no effect 

on the inh ib itory activity o f Smp24, while the activity o f the peptide was significantly 

decreased in the presence o f the divalent cations, Ca2+ and Mg2+ as the MIC of 

Smp24 was higher than in the absence o f theses cations. Similar results o f the effect 

o f these cations on AMPs have been reported by other investigators. The 

antibacterial activity o f short cationic peptide; Human Beta Defensin 2 (HBD-2) was 

reduced by the Ca2+ and Mg2+ ions. Whereas at higher concentration o f Na+, HBD-2 

still retained its antim icrobial activity (Tomita, Hitomi et al. 2000).

A sim ilar trend has also been reported w ith  three cathelicidin peptides (SMAP29, 

OaBac5mini and OaBac7.5mini) as Ca2+ and Mg2+ ions had a larger effect on the ir 

antibacterial activities than the monovalent cations. Particularly, SMAP29 was 

completely inactive against E. coli in presence o f Ca2+ and Mg2+ ions at lO m M  

(Anderson, Yu 2005). Moreover, lactoferricin B is salt sensitive, they decrease or 

inh ib it its antibacterial activity in presence of excess o f Na+, K+, M g2+ or Ca2+ 

ions(Bellamy, Takase et al. 1992).

The antagonistic effect o f Ca2+ and Mg2+on Smp24 and other cationic AMPs against 

E. coli may occur through competing interactions w ith  these antim icrobial agents.
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The cationicity o f AMPs is essential to  enhance the electrostatic binding to  the 

bacterial membrane, by com petitive displacement o f cations tha t are norm ally cross- 

linked to  the LPS in Gram negative bacteria leading to  membrane disruption (Grubor, 

Meyerholz et al. 2006, Ebenhan, Gheysens et al. 2014).

Polymyxin is an example o f a cationic AMP which disrupts the bacterial membrane 

through displacing divalent cations from  the LPS leading to  disorganisation o f the 

membrane (Sahalan, Aziz et al. 2013). Such displacement mechanisms have been 

proposed fo r cationic AMP such as bactenecin, it showed distinct ability to  displace 

dansyl-polymyxin tha t were bound to  LPS in the dansyl-polymyxin B displacement 

assay(Wu, Hancock 1999). However, bivalent ions compete w ith these cationic 

molecules fo r anionic binding sites on the cell surface (Tille 2013).

A similar mechanism was also identified fo r aminoglycoside antibiotics (Yeaman, 

Yount 2003). The bactericidal activity o f gentamicin, streptomycin and related 

aminoglycoside antibiotics vary significantly in the presence and in the absence o f 

divalent cations (Pimenta de Morais, Corrado et al. 1978, KUSSER, ZIMMER et al. 

1985). The binding o f labelled gentamicin to  Pseudomonas aeruginosa increases in 

absence of calcium and magnesium ions (Ramirez-Ronda, Holmes et al. 1975).

It has been reported tha t replacement o f arginine residues w ith lysine residues in

human a-defensin - 1  led to  a decrease of its antim icrobial activity and a higher

sensitivity to  increasing salt concentrations suggesting tha t lysine is more sensitive to

salt than arginine (Zou, de Leeuw et al. 2007, Li, Vorobyov et al. 2013). Many m arine-

derived AMPs are to lerant o f high salt concentrations. Thus may be because the ir

positive charge is based mainly on arginine rather than lysine (Falanga, Lombardi et
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al. 2016). However, the cationicity o f Smp24 is based mainly on lysine residues which 

may explain the salt sensitivity.

Similar concentrations o f o ther d ivalent cations, Fe2+ and M n2+, had no effect on the 

antim icrobial activity o f Smp24 against E. coli. In Gram negative bacteria, metals can 

diffuse across the oute r membrane and are transported into the cytosol by ABC 

transporters (Zhen, Jacobsen et al. 2009). The a ffin ity  to  these transporters fo r Fe2+ 

and M n2 exceeds tha t fo r Mg2+ and Ca2+. The tendency preference follows the 

universal order o f the Irving-W illiam s series (M g2+<Ca2+ < M n2+ < Fe2+) (W aldron, 

Robinson 2009). In addition, specialised chelators such as siderophores are also bind 

inorganic elements (notably iron) to  diffuse across the outer membrane. The iron 

tha t is transported in to cells by siderophores can act as a signalling agent plays an 

im portant regulatory role in iron homoeostasis (Muckenthaler, Galy et al. 2008).

In conclusion, calcium and magnesium reduce the activity o f Smp24 against E. coli 

which might be a challenge fo r the application o f Smp24 in vivo. Therefore, fu rthe r 

modifications are needed fo r Smp24 to  be salt-resistant peptide in order to  develop 

it as novel antim icrobial therapeutic.

The XPS analysis o f bacterial samples indicates tha t this technique is capable o f

probing the cell surface and collecting data regarding the ir ion content. However,

Smp24-treated samples exhibited quite sim ilar XPS spectra to  those o f untreated

cells, no considerable difference were obtained from  both survey scans. These

results may be a ttribu ted  to  the depth o f the XPS analysis as it was less than 10 nm,

where LPS can extend up to  40 nm from  the oute r membrane o f Gram negative cells

(Beveridge 1999). Therefore, the analysis was not able to  reach deeper to  the cell

182



membrane. It is more challengeable in case of the Gram positive bacteria surface as 

it has a thick peptidoglycan layer (30-100 nm) containing teichoic acids, lipoteichoic 

acids, and proteins (Ramstedt, Leone etol. 2014).

Similar challenges of the analysis depth were obtained during the XPS analysis of E. 

coli LPS mutants with a varied composition of LPS (Ramstedt, Nakao et al. 2011) as 

the analysis was affected by the presence and size of surface structures and the 

outer membrane composition. In addition, our analysis revealed that both XPS 

spectra of control and treated bacterial surfaces were too rich in oxygen that may 

because the experiment was carried out between -70°C to -39°C, therefore any 

excess water present will also contribute to the oxygen content. High-resolution 

spectra (C Is  and O Is) would have given more information on alterations to 

functional groups on the bacterial surfaces components such as polysaccharides, 

peptides, and lipids (Dufrene, van derW al e ta /. 1997).

In addition, Smp24 may have no effect on the elemental composition of E. coli. 

Higher concentrations of Smp24 or extended incubation periods may affect the 

balance of ions of the surface of treated cells to be detected by XPS.
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7 Current perspective and hypothesised mechanism of action
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The progressive development o f resistance to  classical antim icrobial agents causes an 

increasing challenge to  public health. It has led to  an urgent need fo r novel 

antim icrobial agents w ith  novel mechanisms o f action. AMPs play an essential role in 

the innate immune system of the host as a firs t line defence in most living organisms 

against invaders. They are considered to  be useful templates fo r the design o f novel 

antibiotics (Li, Xiang et al. 2012, Seo, Won et al. 2012).

Snake and scorpion venoms are diverse sources o f biologically active components and 

various candidate therapeutics have been characterised including AMPs (Harrison, 

Abdel-Rahman et al. 2014). However, the m ajority o f venoms have not been fu lly  

exploited as antim icrobial molecules. Therefore, there has been considerable in terest 

in potentia l novel AMPs from  Egyptian snake and scorpion venoms as unexplored 

sources fo r such candidates.

Scorpion venom is composed mainly o f small peptides. A variety o f AMPs have been

identified from  scorpion venoms using proteom ic and genomic techniques. Smp24 and

Smp43, tw o  novel AMPs, have been identified from  a cDNA library from  the venom

gland of the Egyptian scorpion Scorpio maurus palmatus (Abdel-Rahman, Q uintero-

Hernandez et al. 2013). Both peptides have potent antim icrobial activities against a

wide range of Gram positive and Gram negative bacteria and fungi. Smp43 exhibits

negligible haemolytic properties, in comparison Smp24 caused significant erythrocyte

disruption in a concentration dependent manner. Both peptides induced kidney cell

line death in a concentration-dependent manner. However, keratinocytes were not

affected by Smp43 at 4x MIC and low cytotoxic activities were detected fo r both

peptides against both cell lines at concentrations higher than the MIC fo r Gram

positive strains. Proteins (> 10 KDa) are the major constituents o f snake venom and
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include enzymes, which are the main compounds exhibiting antim icrobial activity. Few 

interm ediate sized (3-7 KDa) non-enzymatic proteins w ith  antim icrobial activity have 

been reported from  snake venoms (Wang, Hong et al. 2008, Yamane, Bizerra et al. 

2013, Jin, Bai et al. 2016). In the current study fou r 3FTxs-like proteins have been 

isolated and partially characterised from  three Egyptian elapid venoms Naja haje, 

Walterinnesia aegyptia  and Naja nubiae. 3FTxs have been proposed to  destabilize the 

bilayer o f anionic phospholipid-containing model membranes which is sim ilar to  the 

action o f most cationic AMPs against bacterial m imic membranes (Dubovskii, Lesovoy 

et al. 2003, Dubovskii, Utkin 2014). The purified proteins exhibited inh ib ito ry activity 

mainly against Bacillus subtilis in comparison w ith  o ther bacteria. B. subtilis has an 

unusually enriched outer leaflet membrane in the anionic phospholipid PG (Clejan, 

Krulwich et al. 1986, M arquardt, Geier et al. 2015). Interestingly, B. subtilis is one of 

the most commonly isolated bacteria from  the oral cavity o f snakes which may point 

us in the direction o f co-evolution o f snakes and this soil bacterium (Fonseca, M oreira 

et al. 2009).

Improvem ent o f the disadvantages tha t impede the developm ent o f AMPs as 

therapeutic agents is crucial fo r clinical application o f AMPs (Hancock, Sahl 2006). Such 

lim itations include low therapeutic index, high cost o f production, salt resistance, 

gastrointestinal enzymatic degradation , short half-lives and rapid elim ination and a 

broad spectrum of activity which may disrupt the indigenous m icroflora tha t protect 

the host against pathogenic organisms (Bommarius, Jenssen et al. 2010, Aoki, Ueda 

2013, Mohanram, Bhattacharjya 2016)

High therapeutic indices o f AMPs are required to  avoid cytotoxic effects on host cells. 

Cationicity is undoubtedly crucial fo r the initia l electrostatic binding o f AMPs to
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negatively charged membranes of bacteria (Yeaman, Yount 2003, Aoki, Ueda 2013). 

However, the electrostatic binding of AMPs is less im portant fo r mammalian 

membranes due to  the ir zw itte rionic nature. Although truncation o f the last fou r C- 

term inal residues o f Smp24 resulted in a reduction in net positive charge, it increased 

the therapeutic index as it displayed less haemolytic effect than tha t o f the unm odified 

peptide (Harrison, Heath et al. 2016). Similar modifications increase the potency and 

specificity o f some scorpion AMPs fo r bacterial cells and thus improves the ir 

therapeutic indices (Rodriguez, Villegas et al. 2014, Luna-Ramirez, Tonk et al. 2017).

The understanding of the fundam ental mechanism o f AMP action is critical to  the 

development o f AMP-based antibiotics (Nguyen, Haney et al. 2011, Yang, Wang et al. 

2013). Synthetic bilayer model membranes created to  mimic the properties o f living 

cells membranes help researchers to  investigate AMP-membrane interactions based 

on the structure and hydrophilic ity/hydrophobic ity o f AMPs and the composition o f 

lipid model membranes. Such biophysical interactions provide insights about AMP 

transport, d istribution and efficacy improving our understanding o f AMP mechanisms 

of action (Peetla, Stine et al. 2009). However, not surprisingly, model membrane 

systems do not fu lly  explain the interaction w ith  m icrobial membranes or the response 

o f microbes to  the presence o f AMPs (Omardien, Brul et al. 2016). Previously, Smp 

peptides were found to  cause pore form ation in synthetic prototypical prokaryotic and 

eukaryotic membranes (Harrison, Heath et al. 2016). However, the mechanism of 

action of AMPs against the living cell membrane may include more complicated 

mechanistic interactions compared w ith  simple artific ial systems (Gee, Burton et al. 

2013).
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Microscopic imaging includes useful techniques tha t may be used to  explore the 

antim icrobial action o f AMPs against living cell membranes (Torrent, Sanchez-Chardi et 

al. 2010). Of interest are SEM and TEM which provide an overall picture o f damage of 

the bacterial cell envelope upon AMP exposure (Hartmann, Berditsch et al. 2010). EM 

micrographs o f E. coli and 5. aureus treated w ith  Smp24 and Smp43 revealed changes 

in cell morphology. Similar EM data have been reported fo r several AMPs against E. 

coli and 5. aureus such as cathelicidin-related AMPs (Chen et al., 2009), m oricin (Hu et 

al., 2013) and human lactoferrin peptide HLP2 (Chappie et al., 1998). These findings 

indicated the permeabilisation effect o f cationic AMPs against bacterial cells 

(Makobongo, Gancz et al. 2012, Verdon, Coutos-Thevenot et al. 2016)

However, even though SEM and TEM are complem entary techniques fo r observing 

alterations in bacterial membrane in tegrity o f cells treated w ith  AMPs, it cannot clarify 

the detailed mechanisms of cell death. Therefore, a combination o f d iffe ren t methods 

and techniques are needed as to  gain a bette r understanding o f the mode o f action o f 

AMPs or the response o f bacteria to  AMPs (Hartmann, Berditsch et al. 2010, 

Omardien, Brul et al. 2016).

DNA microarray has been used to  analyse the transcriptom ic responses o f E. coli

stressed by subinhibitory concentrations o f Smp24 and Smp43 w ith  polymyxin B as a

positive control. This analysis identified approximately 2% o f E. coli genes were

significantly d ifferentia lly  expressed in response to  each peptide treatm ent.

Siderophore biosynthesis, cellular respiration, oxidative stress response and di - tr i

valent ion binding and transport were the most biologically im portan t gene groups

fo llow ing exposure to  Smp peptides and were similar to  those clustered fo r polymyxin

B -induced d ifferentia lly  expressed genes. The deletion o f genes involved in the
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biosynthesis o f sideorphores and the transport o f ions increase resistance to  Smp24 

compared w ith the parent strain. In contrast, mutants w ith decreased resistance to  

Smp24 and Smp43 were associated w ith  oxidative stress responses and anaerobic 

respiration.

Beyond the known function of siderophores as an iron uptake-facilitator, several lines 

o f evidence indicate tha t siderophores play an alternative role in bacteria as an 

antioxidant cytoprotector (Achard, Maud ES, e t al 2013) (Johnstone, 2015). It was 

found tha t hydrolysed enterobactin in E. coli has exposed hydroxyl groups tha t can 

scavenge radicals and therefore reduce oxidative stress. Therefore, siderophore 

biosynthesis can be mediated by agents tha t affect oxidative stress (Adler, Corbalan et 

al. 2012, Adler, Corbalan et al. 2014)

Many genes o f the respiratory chain were found to  be downregulated fo llow ing 

exposure to  Smp peptides and polymyxin B. Downregulation of these components may 

contribute  significantly to  the change in membrane potential, and the  reduced 

respiration may lead to  a decline in energy consumption (Liu, Dong et al. 2013). The 

deletion o f these genes increased susceptibility to  Smp24 and Smp43.

Cell envelope perturbations fo llow ing exposure to  Smp peptides, as seen in EM 

micrographs, may induce common signalling pathways tha t u ltim ate ly lead to  internal 

oxidative stress and misregulation o f iron homoeostasis (Sikora, Beyhan et al. 2009b). 

AMPs disturb membrane structural in tegrity and function through disturbing proteins 

involved in energy generation and redox balancing (Hurdle, O'neill et al. 2011). 

Oxidative stress can be an im portant con tribu to r to  the lethal e ffect o f these 

nonspecific- target agents (Guilhelmelli, Vilela et al. 2014). Oxidative stress results in a
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more general cellular response leading to  bacterial self-destruction by internal 

production o f hydroxyl radicals (Feld, Louise,2012)

It has been proposed tha t positively charged AMPs similar to  the Smp peptides and 

affect redox status or electron transfer. Cationic cathelicidin peptide LL-37 was found 

to  influence the redox and ion status o f cells. It enhanced production o f reactive 

oxygen species causing lethal membrane depolarization (Liu, Dong et al. 2013). It has 

been reported tha t polymyxin can possibly induce oxidative stress by ROS through the 

accumulation o f hydroxyl radical (*OH) which readily damages DNA, lipids, and 

proteins and u ltim ately results in cell death (Yu, Zhiliang, et al. 2015) (Yu, Zhiliang, et 

al. 2017).

Cation deficiency or the displacement o f Mg2+ and Ca2+ may result in oxidative stress. It 

was found tha t an increase in the concentration o f ions like calcium may induce 

oxidative defences by signalling the bacteria to  upregulate antioxidant proteins (Rosch, 

Jason W., et a l.2008). These findings may support the oxidative stress induced effect 

by Smp24 which has been found to  be sensitive to  the presence o f Ca2+ and M g2+. 

Therefore, a quantita tive study o f ROS release in cells fo llow ing exposure to  Smp 

peptides is required to  assess the role o f oxidative stress in the antibacterial action of 

Smp peptides.

Data and observations obtained fo r the d iffe ren t methods in this study have resulted 

in a proposed transport mechanism for Smp24 across the cell envelope membranes of 

Gram negative bacteria (Figure 7.1). We propose tha t the integration o f cationic 

peptides like Smp24 in to the membrane may disturb metal cation homeostasis. The 

most d ifferentia lly  expressed genes fo llow ing Smp24 exposure were cation binding
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and transport. Smp24 also upregulates siderophore biosynthesis and transport genes. 

Siderophore receptors are m ultifunctional proteins tha t can transport the antibiotics 

such as albomycin and rifamycin across the outer membrane. The involvem ent o f a 

siderophore receptors in susceptibility to  Smp24 was supported by the observation 

tha t siderophore receptor-m utant E. coli strain was resistant to  Smp24. Disruption 

o f metal ions homeostasis is highly associated w ith  oxidative stress. Therefore, 

increasing concentrations of cations may protect bacteria from  oxidative stress 

induced by Smp24. Oxidative stress inactivates Fe-S dependent and leads to  the 

release o f ferrous irons (Fe2+) which is oxidized to  ferric iron (Fe3+), along w ith  the 

form ation  o f »OH, which is called the Fenton reaction and may also mediate 

siderophore biosynthesis fo r the chelation Fe3+ and prevent the fo rm ation  o f »OH. 

Oxidative stress can also result from  decreased protection against oxidants. 

Siderophore biosynthesis is regulated by the ferric uptake regulator (Fur) which is an 

iron protein tha t tends to  lose activity under oxidative stress, and could potentia lly  

lead to  depression o f the iron acquisition system and the stim ulation o f iron im port. 

The downregulation o f transcriptional (bacterial Fur) regulators and iron-sulfur clusters 

which mediate electron transfer to  the Fe-siderophore substrate results in the 

expression of a broad array o f genes involved mainly in iron acquisition or reactive 

oxygen species (ROS) protection. The deletion o f oxidative stress-response genes have 

increases the sensitivity o f E. coli to  Smp24. High levels o f ROS can induce lipid 

peroxidation leading to  disruption the membrane lipid bilayer and the in tegrity  o f cell 

membranes as seen even at low concentration of Smp24 against E. coli.
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Results obtained in this study support the idea tha t venoms are a viable source of 

AMPs and tha t microscopy, biochemical and transcriptom ic approaches can be used in 

drug discovery to  successfully develop new AMPs. These results indicate tha t the 

identified AMPs from  both scorpion and snake venoms were found to  exhibit 

promising antibacterial activities w ith  favorable cytotoxic effects. Progress has been 

made in understanding the mode o f action o f AMPs and the response o f bacteria to  

these peptides. These properties can be used as a starting point to  develop AMPs as a 

promising tem plate fo r the design o f novel classes of antibacterial agents to  help 

overcome the crisis o f antim icrobial resistance.

Salt-sensitivity may lim it the clinical use o f Smp peptides as novel antim icrobial 

therapeutics. D ifferent strategies have been employed to  overcome salt resistance to  

some AMPs. Increasing helix stability o f salt-sensitive AMPs by the in troduction  o f 

helix-capping motifs at the helix term in i resulted in structurally stable peptides w ith  

potent antim icrobial activities in high salt concentrations (Park, Cho et al. 2004). 

Nature produces a number o f salt-resistant AMPs such as marine-derived AMPs which 

have evolved to  adapt to  the high salt concentration in sea water. Salt tolerance of 

marine-derived AMPs may be a ttribu ted  to  the ir cationicity being mainly based on 

arginine rather than lysine residues. Understanding the chemical tolerance 

mechanisms o f marine AMPs may represent a valuable approach fo r the design o f 

novel salt-resistant AMPs (Fedders, Michalek et al. 2008, Falanga, Lombardi et al. 

2016). Like scorpions and snakes, marine organisms are another a ttractive source to  

isolate and characterise novel AMPs.

Although the purified snake proteins discussed in this thesis have lim ited cytotoxic and

no haemolytic properties, much more work is required in order to  evaluate the ir
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potential as antim icrobial templates. In general, 3FTxs have lim ited promise in this 

regard due to  the ir neurotoxic and cardiotoxic effects as well as synthesis d ifficulties 

due to  the ir size and the presence of disulfide bonds. (Fruchart-Gaillard, M ourie r et al. 

2012, Chandrudu, Simerska et al. 2013). Nevertheless, investigating the structure- 

function relationships o f these molecules using an alanine scanning m ethod to  

determ ine the key functional residues tha t bind phospholipids and disturb the 

membrane surface may help in the synthesis o f shorter peptides mimicking 3FTxs w ith  

increased antibacterial activity and bette r therapeutic characteristics (lannucci, 

Gonzalez et al. 2011, Cantisani, Finamore et al. 2014). It was found tha t a lteration of 

the positive charges of Lysine residues to  neutral or negative charges resulted in the 

loss o f the lytic activity o f CTX-1 from  Naja nigricollis crawshawii venom (Kini, Evans 

1989).

High production cost o f AMPs presents a real obstacle to  the pharmaceutical industry. 

Peptide synthesis costs five to  tw enty  times as much as the synthesis o f small organic 

molecule classical antibiotics. Expression and purification of AMPs in E. coli is an 

obvious alternative method fo r the production o f synthetic AMPs but it is lim ited by 

the antim icrobial activity o f AMPs against the host and peptide susceptib ility to  

proteolytic degradation by the host cell (Giuliani, Pirri et al. 2007). The production o f a 

fusion protein between an AMP and Small Ubiquitin-like M odifie r (SUMO) prote in 

protects the peptide from  the host degradation enzymes and bacteria from  the toxic ity 

o f AMP and can be scaled up fo r industrial-scale production fo r therapeutic  use 

(Bommarius, Jenssen et al. 2010).

Poor stability o f AMPs in serum has also lim ited the ir use as novel therapeutics.

However, disulfide-bridged peptides are more resistant to  protease degradation than
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linear peptides, therefore jo in ing the term inal ends of peptides by disulfide-bridges 

(cyclisation) constrains the peptide structure and thereby enhances antim icrobial 

activity (Brewer, Lajoie 2002, Rozek, Powers et al. 2003, Nan, Shin 2011)

The delivery o f AMPs is another crucial factor lim iting the ir clinical application. 

Systemic and pre-systemic enzymatic degradation and rapid hepatic and renal removal 

from  the circulation are challenging fo r oral and systemic adm inistration routes. 

Therefore, the most common adm inistration route o f AMPs is localised topical 

application (Mahlapuu, Hakansson et al. 2016). Several types o f nanotools have been 

used successfully to  deliver AMPs providing specificity to  particular cell types or 

locations (Brandelli 2012, Urban, Jose Valle-Delgado et al. 2012). Recently Silva, 

Gongalves et al. (2016) have succeeded in reducing proteolytic degradation o f LL-37 by 

encapsulating the peptide w ith  nanogels. This nanocarrier stabilises the peptide and 

delivers it towards the main infected sites leading to  the reduction o f its cytotoxic 

activities w ith  increased efficacy against Mycobacterium tuberculosis in vivo (Silva, 

Gonsalves et al. 2016). Interestingly, some nanomaterials have antim icrobial activities 

independent o f AMPs which can enhance the inh ib ito ry activity o f peptides and reduce 

any potential bacterial resistance (Malmsten 2011).

The synergistic effect o f antibiotics combined w ith  AMPs is a valuable approach to  

overcome the increasing recurrence and rising o f antib io tic resistance rates. Such 

combinations enhance the potency o f antibiotics making them effective against more 

than one target in the cell and maximises the concentration of antim icrobial agents at 

the site o f infection. Membrane perturbation or pore form ation on the bacterial 

surface may facilita te the uptake and access o f antibiotics in to the bacterial cell 

(Giuliani, Pirri et al. 2007, Nuding, Frasch et al. 2014). Some successful com binations o f
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antibiotics with AMPs has led to an increase in antibacterial activity of conventional 

antibiotics such as erythromycin and rifampicin (Ulvatne, Karoliussen et al. 2001).

Further research is needed for to better understanding of the mechanisms of action of 

Smp peptide to develop their potency and stability.
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Appendix 1 List of other scorpion and snake venoms have been purified with no antibacterial 

activity against E. coli, S. aureus and B. subtilis

Venom Chromatography

Androctonus australis Reverse Phase Liquid Chromatography

co
Reverse Phase Liquid Chromatography

'o. leiurus quinquestriatusou
to SP Sepharose cation exchange Chromatography

Androctonus amoreuxi Reverse Phase Liquid Chromatography

V)
Size exclusion Chromatography

JX. Cerastes cerastesnj
c
<S)

SP Sepharose cation exchange Chromatography
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