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Abstract

The aim of this research was to produce reliable and valid new fitness assessments 
utilising both gas exchange kinetics and sport specific field testing for the 
determination of fitness in elite athletic groups. A series of studies were conducted on 
both track runners and soccer players to examine the usefulness of maximal, 
submaximal and sport specific procedures. The physiological measurements utilised
in this research were: gas exchange kinetics, maximum aerobic power ( VO2 max), 
anaerobic threshold and a soccer specific fitness test. The research developed new 
procedures and modified existing protocols to challenge athletes appropriately in the 
examination of relevant athletic performance indicators. For the determination of test 
reliability and validity, test-retest analysis was performed and cross-sectional 
comparisons were made between performers of both different standards of 
performance and event specialisms. The submaximal gas exchange kinetics test 
enabled the differentiation of elite sprinters from elite endurance runners. A test-retest 
reliability study of that procedure revealed high test variability (measurement error 
range: 18 -  35%), possibly due to breath-by-breath fluctuations. The development of a 
mean response time through a mathematical modelling technique improved the 
confidence in this procedure (test -  retest measurement error: 16%) and produced a 
single, overall, measurement to enhance the future application of the procedure for the 
assessment of aerobic fitness in different population groups. Nevertheless, relatively 
high test-retest variability remains a feature of the test. Further research examined the 
validity of standard laboratory and sport specific measurements in the determination 
of training status in professional soccer players. Maximal aerobic power was shown to 
be unaffected by short-term (5 weeks) changes in training status (63.3 ±5.8 ml-kg' 
^min'Wd 62.1 ±4.9 ml-kg'^min'1) , questioning the relevance of this measurement to 
routine assessment of fitness and training status. Conversely, the soccer specific 
fitness test enabled the differentiation between soccer players performing at different
standards where there was no difference in estimated VO2 max, however there was no
relationship between V02 max and the soccer test which questions the validity of the 
new field test. Nevertheless, it is possible that this result reflects a greater sensitivity 
of the new test to detect soccer specific differences in the fitness of soccer players. In 
conclusion, the research has demonstrated that gas exchange kinetics test has limited 
use for the identification of aerobic fitness in elite athletes. Future investigations 
might clarify the relationship between the soccer specific fitness test and match 
performance.
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Introduction

Physiological assessment is an important part of the training process for athletes 

aspiring to achieve or maintain an elite standard of performance. Appropriately 

designed fitness assessment procedures provide constructive feedback about specific 

aspects of performance related fitness which would prove useful to gauge training 

intensities accurately, monitor progress and identify strengths and weaknesses.

The aim of this research was to produce reliable and valid measurements of fitness, 

utilising new and innovative procedures which incorporate the application of gas 

exchange kinetics (Edwards et al. 1999,2000,2001a, 2001b, 2002b, 2003a), maximal 

aerobic power and anaerobic threshold (Clark and Edwards 2003, Edwards et al. 

2003c, Fysh et al. 1999) and sport specific fitness testing (Edwards et al. 2002a, 

2003b, 2003d) in the identification of fitness in elite athletes. A prominent 

consideration of the research was to utilise procedures that provide constructive 

feedback for athletes and their coaches with minimum imposition to training routines. 

Therefore, practicality, validity and test re-test reliability were of great importance to 

the successful application of the procedures.

The fitness assessment procedures utilised in this research applied physiological 

principles underlying the mechanisms of both aerobic and anaerobic energy provision.

The studies of oxygen uptake ( V O2) and carbon dioxide output (VCO2) kinetics 

investigated whether low intensity dynamic exercise could reflect aerobic fitness as an 

alternative to maximal intensity testing (Edwards et al. 1999,2000,2001a, 2001b,

2003a, Fysh et al. 1999). Previous studies have shown V O2 kinetics to be faster in
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individuals possessing better aerobic fitness (Epfeld et al. 1987, Hagberg et al. 1980, 

Hickson et al. 1978, Powers et al. 1985, Zhang et al. 1991), but there have only been a

few studies where VO2 and VCO2 kinetics have been applied to sport (Fukuoka et al.

1995,1997). This is surprising since pulmonary VO2 kinetics provides a useful non-

invasive estimate of muscle V 0 2 kinetics (Epfeld et al. 1991, Hoffmann et al. 1992).

Aerobic power, aerobic capacity, anaerobic power and anaerobic capacity are key 

physiological variables that have previously been identified as important factors in the 

physical capacity of a sports performer (Reilly et al. 2000). However, none of these 

measures in themselves accurately predicts the ability to perform a running race or 

prolonged intermittent exercise with alternating intensities, as performed in sports 

such as soccer (Bangsbo and Lindquist 1992). Consequently, an innovative and 

practical fitness test was developed in this research to examine the specific fitness 

requirements of elite athletes who in this case were professional soccer players 

(Edwards et al. 2002a, 2003b, 2003d).

The aims of this research were to:

1. Devise a new, low intensity procedure for the assessment of aerobic fitness 

utilising the principles of moderate intensity gas exchange kinetics.

2. Determine the reliability of the new procedure for the assessment of breath-by- 

breath responses to a pseudo-random binary sequence protocol.

3. Examine test validity for the pseudo-random binary sequence test through a 

cross-sectional comparison of test performances in elite endurance and sprint 

runners.
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4. Propose a standard form of results expression for oxygen uptake responses to 

pseudo-random binary sequence exercise, following examination of current and 

new procedures.

5. Examine the validity of existing laboratory based aerobic fitness assessments to 

the identification of aerobic fitness in professional soccer players.

6. Determine the practical application and validity of a new sport specific through a 

comparison of test performances between elite and sub elite athletes.

Analysis of the component parts

i) Gas exchange kinetics in elite athletes

Gas exchange kinetics describes the rate of change of V O2 and VCO2 in response to 

the onset of exercise or to a change in work rate (Whipp and Wasserman 1972, Whipp

et al. 1982). It has previously been shown that individual variations in either V O2 or

VCO2 kinetics could describe aerobic fitness (Epfeld et al. 1987, Fukuoka et al. 1995, 

1997, Zhang et al. 1991) and, consequently, a reliable and valid low intensity test 

would have potential for both the assessment of aerobic fitness in elite athletes and 

also in a clinical context in patients unable to perform high intensity exercise (Massin 

et al. 1998,2000).

Two studies completed as part of this research (Edwards et al. 2002b and Fysh et al. 

1999) identified a significant relationship between V O2 max and VO2 kinetics. These 

studies demonstrated that VO2 kinetics could be used to assess cardiovascular fitness,
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but it seems likely that V O2 kinetics may be more indicative of other aspects of 

aerobic fitness than V O2 max since an R2 of 0.46 (Edwards et al. 2002b) shows that 

VO2 kinetics are not solely reflective of V O2 max.

Both V O2 and VCO2 are characterised by three time related phases (Whipp et al. 

1982). Phase I is the initial period, lasting -15-20 s and covers the period in which 

venous blood from the active muscle has not yet reached the lungs (Whipp and 

Wasserman 1972). Phase II describes the period in which venous blood from the
t

active muscle arrives at the lungs and has a lower O2 content and higher C O2 content 

than during Phase I. Consequently, phase II reflects the period of major increase in 

cellular respiration and lasts from about 15 s to 3 min. The phase II response was the 

area of interest in this research (Edwards et al. 1999, 2000,2001a, 2001b, 2002b, 

2003a) as dynamic, low intensity assessment of gas exchange kinetics offers a novel 

approach to the assessment of aerobic fitness. Phase III starts 3 min after exercise

onset, and reflects the start of the VO2 steady state period if the work rate is below 

the anaerobic threshold. If the work rate is above the subject’s anaerobic threshold,

the rate of increase in V O2 correlates with the magnitude of the lactate increase 

(Whipp and Wasserman 1972, Zhang et al. 1993). Carbon dioxide output is slower to 

reach phase III, due to the enhanced capacity to store C O2 in the tissues, and is 

consequently reached at -4  min (Whipp et al. 1982).

A pseudo-random binary sequence exercise protocol was selected for the research 

(Edwards et al. 1999) as it switches between two work loads over a predefined period 

of time (Bennett et al. 1981, Kerlin 1974). Several identical sequences of exercise can
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be placed in series over the duration of the exercise test and consequently each 

sequence can be utilised as a repeated test measure for ensemble averaging purposes. 

This potentially reduces non-physiological noise associated with breath-by-breath 

procedures (Lamarra et al. 1987). It was anticipated that the dynamic metabolic 

challenges of the pseudo-random binary sequence exercise would provide a more 

representative test of aerobic fitness than the traditional assessment of exercise 

capacity (Kowalchuk and Hughson 1990) and because it is a sub-maximal test, it can 

be applied repeatedly with minimal imposition to the subjects (Hughson et al. 1990). 

This is advantageous for testing of large groups and subjects with limited available 

time, as assessment would require minimal laboratory contact. The pseudo-random 

changes in work rate were designed to reflect the Phase II response of gas exchange 

kinetics (Figure 1) through a series of low-intensity dynamic challenges within a 

single test, whereby O2 uptake and CO2 output at the lungs reflect the O2 consumed 

by the cells and the CO2 produced from muscle metabolism (Epfeld et al. 1987, 

Hoffmann etal. 1994).
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Figure 1. Breath-by-breath oxygen uptake ( V0 2), carbon dioxide output ( VC02) and work rate (25 W 
and 85 W) during pseudo-random binary sequence exercise for a single subject.
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A standard method of analysis for multiffequent tests, such as the pseudo-random 

binary sequence test, is in the frequency domain by application of Fourier analysis 

(Epfeld et al. 1987,1991, Hoffmann et al. 1992,1994). In this technique, the length of 

the pseudo-random binary sequence is treated as a sine wave with different composite 

harmonic frequencies. The lowest frequency that completes a full sine wave in the 

length of the pseudo-random binary sequence cycle is known as the fundamental 

frequency and displays the highest power output (Epfeld et al. 1991, Hoffmann et al. 

1992,1994). As the frequencies become progressively higher, the input power (work 

rate power) becomes dissipated leading to progressively output power (individual gas 

exchange kinetics response) being retained at each frequency and thus the underlying 

response becomes less discernible from non-physiological background noise (Epfeld 

et al. 1991, Hoffman et al. 1992, Lamarra et al. 1987).

Fourier analysis yields estimates of the response to a pseudo-random binary sequence 

protocol at each harmonic frequency, but the standard expression of results for multi 

frequent tests such as the pseudo-random binary sequence are difficult to reconcile 

with physiological conclusions. This is due to the method of expression within 

Fourier analysis according to the terms 1) amplitude ratios (the magnitude of the 

response) and 2) phase shift angles (the delay in the response). Although amplitude 

ratios and phase shift angles are calculated for each harmonic, they correspond to a 

frequency, which is determined by the design of the particular pseudo-random binary 

sequence utilised. As the construction of pseudo-random binary sequences vary 

according to the requirements of researchers, it is difficult to attach specific 

physiological conclusions to each frequency. For example, the first frequency in a 300 

s protocol (15 units of 20 s) is calculated as 1/300 = 0.0033 Hz (3.3 mHz). The first
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frequency of a 450 s protocol (15 units of 30 s) is thus calculated as 1/450 = 0.0022 

Hz (2.2 mHz). Therefore direct comparison of the output response between protocols 

is difficult as the frequencies representing the responses differ. As the base units are 

also different (20 s and 30 s respectively), each protocol examines different aspects of 

the dynamic response which further complicates accurate comparisons.

In the first study of this research (Edwards et al. 1999), standard Fourier analysis was

applied for the expression of V 0 2 kinetics. That study provided evidence that the 300 

s pseudo-random binary sequence exercise test could be used to elicit significantly 

faster gas exchange kinetics in elite endurance runners compared with elite sprinters. 

However, this finding was not of statistical significance at each harmonic frequency 

measured and the physiological implications of this observation remain unclear, 

although it is most likely related to the progressive decline in input power at the 

higher frequencies.

It was expected that the elite endurance runners would display faster V  0 2kinetics that 

the elite sprinters as there are many characteristic physiological differences between 

these groups (Andersen and Henriksson 1977, Bergh et al. 1978, Bemus et al. 1993). 

The findings were also consistent with the theory that endurance training adaptations 

interact to accelerate the adjustment of 0 2 supply to 0 2 demand during submaximal 

exercise (Hagberg et al. 1980, Hickson et al. 1978). This further supports earlier

studies in which V 0 2 kinetics were shown to improve in response to endurance 

training (Babcock et al. 1994, Berry and Moritani 1985, Fukuoka et al. 1997, Phillips

et al. 1995a). One study did not show an overall improvement in phase II V 0 2 

kinetics after six weeks of endurance training (Carter et al. 2000). However, when
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their subjects were subdivided according to levels of training, the less well trained

displayed improved V 0 2 kinetics where there was no change in the well trained

subjects. This finding supports the view that V 0 2 kinetics might be of use in the 

identification of aerobic fitness in the general population but is likely to be less useful 

among previously well trained elite athletes.

Following the observation of faster V 0 2 kinetics in elite endurance runners utilising 

the pseudo-random binary sequence fitness test, examination was made of

FCC^kinetics (Edwards et al. 2000). Since a previous study (Fukuoka et al. 1997)

showed VC02 kinetics to be delayed after 6 months sprint and strength training in

footballers, it might be expected that VC02 kinetics would also differentiate elite 

endurance runners from elite sprinters. This was not shown to be the case in this 

research (Edwards et al. 2000). Although both amplitude ratio and phase shift for

VC02 kinetics were consistently slower in the sprinters compared with the endurance 

runners at all frequencies, this observation was not of statistical significance. This is

most likely due to the high standard deviations observed for VC02 kinetics in

comparison to V 0 2 kinetics, which could either be attributable to the effects of higher 

tissue capacitance for CO2 than 0 2> or technical imprecision of CO2 measurement.

The main finding of this element of the research (Edwards et al. 1999a, 2000) was 

that the pseudo-random binary sequence exercise test might become a useful

assessment of V 0 2 kinetics, but an issue of reliability emerged from the variability

observed in VC02 kinetics. A test-retest study was therefore conducted to establish 

the reliability of the procedure (Edwards et al. 2001a).



The results of the test-retest study (Edwards et al. 2001a) demonstrated that the limits 

of agreement as defined by Bland and Altman (1986) were substantially closer for

V O2 kinetics than VCO2 kinetics. This offered some explanation for the failure of

VCO2 kinetics to differentiate between the elite endurance runners and elite sprinters 

(Edwards et al. 2000). Likely causes for the observed variability are differences in the

signal to noise ratio between V O2 kinetics and VCO2 kinetics, greater variations in

ventilation in VCO2 kinetics compared with V 0 2 kinetics, or a change in CO2 storage 

during the test period.

In this research, both V 0 2 kinetics and VCO2 kinetics displayed levels of test-retest 

variability, which question the practical application of the pseudo-random binary 

sequence test. For comparison between test-retest reliability across amplitude ratios 

and phase shift angles, measurement error was calculated according to the definition

of Atkinson and Nevill (1998) (Edwards et al. 2001a). Measurement error for V O2

kinetics ranged between 18-35% and VCO2 kinetics between 39-108%. It is therefore

unsurprising that VCO2 kinetics did not differentiate between the athletic groups and,

consequently, the subsequent development of this research concentrated on V 0 2

kinetics rather than VCO2 kinetics utilising the pseudo-random binary sequence 

exercise test (Edwards et al. 2001a).

Conclusions drawn from the research suggest that further development of the pseudo­

random binary sequence exercise test would be dependent on improved test-retest 

reliability and a less complex interpretation requirement than Fourier analysis
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(Edwards et al. 2001a). Either sporting or clinical application of an exercise test 

would have greater relevance when expressed by a single quantifiable test score or 

time. Oxygen uptake kinetics in response to step test procedures have been routinely 

expressed in the time domain by description of the time constant of the response 

(Hughson et al. 1988, Whipp et al. 1982). In this method, a mathematical model is 

fitted to the test data for the subsequent calculation of a mean response time. A 

limitation of the step test procedure is that it requires multiple repeats of the step to 

generate sufficient data for analysis (Hughson et al. 1988, Stegemann et al. 1985). In 

comparison, the pseudo-random binary sequence test has the advantage of being able

to generate adequate information about V 0 2 kinetics from a single test, although the 

physiological interpretation of frequency responses is more complex.

The development of a single time score for V 0 2 kinetics would enable researchers or 

clinical practitioners to compare subjects test performances quickly and in a 

meaningful way. For example, a typical 300 s (15 units of 20 s) pseudo-random

binary sequence V 0 2 kinetics test response analysed in the frequency domain yields 

three usable values for amplitude ratio at frequencies 3.3 mHz (typically ~ 8.02 ±0.7 

ml-min'^W'1, 6.7 mHz (5.47 ±0.9 ml-min'^W'^, 10 mHz (3.56 ±0.7 ml-min'^W'1) 

and a further three for phase shift (typically — 41.26 ±5.82 degrees, -73.74 ±7.93 

degrees and -99.53 ±9.29 degrees), i.e. before the underlying physiological response 

is obscured by breath-by-breath background noise. This research has not shown a 

consistent pattern of reliability for individual frequencies of either amplitude ratio or 

phase shift and it is therefore difficult to attach meaningful physiological conclusions 

to the test results. The high test retest variability of the frequency domain results is a
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probable cause for this, but a reliable single test score would remove the uncertainty 

surrounding the meaning of individual frequencies.

To generate a single overall test response from the pseudo-random binary sequence 

exercise test, two time domain procedures have been proposed as alternatives to 

frequency domain analysis (Hughson et al. 1991, Massin et al. 1998,2000,

Stegemann et al. 1997). The test-retest reliability of the two procedures has not been 

reported and therefore this research compared both methods with frequency domain 

results (Edwards et al. 2001,2003) for the identification of the most reliable and 

practical method of result expression.

The procedure described by Hughson et al. (1991) utilised a mathematical modelling 

technique to generate a mean response time that might be comparable with the 

analysis procedures used in step tests (Linnarsson 1974, Whipp et al. 1982). This 

procedure utilises the auto- (work rate correlated with itself) and cross-correlation

(work rate correlated with V 0 2 response) functions for the model fitting. As the auto­

correlation appears in the shape of a triangular pulse, the mean response time method 

is derived by fitting a linear summation of the ramp form of a two-component 

exponential function to the test data. Although complex, this method utilises time 

delays and gains in the calculation of the mean response time and is an example of a 

functional, rather than empirical model.

A second, and simpler, approach is possible utilising the known lag in time between 

auto and cross-correlation functions derived from the pseudo-random binary sequence

work rate and V 0 2 response and does not require the fitting of a mathematical model
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(Massin et al. 1998,2000). This approach merely describes the time lag between auto- 

and cross-correlation functions and has been termed a ‘peak cross-correlation time’ 

(Edwards et al. 2003a).

Preliminary analysis was conducted to examine the application of the mean response 

time method on the data previously reported for elite sprinters and elite endurance 

runners (Edwards 1999,2001b). That study demonstrated the mean response time

could be used to differentiate between the V 0 2 kinetics of the two groups and 

consequently further research was conducted to compare the application of the two 

time domain procedures on both the sprint and endurance data and the test-retest data 

previously reported in the frequency domain (Edwards et al. 2003a).

The results of this research demonstrated different reliability between the assessment 

procedures (Edwards et al. 2003a). The most reliable method in this research was the 

mean response time method with a measurement error of 16%. This compared 

favourably with the previously reported measurement error of 18-35% in the 

frequency domain (Edwards et al. 2001a) and the peak cross-correlation time of 25% 

(Edwards et al. 2003a).

The expression of an overall response either by mean response time or peak cross­

correlation time potentially offers greater application of the pseudo-random binary 

sequence exercise test to either sports groups or in a clinical context through the

expression of a single test result. Test-retest reliability of V O2 kinetics was improved 

using the mean response time and the most likely explanation for this is a reduced 

susceptibility to breath-by-breath noise in an overall response.
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ii) Anaerobic threshold and maximal oxygen uptake

Maximal aerobic power (VO 2 max) is widely considered the most objective measure 

of endurance capacity. However, the specificity principle of training suggests that

care must be taken when interpreting V O2 max as an absolute indicator of fitness

(Kemi et al. 2003, Pechar et al. 1974). The V O2 max is poorly related to the demands

of many sports and an improvement or change of V O2 max does not necessarily lead 

to a practical change in sports performance (Gergley et al. 1984).

Although an individual’s highest attainable VO2 max is usually reached within two 

years of endurance conditioning (Saltin et al. 1977), endurance performance continues 

to improve with continued training for many additional years. Improvement in

endurance performance without improvements in V O2 max is probably due to the

body’s ability to perform at increasingly higher percentages of VO2 max for extended 

periods following training (Donovan and Pagliassotti 1990, Phillips et al. 1995b). It

seems likely that this increase in performance without an increase in V 0 2 max is the 

result of an increase in lactate threshold (Denis et al. 1982), because endurance steady

state is directly related to the VO2 value at lactate threshold (Bassett and Howley 

2000, Denis et al. 1982, Donovan and Pagliassotti 1990).

The purpose of the maximal aerobic power ( V 0 2 max) and anaerobic threshold 

research was to compare the sensitivity of both measurements after changes in 

training activities (Clark and Edwards 2003, Edwards et al. 2003c). Although
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measurement of V 0 2 max, in particular, has often been used as a standard fitness 

assessment procedure for athletes in endurance based sports, the identification of 

specific fitness in multi sprint sports such as soccer is more complex due to the 

diverse requirements of the game (Bangsbo and Lindquist 1992, Kemi et al. 2003,

Reilly et al. 2000). Nevertheless, research suggests that a V 0 2 max of 60 ml*kg*-1min" 

1 as a minimum requirement for professional soccer performance (Tumilty 1993) and 

many soccer clubs continue to utilise the multi-stage fitness test (MSFT)

(Ramsbottom et al. 1988) to estimate V 0 2 max. For this purpose, a group of English 

1st team Professional Division 1 soccer players were tested both in a highly trained 

state and also following a 5 weeks off season period (Clark and Edwards 2003, 

Edwards et al. 2003c).

It has previously been shown that an inclined treadmill recruits a larger muscle mass 

than when running on the flat and a slower cadence allows the individual to reach a

‘true’ V O2 max (Astrand et al. 2003). In consideration of this, a series of flat running 

incremental steps were used for the assessment of anaerobic threshold prior to a 

subsequent series of increases in incline at a constant speed of 14.5 km-h'1 for the

measurement of V O2 max (Figure 2).

Measurement of anaerobic threshold can be assessed by a number of measures but in 

this research was identified by both the initial rise in lactate above the resting baseline

and also by the V slope method for assessment of ventilatory parameters V 0 2 and

VC02. Onset of blood lactate accummulation (OBLA) at a fixed concentration of 

4mmoM'1 was not used in this research as it has been criticised due to variability
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between subjects (Coyle 1995) and because it may be a result of not only muscle 

anaerobisis, but also a decreased total lactate clearance or increased lactate production 

in specific muscles (Hermansen 1971).
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Figure 2. Breath-by-breath oxygen uptake ( V0 2) of a single subject in response to the combined test 
of anaerobic threshold and maximal aerobic power.

The main finding of this work was that V O2 max was not significantly affected by the 

5-week off-season period, while the oxygen uptake corresponding to both ventilatory 

threshold and lactate threshold was significantly reduced following the off-season
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(Clark and Edwards 2003, Edwards et al. 2003c). Although a limited amount of 

training was conducted over the off-season, it was performed at lower intensities and 

on a less demanding schedule compared to the regular match play and training of the

on-season. The change observed in V O2 corresponding to both lactate threshold and 

ventilatory threshold suggests that either measure of anaerobic threshold is a more

useful indicator of training status than V 0 2 max. Consequently, although a maximal 

intensity test is certainly of importance in the identification of maximum heart rate

and the production of a V 0 2 max ‘score’, the place of regular and routine direct

assessment of V 0 2 max during soccer training is questionable. Therefore, although 

maximal aerobic power is undoubtedly of importance to soccer performance, it 

represents only one of several strands in the fitness requirements of soccer.

The failure of V 0 2 max assessment to identify a change in the training state of the

soccer players might be explained by the duration of exercise tolerance at V 0 2 max 

(Edwards et al. 2003c). This aspect of the research demonstrated that when the 

players were in the highly trained state they were able to sustain maximal exercise for 

significantly longer than when less well trained. This is consistent with the theory that 

sustained running speed is directly related to the accumulation of lactic acid in the 

muscle (Bassett and Howley 2000, Denis et al. 1982, Donovan and Pagliassotti 1990). 

In the highly trained state, lactate threshold was improved which demonstrated that 

higher steady state running speeds could be achieved prior to the onset of acidosis.

This finding suggests that V 0 2 max has little scope for further improvement in elite 

well-trained subjects who may have reached a genetic ceiling of aerobic performance,
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but it is also possible that existing training methods are not sufficiently focused to 

change maximal aerobic power.

iii) Sport specific fitness: Soccer specific fitness test

A progression of this research was the development of a sport specific fitness testing 

procedure that might prove an accurate method of obtaining objective information 

about fitness and training for coaches and athletes. Physiological adaptations in
r'

response to physical training are highly specific to the nature of the training activity 

(Kemi et al. 2003, Saltin et al. 1976) and research demonstrates that the more specific 

the training programme is to the given sport or activity, the greater the improvement 

in performance in that sport or activity (Gergley et al. 1984, Helgerud et al. 2001).

Bangsbo and Lindquist (1992) proposed that to measure performance-related 

improvements in fitness accurately, athletes should be tested while they are engaged 

in an activity similar to the sport or activity in which they usually participate. No 

single measure of overall muscular strength or aerobic fitness exists, instead, an 

individual displays an array of qualities relevant to the fitness requirements of the 

sport undertaken. It is possible that these qualities of muscle function and 

performance relate poorly to each other, if at all, and likewise, testing a person for 

aerobic fitness could produce different fitness results, depending on the mode of 

activity (McArdle et al. 1971, Toner et al. 1983).

Measurement of fitness should most closely resemble the actual requirements of the 

activity, not only for specific tasks but also in a manner that reflects the intensity,
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duration and pace of the task. Therefore, it is likely that the most effective evaluation 

of sport-specific fitness occurs when laboratory or field measurement closely 

simulates the actual sport activity and uses the muscle mass required by the sport 

(Bilodeau et al. 1995, Gergley et al. 1984).

The aim of this section of the research was to develop a fitness testing procedure of 

specific relevance to a selected sport. Reilly et al. (2000) identified a need for 

representative assessment of fitness or training status for soccer and although other 

researchers have devised and developed soccer specific protocols (Bangsbo et al 

1991, Bangsbo and Lindquist 1992, Bangsbo 1994, Drust et al. 2000, Nicholas et al. 

1995, Wragg et al. 2000), many of these have been designed to replicate the full 

demands of the game (Drust et al. 2000, Nicholas 1995,2000) for the assessment of 

match like intervention measures in isoloation from matchplay, while others represent 

single strands of fitness (Bangsbo 1994, Wragg et al. 2000) or were designed as 

training ground ‘drills’ (Bangsbo and Lindquist 1992, Bangsbo 1994). Bangsbo and 

Lindquist (1992) compared various exercise tests with the endurance performance of 

professional soccer players and suggested that specific interval field tests could be 

used to evaluate long-term endurance performance of elite soccer players. They

further concluded that V 0 2 max and blood lactate concentration during submaximal 

running were not sensitive measurements of endurance capacity for intermittent 

exercise. Their observation is consistent with the findings in this research (Edwards et 

al. 2003b) but are in contrast to the results reported by Helgerud et al. (2001) in which

V O2 max increased from 58.1 to 64.3 ml-kg'1-min'1 over eight weeks of aerobic 

training in youth team professional trainees. However, the magnitude of the increase
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in that study could be related to the initial training status of the athletes, genetic 

characteristics or maturation.

In this research, a single and practical exercise test was developed to assess soccer 

specific fitness over a range of indicators. The basic movement pattern of an existing 

protocol was used (Nicholas et al. 1995, 2000), although that procedure was designed 

to replicate the demands of a full 90 min game with which to investigate dietary 

interventions and hydration status. While the 90 min protocol did not offer immediate 

indication of practical use as a fitness test, the close resemblance of the test to the 

demands of the game suggested that it might have application in a modified form.

A limits of agreement study conducted by Nicholas and co-workers (2000) provided a 

solid base for further development of the procedure as a fitness test. Modifications 

were made to condense the new protocol and to facilitate multiple testing of subjects 

at one time (Edwards et al. 2003b). A combination of verbal and audio cues was used 

to improve pace judgement in the multi-speed test and physiological assessment was 

introduced across a range of fitness indicators. The fitness indicators designed in this 

research were developed to represent both aerobic and anaerobic components of the 

test. The selected fitness indicators were: Exercise heart rates, recovery heart rates, 

blood lactate concentration, peak and average sprint times, and a fatigue rate 

expressed as the drop off from peak sprint performance. Therefore, consideration was 

made to ensure that the aerobic and anaerobic components of multi sprint activities 

were reflected in the test (Figure 3).
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the Soccer Specific Fitness Test protocol.
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The results of the first study utilising the soccer specific fitness test (Edwards et al. 

2003b) demonstrated that Academy players from a professional soccer club 

performed the test at a significantly different level compared to a group of 

recreational players. An important observation in this study was that a progressive 

shuttle run test to exhaustion did not differentiate between the predicted aerobic 

capacities of the two groups. This further demonstrated that a generic and non­

specific test is less likely to prove useful to athletes and coaches on fitness or training 

status. The results of the first study (Edwards et al. 2003b) showed that the highly 

trained players were able to sustain and recover more quickly from the high intensity 

intermittent work which was evidenced by a faster sustained maximal sprint time and 

a more rapid decline in heart rate following each of the activity blocks. The Academy 

players also completed the test with a significantly higher blood lactate concentration 

and it seems likely that this represents a more pronounced activation of anaerobic 

glycolysis in comparison to the less highly trained Recreational players. The most 

likely explanation for the observed difference in test performances between the two 

groups is that the standardised speeds utilised in the test imposed less of an overall 

stress on the Academy players due to their enhanced soccer specific fitness. In 

addition, maturation could have been a factor between the two groups which may 

have contributed to the surprising observation of no difference between the estimated

V 0 2 max between the Academy and Recreational players.

In a second study (Edwards et al. 2003d), the test procedure was further modified to 

remove Part B of the test, which had not differentiated between groups. Practical use 

of the soccer specific fitness test identified that the point of subject exhaustion may be
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more closely related to motivation than an accurate assessment of exercise capacity. 

The removal of this section reduced the exercise time to 45 min.

In the second study (Edwards et al. 2003d), a group of 1st team professional soccer 

players and a group of Academy players completed the procedure. The aim of this 

work was to identify whether the test might be sensitive to the different soccer 

performances between two well-trained groups of soccer players performing and 

training regularly. The main finding of this study was that the 1st team players were 

able to sustain sprint times and recover from exercise bouts more quickley, consistent 

with previous observations of different test performances between Academy and 

recreational players. This finding supports the development of the soccer specific 

fitness test as a relatively sensitive assessment of soccer specific fitness.

A consistent finding from the two studies was that the more highly trained group in 

each study completed the test with significantly elevated blood lactate concentrations. 

It seems likely that the ability to attain and sustain elevated blood lactate 

concentrations is an important consideration in the specific fitness assessment of 

soccer players.

Research synthesis

The common theme for the research was the identification of fitness in elite athletes 

across both gas exchange kinetics and sport specific fitness testing. This research 

contributed new knowledge in the identification of appropriate analysis procedures 

and the test reliability of gas exchange kinetics in response to pseudo-random binary
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sequence testing. That work presented a novel alternative to maximal testing for the 

identification of aerobic fitness where previously gas exchange kinetics had not been 

applied in such a context. A subsequent study revealed greater sensitivity to training 

status in the measurement of anaerobic threshold than maximal aerobic power testing 

and further research developed a new soccer specific fitness test that demonstrated 

differentiated test performances according to levels of soccer performance.

The gas exchange kinetics studies (Edwards et al. 1999,2000,2001a, 2001b, 2002b, 

2003a) demonstrated a distinctive contribution to gas exchange kinetics research 

through the use of the dynamic pseudo-random binary sequence protocol as an 

aerobic fitness test. Before this research, there had not been a consistent rationale for 

either the potential of the procedure or the method of analysis for gas exchange 

kinetics assessed by this technique.

The first study of this research (Edwards et al. 1999) was one of the earliest occasions 

where gas exchange kinetics has been utilised as a sports fitness test for elite athletes 

and was the first utilising the pseudo-random binary sequence test. Equally, test-retest 

reliability for pseudo-random binary sequence exercise testing had not previously 

been reported and so Edwards et al. (2001a) demonstrated new knowledge in this 

area. As Edwards et al. (2001a) demonstrated high test-retest variability, further work 

was required to improve reliability. Edwards et al. (2003a) provided further evidence 

supporting alternative data analysis procedures that both identified more reliable and 

more useful forms of results expression.
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The practical application of VO2 kinetics by pseudo-random binary sequence remains 

limited by the issue of breath-by-breath noise (Lamarra et al. 1987). This questions 

the use of the procedure as a sports fitness test, although further development might 

be possible in a clinical context for patients undergoing rehabilitation programmes. In 

that context, the low intensity demands of the procedure would be useful for subjects 

for whom maximal work is inappropriate. As the pseudo-random binary sequence test 

enables aerobic fitness assessment in the non-steady state, it might also be of 

particular relevance to the lifestyle demands of the general population. However, the 

research reported in this thesis does not currently support the application of the test 

for individual assessment of fitness in elite athletes, where a small change in training 

status might not be accurately reflected in pseudo-random binary sequence test 

performance.

Further research demonstrated a correlation between V  O2 kinetics and V O2 max 

(Edwards et al. 2002b, Fysh 1999). However, mechanistic research (Bassett and 

Howley 2000, Pringle et al. 2003, Rossiter et al. 1999, Tschakovsky and Hughson 

1999, Whipp et al. 1999) suggests that the two measurements may reveal different 

aspects of aerobic fitness, which would explain the relatively low statistical 

significance in their relationship.

The role of VO2 max and anaerobic threshold in the ongoing assessment of aerobic 

fitness in elite athletes was examined (Clark and Edwards 2003, Edwards et al.

2003c). This work reinforced previous observations that V O2 max seems less 

responsive to change in training state than measures of anaerobic threshold (Donovan 

and Pagliassotti 1990, Katz and Sahlin 1990). A novel and interesting finding was that
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the duration of exercise tolerance at V O2 max increased in the highly trained state 

(Clark and Edwards 2003, Edwards et al. 2003c). This supports the view that aerobic 

event performance might improve without an increase in maximal aerobic power, 

especially in elite athletes. The research findings further suggest that measures of 

anaerobic threshold or maximal exercise tolerance might be more relevant as

performance indicators than V O2 max in highly trained subjects where changes could 

be minimal.

The soccer specific research made a distinctive contribution to the development of a 

representative measure of fitness for soccer. Reilly et al. (2000) identified the need for 

such measurement and future research and practical application of the soccer specific 

fitness test will identify whether the test might perform such a function.

An advantage of the soccer specific fitness test procedure was that the speeds of the 

test were standardised to enable comparison of players in one session. This 

maximised the test opportunity with minimal time imposition, which was a key 

consideration for the coaches seeking to identify players’ strengths and weaknesses. 

Therefore, players performed the maximal sprint elements of the test at different 

intensities corresponding to their fitness, and their physiological responses to the 

requirements of the test became their test results.

The common themes of this research are demonstrated in Table 1 in which the tests 

have been assessed by a series of relevant factors. The factors specified examine the 

issues of reliability, cross-sectional and longitudinal evidence supporting the
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procedures and their practical application for the routine assessment of fitness in elite 

athletes.

Table 1. The reliability and validity of selected exercise protocols.

Tests Factors

Reliability Cross-sectional Longitudinal Practical application 

To elite athletes

V O2 kinetics Medium Medium Medium Weak

PRBS test

V O2 max Strong Strong Medium Medium

Anaerobic threshold Strong Strong Strong Medium

(VT & LT)

SSFT Medium Medium Medium Medium Strong

PRBS = Pseudo-random binary sequence, VT = Ventilatory threshold, LT = Lactate 

threshold, SSFT = Soccer specific fitness test. Links between test and factor: weak to 

strong.

It is evident from Table 1 that the traditional laboratory tests of VO2 max and

anaerobic threshold compare favourably with both the V O2 kinetics test and the 

soccer specific fitness test. However, the soccer specific fitness test has the strongest 

practical validity, although it remains unclear to what extent it is related to match

performance as estimated V O2 max was not correlated with test performance 

indicators.

Although sport specific tests present difficulties in cross comparisons and regulation 

of test conditions outside the laboratory, they might prove the most relevant to sports 

performers. Improved technology such as portable gas analysers makes comparisons
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of exercise intensity more practical and results from this research suggest that the 

soccer specific fitness test in particular is of direct relevance to performance (Edwards 

etal. 2003b, 2003d).

Conclusions

In conclusion, this research utilised the principles of moderate intensity V O2 kinetics 

to develop a new aerobic fitness test (aim one). The reliability of pseudo-random 

binary sequence exercise had not previously been reported and this research identified

greater reliability in V O2 , compared with VCO2 kinetics in this form of exercise (aim 

two). Oxygen uptake kinetics differentiated between elite sprinters and elite 

endurance runners (aim three), however, the relatively high test retest variability 

observed questioned the application of this procedure as a sensitive fitness test. An

evaluation of methods to express V O2 kinetics results revealed that there was no 

common procedure for this form of test and therefore research was undertaken to 

identify the most reliable and practical methods (aim four). This resulted in the 

identification of the mean response time procedure as both a more reliable form of 

analysis and also produced a single test score compared with the series of values 

derived from Fourier analysis. This method can therefore be taken forward as a 

standard method of expression for pseudo-random binary sequence tests in the future.

Relatively high test-retest variability remains a feature of pseudo-random binary 

sequence testing and this poses clear difficulty in accurately determining fitness in 

athletic populations where a small change in test performance could be of great 

importance. Further investigation of traditional laboratory tests of in a longitudinal
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study and cross-sectional studies of sport specific fitness testing revealed contrasting

results (Table 1). The traditional maximal test of V O2 max is known to display good 

reliability but did not reflect seasonal changes soccer players' fitness (aim five). The 

development of a new soccer specific fitness test resulted in significant differences in 

the test performances of elite and sub elite players (aim six) suggesting it might have 

more relevance to sport specific fitness than the other measures examined.

For the future direction of similar research, the low intensity demands of the pseudo­

random binary sequence exercise test provide a reasonable premise for the further 

development of the procedure for subjects of low aerobic fitness such as the elderly or 

those recovering from serious illness. Further investigation of noise reduction 

methods might increase the confidence in the procedure and ultimately provide a low 

intensity alternative aerobic fitness test for subjects unable to perform maximal 

intensity exercise. In terms of elite athletes, specificity of testing is a key concern and 

the soccer specific fitness test warrants further investigation as a method of 

identifying fitness requirements of match performance.
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