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Abstract

Rice husk, an agricultural waste product obtained in large quantities in many countries 

including Nigeria, is very rich in siliceous materials. It has been known for several 

decades that, with careful processing, rice husk can be a source of metallurgical grade 

silicon. In Nigeria this would have the benefit of transforming large volumes (>

600,000 tonnes per annum) of agricultural waste into a partial solution to that country's 

issue with energy distribution.

In this work, silica of between 95.24% and 98.03% purity has been prepared from RHA 

(ashed at 700°C, 800°C, 900°C and 1000°C for either 5hrs or 12 hours). Additionally, 

the silica value was boosted by use of hydrometallurgical purification process. The 

improved purification processes yielded 99.18% and 99.51% of silica. Removal of 

many metallic trace impurities was significant: MgO (98.33%), AI2O3 (96.77%), 

Mn30 4 (80%), S0 3 (55%), CaO (97.92%), B (73.91%) and P20 5 (88.34%) are removed 

by leaching. Impurities such as Na20 , Fe2 0 3 and K20  are almost completely leached 

out beyond detection of the XRF after the final processing step.

Metallothermic reduction of the purified RHA with magnesium was investigated and 

post hydrometallurgical purification to further eliminate all soluble impurity. XRF and 

EDS showed P was reduced below their detection limit. The XRD showed that RHA 

transformation from amorphous to crystalline material depends on temperature and 

time. TEM investigation shows that derived silicon consist of agglomerate 

polycrystalline materials. TG analysed the the devolatilization, combustion and mass 

gain in RHA. The effectiveness of each stage of hydrometallurgical process in 

removing impurity elements was presented. While the hydrometallurgical purification 

of RHA is effective in removing impurities such as Ti and Fe to levels below the limits 

of detection of X-ray fluorescence (XRF), B levels was reduced to 22 ppm. Solvent 

refining process was done using Sn as a selected gettering metal for B in silicon.
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Chapter 1: Introduction
The increasing energy-related climate change coupled with spiralling cost and 

unsustainable nature of fossil fuels has in recent years increased interests in the 

need for innovative renewable energy alternatives worldwide, the development of 

this technology to meet terrestrial energy demands has been limited, even though 

solar photovoltaic power generation in industry like the space industry is a proven 

technology.

The high cost associated with manufacturing materials used in the fabrication of 

solar cells poses as one of the issues that have limited the widespread use of solar 

photovoltaic power as it leads to high cost in electrical energy produced compared 

to those of more traditional sources. Silicon in form of monocrystalline or 

polycrystalline is currently the dominant semiconductor material used in the 

fabrication of most commercially available solar cells, commanding over 90% of 

all PV technology market share (Swanson, 2006).

The carbothermic and siemens process are required for metallurgical grade and 

electronic grade silicon respectively on commercial scale. Metallurgical grade 

silicon is typically 98-99.5% and usually containing high content of electro-active 

impurities such as B(5-70 ppm), P(5-100 ppm), Al(3000-5000 ppm) and transition 

metal known to reduce the conversion efficiencies of p-n junction in silicon solar 

cells and panels. On the other hand, electronic grade silicon which contains total 

impurities less than one part per billion (< lppb) is too expensive for solar cells 

production on large scale (Ceccaroli and Lohne, 2003). Generally, it is recognised 

that B and P levels have to be reduced to less that lppm each for the silicon 

feedstock to have purity in the range of 5-7N for efficient solar cells fabrication.

General background of study

Currently, solar cells are manufactured using electronic-grade silicon (EG) which

makes them very expensive. The cost of manufacturing Si-based solar cells could

be considerably reduced if a new and inexpensive source material is used. The

search for economical methods to produce silicon needed for solar cell

applications has been ongoing for more than three decades (Barati et al, 2012).

The sources of raw materials for these methods has been largely limited to silica

in form of quartz and volatile compounds; thereby, limiting examination to silica

source from rice husk. The processing methods that have received most research
1



attention have been the upgrading of metallurgical grade silicon by modification 

of conventional production methods and by pyrolytic decomposition of 

halosilanes i.e. the so-called Siemens Process. These two methods are commonly 

referred to as the metallurgical and chemical routes to solar grade silicon (SoG-Si) 

synthesis. Although, the chemical route has been used successfully to meet and 

exceed the typical purity requirements for SoG-Si, the potential for lowering costs 

and increasing the volume of production has been very limited. The unit pro­

cessing steps involved in the chemical route approach can be complex, energy 

intensive and of long duration, as is discussed by Braga et al (2008). A 

metallurgical route combined with directional solidification has been successful in 

removing metallic impurities with low segregation coefficients from silicon. 

However, this route has been ineffective economically in removing impurities 

with high solubility e.g. B, P, Al which are dopant elements. The latter are known 

to be very deleterious to the performance of solar cells, as is discussed in Istratov 

et al (2006). Thus, the logical and consequently typical approach has been to use 

very high purity silica and reductant raw materials that are almost free of 

impurities and more economically viable. It is against this background, that the 

potential of silica obtained from rice husk, an agricultural waste product, is 

explored in this work for the production of solar grade silicon, as an alternative 

approach to synthesis of low cost solar grade silicon. Rice husk silica has only 

been explored by relatively few research groups as a source of solar cell material. 

However, the narrow and isolated experimental conditions from previous works 

as well as lack of an optimized process have limited the engineering application of 

such results. Thus, the lack of a commercially viable route for synthesis of bulk 

high purity silicon using silica from rice husk that is considered to be biomass 

waste material provides me a good motivation to explore and conduct further 

research into the feasibility of this approach.

1.2 Rice (Oriza Sativa)
Rice covers 1% of the earth’s surface and is a primary source of food for billions

of people globally. Approximately, 741.3 million tonnes of rice paddy were 

produced between the year 2012 and 2014 (STAT FAO, 2015) of which Nigeria 

produced 4.8 million tonnes of the rice paddy. On average, 20% of the rice paddy 

is husk (Beagle, 1978). In the majority of rice producing countries, the husk 

produced from the processing of rice is either burnt or dumped as waste.

2



1.2.1 Rice husk (RH)
Rice husk is a by- product from milling rice that is used as energy source in many

industries such as biomass power plant. Burning rice husk generates rice husk ash 

(RHA) which is rich in silica and can be an economically valuable raw material 

for production of silica. The chemical contents of RH are found to vary from 

sample to sample assumed to be due to different geographical conditions, type of 

paddy, climatic variation, soil chemistry and fertilizers used in the paddy growth 

(Genieva et al, 2008). RH, if properly burnt yields about 20% (average) ashes 

which exceeds 90wt% SiC>2 (Zhang et al, 2010). RH silica is originally amorphous 

and is therefore expected to convert to crystalline form during high temperature 

processing. Agro-industrial wastes are abundant in Nigeria among which RH 

occupies very important position. RH is insoluble in water because of its high 

silica and lignin content, tough, woody and abrasive in nature with low nutritive 

properties and resistance to weathering (Genieva et al, 2008). Secondly, its silica 

content is highest among all of them. In 2002 Nigeria produced about 3,367,000 

tonnes of rice per annual from which 673,400 tonnes of RH are separated as by­

product (Frolking et al, 2002). In 2014, Nigeria produced 4.8 million tonnes of rice 

paddy, a 42.6% increment in RH in 12 years. Such huge amounts are not utilized 

properly, as common practice is to bum the rice husk which is wasteful exercise. 

Heap burning of RH causes pollution hazards for surrounding population and has 

disposal problems as rice husk is merely carried to an open location where it is 

burnt in the open air.

1.2.2 Rice Husk Ash (RHA)
The chemical composition of rice husk ash depends upon a number of factors, e.g

the type of soil for growing rice plants, the fertilizing practices, environment, 

temperature and duration of burning. These factors influence both the percentage 

of silica and its mineralogical nature. The heap burning method produces poor 

quality RHA. It consists of large amount of unbumt carbon which lowers the 

silica content. Secondly, the original amorphous nature (Patel et al, 1987) of the 

silica is destroyed and the resulting ash is largely of crystalline character; 

consequently, it becomes comparatively less chemically reactive (Mehta, 1977). 

RHA if obtained from the rice husk by particular burning temperature and time 

will yield high purity rice husk silica material suitable for silicon production.
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Silicon

Silicon makes up 25.7% of the Earth’s crust by weight and is the second most 

abundant element, being exceeded only by oxygen. Silicon is not found free in 

nature, but occurs chiefly as oxide and silicates. Sand, quartz, rock crystal and 

jasper are some of the forms in which the oxide appears. Granite, asbestos, mica 

etc. are but a few of the numerous silicate minerals. Silicon is prepared 

commercially by heating silica and carbon in a furnace to about 2000°C.

Silicon is a group IV element which adopts the tetrahedral crystal structure in 

which the four outer valence electrons of silicon atoms involved in covalent 

bonding. The valence electron orbitals involving in covalent bonding form the 

energy band known as valence band (VB); and the almost empty band above is 

called the conduction band (CB). Silicon has an indirect bandgap, that is, bandgap 

that the energy minimum in the conduction band and the energy maximum in the 

valence band are separated by 1.1 eV at room temperature, these points occur at 

different value of the crystal momentum. Thus, a phonon and a photon with 

relatively small energy are required for an electron to be promoted from the 

valence band into the conduction band CB. Silicon is a chemical element which 

has the symbol Si and atomic number 14. It is a tetravalent metalloid which is less 

reactive than its chemical analogue carbon and is the eighth most common element 

in the universe by mass. Its outer electron orbits are half filled. Silicon has 

numerous known isotopes, with mass number ranging from 22 to 44. 28Si is the 

most abundant isotope, at 92.23%, 29Si 4.67%, and 30Si 3.1% are stable. 32Si is a 

radioactive isotope produced by cosmic ray; its half-life has been determined to be 

approximately 170 years. Crystalline silicon with its natural advantages of being 

an abundant element makes it remains material of choice for large-scale 

commercial production of photovoltaic modules. Silicon in microelectronic 

industry has become by far most studied material of all the semiconductor 

materials; and it has been used in photovoltaics due to its dominance (Cuevas et al, 

1999). Most of the technological processes and much of the accumulated 

knowledge have been directly transferred to photovoltaic (PV) applications with 

great benefit. However, there is no guaranteed that crystalline silicon would 

maintain its dominant position in photovoltaics in the medium to long term, at 

least not in the form of wafers sawn from bulk ingots. Lately, the sources of silica



and silicon in biomass resources such as rice husk are being researched intensively 

for several industrial applications (Shinohara and Yasushi, 2004). Nevertheless, 

the question remains as to whether rice husk ash (RHA) can be purified by a cost- 

effective, low technology route to produce solar-grade silicon suitable for use in 

photovoltaic devices, even though it has been known for several decades that, with 

careful processing, rice husk can be a source of metallurgical grade silicon (Ikram 

and Akhter, 1988). The work presented in this thesis is rooted to technology that is 

devoted to exploring ways of manufacturing and improving the performance of 

silicon solar cell from rice using widely available techniques.

1.4 Aim
The aim of this research work is to use rice husk, an agricultural waste product, 

very rich in siliceous materials and very easily obtainable in large quantities in 

many countries, e.g. Nigeria, as an alternative source for low-cost Si-based solar 

cells. This work will also explore a technique that will remove or reduce the high 

segregation impurities; as well as focus on the use of rice husk metallurgical- 

grade silicon, a material that has become increasingly important in the commercial 

sphere for polycrystalline silicon and cheaper to produce than single-crystal 

Czochralski-grown (Cz) silicon.

1.5 Objectives
The objective of this research is to identify and optimize conditions for roasting 

rice husk considered to be a biomass waste by-product, into clean silica of over 

99.3% required for the production of solar grade silicon. To investigate the 

possibility of producing low-cost solar grade silicon from the derived high purity 

rice husk silica via hydrometallurgy leaching processes and consider best 

optimisation techniques suitable for the silicon production.

1.6 Justification/Significance
Production of solar-grade silicon from rice husk ash (RHA) will add an

economical value to the raw material. If rice husk (RH) is properly burnt, 80% - 

95% silica will be obtained. The utilization of RHA will go a long way in the 

reduction of agro-industrial wastage of rice husk as well as solving the disposal 

problems of RH. RHA produced under controlled condition gives the required 

mineralogical nature i.e. amorphous or crystalline silica with carbonaceous 

material burnt out. Currently, 94% of solar cells produced from silicon shows that
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38% is single-crystalline, 49% is poly-crystalline, 4% is amorphous and 3% is 

silicon ribbons (Miles et al, 2007). This research is to seek ways to further enrich 

the 80% - 95% silica obtained from RHA by processing it further via solid-liquid 

extraction (acid leaching) and liquid-liquid extraction (metal liquation) by the 

following procedures: Treatment with an oxidant, alkali leaching, digestion with 

HC1, dry thermal treatment with magnesium and low temperature purification 

process of metallurgical silicon using Sn as a metallic medium to produce silicon 

with poly-crystalline properties.

1.7 Summary
This chapter begins with the introduction of problem involves or encountered 

during production of solar grade silicon for solar cells fabrication. A general 

background of study, it further discussed rice and its viability to silicon 

production when the husk from the rice is burnt at a particular temperature and 

time. The aims and objectives of the work along with its justification/significant 

to the work were presented in this thesis.
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2 LITERATURE REVIEW

2.1 Silicon from quartz, silicon solar cells and silicon solar cell technology
Silicon mainly occurs as silicon dioxide (Si02) in quartz and sand. It is extracted

mainly by quartzite reduction with carbon in an arc furnace (Dietl et al, 1981). 

Gay-Lussac and Thenard (1811) were thought to have prepared impure 

amorphous silicon, through the heating of potassium metal with silicon 

tetrafluoride, but they did not purify and characterize the product, nor identify it 

as a new element. Berzelius prepared amorphous silicon using approximately the 

same methods as Gay-Lussac (potassium metal and potassium fluorosilicate), 

purifying the product to a brown powder by repeatedly washing it. Crystalline 

silicon in its common form was not prepared until 31 years later, by Deville 

(Voronkov, 2007). The photovoltaic effect was first experimentally demonstrated 

by a French physicist A.E. Becquerel in 1839. He was credited as being the first to 

demonstrate the effect by illuminating platinum electrodes coated with silver 

chloride inserted into acidic solution (Becquerel, 1839). About forty years later, 

William Adams and Richard Day in 1876 found that a photocurrent could be 

produced in a sample of selenium when contacted by two heated platinum 

contacts following the investigation of photoconductive effect in selenium and the 

anomalies they noted when Pt contacts were pushed into the Se bar. They 

demonstrated that it was possible to start a current in Selenium merely by the 

action of light (Adam and Day, 1877). However, it was not until 1883 that the first 

solid state photovoltaic cell was built by Charles Fritts who coated the 

semiconductor selenium with an extremely thin layer of gold to form the junctions 

(Frits, 1883). The device was only 1% efficient. In 1888, Russian physicist 

Aleksandr Stoletov built the first photoelectric cell based on the outer 

photoelectric effect discovered by Heinrich Hertz earlier in 1887 (Gevorkian, 

2007). The most efficient photovoltaic devices used before 1940s, were Se, CU2O 

or Ti2S due to their absorbing layer with a rectifying metal contact (Green, 1990). 

The first semiconductor p-n junction solar cells were described in 1941 by Russel 

Ohl of Bell laboratories (Ohl, 1941). A comprehensive review article by M.A. 

Green (1993) on the evolution, high efficiency design and efficiency enhancement, 

outlined the time line of record efficiencies of silicon solar cells from 1941 to 

1990, showing growth in efficiency from <1% in 1941 to >23% in 1990. In 1998 

the monocrystalline silicon solar cell reached a confirmed efficiency of 24.4%
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(Zhao et al, 1998). This value was later revised upwards to 25.0% and re­

presented for a 4 cm2 solar cell area by M. A. Green (Green, 2009). This is the 

record efficiency to date for silicon. Multicrystalline silicon solar cells also 

reached confirmed record efficiencies of 20.3% in 2004 for a 1 cm2 area device 

(Schultz et al, 2004), while Moslehi et al produced thin film silicon solar cell with 

record efficiency of 20.1% for 242.6 cm2 solar cells as contained in the periodic 

report of solar cell efficiencies by M. A. Green et al (Green et al, 2015).

Silicon solar cells are fabricated using solar-grade silicon which has purity in the 

order of 99.9999% (6N) or higher e.g Silane process. Silicon used in 

microelectronics is called device-grade or high-purity silicon reaching 

99.9999999% (9N) purities, that is, it contains impurity levels less than one part 

per billion e.g Siemens process (Ranjan et al, 2011). However, the production of 

these grades of silicon is capital intensive, requiring huge amount of electrical and 

thermal energy as well as advanced chemical processing steps. Most photovoltaic 

solar cells produced to date have been based on silicon p-n junctions but now 

relying on junctions more controllably formed by diffusing one polarity dopant 

into a wafer substrate of opposite polarity (Green, 2002). The solar cell industry is 

a player in the renewable energy segment. Electricity generation from solar cells 

is deemed to be one of the key technologies of the 21st century (Braga, 2008). 

Solar cell power generation has recently been increasing rapidly due to the fact 

that it provides clean and renewable energy. However, serious shortage and 

increased costs of solar-grade silicon (S0G-Si) arose around 2006 -  2008 due to 

unsustainably rapid expansion in solar cell production (Yasuda and Kouji, 2010). 

The global solar cell market is still being affected by the constrained activity. 

Among new technologies for production of S0G-Si under research, the 

metallurgical process is one of the most promising methods (Woditsch and Koch,

2002). Solar cell electricity presents an elegant means for electricity generation as 

there are no moving parts, no noise and zero emissions (Xakalashe and Buhle, 

2012).

2.2 Solar Gell
Basically, solar cell (also called photovoltaic cell) is an electrical device that 

converts the energy of light directly via photovoltaic effect into electricity needed 

for energy supply and consumption. It is a form of photoelectric cell (in that its
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electrical characteristics -  e.g. current, voltage, or resistance -  vary when light is 

incident upon it) which when exposed to light, can generate and support electric 

current without being attached to any external voltage source. Photovoltaic is the 

field of technology and research related to the application of photovoltaic cells in 

producing electricity from light; though it is often specifically to refer to the 

generation of electricity from sunlight. Cells can be described as photovoltaic even 

when the light source is not necessarily sunlight (lamplight, artificial light etc.). In 

such cases the cell is sometimes used as a photodetector (for example infrared 

detectors), detecting light or other electromagnetic radiation near the visible range, 

or measuring light intensity. The operation of a photovoltaic (PV) cell requires 3 

basic attributes:

1. The absorption of light and generating of electron-hole pairs.

2. The separation of charge carriers of opposite types.

3. The separate extraction of those carriers to external circuit

A typical silicon solar cell is an n-p junction made in a wafer of p type silicon 

approximately 100cm2 in area and a few hundred microns (300-500 pm) thick in 

order to absorb as much light as possible. Thus, to improve its diffusion lengths, a 

light doped (~ 1016 cm'3) is introduced. Heavily doped (~ 1019 cm'3) is introduced 

to reduce sheet series resistance for n type emitter. A reasonable thin layer should 

be used to allow as much light as possible to pass through to the base, but thick 

enough to keep series resistance reasonably low. The principles and operations of

silicon solar cell will fully be discussed in this chapter with efficiency while I

briefly go onto introduce other forms of energy production, supply and 

consumption within the globe.

2.3 Global energy supply and consumption
The world's energy consumption has risen dramatically due to variety of reasons

that includes the increase in the world population and industrialization since latter 

half of 20th century; therefore necessitating serious research, development and 

monitoring of various global energy supplies and consumption in recent years 

needed for sustainable energy supply. The energy crisis of the 1970s taught the 

world serious lessons on the need for sustainable global energy supplies 

(Horowitz, 2005 and The 1970's Energy Crisis). The BP's annual 'Statistical 

Review of World Energy 2015' for the year 2014, indicates that oil still remains
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the dominant fuel for energy generation with 33% o f the global total energy 

consumption as at 2014, although this value stands as the lowest share on record 

for oil for 15 years running (BP Energy Review, 2015). Oil is followed in 

sequence by coal, natural gas, hydroelectricity, nuclear energy and finally 

renewable energy (BP Energy Review, 2015), as shown in figure 2.1 and 2.2.

World consumption - million tonnes oil equivalent
Renewables

2%
Hydroelectricity

7%

Nuclear energy  
4%

33%

Coal

30%

N atural gas  

24%

F ig u r e  2 .1 :  D is tr ib u t io n  o f  w o r ld  e n e r g y  so u r c e s

World primary energy consumption grew by a below-average 0.9% in 2014, the 

slowest rate o f growth since 1998 other than the decline in the aftermath o f  the 

financial crisis. Growth was below average in all regions except North America 

and Africa. All fuels except nuclear grew at below-average rates. Oil remains the 

world’s dominant fuel. Hydroelectric and other renewables in power generation 

both reached record shares o f global primary energy consumption (6 .8 % and 

2.5%, respectively).
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Be it as it may, these major global energy sources are not without serious 

environmental concerns ranging from CO2 emission to oil spillage on land and 

water as well as nuclear waste contamination, all o f which eventually contribute 

to the big issues o f environmental degradation and global warming making 

headlines today. The climate change report released in September 2013 by the 

Inter-governmental Panel on Climate Change (IPCC) blames this on the activities 

o f humans which have eventually resulted to increase in the greenhouse gas 

content o f the atmosphere (Koch et al, 2013). These human activities eventually 

boil down to heavy dependence on energy source which produce these greenhouse 

gases in both our industrial and domestic activities without adequate consideration 

o f the accompanying adverse environmental effects such as global warming and 

pollution.

Nevertheless, BP’s 2015 annual Statistical Review o f world energy indicates that 

renewable energy sources (which more or less produce less adverse environmental 

effects) grew by about 12% in power generation, accounting for a record 3% o f 

global energy consumption up from 0.9% a decade ago (BP Energy Review, 

2015). This is encouraging news for the pursuit o f renewable energy sources. 

Renewable energy is so important because it is apparently infinite, clean and at 

least depends on how it is generated. Some technology is not very “clean” . For
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example the estimated life span of the sun is another 7 billion years, while 

generating energy at the rate of about 4xl027W (Cain, 2012). The primary 

renewable energy sources include the sun, wind, biomass, tide, wave and the 

earth's heat (Foster et al, 2010). With renewable energy taking last position in the 

rank of global energy sources according to the BP’s Statistical Review of world 

energy and the detrimental climate change issues, there is a serious campaign for 

massive research and development activities in search of alternative, renewable 

and clean energy supplies for an encouraging environment and survival of man 

and other living things on earth. The major conventional energy sources in the 

world today include oil, natural gas, hydroelectricity, coal and nuclear. Among 

these, oil, coal and natural gas are collectively called fossil fuels. They are derived 

from deposits of dead organic matter that have built up over millions of years. The 

major characteristic of this energy source is the production of large amounts of 

carbon dioxide when burnt and other greenhouse gas emissions which play very 

prominent role in global warming (Shakun, 2012 and Sundquitst, 1993). For this 

reason, there have been efforts over the years to find alternative energy sources 

which produce minimal carbon dioxide and other greenhouse emission. 

Hydroelectricity and nuclear energy belong to this class of energy sources, 

although nuclear energy production has its own problems of nuclear 

contamination. It is therefore clear that the word “alternative” in energy terms 

does not necessarily imply “safe” or “sustainable”. For example nuclear energy is 

not as safe as hydroelectricity given its inherent nuclear radiation issue, such as in 

the case of the Fukushima nuclear power station radioactive contamination in 

Japan, triggered by the 2011 earthquake and tsunami. This in fact creates 

confusion sometimes when classifying energy sources in terms of their level of 

safety. For this reason, the classification of energy sources in this thesis will be 

based on renewable and non-renewable sources.

2.4 Non-renewable and renewable energy sources
Energy sources that cannot be replenished once they are used are said to be non­

renewable (Dincer, 2000). This replenishment is actually done naturally. Based on 

this, most of the major conventional energy sources are non-renewable and 

therefore stand a chance of running out in future. All energy sources derived from 

fossil fuel belong to this class including oil, coal and natural gas (Dincer, 2000).
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As mentioned earlier these energy sources take thousands and millions of years to 

form and therefore they are not easily replenished.

On the other hand, energy sources that are easily replenished in nature once they 

are used are called renewable energy sources (Dincer, 2000). These renewable 

energy sources include solar and biomass. These sources are practically infinite 

and can be used again and again without fear of exhaustion. The sun for instance 

has been estimated to continue to produce solar radiation for another 7 billion 

years (Cain, 2012). Also biomass, which is mostly derived from plants, continues 

to be available as long as there are plants. Biomass can be converted into biofuel 

using different methods. In fact, in some developing countries like Nigeria today, 

biomass remains the major source of fuel for domestic use. A typical example of 

this kind of fuel is firewood. Because the project described in this thesis is based 

on the conversion of the sun's energy into electricity, and the sun being a 

renewable energy source, a brief description of the above mentioned renewable 

energy sources will be presented in the following sub-sections.

2.5 Biomass
Biomass mostly refers to all plant-based organic materials obtained from living or 

recently living plants (Hoogwijk et al, 2003; McKendry, 2002). Through the 

process of photosynthesis, these plants convert the solar energy of the sun to 

chemical energy stored in the plant. Biomass energy is therefore energy derived 

from biomass. The conversion of biomass into energy can be done in different 

ways giving rise to the different biomass energy technology applications. These 

involve converting biomass into solid., liquid or gaseous fuels called biofuels, 

principally used for transportation (Wahlund et al, 2004; Alonso et al, 2010). This 

can be done through thermal, chemical or biochemical means. Examples of such 

biofuels include bio-ethanol, methanol, ethylene (or ethylene glycol) and 

propylene (or propylene glycol) (Wahlund et al, 2004, Sun and Liu, 2011). 

Another method of bioenergy production is by direct combustion or burning of 

biomass such as wood to produce heat energy for direct application such as 

cooking and space heating and for indirect generation of electricity by heating 

water to produce steam for operating turbines (Wahlund et al, 2004; Heinimo and 

Junginger, 2007).
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In a broader sense, biomass includes both plant and animal materials that can be 

converted into industrial chemicals for the production o f bioenergy. In recent 

times, biomass has been extended to sources such as waste from industrial and 

agricultural activities. These are called lignocellulosic biomass e.g rice husk (RH). 

Biomass has always been a major energy source for humans from ancient times 

and has been projected to contribute up to 15% o f the global primary energy 

supply by 2050 (Fischer and Schrattenholzer, 2001). Rice husk an agricultural 

waste from rice milling has an energy content o f 12.1 to 15.2MJ kg ' 1 (Kapur et al, 

1996) with energy potential o f about 1.7 to 2.1 EJ year'1. A schematic diagram of 

energy generation from rice husk ash and steam used in places like USA and India 

is shown in Fig. 2.3

j- ©
Rice husks (RH) are  conveyed to  

boiler to  mix husks with heated  air.

Ash (RHA)

To Si02 Ash Storage I

F ig u r e  2 .3 : S c h e m a t ic  d ia g r a m  o f  e n e r g y  g e n e r a t io n  fr o m  r ic e  h u sk  c o m b u s t io n

For calculation o f energy released from combustion, cellulose (C6H 10O 5) is 

considered to be the combustion material; noting that rice husk atomic ratio o f 

C/H is 0.59, very close to the stoichiometry ratio o f 0.6 in cellulose (Larbi et al, 

2012). The process diagram for production o f rice husk ash and steam is shown in 

Fig. 2.3. Husks from rice harvest are transferred to the furnace by a blower where 

the rice husks are conveyed to the boiler to mix husks with heated air; while rice 

husk ash produce drop through filters to RHA bag house for silicon extraction or 

other RHA useful purposes, the steam goes into the turbine to rotate it for power 

generation that is utilised for electricity supply to the rice mill and the rem aining 

power transferred to national grid through a transformer.
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2.5.1

2.6

Solar Energy
Solar energy is simply energy based on the sun's electromagnetic radiation. Figure

2.4 shows the solar spectrum comprising electromagnetic radiation o f various 

wavelengths or frequencies (Katai, 2011). This spectrum covers the ultraviolet 

(UV) radiation (100 - 400) nm, the visible (VIS) radiation (400 - 700) nm and the 

infrared (IR) radiation (700 nm and above). This covers most o f the important 

spectrum for terrestrial solar energy application especially through solar thermal 

and photovoltaic technologies. Further discussion on solar energy conversion 

through various technologies is presented in the following sections.

Solar Radiation Spectrum
2.5
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F ig u r e  2 .4 :  T h e  s o la r  sp e c tr u m  sh o w in g  th e  s p e c tr a l  ir r a d ia n c e  v s . p h o to n  w a v e le n g th  in  th e  

U V , V I S  a n d  I R  r e g io n s  fo r  a  5 2 5 0 ° C  b la c k b o d y , w h ic h  a p p r o x im a te s  th e  su n  s p e c tr u m  o f  

th e  su n  a s  w e l l  a s  a s p e c tr u m  a t  th e  e a r th 's  su r fa c e  th a t  su r v iv e s  th e  a b so r p t io n  o f  m o le c u la s  

su c h  a s  H 20  a n d  C 0 2 in  th e  e a r th  a tm o s p h e r e  (K a ta i ,  2 0 1 1 )

Solar radiation and air mass coefficients
The sun can be approximated to a black body radiator operating at an effective 

temperature o f 5777 K (Nelson, 2004). As the solar spectrum passes through the 

atmosphere, it gets attenuated due to absorption and scattering by the molecules 

and particles present in the atmosphere; As a result, some o f the components o f 

the spectrum are stripped off before the sunlight reaches sea level at the Earth's 

surface (Riordan, 1986). For example a large portion o f the short-wavelength 

ultraviolet component o f the solar spectrum is absorbed by the ozone layer in the 

upper part o f the atmosphere. Also water vapour, molecular nitrogen, carbon 

dioxide as well as oxygen, contribute to this absorption and scattering o f different 

wavelengths o f the solar spectrum before it reaches the surface o f  the Earth. As a
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result, the solar intensity varies with altitude as well as with the sun's zenith angle 

as the solar spectrum travels through the atmosphere.

The solar spectrum is usually characterised after traveling through the atmosphere 

using the “air mass coefficient” or simply the "air mass” (AM). This AM is 

mostly used to characterize the performance of solar cells under standardized 

conditions; as this is simply defined as the ratio of the optical path length (L) of 

the solar spectrum through the atmosphere to the vertical path length (L0) normal 

to the Earth's surface at sea level (atmosphere thickness) when the sun is at the 

zenith as shown in figure 2.5

Zenith
Sun

Zenith P ath  Length Lo

Earth

Figure 2.5: Schematic of the sun's position for the determination of air mass (AM). 

Then

L 1 
AM  = —  *

cosZ ( i )

where Z is the angle between the zenith and the position of the sun at the time in 

question (Nelson, 2004)

The variation of Z with time of the day and seasons of the year causes the air mass 

variation to be dependence on the sun's elevation and the position of the observer 

on the Earth’s surface. Equation (1) is a very simple approximation and does not 

take into account the curved nature of the Earth's surface. Improvements to this 

model (1) have been proposed by different people (Nelson, 2004; Matson et al, 

1984; Kasten, 1993 and Bird, 1982) although it is accurate for values of Z up to 

-70°. Different AM values correspond to different levels of attenuation undergone 

by the solar radiation when the sun is at different angles relative to the zenith.
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AMO: This means zero-atmosphere and represents the spectrum outside the 

atmosphere where there is essentially no attenuation to the radiation from the sun. 

AMO is used as the standard for the characterisation of solar cells used in space 

application such as those used for powering communication satellites in space 

(Riordan, 1986; Nelson, 2004 and Matson et al, 1984).

AMI: This is the air mass for the spectrum that has travelled through the 

atmosphere when the sun is directly at its zenith above the point on the Earth 

under consideration. AMI is regarded as one atmosphere thickness, and under this 

condition, Z = 0°, giving the value of unity to Equation (1.1). AMI can be used 

for characterising solar cells meant for use in equatorial and tropical regions of the 

Earth (Riordan, 1986; Nelson, 2004; Matson et al, 1984; Bird, 1982 and Bird et al, 

1985).

AM 1.5: This is the solar spectrum that has passed through 1.5 atmosphere 

thickness. It represents the air mass when the sun is at an angle of Z= 48.2° to the 

Earth's surface. In fact, AM 1.5 is used as the average air mass of the solar 

spectrum at mid-latitudes. This is because the air mass of the spectrum in the 

region actually fluctuates roughly about this value within the day. This is the air 

mass generally adopted by the global solar energy industry as a standard for the 

characterisation of solar cells and solar panels for all terrestrial applications 

(Riordan, 1986; Nelson, 2004; Matson et al, 1984; Bird, 1982 and ASTMG-173- 

03,2014).

AM2 and AM3: The AM2 corresponds to the spectrum when the sun is at an 

angle Z = 60° relative to the zenith and AM3 corresponds to the situation with Z = 

70°. These two cover the range for characterising the average performance of 

solar cells in regions of high latitudes such as northern Europe as well as in 

temperate zones where winter, for instance, affects the spectra irradiance 

(Riordan, 1986; Nelson, 2004; Matson et al, 1984; Bird, 1982 and Bird et al,

1985).

Solar intensity or solar irradiance (I) is the power per unit area of solar radiation. 

The value of I  varies as the solar radiation reaches the Earth's surface as a result of 

the aforementioned attenuation that takes place in the atmosphere (Riordan,

1986). When the radiation is released from the sun before any attenuation, the
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maximum solar irradiance I0 is obtained. This value is also called the total solar 

irradiance. It is also called the total solar constant with an average value of about 

1367 Wm‘2 (Gueymard, 2004 and Mendoza, 2005). The solar intensity is related 

to the air mass according to Equation (2) (Kitai, 2011).

1 = 1.1 x I0 x  0.7wm)<°'678> (2)

Therefore, for AM 1.5 condition, the average value of irradiance is about 

lOOOWm*2. This is the value used in different research laboratories for the purpose 

of comparing performance of solar cells.

2.7 Solar energy conversion and technologies
The conversion of solar radiation or solar energy into other useful energy forms

and sources takes different routes. In all cases, the primary components are 

photons which come from solar radiation. These conversion routes and the 

corresponding technologies involve the conversion of photon energy directly into 

heat energy, chemical energy or electrical energy as well as conversion into 

electricity through intermediate stages such as conversion into heat and then to 

electrical energy. The various modes of solar energy conversion and the 

associated technologies are discussed in the following sub-sections.

2.7.1 Photo-thermal solar energy conversion
This involves the direct conversion of photon energy (solar energy) into heat

energy through the use of solar collectors and absorbers. The resulting thermal 

(heat) energy can then be used directly for example, for drying (as in solar dryers) 

(Vijay, 2012) and water heating (as in solar water heaters) (Frid et al, 2012) etc. In 

general, materials employed as absorbers and concentrators for the above class of 

photo-thermal energy conversion should have desirable properties such as high 

absorption coefficient over the entire solar spectrum and low thermal emissivity in 

the infrared region of the solar spectrum (Uhuegbu, 2011) as well as excellent 

resistance to atmospheric and environmental corrosion. Photo-thermal converters 

can operate at different temperatures. They can be employed in thermoelectricity 

generation, magneto-hydrodynamics as well as thermal dissociation of water for 

the production of hydrogen as another source of fuel. The basic principle of 

operation of a photo-thermal converter is depicted in figure 2.6.
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F ig u r e  2 .6 : S c h e m a tic  o f  th e  b a s ic  p r in c ip le  o f  o p e r a t io n  o f  a  p h o to - th e r m a l c o n v e r te r .

The incident radiation (in the range 0.3 - 2.0 pm) is absorbed by the absorber and 

converted to heat depending on the design. The absorber therefore becomes 

transparent to longer wavelength radiation (>2.0 pm). These are then reflected 

back into the absorber. The thermal energy generated is then passed through the 

conveyor to the point where it is needed for heating application. For improved 

efficiency, 77 the incident solar radiation can be concentrated. The collector 

conversion efficiency o f a flat plate solar collector may be given by Equation (3).

Qu
• * - ga;  w

where Qu is the useful energy gain o f the solar collector, G is the solar irradiance 

and A c is the collector area (Hutchins, 1983).

Thermo-photovoltaic solar energy conversion

In thermo-photovoltaic (TPV) energy conversion, thermal energy is converted 

into electrical energy. Thermal energy comes from infrared radiation. This 

infrared radiation (heat) can come from the solar radiation or from the heat in the 

surrounding. In fact, strictly speaking, since infrared radiation is a part o f the 

broad solar spectrum, thermo-photovoltaic conversion is a special form o f 

photovoltaic energy conversion utilising mainly the infrared radiation. In typical 

photovoltaic energy conversion using solar cells, the ultraviolet visible and near 

infrared parts o f the solar spectrum are mostly converted into electricity. 

Conventional solar cells normally contain semiconductors with bandgaps between 

1.0 eV and 4.0 eV (Strehlow and Cook, 1973). This automatically makes them



transparent to the infrared radiation corresponding to photons with energies below 

their bandgaps. In thermo-photovoltaic energy conversion therefore, very narrow 

bandgap semiconductors are used in the photovoltaic part of the entire process in 

order to effectively absorb longer wavelength infrared radiation from heat energy 

generated by an emitter. The thermo-photovoltaic converter therefore consists of 

thermal emitter and a photovoltaic cell. The thermal emitter is a special material 

with high thermal emissivity and low thermal absorptivity. Figure 2.7 shows the 

schematic of the operation of a TPV. The thermal emitter /radiator is a system that 

is capable of radiating heat energy in a similar way to a black-body radiator. 

Although the emitter is not a perfect black-body radiator, it can be treated as a 

black-body radiator to a good approximation so that the principle of black-body 

radiation governed by Planck’s law can be applied to it. In their work, Demichelis 

et al (1982) considered the emitter as a grey body radiator instead of a black-body 

radiator and then expressed the energy per unit time emitted by the radiator at a 

temperature T and incident on the solar cell according to Equation (4).

Filter

p Output 
(Electricity)

Figure 2.7: Schematic of the operating principal of a TPV. The heat source can be a solar 
concentrator consisting of a system of lenses with antireflection coatings.
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Where

P,nc = Energy per unit time emitted by the radiator,

S r , c  = geometric factor of the radiator cell, 

e  (X, T) = spectral emittance at wavelength, X and temperature, T,

E n(?i,T) = emissive power of a black-body at wavelength, X and temperature, T, 

t(X) = transmittance of the filter between the emitter and the solar cell.

The energy absorbed by the solar cell per unit time (P abs) is then given by

f
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Pabs =  S r.c J  A (A )  e  ( A , T ) E tl(Al T ) r ( A ) d A
0

(5)

where A (A) = absorbance of the cell.

The efficiency of the solar cell is given by

_ J m p V m p  f  r \

Vcell' l M  (6)

where

r/ceii = efficiency of the solar cell,

Jmp = current density at maximum power point,

Vmp = voltage at maximum power point,

Jph = total photo-generated current density,

Vg = Eg/e is the bandgap voltage,

Eg = bandgap energy of the solar cell, and 

e = electron charge.

The conversion efficiency rjTPV of the thermo-photovoltaic converter then 

becomes

V t p v  =  n 9  A Ce ii  (7)
*abs

where Aceu = area of the solar cell.

Equations (4) - (7) show that the efficiency of a TPV depends strongly on the 

temperature of the emitter and the wavelength of the photons radiated by the 

emitter. Thermo-photovoltaic energy conversion is therefore a process based on 

heat/temperature differential between the emitter and the solar cell. Materials that 

have been used in TPV systems as emitters include erbium oxide (ErOs) (Hofler 

et al, 1983), ytterbium oxide (Yb20s) (Hofler et al, 1983; Demichelis, and 

Minetti-Mezzetti, 1980), molybdenum (Demichelis et al, 1982, Hofler et al, 

1983), tungsten (Demichelis et al, 1982; Demichelis and Minetti-Mezzetti, 1980), 

tantalum (Demichelis et al, 1982) and polycrystalline graphite (Demichelis et al, 

1982). Semiconductor solar cells that have been used in TPV systems include 

germanium solar cells (Hofler et al, 1983), silicon solar cells (Hofler et al, 1983), 

InGaAsSb/GaSb solar cells (Dashiell et al, 2006), InGaAs/InP solar cells (Waits,
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2012), InGaAsP/InP solar cells (Waits, 2012) and InGaAs/InGaAs/InP solar cells 

(Waits, 2012). Dasheill et al (2006) have obtained a TPV conversion efficiency of 

19.7% using InGaAsSb/GaSb solar cell at temperature of ~30°C with an emitter 

temperature of 950°C.

2.7.3 Photo-chemical solar energy conversion
Photochemical solar energy conversion deals with the conversion of radiant

energy of the sun into chemical energy which can further be converted directly 

into electricity (photo-electrochemical conversion) or stored in the form of 

hydrogen (through water splitting) (Berberoglu and Pilon, 2010; Babu et al, 2012) 

or in other forms such as methanol and other hydrocarbons. Photosynthesis is one 

such way of converting the sun's radiant energy into chemical energy which can 

be found in nature. The photo-chemical converter is therefore an energy generator 

as well as an energy storage system. In the case of serving as a storage system, the 

stored chemical energy can be converted into other desired forms of energy such 

as heat and electricity for utilisation.

2.7.4 Photovoltaic solar energy conversion
Photovoltaic (PV) solar energy conversion is the direct conversion of solar energy

of the sun into electricity using a photovoltaic solar cell. Among all the above

discussed solar energy conversion technologies, the photovoltaic technology is the

most famous as well as most widely researched and commercialised to date.

Unlike the other solar energy conversion technologies, PV technology has

provided power for various levels of application ranging from low power

applications in the order of 1.0 W as in calculators and wrist watches, to megawatt

applications such as in power stations (Wenger et al, 1991). The basic principle of

operation of PV solar energy conversion is based on the ability of photons from

the solar radiation to break bonds in a photovoltaic (photo-active) material in

order to create electron-hole pairs which can then be separated by a built-in

electric field (in a fully fabricated photovoltaic device) and collected in an

external circuit before they are recombined to produce electricity (McEvoy et al,

2003). The fully fabricated photovoltaic device is a solar cell. Silicon happens to

be the most dependable material, as the most widely manufactured solar cells are

based on it (Katai, 2011). Silicon based solar cells are of three main types: single

crystalline silicon, multicrystalline silicon and amorphous silicon (Nelson, 2004).

Single crystal silicon is grown by a number of methods. In the Czochralski
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process, a single crystal is slowly pulled out o f the melt with interstitial oxygen as 

the main contaminant present in a concentration o f about 1018 atom cm '3 (Kaiser 

et al 1956, Bosomworth et al 1970) giving rise to the well-known 9pm  infrared 

absorption band. The costly float zone process gradually forms a single crystal 

from a polycrystalline rod by passing a molten zone through it to produce higher 

purity material, but may established present o f carbon up to a level o f 3 x 1017cm '3 

for infrared absorption band at 16.5pm (Newman and Willis 1965, Nozaki 1974). 

Cz and Fz Multicrystalline silicon used in most commercial silicon solar cell 

fabrication, is produced by variety o f methods such as casting and ribbon growth. 

The relatively large grains sizes (0.1 - 10 cm) imply that multicrystalline material 

can yield moderately efficient device if  prepared using techniques similar to those 

used for monocrystalline silicon. The amorphous silicon (a-Si) solar cell has a p-i- 

n junction design due to its short diffusion lengths when doped. Thus, the intrinsic 

or central undoped region is needed to extend the thickness over which photons 

can effectively be absorbed. There is charge separation due to electric field 

created by the built-in bias dropped across the width o f the i region, provided that 

the p  and n layer doping levels are high enough, the depletion region is contained 

almost entirely within the /' region. In the p-i-n  diode structure, photocarriers are 

primarily collected by drift rather than by diffusion. A schematic layer width o f p- 

i-n structure is presented in figure 2.8.
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F ig u r e  2 .8 : S c h e m a tic  la y e r  w id th s  o f  p -i-n  ju n c t io n  s tr u c tu r e  fo r  a m o r p h o u s  s i l ic o n

A typical crystalline silicon solar cell is an n-p junction fabricated in a wafer o f p

type silicon o f few hundred microns thick and about 100 cm 2 in area. W hile the

front surface is anti-reflection coated, both front and back surfaces are contacted

before encapsulation in a glass covering. The base o f the cell, with thickness o f

about 300 - 500 pm is formed by the p  type wafer in order to absorb as much light

as possible, and lightly doped (~ 1016 cm ° )  to improve collection in the neutral
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base region without limiting the open-circuit voltage. In order to reduce sheet 

series resistance, the n type emitter created by dopant diffusion is heavily doped 

(~ 1019 cm '3). Figure 2.9 shows the schematic structure o f a basic silicon solar 

cell.

texture surface
front : AR coat front

contact  contact

emitter n Si
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___________________ M etal  back c o n ta c t___________________

F ig u r e  2 .9 :  S c h e m a t ic  o f  th e  s tr u c tu r a l  la y e r  o f  b a s ic  s i l ic o n  c e ll

The n thin layer should be sufficient to allow as much light as possible to pass 

through to the base and thick enough to keep series resistance reasonably low as 

shown in figure 2.10
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The carrier collection from the emitter layer is negligible due to the high 

recombination as result o f the heavily doped layer. The metal back contact is 

crucial to the operation o f the solar cell. The type o f metal used here affects the 

electrical behaviour o f the metal/semiconductor interface. This contact can have 

either ohmic behaviour or a rectifying (Schottky barrier) behaviour. The particular 

behaviour chosen depends on where the major depletion region in the device is 

located. If the contact is ohmic, there is no depletion region in semiconductor near
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the metal-semiconductor interface. This junction allows current to flow both ways 

with a voltage-current relationship that conies close to that of a resistor. In 

general, if a p-n junction type device is intended, then the depletion region is 

made to exist at the interface between the window layer and the absorber layer. 

One of these two layers is then a p-type semiconductor and the other is an n-type 

semiconductor. In this case, the metal back contact should make an ohmic contact 

with the absorber layer. If a Schottky barrier-type device is intended, then the 

interface between the metal back contact and the absorber layer is a Schottky 

(rectifying) interface. In this case, the major depletion region in the device is 

located at this interface. There may or may not be a depletion region at the 

interface between the window layer and the absorber layer but the major depletion 

region is at the Schottky contact. The nature of this metal back contact is therefore 

crucial in the operation of a photovoltaic solar cell. By definition, an ohmic 

contact is one that obeys Ohm’s law such that similar electrical current passes 

through it in both directions for a given voltage. On the other hand, a Schottky 

contact is a rectifying contact which allows electrical current to pass through it in 

one direction only. In practical devices, there is a very small current that flows in 

the reverse direction. Because of the large differences (of several orders of 

magnitude) between the currents in these two directions, the current in the 

preferred direction is dominant so that the infinitesimal current in the opposite 

direction is neglected. A p-n junction is also a good rectifying junction. 

Nevertheless, various techniques have been employed to increase the conversion 

efficiency of PV solar cells, based on two reasons. One, the silicon band gap 

(l.leV ) is smaller than the optimum (1.4eV) for terrestrial solar cell conversion, 

and two, that due to its relatively low absorption, a relatively thick layer of silicon 

is required to absorb sunlight effectively, making the cell expensive and bulky. 

These led to number of design that includes the use of solar concentrators (Katai, 

2011 and Yang et al, 2013) and multi-junction tandem approach (Keppner et al, 

1999). For thin film solar cell (e.g. GaAs* CuInSe2 , CdTe, CdS, ZnTe etc) as 

alternative, comprehensive reviews of the state of thin film solar cell for different 

materials are found in Bube (1998) and Archer and Hill (2001) which, will be 

briefly discussed later in this chapter.

The III-V compound-based solar cells are solar cells that have the group III-V

semiconductors as their main absorber materials. The most prominent of these are
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GaAs and InP. These have direct bandgaps of 1.42 eV for GaAs (Gurwitz et al, 

2012) and 1.35 eV for InP (Ahuja et al, 1997). Both of these also have high carrier 

mobility (Milnes, 1987 and Joyce and Williams, 1970). Other III-V 

semiconductors that feature in solar cell fabrication include GaP (direct Eg = 2.78 

eV; indirect Eg = 2.40 eV) (Wang et al, 2010), GaSb (Eg = 0.74 eV) (Chin, 1995), 

InAs (Eg = 0.36 eV) (Bhat et al, 2008), and InSb (Eg = 0.17 eV) (Yang et al, 

2007). Sometimes their ternary compound semiconductor variants can be used for 

the purpose of tailoring the bandgaps. Examples of these ternary III-V compound 

semiconductors include InGaP, InGaAs, AlGaAs, InAIP etc. Sometimes 

quartenary semiconductors of the III-V compounds can be formed such as 

GalnNAs, GaNPAs. The III-V semiconductor-based solar cells are the best option 

for tandem (multijunction) and concentrated solar cells (Araki et al, 2006, 

Yamaguch et al, 2006). The best record efficiencies for this group of solar cells 

have come from GaAs and InP-based solar cells. These include crystalline InP 

thin film solar cell with efficiency of 19.1% for a cell area of 4.02 cm2 (Keavney 

et al, 1990), GaAs thin film module with efficiency of 23.5% for a module area of

858.5 cm2 (Mattos et al, 2012), GaAs solar cell with efficiency of 27.6% for a cell 

area of ~ 0.99 cm2 (Kayes et al, 2011), GaAs concentrator solar cell with 29.1% 

efficiency for a cell area of ~ 0.05 cm2 as reported by Green et al (2015), 

InGaP/GaAs/InGaAs multi-junction solar cell with efficiency of 37.9% for a cell 

area of ~1.05cm2 (Sasaki et al, 2013) and GaInP/GaAs:GaInAsP/GaInAs 

concentrator solar cell with efficiency of 38.5% for a cell area of -0.20 cm2 

(McCambridge et al, 2011). Sharp Corporation has also reported record efficiency 

of 44.4% for a GaAs-based concentrator solar cell (Green et al, 2015).

2.8 Production of solar grade silicon

2.8.1 Siemens/Trichlorosilane (TCS)
The dominant semiconductor silicon technology consists of producing tri-

chlorosilane (TCS) from metallurgical-grade silicon, through purification 

processes involving several distillation and condensation steps, as well as 

decomposing it in a thermal chemical vapour deposition (CVD) reactor 

commonly called a “Siemens reactor” with reference to the firm, which first in the 

1960s developed this process, shown on left side of figure 2.11
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Figure 2.11: Siemens (Trichlorosilane) the dominant polysilicon technology (left) and 
silane (Fluidized bed reactor) the challenging technology (right)

for semiconductor needs. Approximately 90% of the globally installed polysilicon 

capacity is produced through this technology. Polysilicon process generates 

mainly silicon tetrachloride (STC) and other chlorosilanes in significant amounts 

as by products, which need to be recycled in a closed loop process. Two process 

strategies are pursued to generate TCS and recycle STC:

> Low pressure ( 1 - 5  bars) and temperature (300-350°C) hydrochlorination 

of impure metallurgical grade silicon (MG-Si) by hydrogen chloride for 

synthyesis of TCS and thermal (1300°C) hydrogenation for recycling STC 

to TCS as given in equation (8), (9) and (10) (Bye and Ceccaroli, 2014)

Si  CMGSi) + 3HCl = SiHCls + H2 (8)

SiCl4 + H2 = SiHCls + HCl (9)

Using high pressure (20-35 bars) and temperature (550°C)

hydrochlorination of MG-Si and STC in (10)

Si (MGSi) + 3SiCl4 + H2 = 4SiHCl3 (10)

The high purity TCS is vaporized and introduced in the Siemens deposition 

reactor, where the gas is decomposed onto surface of heated silicon seed rods at 

1100°C, building large silicon rod of high purity as presented in equation (11), 

(12), (13) and (14) (Bye and Ceccaroli, 2014)

2 SiHCls = SiH2 + SiCl4 (11)
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SiH2Cl2 = Si  + 2 HCl (12)

SiHCl3 + H2 = Si + 3 HCl (13)

SiHCl3 + HCl = SiCl4 + H2 (14)

The Siemens process is highly energy consuming as major part of the energy is 

lost during dissipation. This has led to applying thermal reflector to the inner wall 

of reactors to reduce lost and wastage in energy.

2.8.2 Silane/ Fluidized bed reactor (FBR)
Production of polysilicon in a fluidized bed reactor (FBR) using

' monosilane/SiH4/silane as feed-gas seems to be a challenger to the above

described TCS/Siemens process. This is due to its strong reduction of energy 

consumed in the deposition process just by less thanlO% of the globally installed 

polysilicon capacity in magnitude lower than in the Siemens deposition. It stands 

as a subject of numerous development projects within both incumbent and new 

producers of polysilicon. FBRs are used in many industrial processes like gasoline 

production and coal gasification. Silane seems to be the first alternative for a 

polysilicon process as feed gas as 100% of it can be converted to elementary 

silicon with hydrogen gas as the only by-product according to equation (15)

SiH4 Si + 2 H2 (15)

“Seeds”, in the form of fine MG-Si particles, are continuously loaded from the top 

or the middle of the reactor, whereas introduction of silane gas and hydrogen are 

near the bottom of the reactor as in the right side of figure 2.11. The gas stream

with forces equal those of gravity are ascended with the flowing gas percolating

into the particle in bed. Two major challenges of this process when silane is used 

are its inability to form fine powder and the deposition of silicon on the wall of 

the reactor. Three of the silane processes are one, using Union carbide that consist 

of the redistribution of purified trichlorosilane through fixed bed columns filled 

with quaternary ammonium ion exchange resins acting as catalyst in equation (16) 

to (20) (Bye and Ceccaroli, 2014)

2 SiHCls = SiH2Cl2 + SiCl4 (16)

3 SiH2Cl2 = SiHCls + SiH4 (17)
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The second consist of hydrogenation of silicon tetrafluoride SiF4 by metal 

hydrades such as lithium aluminium or sodium-aluminium hydrides,

2H2 + M A l = AIMH4 . M Na, Li (18)

SiF4 +  AIMH4 = SiH4 +  AIMF4 (19)

In the third process, silicon and magnesium powder is attacked by silane and 

ammonium chloride salt,

Si + Mg + 3HCl +  NH3 +  H2 -> SiH4 +  MgCl2 +  NH4Cl (20)

Monosilane and chlorosilanes are volatile silanes which are extremely reactive in 

the presence of oxygen, water or moisture. They require special care due to their 

classification as hazardous chemical substances (Ceccaroli and Lohne, 2003).

2.9 Upgrading metallurgical grade silicon (UMG-Si): Emerging technology?

The shortage of high purity silicon feedstock stimulated the launching of 

numerous projects to refine impure silicon to one with acceptable purity. The 

single crystal has a continuous and unbroken lattice structure that repeat itself. 

Poly-crystalline or multi-crystalline materials composed of many small crystals 

called grains. Metallurgical grade silicon (MG-Si) is multi-crystalline silicon not 

purified and thus, contains higher concentration of impurities than all other silicon 

grades. The grains texture is randomly oriented or has a preferential direction. The 

regions between the grains are called grain boundaries and are considered to be 

interfacial defects that are detrimental to electrical and thermal conductivity. In 

the past 8 - 1 0  years, attempts to make solar cell from metallurgical grade silicon 

has increased tremendously following the broadly inspired similar attempts during 

the 70-80s of last century; using those initiatives to research and develop on 

commercial low cost solar cell (Bye and Ceccaroli, 2014). Different researcher 

uses different purification process normally based on several steps with each 

taking care of groups of impurities e.g. donor (p), acceptor (B), transition 

elements etc. Majority of the processes used are explained in section (2.15). The 

use of wafers made from solar grade silicon can reduce cost dramatically. 

Upgraded metallurgical grade silicon (UMG-Si) is produced via leaching and 

purifying of MG-Si, followed by casting process. Multi-crystalline silicon of 

about three orders of magnitude less than S0G-Si or 2 - 4N is resulted. Using
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special raw materials as rice husk ash for MG-Si produce, boron and phosphorus 

were found to be in the range o f 1 to 4 ppm, while in standard metallurgical grade, 

B and P range between 7 and 50 ppm. The typical average values being around 25 

ppm. The achieved boron level in rice hulls could be as low as 1 ppm. However, 

phosphorus goes as high as 40 ppm and would request an additional and specific 

treatment to make use o f this source o f silicon in solar cells (Ceccaroli and Lohne,

2003).
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2.10 Production of MG-Si silicon from rice husk ash

2.10.1 Silica Preparation from Rice Husk Ash
In nature, the polymorphs o f silica are quartz, cristobalite, tridymite, coestite,

stishovite, lechatelerite (silica glass) and opal (Velupillai et al, 1997). It is this 

silica concentrated in the rice husk when it is burnt at a particular temperature 

over a specific time which makes the ash so valuable unlike every other 

agricultural waste product.

2.10.2 Thermal Decomposition of Rice Husk
There are two distinct stages in the decomposition o f rice husk -  carbonization

and decarbonization. Carbonization is the decomposition o f volatile matter in rice 

husk at temperature greater than 300 C which releases combustible gas and tar. 

Decarbonization is the combustion o f fixed carbon in the rice husk char at high
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temperature in the presence of oxygen (Maeda et al, 2001). The relative 

proportion of the different silica polymorphs in RHA depends not only upon the 

combustion temperature and atmosphere but also on the time for which the RH 

has been burnt. Mehta (1977) obtained totally amorphous silica by keeping the 

temperature below 500 C for prolonged periods and maintaining oxidizing 

conditions, while Yeoh (1979) observed that ash remained amorphous at 900C, 

when this temperature was maintained for a period less than one hour. It was also 

noted that ash becomes crystalline silica when heated at 1000 C for more than five 

minutes. The most common form of crystalline silica found in RHA is quartz, but 

cristobalite and tridymite are also present as the other forms of crystalline silica, 

although tridymite and cristobalite are stable at 867-1470 C and 1470-1727 C, 

respectively, at atmospheric pressure (Heaney, 1994)

Chopra et al (1981) burnt RH at 700 C, evaluated the ash by X-ray diffraction 

(XRD) techniques and found that it was amorphous. Further heating of this ash at 

the same temperature transformed some of it into a quartz crystalline state. This 

showed the direct effect of time (keeping the temperature constant on the nature of 

preparation of RHA). The time-temperature relationship in addition to degree of 

crystallinity simultaneously influence the specific surface i.e. the surface area 

(cm2) occupied by one gram of a solid converted to fine particles. It is also a 

parameter which closely relates to chemical reactivity of the ash. Ankra (1975) 

showed that the burning environment equally affects the surface area, therefore it 

must also be considered for efficient RH pyroprocessing. In addition, he studied 

the effect of chemical treatment and grinding of RH before preparing ash. It was 

proposed that cellulose and other combustibles should be burnt out without 

damaging the pore structure of the silica-rich skeleton. He showed that if 

pyroprocesssing occurs in the range 450°C - 500°C, the residual carbon, though 

amorphous in nature, cannot be removed on later thermal treatment.

Ikram et al (1984) prepared RHA containing 87% of SiC>2 , to produce 

polycrystalline silica from it; acid leached RH was heat treated at 300 C to 1200 C 

for four hours and subjected to extensive XRD studies. The result; revealed that 

the ash was amorphous below 800 C, with its conversion to crystalline form 

commenced at 800 C. Tridymite and a-quartz co-existed in comparable quantities 

at this temperature and the proportion of the latter silica phase increased with
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increasing temperature. Pitt (1985), while developing a process for large scale 

burning of RH, designed a furnace into which RH was sucked using negative 

pressure maintained by an exhaust fan. The hot gases from furnace, being mixed 

with ash, were taken to a boiler and finally separated by a multicone separator. In 

addition, this process had provision to recover the heat produced by combustion 

of the husk. Similarly, studies were conducted at pilot plant level for fabricating 

of a low-cost incinerator to produce RHA for cement manufacture. The 

combustion atmosphere was duly considered while designing and the RH 

combustion environment controlled by varying the air flow through a central tube 

(Shah, 2015). Alternatively, a modified Yamamoto paddy drier has been used to 

produce amorphous ash during field studies (Yeoh et al, 1979). However, the 

study was later centered round the feasibility of Mehta-Pitt work. The rice 

grower’s co-operative societies also developed a fluidized bed furnace or 

combustor in which two tons of RH/hour could be burnt to produce amorphous 

RHA. The heat generated during combustion was high enough to be used in 

drying citrus pulp.

2.10.3 Rice Husk Ash Utilization
Rice husk ash is obtained by burning of rice husk and chlorinating its silica

content to silicon tetrachloride, a raw material for silicon. Theoretically, the direct 

reduction of SiC>2 sand with carbon to yield Si could be possible but temperature 

must be more than 2000C. When Si02 in rice husk reacts with chlorine gas in the 

presence of carbon, the SiC>2 can easily and efficiently change to SiCl4 at a lower 

temperature (Basu et al, 1973).

Si02 + 2C + 2C12 — — > SiCl4 + 2CO (21)

SiCl4 is purified by distillation because of its boiling point of 57.6 C, and this high 

purity SiCl4 is converted to high purity Si by reacting with Zn metal (Okutani, 

2009) Silicon metal can be produced by several processes. One of these processes 

is the reaction of Si© 2  with aluminum (Al) metal as shown below.

3Si02 + 4A13 -----> Si + 2A120 3 (22)

Wang et al, (1993) reported that the adiabatic combustion temperature of this 

reaction is 1760K, and the product Si (melting point, 1683K) is melted.

Banerjee et al (1982) due to the above perspective took energy saving factor and 

easy availability of reducing agents into consideration thoroughly by evolving a
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process which was consequently, a direct reduction with magnesium powder at 

600C-650C. On the other hand, work was concentrated on leaching RHA and 

establishing techniques to set optimum carbon/silica ratio for direct reduction 

(Amick et al, 1982). Ikram and Nazma (1988) prepared RHA at 620°C, reduced it 

by a metallo-thermic process and the silicon thus obtained was purified 

subsequently. The total impurity content, after purification was found to be less 

than 500ppm. Similarly, Hussein et al (2007) utilized RHA for extracting solar 

grade silicon, depending upon the silica content of prepared RHA. 18:27 

(Mg:Si0 2 ) was found as the most suitable ratio for reduction; resulting silicon 

powder leached with different acids and evaluated as 99.85% pure. Patel et al, 

(1987) treated rice husk at temperature up to 1000°C, for different time durations 

and attempted to retain the amount of rice husk carbon, necessary for carbo- 

thermic reduction of accompanying SiC>2 . Husk was also treated with various 

acids and bases separately. This experimentation resulted is 99% pure silicon. 

Rice husk ash has many applications due to its various properties, it is an 

excellent insulator, thus has applications in industrial processes such as steel 

foundries. RHA is used by the steel industry in the production of high quality flat 

steel, typically used for automotive body panels and domestic ‘white goods’ 

products (Giddel and Jivan, 2007). In the manufacture of insulation for houses and 

refractory of bricks, it acts as an active pozzolan and has several applications in 

the cement and concrete industry. A pozzolan is a powdered material which, on 

addition to the cement mixed with lime in a concrete, reacts to create compounds 

which improve the strength or other properties of the concrete by released 

hydration of the cement (King, 2000). It is also highly absorbent, and is used to 

absorb oil on hard surfaces and potentially to filter arsenic from water during 

purification. RHA is used in silicon chip manufacture; a company in Michigan is 

purifying RHA into silica suitable for several industries, including silicon chip 

manufacture (Tal Materials Inc, 2002). A method of obtaining silicon of 6N 

(99.9999%) purity by reducing white rice husk ash with magnesium at a 

temperature of 800°C followed by several successive acid leaching treatments is 

reported by Barati (2010). The possibility of obtaining silicon of similar purity by 

direct smelting of purified amorphous silica with carbonaceous reductants in an 

electric furnace followed by leaching with acids, and repeating the steps about 

nine times, was also suggested. The method used to analyze the 6N silicon was

3 5



not reported. However, the cost of such repeated smelting and leaching would be 

expected to prohibit use of this method as a low cost alternative to conventional 

methods. Bose et al (1982) subjected powdered silicon obtained by magnesium 

reduction of rice husk ash to melting and directional solidification. It was found 

that boron was the active impurity in the polycrystalline silicon ingot that was 

obtained. It was also determined that the minority carrier life time of the 

polycrystalline silicon material was of the order of l-5ps, and thus promising for 

photovoltaic applications. However, it has been subsequently estimated that the 

minimum carrier lifetime requirement for efficient solar cells fabricated from 

multicrystalline silicon wafers is 25ps (Barati et al, 2012). The formation of 

crystalline silicon by heating a silicon precursor e.g. silicon dioxide, with an 

ingredient that will generate an exothermic reaction when heated e.g. magnesium, 

and isolating crystalline silicon is described in Barati et al (2012).

2.10.4 Ash Analysis
Typically, the ash will contain some unbumt components of the husks. The

unbumt component is predominantly carbon. It is typically measured by reheating 

a sample of ash in an oven. The difference in mass of the sample before and after 

heating is referred to as the loss on ignition (LOI). The LOI value is normally the 

same as the carbon content of the ash. The carbon content of RHA varies 

according to the combustion process. The main aim of converting husk to ash is to 

utilize its silica for metallurgical-grade silicon; the percentage of silica depends on 

the source of rice husk, the type of method adopted to ash the husk and the 

thermal treatment needed. Pyroprocessing of husk is frequently carried out to get 

RHA with maximum percentage of silica (Onoja et al, 2012). However, 

production of silica is an exception where certain amount of carbon is retained 

intentionally (Haxo and Mehta, 1975). This delibrate retention of carbon is 

difficult to control by researchers. However, proper pyroprocessing may result in 

RHA with highest percentage of silica. In addition, environment parameter, 

temperature and time duration are vital in this regard (Khane, 1985)

The results of chemical analysis have shown that the amount of unbumt 

component estimated as LOI, varied between 2.01% and 9.12% (Nagrale et al, 

2012). The results of chemical analysis of RHA prepared in some countries 

(Swamy et al, 1983) and by Cook et al (1989), have been reproduced in Table 2.1.
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Table 2.1: Comparisons of LOI in RHA (Cook et al, 1989) with those of some other locations

C o o k * B a sh a * T ash im a * B o u zo u b a a *A1-

K h a la f

*C handrasekar * Z h an g

S o u rce  

o f  R H

Journal M a la y s ia B razil Ind ia Iraq U S A C anada

SiC>2 9 2 .1 5 9 3 .1 0 9 2 .9 0 9 0 .7 0 8 6 .8 0 9 4 .5 0 9 4 .5 0

A I2O 3 0 .41 0.21 0 .1 8 0 .0 4 0 .4 0 trace 0 .1 5

F e20 3 0.21 0.21 0 .4 3 0 .0 4 0 .1 9 trace 0 .1 6

C aO 0 .4 1 0 .41 1 .03 0 .0 4 1 .4 0 0 .2 5 0 .5 5

K 20 2 .3 1 2 .3 1 0 .7 2 2.20 3 .8 4 1.10 3 .6 8

M g O 0 .4 5 0 .5 9 0 .3 5 0 .5 0 0 .3 7 0 .2 3 0 .3 5

N a 20 0 .0 8 0.02 0.10 1 .15 0 .7 8 1.12

S 0 3 ** ** 0.10 0.10 1 .5 4 1 .13 0 .2 4

C uO ** ** ** ** ** **

T i 0 2 ** ** ** ** ** ** **

M n O ** ** ** ** ♦♦ ** **

L .O .I. 2 .7 7 2 .3 6 ** 4 .8 0 3 .3 0 ** 8 .5 5

N o te :  **  n o t reported  * o n  referen ce

2.11 Effect of Various Impurities in Silicons
It is well known that impurity atoms have a strong effect on the efficiency of

silicon as a material for solar cell. It is also known that the effect of impurities can 

be changed by heat treatments and by exposing the material to gettering 

atmospheres in which selected elements diffuse into silicon and combine with the 

impurities (Ceccaroli and Lohne, 2003). The impurity atoms may appear in solid 

solution as pairs with other elements, for example FeB, or as larger 

aggregates/precipitates with silicon and/or other elements, for example Fe2 Si. This 

depends upon the temperature, the concentration and the density of the 

imperfections (dislocations, grain boundaries). If the temperature or the 

(chemical) surroundings are altered, it will take some time before a new 

equilibrium is established. The time to reach equilibrium may depend on 

parameters such as temperature cooling/ heating rate and chemical composition, 

grain size, dislocation density etc. When comparing results from literature values 

in which the specifications of relevant parameters are not defined; it is likely that 

differences may appear. Most of the impurities in silicon used for solar cells exist 

at very low concentrations. Since measurements of trace quantities are difficult, 

much of the progress has occurred when new and better instrumentation has
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become available. Over the years many review articles and books dealing with the 

. effect of impurities have been published (Bathey and Cretella, 1982 and Ciftja et 

al, 2008). Impurities may be incorporated into bulk silicon material via two 

modes; (i) raw materials from which bulk silicon is produced and (ii) 

contamination from processing or fabrication of the bulk silicon. The atomic 

impurities often discussed in the literature with respect to bulk silicon can be 

classified into: dopants, transition metals, non-metals and other trace elements 

(Bullis, 1990).

2.11.1 Atoms from Group IIIA (B, Al, G a...) or VA (P, As, Sb...)
The atoms from group IIIA and VA tend to act as substitutional impurities in

silicon. The group IIIA elements substitute for silicon atoms in the crystal lattice 

resulting in an electron deficient bonding which tends to be supplied by electrons 

from neighbouring silicon atoms. Accordingly when silicon material is 

intentionally or otherwise contaminated with group IIIA elements the resulting 

semiconductor material is called a p-type semiconductor and the Group IILA 

elements are termed as acceptor impurities. Group VA elements substitute for 

silicon atoms in a silicon crystal lattice with an excess electron. The resulting 

silicon material is termed an n-type semiconductor and donor impurity for the 

substitute element. Boron and phosphorus represent typical dopant impurities in 

silicon and are the most problematic impurities in terms of their removal from 

silicon. Their presence in crystalline silicon tends to modify the semiconductor 

properties of silicon substantially and they are therefore undesirable impurities 

beyond specified concentrations as shown below in table 2.2.

2.11.2 Transition metals and non-metals
The transition metals (mainly Ti, Fe, Cr, Ni, V, Co, Mn, and Cu) impurities are

known to degrade minority carrier life times and solar cell performance

significantly. The minority carrier life time is the average time elapsed before a

free electron combines with a hole in the crystal lattice. Fortunately, these

transition impurities have relatively low solid solubility in silicon and are thus

removed effectively by known crystal growth techniques like acid leaching,

directional solidification, slagging etc. Non-metallic impurities such as oxygen,

nitrogen, carbon and hydrogen dissolve in silicon mainly as interstitial impurities.

The interactive effects of non-metallic impurities and single atom impurities in

silicon may facilitate formation of precipitated impurities such as SiC, SiC>2 ,
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silicide etc. The synergetic effects of various impurity groups have been the 

subject of much ongoing research. The effect of some single metal impurities on 

the efficiency of a p-type silicon solar cell originally published by Ceccaroli and 

Lohne (2003) is shown in Figure 2.13 below

METAL IMPURITY CONCENTRATION (ppmol

1.0 —

Cu

08"

Mo'

Mn
J  0.4-

p-TYPE SILICON02

00

METAL IMPURITY CONCENTRATION totom cm3 )

Figure 2.13: Schematic diagram of the ffect of metal atom impurities on p-type solar cell 
efficiency (Ceccaroli and Lohne, 2003)

The metal impurity concentration given in Figure 2.13 is expressed as the number 

of atoms of impurity per cm3. Some impurities like Ta, Mo, W, etc., can reduce 

cell performance when present in extremely low concentrations; these 

contaminations produce dramatic changes to the electrical properties of silicon, 

especially to the minority carrier lifetime through formation of deep-level traps. 

However, others deep-level impurities, such as Fe, Cu, Cr, and Ni, can be 

tolerated even at higher concentrations because of their highly mobility with 

diffusion coefficients close to 10‘6 cm2 s'1. Ti is also a slow diffuser and easily 

forms oxide at high temperature. The concentrations of the impurities in Figure 

2.3 are much lower than the impurity concentration found in metallurgical-grade 

silicon (see Table 2.2). Therefore, refining of metallurgical-grade silicon is a 

necessary step (Pizzini, 2010). However, these impurities are higher than the 

impurity levels in electronic- (semiconductor-) grade silicon, as shown in Table 

2.2. It is from this position that potential exists for the production of less 

expensive and less pure solar-grade silicon, tailored for the photovoltaic market. It 

must be noted that solar-grade silicon does not have formal specifications; 

acceptable concentrations of impurities are usually reported instead. The solar-
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grade silicon analyses reported in Table 2.2 provide a guideline rather than a 

specification for solar-grade silicon.

Table 2.2: Typical chemical analyses of silicon products for the semiconductor

Element MG-Si (ppm) Solar-grade Polycrystalline Electronic-grade

2N silicon (ppm) solar-grade silicon (ppm)

6N silicon (ppm) 11N

7N

Si* 99 99.999 9 99.999 99.999

Fe 2000-3000 <0.3 99 999 999

Al 1500-4000 <0.1 <0.01

Ca 500-600 <0.1 <0.0008

B 40-80 <0.3 <0.003

P 20-50 <0.1 <0.0002

C 600 <3 <0.0008

O 3000 <10 <0.5

Ti 160-200 <0.01

Cr 50-200 <0.1 <0.003

* Silicon in mass %

2.12 Factors Influencing RH Ash Properties

2.12.1 Temperature
XRD analysis of RH ash produced over a range of combustion temperatures from

500°C to 1000°C has shown a change from amorphous to crystalline silica 

(Shinohara and Kohyama, 2004). In Vietnam, a series of experiment using a 

laboratory oven under conditions designed to stimulate the combustion from a 

rural facility were carried out. SEM analysis of the ash found that the globular 

amorphous silica particles increase in size from 5- 10pm to 10-50pm with rising 

combustion temperature from 500°C -  600°C with the transition to complete by 

900°C (Boateng and Skeete, 1990).

2.12.2 Geographical Region

Studies have shown that the physical and chemical properties of RHA are 

dependent on the soil chemistry, paddy variety, and the climate conditions
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(Chandrasekhar et al, 2003). Studies have also shown that differences may also be 

due to fertilizers applied during rice cultivation (Maeda et al, 2001). However, 

only one report of a change in the physical and chemical properties of ash 

influenced by region was found. A variation in colour and trace metal was found 

in ash from the husks of northern India, resulting in a much darker ash than husks 

from other places. The colour variation was not related to difference in mineral 

composition of ash, but can be attributed to the fertilizers applied during rice 

cultivation, as K2O found in some ashes could be a consequence of k-rich 

fertilizers used during the paddy cultivation (Boateng and Skeete, 1990).

2.13 Health Issues
All forms of crystalline silica represent a very serious health hazard as expressed 

by Occupational Health and Safety Administration (2002). The forms that develop 

at higher temperatures i.e cristobalite and tridymite are particularly harmful. 

Exposure to crystalline silica via inhalation can lead to a number of diseases, the 

most common being silicosis. Amorphous ash does not contain the more harmful 

forms of silica, but can still be a respiratory hazard, particularly if finely ground. 

No information specific to RHA is available, and this harmful process applies to 

crystalline silica from any source.

2.14 Phase transformation diagram of RHA
Based on the phase diagram, rice husk ash show the same transformation

characteristics as that of pure silica SiC>2 and occurs in a number of different 

mineral phases with different crystal structure as shown in Figure 2.14 below. The 

conversion of husk to ash through thermal treatment may affect the original 

amorphous nature of RHA silica. This can be detected by XRD technique, i.e, 

whether the particular sample is in amorphous form or some fraction or whole 

converted into crystalline modifications (Skoog and West, 1971). On heating, the 

following mineral transformations are known to occur in silica (Filippov and 

Kittell, 1975)
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Figure 2.14: Transformation of silica from amorphous state to crystalline state (Hefferan 
and O'Brien, 2010)

The transformation of silica from amorphous state to crystalline state has been 

investigated by Boeteng and Skeete (1990). Shackley (2012) found that the 

transition temperature was about 870°C. The rate of heating is another important 

factor in controlling the quality of RHA. If the heating rate is high, potassium in 

rice husks does not volatilize, but instead reacts with silica to form potassium 

polysilicate combined with carbon. Thus, rapid burning of rice husks causes high 

residual carbon in the ash (Maeda et al, 2001)

2.15 Purification processes in silicons
The purification processes that are most frequently mentioned in the literature

include one of the following technologies or combination. Metallurgical methods 

are believed to be five times more energy efficient than the conventional Siemens 

process that uses about 120-200 kWh/kg (Braga et al, 2008). Each of these steps 

reduces the concentration of a number of impurities by about one order of 

magnitude. The purification efficiency depends on the physicochemical properties 

of impurities especially their segregation coefficients. In this research work, some 

main and relevant techniques to this study for silicon purification will be 

discussed.

(a) Reduction of silica by carbon: This process uses the same reaction that is used 

for manufacturing metallurgical-grade silicon in an arc furnace

(Si02 +2C—»Si + 2CO) (23)
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The typical purity level in MG-Si manufactured through this process is 98-99% 

and even 95% because the raw materials used in this process contain high 

impurity levels. It is possible to obtain much higher degree of purity of silicon at a 

reasonable cost by using either naturally clean or purified (by leaching) silica or 

quartz and carbon black or pelletized activated carbon with higher than average 

purity in specially designed arc furnaces with purified electrodes (Pizzini, 1982).

(b) Acid leaching: This approach calls for pulverizing MG-Si to a powder with 70 

pm or less particle size, and then treating this powder with various acids (e.g. aqua 

regia, hydrochloric acid, hydrofluoric acid) to dissolve metal clusters, which are 

frequently found in MG-Si at grain boundaries and are exposed during powdering 

(Amick, 1981). It is possible to obtain silicon with the purity of 99.9-99.97% 

(Gampel, 1961). The disadvantage of this process is that it is not effective in 

removing impurities dissolved intra-granularly in high concentrations, e.g., B and 

P. The efficiency of leaching depends on three main parameters: particle size, 

time of leaching, and leaching temperature. In a study by Dietl (1987) these 

parameters were investigated and high purity silicon was achieved as shown in 

Table 2.3. In order to achieve this level of purity, very fine grinding particle size 

less than 20 pm is required, which is not ideal in terms of materials handling. 

Hydrofluoric acid is also a material not easy to handle.

Table 2.3: Purification of silicon by leaching (Dietl, 1987)

Fe Ca Mn Ti Al

Before leaching (ppm) 1250 1050 400 290 100

After leaching (ppm) <1 <2 <1 <0.3 <1

Although leaching has showed success in removing some impurities, not all 

elements can be removed by this method. Impurities that exist in solid solution or 

impurities that are trapped as isolated phases within the silicon grains will not be 

removed. In other words, acid leaching is an effective method to remove the 

impurities that have already segregated during solidification. The efficiency of the 

acid leaching can be improved by the addition of calcium. Schei (1985) in study 

showed silicon containing few percent of calcium was. cast, cooled slowly and
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crushed into lumps around 5cm in diameter. A CaSi2 phase formed at the grain 

boundaries contained most of the impurities due to Ca having high attraction for 

undesirable impurities (Yoshikawa and Morita, 2012). Exposing the silicon lumps 

to hydrochloric acid and ferric chloride disintegrated them into silicon crystals of 

below 2mm. These crystals were further purified by hydrofluoric acid in 

combination with an oxidizing agent.

(c) Gas blowing through the silicon melt: A purity level of 99.99% can be 

achieved by blowing gases such as CI2 , O2 , SiCLt, wet hydrogen, CO2 , or their 

combinations (Khattak et al, 2007). These gases react with impurities dissolved in 

silicon and form volatile compounds which evaporate from the melt. For example, 

chlorides of many metals and BOH are volatile. This method is effective in 

removing, e.g., Al, Ca, C, Mg, Fe, B, P, and Ti.

(d) Directional solidification: During crystal pulling from the melt (e.g., 

Czochralski or float zone growth) or directional solidification of molten silicon 

(e.g., float zone Si, ingot grown mc-Si) impurities segregate in the melt (Chu et al, 

1987). At the end of the growth run, the majority of impurities is found in a thin 

layer near the top of the directionally solidified ingot or remains in the crucible. 

Such purification runs can be used to improve the purity of MG-Si. The efficiency 

of removal of impurities from silicon depends on their segregation coefficients 

which is the ratio of the element concentrations in silicon in solid state to that in 

liquid state. Since many elements such as Cu, Fe, Al, Ni etc. have segregation 

coefficients ranging from 10‘6 to 10'1 (Table 2.4), repeated directional 

solidifications can reduce impurity levels to a great extent. However, while most 

of the impurities have low segregation coefficients, P and B have segregation 

coefficients of about (0.35 and 0.8 respectively) so it is not possible to remove 

them effectively by directional solidification. Therefore, other purification 

methods have to be used alongside this method in order to remove P and B 

efficiently. In general, metals segregate much more effectively than shallow 

dopants.
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Table 2.4: Segregation coefficient o f some impurities in metallurgical grade silicon at melting 
point of silicon (Davis et al, 1980; Trumbore, 1960)

Impurities Segregation Coefficient

Cu 4x 10-4

Zn lx 10'5

B 0.8

P 0.35

Ga 8.0x 10'3

In 4x 10-4

Al 2.0x 10'3

S 10'5

Mn 10‘5

Fe 8x 10'6

Co 8x 10-6

Ni 3.2x 10‘5

Sb 0.023

Au 2.5x 10'5

The advantage of the directional solidification process is that it is an easy process 

and does not use any chemical reactions. However silicon losses occur since the 

portion of silicon which solidifies at the last stage should be disposed of because 

all impurities are concentrated in this section. Another disadvantage. is that 

elements such as phosphorus and boron cannot be removed and an additional 

process has to be applied in order to make PV-grade silicon, thereby causing extra 

energy consumption in melting Si multiple times.

(e) Melting and refining of silicon with reactive plasma: A plasma torch is used 

to melt the near-surface layer of silicon and to activate gases such as argon, 

hydrogen, oxygen, and water vapour. These gases react with impurities in the melt 

and form volatile compounds (Nakamura et al, 2003). Both metals and dopants 

can be removed.

(f) Evaporation of phosphorus from the surface of the silicon melt, heated to 

boiling temperatures in the near-surface area of a crucible by an electron beam in 

vacuum (Hanazawa et al, 2003). Removal of phosphorus to very low level was 

previously thought to be impossible until one of the authors (Maeda) applied
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1 0electron beam (EB) melting under 10' Pa to demonstrate that removal of P could 

be successful (Sasaki et al, 2013)

(g) “Slagging” or calcium leaching: These approaches are based on mixing silicon 

with a chemical that has high affinity to undesirable impurities, binds them in a 

stable compound, and can later be separated from the silicon through deposition 

on the crucible walls, filtering through the mesh, or acid and solvent leaching. For 

instance, addition of Ca was successfully used for reduction of Fe, Ti, and P 

concentrations (Morita et al, 2003). Another example is immersion of crushed 

silicon in a metal with low melting point, such as aluminum, silver, or zinc 

(Kotval and Strock, 1980). Silicon may be completely liquefied by forming a S i- 

A1 eutectic at temperatures well below the melting point of Si (such as 1100°C). 

During cooling, the solubility of Si in Al decreases and silicon precipitates are 

formed, which are separated from the molten Al by filtering through a mesh. Si 

pellets are cleaned from Al by acid leaching.

The list above, which is by no means complete, shows that technologies for 

inexpensive and energy-efficient purification of silicon are readily available.

(h) Post purification process of MG-Si using refining method: This is purification 

done after the hydrometallurgy process in order to understand the specific 

behaviour and interaction of certain elements; trace analysis of typical impurities 

have to be pursued by carrying out different refining stages on the MG-Si being 

the basic silicon with least purity. A profound analytical characterization of the 

starting materials, intermediate qualities and final products will have to be looked 

into as an indispensable task.
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Figure 2.15: Diagram of post purification process

The figure 2.15 shows the post purification methods of MG-Si. However, the 

alloying process also known as refining process is discussed. It is based on the 

principle of fractional crystallization. The process involves melting of MG-Si in 

the presence of a solvent metal which is miscible with silicon in its liquid state, 

but immiscible in the solid state. Metals such as Mg, A l, Sb, Sn, Zn and Cu can 

be used for alloying as the impurities present in MG-Si are distributed between 

the solvent and solute phases according to their distribution coefficients during the 

melting process. Thus, during solidification of pure silicon crystallizes out from 

the molten alloy, major portion of impurity elements such as Ni, Fe, A l, Au, Cu 

and Ti which have low solubility in solid silicon are either retained in the solvent 

or are deposited at the grain boundaries of the alloy. Pure silicon crystals are 

separated from the solvent metal by acid leaching of the metal-silicon alloy for 

removing the solvent metal. The purification of MG-Si by the alloying process 

has been used by Driole and Bonnier (1971) who alloyed crude silicon with 

antimony or tin and then applied distillation to remove the solvent metal. Acids 

leaching process was done to segregated impurities from pure silicon crystals. 

Thus, this purification route has disadvantage that most of impurities been left 

behind with residue silicon which always requires the acid treatment to be
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removed. Copper refining process is considered superior for the fact that it can 

easily be removed by acid leaching from silicon. However, not much quantitative 

results of purification achieved in different stages of the copper alloying process 

were reported. Among different alloying agents, copper appears to be attractive 

for: (i) negligible solubility of copper in silicon; (ii) copper is easily recoverable 

for reuse by aqueous electrolysis; (iii) HF and aqua regia can removed copper 

even in its oxide form.

2.16 Electrical Characteristics
This section will describe the main principles behind the operation of the solar

cell and p-n junctions in semiconductors. First it will discuss carriers in 

semiconductors, then charge transport in semiconductors, and finally p-n 

junctions and solar cells.

2.16.1 Semiconductors and p-n junctions
There are two types of charge carriers in semiconductors: electrons and holes. The 

electron carries a negative charge and the hole (which is always located at the site 

of a missing electron), behaves as if it is carrying a positive charge. Electrons 

move in the opposite direction to holes in the presence of an electric field. A pure 

semiconductor crystal, such as silicon does not have available free electrons for 

current conduction at zero temperature; that is, the conduction band is empty and 

the valence band is full. At higher temperatures the thermal energy of the crystal 

is sufficient to break electron bonds for some conduction to take place. Silicon is 

of valence 4 and if atoms of valence 5 are added to the silicon crystal, it is easy to 

ionize the dopant atom creating free electrons; such atoms are referred to as 

donors. These extra electrons are added to the conduction band and are available 

for electron conduction as in figure 2 .16a.
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Similarly, figure 2.16b shows how the addition o f atoms o f valence 3 to silicon 

crystals leads to formation o f holes. Such atoms are referred to as acceptors. As 

said before, a hole is a vacant site o f an electron in the valence band and when 

electrons and holes have a close encounter they recombine. An electron-hole pair 

can be created by removing a bound electron from a neutral atom. In a pure 

semiconductor, the minimum energy required to create an electron-hole pair is 

equal to the bandgap energy o f the semiconductor. Electron-hole pairs are created 

by thermal vibrations o f the crystal at any non-zero temperature and also by 

absorption o f  photons that have energy above the bandgap energy. The latter is the 

process that is behind the operation o f the solar cell. The production rate o f 

electron-hole pairs is proportional to the intensity o f the incident light.

Charge carriers can move under two influences: carrier drift, and carrier diffusion. 

A potential difference between two points in a semiconductor creates an electric 

field between the two points. The charge carriers, either the electrons or holes, 

will be drifted or diffused until they hit a scattering center or a trapping center. 

The carriers will have average drift velocity along the lines o f the electric field. 

How easily the charges can move through the crystal structure in the presence o f 

an electric field is described by a parameter referred to as mobility. Scattering o f 

electrons can affect the transport o f charge carriers and therefore the mobility. 

Two scattering mechanisms are impurity scattering and lattice scattering. Impurity 

scattering is due to both intentional dopant impurities and unwanted impurities. 

Lattice scattering is caused by vibrations and imperfections in the crystal lattice. 

The trapping o f charge carriers depends on the energy o f the charge carrier at the
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trapping/impurity atom. The carrier is trapped if its energy is lower at the trapping 

site than anywhere else. The electric drift current density in a semiconductor is

Jdrif t  =  ( qnHn +  q p p P) e  = a s  (24)

where a  is defined as the conductivity, pn and pp are the electron and hole 

mobility respectively, n and p are the carrier concentrations of electrons and holes 

respectively, q is the electron charge and £ is the electric field strength. Carrier 

diffusion is due to a carrier concentration gradient in the semiconducting material. 

The diffusion current density is

J d if f  =  qD n di -  qDp %  (25)

where Dn and Dp are the electron and hole diffusion coefficients respectively. The 

total current density due to drift and diffusion is

J  to ta l = Jdr i f t  d" J d i f f  (2 6 )

= (qmn + qw P)e + q ° n ^ -  q°P^  (27)

= ( q n p n£ + q ° n  £ )  + ( q p p p £  -  qDp (28)

In solar cells, excess carriers are introduced by optical absorption of the 

semiconductor material, a process often called carrier injection. In this situation, 

the system is not in thermal equilibrium, that is pn > n f, where is the intrinsic 

carrier concentration. For equilibrium to be regained, minority and majority 

carriers recombine. When a semiconductor material is illuminated, electron - hole 

pairs are generated with a rate Gr. At equilibrium, the generation rate is equal to 

the recombination rate, Gr =  Rr =  Gth. The net recombination

rate is U =  Rr — Gth and is equal to zero at thermal equilibrium. For holes in an 

n-type semiconductor, the net recombination rate is proportional to the excess 

minority carrier concentration, or

U  = (29)
Tp
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where xp is the minority carrier lifetime and is a measure of how fast majority and 

minority carriers recombine, Pn is the minority carrier concentration and PnO is 

the minority carrier concentration at thermal equilibrium. The minority carrier 

lifetime is an important parameter for solar cells so it is used as a measure of the 

quality of the cell. The minority carrier lifetime can be estimated by illuminating a 

semiconducting sample and measuring the open-circuit voltage decay. If a short 

light pulse is used to illuminate an n-type semiconductor, then the minority carrier 

concentration after the light pulse is turned off is:

Pn( 0  =  Pn 0 + TpCrexp(-t/T p) 

at t  =  0, Pn(t) =  P„o + TPGr (30)

Figure (2.17) shows a schematic of a p-n junction along with a graph that shows 

the minority carrier concentration in the n- and p-side of the junction respectively 

with and without light injection.
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Figure 2.17 Minority carrier concentration in a p-n junction with (dashed line) and without (solid 
line) light injection

For solar cells, it is important that the recombination does not occur before the 

carriers reach the p-n junction. The relation between diffusion length Lp of holes 

in the n-type semiconductor and the minority carrier lifetime is given by

L p  —  - \ J  D p T p (31)

where Dn is the diffusion coefficient of holes and Na is assumed to be uniform.

Similarly, for electrons,

L n  — y f^ n T n
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Ln and Lphave the dimension of length and they are called the hole and electron 

diffusion length. They vary from a few pm to hundreds of pm depending on t. 

Equations (31) and (32) are only valid for the minority carriers. The short-circuit 

current in solar cells can decrease due to the recombination of charge carriers at a 

boundary (Zook, 1980). As the grain size decreases, electrical parameters such as 

minority carrier lifetime decrease (Yamazaki et al, 2006).

2.17 Depletion region
A p-n junction of opposite charge carrier types can be created in semiconductors.

When this junction is formed, the electrons diffuse to the p-side and holes diffuse 

to the n-side. This is due to carrier concentration gradients near the junction. 

Uncompensated donor (No) and acceptor (Na) sites are left behind in the n- and p- 

side, respectively. Donors on the n-side are ionized and thus positively charged. 

Similarly, on the p-side, acceptors are ionized and thus negatively charged. This 

creates an electric field in that region which is called the space-charge region or 

depletion region. The build-in electric field tends to counteract the inter-diffusion 

of charge carriers across the junction resulting in an equilibrium condition called 

thermal equilibrium. This causes the Fermi levels Ef in the semiconductors on 

both sides of the junction in figure 2.18a to align as shown in 2.18b

Vacuum level Vacuum level

4>n

EC

Ef

• E,
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semiconductor

p-type
semiconductor

Figure 2.18: A simplified energy band diagram for the formation of p-n junction (a) before 
junction formation and (b) after junction formation

The potential difference between the n- and p-side is called the built-in potential

Vbi and is determined by the difference in work functions of n and p type

materials, <J)P and (j)n* The difference in work functions is equal to the difference in
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the shift of the fermi levels from the intrinsic potential energy of the 

semiconductor. Xp and Xn are the electrons affinity in n- and p-type materials. A 

build-in Vbi is formed within the depletion region, w due to the electrostatic 

potential difference between the p-type and the n-type semiconductor on opposite 

sides of the junction. This build-in potential is then given by equation (33) 

(Nelson, 2003).

T/ k T  Na Nd 
Vbi =  —  In— — q  n f

(33)

where q is electronic charge and other symbols have their usual meanings.
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Figure 2.19: Schematic of the space-charge distribution of an abrupt p-n junction in thermal 
equilibrium

From a well-established theory of p-n junction (Katai, 2011), figure 2.19 shows 

the schematic of the depletion approximation for space-charge distribution of an 

abrupt p-n junction in thermal equilibrium with the maximum build-in electric 

field (Em) existing at w = 0 in the depletion region and is presented in equation

(34)

|£ J  =
qN Aw„ qN Dw n

£0£s £ n £
(34)

o°s

where wp and wn are the distances by which the depletion region extends into the 

p-type and n-type semiconductor respectively. £s is the relative dielectric 

permittivity, also called the dielectric constant of the semiconductor material and 

s0 is the dielectric permittivity of free space. The dielectric permittivity of the 

material in farads/meter is equal to £ = £0£s, for example esi =1.04 x 10'10F/m.
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The maximum electric field in the depletion region is related to the build-in 

potential according to equation (35)

where w  = wp + wn is the width of the depletion region given by equation (36)

Equation (36) shows that reducing either the donor or acceptor or both 

concentration, increases the depletion width of the junction. In a one-sided abrupt

more into the n-side of the junction. Then equation (36) simplifies to equation

Equations (33) - (37) are based on thermal equilibrium condition in which case 

there is no applied external bias across the p-n junction. However, if an external 

bias voltage V is applied across the junction, then the total electrostatic potential 

across the junction is modified to (V/,,- - V) where V takes a positive value for the

- (37) are then modified accordingly.

Under bias condition, the behaviour of the p-n junction changes in response to the 

applied bias voltage. One can then describe the junction in terms of its current- 

voltage (I-V) response. Under reverse bias condition in Schottky diodes, the 

depletion layer capacitance per unit area (C d )  is given for one-sided abrupt 

junction by equation (38) (Recart and Cuevas, 2006).

(35)

w  = (36)

junction such as p+ -n junction, such that Na »  No, the depletion width extends

(37)

(37)

forward bias and negative value for reverse bias (Choi et al, 2012). Equations (33)

qss£0N
(38)

If equation (38) is rearranged, we can obtain 1 /C j as in equation (39) (Siad et al,



C l  q £ s £ 0 a 2 N D  A  ^ V b l ^ ( 3 9 )

where a, is the area of the diode, V the reverse bias voltage, Vbi is the built in 

(diffusion) potential at zero bias and is determined from the extrapolation of the 

C'2 - V plot to the V axis, £s is the dielectric constant of the silicon material, 7Vd,a 

is the donor or acceptor concentration of n- or p-type semiconductor. Then, 

differentiating 1 /C j with respect to applied bias V gives equation (40)

Equation (40) therefore shows that the graph of 1 /C j versus V should give a 

straight line, and from the slope, the doping concentration TV, can be obtained. 

Again, extrapolating the straight line to 1 /C j =  0, gives the built-in potential, 

Vbi. It should be noted that, it is difficult in practice to obtain the abrupt p-n 

junction described above for crystalline silicon, as there exist no voltage under 

which C'2(V) vanishes. The geometrical method used for extraction of the 

intercept contains high uncertainty and value of the intercept is per se shifted from 

the real build-in potential (Kim et al, 1993). So, the depletion approximation is not 

practicable because the approximation considers only the contribution from minority 

impurity concentration. In a practical device, the majority charge carriers also 

contribute to the properties of the junction in addition to the contribution from the 

minority carriers. As a result therefore, the depletion approximation can be modified 

by replacing the built-in potential, Vn by (Vbi - 2kT/q) (Sze and Ng, 2007). The term 

2kT/q comes from the contribution from the majority carrier electrons in the n-side of 

the junction and majority carrier holes in the p-side of the junction. In the case of the 

Schottky diode, this term is given as kT/q since current contribution is mainly by one 

type of charge carriers. The I-V characteristics of an abrupt p-n junction under bias, is 

given by the Shockley equation which relates the total current through the p-n 

junction (which is a diode) to the applied bias according to equation (41) (Sze and Ng, 

2007).

where n is the ideality factor and Is is the reverse saturation current, given by

(40)
dV qese0NDA

(41)
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2.18 Solar cell operation
When photon is absorbed by a semiconductor, an electron in the valence band can

be excited into the conduction band in a process called photon absorption. This is 

strongest when the electron can go directly to the conduction band. For a 

metallized semiconductor material with contacts, investigation has attracted much 

attention during recent years (Sze, 2006 and Warner et al, 1994). The performance 

and stability of metal-semiconductor is of great importance to the solar cell 

devices. The parameters which characterise the contact depend on the fabrication 

method used; unless, special process leads to some degree of oxidation that 

generate thin interface oxide layer between the metal and the semiconductor. 

Thus, such insulating layer at interface may have strong influence on the diode 

characterisation and lead to bias charged interface states (Akkilic et al, 2003 and 

Jones et al, 2001), that plays an important role in the determination of Shottky 

barrier height using the current through a Schottky barrier diode at a forward bias 

'V', based on thermionic emission-diffusion theory as determine from the re­

presenting of equation 2.32 with equation (2.34) (Sze, 1981; Rhoderick and 

Williams, 1988; Cova et al, 1998 and Chin et al, 1990):

where q is the electron charge, A** the effective Richardson constant and equals 

112 and 32 A cm'2 K'2 for n- and p-type Si, respectively (Sze, 2006 and Warner et 

al, 1994), a is effective diode area, T the absolute temperature, k  the Boltzmann 

constant and (pB the barrier height. By comparing equation (41) and (43), it shows 

that saturated current,

where 0 BOis the barrier height at zero bias and /?(= (d F )/(d 0 ))  is the change in 

effective barrier height with bias voltage, substituting equation. (45) into equation.

(44) becomes.

(43)

(44)

assuming barrier height vary linearly with bias, where

$b — *Pbo + PV (45)

5 6



I = Ise x p ( - ^ ) [ e x p ( ^ j  - 1
qV'

(46)

By introducting a parameter n such that 1 /n  =  1 — /?, equation. (46) can be 

written as

( =  (47 )

For forward bias V > 3  k T / q , the second term in equation (47) becomes 

insignificant and the parameter n is call the ideality factor of a schottky diode for 

I-V relations. This factor can be calculated from the slope of a linear region of the 

forward bias of In(7) - V. The barrier height (pB0 is determined from extrapolated 

Is and given by the relation;

kT (aA**T2'
4,110 ~  T ln l ~ T ~

(48)

For silicon semiconducting materials with an indirect bandgap, lattice vibrations 

are required to assist in the process. The absorption coefficient a describes the 

ability of the material to absorb photons, as the semiconductor is transparent and 

the absorption coefficient is zero below the bandgap energy Eg

Energy

usable
"(qV)

Figure 2.20: Efficiency loss processes in a p-n junction solar cell: (1) thermalisation loss; (2) 
junction loss; (3) contact loss and (4) recombination loss

Similarly, above a specific cutoff wavelength, ^  the absorption coefficient is zero. 

It is given by

*c = XJr  (4 9 )
k9
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• where Eg is in eV and Xc is in |im. The band gap energy of silicon is 1.12eV at 

room temperature. Therefore photons with energy less than the bandgap energy of 

silicon are not absorbed. Photon energies higher than 1.12eV correspond to 

wavelengths less than 1.11pm and therefore silicon absorb light from the near- 

infrared to the ultra-violet region. When photons of energy larger than the band 

gap energy of the semiconductor hit the surface of a semiconductor, electron-hole 

pairs are generated. Photons of energy that is much larger than the bandgap 

energy of the semiconductor lose part of their energy as heat. For absorbed 

photons in the semiconductor, the carrier generation rate is

° r = ^ =  a J p h C x) (50)

where JPh(x) is the photon flux, Pop is optical power per unit area, a is the ab­

sorption coefficient and hco is the photon energy. This is referred to as photocon­

ductivity. The responsivity of the semiconductor to incoming photons is given by

(51)

where JL is the resulting photocurrent density. The absorption coefficient a for di­

rect bandgap materials is typically a factor of 100 higher than for indirect bandgap 

materials (Singh, 2007).

A p-n junction solar cell in principle composed of a p-n junction near the surface 

of the diode (shallow junction) and ohmic contacts to the front and back of the 

diode. The schematic diagram of a solar cell is shown in Figure 2.21. The ohmic 

contacts on the front surface are called bus bars and are used to provide ohmic 

contacts with minimum series resistance and without shadowing the incoming 

radiation. The junction must be near the surface of the grown film for most of the 

minority carriers to be able to reach the junction before they recombine with the 

majority carriers. If a minority carrier reaches the junction, it is swept across the 

junction by the electric
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Bus bar Bus bar

p-Si substrate

Ohmic
contact

Figure 2.21: A schematic of a p-n junction solar cell along with the front and back ohmic 
contacts. On the left an incoming photon generates an electron-hole pair; the hole diffuses 
across the junction and contributes to the current. On the right, is hole from the generated 
electron-hole pair trapped by an impurity and does not contribute to the current

field resulting in an electric current. The texturing of the front surface is to reduce 

net reflection of light (by scattering all admitted or reflected light isotopically) and 

increase the optical depth of the cell, while shading of front surface by metal 

contacts reduces the surface area available to the incident light by as much as 

10%. The diffusion length of the minority carriers is a measure of how far they
i

diffuse before recombining. Therefore it is required that the diffusion length is 

larger than the distance from where they are created to the junction. The power 

solar cells can convert is proportional to the power of the incident light and the 

area of the cell. High doping is sometime needed in the emitter to reduce the 

series resistance, thereby increasing Vbi, to in turn increase Voc. In silicon, the 

influence of doping on Voc is limited by the shrinkage of the bandgap due to the 

introduction of tail states (Nelson, 2003).

2.18.1 Creation of an active layer
p-n junctions are typically fabricated by diffusion of impurities or dopants into a

bulk material which can be silicon. This can be done in various ways, for example 

by placing a silicon wafer inside a chamber along with a gas that contains an 

impurity that would act as an acceptor or a donor and thus give the appropriate 

doping. By annealing for specific amount of time, the dopant diffuses a certain 

distance into the substrate. One disadvantage of this method is that the p-n 

junction will be graded instead of abrupt. In addition, if the substrate is 

polycrystalline, the dopants will diffuse faster along the grain boundaries, creating 

channels of dopants. Consequently, the depth of the junction and the thickness of

59



the solar cell will be relatively large which will lower the efficiency due to 

recombination of electrons and holes.

Another method is ion implantation, in which the dopant ions are accelerated into 

the grown silicon film. A disadvantage of this method is that the surface gets 

damaged during the ion bombardment. This can be partially fixed by annealing 

the substrate which in turn drives the junction deeper into the substrate, which is a 

disadvantage for solar cells because the junction has to be close to the surface in 

order for the charge carriers to reach the junction before they recombine.

This research work will apply a liquid-liquid refining process on MG-Si derived 

from rice husk ash containing minimum amount of B to produce SoG-Si grown on 

a silicon wafer. An Ohmic contact will be made to the rear face and schottky 

contact to the front face in order to produce a solar cell for evaluation.

2.19 Summary

This chapter presented a literature review that discussed silicon, silicon solar cells 

and silicon solar cell technology. The subsequent sections of the chapter presented 

the current issues on energy supply and consumption. The need for alternative 

sustainable, renewable as well as affordable clean energy supply for various 

applications was also presented. Reduction of greenhouse gases that largely 

contribute to the current issue of global warming was identified as the ultimate 

benefit of renewable and alternative clean energy supply. Rice husk ash 

(biomass/agricultural waste material), several renewable energy sources and the 

corresponding technologies to meet this need were reviewed with special 

emphasis on solar energy conversion for the purpose of this thesis. The review 

suggested well advance technologies as the conventional siemens and Silane 

chemical purification processes used for the refinement of silicon and an 

upgrading inexpensive emerging technology that uses metallurgical route which 

emerged due to the difficulty in producing solar grade silicon for solar grade cell 

application via this route that uses mineral quartz that consumed energy, time and 

money. A section discussed rice husk and its thermal decomposition into RH ash 

silica which is used in this work as an inexpensive emerging technology material 

for solar grade silicon material, an alternative source of silica that can be 

processed at more economical means to remove problematic boron, phosphorus
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and other impurity elements before reduction. It reviewed the impurities in RH 

and their effects, the factors influencing RHA silica properties, the health issues 

involved, the phase transformation of RHA silica and the RHA silica purification 

processes. The sequence of process steps and process parameters such as 

temperature, time, type of reductants, type and concentrations of leaching reagent 

and optimization in order for this approach to solar grade silicon to be technically 

and economically feasible. Various refining technique that can be applied to 

reduce MG-Si in order to reach the solar grade silicon was also discussed. The 

chapter also discussed electrical characterization, semiconductors and p-n 

junctions, depletion region, solar cell operation and the creation of active layers.

It is as a result of motivation from the above summary that I have decided to use 

this research work to investigate the possibility of producing low-cost solar grade 

silicon from rice husk.
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3 EXPERIMENTAL TECHNIQUES

3.1 Introduction
The use of sophisticated analytical instruments for determining all major areas of 

fundamental research is almost now a routine process for modem chemical 

laboratories. This has been a vast expanding area of knowledge as the instrument 

and computer manufacturers are producing analytical machines which are 

continuously increasing in power and scope. Further, all manual techniques of 

analytical studies had steadily been transferred to the automated techniques. Thus, 

chemical analysis can be divided into three broad categories as listed below. They 

are almost invariably applied to major areas such as fundamental research, 

product development, product quality control, Medical and Clinical studies, etc:

> Qualitative analysis: This is chemical analysis that identifies one or more 

species present in a sample.

>  Quantitative analysis: This is chemical analysis that finds out the total 

amount of particular species present in a sample.

> Structural analysis: This is chemical analyses that help in finding the 

spatial arrangement of atoms in a molecule and the position or presence of 

certain organic functional groups contained in a given compound.

>  'Surface analysis', plays a very vital role in obtaining surface related 

physical properties such as the topography, depth profiling, orientation of 

molecules etc. in material study

3.1.1 Classification of analytical techniques used in characterisation
The various techniques employed in the characterisation of materials and

semiconductor materials in general are classified as follows: analysis through 

spectroscopy, analysis through chromatography, analysis through thermal energy, 

analysis through x-ray techniques, analysis through microscopy, analysis through 

electrochemical techniques and analysis through miscellaneous techniques. The 

techniques used in this research will therefore be discussed in this chapter.

3.2 Compositional characterisation
Some properties of many compound semiconductors depend largely on the

elemental (or atomic) composition of those materials. As an example, the 

electrical conductivity of silicon solar cell is seriously affected by the amounts B, 

P and some other trace element atoms in the material. For reasons such as this, it



becomes important to know the exact or at least, the approximate atomic 

composition of these silicon or semiconductor materials in order to use them 

properly for specific applications. In carrying out compositional analysis of silica, 

silicon or semiconductor material a number of techniques are used. These mainly 

include X-ray fluorescence (XRF) (Onojah et al, 2012), energy dispersive X-rays 

(EDX) (Rohrich et al, 2004) and secondary ion mass spectroscopy (SIMS) 

(Guryanov et al, 2006). In this research project however, only XRF and EDX was 

used for compositional characterisation of the silica and silicon material due to 

unavailability and lack of easy access to other techniques.

3.2.1 X-Ray Fluorescence (XRF)
The ashes produced from the RH samples at different temperatures were taken to

MERI laboratory for chemical analysis. The Philip X-ray fluorescence 

spectrometer was used to run the samples i.e the ashes obtained. X-Ray 

Fluorescence Spectrometry (XRF) is a non -  destructive analysis technique used 

to identify and determine concentrations of elements present in solid, powdered 

and liquid samples. XRF is capable of measuring all elements from Beryllium 

(Be) to Uranium (U) and beyond at trace levels often below part per million (ppm) 

and up to 100%. XRF is applied to industrial and research work because of its 

ability to carry out accurate and reproducible analyses at very high speed. 

Samples for XRF analysis should be presented to the spectrometer in a 

homogenous reproducible form. When a high-energy X-ray is incident on the 

atom of an element, an electron can be ejected from an inner shell of this atom 

thus rendering the atom unstable. In order to return to stability, an electron from 

an outer energy shell can fall into this lower energy level electron vacancy to 

occupy it, thereby losing the excess energy in form of X-ray photon. This manner 

of production of radiation (light) is called X-ray fluorescence and the XRF 

technique is based on this principle. The wavelength of this emitted radiation is 

characteristic of the atoms of the particular element involved and is related to the 

atomic number, Z of the element according to Equation (3.1) (Jenkins and Meyers, 

2000).

i  =  K(Z -  o-)2 3.1A
where K  is a constant depending on the spectral series and a is a shielding

constant whose value is < 1. The emitted wavelengths therefore indicate the

elements present. The XRF system uses computer programs to plot the
81



wavelength dispersion o f these emitted radiations and therefore identify the 

various elements in the sample being studied. The intensity o f the spectral lines 

actually shows the amount (concentration) o f atoms o f each element present. In 

this way, a quantitative mapping o f the atomic composition o f the elements 

making up a test sample is obtained. Figure 3.1 illustrates the basic principles o f 

X-ray fluorescence. The energy (AE) o f the emitted X-ray photon is related to its 

wavelength by Equations (3.2) and (3.3) (Jenkins and Meyers, 2000).

3'2
where

AE =  Ea — E0 3.3

where E0 and  Ex are the corresponding energies o f the K and L shells as shown in 

figure 3.1

Incident X-ray

L-shell electron 
y  fill vacancy

Emitted X-ray fluorescence 
with energy AE = Ei -  E0

Ejected K-shell electron

F ig u r e  3 .1 :  I l lu s tr a t io n  o f  th e  b a s ic  p r in c ip le  o f  x - r a y  f lu o r e s c e n c e

3.2.2 Energy dispersive X-ray (EDX)
The EDX process is similar to the XRF process. A major difference is that, while

the XRF uses an X-ray beam as incident beam, the EDX uses an electron beam. It

is for this particular reason that the EDX detector is usually attached to the SEM

system so that common source o f electron beam is used for both the SEM and the

EDX operations. The emitted characteristic X-rays are also used to generate an

energy dispersion spectrum o f atoms o f the elements in the sample by means o f

the software programs incorporated into the equipment. From this spectrum the

approximate atomic composition o f the sample can be obtained. In addition to

production o f X-rays by EDX process, a continuum o f white light and other
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radiations are also produced (Van Grieken and Markowicz, 2001). This actually 

causes interference when determining the atomic composition of the specimen. 

Thus, the EDX technique is not as accurate as the XRF techniques for quantitative 

analysis of atomic composition (Van Grieken and Markowicz, 2001). All EDX 

measurements reported in this thesis were carried out using EDX detector (Oxford 

Instruments, UK) attached to FEG NOVA NANO SEM equipment (FEI Company, 

The Netherlands). The EDS is used to measure the energies of x-ray and analyse 

characteristic spectra. When the semiconductor detector received x-ray emitted 

from the specimen, electron-hole pairs is generated whose energy corresponds to 

the energy of x-ray; the detector is cooled by liquid nitrogen, in order to reduce 

the electric noise while the electric current measurement enables we obtain values 

of the x-ray energy.

Au coating Au coating

Incident X - rays

To the 
measurement 

system

Intrinsic region
layer layer

-1000V

Figure 3.2: illustration of the basic principle of energy dispersive X-ray

The EDS measures with a small probe current and short-time acquisition of

spectra. The EDS X-ray spectra enable qualitative analysis that identifies what

elements are present in a sample area when irradiated with an electron beam.

Point analysis to obtain a spectrum from a point irradiated with electron bean, line

analysis that give a one-dimensional distributions of elements of interest on

specified line and Mapping that display two-dimensional distributions of elements

of interest in specified area are the three available analysis mode. Mapping also

called area analysis is a qualitative analysis performed while the electron probe is

scanned over a chosen area. For EDS, the detection Jimit is a few thousand ppm.
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In order to the obtained the specific elements in the derived MG-Si, the electron 

probe scan were scanned over a chosen area to acquire its characteristic X-rays 

with specific energies. The X-ray map shows the distribution of continuous X- 

rays and not the distributions of elements of interest. In addition, should energies 

of characteristic x-rays from elements not of interest come very close to those of 

the elements of interest; x-ray maps might show elements not of interest. This is 

because the energy resolution of the spectrometer is equal to the differences 

between the element not of interest and the element of interest.

3.3 ' Structural characterisation
Structural characterisation of semiconductor materials involves the study and

determination of structural properties such as crystal structure and phases of 

species present in the materials. X-ray diffraction (XRD) measurement is usually 

applied for this purpose. One can then determine the particular crystal system 

present in the semiconductor material. Apart from determining the crystal system 

present in a material, the amount of atoms as well as the preferred orientation of 

atoms or crystallites making up the material can as well be known by identifying 

the crystal lattice planes of those atoms. Each crystal lattice plane is denoted by a 

set of three numbers (Miller indices) in brackets denoted by (hkl) (Kittel, 2005).

3.3.1 Powder X-ray diffractometer (XRD):

The physical properties (Crystalline or Amorphous nature) of the samples were 

ascertained by making use of diffraction of x-ray from these powders. XRD 

pattern of an unknown compound and a standard one was compared and their 

chemical identity found. X-ray was generated by bombarding high speed electrons 

on some suitable target, thus when the x-ray beam strikes the RHA surface at 

definite angle, the interaction between its resultant electric vector and the electron 

on matter results in scattering of incident rays. The angle of diffraction (0) relates 

to the atomic spacing of the x-ray bombarded crystals through Bragg’s equation. 

The condition for constructive interference of these scattered rays in order to 

produce the needed diffraction pattern is governed by Bragg’s law (Kittel, 2005). 

Bragg’s law states that, for constructive interference to occur, the path difference 

between the two interfering waves (which is equal to 2dsinO from figure (3.3) 

must be equal to a whole number, n of the wavelength, thus giving rise to 

Equation (3.4).
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nA =  2d sin 0 (3.4)

where X is the wavelength of the x -  rays used d is the interplanar spacing within 

the investigated material.

Scattered x-rayIncident x-ray

pair of parallel planes
Ihlk

X

Figure 3.3: The scattering of x-ray from a set of planes

In order to observe useful data from the X-ray experiment, the scattered x-ray 

beam from the points x and z must produce diffracted beams which are in phase 

as shown in figure 3.3 above. This is only possible if the extra distance travelled 

by the x-ray photon from w to x and x to y is an integral number of wavelengths. 

The path difference is dependent on both the lattice spacing dhki and the angle of 

incidence of the x-ray beam, 0

path  d iffe ren c e  =  w x + x y  =  2dhki sin 6 =  nA (3.5)

A systematic diagram of a powder diffractometer is shown in figure 3.4 below. 

The x-ray produced by the x-ray tube is aligned to fall on the sample through a slit 

and are scattered in all directions. By scanning the detector around the sample 

along the circumference of a circle, it is made to cut through the diffraction 

maxima. The x-ray diffraction pattern displays intensity as a function of the 

detector angle 20.
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/
/

sm T plestage

Figure 3.4: Systematic X-Ray Powder Diffractometer

The reflection geometry of powder diffractometers enable slits close to the 

detector remove noise and leads to well-resolved data, where the sample behaves 

like a mirror which focuses the beam on to the detector. Factors which affect the 

intensity and number of peaks (reflections) include:

i. crystal class

ii. lattice type

iii. symmetry

iv. unit cell parameter

v. the distribution and type of atoms in the unit cell.

Since the X-ray wavelength, X is constant, determination of the diffraction angle 

(20)

will help to determine the d-spacing (inter-planar spacing) of the lattice planes 

using Equation (3.4) or (3.5), where n is unity for successive lattice planes. From 

the resulting peaks of the X-ray difffactogram, some other crystalline properties of 

the material can be determined. These include finding the Miller indices of the 

various crystal planes (orientations) in the samples, obtaining the lattice constants 

of the crystal structures present in the material and estimating the sizes of the 

crystallites in the material. Equations (3.4) - (3.5) (Kittel, 2005 and Patterson, 

1939) are the relevant equations employed in the analysis of XRD results of 

crystalline materials such as semiconductors.

a = dy/h2 + k 2 + I2 (3.6)

kX , ,
D = J c o s Q  W
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/? =  48 tan 0 (3.8)

where a is the lattice constant, D  is crystallite size, k is Scherer constant, /? is full 

width at half maximum (FWHM) of the particular XRD peak (usually the most 

intense peak) under consideration and £  known as a strain in the crystal lattice is a 

measure of the distribution of lattice constant emerging from crystal imperfection 

such as grain boundary or lattice dislocation. The deviation from perfect 

crystallinity leads to a broadening of the peaks (Yogamalar, 2009). The FWHM is 

the full width of the XRD peak (in radians) at half the peak intensity as shown in 

figure 3.5.

Io

Figure 3.5: XRD peak showing FWHM

The XRD equipment used in the project reported in this thesis was the Philips 

X'Pert Pro diffractometer (Philips Analytical, Almelo, the Netherlands) using Cu- 

Kq radiation with excitation wavelength of 1.5406 nm at source tension and 

current of 40 kV and 40 mA respectively.

3.3.2 Thermogravimetric Analysis (TGA)
One most common techniques used to investigate thermal events and kinetics

during pyrolysis of biomass is TGA (Hatakeyama and Quinn, 1999; Nassar, 1999; 

Mansaray and Ghaly, 1999; Caballero et al., 1997; Helsen and Van den Bulck, 

2000; Kastanaki et al., 2002). It provides a measurement of weight loss of the 

sample as a function of time and temperature. The kinetics of these thermal events 

has been determined by the application of the Arrhenius equation corresponding
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to the separate slopes of constant mass degradation (Nassar, 1999; Mansaray and 

Ghaly, 1999). TGA which is an essential laboratory tool used for material 

characterization uses a technique in which mass of the substance is monitored as a 

function of temperature or time when it is subjected to a controlled temperature 

program in a control atmosphere. It means that TGA is simply a measurement of a 

sample weight as it is being heated or cooled in a furnace. The instrument can 

quantify loss of water, loss of solvent, loss of plasticizer, decarboxylation, 

pyrolysis, oxidation, decomposition, weight of filler, amount of metallic catalytic 

or carbon nanotube and weight percentage of ash. TGA could be used as a tool for 

providing comparison of kinetic data of various reaction parameters such as 

temperature and heating rate. Other advantages include only a single sample, and 

few data are required for obtaining kinetics over an entire temperature range in a 

continuous manner. Nassar (1999) identified two thermal events during the 

pyrolysis of both bagasse and rice straw by assuming a pseudo first-order reaction. 

Mansaray and Ghaly (1999) investigated the behaviour of rice husks in a similar 

manner and two thermal events were identified in the firing process. TG data can 

be obtained from the following rate expression (Hatakeyama and Quinn, 1999):

exponential factor (frequency factor), 0  is the heating rate (°C), E (J/mol) is the 

activation energy, R (J/mol/K) is the universal gas constant (8.314), T (K) is the 

temperature, n is the reaction order. Eq. (3.9) relates the fraction of material 

consumed with time in the form of an Arrhenius expression comprising of 

activation energy (E), pre-exponential factor (A) and reaction order (n). The 

logarithmic form is given in equation (3.10)

by differentiating with respect to ln (l — a), the above equation will simplifies to:

The data from the TGA on measured mass loss with time for the tested samples 

was used to determine the left and right hand parameters of Eq. (3.11) for

3.9

where a is the conversion of reactant, t (min) is the time, A (min' ) is the pre

In (da /dT)  = In (A /0 ) -  E/RT  + n  ln ( l -  a) 3.10

d [ ln ( l— a)] R d [ ln ( l— a)]
3.11

different time intervals. The resultant versus
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d ( j ) / d [ l n ( l -  a)]  o f Eq. (3.11) for several time intervals should provide a

straight line with an intercept o f n and a slope o f (—E / R ) ,  thus enabling 

determination o f kinetic parameters (E and n). After determining activation energy 

and order o f reaction for a given temperature range, Eq. (3.9) was employed in 

conjunction with the data o f T, d [ ln (d c r /d T )] /d [ ln ( l  — a )]  versus d ( l / T ) /  

d [ ln ( l  — a )]  and d [ l n ( d / d T ) ] / d [ l n ( l  — a)]  versus d  ( l / T ) / d [ l n ( l  — a )] /  

dT  to determine the frequency factor A. The basic principle o f TGA is that when 

a sample is heated, its mass changes. This change can be used to determine the 

composition o f a material or its thermal stability, up to 1000°C. Usually, a sample 

loses weight as it is heated up due to decomposition, reduction or evaporation. A 

sample could also gain weight due to oxidation or absorption. W hile in use, the 

TGA machine tracks the change in weight o f  the sample via a microgram balance 

as shown in figure 3.6. Temperature is monitored via a thermocouple. The TGA 

can also track change in weight as a function o f time. Data can be graphed as 

weight percent or time vs temperature (°C). Using data produced from the 

laboratory graphed for weight percent vs temperature, TGA output curves can be 

analysed in a number o f ways. If  the material in question is stoichiometric, the 

molar weight o f the component being burned o ff can be ascertained based on the 

weight percent lost and the total molar weight o f  the material.
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programmer

tare

gas

F ig u r e  3 .6 :  S c h e m a tic  d r a w in g  o f  a T h e r m o g r a v im e tr ic  A n a ly z e r

89



3.4 Morphological characterisation
Morphological characterisation of silica, silicon and silicon solar cell reveals the

pattern of arrangement of grains in the sample as well as surface morphology of 

the sample. The size of the grains, the boundaries between them (grain 

boundaries) and the surface roughness are therefore known. These morphological 

characteristics are of importance in semiconductor devices fabrication. For 

instance in making metal contacts to solar cell semiconductor materials or devices, 

the nature (size) of the grain boundaries becomes important as large grain 

boundaries can result in short-circuit between the two metals on opposite sides of 

the device. Again proper coverage of silicon surface by an evaporated metal 

contact or by another semiconductor grown on top of it depends on the surface 

roughness of the silicon or semiconductor substrate. A semiconductor with high 

surface roughness will require a thicker metal or semiconductor layer on top of it 

in order to completely cover the surface of the semiconductor substrate. A good 

knowledge of the nature and amount of grain boundaries in a semiconductor also 

helps to understand the extent of grain boundary scattering of charge carriers.

In carrying out morphological characterisation of semiconductors, atomic force 

microscopy (AFM), scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) are typically used. Whereas the AFM uses the force 

on a cantilever to produce images of the sample surface, both SEM and TEM used 

in this research work uses electrons to produce images of the samples surface 

being studied unlike ordinary microscopes where photons (light) are rather used to 

form the images of the sample surface. All three microscopes however, have 

differences in their principles of operation as well as in versatility. For example, 

whereas the SEM is limited in resolution and versatility, the TEM is more 

complex to prepare samples (Williams and Carter, 1996).

3.4.1 Scanning electron microscopy (SEM)
SEM was used to analyse the morphology, topography and composition of the

RHA. The SEM was invented soon after the TEM but took longer to be developed 

into a practical tool for scientific research. Today, SEM is used in many fields, 

such as medical and materials research, semiconductor industry, and forensic- 

science labs. The scheme of SEM operation is illustrated in figure 3.7 which 

consists of electron gun as electron source, two condenser lenses, scanning coils,
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which facilitates the deflection o f electron beam in x and y  directions, objective 

lens, and detectors for backscattered and secondary electrons. SEM operates in 

vacuum chamber with high-energy electron source (2-25kV) and a wide range o f 

magnifications is possible, from about 10 times (about equivalent to that o f a 

powerful hand-lens) to more than 500,000 times, about 250 times the 

magnification limit o f the best light microscopes. Condenser lenses focus the 

electron beam into a diameter o f less than lnm . The reflected electron from the 

sample, backscattered or secondary electrons, are collected by detector to provide 

an image o f the sample. In many cases, the backscattered electrons reflected from 

the sample are used in analytical SEM due to the relation o f intensity and atomic 

number o f materials (Egerton, 2006).
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3.4.2 Transmission Electron Microscopy
Transmission Electron Microscopy (TEM) is similar to SEM technique. However,

energy o f the electron beam is typically higher for the TEM (with order o f  50 -  

400 kV) when compared to the SEM makes a major difference. TEM technique
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that involves electron beam interaction as it passes through a specimen was 

applied on the M G-Si from RH ashed at 1000°C to look beyond the SEM. The 

electrons emitted by a source are focused and magnified by a system o f magnetic 

lenses. The geometry o f TEM is shown in figure 3.8. The electron beam is 

confined by the two condenser lenses which also control the brightness o f the 

beam, passes the condenser aperture and “hits” the sample surface. The electrons 

that are elastically scattered consist o f the transmitted beams, which pass through 

the objective lens. The objective lens forms the image display and the following 

apertures, the objective and selected area aperture are used to choose o f the 

elastically scattered electrons that will form the image o f the microscope. Finally, 

the beam goes to the magnifying system that is consisted o f three lenses, the first 

and second intermediate lenses which control the magnification o f  the image and 

the projector lens. The formed image is shown either on a fluorescent screen or in 

monitor or both and is printed on a photographic film.

Electron gun/source

Electron beam 

condenser lens
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Objective lens
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The operation o f TEM requires an ultra-high vacuum and a high voltage. Today 

TEMs constitute arguably the most efficient and versatile tools for the
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characterization of materials over spatial ranges from the atomic scale through the 

ever-growing ’nano* regime (from < lnm to ~ lOOnm) up to nanometer level and 

beyond (Egerton, 2006).

3.5 Optical Characterisation
A good knowledge of the optical properties of the semiconductors used in solar

cell fabrication is of paramount importance as a silicon solar cell is essentially an 

optoelectronic device in micro-electronics applications (Ferrieu et al, 1992). These 

devices consist of films with thicknesses of about 1 pm and it is important to 

know the refractive index and absorption coefficient as function of wavelength to 

predict the photoelectric behaviour of the cell device. Two major semiconductor 

layers employed in the fabrication of silicon solar cells are the window layer and 

the absorber layer. These are so-called because of the part they play in the solar 

cell when light is incident on it. The window layer basically acts as a "window" 

through which light (photons) enters the active junction or junctions of the solar 

cell. Its optical properties should therefore reflect this function namely; it should 

have high transparency (transmittance), low absorbance and low reflectance. On 

the other hand, very high absorbance and nil transmittance are desirable in the 

absorber layer whose function is mainly to absorb the incident light and create 

electron-hole pairs. In fact the amount of photocurrent produced by a solar cell is 

a strong function of these parameters. It therefore becomes imperative that these 

semiconductors are properly characterised for their optical properties (Bouhafs et 

al, 1998).

3.5.1 Raman Spectroscopy
Raman Spectroscopy is a method to determining modes of molecular motions,

especially vibrations of materials. This was used on the MG-Si from RH ashed at 

1000°C. It is predominantly applicable to the qualitative and quantitative analyses 

of covalently bonded molecules. It characterizes regions for different groups as in 

IR. It is useful for a variety of samples, organic, inorganic & biological 

identification of phases, molecular and crystalline symmetries, and identification 

of crystalline polymorphs and measurement of stress. The Raman technique was 

named after the Indian scientist Sir C. V. Raman who is the first to observed in 

practice the inelastic scattering of light in 1928, He won the Nobel Prize in 

physics in 1930 for his discovery (Turrell et al, 1989)
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When a high intense light source is coupled into and propagates along a substance, 

its photons interact with the molecules of the material. The electron orbits in 

molecules of the substance are perturbed periodically at a frequency that is same 

as the source light. The perturbation of these electron orbits result in a periodic 

separation of charge within the molecules, which is called an induced dipole 

moment. The oscillating induced dipole moment is manifest as a source of 

Electromagnetic (EM) radiation, thereby resulting in scattered light. The majority 

of the scattered light is emitted at a frequency identical to the frequency of the 

source light, a process referred to as elastic scattering. However, additional light is 

scattered at different frequencies, a process referred to as inelastic scattering 

(Hahn, 2007).

The Raman effect occurs when light impinges upon a molecule and interacts with 

the electron cloud and the bonds of that molecule. For the spontaneous Raman 

effect which is a form of light scattering, a photon excites the molecule from the 

ground state to a virtual energy state. When the molecule relaxes, it emits a 

photon and it returns to a different rotational or vibrational state. The difference in 

energy between the original state and this new state leads to a shift in the emitted 

photon's frequency away from the excitation wavelength. The Raman effect which 

is a light scattering phenomenon, should not be confused with absorption (as with 

fluorescence) where the molecule is excited to a discrete (not virtual) energy level. 

If the final vibrational state of the molecule is more energetic than the initial state, 

then the emitted photon will be shifted to a lower frequency in order for the total 

energy of the system to remain balanced. This shift in frequency is designated as a 

Stokes shift. If the final vibrational state is less energetic than the initial state, then 

the emitted photon will be shifted to a higher frequency, and this is designated as 

an anti-Stokes shift. Raman scattering is an example of inelastic scattering 

because of the energy transfer between the photons and the molecules during their 

interaction as shown in figure 3.9. The amount of the polarizability change will 

determine the Raman scattering intensity. The pattern of shifted frequencies is 

determined by the rotational and vibrational states of the sample as in figure 3.9.
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A change in the molecular polarization potential or amount o f deformation o f the 

electron cloud with respect to the vibrational coordinate is required for a molecule 

to exhibit a Raman effect.

3.5.2 Fourier Transform Infrared Spectrometer (FTIR)
"Fourier spectroscopy” is a general term that describes the analysis o f any varying

signal into its constituent frequency components. The mathematical methods 

named after J.B.J. Fourier are extremely powerful in spectroscopy and have been 

discussed in detail (Rui 2006, Harper 1993 and Arfken et al 2013). Fourier 

spectrometers utilizing interferometers are thus faster by a factor equal to the 

number o f resolvable elements in the spectrum. Fourier-based methods are used 

over a wide spectral range (Lee and Comisarow, 1987; Banwell and M cCash, 

1999; Steward, 1983, and Guelachvili 1981). Different FT-IR spectrometers use 

different interferometers, such as the Michelson interferometer, lamellar grating 

interferometer, and Fabry-Perot interferometer. The spectrometers utilizing Fabry- 

Perot interferometers have low resolving power as compared to the two beam 

interferometers, namely the Michelson and lamellar grating interferometers. 

Practical FTS began to come into its existence only in the late 1940s. 

Interferometers were used to measure light from celestial bodies and scientists 

produced the first Fourier transform spectrum in 1949. By this time, it was 

possible to calculate the necessary Fourier transforms, however, it remained a



laborious and time-consuming task. At this point, besides Michelson 

interferometer, researchers had developed different types of interferometers, 

namely lamellar grating and Fabry-Perot interferometers (Weisstein, 1996). 

Figure 3.10 represents a basic Michelson interferometer.

Movable mirror i
Detector

Sample
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Splitter

Source

Stationary
mirror

Figure 3.10: Schematic diagram of Michelson interferometer

When molecules are irradiated with IR, the IR with the same wavelength resulting 

from the frequency of the vibration or other modes of the molecular bonds will be 

absorbed, and an absorption peak will appear at this wavelength or wave number. 

If we consider that the characteristic bonds of molecules are wavelength absorber, 

each absorber can absorb a characteristic wavelength to show an absorbance peak 

at the corresponding wavelength when an IR wave passes through the sample. 

Therefore, IR spectroscopy can be used to

1. Identify a known component present in an unknown sample.

2. Study the formation of new chemical bonds or substitutions.

3. Perform quantitative analysis for a component of interest.

Among sampling techniques used by FTIR spectroscopists, attenuated total

reflectance (ATR) is probably becoming the most popular as it is quick, relatively

non-destructive and requires only minimal or no sample preparation. This method

involves contact sampling of a crystal with a high refractive index and excellent

IR transmitting properties (Larkin, 2011). In ATR-FTIR spectroscopy, IR beam is

directed onto an ATR crystal which is reflected on the internal surface in contact

with the sample. When IR strike boundary at an angle greater than the crystal

critical angle, it creates an evanescent wave that extends beyond the surface of the

crystal into the sample. Absorption of some IR radiation of the evanescent wave
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occurs in the sample, while the remaining radiated towards the detector are 

collected by the detector after it exits the crystal (Fig. 3.11). Since the evanescent 

wave penetrates only a few microns (0.5 -  5 pm) into the sample there must be 

good contact between the crystal and the sample to assure a constant penetration 

depth o f light into the sample. Furthermore, this technique is mainly for surface 

measurement. A very wide range o f sample types can be measured by ATR. The 

samples can be organic or inorganic, liquids, solids or gases, and analysed over a 

wide range o f  temperatures.
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In  th is study, a T herm o N ico let N E X U S spectrom eter equ ipped  w ith  a 

m ercu ry  cadm ium  tellu ride (M C T ) de tec to r w hich  is coo led  by  liqu id  

n itrogen  w as used  for all the FT IR  analysis. A  single reflec tion  d iam ond  

A T R  cell (G raseby  Specac, U K ) w as used , w hich  has the  trade  nam e 

“G olden  g a te” . R H A  sam ples w ere p ressed  on  top o f  the d iam ond  A T R  

crystal and the ir spectra  w ere co llected  using  O M N IC  softw are (version  

7.3).

Device characterisation Techniques
The ultimate aim o f growing semiconductors is to use them in fabricating 

semiconductor devices, and the basic building block o f any semiconductor device 

is the diode. The solar cell is therefore essentially a diode. In order to characterise 

these devices in general, two major measurements are used. These are current - 

voltage (I-V) and capacitance - voltage (C-V) (Siad et al, 2004; Singh and Cohen, 

1980; Li et al, 2013 and Christoforou et al, 1989). These two techniques 

characterise the current and capacitance responses o f the devices when an external



voltage bias is applied. For a solar cell however, an additional technique is 

involved, and this is spectral response technique. This is used to characterise the 

charge carrier collection behaviour of the solar cell over a given range of photon 

wavelength or photon energy (Field, 1999 and Sopori, 1987). This work therefore 

discusses these three major device characterisation techniques bearing in mind the 

solar cell.

Electrical characterisation
The electrical properties of semiconductors are extremely important in the 

fabrication of semiconductor devices, as they largely control the behaviour of 

such devices. For examples, the speed of switching devices depends on the charge 

carrier mobility whereas the storage capacity of memory devices depends largely 

on the proper capacitive behaviour of such devices (Choi et al, 2012). Again, the 

conductivity type of semiconductor materials are extremely important in deciding 

the types of junctions that will exist in devices made with such semiconductors. 

This section therefore discusses the common techniques used in determining the 

electrical properties that characterise semiconductor materials.

1 Conductivity measurement - Direct current (DC)
Current-Voltage (I-V) characterisation is used principally to determine the

electrical conductivity (a) and resistivity (p) of semiconductor materials by 

applying Ohm's law. In order to do this, two ohmic contacts must be made to the 

semiconductor. Varying DC voltages are then applied across the two terminals in 

both directions and the corresponding DC currents flowing through the material 

are recorded using an ammeter. Figure 3.12 illustrates the principle of this process.

C r o s s - s e c t io n a l  
a r e a  A S e m ic o n d u c to r  w ith  

I r e s is ta n c e  R  
T_______________T...

L

D C
1 ' D C  V o ltm e te r s  A m m e te r

A p p l ie d  v a r y in g  D C

Figure 3.12: Schematic of circuit arrangement to illustrate I-V measurement of a 
semiconductor with resistance, R



A graph of current vs. voltage for the arrangement in figure 3.12 gives a straight 

line, whose slope is used to determine the resistance of the semiconductor by 

applying Ohm's law. All I-V measurements reported in this thesis were carried out 

using a computerized Keithley 619 Electrometer-Multimeter (Keithley Instuments 

Inc., OH, USA). Figure 3.13 shows a typical I-V characteristic of a semiconductor 

for the determination of resistance. Equation (3.12) gives the resistance (R) of the 

semiconductor as well as its resistivity (p) which is the resistance per unit length 

per unit cross-sectional area.

n  Av 1
R = j f = p j 3.12

where L and A are the thickness and cross-sectional area of the semiconductor 

respectively, as shown in figure 3.12.

1(A) a

AV

F(V)

Figure 3.13: Schematic illustration of a typical I-V characteristic of a semiconductor for the 
determination of resistance

Equations (3.13) and (3.14) (Sze and Ng, 2007) are then used to obtain the 
resistivity and conductivity of the material respectively.

RA
P = T

l
a = — 

P

3.13

3.14

3.7.2 Hall Effect measurement
The Hall Effect technique is used to determine th e . type of conductivity in

semiconductors as well as obtain their carrier concentration and carrier mobility. It

depends principally on Lorentzian force on a charge carrier flowing in a semiconductor,

confined in a magnetic field (Sze and Ng, 2007). Assumed a piece of semiconductor

with a current (7) flowing along it in the x-direction (from left to right). If an external

magnetic field vector B  is applied perpendicular to the direction of current flow in the z-

direction (upward) as shown in figure 3.14, then a Hall voltage will develop along the y-
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axis. If an n-type semiconductor is used, the electrons are pushed towards the end of the 

semiconductor (towards the reader) setting up an electric field Ey also towards the 

reader. A Hall voltage Vh therefor develops in the direction perpendicular to I  and B. If 

a p-type semiconductor is used, the holes are still pushed towards the end of the 

semiconductor (towards the reader) but an electric field Ey is set up into the paper which 

in turn sets up Hall voltage with an opposite sign to that due to the n-type 

semiconductor. From the Hall voltage data obtained and the known values of the 

magnetic field intensity and the applied current, the Hall mobility, carrier concentration 

and conductivity type of the particular semiconductor involved can be obtained using 

Equations (3.15) - (3.21) (Sze and Ng, 2007).

Figure 3.14: Illustration of Hall Effect in a semiconductor carrying a current I  in a magnetic 
field B perpendicular to the direction of current flow. A Hall voltage VH is developed 
perpendicular to /  and B

n  — —

V =

rH
RhR

rH

3.15

3.16

where Rh is the Hall coefficient (which is positive for p-type material and 

negative for n-type material) and q is electronic charge. The constant rn is the Hall 

factor given by Equation (3.17).

rH =
<T2>
<T>2

3.17
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where r is the mean free time between collisions.

The Hall coefficient can be obtained from the measured Hall voltage, applied 

current, applied magnetic field and thickness of the semiconductor used according 

to Equation (3.18).

R h  =  3.18
H JxBz t

where Jx is the magnitude of x-component of the applied current density, Bz is the 

z-component of the applied magnetic field and t is the thickness of the sample.

The conductivity (a) is obtained from the applied current density and electric field 

by Equation (3.19).

Jxa  =  ~ .  3.19
Ex

Thus, the Hall mobility (ph) is obtained from Equation (3.20).

AO/ == lfy /k  3.20

The drift mobility (p) is related to the Hall mobility by Equation (3.21).

(iH = rHfi 3.21

If equations (3.14) and (3.20) are combined, the resistivity can be obtained.

3.8 Current-Voltage ( I -V)  characterisation
The I-V characterisation shows how the current through a diode responds to

applied bias voltage. Figure 3.15 shows the equivalent of a sample diode.
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Figure 3.15: Schematic illustration of equivalent circuit of a diode showing shunt resistance 
(Rsh), series resistance (Rs) and depletion capacitance (CD)

The I-V characterisation of a diode in general only reflects the effects of Rs and 

RSh. The effect of Cd is only seen in a capacitance-voltage measurement. The 

equations governing the behaviour of a diode are presented in chapter two 

specifically for solar cells. All I-V measurements carried out in this work were 

done using a computerised Keithley 619 Electrometer/Multimeter (Keithley 

Instruments Inc., USA).

3.8.1 I-V Characteristics under dark condition
Under dark condition (i.e. without illumination), the I-V characteristics of a diode

in general, can be presented in log-linear form or in linear-linear form. In the log- 

linear form, the current through the diode is presented in logarithmic scale while 

the applied bias voltage is presented in linear scale. Figure 3.16 shows typical log- 

linear I-V characteristics of a diode.
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Figure 3.16: Typical log-linear I-V characteristics of a diode showing both forward current 
(/F) and reverse current (/R). Here both fotward and reverse characteristics are plotted to be 
in the same quadrant for convenience, by changing the sign of the reverse bias voltage to 
positive from negative.

Figure 3.16 is very useful in obtaining a number of parameters that characterise 

the diode under dark condition. The parameters that can be obtained from this 

figure include; diode rectification factor (R.F.), diode ideality factor (n), reverse 

saturation current (IQ)  and potential barrier height (4 )5 ).

The R.F. is defined as the ratio of forward current to reverse current at a bias 

voltage of 1-V as shown in Equation (3.22).

The R.F. is a measure of the rectifying quality of the diode. A rectification factor

(Dharmadasa, 2012). In order to obtain the diode ideality factor from figure 3.16, 

equation 2.12 is used and re-presented here as equation (3.23) for convenience.

For an applied forward bias of V > 0.75 V, the exponential term in Equation 

(3.23) becomes sufficiently large (Siad et al, 2004) such that

3.22

of about three orders of magnitude (R.F.-103) is enough to make a good diode

3.23

3.24

Then Equation (3.23) simplifies to Equation (3.25), thus
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Taking the natural logarithm of both sides of Equation (3.25), and rearranging, 

yields

Equation (3.26).

Re-writing Equation (3.26) in common logarithmic form for convenience then 

gives

Equation (3.28) shows that the graph oflog10I vs V gives a straight line, with 

slope of q/2.303nkT. Therefore from the slope of the forward current in figure 

3.16, the value of n can be obtained since q, k  and T are all known. The value of n 

is very useful in understanding the current transport mechanism in a diode. In an 

ideal diode where thermionic emission takes place only, the current transport is 

over potential barrier with the value of n as unity. If current transport is dominated 

by recombination and generation (R & G) mechanism, then n = 2.00. If both 

mechanisms are present as is the case in a practical diode, n takes a value between

1.00 and 2.00. In a practical diode series resistance is present. This also has an 

effect on the value of n. In fact, if Rs is large the situation becomes more 

complicated and the value of n can be greater than 2.00. Equation (3.28) shows 

that the intercept of straight line portion of the forward current with the highest 

gradient in figure 3.16 on thelog10/ axis, gives log 10/o. Therefore, the reverse 

saturation current (Io) is obtained from this value. Io is also a measure of the 

degree of rectification of the diode. If the diode rectification is high, then Io is low. 

Again Io will be low for a diode with large barrier height. Once Io is obtained, the 

barrier height 0b can be determined from IQ extrapolation from existing diode of 

equation 2.15 re-presented as;

3.26

0.434 logio 1 = +  0.434 log10 Ia 3.27

Dividing Equation (3.27) by 0.434 gives

logio / = (:2.303nkT;)  V +  log1010 3.28
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Re-arranging Equation (3.29) will then give

3.29

kT (A*T2'
*» = T ton r

3.30

If the dark I-V characteristics are rather plotted in linear-linear scale as shown in 

figure 3.17, another set of device parameters can be obtained. These parameters 

include; Rs, Rsh, threshold (or cut-in) voltage ( F t )  and reverse breakdown voltage 

( V bd ) -

Forward

BD

Reverse

Figure 3.17: Typical linear-linear I-V characteristics of a diode under dark condition

The series resistance is obtained by finding the slope (A//AF) of the straight line 

portion of the high forward current and applying Ohm's law, so that Rs is obtained 

from Equation 3.31.

Rs (A//AK)
3.31

A low value of Rs is desirable for a good device in which case the forward current 

has highest possible slope (A//AF) (Sze, 2007). In a practical diode however, a 

high value of Rs can arise due to two major reasons. One of these is the presence
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of resistive oxide layer between the semiconductor and the metal contact (forming 

an MIS structure). This resistive interfacial layer can arise due to oxidation caused 

by the etching process preceding the metal contact formation, or due to high 

density of surface states and therefore high surface recombination velocity (Siad, 

2004 and Keffous et al, 2003). Another reason for high series resistance is the use 

of semiconductor materials with high bulk resistivity (Siad, 2004 and Keffous et 

al, 2003). This is because, at sufficiently high forward bias, the current through 

the diode increases rapidly so that the series resistance of the diode is controlled 

by both bulk resistance of the semiconductor material used, and the contact 

resistance at the two metal/semiconductor interfaces (Sharma, 1996). At such high 

series resistance, the slope of the forward I-V curve decreases substantially. For 

an ideal diode, Rs = 0; so that the slope of the forward current -» oo.

From the reverse I-V curve, the shunt resistance Rsh is obtained by determining 

the slope (A//AF) as in the case of Rs. The value of Rsh is indicative of the 

presence of current leakage paths in the diode. For a good diode, a high value of 

Rsh is desirable (Sze and Ng, 2007; Sharma, 1996), while for an ideal diode, Rsh 

-» oo. With low RSh value, substantial leakage current (Io) flows in the diode under 

reverse bias. During the forward biasing of a diode, very small current flows 

through the diode as bias voltage increase gradually from 0 V up to a certain 

minimum voltage. Beyond this voltage, the current through the diode rises rapidly. 

This minimum voltage is known as the threshold voltage ( V t )  or cut-in voltage or 

turn on voltage of the particular diode involved (Sze and Ng 2007; Sharma 1996 

and Wu et al 2010) as shown in figure 3.17. Ge and Si diodes have typical 

threshold voltages of about 0.2 V and 0.7 V respectively (Sharma, 1996). In order 

for a diode to operate, a forward bias > Vt must be applied. The threshold voltage 

also represents the built-in potential of a diode. Under reserve bias, a negligible 

current flows through the diode. However, at a certain high reserve bias, a large 

reverse current suddenly begins to flow through the diode as shown in figure 3.17. 

The reverse bias voltage at which this happens is known as the peak inverse 

voltage, or simply, the breakdown voltage (V b d ). This is so-called because, 

beyond this point, the diode breaks down and is permanently damaged (Sze and 

Ng, 2007; Sharma, 1996) as a result of the large reserve current that flows through 

it. Various breakdown conditions and mechanisms in diodes are well-known and
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are discussed in standard text books (Sze and Ng 2007; Mehta and Mehta 2008 

and Sharma 1996).

3.8.2 I-V characterisation under illumination
All the I-V characterisations discussed so far apply to all diodes under dark

conditions, including the solar cell (which is essentially a photodiode). The solar 

cell is designed to operate naturally under illumination. It therefore becomes 

’ imperative to discuss the features of the I-V characteristics of a diode (solar cell) 

under illuminated conditions. Since the solar cell is a current source under 

illumination, the relevant diode equations discussed so far under dark conditions 

are modified accordingly and the diode equivalent circuit of figure 3.15 is also 

modified to reflect the current generating property of the solar cell. If an ideal 

solar cell is considered first, in which case Rs = 0 and Rsh = oo, then one obtains 

the ideal equivalent circuit under illumination as shown in figure 3.18.

Figure 3.18: Ideal equivalent circuit of a solar cell under illumination

When light is shone on the solar cell under forward bias, photocurrent (Ji) is 

generated which also flows through the diode in a direction opposite to Jd. The 

total current (J) in the device then becomes (Sze and Ng, 2007),

When these two currents (J d  and Ji) are equal, the total current through the solar 

cell becomes zero. Then the Voc is obtained from Equation 3.32 by setting J  = 0 

and Jl = Jsc, thus yielding Equation 3.33.

I

0
v

3.32

3.33
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The graph of J  or I  vs. V in Equation 3.32 yields the result in figure 3.19 for a 

solar cell.

Dark I-V

Illuminated I-V
X

Figure 3.19: I-V characteristics of a solar cell under dark and illumination conditions

The shaded rectangular area in the graph is the power rectangle which gives the 

maximum output power (Pm) from the solar cell. The corresponding quantities Im 

and Vm are respectively the current and voltage at the maximum output power, so 

that

P  =  I Vrm lm vm 3.34

The maximum power point is also defined according to Equation 3.35 (Sze and 

Ng, 2007).

P  =  I  V  =  F F x  I  x Vrm lm vm 1 1 A lsc A voc 3.35

where FF  is the fill factor which defines the "squareness" of the I-V curve. Thus

FF = i m  vm
T V1scvoc

3.36

Then the conversion efficiency, tj is defined as the ratio of the maximum output 

power to the total input power (Pin) as given in equation 3.27 (Nelson, 2004).

_ Pm _ ImYm _ hcVocPP 
Pin Pin Pin

3.37

where Pin is the solar power density of the incident light, which for the AM 1.5, is 

100 Wcm'2. For a practical solar cell, the effects of Rs and Rsh are brought into 

Equation 3.32 accordingly by replacing V with ( V-IRS). Rs is more influential than
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RSh since it directly affects the fill factor. The equivalent circuit of a real practical 

solar cell is then given in figure 3.20.

<^AA/V • +
A

y

£
R lo ad  y

<

▼

Figure 3.20: Equivalent circuit of a practical solar cell showing the presence of Rs and

From figure 3.19 therefore, the solar cell parameters under illumination can be 

obtained. The Jsc (or Isc)  and Voc can be read directly from the graph. The FF  can 

be obtained by drawing the largest possible rectangle through the maximum 

power point (X), and reading directly, Im and Vm as shown, and then applying 

Equation 3.25. Using Equation 3.26 the conversion efficiency, r\ is then obtained 

by substitution. Rs and RSh under illumination are also obtained just in the same 

way as in the dark I-V graph described previously.

3.9 Capacitance-Voltage (C-V) characterisation
Every diode has a depletion region of a certain width, w. This depletion region is

the heart of the diode and where all the major activities in the diode take place. All 

the equations describing the behaviour of a diode under various conditions 

actually show what happens in the depletion region. The description of the 

formation of a rectifying junction given in chapter 2 simply shows that the 

depletion region of a diode can be approximated to a parallel plate capacitor with 

a separation of w between the two oppositely charged plates. The capacitance of 

this capacitor (called depletion capacitance, Cd) is given by Equations (38) and 

(39) which have the same form for both p-n junction diode and Schottky barrier 

diode. They are also the same for a solar cell under dark condition. These two 

equations are re-presented here as Equation 3.38.

qes£0N
3.38
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where Cd is the capacitance per unit area here.

Thus, it implies

q£s£0N
3.39

Rever:

Forward

►
V

Figure 3.21: Schematic illustration of CD vs V characteristics of a diode under forward and 
reverse bias conditions

Now, a graph of C q v s . V using Equation (3.38) under bias, gives a curve of the 

form shown in figure 3.21. The value of Cd at zero bias (V = 0) gives the actual 

depletion capacitance per unit area (C0) of the junction (Sze and Ng, 2007). With 

this capacitance, the width of the depletion region can be determined, using 

Equation (3.38). Instead of plotting C vs. V for the depletion region, 1/C vs. V can 

be plotted using Equation (3.39). For an ideal diode, this should give a straight 

line of the form shown in figure 3.22, and is called the Schottky-Mott plot (Sze 

and Ng, 2007).

Figure 3.22: Schottky-mott plot of an ideal diode.

The slope of the Schottky-Mott graph gives the quantity, (2 /q s0N) and the 

intercept on V-axis gives the built-in potential, Vt,-, of the device (Bagnoli and

vbiI
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Nannini, 1987). From the slope, the carrier concentration N  of the diode can be 

obtained, since ss and q are known. Recall that N  represents the resultant 

uncompensated carrier density in the device. If the dominant dopants in the diode 

material are donors, then N  = Nq-Na, but if the dominant dopants are acceptors, 

then N  = Na-Nd. From the above discussion, the C-V technique becomes a very 

important technique for determining important electrical properties of a 

semiconductor diode in general.

It is important to mention here that the C-V measurement is usually carried out at 

relatively high frequencies up to 10 MHz. The reason for this is to eliminate from 

the result, the effect of defects present in the device. This is because the defects 

are known to be slow traps. At high frequencies therefore, they are unable to 

follow the current through the diode and therefore cannot easily trap the charge 

carriers (Sarangi et al, 2010). This idea is used to determine the density of defects 

(traps) in a diode using C-V measurement. In this case, the C-V measurement is 

carried out at high frequency (say, 1 MHz) and then at a low frequency (say, 10 

Hz). The difference in the capacitance obtained from the low frequency and high 

frequency measurements gives the concentration of impurities or defects in the 

device (Sarangi et al 2010). At low frequencies, the traps are more active and 

contribute to the capacitance of the junction by introducing diffusion capacitance 

to the normal depletion capacitance. At high frequencies however, the slow traps 

cannot follow the fast ac signal and the diffusion capacitance effect can be ignored 

(Sarangi et al, 2010). The equipment used for all the C-V measurements reported 

in this thesis was a Hewlett Packard 4284A 20 Hz - 1 MHz Precision LCR Meter 

(Yokogawa Hewlett Packard, Japan) with a Keithley 6517A Electrometer/High 

Resistance Meter (Keithley Instruments, OH, USA).

3.10 Spectral response (SR) characterisation
Spectral response (SR) characterisation is very important for solar cells since light

of certain wavelengths must be absorbed by the solar cell in order to create 

electron-hole pairs and subsequently produce photocurrent. The spectral response 

is therefore useful in determining the total current deliverable by a solar cell (Sze 

and Ng 2007; Hartman and Lind; 1982 and Gummel and Smits, 1964) and the 

range of wavelengths of photons that are absorbed and are converted to current by 

the solar cell. There are three types of spectral response used in characterising

111



solar cells. These include; spectral responsivity (S) external quantum efficiency 

(EQE) and internal quantum efficiency (IQE) (Hartman and Lind, 1982). All of 

these are also related and are wavelength dependent.

Spectral responsivity is the amount of current that is delivered by a solar cell per 

unit incident photon power. The unit is therefore given as amperes per watt (AAV) 

(Field, 1999).

External quantum efficiency is defined as the ratio of the number of charge 

carriers in the current delivered by a solar cell to the number of incident photons 

of a given energy. The EQE is actually derived from the spectral responsivity (Sze 

and Ng, 2007 and Hartman and Lind, 1982) so that

outpu t curren t/(charge  per electric) 
to tal input photon po w er/(en erg y  per photon)

or

E Q E W = M o  3A 1

where A is incident photon wavelength, J(X) is the photocurrent at a given 

wavelength, q is electronic charge and (f)(X) is the number of photons per unit area 

per unit time per unit bandwidth of wavelengths. Since EQE is derived from 

spectral responsivity, the equation for EQE can alternatively by written as

. . 5(A) he
EQE(X) = 3.42

4 q

EQE is usually expressed in percentage.

Internal quantum efficiency is a more complicated spectral response since it 

involves the actual number of photons absorbed by the solar cell in order to 

produce photocurrent. It is clear that not all the incident photons are absorbed by 

the solar cell. Some of these photons are reflected at the point of incidence on the 

solar cell. Some are transmitted through the solar cell while the rest are absorbed. 

In determining the IQE using the total incident photon flux therefore, the amount 

of photons reflected and those transmitted should be put into consideration. This 

is the major point of difference between IQE and EQE. If one assumes zero
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transmission for a solar cell with sufficient thickness and high absorption 

coefficient, then IQE can be written as in Equation (3.42) (Sze and Ng, 2007 and 

Yang et al, 2008) by modifying Equation (3.40)

, < T O °

where R(X) is the fraction of the photons reflected by the solar cell at the point of 

incidence Comparing Equations (3.40) and (3.42), one therefore sees that for any 

given solar cell, IQE is higher than EQE. The IQE result can give information on 

the loss mechanisms in the solar cell for absorbed photons with energies higher 

than the bandgap of the solar cell material (Hartman and Lind, 1982). From the 

foregoing, it is also obvious that once the spectral response is known, the current 

deliverable by a solar cell can be obtained by integrating over all wavelengths 

from zero to the bandgap wavelength, as can be inferred from Equations (3.40) 

and (3.42).

3.11 Summary
Various rice husk silica and its silicon derived characterisation techniques are 

presented and discussed in this chapter. These techniques vary in their 

fundamental principles and in the particular properties or characteristics of the 

materials they are used to study. They generally range from structural 

characterisation to morphological, compositional and optical characterisation 

techniques etc. The importance of each technique is to understand the nature of 

the materials before producing other materials or devices with them. Although 

many characterisation techniques are available, only a selected few were 

employed in characterising the materials used in producing low cost silicon in the 

course of this research for obvious reasons such as availability, cost and time scale.

The characterisation of semiconductor devices (including solar cells) was

presented in this chapter. The various characterisation techniques employed for

this purpose, were discussed to include, I-V, C-V and spectral response techniques.

Each technique is seen to be unique in nature and in the manner they are carried

out yielding different results that help to understand the behaviour of the devices

under study. I-V characterisation is seen to reveal the behaviour of the electrical

current through the diode (device) under external bias. C-V characterisation

reveals the response of the depletion region capacitance of diodes under different
113



bias conditions. Both I-V and CV characterisation techniques also help to 

understand the nature of defects (impurities) present in the device. Spectral 

response measurements are particularly useful for characterising solar cells. Since 

the solar cell must absorb incident light (photons), the particular useful range of 

wavelengths of the incident photons is known through these measurements. In 

addition, the result of the spectral response measurement can help obtain the total 

current deliverable from the solar cell as well as help in understanding the 

possible loss mechanisms that come into play in the solar cell.
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4 MATERIALS AND METHOD

4.1 Source of Materials

4.1.1 Rice Husk (RH)
Rice husk collected from Nasarawa L.G.A in Nasarawa state o f Nigeria was used

as source o f raw materials for preparation o f rice husk silica. The rice husk 

labelled batches A, B and C were collected from local rice milling industry at 

three different sites and times. While batch A was purely rice husk, batch B 

contained very small particles o f rice and batch C contained some dirt from the 

rice husk dumping site. Figure 4.1 shows the representation o f RH.

F ig u r e  4 .1 :  S c h e m a t ic s  o f  r ic e  h u s k

4.2 Methodology/ Procedure
Rice husk ash when not properly prepared by controlling the burning temperature

consists o f comparatively higher percentage o f unbum t carbon and lower silica. It 

has already been mentioned that the RHA produced at 1000°C is less reactive due 

to its crystalline nature. Here, the procedure involved is to produce RHA that 

contains minimum amount o f residual carbon and maximum amorphous silica at 

below 800°C and crystalline silica above that temperature. The procedures are as 

follow:

a) Pre-treatment o f RH

Sufficient stock amount o f RH (500g) for the three different batches were 

weighed and washed with 20 litres each o f hot de-ionized water in cleaned 

stainless steel beaker. Several washings were done to remove the adhering 

clay particles and the water decanted o ff after every washing was observed 

carefully; the process continued until washing mediums contained almost 

no dust particles on visual inspection. The thoroughly washed RH was 

oven dried at about 42 C (average temperature) for five hours.
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F ig u r e  4 .2 :  S c h e m a t ic  o f  r ic e  h u s k  a sh

b) Ash production

Rice husk for batches A, B and C were weighed and each put into ceramic 

crucibles and annealed in furnace at different temperatures o f 700 C, 

800 C, 900 C and 1000 C. Batch A was annealed for 700 C, 800 C and 

900 C for 5 hours. Batch B was annealed for each o f the temperature for 5 

hours and batch C annealed at all mentioned temperature above for 12 

hours. When done at those temperatures, the recovered whitish RHA 

samples were weighed and transferred to desiccators to cool for about 

24hrs. It was then weighed again and readings tabulated in table 4.1 - 4.3.

T a b le  4 .1 :  R ic e  h u sk  a sh  p r o d u c e d  b a tc h  A

S/No. Mass o f RH(g) Temp(uC) Mass o f RHA(g) Ash(%) Ashing time

1 85.88 700 15.82 18.42 5hrs

2 135.82 800 24.67 18.16 5hrs

3 137.26 900 26.28 19.15 5hrs

T a b le  4 .2 :  R ic e  h u sk  a sh  p r o d u c e d  b a tc h  B

S/N M ass o f RH(g) Temp(°C) Mass o f RHA(g) Ash(%) Ashing time

1 70.00 700 9.70 13.86 5hrs

2 100.00 800 13.81 13.81 5hrs

3 93.00 900 13.37 14.38 5hrs

4 100.00 1000 13.57 13.57 5hrs

120



Table 4.3: Rice husk ash produced batch C

S/N Mass of RH(g) Temp(uC) Mass of RHA(g) Ash(%) Ashing time

1 100.00 700 19.26 19.26 12hrs

2 100.00 800 20.10 20.10 12hrs

3 100.00 900 19.17 19.17 12hrs

4 100.00 1000 19.44 19.44 12hrs

4.3 Ash Analysis
Techniques applied to the rice husk ash produced at 700°C, 800°C, 900°C and

1000°C for 5hrs or 12hrs for batches A, B and C included x-ray diffraction, x-ray 

fluorescence, energy dispersive x-ray, scanning electron microscopy, Fourier 

transform infrared spectroscopy, transmission electron microscopy and 

thermogravimetric analysis. This research project is mostly based on the above 

mentioned instruments because major properties of rice husk depend largely on 

their elemental (or atomic) composition.

4.4 Rice Husk Ash Quantitative and Qualitative Evaluation

XRF, XRD, SEM, TEM, FTIR and ICP were used to analyse the RHA prepared at 

different temperatures. A comparatively high percentage of the RHA annealed 

(SiC>2) was achieved for each samples for all ashing temperature with some trace 

elements present.

4.5 Purification of Rice Husk Ash Silica

Rice husk ash Samples containing chemical compositions were subjected to 

upgradation/purification by carrying out the procedures below:

4.5.1 Treatment with an oxidant
The induced oxidation of RH carbon to CO2 is expected to improve the silica

content. Hence, the following treatment was given to RHA specimens of different 

temperature and natural coarse particle size. 15g of each RHA was added 0.8cm3 

of 16M HNC^and heated in an electric furnace at 700°C for one hour. The coarse 

particles of all RHA specimens were seen to have pulverized, and particle sizes 

reduced. The resulting ashes were further treated by alkali leaching.
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4.5.2 Alkali leaching
Alkalis in RHA might be present in free or combined state. In order to eliminate

their water soluble fractions, 13g o f each oxidant treated RHA were boiled in 

500ml de-ionize water for lhour so as to leach out the sodium and potassium 

impurity that are soluble in boiling water. The residues were dried at 100°C in an 

oven till constant weights are weighed.

F ig u r e  4 .3 :  S c h e m a t ic  o f  R H A  le a c h in g  w ith  d e io n iz e d  w a te r

4.5.3 Digestion of RH ash in dilute hydrochloric acid
Exactly 1 lg  o f RHA specimens from alkali leach RHA were digested in 500ml o f

5M hydrochloric acid on hot plate, giving constant agitation o f 300 rpm by 

magnetic stirrer. Figure 4.4 represent RHA acid digestions carried out separately 

for 120 minutes at 95°C. The residues o f digested samples were filtered using 

W hitman paper and then dried in an oven for lh r at HOC.

F ig u r e  4 .4 :  S c h e m a t ic  o f  R H A  d ig e s te d  in  HC1 (c o lo u r  c h a n g e s  to  y e llo w  c o lo u r )

4.5.4 Neutralization of HC1 acid digested samples
9.5g o f each sample was weighed and transferred to a conical flask. 1000ml o f

deionized water were added to each flask containing a sample with the aid o f
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magnetic stirrer to stir continuously at 300rpm. The flasks were transferred to hot 

plates to heat up for lh r at 85°C before dropping to cool down for 12hrs. The 

acidic solution was decanted carefully with the solution temperature and pH 

reading taken. The processes were repeated; but this time, 2hrs settling time 

before decanting o f solution after dropping from the hot plate. The acidic solution 

is observed to be pure (have a pH = 7.0 - 7.4) before filtering and oven drying.

4.5.5 Dry thermal treatment
Physical elimination o f residual carbon without mineralogical phase

transformation o f silica was attempted to upgrade the silica content. The samples, 

each weighing 8.0g o f chemically purified RHA were put in alumina crucibles 

and heated in electric furnace at 700°C for 4 hours.

4.6 Production of Metallurgical-Grade Silicon
The rice husk ash samples after passing through various solid-liquid extractions;

were then dried in an oven at 110°C for 2hrs before allowing cooling down for 24 

hours. The samples o f RHA silica were pulverized and thoroughly mixing with 

magnesium powder in a mortal at a ratio o f RHAs: Mg (l.Og: l.Og) to form 

magnesium and silica mixture. 4.0g o f each sample were transferred from the 

mortal to alumina crucibles for heating in an electric furnace with a controlled 

atmosphere at a temperature o f 800°C for 5 hours before cooling down to room 

temperature. By heating the mixture o f treated RHA (silica) and magnesium 

powder in a crucible, the magnesium reduces the silica to elemental silicon as 

represented in figure 4.5.

F ig u r e  4 .5 :  S c h e m a tic  o f  d e r iv e d  M G -S i fr o m  r ic e  h u sk  a sh

A mixture o f magnesium, magnesium oxide, magnesium silicide and silicon

resulted, which were transferred to a desiccators and left to cool down for 72
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hours before leaching in HC1 acid. The powder that falls to the bottom of the flask 

is chemically purified by boiling in molarity HC1 for 1 hour (Gray, 2005), filtered 

and the residues oven dried for 1 hour before thermally treated exclusively for 

minimizing residual carbon or temperature resistant organic matter; forming 

metallurgical-grade silicon.

Si02 + 2Mg ----- ► Si + 2MgO (4.1)

The samples powder were preserved for XRF, XRD, SEM, TEM, FTIR and 

Ramam Spectroscopy quantitative and qualitative analysis. The charts showing all 

the various stages are presented in figure 4.6 below.

! Magnesium 
I silicide

Rice
Husk

Char
(Blackish)

RHA
(Whitish)

HCI (gray)

2MgO

Leached i; Decarbonisationcarbonisation

MgO

HeatHeatHeat

Combustible 
Gas and Tar

Figure 4.6: Diagram of the processes from RH to thermal decomposition of RH to 
metallurgical-grade silicon

Metallurgical-grade silicon derived is the least quality silicon from the categories 

of silicon quality. It seems to contain high percentage impurity concentrations in 

their crystal growth, this can perturb by inclusions, precipitates, or defects which 

may finally cause structural breakdown. The illustration of the various categories 

of silicon quality which covers about eight orders of magnitude from 

metallurgical-grade silicon to hyperpure silicon is shown in figure 4.7. In a 

reduction process, impurities from rice husk ash (silica) carbon mixtures and other 

auxiliary materials contaminate the crude metallurgical-grade silicon to an amount 

of one to two and half percent silicon. This requires a very efficient purification 

methods ranging from hydrometallurgy refinement based on solid-liquid 

extraction in which, such parameters as the type and concentration of acid 

mixtures, the duration and temperature of the leaching procedure to the solvent 

refining process as shown in figure 2.15 can almost eliminate impurities with
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favourable segregation coefficients down to concentration of very low weight 

parts per million range, thus, upgrading the silicon from its previous basic 

category to high purity silicon category within the quality ranges of different 

silicon products of figure 4.7.

Silicon
C ategories

Limits o f electrically  active im purities

Poly 
H yperpure 

M onocryst 
als CZ 

T errestria l 
Solar G rade 

TSG 

High Purity 
HP2

High Purity 
HP1

M etallurgic 
al G rade

i  io*2 ltr4 io'6 io*8

Figure 4.7: Quality ranges of different silicon products: Basic stage of refining, 
metallurgical-grade; HP1, high purity; HP2, high purity, advance stage of refining; 
Terrestrial solar grade; CZ, Czochralski and Polycrystals hyperpure, final stage of refining 
(Sirtl et al, 1979)

4.7 Post purification of metallurgical-grade silicon by alloying process
Metallurgical-grade silicon derived from RHA of batch C l000 was replicated

from a 99.99% commercial grade Si powder with ~ 325 mesh particle size 

purchased from Sigma Aldrich, UK. This was to test run the alloying process due 

to insufficient amount (0.5g) of derived MG-Si remaining after leaching processes. 

This was done by contaminating 10.85g Si with 35mg NaCl, 31.5mg Mg, 17.5mg 

Al and 7.1 mg FeB all of analytical purity and thoroughly mixed in a mortar. 

29.58g of tin powder with 4.0g replica Si powder was thoroughly mixed and then 

put in a 20.71cm3 alumina crucibles inside a fume hood. The crucible and its 

contents was introduced into a furnace programmed to holding temperature of 

1200°C at 3.5°C/min heating rate for 3hrs before it start cooling down to room 

temperature at 2°C/min.
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F ig u r e  4 .8 :  S c h e m a t ic  o f  s o lid if ie d  S i-S n  a llo y

Figure 4.8 shows the solidified Si-Sn alloy removed from furnace and crucible 

crushed with a G-clamp. The crushed Si-Sn was separated from the crucible and 

further ground to powder using Retsch Vibratory Disc Mill RS 200, German 

product grinding machine.

deionized H20

small & large 
particles

Solution o f  Si-Sn
(a)

/  deionized H20

► Si particle 

Sn particle

Centrifuge separation
(b)

Si fraction

Sn fraction

Separated Si from Sn

(c)

F ig u r e  4 .9 :  S k e tc h  o f  g r in d  S i-S n  a llo y e d  p o w d e r  s e p a r a tio n  p r o c e s s  (a , b a n d  c).

Figure 4.9 shows the sketch o f 2g o f grind Si-Sn alloy powder placed in the rotor 

plastic container with deionized water added and put in the rotor at room 

temperature for separation. The Sorvall RC6 centrifuge, UK product was started 

and the rotate speed regulated to 600 rpm and held for 5 minutes. The sample 

container was taken out and deionized water decanted. Sample o f separated 

silicon was taken for SEM and EDS analysis.

4.8 Summary
This chapter discussed the source o f raw material used for production o f silica 

which was labelled in batches o f silica. The chapter also discussed the reduction 

o f this silica into MG-Si material needed for production o f solar grade silicon. In 

this research work, the methods/procedures applied were also discussed. The 

analysis from RH ash silica was tabulated and the production o f MG-Si and its 

post purification process explained.
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5 RESULTS AND DISCUSSIONS

5.1 Processing and pyroprocessing of rice husk

5.1.1 Rice husk ash content
The results reported below are limited to rice husk collected from rice milling

company in Nasarawa L.G.A. of Nasarawa state, Nigeria. The contents of rice 

husk ashed at different temperature are presented in Table-5.1, 5.2 & 5.3.

Table 5.1: Silica content in rice husk ash heated for 5 hours at different temperature for 
batch A

S/No. Temperature (°C) Silica ash contents (wt %)
A700 700 18.42
A800 800 18.16
A900 900 18.15
Mean 18.24
Standard deviation 0.15

The statistical computation for batch A gives a low standard deviation of 0.15 

which is an indication that all RH ash contents derived at different temperature of 

ashing have values that are very close to their mean value of 18.24 wt %. This 

inferred that there are no much differences in derived RHA silica quantity due to 

temperature difference.

Table 5.2: Silica content in rice husk ash heated for 5 hours at different temperature for 
batch B

S/No. Temperature (°C) Silica ash contents (wt %)
B700 700 13.86
B800 800 13.81
B900 900 14.38
B1000 1000 13.57
Mean 13.91
Standard deviation 0.34

The statistical computation for batch B gives a low standard deviation of 0.34. 

This is an indication that all RH ash contents derived at different temperature of 

ashing have values that are very close to their mean value of 13.91 wt %. It 

inferred that there are no much differences in derived RHA silica quantity due to 

temperature difference.
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Table 5.3: Silica content in rice husk ash heated for 12 hours at different temperature for 
batch C

S/No. Temperature (°C) Silica ash contents (wt%)
C700 700 19.26
C800 800 20.10
C900 900 19.17
C1000 1000 19.44
Mean 19.49
Standard deviation 0.42

The statistical computation for batch C gives a low standard deviation of 0.42 

which is an indication that all RH ash contents derived at different temperature of 

ashing have values that are very close to their mean value of 19.49 wt %. It 

inferred that there are no much differences in derived RHA silica quantity due to 

temperature difference.

The average rice husk ash content of the different temperature from the above 

tables are 18.58, 13.91.and 1,9.49%. Houston (1972) reported that ash content 

varies from 16.00 to 26.00 percent. On the other hand, Ikram and Akhter (1988) 

showed in their study that ash amounted to 17.06 percent. Similarly, it is 

determined by Mehta (1977) as 20.00 percent. The results obtained in this study 

indicate that batch A and C lies within the wide range reported in literatures, 

while batch B is below due to the quantity of raw rice contained within the rice 

husk. It was also observed from table 5.1, 5.2 and 5.3 that the standard deviation 

for table 5.1 has the lowest value and as such gives the best rice husk ash yield. 

Thus, it therefore shows that it might not be necessary ashing RH for more than 5 

- 6 hours.

5.1.2 Rice husk ash silica
The main aim of converting husk to ash is to utilize its silica for metallurgical-

grade silicon whose percentage usually varied from source to source. It depends 

on the type of method adopted and conditions of given thermal treatment. 

Pyroprocessing of husk is frequently carried out to get RHA with maximum 

percentage of silica. However, production of silica is an exception where certain 

amount of carbon is retained intentionally (Haxo and Mehta, 1975). This last 

factor is difficult to control by researchers. However, proper pyroprocessing may 

result in RHA with highest percentage of silica. In addition, environment
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parameter, temperature and time duration are vital in this regard (Khane, 1985). 

Samples of the RHA were analysed by XRF, XRD, TGA and SEM.

5.2 Characterization of RHA
The various batches of RHA were characterised for their .structural, optical,

morphological and compositional properties using XRF, ICP-OES, XRD, ATR- 

FTIR, TGA, SEM and EDX measurements. This was done in order to further 

understand the behaviour, quantity and quality of these materials.

5.2.1 X-ray fluorescence spectrometry (XRF)
Table 5.4: Batch A chemical analysis of RHA using X-ray fluorescence spectrometry (XRF)

Compounds A700 (wt %) A800 (wt %) A900 (wt %)
S i02 97.42 98.03 97.48

k 2o 0.36 0.38 0.37

CaO 0.37 0.35 0.35
MnO 0.02 0.03 0.03
Fe03 0.07 0.05 0.06

p2o 2 0.15 0.16 0.39

Na20 0.48 0.30 0.32

MgO 0.11 0.00 0.26
a s 2o 3 0.33 0.29 0.29

a i2o 3 0.18 0.19 0.25

Z r02 0.02 0.02 0.02

s o 3 0.20 0.20 0.18

Total Impurities 2.29 1.97 2.52

Looking at XRF results of batch A RHA presented in table 5.4, it showed that 

while A800 RHA contained the highest silica content of 98.03 wt % with least 

average impurity of 1.97wt %, A900 produced the next highest silica with 97.48%. 

However, A900 contained highest quantity of impurities with 2.52 wt % when 

compared with A700 that contained the least silica content of 97.42 wt %, but 

with impurity of 2.29 wt %. Thus, the result showed there are no much 

quantitative value difference in RHA silica due to temperature and time of 

roasting.
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Table 5.5: Batch B chemical analysis of RHA using x-ray fluorescence spectrometry (XRF)
and inductively coupled plasma (ICP)

Compounds B700 (wt %) B800 (wt %) B900 (wt %) B1000 (wt %)
Si02 95.24 95.67 95.73 96.03

K20 1.04 0.83 0.96 0.86

CaO 0.75 0.77 0.73 0.68
Mn3C>4 0.12 0.12 0.11 0.11

FeC>3 0.11 0.1 0.11 0.08

P20 2 1.09 1.09 1.01 0.85

Na20 0.09 0.08 0.11 0.08

MgO 0.69 0.69 0.66 0.59
A120 3 0.12 0.11 0.18 0.09

Ti02 0,02 0.01 0.02 0.02

S 03 0.36 0.33 0.25 0.25

B 0.27 0.48 0.22 0.23

Total
impurities

4.66 4.61 4.36 3.84

Looking at XRF results of batch B RHA presented in table 5.5, it showed that 

while B1000 RHA contained the highest silica content with 96.03 wt % and a 

least average impurity of 3.84 wt %, it was followed in descending order by B900, 

B800 and B700 with 95.73, 95.67 and 95.24 wt % respectively. The impurity 

however, showed the direct opposite pattern as that of the RHA silica content with 

B1000 having the least impurity of 3.84 wt %, followed in ascending order by 

B900, B800 and B700 with 4.36,4.61 and 4.66 wt % respectively. Thus, the result 

showed there are no much quantitative value difference in RHA silica due to 

temperature and time of roasting.
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Table 5.6: Batch C chemical analysis of RHA using x-ray fluorescence spectrometry (XRF)
and inductively coupled plasma (ICP)

Compounds
C700 
(wt %)

C800 
(wt %)

C900 
(wt %)

C1000 
(wt %)

Si02 94.86 96.41 95.29 96.59

K20 0.43 0.27 0.49 0.25

CaO 0.48 0.44 0.50 0.48

Mn304 0.05 0.08 0.06 0.05

Fe2C>3 0.15 0.13 0.24 0.10

P2O5 1.03 0.74 1.11 0.80

Na20 0.16 0.08 0.20 0.22

MgO 1.20 0.50 0.64 0.58

A120 3 0.68 0.33 0.44 0.24

Ti02 0.04 0.03 0.08 0.02

S 03 0.40 0.42 0.37 0.44

B 0.52 0.57 0.58 0.23

Total
impurities 5.14 3.59 4.71 3.41

Looking at XRF results of batch C RHA presented in table 5.6, it showed that 

while C l000 RHA contained the highest silica content with 96.59 wt % and a 

least average impurity of 3.41 wt %, it was followed by C800 in silica content and 

low impurity by 96.4lwt % and 3.59 wt % respectively. C900 with silica content 

of 95.29 wt % and impurity of 4.71 wt % was next. C700 with the least silica 

content of 95.29 wt % contains the highest impurity of 5.14 wt %. Thus, the result 

shows there are no much quantitative value difference in RHA silica due to 

temperature and time of roasting.

5.2.2 X-ray diffraction (XRD) of RHA
The XRD analysis results presented in figure 5.1 diffractogram showed peaks that

are representation of corresponded peaks to those of close Inorganic Crystal
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Structure Database (ICSD). The spectrum of batch A RH sample ashed at 700C 

for 5hrs revealed that the RHA consisted mainly of amorphous silica as shown in 

the blue spectrum of the diffractogram of figure 5.1. The XRD spectrum of RH 

ashed at 800°C contains three peaks belonging to quartz, while the RH ashed at 

900 C (green spectrum) contains all 3 allotropes of silica. This implies that silica 

with amorphous or crystalline nature can be produced from RHA. The 

appearances of peaks in the XRD spectrum of RH ashed at 800°C matching ICSD 

peaks with reference code 00-033-1161 indicate conversion of amorphous to 

crystalline quartz silica with temperature difference. Whereas, the spectrum of the 

RH ashed at 900°C displays silica peaks of crystalline with phases A, C and Q for 

anorthite, cristobalite, and quartz respectively matching ICSD quartz low peaks 

with reference code 01-085-0335 and cristobalite alpha/ cristobalite peaks with 

reference code 01-082-1403/ 01-082-0512 respectively. All XRD data for the 

above reference code allotropes are given in appendix 1.

Batch A700, A800 and A900 Degrees
6000 -|

5000 ■

A700
4000 -

A800

A900
3000 -
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1000 ■

20 40 50 60

28  (D eg ree)

70 80

Figure 5.1: Offset XRD diffractograms of RHA. (Symbols Q, A and C means peak positions 
of Quartz, Anorthite and Cristobalite respectively).

Figure 5.2 shows sample of figure 5.1 silica after been left at room temperature 

for a year before another XRD analysis was done. It was seen from the 

diffractogram that all three spectra indicated that the atoms tends to have arranged 

themselves in such a way that resembles that of a crystal atoms. Thus, the RH 

A700 ashed at 700°C has showed few quartz peaks that match ICSD with
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reference code 01-083-2465. RH A800 ashed at 800°C showed more pronounce 

quartz peaks comparable to A900 RH ashed at 900°C, which has also acquired 

some more peaks compared to A900 in figure 5.1; The ICSD reference codes for 

A800 and A900 peaks in figure 5.1 were same as for figure 5.2. The diffractogram 

of figure 5.3 XRD shows the results of the year old RHA after leaching in hot 

deionized water. The three spectra show peaks similar to those in figure 5.1 

except that for A900, the peaks were more pronounced due to further crystallized 

formation and anorthite decomposition. All peak in figure 5.3 spectra were match 

with the ICSD reference code mentioned above.

RH A afte r a year
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Figure 5.2: Offset XRD diffractograms of RHA twelve months after ashing (Symbols Q and 
C means peak positions of Quartz and Cristobalite respectively)
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F ig u r e  5 .3 :  O f fs e t  X R D  d if fr a c to g r a m s  o f  le a c h e d  f ig u r e  5 .1 . ( sy m b o l Q  a n d  C  m e a n s  p e a k  

p o s it io n s  o f  Q u a r tz  a n d  C r is to b a l i t e  r e s p e c t iv e ly )

It was observed from the diffractograms in figure 5.4 that ashing batch B rice 

husk sample at 700°C, 800°C and 900°C for 5hrs produced only amorphous silica, 

whereas the same batch RH ashed at 1000°C converted into crystalline quartz and 

cristobalite silica that matches those o f ICSD reference code 01-085-0335 and 01- 

082-0512 peak list respectively as shown on the diffractogram spectra peak. The 

lack o f crystalline silica after ashing at 800°C and 900°C may be due to the 

inclusion o f raw rice particles in batch B rice husk, which introduced a greater 

proportion o f amorphous cellulosic materials, thereby influencing the arrangement 

o f the RH ash molecules.
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Figure 5.4: Offset XRD diffractograms of RHA derived from batch B sample. (Symbols Q 
and C means peak positions of Quartz and Cristobalite respectively).

It was observed from batch C XRD analysis results shown in Figure 5.5 that the 

sample of RH ashed at 700C, 800 C 900 C and 1000 C for 12 hours consist of 

quartz and cristobalite, but with a significant proportion of sample being 

amorphous. RHA has been reported to be amorphous at ashing temperature of 

500C - 700 C with crystalline silica forming at temperature equals to or greater 

than 800°C (Agrawal, 1989). The appearance of peaks due to quartz and 

cristobalite in the diffractograms reveal that, in sample C, a small quantity of 

crystalline silica is found after ashing at 700 C, in contradiction of Agrawal's 

findings. However Chopra et al (1981) reported that some of the amorphous silica
o

in RHA transformed to crystalline quartz after heating for up to 12 hours at 700 C. 

The very high peak on RH ashed at 800 C must have occurred as a result of 

diffraction due to the crystalline transformation of the material into quartz. 

However, the dirt blended with batch C initial RH must have contributed to RHA 

silica of formation of crystalline silica. All spectra peaks in figure 5.5 matches the 

ICSD reference codes: 01-083-2465, 01-033-1161 and 01-085-0335 of silicon 

dioxide. See appendix 1 for used reference code.
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F ig u r e  5 .5 : O f fs e t  X R D  D if fr a c to g r a m  o f  R H A . (S y m b o ls  Q  a n d  C  m e a n s  p e a k  p o s it io n s  o f  

Q u a r tz , A m o r p h o u s  a n d  C r is to b a l i t e  r e s p e c t iv e ly ) .

5.2.3 Thermal analysis on RHA
Samples o f rice husk (both as-produced and ground) underwent

thermogravimetric (TG) analysis using a TGA/DSC1 Gas Controller GC100
o #

Mettler Teledo at heating rate o f lOC/m in. Two starting states were used to 

investigate the effect o f initial particle size on the ashing process. In all samples, 

volatile organic substances (cellulose, hemicellulose and lignin) contained in the 

RH started to be driven o ff at 40 C; the process was completed at 117 C, as shown 

in Fig. 5.6. It was seen that 4.60% and 4.98% (0.50mg and 0.66mg) o f the

substance lost in the process for "raw" rice husk and ground rice husk respectively.
° °

Carbonization occurs between 117 C and 300 C to yield black rice husk ash with 

very little loss in mass. Decarbonization occurs rapidly between 300 C and 500 C 

with very high percentage weight lost up to 63% (7.06mg) and 56% (7.47mg) for 

"raw" RH and ground RH respectively.
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Figure 5.6: Thermogravimetric analysis offset curves of raw rice husk (RRH) and ground 
rice husk (GRH).

These results show that a greater proportion of carbon and volatile organic 

substances are removed from the "raw" rice husk. I postulate that this is impact 

due to the release of some volatile organic compounds as result of increase in 

exposed surface from grinding. The settling of the finer particles may also reduce 

the penetration of oxygen to some of the sample resulting in incomplete 

combustion

5.2.4 Scanning electron microscopy (SEM)
The Secondary electron images obtained using FEI Nova Nano SEM 200 reveals

in Fig. 5.7 some selected forms and microstructures of RHA independent of batch 

temperature and time. It was observed from Fig. 5.8a that undamaged RH after 

ashing between 700 and 1000°C possesses a finger-like shape made up of inner 

honeycombed structure as in Fig. 5.8b and a thick outer surface skin-like well- 

organized corrugated structure in nature as shown in the micrographs of Figure 

5.8c surface morphology. These observations are in agreement with those made 

by Ikram and Akhter (1988). The porosity shown in Fig. 5.8d with honeycombed 

structure of the RHA is responsible for its high specific surface area; the increased 

reactivity that is a consequence of the high specific surface area reduces the time 

needed for leaching process to be effective and highly suitable for 

hydrometallurgical purification.
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(b )  p o r o u s , h o n e y c o m b - l ik e  s tr u c tu r e , (c )  w e l l -o r g a n iz e d  o u te r  c o r r u g a te d  s t r u c tu r e ,  (d )  th e  

s tr u c tu r e  w ith  m a n y  r e s id u a l p o r e s  o f  la r g e  in te r n a l s u r fa c e  a r e a .

5.2.5 Attenuated total reflection Fourier transform infrared (ATR-FTIR) 
spectroscopy

Samples o f rice husk and rice husk ash underwent ATR-FTIR analysis using a 

single reflection diamond ATR cell (Graseby Specac, UK), which has the trade 

name “Golden gate”. Samples o f RH and RHA were pressed on top o f the 

diamond ATR crystal and their spectra were collected. To collect and analyse the 

spectra, OMNIC software (version 7.3) was used. Fig. 5.8 shows the resulting 

ATR spectra for the samples o f raw RH and the ash silica for batch C heated at 

700, 800, 9000 and 1000°C (in order to see the differences, spectra were off-set). 

As can be seen, there are strong absorption peaks at ~789 cm "1 and 1040 cm-1, 

just as those from commercial grade silica, indicating the presence o f silica which 

slightly varied from that o f the rice husk with 789 and 1030 cm -1 . For the various 

heating rates, the ATR spectrum shows no significant changes in the peak position. 

However, the intensity o f  the peaks for 700 and 800°C (amorphous silica) were
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higher and almost o f same intensity compared to that o f crystalline silica (900°C), 

indicating that the amorphous silica yield decreased with increasing heating rate 

above 800°C. The intensity later increase with increase heating to 1000°C which 

is consistent with the results o f reaction characteristic analysis, as indicated by 

some XRD diffractogram. This inferred that sample is almost entirely crystalline 

in nature.

—— orig inal RH

Wavenumber (cm 1)

F ig u r e  5 .8 : A T R  s p e c tr o g r a m  o f  R H  a n d  R H A . (a )  o r ig in a l s p e c tr a , (b )  o f f - s e t  sp e c tr a .

5.3 Impurities evaluation using XRF and ICP
Looking at the XRF results o f RHA batch A impurities represented in table 5.7 as

extracted from table 5.4, it showed quantitative evaluation o f some major 

elemental contaminants o f metallic impurities contained in rice husk silica such 

as; Na20 , MgO, P2O5, AI2O3, SO3, K20 ,  CaO, M n30 4  and Fe20 3  present in their 

compound form in weight percentage for different heated temperature.
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Table 5.7: Impurities in batch A

Compounds wt % A700 A800 A900

k 2o % 0.36 0.38 0.37

CaO % 0.37 0.35 0.35

MnO % 0.02 0.03 0.03

Fe2 0 3 % 0.07 0.05 0.06

P2O2 % 0.15 0.16 0.39

Na20 % 0.48 0.30 0.32

MgO % 0.11 0.00 0.26

a s 2o 3 % 0.33 0.29 0.29

a i2o 3 % 0.18 0.19 0.25

Zr02 % 0.02 0.02 0.02

S03 % 0.20 0.20 0.18

total impurity % 2.29 1.97 2.52

standard
deviation

% 0.1555 0.1425 0.1389

The batch A impurity represented results showed individual impurity quantity 

with K20 , CaO, Na20 , A12C>3, SO3 and AS203 contributing bulk of the impurity, 

MnO, Fe0 3  and Zr02 are at trace level. Looking at the total impurity of A700, 

A800 and A900 and their standard deviation, A900 having highest impurity of 

2.59 wt % seems to have the least standard deviation of 0.1389 wt % compare to 

total impurities of 1.97 wt % and 2.29 wt % for A800 and A700 with standard 

deviation of 0.1425 and 0.1555 wt % respectively. This infers that A900 has a 

better estimated silica impurity than for A700 and A800.
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Table 5.8: Impurities in batch B

Compounds 
(wt %)

B700 B800 B900 B 1 0 0 0

K20 1.04 0.83 0.96 0 . 8 6

CaO 0.75 0.77 0.73 0 . 6 8

Mn3 0 4 0 . 1 2 0 . 1 2 0 . 1 1 0 . 1 1

Fe203 0 . 1 1 0 . 1 0 0 . 1 1 0.08

P2O5 1.09 1.09 1 . 0 1 0.85

Na2 0 0.09 0.08 0 . 1 1 0.08

MgO 0.69 0.69 0 . 6 6 0.59

AI2O3 0 .1 2 . 0 . 1 1 0.18 0.09

Ti0 2 0 . 0 2 0 . 0 1 0 . 0 2 0 . 0 2

S 0 3 0.36 0.33 0.25 0.25

B (ICP) 0.27 0.48 0 . 2 2 0.23

Total
impurities

4.66 4.61 4.36 3.84

standard
deviation

0.3983 0.3737 0.3702 0.3379

The XRF of batch B RHA impurity results represented in table 5.8, showed 

individual impurity quantity with K2O, CaO, Na2 0 , AI2O3 , Fe0 3 , Mn3 0 4 , P2O5, 

SO3, AI2O3 and B contributing bulk of the impurity and Ti0 2  appears in trace level. 

Looking at the total impurity of B700, B800, B900 and B1000 with their standard 

deviation, it shows that B 1 0 0 0  has the least average impurity and standard 

deviation of 3.84 and 0.3379 wt % respectively, followed in descending order by 

B900, B800 and B700 with 4.36/0.3702, 4.61/0.3737 and 4.66/0.3983 wt % 

respectively. These indicates that B1000 produces rice husk with least impurity 

and better impurity distribution compared to B900, B800 and B700 in descending 

order. This may be due to reaction of the raw rice presence with temperature 

during ashing.
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Table 5.9: Impurities in batch C

Compounds (wt %) C700 C800 C900 Cl 0 0 0

k 2o 0.43 0.27 0.49 0.25

CaO 0.48 0.44 0.50 0.44

Mn30 4 0.05 0.04 0.06 0.05

Fe20 3 0.15 0.13 0.24 0 .1 0

P2O5 1.03 0.74 1.11 0.70

Na20 0.16 0.08 0 .2 0 0 .2 2

MgO 1.20 0.50 0.64 0.58

A120 3 0 .6 8 0.33 0.44 0.24

T i02 0.04 0.03 0.08 0 .0 2

S 0 3 0.36 0.33 0.25 0.25

Zr02 0 .2 0 0.19 0 .2 0 0 .2 0

BaO 0.01 0.01 0 .0 2 0 .0 2

B (ICP) 0.52 0.57 0.58 0.51

Total impurities 5.31 3.66 4.81 3.58

standard
deviation

0.3766 0.2658 0.3060 0.2596

The XRF of batch C RHA impurity results represented in table 5.8, showed 

individual impurity quantity with Mn3 0 4 , K2O, CaO, AI2O3, Fe2C>3, P2O5, S0 3 , 

AI2O3 MgO, Zr0 2  and B contributing bulk of the impurity. Na2 0 , Ti0 2  and BaO 

appear in trace level. Looking at the total impurity of C700, C800, C900 and 

C l0 0 0  with their standard deviation, it shows that C l0 0 0  has the least average 

impurity and standard deviation of 3.58 and 0.2596 wt % respectively, followed 

by C800 with 3.66 and 0.2658 wt %, next by C900 with 4.81 and 0.3060 before 

C700 with highest average impurity and standard deviation of 5.31 and 0.3766 

wt % respectively. This indicates that C l000 produced silica with the least and 

best estimated impurity. Observation from table 5.7, 5.8 and 5.9 showed that RH 

produces silica impurity can be as low as 1.97 wt % for clean RH as batch A800 

and up to 5.31 Wt % for unclean RH as C700.
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Purification process
In order to remove these major metal impurities above, a low cost process known 

as hydrometallurgy leaching treatment involving addition of 0.8cm3 of 16M 

HNO3 to 15g RHA and heating at 700°C for lhr was used. All processing was 

carried out in fume cupboards to minimize the health risk associated with 

crystalline silica. The products were rinsed using deionized water, filtered and 

dried. The samples then underwent a digestion using 5M HC1 acid for 120 

minutes at 95°C on hot plate with constant agitation from a magnet rotated at 300 

rpm. The residues of digested samples were filtered using Whitman paper and 

then dried in an oven for lhr at 110°C. The material was rinsed in deionized water 

until the rinse water had a pH of between 7 and 7.4, The residue was filtered and 

dried in an oven for lhr at 110°C. The purity obtained is tabulated in table 5.10 

(batch B) and 5.11 (batch C).

Table 5.10: Impurities after leaching batch B

Compounds B700 B800 B900 B 1 0 0 0

K20 0.03 0.17 0 . 2 0.17

CaO 0.06 0.08 0.13 0.16
Mn304 0.04 0.03 0.05 0.08

Fe0 3 0 0 . 0 1 0 . 0 2 0 . 0 2

P2O2 0.14 0.09 0 . 1 2 0 . 1 2

Na20 0 . 0 1 0.04 0 . 0 2 0 . 0 2

MgO 0 . 1 2 0.15 0.27 0.34
AI2O3 0 . 0 2 0 . 0 2 0 . 0 2 0.04

S0 3 0.34 0.24 0.26 0.36

B 0.06 0 . 1 1 0.18 0.4
Total

impurities
0.82 0.94 1.27 1.71

It is clearly seen that the RHA silica C700 was the purest with silica up to 99.51% 

pure; while C800 was next in purity by 99.28%, C l000 was least with 98.79% 

which is only 0.30% less pure than C900. These results are due to the fact that 

C700 silica is more amorphous in nature and more chemically reactive than 

C l000 that is least chemically reactive. This implies that the chemically reactivity 

decreases with increase crystallinity in RHA silica and is in agreement with 

(Mehta, 1977). Looking at the XRF leached impurity results of batch B presented 

in table 5.10, the statistical computation of its impurities mean, impurities



standard deviation and impurities standard error showed that while B700 has least 

average impurity of 0.0820 wt %, B800 however has the least impurity standard 

deviation and impurities standard error of 0.0747 and 0.0236 respectively This 

indicates that although B700 silica was highest in purity after leaching, B800 has 

the best leached individual impurities compared to B700, B900 and B1000. From 

the XRF and ICP leached RH silica results of batch C presented in table 5.11, it 

was observed that C700 has the least average impurity, impurity standard 

deviation and impurity standard error of 0.0445, 0.0611 and 0.0193 wt % after 

leaching respectively. This indicates that apart from C700 silica being the purest 

for batch C, its individual impurity compound reaction to leached treatment was 

the best compared to C800, C900 and C l000 respectively.

Table 5.11: Impurities after leaching batch C

Compounds
(wt%)

700 C800 C900 C1000

K20 0 . 0 0 0.03 0.03 0.04

CaO 0 . 0 1 0.03 0.03 0.04
Mn3 0 4 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1

Fe0 3 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 2

P2O2 0 . 1 2 0 . 1 2 0.14 0 . 2

Na20 0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 2

MgO 0 . 0 2 0.05 0.06 0.09
AI2O3 0.09 0.16 0.18 0.16

Ti0 2 0 . 0 0 0 . 0 1 0 . 0 1 0 . 0 1

S 0 3 0.18 0.18 0.18 0.18

B 0.06 0 . 1 1 0.18 0.4

Total impurities 0.49 0.71 0.85 1.17
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5.4.1 pH Neutralization
In order to neutralize the acidity o f the treated RHA silica contained from the

leaching techniques discussed in chapter 4.5.1 - 4.5.5, the leachates were rinsed in 

1000ml deionized water and filtered for batches A, B and C samples. The rinsing 

process was repeated until pH o f water indicates 7 - 7.4. Figure 5.8 shows the pH 

o f the rinse after each rinse for batch C. Data from other batches showed similar 

trends.

pH of rinse water for batch C after acid leaching10
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I  6 
Q.

5 No o f rinse
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2 4 5 6 7  , . 8 
N o  o f  r in se

91 3

F ig u r e  5 .9 :  p H  n e u tr a liz a t io n  o f  b a tc h  C  a c id  le a c h e d  R H A

5.4.2 Effect of individual processing steps
The diffractograms in figures 5.10 - 5.13 show the effect o f the different

purification steps on the crystallinity o f batch C samples. It was seen from the 

diffractograms that amorphous rice husk ash leached on hot plate with deionised 

water for 120 minutes through constant stir with a magnetic stirrer yield a 

spectrum with crystalline nature. In this respect, the presence o f water or moisture 

makes structures o f amorphous cellulose samples become unstable and usually 

later form partial crystalline material. Most cellulose materials like rice husk 

consist o f crystalline and amorphous domains in varying proportions depending 

on source (Ciolacu et al, 2010). The physical properties, chemical behaviour and 

reactivity o f contained cellulose strongly influences the arrangement o f the 

molecules with respect to each other. The addition o f nitric acid to the leachate 

was seen to increase the reflectivity o f the chemically reactive RH silica ash at 

700 and 800°C as well as boost the peaks intensity, especially the strongest peak.
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The nitric acid seems not to have effect on the samples ashed at 1000°C nor 

change the phases o f its original RHA or leached crystal phases.

Purification of C700 C70C1600
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1200 C70C HCI le s rh e d

1000

800

600

400

200

6040 5010 20 30
2 0  (deg)

F ig u r e  5 .1 0 :  O f fs e t  X R D  d if fr a c to g r a m s  o f  C 7 0 0  d u r in g  d if f e r e n t  s te p s  o f  p u r if ic a t io n  

p r o c e s s , ( sy m b o l Q  m e a n s  p e a k  p o s it io n  o f  q u a r tz ) .  IC S D  r e f e r e n c e  c o d e  0 1 -0 8 3 -2 4 6 5  u se d
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p r o c e s s . (S y m b o ls  Q  m e a n  p e a k  p o s it io n s  o f  Q u a r tz ) .  IC S D  r e fe r e n c e  c o d e  0 1 -0 3 3 -1 1 6 1  u se d .
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5.4.3 Effect of leaching on RHA
The concentration o f major metallic contaminants identified by XRF and ICP

analysis are listed in tables 5.7, 5.8 and 5.9. The hydrometallurgical leaching for 

each step o f purification process were also analysed using XRF and ICP. Batches 

B and C were plotted with the results presented in figure 5.14a-e as a fraction o f 

the initial impurity level.

B a tc h  B  a n d  C

S 0 3 -B  

S 0 3 -C  

F e 2 0 3 -B  

F e2 0 3 -C

-  4 0

RHA ^Leachat^03

B a tc h  B  &  C

too r
8 0

6 0
— ♦ — CaO-B

4 0
CaO-C

20
T i02-C

0
RHA H N 0 3  HCI

L e a c h a te

B a tc h  B  &  C
M gO-B
M gO-C
P 2 0 5 -B
P 2 0 5 -C.tS60

B a t c h  B  a n d  C
N a 2 0 -B
N a 2 0 -C
A I205-B

A I205-C

H N 0 3  HCI
L e a c h a te

60

RHA H N 0 3  HCI
L e a c h a te

B a tc h  B  &  C
100

Mn304-B

Mn304-C80u
3a
E

K20-B

K20-C

40

HCIH N 0 3RHA Dl
L e a c h a te

F ig u r e  5 .1 4 : g r a p h s  o f  im p u r ity  c o n te n t  fo r  e a c h  p u r if ic a t io n  s te p s . (S y m b o ls  a , b , c , d  a n d  e r e p r e s e n ts  

g r a p h  o f  p u r if ic a t io n  s te p s  fo r  S 0 r - F e 20 3, C a 0 - T i 0 2, M g 0 - P 20 5, N a 20 - A l 20 5 a n d  M n 30 4- K 20  fo r  

b a tc h e s  B a n d  C  R H A  r e s p e c t iv e ly )

149



Figures 5.14a-e illustrate near total removal o f some major impurities such as 

Ti02, Fe2C>3, K2O, Na20, MgO and CaO. Between 80 and 90% o f the P2O5, AI2O3 

and M n304 were removed. The removal o f SO3 was least (55%) which might be 

detrimental to SoG silicon. Figure 5.15a-d illustrates the leaching steps and partial 

removal o f boron (a dopant element) from batch B and C with high percentage 

purities as a result from treatment to rice husk ash. The removal o f  boron in figure 

5.15a plotted graph shows the possibility that 79% elimination o f boron is 

achievable from derived rice husk silica material for silicon preparation. Figure 

5.15b plotted graph o f rice husk ash at 800°C next RH ash at 700°C with 75% 

boron removal. The crystalline silica materials from rice husk ash at 900°C and 

1000°C yield least purity o f 70% and 73% for batch B and C as shown in figure 

5.15c and 5.15d respectively.
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Effect of each leaching processing steps on RHA purification 

Sample B rice husk ashed impurity content
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Figure 5.16: Effect of each processing step on the removal of impurities in batch B RHA as 
determined by X-ray Fluorescence analysis
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Figure 5.17: Effect of each processing step on the removal of impurities in batch C RHA as 
determined by X-ray Fluorescence analysis

It was seen that Dl water heated at 95°C for an hour can remove up to 50% of 

Na2 0  and K2O impurity while this seems to have very small or no effect on 

removing Fe2 0 3 . Thus, it implies Na2 0  and K20  are soluble in water. The
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addition of 0.8ml cone HNO 3 to 1 lg  dried RHA sample was to enable impurities 

not soluble in hot Dl water but rather soluble in cone NHO 3 be removed after 

reheated at 700°C in furnace before re-leaching in HCI and then given repeated 

rinsing and then drying. The effect from analysis results of figure 5.16 and 5.17 

shows that further reduction of impurities in almost all trace elements present was 

achievable. The RHA purification processes yield 99.18% and 99.51% of silica 

for batch B and C respectively, removal of many metallic trace impurities is 

significant: MgO (98.33%), A120 3 (96.77%), Mn30 4 (80%), S 0 3 (55%), CaO 

(97.92%), B (73.91%) and P2O5 (88.34%) are removed by leaching for batch C. 

Impurities such as Na20 , Fe2 0 3  and K20  are almost completely leached out 

beyond detection of the XRF as shown in figure 5.16 after the final processing 

step.

5.4.4 Effect of heat on mass of ash silica
Sample of RH ash at 700°C underwent thermogravimetric (TG) analysis using a

TGA/DSC1 Gas Controller GC100 Mettler Toledo at a heating rate of 10°C/min 

up to 1000°C. The observed thermal behaviour of rice husk ash and leached rice 

husk ash during pyrolysis performance in argon atmosphere is shown in figure 

5.18a-d.
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Figure 5.18: present residual unburnt carbon, a) C700 RHA. b) C700 leached RHA. c) 
C700 HNO3 leached RHA and d) C700 HCI leached RHA
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The plotted graphs for a, from investigation shows that the ashed silica still 

contains volatiles which constitute approximately 11.33% between 28°C and 

115°C for unleached RHA, this volatiles reduces to 2.83% after using the leaching 

steps in figure b, c and d. Thus, the unbumt carbon component estimated as loss 

on ignition (LOI) for the unleached RHA was seen to have reduced farther by 

approximately 0.06mg during combustion between 500°C and 900°C as shown in 

b, c and d leaching process.
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Figure 5.19: Present residual mass versus temperature after leaching, a) C700 is mass 
loss, devolatilization and slow combustion of RHA. b) C800 is mass loss, devolatilization 
and slow combustion of RHA. c) C900 is devolatilization and mass gain of RHA and d) 
C1000 is mass gain RHA.

The batch C RH ashed at 700, 800, 900 and 1000°C was pyrolyzed using the TG 

analysis at a heating rate of 10°C/min up to 1000°C as shown in figure 5.19a and 

5.19b. It shows that the RH ashed at 700 and 800°C still possessed some volatile 

contents as well as unbumt carbon on reheating. At 900°C, figure 5.19c shows 

that at a temperature of 159°C pyrolysis, the mass of RH ash was observed to 

have released all volatile and the mass of RH silica increases by a very small
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fraction. The RH ashed at 1000°C when pyrolyzed using TGA, was observed to 

have very little or no volatile released, before the mass of RH silica undergwent 

slight increase of 0.025mg with temperature change. This change or increase in 

mass might be due to change in momentum of RHA particle with temperature rise. 

Thus, Temperature is found to influence the surface area or size of RHA silica as 

show in figure 5.20.
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Figure 5.20: Present mass loss (removal of moisture), release of organic volatile matters 
(devolatilization), oxidation of fixed carbon (slow combustion) and mass gain

5.5 Summary
This chapter presented the source of utilised RH and discussed the physical and 

chemical compositions of the RHA contents obtained from analytical techniques 

such as XRD, XRF and ICP. Observed impurities in samples was purified and 

analysed to determine the effect of individual leaching steps on impurity removal. 

ATR-FTIR spectroscopy was used in this chapter to discuss effect of temperature 

on rice husk silica nature. Mass and LOI were also determined from TG analysis 

results.
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6 METALLURGICAL GRADE SILICON (MG-Si) DERIVED FROM RHA
6.1 Processing and Pyroprocessing of MG-Si from RHA

The purified rice husk ash for batches A, B and C ashed at 700, 800, 900 and 

1000°C after various solid-liquid extractions processes were dried in oven at 

110 C for 2hrs before allowing to cool down for 24 hours. The batch A700 and 

B700 was reduced in air at Sheffield Hallam University while batch C samples 

were taken to Xera Carb for pyrolytic reduction with magnesium powder in an 

atmosphere controlled furnace. At Xera Carb, the RHA silica was pulverized and 

thoroughly mixed with magnesium powder in a mortar at a ratio of RHA: Mg 

(l.Og: l.Og) to form mixture of magnesium and silica powder. 4.0g of each sample 

were transferred from the mortar to alumina crucibles for heating in an Ar gas 

electric furnace at a temperature of 800°C for 5 hours before cooling down to 

room temperature. The samples were removed from furnace and taken to the 

chemical laboratory in Sheffield Hallam University for hydrometallurgy treatment. 

At this stage the samples are described as MG-Si.

6.2 Hydrometallurgy process of MG-Si

Two days later 3g of derived MG-Si from RHA was measured into a mortar and 

0.4cm3 HNO3 added and heated in a furnace at 300°C for lhrs. It was allowed to 

cool down to room temperature before digested in 500ml of diluted 5M HC1 in a 

conical flask, given rotation of 300rpm with magnetic stirrer for 2 hrs at 95°C on 

hotplate. The MG-Si was filtered and dried using the Whitman filter paper. 2g of 

digested sample was leached in hot DI water given rotation of 300rpm with 

magnetic stirrer for 1 hr at 85 °C on hotplate, the residue from a Whitman filter 

paper was dried at 110°C for lhr before rinsing in a conical flask containing 

1000ml of DI water. The rinsing was done continuously for evening filtering until 

a pH of 6.5 was obtained. The elemental silicon residue from the final solution 

with pH 6.5 was dried at 110°C for 1 hr in an oven and then transferred to a 

desiccator to cool down for 72 hours before taken for analysis. The results from 

XRF, XRD, SEM, Raman, TEM, ICP-OES etc. are tabulated or presented below.

6.3 MG-Si derived from RHA Results and Discussions
Results reported below are limited to derived MG-Si from rice husk prepared at

the Sheffield Hallam University, Sheffield, United Kingdom. The chemical 

composition of this MG-Si was analysed by XRF available at MERI, SHU and
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ICP-OES at Element Materials private laboratory in Sheffield. These data are 

summarized in Tables 6.1, 6.2 and 6.3. The example actual experimental data 

print-out for batch C is given in appendix 2.

Table 6.1: Quantitative analysis of highest purity batch A700 derived MG-Si using X-ray 
fluorescence (XRF).

Elements MG-SiA700 (wt %)

Si 98.45
Al 0 . 1 1

K 0.09
Ca 0.06
Ti 0.03
Fe 0 . 1 1

Cu 0 . 0 2

Mg 1.13
total impurity 1.55

Table 6.2: Quantitative analysis of highest purity batch B700 derived MG-Si using X-ray 
fluorescence (XRF) and Inductive couple plasma optical emission spectrometry (ICP-OES) 
technique

Elements MG-Sis7oo (wt %)

Si 98.66
Al 0 . 1 2

K 0 . 1

Ca 0.06

P 0 . 1 2

Fe 0 . 1 1

Cu 0 . 0 2

Mg 0.59
B 0.22 by ICP-OES
total impurity 1.34

The XRF analysis results for MG-Si derived from RHA batch A700 and B700 

after leached are presented in table 6.1 and 6.2. The results indicate a Si yield of 

98.45 and 98.66 wt % respectively, which is in agreement with the required value 

for metallurgical-grade silicon (Pizzini, 1982). Looking at the impurities detected 

in batch A, Al, K, Ca, Ti, Fe, Cu and Mg were observed using XRF. B is too light 

for detection with this technique. Apart from P and B which are dopant elements 

and are difficult to remove, the high amount of Al and Mg are due to Al
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introduction into the sample from alumina crucible during heating and reacting of 

Si with excess of Mg during reduction process respectively. Table 6.3 showed 

XRF and ICP extracted results from appendix 2, represented as batch C MG-Si 

derived from RH ashed at 700, 800, 900 and 1000°C with the last column 

showing results for commercial grade silicon (SiCom) powder of -325 mesh 

particle size purchase from Sigma Aldrich, Uk. The results indicate that all 

derived silicon are metallurgical-grade. None of the RHA derived material 

reached the purity of SiCOm (99.72 wt %). The MG-Sic7oo derived silicon has 

highest purity of 98.82 wt %, followed in ascending order of temperature by MG- 

Sic8oo with 98.77 wt %, next by MG-Sic9oo with 98.64 wt % and the least MG- 

Siciooo with 98.63 wt %. The major impurities are Na, Mg, Al, Cl, Fe and B. It was 

observed that P for all batches C MG-Si was reduced below the detection limit of 

XRF except for MG-Sicsoo with 0.01 wt %. S was not detected. The high value of Al, 

Mg and Cl are due to used alumina crucible, excess Mg during silica reduction and HC1 

leaching process respectively.
Table 6.3: Batch C Quantitative analysis of all obtained elements in MG-Si derived from 
C700, C800, C900 and C1000 using X-ray fluorescence (XRF) and Inductive couple plasma 
optical emission spectrometry (ICP-OES) techniques for B only

Element (%) MG-Sicyoo MG-Sicsoo MG-Sic9oo MG-Siciooo M G -Sicom

Si 98.82 98.77 98.64 98.63 99.72

Na 0.2 0.18 0.29 0.22 0.09

Mg 0.29 0.26 0.21 0.31 ND

Al 0.23 0.15 0.24 0.16 ND

P ND 0.01 ND ND ND

S ND ND ND ND ND

Cl 0.17 0.28 0.22 0.33 0.07

Fe 0.07 0.1 0.1 0.08 0.02
B 0.22 0.25 0.3 0.27 0.1
total impurity 1.18 1.23 1.36 1.37 0.28
ND: not detected
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6.3.1 Qualitative analysis of derived MG-Si from RHA and Commercial grade Si 
using X-ray diffraction (XRD)

M g M g 2Si

M g O  M g2SiM g 2Si

M g 2Si

Figure 6.1: Offset X-Ray diffractograms for batch A RHA reduced with magnesium and a 
commercial grade Si (symbols Si, Mg2Si, M gO  and S: Peak positions o f  silicon, silicide, 
Magnesium oxide and spinel respectively).
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Figure 6.2: Offset X-Ray diffractograms for batch C RHA reduced with magnesium and a 
commercial grade M G-Si (symbols Si, Mg2Si, M gO and S: Peak positions o f  silicon, silicide, 
Magnesium oxide and spinel respectively).
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The XRD pattern in figure 6.1 and 6.2 showed the typical phases identified in the 

MG-Si derived from metallothermic process of rice husk silica reduced with 

magnesium powder and some by-products other than silicon. The reaction 

products observed apart from silicon are magnesium silicide (Mg2Si) and spinel 

(MgA^C^). These by-products irrespective of their amounts presented in the 

phases of difffactogram spectra have detrimental effect on silicon yield. Grinding 

of RHA before reduction and acid leaching, increase the exposed surface of 

derived RHA MG-Si. This help in enhancing material purification.

6.3.2 Qualitative analysis of derived MG-Si for B1000 using transmission electron 
microscopy (TEM)

500 nm

Figure 6.3: (a) Bright-field TEM micrograph of a particle of RHA-derived silicon, (b) Ring 
diffraction pattern obtained from selected area of particles of RHA-derived silicon

The micrograph of figure 6.3a shows that the RHA MG-Si is in agglomerate of 

tiny flakes up to 0.5pm in diameter. The ring diffraction from figure 6.3b shows 

that the RHA MG-Si consists of fine polycrystalline material with no obvious 

texture. Some of the crystallites within the RHA MG-Si are as small as 20nm in 

diameter, which is in agreement with the calculated results in appendix 3a-e that 

showed nano-particle sizes of RHA-derived Si for batch C using Scherrer’s 

formula to evaluate their XRD parameters.
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6.3.3 Morphology of MG-Si from RHA

Figure 6.4: Micrographs o f  the outer and inner surfaces o f  M G-Si from RHA. (a) Finger-like  
shape M G-Si with asperities and cracks, (b) Corrugated outer epidemic o f  M G -S i with  
asperities, (c) A  thick skin-like outer surface o f  M G-Si with deposit o f  leached off  debris, (d) 
& (e) Aggregated, multiphase M G-Si particle.

The micrographs o f figure 6.4 show that the roughness o f outer and inner surface 

o f batch C700 have undergone no significant change during the reduction process. 

The slight change that occurred is due to RHA pulverization, reduction to silicon 

and HC1 acid digestion treatment that increased the brittleness and weaken the 

particle, thereby causing wearing o f asperities on the outer particle surface as well 

as cracking presented in the micrographs a, b and d. Figure c and e showed that 

the derived MG-Si had due to combustion and reaction aggregated, multiphase
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and develop relatively small-size particle. The micrograph c and e are similar 

morphology for C700 and C800 respectively.

6.3.4 X-ray Mapping using Energy Dispersive X-ray Spectrometer (EDS) of MG- 
Si
In order the understand the spatial distribution o f specific elements in batch B and 

C o f derived MG-Si, the micrographs presented in figure 6.5(a) —> 6.9(a) are 

results to show that energy dispersive x-ray spectroscopy was used to generate 

composition maps for Mg, Si, Al and O using K a l lines, these maps are illustrated 

in figure 6.5(b) —>e for B700 and 6.6(b) —>d for C700 to C l 000 respectively.

Figure 6.5: X-ray mapping o f  B700 MG-Si. (a) EDS micrograph o f  Si sample derived from  
RHA. (b) M g mapping o f  Si sample, (c) Si mapping o f  Si sample, (d) Al mapping o f  Si sample,  
(e) O mapping o f  Si sample.

the EDS analysis o f derived MG-Si for batch C700 —>C1000 confirmed the 

present o f Al and Mg impurities in all samples o f batch C MG-Si. Hu et al (2013) 

reported that Al, Mg, Ca and P impurities were detected in the microstructure 

phase o f their refined silicon after their refining process and that P was removed 

in the microstructure phase after the refined work. The EDS results o f this work 

further confirmed XRF non detection o f P in all batch C derived silicon. Zhao et 

al (2011) reported that MG-Si impurities P and B are solidly dissolved inside the 

Si matrix and even when crushed and acid leached, P cannot be removed except 

by solvent refining and B is too light to be detected by XRF. So, I have mainly 

concentrated on P within the refining process. Contrary to Zhao et al (2011), none
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o f the EDS mapping impurity phase or analysis spectra for B700 or C700 ->1000 

showed the presence o f P in this work. This indicate that P impurity in MG-Si 

derived from rice husk ash can be removed beyond SEM and EDS detection limit.

Electron Image 2

250nm

M ap  S u m  S p e c tr u m  

Wt% o

Figure 6.6: X-ray mapping o f  an impurity phase in batch C700 derived M G-Si (a, b, c and d) 
and EDS analysis e
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Figure 6.7: X-ray mapping of an impurity phase in batch C800 derived MG-Si (a, b, c and d)
and EDS analysis e
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Figure 6.8: X-ray mapping of an impurity phase in batch C900 derived MG-Si (a, b, c and d)
and EDS analysis e.
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Figure 6.9: X-ray mapping of an impurity phase in batch C1000 derived MG-Si (a, b, c and
d) and EDS analysis e.
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6.3.5 Thermal effect on MG-Si

10.1

E

I 9.7

9.6

200 300 500 600 700 800 900 10000 100

D H ,0 Leached Mg Si

128 228 328 428 528 628 728
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Figure 6.10: Present derived M G-Si residual mass versus temperature, (left) mass loss and  
devolatilization o f  MG-Si. (right) Slow combustion and mass gain

The observed thermal behaviour o f derived MG-Si for C700 leached and 

pyrolysed under argon atmosphere o f TG instrument. The results shown in figure 

6.10 represent the plotted graphs for the MG-Si and its leached and dried product. 

The graph on the left showed that the MG-Si contains volatiles and moisture 

which constitute approximately 0.74mg. However, the volatiles and moisture 

tends to reduce to 0 after all applied leaching steps. Thus, the leached MG-Si 

graph on the right showed very little or no farther reduction between room 

temperature and 148°C. Thereafter, an increase in mass o f the Si by 

approximately 0.03mg during combustion between 148°C and 1000°C.

6.3.6 Particle size effect on MG-Si

.OOE+03

.OOE+03

.OOE+OO

Figure 6.11: Raman spectra of polycrystalline silicon derived from RHA batch C at different 
temperature. Using laser power of 5mW  and wavelength o f  532nm
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The figure 6.11 show a set of representative Raman spectra run under same 

conditions for all samples of batch C silicon produced under different temperature. 

The Raman instrument used is Thermo Scientific, DXR2 Raman Microscope, 

USA product. It was observed that C700 and C800 silicon powder shift farther 

away from the frequency of single crystal silicon value 520 cm'1 toward 

amorphous silicon of lower frequency value 480 cm'1 and become more broaden 

than the crystalline silicon. The line that passes through C700 and C800 of the 

spectra peak occurs at frequency value 505 cm'1 indicating C900 and C l000 with 

frequency value 513.5 are more crystalline in nature then the latter. The downshift 

of frequency and spectral broadening are indicative of small crystallite size 

smaller than ~ 300 A. These observations are in agreement with those made by 

Campbell and fauchet (1986), Iqbal et al (1981).

6.4 Refined silicon composition
The concentration of different impurities in ground refined Si-Sn powder and

centrifuged sample was analyzed with SEM and EDS. The result for the ground 

refined Si-Sn powder showed in figure 6.12 and 6.13 indicate the present o f Sn in 

the alloyed powder sample whereas, the result of centrifuged alloyed powder 

presented in figure 6.14 and 6.15 indicated that Si was successfully separated 

from Sn

i . Spectrum 6 

Wt% a

2 —

1 —

koV10

Figure 6.12: The EDS analysis of impurities in Si-Sn refined alloy powder.
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Electron Image 11
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Figure 6.13: The microstructure o f  impurity phases in refined Si-Sn alloyed powder



Figure 6.14: The microstructure o f  impurity phases in centrifuged refine Si-Sn alloyed  
powder
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Figure 6.15: The EDS analysis of impurities in Si refined from Si-Sn alloy powder.

6.5 Summary
This chapter demonstrated that reduction of RHA silica to MG-Si was achievable 

using magnesium metal as a preferred selected metal for metallothermic reduction. 

Hydrometallurgy leaching process was also discussed and the results presented 

show a noticeable removal of impurities in MG-Si. The total amount of MG-Si 

obtained after leaching process was about lg; it implied that a bit over 90% was 

used for analysis or loss during decanting or filtering of leached solution. The 

chapter finally presented and discussed the X-ray mapping technique results of 

refined Si-Sn alloy powder as well as the result of its centrifuged separation.
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7 Conclusion
The work demonstrated that a low-energy and economically viable technological 

purification process to purify RHA silica at a temperature below 300°C is 

achievable due to its high reactivity using leaching in HNO3 , dilute HC1 and hot 

water. This is contrary to earlier work on RH or SiC>2 . The energy required for 

industrial scale purification of RHA is estimated at 5KWh Kg' 1 for final silicon 

material produced, greatly less than the 65KWh Kg' 1 of current Siemens 

chlorination plant (Doe 2012, Feldman 2014 and Pizzini 2012).

The work shows that dopant impurity B was reduced using hydrometallurgy 

process. Results from other works showed that the dopant elements removal 

without solvent refining process is not possible. Furthermore, P impurity was also 

seen to be reduced beyond the limit of XRF detection using mere acid leaching, 

which means that it is feasible to eliminate B and P.

The work shows that it is feasible for amorphous or crystalline silica to be reduced 

by magnesium metal at much lower temperatures below 800°C, as low as 550°C 

(Banerjee et al, 1982), than the conventionally used temperatures.

The work also shows that it is feasible for S to be removed alongside other 

impurities during reduction process.

The work demonstrated from comparison of the purity of commercial grade 

silicon and purify of the derived MG-Si from rice husk ash that the impurities 

present in the MG-Si is probably due to excess magnesium from the magnesium 

metal used and Aluminum from the alumina crucible used.

The work shows that it is feasible to separate Si from ground refined Si-Sn alloy 

using a centrifuge machine. Looking at the purity achieved from the work, the 

availability of rice husk as raw material, the low cost and low energy required to 

produce high purity MG-Si from RHA silica; I can conclude that although the 

produced silicon may not meet solar grade silicon requirements, its purity are 

higher than MG-Si and might require very little improvement to achieved solar 

grade silicon needed for solar cell production.
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7.1 Challenges encountered and Future work

7.1.1 Introduction
The cleansing of raw rice husk before ashing has always been a serious business,

as it demands a very good start to remove all mud and unwanted substance on the 

surface of the husk. More demanding yet is the ashing process that requires time 

and temperature control, not properly ashed rice husk will produce blackish rice 

husk ash due to the presence of large amount of carbon. The impurities within the 

ash required different processing steps for removal. To produce high purity Si, 

special techniques, such as alkali treatment, oxidation, digestion, leaching, etc., 

and equipment (aquabath, controlled atmosphere furnace ICP-OES, etc.) are 

required. Carrying out ashing, purification, metallothermic reduction and refining 

processes without these equipment was therefore a very difficult task. This 

chapter highlight the challenges encountered during the course of the research 

work. The corresponding measures taken to overcome these difficulties are also 

presented. Because the business of solar grade silicon is not an easy one, not all 

the desired work and results with respect to the solar grade silicon were achieved 

within the time available for this research work. The remaining work required in 

order to achieve these targets are also presented in this chapter as part of future 

work.

7.2 Challenges encountered in the course of this research
This section discussed several challenges encountered at different levels of the

research work that resulted to this thesis

7.2.1 Drying of RH material
In the course of trying to dry washed rice husk (the start material) used for the

research work, I have to use household gas cooker oven because of lack of 

sunlight in Sheffield or oven in the laboratory for the purpose. The husk was 

supposed to be dried at 35 to 40°C, instead it was dried at unknown temperature.

7.2.2 Ashing of RH material
In the course of thermal treatment to produce RHA for its silica contents, furnace

with controlled atmosphere is very important to prevent oxidation and external 

impurities from the materials been prepared. SHU clean room and the furnace 

with controlled atmosphere were no longer in use when I started my research. 

Thus, it took me over six months to get a normal furnace for the research and
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about 18 months before I got access to an Ar gas controlled atmosphere furnace. 

This means that all work involving furnace wasn't done under controlled 

atmosphere except for batch C reduction

7.2.3 Boron analysis
SHU had XRF instrument for elemental analysis. Unfortunately, boron was too

light to be detected by it and as such all batch A produce were done and analyzed 

using the XRF. Boron analysis of batches B and C were done at Element Material 

Company in Sheffield.

7.3 Future work
In future, due to shortage of purified derived MG-Si while research wasn't yet 

completed, it is advisable to produce up to lOOg of RHA and to start its 

purification process with at least 50% in order to avoid the situation of running 

into shortage of material at any stage.

Future work will need completion of the solvent refining process started in this 

work by using Sn as the gettering metal for any remaining B and P impurity. This 

is to enable the removal of dopant impurity B or P that dissolved inside the Si and 

to ease transfer into the molten Si-Sn alloy. Thus, recrystallized Si leaves the 

impurities in the liquid Sn. There are known or novel techniques for the separation 

of Si from Sn or Si-Sn liquid. Other metal as Al, Fe and Ca that has high affinity 

for impurities could be tried. Slagging or directional solidification technique can 

also be tried in future.

Future work will need the formation of RH MG-Si thin film or RH silicon ingot 

for solar grade silicon. An ohmic contact made to the rear face and Schottky 

contact to the front face to produce a solar cell will further boost the value of RH. 

If possible, during refining process, the recrystallizing Si from the alloy metal 

could be allowed to grow on an FTO glass by using a vacuum heat treatment 

furnace suitable for internal manipulation. The grown FTO/SoG-Si can be given 

Schottky contact on the front surface in order to characterize and evaluate if  the 

electrical properties suit that of a solar cell.
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Appendix 1: XRF data for C700, batch C

M a t e r i a l s  R e s e a r c h  I n s t i t u t e  
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H o w a r d  S t r e e t ,  S h e f f i e l d  S I  1WB
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0 . 0 7 3 0 . 0 9 3
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===.= L i g h t  E l e m e n t s  = = = = = = = = =  N o b l e E l e m e n t s  = = = = = = = = = =

L a n t h a n i d e s  ------------
S u m B e . . F 0 . 1 2 0 . 1 0 44  Ru < 5 7  L a <

4 B e 4 5  Rh < 5 8  C e <



5 B 4 6  P d < 5 9  P r
6 C 4 7  A g < 6 0  Nd <
7 N 7 5  R e < 6 2  Sm <
8 0 7 6  Os < 6 3  Eu <
9 F < 2 e 0 . 1 0 7 7  I r < 6 4 + G d

0 . 0 2 4 8  0 . 0 0 6 9
7 8 + P t 0 . 0 3 1 6 0 . 0 0 6 6  6 5 + T b

0 . 0 3 6 0  0 . 0 0 6 6
7 9 + A u 0 . 0 2 2 2 0 . 0 0 6 5  6 6  Dy <

67  Ho <
68  E r <
6 9  Tm <
7 0  Yb <
7 1  Lu

K n o w n C o n c =  0 REST = 0 D / S = 1 2 .. 8 0
B i n d e r
LOI =  9 9 .2 %  o f o r i g i n a l s a m p l e , a s c a l c u l a t e d f r o m  1 0 0 *  ( 1 -
0 . 1 0 0 / 1 2 . 8 0 0 )

1 7 7



Appendix 1: XRF data for C800, batch C

Materials Research Institute 
Sheffield Hallam University 
Howard Street, Sheffield SI 1WB

C:\UQ4\Steel\J0B\J0B.785 
Ben 800

2016-01-22

2400 Rh 60kV LiF220 Gelll T1AP 
C:\UQ4\Steel\ASC\Kdata.asc 2002-05-29
Calculated as 
X-ray path 
Case number 
Eff.Diam. 
KnownConc 
Rest
765.154 mg 
Dil/Sample

<
<2e

sum

..\ChData.asc 2001-11-06 
(Shape & ImpFc) : 1 Teflon

= No supporting film
Elements Matrix
Vacuum Film type
3 Unknown Dilution

23.0 mm Eff.Area
0 %
0 ' %

? Binder
means that the concentration is < 50 mg/kg
means wt% < 2 StdErr. A + or & means: Part of 100%

= 415.3 mm2

Viewed Mass

Sample Height = 1.07 mm

z
wt%

wt%
StdErr

StdErr Z wt% StdErr Z

29+Cu 0.0075 0.0021 52 Te
<2e 0.034
11+Na 0.18 0.069 30+Zn 0.0118 0.0017 53 I
12+Mg 0.26 0.08 31+Ga 0.0133 0.0050 55 Cs
<2e 0.070 ’
13+A1 0.15 0.11 32 Ge <2e 0.0052 56 Ba
14+Si 98.77 0.06 33 As < SumLa..Lu
0.08 0.12
15 P 34 Se <2e 0.0068 72 Hf
0.030 0.014
15+Px 0.0122 0.0015 35 Br <2e 0.0077 73 Ta
16 Sx < 37 Rb < 74+W
0.0158 0.0054
16 S 38 Sr < 75 Re
<2e 0.0072
17+C1 0.28 0.018 39 Y < 76 Os
<2e 0.0071
18+Ar 0.0146 0.0064 40 Zr <2e 0.015 77 Ir
19+K 0.0231 0.0045 41+Nb 0.032 0.016 78+Pt
0.0222 0.0097
20+Ca 0.0605 0.0050 42 Mo < 79 Au
<2e 0.010
21 Sc < 44 Ru < 80 Hg
22+Ti 0.0158 0.0018 45 Rh < 81 TI
23 V < 4 6 Pd < 82 Pb
<2e 0.011
24+Cr 0.0215 0.0034 47 Ag <2e 0.013 83 Bi
<2e 0.013
25+Mn 0.0099 0.0026 48 Cd < 90 Th
2 6+Fe 0.0164 0.0069 49 In < 92 U



27 Co < 50+Sn 0.044 0.020 94 Pu
<2e 0.012
28+Ni 0.0083 0.0022 51 Sb < 95 Am
<2e 0.012

==== Light Elements ===== ===== Noble Elements ===== =====
Lanthanides =======
SumBe.,.F 0 0.12 44 Ru < 57 La <2e 0.0069
4 Be 45 Rh < 58 Ce <
5 B 4 6 Pd < 59 Pr
6 C 47 Ag <2e 0.013 60 Nd

<2e 0.010
7 N 75 Re <2e 0.0072 62 Sm <
8 0 76 Os <2e 0.0071 63 Eu <
9 F < 77 Ir < 64 Gd

<2e 0.0078
78+Pt 0.0222 0.0097 65+Tb

0.0334 0.0077
79 Au <2e 0.010 66 Dy <

67 Ho <
68 Er <
69 Tm . <
70 Yb

<2e 0.0061
71 Lu

KnownConc= 0 REST= 0 D/S=16.32
Binder
LOI = 99.4% of original sample, as calculated from 100*(1- • 
0.100/16.321)
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Appendix 1: XRF data for C900, batch C

Materials Research Institute 
Sheffield Hallam University. 
Howard Street, Sheffield SI 1WB

C:\UQ4\Steel\J0B\J0B.786 
Ben 900

2016-01-22

2400 Rh 60kV LiF220 Gelll T1AP 
C :\UQ4\Steel\ASC\Kdata.asc 2002-05-29 ..\ChData.asc 2001-11-06
Calculated as 
X-ray path 
Case number 
Eff.Diam. 
KnownConc 
Rest
2200.000 mg 
Dil/Sample

<

Elements 
Vacuum Film type
3 Unknown Dilution 

23.0 mm Eff.Area
0 %
0 %

? Binder

Matrix (Shape & ImpFc) : 1 Teflon
= No supporting film

= 415.3 mm2

Viewed Mass =

Sample Height = 2.20 mm
means that the concentration is < 50 mg/kg

sum
Z

wt%

<2e means wt%

wt% StdErr 
StdErr

< 2 StdErr. 

Z

A + or 

wt%

& means: 

StdErr

Part of 

Z

100%

29+Cu 0.0133 0.0018 52 Te <
11+Na 0.29 0.061 30+Zn < 53 I <
12+Mg 0.21 0.09 31+Ga 0.0102 0.0037 55 Cs
<2e 0.023
13+A1 1.24 0.13 32 Ge < 56 Ba <
14+Si 98.64 0.06 33 As < SumLa..Lu
0.06 0.12
15 P 34 Se < 72+Hf
0.041 0.010
15+Px 0.0053 0.0012 35 Br < 73 Ta <
16+Sx < 37 Rb <2e 0.0046 74 W <
16 S 38 Sr < 75 Re <
17+C1 0.215 0.015 39 Y < 76+Os
0.0147 0.0045
18+Ar 0.0114 0.0056 40 Zr <2e 0.0063 77 Ir <
19+K 0.0125 0.0025 41 Nb < 78+Pt
0.0232 0.0072
20+Ca 0.0107 0.0040 42 Mo < 79+Au
0.0223 0.0075
21 Sc < 44 Ru <2e 0.0039 80 Hg <
22+Ti 0.0213 0.0019 45 Rh < 81 T1 <
23 V < 4 6 Pd < 82 Pb
<2e 0.0055
24+Cr 0.0200 0.0030 47 Ag < 83 Bi •
<2e 0.0078
25+Mn 0.0133 0.003 48 Cd < 90 Th
26+Fe 0.0958 0.0068 49 In < 92 U
27 Co < 50+Sn 0.0151 0.0067 94 Pu
<2e 0.0050
28+Ni < 51 Sb < 95+Am
0.0104 0.0049



===== Light Elements ======= ==== Noble Elements = = = = = = = = = =

Lanthanides -------
SumBe..F 0.05 0.11 44 Ru <2e 0.0039 57 La <
4 Be 45 Rh < 58 Ce <
5 B 46 Pd < 59 Pr
6 C 47 Ag < 60 Nd <
7 N 75 Re < 62 Sm <
8 0 76+Os 0.0147 0.0045 63 Eu <
9 F <2e 0.11 77 Ir < 64 Gd <

78+Pt 0.0232 0.0072 65+Tb
0.0424 0.0071

79+Au 0.0223 0.0075 66 Dy
<2e 0.0093

67 Ho <
68 Er <
69 Tm <
70 Yb

<2e 0.0052
71 Lu

KnownConc= 0 REST= 0 D/S=14 .49
Binder
LOI = 99.3% of original sample, as calculated from 100 * (1-
0.100/14.491)

181



Appendix 1: XRF data for C l000, batch C

Materials Research Institute 
Sheffield Hallam University 
Howard Street, Sheffield SI 1WB

C :\UQ4\Steel\JOB\JOB.788 
Ben 1000

2016-01-22

2400 Rh 60kV -LiF220 Gelll T1AP 
C :\UQ4\Steel\ASC\Kdata.asc 2002-05-29
Calculated as 
X-ray path 
Case number = 
Eff.Diam. 
KnownConc 
Rest
2200.000 mg 
Dil/Sample

<
<2e

Elements Matrix
Vacuum Film type
3 Unknown Dilution 

15.8 mm Eff.Area
0 %
0 %

? Binder

..\ChData.asc 2001-11-06 
(Shape & ImpFc) : 1 Teflon

= No supporting film

= 196.1 mm2

Viewed Mass

Sample Height = 0.88 mm
means that the concentration is < 100 mg/kg 
means wt% < 2 StdErr. A + or & means: Part of 100!

sum
Z

wt%
wt% 

StdErr •
StdErr Z wt% StdErr Z

29+Cu 0.0117 0.0026 52 Te <
11+Na 0.22 0.063 30+Zn 0.0115 0.0021 53 I <
12+Mg 0.31 0.06 31+Ga 0.0132 0.0057 55 Cs <
13+A1 0.16 0.08 32 Ge < 56 Ba <
14+Si 98.63 0.05 33 As <2e 0.029 SumLa.. Lu
0.15 0..14
15 P 34+Se 0.0125 0.0059 72 Hf
0.047 0..017
15 Px < 35 Br < 73 Ta <
16 Sx < 37 Rb < 74+W
0.0165 0.,0065
16 S 38 Sr < 75 Re <
17+C1 0.35 0.021 39 Y < 76+Os
0.0166 0..0066
18+Ar 0.0166 0.0077 40 Zr < 77 Ir <
19+K 0.0209 0.0041 41 Nb < 78 Pt
<2e ' 0..010
20+Ca .0.0441 0.0053 42 Mo < 79 Au
<2e 0.,011
21 Sc < 44 Ru < 80 Hg <
22+Ti 0.0231 0.0024 45 Rh < 81 Tl <
23 V < 4 6 Pd < •82 Pb <
24+Cr 0.0155 0.0042 47 Ag < 83 Bi <
25+Mn < 48 Cd < 90 Th <
26+Fe 0.0799 0.0058 49 In < 92 U
27 Co < 50 Sn < 94 Pu <
28+Ni 0.0104 0.0028 51 Sb < 95 Am <

==== Light Elements ===== ===== Noble Elements ===== =====
Lanthanides =======



SumBe..F 0 
0.0194 0.0079
4 Be
5 B
6 C 

<2e 
• 7 N
8 0 

<2e 
9 F

0.11

0.060

0 . 0 1 2

0 . 0 2 2
<

0 . 0 1 0

44 Ru

45 Rh
46 Pd
47 Ag

75 Re 
76+Os

77 Ir
78 Pt

79 Au

<
<
<

<
0.0166

<
<2e

<2e

0.0066

0 . 0 1 0

0 . 0 1 1

57+La

58 Ce
59 Pr
60 Nd

62 Sm
63 Eu

64 Gd 
65+Tb

66 Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu

KnownConc= 0 REST= 0 D/S= 6.67
Binder
LOI = 98.8% of original sample, as calculated from 100* (1- 
0.100/6.674)
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Appendix 1: XRF data for Commercial grade Si

Materials Research Institute 
Sheffield Hallam University 
Howard Street, Sheffield SI 1WB

C:\UQ4\Steel\JOB\JOB.783 2016-01-22
Ben silicon

2400 Rh 60kV LiF220 Gelll TlAP
C:\UQ4\Steel\ASC\Kdata.asc 2002-05-29 ..\ChData.asc 2001-11-06
Calculated as : Elements Matrix (Shape & ImpFc) : 1 Teflon
X-ray path = Vacuum ' Film type = No supporting film
Case number = 3 Unknown Dilution
Eff.Diam. = 23.0 mm Eff.Area = 415.3 mm2
KnownConc = 0  %
Rest = 0 % Viewed Mass =
765.154 mg
Dil/Sample = ? Binder Sample Height = 0.37 mm

< means that the concentration is < 100 mg/kg

sum
Z

wt%

<2e means wt%

wt% StdErr 
StdErr

< 2 StdErr. 

Z

. A + or 

wt%

& means: 

StdErr

Part of 

Z

100%

29+Cu < 52 Te
<2e 0. 036
11+Na 0.09 0.088 30 Zn < 53 I <
12 Mg < 31 Ga < 55 Cs <
13 A1 < 32 Ge < 56 Ba <
14+Si 99.72 0.05 33 As <2e 0.027 SumLa..Lu
0.193 0. 097
15 P 34 Se < 72 Hf
0.031 0. 012
15 Px < 35 Br <2e 0.0066 73 Ta <
16+Sx < 37 Rb < 74+W
0.0131 0. 0044
16 S 38 Sr <2e 0.0095 75+Re
0.0119 0. 0048
17+C1 0.07 0.022 39 Y < 76 Os <
18+Ar 0.0267 0.0070 40+Zr 0.028 0.012 77 Ir <
19 K < 41+Nb 0.054 0.014 78 Pt <
20+Ca 0.01 0.0050 42 Mo < 79 Au <
21 Sc < 44+Ru 0.025 0.012 80 Hg <
22 Ti < 45 Rh < 81 Tl <
23 V < 4 6 Pd <2e 0.014 82 Pb <
24 Cr < 47 Ag < 83 Bi
<2e 0. 0097
25 Mn < 48 Cd <2e • 0.013 90+Th
0.049 0. 013
26+Fe 0.0215 0.0029 49 In < 92 U
27 Co < 50+Sn 0.059 0.022 94 Pu <
28 Ni < 51 Sb < 95 Am <

==== Light Elements ===== ===== Noble Elements ===== =====
Lanthanides =======



SumBe..F 0 0.12 44+Ru 0.025 0.012 5 7 La <
4 Be 45 Rh < 58 Ce <
5 B 46 Pd <2e 0.014 59 Pr
6 C 47 Ag < 60 Nd

<2e 0.0095
7 N 75+Re 0.0119 0.0048 62 Sm <
8 0 76 Os < 63+Eu

0.091 0.011
9 F < 77 Ir < 64+Gd

0.0254 0.0076
78 Pt < 65+Tb

0.0381 0.0073
79 Au < 66 Dy

<2e 0.0091
67 Ho <
68 Er <
69 Tm <
70 Yb <
71 Lu

KnownConc= 0 REST= 0 D/S=18 .71
Binder
LOI = 99.7% of original sample, as calculated from 100* (1- 
0.100/18.708)

185



element’
L ic in c iii  ivi<aici idii id -m lu iu g y

56 Nursery Street 
Sheffield UK 
S3 8GP

Y  +*♦** ! ! * ♦  i.1 1 . 0 3 0 1

F +44 (0 )114  272 3248 
, info.sheffield<a>element.com 

elem ent.com

Bank Barclays Bank, Sheffield 
Acct 90806323 
V.A.T. No. 172 8037 62 
Company Reg. No. 76383

Sheffield Hallam University 

M aterials & Engineering 

Howard S treet 

Sheffield, S1 1WB

Report No: 

Issue Date: 

Order No: 

Test Date: 

Element No:

14063169 

18/06/2014 

A3 119 783 

17/06/204 

14E06352

Analysis Report

Results:

Test No Sample ID Boron

Units mg/Kg

‘ F3270 HCI 01 900 20

F3271 HCI 700 9

F3272 HCI 800 8

F3273 HCI 1000 ’19

F3274 Dl H20  leach 800 48

F3275 H20  leached 900 22

F3276 700°C Dl- Hot 27

F3277 T000°C Dl- Hot 23

F3278 RHA 700°C 19

F3279 RHA 800oC 18

F3280 RHA 900°C 22

F3281 BRH 1000 20
j

F3282 MG Si B 39

Tested in accordance with in house procedure(s) for ICP OES techniques.

Issued by:

J.C. Hastings

Manager

Analytical

This certifica te  is issued in accordance with th e  laborato ry  accred ita tion  req u irem e n ts  o f th e  United Kingdom A ccreditation Service. It p rovides tra ceab ility  of 
m ea su rem e n t to  recognised  national s tan d a rd s, and  to  units of m ea su rem e n t realised  a t  th e  National Physical L aboratory or o th e r  recognised  na tio n a l s ta n d a rd s  
labora to ries . If, upo n  rep roduction , only p a rt of th is rep o rt is copied , Elem ent will n o t b e a r  any  responsibility for c o n te n t, p u rport and  conclusions o f th a t  rep ro d u c tio n . 
This rep o r t has legal value only w hen p rin ted  on  E lem ent paper and  fu rn ished  w ith  an  au th o rised  signature . Digital versions of th is rep o rt have no legal v a lu e . The T erm s 
& Conditions o f E lem ent (to  be found a t w w w .e lem en t.co m ) a re  applicable on all services p rovided  by Element.
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element'
materials technology

Elem ent M aterials Technology P: +44 144 272 6581 
56 Nursery S treet F: +44 144 272 3248
Sheffield info.sheffield@ elem ent.com
S3 8GP w w w .elem ent.com
UNITED KINGDOM

Sheffield Hallam University
Birch Road 
Sheffield 
S9 3XL

Report No. 16040269 
Element Ref. 16E04175 
Report Date 13/04/2016 
Order No A3189957
Test Date 13/04/2016

Sample Description:
Given Material Specification:

Commercial Grade Silicon 
Not Given

C hem ical A nalysis

ICP Chemical Analysis - N om inated Elements - (ICP OES)

“ Test No. D0649

Element Units: ppm

B 10

uthorised Signatory: Name:
Alan BeadsleyAlan 
Beadsley

Senior Analytical 
Position: TechnicianSenior Analytical

Technician
■ly te s ts  m arked with a * are no t on our UKAS schedule of accreditation.
■ h e re  a p p ro p r ia te ,  th e  re su lts  r e p o r te d  h e re in  p ro v id e  tra c e a b ili ty  o f m e a s u re m e n t  to  re c o g n ise d  na tio n a l s ta n d a rd s , an d  to  u n its  o f m e a s u re m e n t  rea lised  a t  th e  N a tiona l Physical L a b o ra to ry  o r  o th e r  reco g n ised  
- i t io n a l  s ta n d a rd s  la b o ra to r ie s . Any o p in ions o r  in te rp re ta t io n s  g iven he re in  fall o u ts id e  th e  sco p e  o f o u r  sch ed u le  o f  a c c re d ite d  te s tin g . If, u p o n  re p ro d u c tio n , on ly  p a r t  o f  th is  re p o r t  is co p ied , E lem en t will n o t  b e a r  

ly resp o n sib ility  fo r  c o n te n t,  p u rp o r t a n d  con c lu sio n s o f  th a t  rep ro d u c tio n . O rig inal re p o r ts  is su ed  by E lem en t, e i th e r  in e le c tro n ic  o r  physical fo rm  h av e  legal v a lu e  on ly  w h e n  fu rn ish e d  w ith  an  a u th o r is e d  
^ n a t u r e .  Any su b s e q u e n t  dig ita l o r physical co p ie s  o f th is  r e p o r t h av e  n o  legal v a lu e  u n le ss  a u th o r is e d  by E lem en t. The T e rm s & C o n d itio n s o f E lem en t, ava ilab le  u p o n  r e q u e s t,  a re  a p p licab le  o n  all se rv ices 

o v id ed  by E lem en t. NB: R esults g iven  in  th is  re p o r t r e la te  on ly  to  th e  item s rece iv ed  a n d  te s te d .

» su /ts  Checked: CH M EC CORK M E T
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' element*
Element Materials Technology 
56 Nursery Street 
Sheffield 
South Yorkshire 
S3 8GP UK

info.sheffield@element.com
element.com

P: +44 (0 )1 1 4  272 6581 
F: +44 (0 )11 4  272 3248

Bank HSBC 
Acct 44517393 
Sort Code 40-38-04 
V.A.T. No. 172 8037 62 
Company Reg. No. 76383

SHEFFIELD HALLAM UNIVERSITY Report No: 16030012SC

CITY CAMPUS Issue Date: 09/03/2016

HOWARDSTREET Order No: A3189957

SHEFFIELD Test Date: 08/03/2016

S1 1WB Specification: N/A

Element No: 16E03011

Analysis Report
Results;

Test No

C0038
C0039
C0040
C0041

Sample Identification Boron
ppm

...............  " Mg-Si 700 Tl6 “ '
Mg-Si 800 • 137

900 124
1000 157

Tested in accordance with in house procedure(s) for ICP OES techniques. 
This report is issued supplementary to and replaces certificate 16030012.

Issued by

A.Beadsley

Senior

Technician

Analytical

This certificate  is issued  in accordance w ith th e  lab o ra to ry  accred ita tio n  req u irem en ts  of th e  U nited Kingdom A ccreditation Service. It p rovides traceab ility  of m ea su rem e n t 
to  recognised  na tiona l s tan d a rd s, and to  units of m ea su rem e n t realised  a t  th e  N ational Physical L aboratory or o th e r  recognised  na tiona l s tan d a rd s  lab o ra to ries . If, upon 
rep roduction , only p a rt of this rep o rt is copied. Elem ent will n o t b e a r  any responsibility  for c o n te n t, p u rp o rt and conclusions of th a t  rep roduction . This rep o r t has legal 
value only w h en  p rin ted  on  Elem ent p ap e r and  fu rn ished  w ith  an  au th o rised  signatu re . Digital versions of this rep o r t have no legal value. The Term s & Conditions of 
E lem ent, available upon  req u es t, a re  applicable on all services provided  by Element.
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Element Materials Technology P +44 (0 )1 1 4  272 6581
56 Nursery Street F +44 (0 )  114 272 3248
Sheffield UK info.sheffield@element.com
S3 8GP elem ent.com

Bank Barclays Bank, Sheffield 
Acct 90806323 
V.A.T. No. 172 8037 62 
Company Reg. No. 76383

SHEFFIELD HALLAM UNIVERSITY Report No: 14100668

CITY CAMPUS Issue Date: 23/10/2014

HOWARD STREET Order No: Mr Benedict Ayomanor

SHEFFIELD Test Date: 23/10/2014

S1 1WB Specification: See Below

Element No: 14E10545

Analysis Report
Results:

te s t  No Sample Identification Boron

I Mg/Kg

K0823 BATCH C HN03 700 52
K0824 BATCH C HN03 800 45
K0825 BATCH C HN03 900 18
K0826 BATCH C HN03 1000 46
K0827 NATURAL QUARTZ HCL 13
K0828 BATCH C RHA 1000 HCL 40
K0829 XRD BATCH C RHA 1000°C 49
K0830 XRD BATCH C RHA@900°C 0.4g 23
K0831 12/08/14 BATCH C RHA@800°C 0.4g XRD 11
K0832 BATCH C RHA@700°C 0.4g XRD 6
K0833 BATCH C RHA 700 D1 38
K0834 BATCH C RHA@700°C 0.4g 32
K0835 BATCH C RHA@800°C HCL 30
K0836 BATCH C RHA@900°C Dl 34
K0837 BATCH C RHA 1000°C D1 51
K0838 BATCH C RHA 800 D1 57
K0839 BATCH C RHA 900 HCL 58

Tested in accordance with in house procedure(s) for ICP OES techniques.

Issued by:

A.Beadsley

y a

Senior 

Technician 

Analytical

This certificate  is issued in accordance w ith th e  labora to ry  accred ita tion  req u irem en ts  of th e  United Kingdom A ccreditation Service It provides traceab ility  of m ea su rem e n t 
to  recogn ised  national s tandards, and to  units of m easu rem en t realised  a t the  N ational Physical Laboratory o r o th er recognised  national s tan d a rd s  lab o ra to ries . If, upon 
rep ro d u ctio n , only p a rt of this rep o rt is copied, Elem ent will no t be3t any responsib ility  fo r co n ten t, p u rport and conclusions of th a t  rep roduction . This re p o r t  has legal 
value only w hen  p rin ted  on Element paper and  furn ished  with an  au th o rised  signatu re . Digital versions of this rep o rt have no legal value. The Term s & C onditions of 
Elem ent, available upon req u est, a re  applicable on all services provided  by Element.
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lame and formula

teference code: 00-027-1402

lineral name:
OF index name:

impirical formula: 
Chemical formula:

Silicon, syn  
Silicon

Si
Si

Crystallographic parameters

Crystal system: Cubic
Ip ace  group: Fd3m
Ipace-group number: 227

(A): 5 . 4 3 0 9
(A): 5 . 4 3 0 9
(A): 5 . 4 3 0 9
JphaO: 9 0 . 0 0 0 0
letaQ: ' 9 0 . 0 0 0 0
iammaQ: 9 0 . 0 0 0 0

Calculated density (g/cmA3): 2 . 3 3
'olume of cell (1O^ pmA3): 1 6 0 . 1 8

8 . 0 0

UR: 4 . 7 0  •

Subfiles and Quality

Subfiles:

Duality:

Comments

Color:
Seneral comments:

Sample source: 
additional pattern: 
"emperature:

References

Primary reference: 

^eak list

Inorganic
Mineral
Alloy, metal or intermetalic 
Common P h a se  
Educational pattern 
Forensic  
Star (S)

Gray
R eflections calculated from precision m easurem ent of ag. 
ag uncorrected for refraction.
This sam ple is NBS Standard R eference Material No. 640. 
T o replace 5-565 and 26-1481.
Pattern taken at 25(1) C.

N at/. Bur. S ta n d . (U .S .)M on ogr. 3, 35, (1976)

Jo. d [A] 2T heta[d eg] I [%]
1 1
2 2
3 1
4 0

3 . 1 3 5 5 0  
1 . 9 2 0 1 0  
1 . 6 3 7 5 0  
1 . 3 5 7 7 0

2 8 . 4 4 3  
4 7 . 3 0 4  
5 6 . 1 2 2  
6 9 .1 3 2

100.0
5 5 . 0
3 0 . 0  

6 . 0
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5 3 3 1 1 . 2 4 5 9 0 7 6 . 3 8 0 1 1 . 0
6 4 2 2 1 . 1 0 8 6 0 8 8 . 0 2 9 12 . 0
7 5 1 1 1 . 0 4 5 2 0 9 4 . 9 5 1 6 . 0
8 4 4 0 0 . 9 6 0 0 0 1 0 6 . 7 1 9 3 . 0
9 5 3 1 0 . 9 1 8 0 0 1 1 4 . 0 9 2 7 . 0

10 6 2 0 0 . 8 5 8 7 0 1 2 7 . 5 4 7 8 . 0
11 5. 3 3 0 . 8 2 8 2 0  • 13 6 . 8 9 8 3 . 0

Structure

To. Name Elem. B i s o s o f ¥ yc k.
S i l SI 0.00000 0 . 0 0 0 0 0  0 . 0 0 0 0 0  0 . 0 0 0 0  1 . 0 0 0 0 16c

Stick Pattern

intensity [%] 
100

tef. Pattern : Silicon, s y n ,00-027-1402

80 90

Position p2Theta]
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lame and formula

Reference code: 01-082-0512

dineral name: 
DSD name:

Cristobalite 
Silicon Oxide

impirical formula: 02S i
Chemical formula: S i0 2

D r v s t a l l o a r a D h i c  D a r a m e t e r s

Ciystal system : Tetragonal
Space group: P41212
Space group number: 92

>(A): 4 . 9 9 7 0
(A): 4 . 9 9 7 0

:(A): 7 . 0 7 0 0
\lpha(*): 9 0 . 0 0 0 0
ieta Q: 9 0 . 0 0 0 0
SammaQ: 9 0 . 0 0 0 0

Calculated density (g/cm A3): 2 . 2 6
Volume of cell (10A6 pm A3): 1 7 6 . 5 4
f. 4 . 0 0

\\R : 5 . 3 5

Subfiles and Quality

Subfiles: Inorganic
Mineral
Alloy, metal or intermetalic 
Corrosion
M odelled additional pattern 
Calculated (C)

074530
No R v a lu e  given.
At least on e TF m issing.

C a fcu fa ted from fC S D u sin gF O V V D -72 * 1  (1997)
Lacks, D.J., Gordon, R.G., P h y s R e v . B .C o n d e n s. M atter, 4 ft. 2889, (1993)

To. h k 1 d [A] 2T heta[deg] I [*]
1 1 0 1 4 . 0 8 0 6 4 2 1 . 7 6 2 1 0 0 .0
2 1 1 0 3 . 5 3 3 4 1 2 5 . 1 8 4 0 . 5
3 1 1 -1 3 . 1 6 0 6 6 2 8 . 2 1 2 7 . 2
4 1 0 2 2 . 8 8 5 8 8 3 0 . 9 6 2 8 . 7
5 1 1 2 2 . 4 9 8 5 0 3 5 . 9 1 4 1 5 . 9
6 2 0 1 2 . 3 5 5 7 3 3 8 . 1 7 2 0 . 1
7 2 1 0 2 . 2 3 4 7 3 4 0 . 3 2 6 0 . 1

192

duality:

Comments

DSD collection code: 
‘estfrom  ICSD:

References

^im aiy reference: 
Structure:

>eak list
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8 1 0 3 2 . 1 3 0 8 1 4 2 . 3 8 5 2 . 0
9 2 0 2 2 . 0 4 0 3 2 4 4 . 3  63 2 . 8

10 1 1 3 1 . 9 6 0 5 9 4 6 . 2 6 9 4 . 0
11 2 1 2 1 .8 8 8 9 3 4 8 . 1 3 3 4 . 3
12 0 0 4 1 . 7 6 7 5 0 5 1 . 6 7 4 0 . 6
13 2 0 3 1 . 7 1 4 3 6 5 3 . 4 0 0 2 . 3
14 1 0 4 1 .6 6 6 3 3 5 5 . 0 6 8 0 . 4
15 2 1 3 1 . 6 2 1 2 8 5 6 . 7 3 4 4 . 7
16 2 2 2 1 . 5 8 0 1 9 5 8 . 3 4 9 0 . 5
17 3 1 1 1 . 5 4 2 1 4 5 9 . 9 3 4 1 . 8
18 3 0 2 1 . 5 0 6 7 8 6 1 . 4 9 1 1 . 9
19 2 0 4 1 .4 4 2 6 2 6 4 . 5 4 7 2 . 9
20 2 2 3 1 . 4 1 3 5 9 6 6 . 0 3 9 1 . 2
21 2 1 4 1 . 3 8 6 3 0 6 7 . 5 1 1 2 . 1
22 1 0 5 1 . 3  6058 6 8 . 9 6 5 2 . 1
23 1 1 5 1 . 3 1 2 4 6 7 1 . 8 7 7 1 . 5
24 3 2 2 1 . 2 9 0 3 0 7 3 . 3 1 0 1 . 5
25 2 2 4 1 .2 4 9 5 3 7 6 . 1 1 8 0 . 8
26 2 0 5 1 . 2 3 0 1 9 7 7 . 5 3 5 1 . 0
27 3 0 4 1 . 2 1 1 9 5 7 8 . 9 2 7 1 . 2
28 2 . 1 5 1 . 1 9 4 8 9 8 0 . 2 8 1 2 . 4
29 3 1 4 1 . 1 7 8 0 4 8 1 . 6 7 0 1 . 1
30 3 3 1 1 . 1 6 1 7 9 8 3 . 0 6 3 0 . 3
31 1 0 6 1 . 1 4 6 4 4 8 4 . 4 2 9 0 . 2
32> 1 1 6 1 . 1 1 7 8 1 8 7 . 1 2 0 1 . 5
33 4 0 3 1 .1 0 3  66 8 8 . 5 2  6 1 . 2
34 3 2 4 1 .0 9 0 6 2 8 9 . 8 6 9 0 . 3

Stick Pattern

Intensity [X]

100 l l j le f .  Pattern: C ristobalite .01-082-0512

50 -

T
30 40 50 60

Position [?T heta]

1 1 ■» .-r -r U -A -i | ■ I

60 70 90
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Name and formula

Reference code:

Mineral name:
CSD name:

Empirical formula: 
Chemical formula:

01-083-2465

Quartz
Silicon Oxide

02Si
Si02

Crystal log rap hie parameters

Crystal system :
S pace group:
S pace group number:

a (A) 
a (A) 
:(A):
\ lphaH:
3 eta  Q:
3amma(*):

Calculated density (g/cirT3): 
/olum e of cell (10A6 pirT3):

H exagonal
P3121
152

4 . 9 1 4 8
4 . 9 1 4 8  
5 . 4 0 6 2

9 0 . 0 0 0 0
9 0 . 0 0 0 0  

1 2 0 . 0 0 0 0

2 . 6 5  
1 1 3 . 0 9  '

3 . 0 0

RIR: 0 . 6 1

Subfiles and Quality

Inorganic 
Mineral
Alloy, metal or intermetalic 
M odelled additional pattern 
Calculated (C)

Comments

200721
No R v a lu e  given.
At least on e TF implausible.

References

Primary reference: C a fa tfa te d fro m  /C S D  u sin g  FQVVD -72+ + (1997)
structure: Jorgensen , J.D., J .A p p f. P h y's, 4 9 ,5473, (1978)

^eak list

1. h k 1 d CA] 2T h e ta [d e g ] I [*]
1 1 0 0 4 . 2 5 6 3 4 2 0 . 8 5 3 3 8 . 8
2 1 0 1 3 . 3 4 4 2 5 2 6 . 6 3 4 1 0 0 . 0
3 1 1 0 2 . 4 5 7 4 0 3 6 .5 3  6 1 . 7
4 0 . 1 2 2 . 2 8 1 8 3 3 9 . 4 5 9 1 . 0
5 1 1 1 2 . 2 3 7 1 3 4 0 . 2 8 1 0 . 4
6 2 0 0 2 . 1 2 8 1 7 4 2 . 4 4 1 0 . 4
7 0 2 1 1 .9 8 0 2  6 4 5 . 7 8 3 0 . 1
8 1 1 . 2 1 . 8 1 8 3 2 5 0 . 1 2 8 0 . 2

CSD collection cod e:  
Test from ICSD:

Subfiles:

Hualily:
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9 0 0 3 1 . 8 0 2 0 7 5 0 . 6 1 2 0 . 1
10 2 0 2 1 .6 7 2 1 2 5 4 . 8 6 1 0 . 1
11 1 0 3 1 . 6 5 9 4 6 5 5 . 3 1 5 0 . 1
12 2 1 0 1 . 6 0 8 7 5 5 7 . 2 1 7 0 . 1
13 2 1 1 1 .5 4 1 9 2 5 9 . 9 4 3 0 . 1
14 1 1 3 1 . 4 5 3 2 0 6 4 . 0 2 1 0 . 1
15 3 0 0 1 . 4 1 8 7 8 6 5 . 7 6 7 0 . 1
16 2 1 2 1 . 3 8 2 4 4 6 7 . 7 2 5 0 . 1
17 0 2 3 1 . 3 7 5 2 6 6 8 . 1 2 7 0 . 1
18 3 0 1 1 . 3 7 2 3 1 6 8 . 2 9 4 0 . 1
19 0 1 4 1 . 2 8 8 1 7 7 3 . 4 5 1 0 . 1
20 0 3 2 1 . 2 5 6 2 5 7 5 . 6 3 9 0 . 1
21 2 2 0 1 . 2 2 8 7 0 7 7 . 6 4 7 0 . 1
22 1 2 3 1 . 2 0 0 1 0 7 9 . 8 6 2 0 . 1
23 1 1 4 1 . 1 8 4 2 5 8 1 . 1 5 2 0 . 1
24 . 3 1 0 1 . 1 8 0 5 0 8 1 . 4 6 4 0 . 1
25 3 1 1 1 .1 5 3 3 2 .8 3 .8 1 0 0 . 1
26 0 2 4 1 .1 4 0 9 2 8 4 . 9 3 3 0 . 1
27 2 2 2 1 . 1 1 8 5 6 8 7 . 0 4 7 0 . 1
28 0 3 3 1 . 1 1 4 7 5 8 7 . 4 2 0 0 . 1

Stick Pattern

Intensity [%] 
1DD

5 0 -

Ref. Pattern : Q uartz. 01-083-2465

Position p i h e t a ]
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Name and formula

Reference cod e: 00-033-1161

vlineral name: Quartz, syn .
Common name: silica
DDF index name: Silicon Oxide

Empirical formula: 02S i
Chemical formula: S i0 2

Crystallographic parameters

Crystal system : H exagonal
Space group: P3221
Space group number: 154

a (A): 4 .9 1 3 4
d(A): 4 .9 1 3 4
: (A): 5 .4 0 5 3
Alpha (*): 9 0 . 0 0 0 0
BetaQ : 9 0 . 0 0 0 0
Sam m aQ : 1 2 0 . 0 0 0 0

Calculated density (g/cm A3): 2 .6 5
Measured d en sity (g /cm A3): 2 . 6 6
/o lu m e of Cell (10*6 pnrT3): 1 1 3 . 0 1
I: 3 . 0 0

^IR: 3 .6 0

Status: subfiles and quality

Marked a s  d eleted  by ICDD 
Inorganic 
Mineral
Alloy, metal or intermetalic 
Cement and Hydration Product 
Common P h a se  
Educational pattern 
Forensic  
NBS pattern 
Star (S)

D eleted  by 46-1045, higher F^ more com plete, LRB1/95.
C olorless
Pattern reviewed by Holzer, Jv McCarthy, G., North Dakota State Univ., Fargo, ND, 
USA, fC D D G rant-in-A fcfQ  990). A g rees well "with experimental and calculated  
patterns.
Sam ple from the G lass Section at NBS, Gaithersburg, MD, USA, ground single-  
crystals of optical quality.
B=1.544, Q=1.553, Sign=+
To replace 5-490 and validated by calculated pattern. '
S e e  I CSD 62405 ,70005 ,70006 ,70007,71392  (PDF 78-1253, 80-2146, 80-2147, 80- 
2148,81-65).

Additional diffraction line(s): Plus 6 additional reflections to 0.9089.
Temperature: Pattern taken at 25 C.

status:
subfiles:

duality:

Comments

Deleted by:
Dolor:
Deneral com m ents:

sam p le source:

Dptical data: 
Additional pattern:

196 0
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References

^imary reference: N at/. B ur. S ta n d {U S J M o n o g r 3 5 1 8 ,6 1 , (1981)
Optical data: Sw anson, Fuyat., N a t/ B u r S ta n d  (U .S .). O frc 5 3 $  3 ,24 , (1954)

*eak list

Jo. h k 1 d [A] 2 T h e t a [ d e g ] I  [%]
1 1 0 0 4 . 2 5 7 0 0 2 0 . 8 5 0 2 2 . 0
2 1 0 1 3 . 3 4 2 0 0 2 6 .6 5 2 1 0 0 . 0
3 1 1 0 2 . 4 5 7 0 0 3 6 .5 4 2 8 . 0
4 1 0 2 2 . 2 8 2 0 0 3 9 . 4 5 6 8 . 0
5 1 1 1 2 . 2 3 7 0 0 4 0 . 2 8 4 4 . 0
6 2 0 0 2 . 1 2 7 0 0 4 2 . 4 6 5 6 . 0

* 7 2 0 1 1 . 9 7 9 2 0 4 5 . 8 0 9 4 . 0
8 1 1 2 1 . 8 1 7 9 0 5 0 . 1 4 1 1 4 . 0
9 0 0 3 1 . 8 0 2 1 0 5 0 . 6 1 1 1 . 0

10 2 0 2 1 . 6 7 1 9 0 5 4 . 8 6 9 . 4 . 0
11 1 0 3 1 . 6 5 9 1 0 5 5 . 3 2 8 2 . 0
12 2 1 0 . 1 . 6 0 8 2 0 5 7 . 2 3 8 1 . 0
13 2 1 1 1 . 5 4 1 8 0 5 9 . 9 4 9 9 . 0
14 1 1 3 1 . 4 5 3  60 6 4 . 0 0 1 1 . 0
15 3 0 0 1 . 4 1 8 9 0 6 5 . 7 6 1 1 . 0
16 2 1 2 1 . 3 8 2 0 0 6 7 . 7 5 0 6 . 0
17 2 0 3 1 . 3 7 5 2 0 6 8 . 1 3 1 ' 7 . 0
18 3 0 1 1 . 3 7 1 8 0 6 8 . 3 2 3 8 . 0
19 1 0 ' 4 1 . 2 8 8 0 0 7 3 . 4 6 2 2 . 0
20 3 0 2 1 . 2 5 5 8 0 7 5 . 6 7 1 2 . 0
21 2 2 0 1 . 2 2 8 5 0 7 7 . 6 6 2 1 . 0
22 2 1 3 1 . 1 9 9 9 0 7 9 . 8 7 8 2 . 0
23 2 2 1 1 . 1 9 7 8 0 8 0 . 0 4 6 1 . 0
24 - 1 1 4 1 . 1 8 4 3 0 8 1 . 1 4 8 3 . 0
25 3 1 0 1 . 1 8 0 4 0 8 1 . 4 7 2 3 . 0
26 3 1 1 1 . 1 5 3 2 0 8 3 . 8 2 1 1 . 0
27 2 0 4 1 . 1 4 0 5 0 8 4 . 9 7 1 ,1 . 0
28 3 0 3 1 . 1 1 4 3 0 8 7 . 4 6 4 1 . 0
29 3 1 2 1 . 0 8 1 3 0 9 0 . 8 5 8 2 . 0
30 4 0 0 1 . 0 6 3 5 0 9 2 . 8 2 2 1 . 0
31 1 0 5 1 . 0 4 7 6 0 9 4 . 6 6 5 1 . 0
32 4 0 1 1 . 0 4 3 8 0 9 5 . 1 1 9 1 . 0
33 2 1 4 1 . 0 3 4 7 0 9 6 . 2 2 7 1 . 0
34 2 2 3 1 . 0 1 5 0 0 9 8 . 7 3 8 1 . 0
35 4 0 2 0 . 9 8 9 8 0 1 0 2 . 1 9 9 1 . 0
36 3 1 3 0 . 9 8 7 3 0 1 0 2 . 5 5 9 1 . 0
37 3 0 4 0 . 9 7 8 3 0 1 0 3 . 8 8 4 1 . 0
38 3 2 0 0 . 9 7 6 2 0 1 0 4 . 1 9 9 1 . 0
39 2 0 5 0 . 9 6 3  60 1 0 6 . 1 4 5 1 . 0

Stick Pattern
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Intensity [%] 
1 0 0 -

Ref. Pa l e m : silica, 00-033-1161

5 0 -

100

Position [*2Theta]
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yjame and formula

Reference code: 01-085-0335

/lineral name: Quartz low
CSD name: Silicon Oxide

impirical formula: 0 2 Si
Chemical formula: S i0 2

Crystallographic parameters

Crystal system : H exagonal
Space group: P3221
Space group number: 154

i(A): ' 4 .9 1 3 4
) (A): 4 .9 1 3 4
: (A): 5 .4 0 5 2
y p h a Q : 9 0 . 0 0 0 0
3etaO : 9 0 . 0 0 0 0
ja m m a Q : 1 2 0 . 0 0 0 0

Calculated density (g /cm A3): 2 . 6 5
/olu m e of cell (10A6 pirT3): 1 1 3 .0 1
I: 3 . 0 0

^IR: .0 . 1 4

Subfiles and Quality

Inorganic 
Mineral
Alloy, metal or intermetalic 
M odelled additional pattern 
Calculated (C)

000174
At least on e TF implausible.

C a lcu la ted fro m  /C S D  u sin g  F Q W D -72+  * (1997)
I e -P a g e , Y., Donnay, G., A c ta  Q y^ staf/ogr.. S a c  B  32 ,2456 , (1976)

1. h k 1 d [A] 2T h e t a [ d e g ] I  [* ]
1 1 0 0 4 . 2 5 5 1 3 2 0 . 8 5 9 2 5 . 2
2 0 1 1 3 . 3 4 3 4 2 2 6 . 6 4 0 100.0
3 1 1 0 2 . 4 5 6 7 0 3 6 . 5 4 7 1.6
4 1 0 2 2 . 2 8 1 3 4 3 9 . 4 6 8 1.8
5 1 1 -1 2 . 2 3 6 5 3 4 0 . 2 9 2 0 . 9
6 2 0 0 2 . 1 2 7 5 6 4 2 . 4 5 3 1.0
7 2 0 1 1 .9 7 9 7 2 4 5 . 7 9 6 0.1
8 1 1 -2 1 . 8 1 7 8 8 5 0 . 1 4 1 0.1
9 0 0 3 1 .8 0 1 7 3 5 0 . 6 2 2 0.1

Subfiles:

Duality:

Comments

CSD collection code: 
Test from ICSD:

References

Primary reference: 
Structure:
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10 0 2 2 1 . 6 7 1 7 1 5 4 . 8 7 6 0.1
11 1 0 3 1 .6 5 9 1 3 5 5 . 3 2 7 0.1
12 1 2 0 1 . 6 0 8 2 9 5 7 . 2 3 4 0.1
13 1 2 -1 1 . 5 4 1 5 0 5 9 . 9 6 1 0.1
14 1 1 - 3 1 . 4 5 2 8 8 6 4 . 0 3  6 0.1
15 3 0 0 1 . 4 1 8 3 8 6 5 . 7 8 8 0.1
16 . 2 1 -2 1 . 3 8 2 0 8 6 7 . 7 4 5 0.1
17 0 2 3 1 . 3 7 4 9 4 6 8 . 1 4 5 0.1
18 0 3 1 1 .3 7 1 9 3 6 8 . 3 1 5 0.1
19 0 1 4 1 .2 8 7 9 2 7 3 . 4 6 7 0.1
20 0 3 2 1.25592' 7 5 . 6 6 2 0.1
21 2 2 0 1 . 2 2 8 3 5 7 7 . 6 7 3 0.1
22 2 1 - 3 1 .1 9 9 8 2 7 9 . 8 8 4 0.1
23 2* 2 1 1 . 1 9 7 8 1 8 0 . 0 4 5 0.1
24 1 1 - 4 1 . 1 8 4 0 1 8 1 . 1 7 2 0.1
25 3 1 0 1 . 1 8 0 1 6 8 1 . 4 9 2 0.1
26 1 3 1 1 . 1 5 3 0 0 8 3 . 8 3 9 0.1
27 0 2 4 1 . 1 4 0 6 7 8 4 . 9 5 6 0.1
28 2 2 -2 1 . 1 1 8 2  6 8 7 . 0 7 6 0.1
29 0 3 3 1 . 1 1 4 4 7 8 7 . 4 4 7 0.1

Stick Pattern

Intensity [%] 
100

Ref. P attern :Q uartz  low. 01-085-0335

50 60

Position p T h e ta ]
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APPENDIX 3a

DEDUCTION OF MG-SiC700 PARTICLE SIZES DERIVED FROM BATCH C
RICE HUSK EXPERIMENTAL RESULTS.

Using the following parameters for MG-SiC700;

Full width at half maximum (FWHM) = 0.1506 

The angle (0) = 28.326/2 = 14.163

Standard x-ray wavelength (k) for used XRD equipment = 1.5416A 

From Scherrer's equation,

_  0.9A 
^  p  cos 6 ’

where D  is the crystallite size, p  is the broadening of diffraction line measured at 
half of its maximum intensity (rad) (FWHM).

Converting A to m, where lA  = 10‘10m;

It therefore implies k = 1.5416 x 10 '10m for the standard X'pert 
instrument used.

P = Conversion of FWHM to radian = 0.1506 x 0.01745 = 2.13588 x 10'3 rad. 

By substituting parameters into Scherrer's equation,

0.9 x  1.5416xlO-10 
2 .62797xl0-3 cos 14.163

D = 54.46nm
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APPENDIX 3b

DEDUCTION OF MG-Si C800 PARTICLE SIZES DERIVED FROM BATCH C
RICE HUSK EXPERIMENTAL RESULTS.

Using the following parameters for MG-SiC800;

Full width at half maximum (FWHM) = 0.1506 

The angle (0) = 28.5207/2 = 14.26035

Standard x-ray wavelength (A) for used XRD equipment = 1.5416A 

From Scherrer's equation,

_  0.9A 
^  (3 cos 6 ’

P = 0.1506 x 0.01745 = 2.13588 x 10*3 rad.

0.9 x 1.5416X10"10 
2.62797*10-3 cos 14.26035

D  = 54.49nm
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APPENDIX 3c

DEDUCTION OF MG-Si C900 PARTICLE SIZES DERIVED FROM BATCH C
RICE HUSK EXPERIMENTAL RESULTS.

Using the following parameters for MG-Si C900;

Full width at half maximum (FWHM) = 0.1338 

The angle (0) = 28.4606/2 = 14.2303

Standard x-ray wavelength (A,) for used XRD equipment = 1.5416A 

From Scherrer's equation,

0.9A 
^  P cos 6 ’

‘ P = Conversion of FWHM to radian = 0.1338 x 0.01745 = 2.33481 x 10*3 rad.

0.9 x  1.5416%10-10 
D ~  2 .33481xl0-3 cos 14.2303

D  = 61.32nm
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APPENDIX 3d

DEDUCTION OF MG-Si C1000 PARTICLE SIZES DERIVED FROM BATCH
C RICE HUSK EXPERIMENTAL RESULTS.

Using the following parameters for MG-Si C l000;

Full width at half maximum (FWHM) = 0.1506 

The angle (0) = 28.5662/2 = 14.2831

Standard x-ray wavelength (A) for used XRD equipment = 1.5416A 

From Scherrer's equation,

_  0.9A 
^  ficosd  '

p  = 0.1632 x 0.01745 = 2.84784 x 10*3 rad

0.9 x  1.5416X10-10 
2.84784X10"3 cos 14.2831

D = 50.29nm
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APPENDIX 3e

DEDUCTION OF Si Com PARTICLE SIZES DERIVED FROM BATCH C
RICE HUSK EXPERIMENTAL RESULTS.

Using the following parameters for Si Com;

Full width at half maximum (FWHM) = 0.1506 

The angle (0) = 28.7451/2 = 14.37255

Standard x-ray wavelength (X) for used XRD equipment = 1.5416A 

From Scherrer's equation,

_  0.9A 
^  /?cos 6 '

/? = 0.1224 x 0.01745 = 2.13588 x 10'3 rad

0.9 x  1.5416xlO“10 
2.13588zl0"3 cos 14.37255

D = 67.08nm
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