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Abstract

This paper describes an approach for detecting the presence or emergence of
Organised Crime (OC) signals on Social Media. It shows how words and phrases,
used by members of the public in Social Media posts, can be treated as weak
signals of OC, enabling information to be classified according to a taxonomy.
Formal Concept Analysis (FCA) is used to group information sources, according
to Crime-type and Location, thus providing a means of corroboration and
creating OC Concepts that can be used to alert police analysts to the possible
presence of OC. The analyst is able to ‘drill down’ into an OC Concept of
interest, discovering additional information that may be pertinent to the crime.
The paper describes the implementation of this approach into a fully-functional
prototype software system, incorporating a Social Media scanning system and a
map-based user interface. The approach and system are illustrated using Human
Trafficking and Modern Slavery as an example. Real data is used to obtain results
that show that weak signals of OC have been detected and corroborated, thus
alerting to the possible presence of OC.

Keywords: organised crime; social media; entity extraction; formal concept
analysis

Introduction
The vociferous proliferation of the Internet, and more recently Social Media, into

society and the everyday lives of its citizens has, over the last fifteen or so years,

resulted in a sea-change in the behaviours and perceptions we have in relation to the

information that is shared freely online [1]. Such behaviour has resulted in the cre-

ation of a vast repository of information that holds potential value as an intelligence

resource, and the emergence of the open-source researcher as a valuable skill-set

within the analytical repertoire of the police and other security agencies. Resources

such as social media, RSS news feeds, interactive street-maps and online directory

services all provide valuable stores of information that can be used to support ex-

isting investigative and analytical practices in response to serious and organised

crime. This paper’s novelty concerns the application of Formal Concept Analysis

(FCA) in combination with automated information retrieval and natural language

processing tools to identify, extract, categorise and corroborate information from

open web sources which may be used to identify the early onset of organised crime.

Specifically, the paper looks to identify what we will refer to as ‘weak signals’, and

looks to transform these signals into corroborated alerts linked to the presence or
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emergence of organised crime activity, including gang activity, the trade and use of

illegal narcotics, gun crime, Human Trafficking, and Modern Slavery. This research

described in this paper forms part of a larger project; ePOOLICE (early Pursuit

against Organised crime using envirOnmental scanning, the Law and IntelligenCE

systems). The project, which concluded in 2016, aimed to develop a prototype envi-

ronmental scanning system, integrating a number of promising and mature technical

components to semantically filter information from open-sources, such as the web

and social media, to identify information that may constitute weak-signals of or-

ganised crime. The project sought to identify the extent to which the organised

crime threats could be detected at an early stage, prior to their development into

larger more resilient criminal systems, through the automated collection and analy-

sis of data from open sources [2]. These sources primarily contain information from

news outlets, journalists and other outlets, but also take into account posts made

by ’normal’ citizens. The project incorporated the input of domain experts and

practitioners throughout, including law enforcement agencies from the UK, Spain

and Germany, and international organisations such as EUROPOL and the United

Nations Interregional Organised Crime Research Institute (UNICRI). The input of

these organisations in particular, alongside other practitioners from the projects

advisory board, were leveraged in the extraction of requirements, using a combi-

nation of questionnaires, interviews and workshop session throughout the software

development lifecycle, right through to their eventual testing and evaluation.

The concept of weak signals has been abstracted from the Canadian Criminal

Intelligence Service’s (CISC) definitions of primary and secondary indicators [3],

and the perception that in reality there is little tangible value to be extracted from

isolated indicators as there is potential for them to be symptomatic of a variety

of phenomena, many of which are not necessarily in any way indicative of the

presence or threat of organised crime. However, when these indicators are grouped

under certain conditions, such as temporal or geographic proximity to a specific

location and type of activity, they can begin to provide insight into the presence or

emergence of crime. It is with this definition, and the notion of ‘weak signals’ that we

use as the basis of this paper and the approach presented within it. In UK practice,

the College of Policing guidance on the use of Open-Source Intelligence (OSINT)

[4] is fairly limited, and no special provisions are made for social media services as

a potential intelligence source. The main uses of open-sources in this respect are to

develop an understanding of the locations relevant to a piece of analysis, to identify

social and demographic changes, to identify external factors that may impact on

crime, disorder and community concerns, to support and develop investigations

by indicating lines of enquiry or the corroboration of other information, and to

support the development of subject and problem profiles through the development

of intelligence products.

Perhaps the greatest shift in the use of the internet over the last 10-15 years

or so is the relative phenomenon that is the usage of Social Media among normal

citizens. In the aftermath of the riots across London and a number of other English

cities which followed the killing of Mark Duggan by the Metropolitan Police in

2011, a Her Majesty’s Inspectorate of Constabulary (HMIC) commissioned review

highlighted significant inefficiencies in the the way that authorities were equipped
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to deal with social media as an intelligence source [5]. Social Media Intelligence, or

‘SOCMINT’, provides opportunities for providing insights into events and groups,

enhancing situational awareness, and enabling the identification of criminal intent,

providing it is done so in a manner that is appropriately grounded in respect of

human privacy rights [6]. Reports and case studies such as this have demonstrated

the desire and scope for research in the field to explore its novel application in

enhancing the decision making ability of key stakeholders, such as the police, with

more recent events, and social media’s role in the response, such as the Boston,

Massachusetts bombings in 2013 [7], only strengthening the case for its use.

In order to demonstrate the potential utility of SOCMINT, in respect of iden-

tifying the presence and/or emergence of organised crime, the problem domain of

Human Trafficking will be used as the exemplar use-case throughout this paper.

Human Trafficking operates on a vast scale with a truly global impact, with almost

every country in the world acting as an origin, transit or destination location for the

movement and exploitation of human beings. Trafficking is so defined by article 3 of

the Palermo protocol as the “recruitment, transportation, transfer, harbouring or

receipt of persons, by means of the threat or use of force or other forms of coercion,

of abduction, of fraud, of deception, of the abuse of power or of a position of vulner-

ability or of the giving or receiving of payments or benefits to achieve the consent

of a person having control over another person, for the purpose of exploitation”

[8]. In the UK, Human Trafficking and Modern Slavery has risen to prominence

over recent years into a priority serious and organised crime threat, alongside issues

like cybercrime, drug crime and Child Sexual Exploitation (CSE) [9]. Although it is

worth noting that due to recent legislative changes in the UK, it now falls under the

banner of modern slavery which consolidates existing legislation related to slavery

and to human trafficking. However, due to the trans-European scope of this paper,

we will refer mainly back to the principles of the Palermo protocol, using the term

‘Human Trafficking’ interchangeably with ‘Trafficking in Human Beings’.

Organisations such as Europol [10] are increasingly acknowledging growing crim-

inal dependence on the internet and the increasingly trans-European perspective of

serious and organised crime. These changes in the way that information is created

and shared, combined with the diversity in the way that existing forms of criminal-

ity are being conducted provides the opportunity, and desire, for the development of

new means to assist law enforcement in combating it. To provide one such approach

to enable this, the tools described here facilitate the identification, extraction, pro-

cessing, analysis and presentation of data from open sources, such as social media,

that can reveal insight into the emergence and presence of crime both in an oper-

ational sense; by identifying specific phenomena that are linked to discrete types

of crime, and from a strategic perspective in the identification and visualisation of

strategic trends through the corroboration of different crime indicators. While at

one end of the scale international intelligence agencies such as the National Secu-

rity Agency’s (NSA) PRISM programme are facilitating the acquisition, fusion and

analysis of vast amounts of data from disparate sources [11], the (known) resources

and capability of law enforcement agencies (both locally, regionally and even inter-

nationally) are recognised to be much more modest - with the use of data from open

sources and social media often a manual task, and the remit of just a few specialist

analysts and officers within each force [12].
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Figure 1 The Elements of Human Trafficking

Taxonomy of Organised Crime
In beginning to model its constituent elements it is necessary to ascertain a thor-

ough understanding of the actual problem domain - human trafficking, by drawing

upon established definitions used to describe and diagnose the problem by the prac-

titioner base. The UNODC [8] have defined, using the UN Palermo protocol as the

basis, what they refer to as, the three constituent ‘elements’ of trafficking, these

being the ‘act’, ‘means’ and ‘purpose’, see Figure 1. Firstly, the ‘act’ refers to what

is being done, this can include context such as whether and how the victim has

been recruited, transported, transferred or harboured. The question of how this is

being achieved is answered by the ‘means’, which seeks to establish whether force is

being used as the basis of manipulation, such as through kidnapping, abduction or

the exploitation of vulnerabilities, or more subtle methods such as through fraud,

imposing financial dependencies or coercion. The final element, the ‘purpose’ es-

tablishes the reason why the act and means are taking place, or to put it simply -

the form of exploitation behind the act and means, be it for forced labour, sexual

exploitation and prostitution, organ harvesting or domest ic servitude.

This definition and categorisation provides an ideal underpinning for the forma-

tion of a taxonomy of Human Trafficking that can be used to form the basis of

an approach to automatically identify and extract valuable data from open sources

(Figure 2). This taxonomy in actuality forms part of a larger model, consisting of

elements of a broader range of organised crime threats, including the cultivation and

distribution of illegal narcotics. The elements of the taxonomy are defined across
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Figure 2 Organised Crime Taxonomy (excerpt)

four groups, visualised here using vertical columns. The first of these columns, start-

ing from the left, is used as a high level categorisation used to separate between

different crime types. The second deals with different elements within a specific

type of crime - in this case one of the three component parts of trafficking, while

subsequent columns, type and element, are used to show further more specialised

aspects of these elements.

Each of the nodes contained within the taxonomy represents a ruleset designed

to determine the relevance of a piece of content, in this case a particular Twitter

posting’s relevance to the subject matter - Human Trafficking. The level of special-

isation of the rules themselves follows the structure of the taxonomy, moving from

more generic words or phrases that may indicate Human Trafficking used at the

higher levels of the taxonomy, whereas the more specialised end of the taxonomy,

more nuanced rules that may allude to the presence of criminality are used. Running

parallel to the process of content categorisation is the requirement for content (or

named-entity) extraction. The specific content and nature of the rules is informed

by the input of experts and practitioners in the field, elicited through workshops

and additional desk based research around organised crime indicators. A more de-
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tailed discussion of the process of defining rules and the nature of these indicators

is included in [13].

The process of extracting named-entities and facts varies in complexity, from

the use of simple lookup tables containing keyword lists, to more sophisticated

approaches making use of part-of-speech tagging and grammatical and predicate

rules to detect the use of terms within specific contexts. Data such as this is most

commonly available through social media services like Twitter. However, in reality,

research suggests that less than 1% of all Twitter posts actually contain geo-location

information, thus making it necessary to pursue other approaches in order to in-

crease the amount of potentially useful data available. In this regard, a number of

approaches have been used, from simple keyword searches, to more complex algo-

rithmic approaches. In one such example, researchers from IBM have developed an

approach that uses the content of tweets that do contain geotags, and then searches

for similar content that does not contain them in order to assess areas where content

may have originated from, as part of a larger piece of research aimed at identify-

ing the home location of Twitter users. The tests conducted as part of the study

reported accuracy of around 58% [14]. Here however, the focus is somewhat differ-

ent, whereby the approach seeks to extract context in relation to named entities

to enable conclusions to be inferred about events or phenomena in specific, named

locations.

Weak Signals of Organised Crime
To enable the development of a taxonomy that enables us to model and structure the

information deemed useful to extract we can refer to a wealth of literature from both

academic and practitioner perspectives that provide insights into the factors that

contribute to and indicate organised crime. These indicators vary from high level,

secondary information such as Political, Economic, Socio-cultural, Technological,

Legal and Environmental (PESTLE) factors, right down to operationally oriented

information that offers guidance on how to identify potential victims of trafficking.

Existing models to anticipate changes and developments in organised criminality

across geographic areas have focused on this kind of data alongside existing crime

statistics [15].

In the past, and to some extent a problem that still exists, a lack of information

and common understanding about what Human Trafficking is has hindered the im-

pact and effectiveness of efforts to combat it [16]. Despite varied and wide-ranging

counter-trafficking initiatives from NGOs, Law Enforcement and Governments, re-

liable information regarding the magnitude and nature of trafficking across regional

and national borders is still hard to come by due to a number of issues around the

sharing, fusion and understanding of data that is already being collected [17]. The

purpose of the approach developed and described in this paper is not to provide

a statistically accurate representation of the presence and emergence of trafficking

but rather to increase access to, and usability of, data from previously untapped

open-sources. In previous work, we have discussed indicators across a three-level

model [13] moving from credible and accepted indicators of trafficking at level 1

of the model, through to the observations and content created online, including on

social media, by citizens regarding these ‘weak signals’.



Andrews et al. Page 7 of 29

Figure 3 Organised Crime Taxonomy

In this paper we discuss the latter and more specifically the modelling and use

of this information as ‘weak signals’ that allude to the presence and/or emergence

of criminality in citizen generated content, whilst using the formal definitions and

doctrine that exists to underpin the framework and organisation of the model itself.

Perhaps the most comprehensive list of indicators comes from the UNODC [18] who

provide an extensive typology categorised by different types of exploitation such as;

domestic servitude, child sexual exploitation, labour exploitation and begging/petty

crime - the labels used in the taxonomy structure are outlined in Figure 2. Using

sexual exploitation as an example, indicators include things such as the appearance

that persons are under the specific control of another, that the person(s) appear

to own little clothing, or rely on their employer for basic amenities, transport and

accommodation and more. The taxonomy excerpt included in Figure 3 shows at

a high level how a taxonomy node focused on attributes which may indicate an

individual is vulnerable, or a potential victim of trafficking or exploitation, may

contain specific rules designed to identify text which suggests they may have been

subjected to violence, as one example of a weak-signal. Although in this form, these

indicators are quite abstract and it can be difficult to see how they may manifest

in real, open-source, data - it is possible to develop rules looking for keywords and

phrases that can provide ‘weak-signals’ of their existence online.

In order to facilitate the identification and extraction of these weak signals in

social media and other open-sources, what we will refer to as ‘contextual extraction’

methods [19] are used in order to identify, and subsequently extract, key entities

and facts (i.e. previously unknown relationships between different entities) from the

data. This approach to information extraction using natural-language processing

builds upon the existing principles of template based information extraction [20],

also sometimes referred to as ‘Atomic Fact Extraction’ [19]. These ‘facts’ enable the

extraction of entities within a specific context, i.e. locations in relation to an arrest

or type of exploitation on a per sentence basis.
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Entity Example
Location Atlanta

Boston
San Diego

Event Trafficking
Arrest
Transaction

Exploitation CSE
Forced Labour
Forced Prostitution

Table 1 Extracted Entity Examples

Figure 4 Entity and Fact Extraction in Social Media

A number of example entities are included in Table 1.

While in isolation, the extraction of these entities on their own does not necessarily

provide much actionable information, it is possible using rules that attempt to infer

relations between them to begin to make some assumptions about the data and

its content. For example a single tweet may contain multiple locations and other

entities, but without some means to establish a relationship between the two there

is no way to automatically infer, with any confidence at least, that they are linked.

Fortunately, through the use of contextual extraction, and the aforementioned ‘facts’

we can infer these relationships in a number of ways, using prepositions, parts-of-

speech tagging and Boolean operators that specify distance between words and other

parameters. As the examples discussed in this paper refer to data from Twitter only,

these relationships are done on a ‘per sentence’ basis. Figure 4 shows how this works

in practice.

From these rules we can begin to make some assumptions about the entities being

extracted. For example, it is now possible to ascertain with a degree of confidence

that specific locations are in reference to a specific event. At this point, it is im-

portant to acknowledge the challenges posed by the use of SMS-language (textese)

as communication via services such as Twitter do not necessarily adhere to strict

grammar or syntax conventions. Although a number of novel approaches to handle

this type of language are in development (see, for example [21]) due to the use of

examples that use accepted, formal terminology, we do not address this issue here.

By using context-sensitive concept matching using Language Interpretation/Text

Interpretation (LITI) rules [19], concepts can also be matched to the specific con-

text for which they are being used. Using the example of a location, the use of a

specific place in reference to an event or action, such as an arrest can be extracted

by matching locations within proximity of text indicating an event followed by a

preposition and the location. Such an approach brings about a number of potentially

advantageous features. The use of contextual concept definitions enables increased



Andrews et al. Page 9 of 29

levels of accuracy, and thus confidence, in the extracted data relative to the context

in which it is being extracted. For example, instances of location that occur with a

specified number of words, separated by a preposition, of terminology indicating an

arrest, increases the level of confidence that the information is in fact in reference

to the context as opposed to just being any occurrence of a location name in the

text. Social media sites such as Twitter often include features that enable location

information to be captured directly from the browser or mobile application.

Geolocation
To provide location-based corroboration and visualisation, automatic extraction of

named locations from the various data sources is used. Working from an extensive

collection of known locations, the detection and word-level extraction of countries,

regions and cities is performed. However, regions and cities are extracted as-is and

further contextualisation is required to disambiguate the named location from others

that share the same name. For example, the term New York could easily refer to

either New York City or New York State.

Named locations are not extracted as locations alone; the rules within the OC

ontology are used to extract locations against a given OC context where possible.

One example is ‘trafficking location’ which uses rules to detect a context regarding

an entity (individual, group, asset etc.) being trafficked or moved. Another example

is ‘exploitation location’ which detects a named location against OC exploitation

contexts (such as forced labour).

Reverse geocoding, the process of resolving one or more geographical coordinates

from a named location, is applied to acquire the additional contextual informa-

tion required (country, region, city, etc.) to perform effective corroboration and

map-based visualisation. Disambiguation of the location is also a resulting benefit;

however this is based entirely on the popularity, size or importance of a location. For

example, Washington State or Washington, DC are much larger and more widely

referenced than Washington County in Alabama. If Washington, DC has the highest

ranking then the location Washington will identified as Washington, DC.

The reverse geocoding process utilises the Google Maps API. Using this API,

the named location is supplied, returning a list of matching results, by order of

relevance based on the most commonly searched places (i.e. popularity), the size (i.e.

population), or the importance (e.g. capital). Each result provides a geographical

location in decimal latitude/longitude format, along with additional hierarchical

information, for example, New York City is within NY or New York State, and

within the US or United States of America. Since the Scanning System is primarily

investigating a US-based dataset, searches are restricted to the boundary of the US.

It is important to note that a single tweet may contain multiple named locations,

in which case, all of these are resolved and the tweet is processed according to each

of those locations.

Categorisation and Filtering
In addition to extracting facts and entities from the input data, similar techniques

are also utilised as the basis of a rule-based approach to classify content against a

number of pre-defined categories. Membership to one or more of these categories is
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Weak Signal Keywords and Phrases
Physical Injury subjected to violence

timid
forced to have sex
women beaten

Physical Appearance provocative dress
live with a group of women
unhappy

Unable to leave place of residence afraid to leave
under control of others
financially dependant

Irregular movement of individuals men come and go at all hours
women do not appear to leave
lots of activity at night

Table 2 Weak Signals - Keywords and Phrases

Figure 5 Categorization Output

then used as the basis for content filtering. If the content analysed by the crawler

does not meet the criteria of at least one of the rules within the parameters defined

in the content categorisation process, it is then disregarded.

The categorisation model is defined using a similar approach to the entity and fact

extraction model, utilising a number of ‘hand-crafted’ rules organised in a hierarchi-

cal structure, with the only key difference being that rather than being designed to

identify and extract specific pieces of data and/or information they aim to discern

the relevance of the content against the defined topics using the same taxonomy

structure defined in Figure 2. The rules themselves use a range of techniques, again

focusing on the identification of keywords and phrases. A number of examples of

the phrases and keywords used as part of the categorisation taxonomy are shown

in Table 2. Matched content is then assigned a ‘relevancy’ rating depending on the

number of keywords and/or phrases that are met within the match criteria - as

shown in Figure 5.

A Social Media Scanning System
To implement the content extraction and categorisation models, an integrated

pipeline that facilitates the crawling of social media is put in place. This process

manages and enables the seamless collection, restructuring, processing, filtering and

output of the data in preparation for further analysis. The stages of the data prepa-

ration and processing pipeline is shown in Figure 6.
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Figure 6 Social Media Scanning Process

Different data sources lend themselves to the identification and extraction of dif-

ferent kinds of information and indicators. For example, the data from the Web and

RSS feeds used in the process allow for the extraction of data related to explicit

instances of past and ongoing criminality, as reported by the media, law enforce-

ment and other outlets. Such data can be used to enhance situational awareness,

identifying key locations and trends in criminality by geographic region. Whereas as

social media, although potentially useful in identifying similar information, can also

be used as a source of identifying ‘weak signals’, due to the presence of commentary

and observations provided by everyday citizens. Though it should be acknowledged

that these posts are particularly uncommon when compared with the data collected

from news outlets, journalists and other interest groups.

To extract and expose data to the processing pipeline and FCA components a

number of approaches are used depending on the source type. Primarily, three

different data types are used by the system; Social Media, Web pages and RSS

feeds although this is flexible and can be adapted to include other disparate data

types, both structured and unstructured. The process for extracting data from each

varies fairly significantly from source to source. In the case of crawling pages from

the web, a number of seed URLs from a hand-curated database are used as a starting

point for the crawling process, with subsequent links within those target URLs also

transversed. These seed URLs consist of local, regional and national news reporting

mediums and LEA (Law Enforcement Agency) web-pages. To filter out noise and

irrelevant data an initial stage of categorisation is used to determine a base level

of relevance to the domain, utilising keywords and phrases that indicate a surface

level relation to criminality, disregarding any source data that does not meet the

criteria defined by the rule-set. Continuing with the example of human trafficking

and modern slavery that is used throughout, the initial filtering criteria contain

rules that both explicitly refer to trafficking and forms of human exploitation and

more subtle, nuanced, rules look for weak signals such as references to injury or signs

of physical abuse, or the presence of paraphernalia that may be linked phenomena

such as drug cultivation. Similarly, a curated set of RSS feeds use a similar method

to web transversal, however these feeds are monitored for changes and updates, as

opposed to being crawled periodically in search of new content.

For social media however, as the main source of focus in this article, the approach

is somewhat different. Utilising the ‘Search API’ offered by Twitter [22], queries

can be made against the service’s index of recent and/or popular posts from the

previous seven days, with only the most relevant tweets returned from during the

time period. At the time of writing, the amount of data returned is limited by

the API’s rate limit, currently set at 180 queries per 15 minutes. This amount
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is subject to change. In terms of the queries themselves, a number of pre-defined

operators exist that allow for the matching of keywords, exact phrases and other

operations. When dealing with larger sources of unstructured data, such as web-

pages or other documents, it is often necessary to heuristically parse the content to

remove additional page elements such advertisements before processing. However,

as the data extracted from Twitter is already sufficiently structured, this step is

not needed here.

Using the same example as in previous figures, the XML enables this content to

be extracted alongside other meta-data, such as the geolocation and other details

about the author, the data and time that the post was made, the date/time it was

extracted by the crawler, keywords used to query the API, and a URL link back

to the original content. Other metadata is also provided by default, but has been

filtered as it is not essential to the process being described. An example of the XML

output is shown in the code snippet below.

<xml version=” 1 .0 ” encoding=” utf−8”>

<art ic le>

<authorgeolocation>Atlanta , GA</authorgeolocation>

<query> t r a f f i c k i n g</query>

<body>People t r a f f i c k e d in to Atlanta f o r sex , labour and

organ removal accord ing to a new repor t</body>

<pdate>20150129</pdate>

<categories>top\HumanTrafficking\Exp lo i t a t i on \ s exua l</

categories>

<TraffickingLocation>Atlanta</ TraffickingLocation>

<ExploitationLocation>Atlanta</ExploitationLocation>

<ExploitationType>Sexual ; Labour ; Organ Harvest ing</

ExploitationType>

</ art ic le>

Applying Formal Concept Analysis
Background to Formal Concept Analysis

A formal description of formal concepts [23] begins with a set of objects X and a

set of attributes Y . A binary relation I ⊆ X × Y is called the formal context. If

x ∈ X and y ∈ Y then xIy says that object x has attribute y. For a set of objects

A ⊆ X, a derivation operator ↑ is defined to obtain the set of attributes common

to the objects in A as follows:

A↑ := { y ∈ Y | ∀x ∈ A : xIy }.

Similarly, for a set of attributes B ⊆ Y , the ↓ operator is defined to obtain the

set of objects common to the attributes in B as follows:

B↓ := { x ∈ X | ∀y ∈ B : xIy }.
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Source 1 × × ×
Source 2 × ×
Source 3 × × ×
Source 4 × ×
Source 5 × × ×
Source 6 × × ×
Source 7 × × × ×
Source 8 × × ×
Source 9 × × × ×
Source 10 × ×

Figure 7 An ‘Organised Crime’ formal context

(A,B) is a formal concept iff A↑ = B and B↓ = A. The relations A×B are then

a closed set of pairs in I. In other words, a formal concept is a set of attributes and

a set of objects such that all of the objects have all of the attributes, there are no

other objects that have all of the attributes and there are no other attributes that

all the objects have. A is called the extent of the formal concept and B is called the

intent of the formal concept.

A formal context is typically represented as a cross table, with crosses indicating

binary relations between objects (rows) and attributes (columns). Figure 7 is a

small example of a formal context where the objects are information sources and

the attributes are named entities, signals of crime categories and values present in

the information sources.

Formal concepts in a cross table can be visualised as closed rectangles of crosses,

where the rows and columns in the rectangle are not necessarily contiguous. FC1,

below, is a example of a formal concept from the Organised Crime formal context

above:

FC1 :

({Crime THB,Location A},
{Source 1, Source 2, Source 5, Source 7, Source 9})

Typically, as the number of attributes in a formal concept increase, the corre-

sponding number of objects that share those attributes reduces - the objects become

more specialised. This behaviour can be seen in FC2, below, with the addition of

the attribute Category Exploitation:

FC2 :

({Crime THB,Location A,Category Exploitation},
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Figure 8 A formal concept tree derived from the Organised Crime formal context

{Source 5, Source 7, Source 9})

FC2 is said to be a sub-concept of FC1. These connections between formal con-

cepts are fundamental in formal concept analysis (FCA) and can be visualised as a

formal concept tree. Figure 8 shows a formal concept tree derived from the Ogan-

ised Crime formal context. Each node is a formal concept. The tree can be read

by understanding that objects are inherited by formal concepts from the right and

attributes are inherited by formal concepts from the left. Thus, for example, formal

concept 1 in the tree is FC1, above, and formal concept 6 in the tree is FC2, above.

The power of FCA to cluster similar objects and to capture increasing specialism

make it an ideal technique for corroborating information sources and providing

‘drill down’ from highly corroborated information at a general level to further,

more detailed, information at a more specialised level. Furthermore, the automated

tools now available for FCA make it applicable in areas where large volumes of data

are being analysed.

Corroborating Information using Formal Concept Analysis

A single tweet containing a weak signal of OC is not a sensible basis for Law En-

forcement Agencies (LEAs) to take action. However, if a number of sources contain

weak signals of the same element of OC from the same location, then this may

form a credible basis to warrant further investigation. Such corroboration can be

automated by the application of FCA [23] to the structured data extracted from

the information sources. FCA can be used to cluster the sources into what we will

call OC Threat Concepts (or simply OC Concepts) where one shared attribute is a

location and another shared attribute is an element of OC. When mining the data

for formal concepts, if a minimum support is set, say of ten information sources,

only OC Threat Concepts with a least ten sources will be obtained.

To carry out FCA, the structured data extracted from the information sources

must be converted into a formal context using a process known as scaling [24, 25].

For example, each location in the data becomes a formal attribute in the context.

If there are 100 locations in the data, there will be a corresponding 100 columns
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Source containing weak signal of THB ×
Source containing weak signal of Exploitation × ×
Source containing weak signal of Sexual Exploitation × × ×
Source containing weak signal of CSE × × × ×

Figure 9 A Formal Context scaling part of the OC Taxonomy (CSE is Child Sexual Exploitation)

US New York State New York City

Country-Level ×
State-Level × ×
City-Level × × ×

Figure 10 A Formal Context demonstrating hierarchical location scaling

in the formal context, one for each location. The same approach applies to other

named entities, such as drugs. To use ordinal data, such as dates or currency, these

can be scaled using appropriate ranges or ‘bins’ of values.

The weak signals of elements of OC are scaled using the Taxonomy. So, for

example, a weak signal may indicate Human Trafficking, and thus the source in

which the signal was contained will be labeled with the formal attribute Crime-

HumanTrafficking. Several different weak signals may all point to Human Traffick-

ing, and thus sources containing any of them would all be labeled with the attribute

Crime-HumanTrafficking. Other weak signals may point to more specific elements

of Human Trafficking, such as Exploitation which is a component of Human Traf-

ficking (from the taxonomy). A source with such a weak signal will be labeled with

both Crime-HumanTrafficking and Element-Exploitation. Thus the general ‘is a

part of’ rule in a taxonomy becomes naturally captured by FCA (see Figure 9).

This type of scaling greatly adds to the process of corroboration: if there are five

sources of information containing weak signals of THB and five sources containing

weak signals of Sexual Exploitation, for example, this implies there are ten sources

containing weak signals of THB.

A similar approach is used making use of information available from the Google

Maps API. The deep geolocation context, particularly the hierarchical structure,

allows the FCA process to cluster locations at various levels. For a given location,

each element of the resolved location hierarchy is used in the formal context as

shown in Figure 10.

Using this approach, FCA detects and corroborates entities within locations at

various levels in the hierarchy. The detected concepts are then viewable at the
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Figure 11 Tree of OC Concepts

country, state and city levels and can be navigated using the formal concept tree

discussed above.

Experimental Implementation

Using a data set created from 29096 tweets as information sources, obtained by

scanning for tweets containing weak signals of OC, a formal context was created by

scaling the extracted structured data as described above. Using a minimum support

of 80 tweets, the context was mined for OC Threat Concepts using a modification

of the open-source In-Close concept miner [26]. The result is visualised as a formal

concept tree in Figure 11.

In the tree, the head node is the concept containing all the tweets from concepts

that satisfy the minimum support (5512 tweets) and each of the branches is to an

OC Concept - a concept where one attribute is a location and another is an OC.

In this example, every OC is Human Trafficking as this was the type of OC being

searched for by the Scanning System. The number inside each node is simply a

concept ID number assigned by the concept miner. The number outside the node,

below the list of attributes, is the object count (the number of tweets contained

in the concept) and in each case this is above the minimum support threshold of

80. Thus concept 53, for example, has the attributes authorlocation-Atlanta and

Crime-HumanTrafficking, and has 185 objects (tweets). In other words, within the

data set there are 185 tweets that have the author location Atlanta and contain a

weak signal of Human Trafficking. With this high level of corroboration, a police



Andrews et al. Page 17 of 29

Figure 12 Drill-Down for the ‘Atlanta’ OC Concept

analyst will be alerted to investigate this further, and a possible next step in the

investigation is automated by FCA in the form of a ‘drill-down’ to the OC Concept’s

sub-concepts.

OC Concept Drill-Down

The OC Concepts in Figure 11 contain limited information - they only have a loca-

tion and the OC Human Trafficking. However, individual tweets in the OC Concept

may contain further information pertinent to the OC. But physically inspecting

185 tweets, although far less work than examining 29096 tweets, is nonetheless

quite time consuming. However, several tweets in the OC Concept may all share

the same additional information and this can be divulged by examining the sub-

concepts of an OC Concept. Each of the sub-concepts will have the same location

and crime as the original OC Concept but with one or more additional attributes

from the structured data extracted from the tweets. Such a result can easily be

obtained by mining the data for concepts that contain the attributes of the OC

Concept and at the same time reducing the minimum support required.

Figure 12 shows a concept tree with the ‘Atlanta’ OC Concept from Figure 11

and its sub-concepts produced when the minimum support is set to 5.

In the tree, concept 3 shows that 10 of the 185 ‘Atlanta’ tweets also contain

a reference to the drug amphetamine. They may not all contain the actual word

amphetamine, but they will all contain a word or phrase that is commonly used

to mean or refer to amphetamine. But using lists of such words and phrases, the

entity extraction process carried to produce the structured data will thus label each

of these tweets with the attribute drug-amphetamine, which in turn enables the

FCA to group them together.

Concept 2 shows that 6 of the 185 Atlanta tweets also contain the location

Central America and the county Mexico. Furthermore, a semantic rule in the

entity extraction process has determined that Mexico is being referred to in the

tweet as a trafficking location and thus these tweets are labeled with the attribute

traffickinglocation-Mexico.
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Concept 1 shows that 10 of the 185 Atlanta tweets contain weak signals of the

OC Human Trafficking element Exploitation and the exploitation type Sexual. Fur-

thermore, in 8 of those 10 tweets there are weak signals of CSE, further specialising

the OC.

Thus, through this simple automated process, the police analyst has potentially

more information that may be pertinent to an OC and more specific information

regarding the nature of the OC. Because the original OC Concept involved corrob-

oration by a large number of sources, the analyst can gain some confidence that

further information contained in sub-sets of the tweets has credibility. Indeed, the

analyst may now want to trace back to the original tweets (or to the text of these

tweets) and, because they have been grouped together by FCA, it is simple task to

provide this facility.

Implementation for End-users
The processes and components described above were implemented as a part of

the European ePOOLICE Project [2]. The OC Taxonomy and entity extraction

components developed by the authors were implemented in the system to provide

data to be consumed by various analytic components, one of which was the FCA OC

Threat corroboration component described above. The user interface was developed

in close collaboration with Law Enforcement Agency end-users, using a map-based

approach. The system allows a police analyst to select a region and type of OC

to scan for and then acquire sources on the Internet (such as tweets) that match

those search criteria. Structured data is extracted automatically from the sources,

as described above, allowing the user to carry out a variety of analytic tasks and

display the results in an appropriate visualisation. Figure 13 shows the user interface

with the FCA ‘Corroborated Threats’ option selected. There are a number of other

options listed on the left of the screen and these components were developed by

other members of the ePOOLICE consortium [2]. However, it is outside the scope

of this article to describe these other components here.

The map in Figure 13 is displaying the OC Concepts as described in the example

above. Various icons are used by the system to indicate types of OC and the one

here is for Human Trafficking. The analyst is able to click on an OC Concept icon to

display its information (essentially this is the attributes and objects of the concept)

and drill down to its sub-concepts. Figure 14 shows the ‘Atlanta’ OC Concept with

its associated information, including its attributes (crime: humantrafficking and

location: atlanta) and its objects (tweets), listed as URLs allowing the analyst to

trace back to the original sources. The sub-concepts are displayed as icons below the

original concept and Figure 15 shows the additional information displayed when one

of these sub-concepts is clicked on - in this case the attribute drug: amphetamine.

The 10 sources that contain a reference to amphetamine are listed and at this point

the analyst may wish to look at some of these. Clicking on a URL will take the user

to the original source. Above the lists of attributes and sources is a list of categories.

These are categories that are referred to in one or more of the sources in the OC

Concept, but not in all of them. Thus they give the analyst further information of

interest but without an indication of their level of corroboration.
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Figure 13 ePOOLICE system showing OC Concepts

Evaluation
Although difficult to evaluate in an operational sense (we cannot, for example, act

as the police in investigating organised crime) it is possible to say something about

the quality of the results in terms of the accuracy of the weak signals identified.

A sample of 20 inferred OC categories were selected by police experts as having

the greatest potential for providing information useful to their investigations and

these were inspected against the original text sources, with 16 out of 20 correctly

identified from weak signals as being crime related. In the other four cases, the

context within which the identified words or phrases were used clearly indicated

that the source was not referring to OC. Although only a small sample, this was

an encouraging level of false positives. However, further evaluation is required on

larger samples to produce a statistically significant result.

In order to test the accuracy of the developed content categorisation and named-

entity extraction models, an evaluation set of 164 Twitter posts was selected from

the existing larger corpus that is used as the exemplar throughout this paper. The

particular tweets selected were done so randomly, however provision was made to

remove duplicate ‘retweets’ or posts that were simply identical to others already

contained within the evaluation set, so as to ensure a broader range of entities and

rules within the model were tested. The reason for the selection of a relatively small

corpus of test data was to enable the manual categorisation of the named entities

contained within the data, utilising the domain knowledge embedded within the

research team in order to establish, based on the rules and categories known within

the model, the areas of best fit for the content under analysis. The manual assess-

ment allowed for the use of human intuition to denote when proper nouns referring

to places etc. were in fact referring to a place, regardless of capitalisation, a process

much more difficult when using automated tools. Similarly the human assessment
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Figure 14 ePOOLICE system showing San Diego and Atlanta OC Concepts and details of the
Atlanta OC Concept

can account for errors in grammar, spelling and other issues which may have pre-

vented a successful match using the automated tools, in addition to accounting for

words or phrases that may be indicative of a particular form of exploitation or crime

that may not be contained within the taxonomy and ruleset used by the automated

tools. To reduce the risk of error in the manual process, the evaluators were initially

briefed by a police specialist in the use of social media as an intelligence source.

The same data-set was then processed through the model using the developed

NLP model and tools, and the resulting .csv outputs compared to determine the

accuracy of the automated approach. The evaluation was done so on a binary basis,

with a 1 value awarded in instances where the results of the analysis matched

exactly, and a null value awarded if the results did not match. The results of the

evaluation by output field are presented as percentages in Figure 16 indicating the

success ratio of the automated approach. A subsequent analysis was also conducted

to determine the number of false-positives returned using the automated model,

that is the the number of non-null values which do not match the value returned

during the manual processing of the same dataset. The results of this analysis are

included as a separate series in Figure 16.

In a number of areas, the model returned results accurately 100% of the time. For

entities such as ‘pdate’ (date of posting), author and organisation this was due to

the rules determining their extraction simply identifying the presence of raw values

from the data. In the case of pdate and author these are pre-defined fields in the

source content provided through the Twitter API. For Organisation this is done

through existing supervised learning techniques embedded within the SAS Content

Categorisation software which are built through reading in a large dataset of organ-

isation names against which rules are generated using well established techniques
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Figure 15 ePOOLICE system showing Drill-Down information

such as Hidden Markov Models and Decision Trees [27]. In instances where the au-

tomated model was 100% accurate, it is expected that the results indicate 0% false

positives.

The decline in accuracy of location extraction entities continent, country and city

as they become more granular can be attributed to the fact that the model uses

simple lookup-tables of known locations as the basis of the extraction. While the

number of continents and countries and the various names to which they are often

referred is relatively finite, the number of towns and cities in the United States alone

means that this simple method of extraction can be prohibitive for entities where

potential range of values to be returned is vast. This difficulty is also reflected in the

increasing number of false positives recorded for these entities due to the potential

for place names to be the same as common nouns.

For other entities such as exploitationlocation, traffickinglocation and arrestloca-

tion the results are again varied. In this instance, predicate rules which look for

separate entities such as Location alongside syntax which may indicate the pres-

ence of exploitation, arrest or trafficking within the same sentence were used. While

useful to an extent, the rules by their nature are limited. The cognitive abilities

of a human analyst with knowledge of the domain may be able to infer that, for

example, an individual being recovered from a particular location is likely to have

been exploited in that same location, whereas the rules used rigidly rely on the ex-

plicit presence of language indicating exploitation has taken place. A large number

of false-positives for these entities are also returned. This again reflects the value

of human cognition in the sense-making process. While the example provided in

Figure 4 demonstrates how these rules can work well, small changes to the syntax

could have resulted in the return of a false positive. For instance if the text had

said “Atlanta news reports Human Trafficking issues across the country” the ruleset
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Figure 16 Content Categorisation and Named-Entity Extraction Evaluation Results

would still return Atlanta as a trafficking location, where as a human analyst could

infer that a more appropriate location would be the United States, or that it’s not

really possible to determine a location at all based on the information provided.

A further qualitative evaluation was provided by 24 end-users during a hands-on

feedback session held in December 2015. Various law enforcement agencies from

within the EU were represented, including those from regional, national and inter-

national organisations, from countries including the UK, France, Spain, Belgium

and Estonia. For the evaluation, users were first given an introduction to, and

demonstration of the system, by a facilitation team from the ePOOLICE project,

highlighting both an overview of what it aims to do at a conceptual level and a

practical guide to its features, functions and user interface. Participants were then

invited to test the system, and asked to provide qualitative feedback on usability

and utility. This feedback was collated using physical questionnaires at the end of

the test and through an interactive debrief session where they were able to pass

comments and ask further questions about the system to the facilitation team. The

feedback gleaned highlighted factors such as the need to refer potentially personal

and sensitive information about the origins of the identified indicators so they could

be followed up, and, the complexity of the way in which the systems outputs were

presented via the map-based interface. However, feedback regarding the utility of

the system in providing a means to show trends in current, and alluding to emerg-

ing, forms of criminality in different geographic areas was overwhelmingly positive,
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especially through the utilisation of previously untapped data sources such as social

media.

Related Work
Until relatively recently, commercial web-crawling systems have tended to focus on

providing market research for clients’ products and services. A prominent example

of this is the sentiment analysis work carried out by SAS using keyword search

combined with taxonomy-based text-mining [28]. However, companies are adapting

these systems to provide intelligence to law enforcement agencies [29]. BlueJay

software, made by BrightPlanet, was able to monitor social media during high

profile events and illicit activities, to aid LEAs in the collection of incriminating

evidence, although the service has now been discontinued due to the increasing cost

of accessing Twitter data [30]. OpenMIND advertises the ability to crawl the “deep

web” – inaccessible to search engines but accessible to their software - to provide

agencies with “actionable intelligence” [31]. The majority of these tools are designed

to be used by the companies that made them, to provide data and intelligence to

LEAs as a service. By contrast, the ePOOLICE system has been designed with the

police as end-user in mind, providing constant, ‘in house’, monitoring and a user

interface designed for the police analyst. However, LexisNexis, have also developed

a “next-generation” policing platform designed for use by LEAs, for crime analysis

and investigation. The platform is called Accurint Virtual Crime Center, and links

different data types on people, places, vehicles, phones and other information into

one visual dashboard. As such, Accurint Virtual Crime Center perhaps comes closest

to what the ePOOLICE system is attempting. However, the LexisNexis approach

is based on accessing and fusing data from existing databases (such as national

law enforcement databases and public records databases) rather than obtaining

intelligence from scanning the Internet and social media. Thus, Accurint Virtual

Crime Center provides investigators with a central access point and analytics for

large volumes of dispersed and disparate data, but without the immediate and

real-time monitoring provided by ePOOLICE.

In terms of current research, probably the most prominent example that bears sim-

ilarities with ePOOLICE is the work being carried out at Cardiff University, UK,

developing a system to scan social media to predict outbreaks of hate crime [32].

Researchers are building a machine-learning based classifier to distinguish tweets

displaying hateful or antagonistic views with a focus on race, ethnicity, or religion

[33]. By identifying textual features of such tweets, the idea is for the classier to

be used to predict off-line hate crime based on the level of on-line ‘cyber-hate’.

It is interesting to note that the researchers used natural language processing to

derive syntactic grammatical relationships in a tweet that can be used as features

for classification to enrich their lexicon of cyber-hate beyond simple unigram and

bigram terms. This type of text analysis is central to the ePOOLICE entity and re-

lation extraction system (as described above). However, whereas the Cardiff system

is intended as a predictive tool, ePOOLICE is focused on information extraction

and visualisation. It was this focus, and the proven track-record of tools such as

SAS’s text mining software, that provided the motivation in ePOOLICE to exclude

machine learning in its processes. Nevertheless, if a predictive element was to be
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added to the ePOOLICE system, clearly a machine learning approach would be ap-

propriate. Indeed, in a similar, parallel, European project (project ATHENA [34],

in which the authors’ organisation was a partner), machine learning was added as

a means of assessing the credibility of information in social media [35].

Increasingly, organised forms of crime, particularly those which involve human

exploitation; modern slavery, human trafficking and CSE take place in some capac-

ity online. With the proliferation of these ‘cyber-enabled’ crimes [36], the vectors

through which individuals are recruited, deceived and coerced into exploitation

has expanded exponentially [37]. The use of social media, classified ads and other

internet mediums is now widespread in human trafficking cases, including those

associated both labour and sexual exploitation, and domestic servitude [38, 37].

The internet provides a venue for both the recruitment, deception and coercion of

potential victims, and for the sale of illicit goods and services that use trafficked

labour and sex-workers [39]. Meanwhile, the dark-web and private message-boards

facilitate the dissemination of CSE material [40]. Though this era of online crime

has opened up new commercial opportunities for criminals to expand their illicit

enterprises, it has also created a resource that can be leveraged by law enforcement

in response, and work to make use of this information has already begun.

Indeed, the use of software tools to extract, analyse and visualise detected indica-

tors of human trafficking is not a process unique to the research we have presented.

Existing studies, such as that by Ibanez [41], have sought to utilise open-source data

from message boards and classified ads. Such information, when combined with so-

cial network and phone number analyses has been used to successfully detect the

movement patterns of traffickers and their victims. While Ibanez’s study, at the

time of its publication, was reliant on the manual analysis of open source data – it

does acknowledge the potential future utility of web crawling and natural language

processing (NLP). As we have demonstrated through our research, automated data

extraction and analysis opens the doors to a more expansive and efficient approach

to indicator identification.

Other work, such as that by Poelmans [42] has shown the potential value of FCA

in combating organised crime, and in the case of this work; the specific challenge of

human trafficking. In this particular case, FCA was leveraged as part of a ‘Temporal

Concept Analysis’ on archival policing reports. The techniques were used with some

success to build a profile and eventually identify potential suspects who may be

involved in human trafficking based on historical data.

Approaches which look to leverage the value of OSINT through automated crawl-

ing and analysis have also been employed by researchers working in other areas of

crime and security [43]. Popular applications include those associated with Child

Sexual Exploitation (CSE) material [44], through to the detection of extremist pro-

paganda and terrorist communities [44] and the identification of civil unrest [45, 46].

While many of these approaches deal with text and metadata, other tools are being

developed which seek to analyse multimedia data, such as video and images, for

illicit content [47, 48].

More generally, social media data is being used in a variety of ways as researchers

experiment with new and novel applications to detect and potentially prevent crime

using data derived from the medium. In one such example, social media has been
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used as a way to try and better understand and explain the location of criminal

incidents. For example, Bendler et al. [49] theorised and proved that theft and rob-

bery incidents were more likely in locations with increased social activities, whereas

the opposite was true for vehicle theft.

We can conclude from this review of related work that social media is actively

being studied and used as a source of intelligence and that steps have been made

to automate the process. However, the focus has been predominantly on keyword

searching with the notable exception of the machine learning approach being taken

at Cardiff University [33]. Thus there is a clear gap in this area for the application

of NLP to obtain potentially useful intelligence from sources that would otherwise

be overlooked. The development of the notion of ‘weak signals’, tied to a formal

taxonomy of OC and a set of semantic rule, has the potential to give the analyst a

situational awareness that is fuller and richer than currently possible. There is also

a gap in the analytical capability of exiting approaches - the majority tend to be

focused on information gathering, leaving the analyst to decide how to process and

utilise the information and potentially lead to a situation of information overload,

particularly given the huge amount of online content available. Here, this gap if

filled with the application of FCA and the provision of a map-based interface. The

FCA automatically clusters sources at geographic locations, filters out sources that

are not corroborated and gives the analyst the facility to drill down into clusters of

interest to reveal more detail.

Conclusion and Further Work
In this paper we have demonstrated how using FCA in combination with map based

visualisation, data extraction and natural language processing techniques to extract

and classify data it is possible to detect, through social media, the presence of

corroborated organised crime threats. Establishing the idea of ‘weak signals’ as the

presence of key words and phrases that point to criminality, the approach shows one

way in which social media can be used as the basis for the development of intelligence

from open-sources (OSINT) in order to build on the situational awareness of police

and other law enforcement agencies as they seek to adopt new technologies to aid

in the fight against transnational organised crime threats like Human Trafficking.

This paper has shown how using named entity recognition (NRE) allows for the

detection and extraction of named locations within a given piece of text. The pro-

cess used in this paper focused on sentence-level extraction which appears to provide

reasonable results on Twitter data due to the limited nature of the content provided

in each source, or tweet, when only the source itself is being used - for example,

by not extracting further information from the user’s profile or surrounding con-

tent. Using sentence-level extraction on other sources, such as news articles, often

misses important contextual information given in neighbouring sentences, such as

the country or state that the given named location is within. For NRE to be effec-

tive at extracting locations with greater accuracy, then full-content-level extraction

would be required, which in itself introduces further challenges. Performing NRE

based on a list of known locations also has the challenge identifying words that

whilst they are real locations, they are not likely to be locations in the given con-

text. Such words that have been observed in this project include “buy”, “sell”, and
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“god” which are all names of real locations but were being used in their normal

sense. More sophisticated rule-based extraction is required to ensure the author of

the content is actually referring to a location by detecting language such as “in

Madrid” or even common article layouts such as “MADRID - A man was detained

yesterday, suspected of being the ringleader of a major forced labour syndicate”.

Disambiguating locations once extracted focuses on the challenge of handling

locations with common or similar names. Typically, this is done statistically by

using only most relevant or largest place which presents a risk of false positives.

Probability states that when an source is talking about Washington, it is referring

to Washington, DC rather than Washington County, Alabama, or any number of

other places called Washington. However, this will not always be true and may

not be suitable in the context of OC. Therefore, wider contextual extraction is

imperative in order to provide more accurate results. The presence in the text of

other location-based information could also be exploited for disambiguation, for

example a mention of a building or place in Washington, DC in addition to the

location Washington.

Location granularity proved to be another issue. Whilst the identification of towns

and cities may be useful at a strategic level, at the operational level is it often specific

houses or buildings that are important. However, there may be many houses with

the same number and street name, even within the same geographical area (London

Road, for example, is a very popular road name in the UK). Again, the presence in

the text of other location-based information could help identify the actual house.

The use of location-base coding systems, such as Post Codes in the UK or ZIP

Codes in the US, may provide additional means of extracting specific locations.

Issues of context also apply to other named entities, such as drugs. Whilst we have

successfully implemented comprehensive lists of drug names, including the various

slang terms used, false positives will continue to be a problem unless we can detect

more contextual information to confirm them. ‘Weed’ and ‘grass’ are well-known

terms for the leaf form of cannabis, for example, but including information sources

about gardening would clearly not useful in the context of combating OC. Further

development of rule-based text mining is required to help identity OC as being the

context.

Further work is also required in the detection of false information in malicious,

joke or hoax sources. This area has been explored by a number of researchers, such

as [50, 51, 52] using a variety of approaches including machine learning and natural

language processing. Adding such a level of credibility assessment to the filtering

process will further enhance the effectiveness of the system presented here.

Nevertheless, given the limitations above and the further work required, the cur-

rent system has shown that it is quite capable of providing useful information in the

detection of organised crime threats, as evidenced by the evaluation given above.

The system has also been successfully adapted as part of the European ATHENA

Project [34] where social media is used to provide situational awareness for crisis

management [53]. The system has also be adapted as part of an Open Source Intelli-

gence (OSINT) Hub in the Centre of Excellence in Terrorism, Resilience, Intelligence

and Organised Crime Research (CENTRIC) at Sheffield Hallam University. In par-

ticular the approaches used to crawl, filter, analyse and extract data from the web
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and social media have been adapted for these purposes. In ATHENA, an evolved

version of the same processing pipeline described here is used alongside a taxon-

omy and ruleset designed to identify and extract information about crises, such as

natural disasters, terrorist attacks and other events. Within the OSINT hub, the

same techniques are also adapted, in a more exploratory manner, as part of a wider

initiative to explore the broader value and utility of information from open-sources

in providing situational awareness for LEAs, and to supplement existing forms of

evidence in live investigations.

In summary, this work makes a number of contribution to the field: A novel, se-

mantic, approach to identify OC intelligence in social media via the development of a

set of ‘weak signals’ that has the benefit of finding information that would otherwise

be overlooked; a new rule-based approach to categorise and organise information

into structured data; a novel FCA-based approach to deal with information over-

load, provide corroboration of information and provide a framework for analysis

based on geographic location and information drill-drown. It is hoped that these

contributions will be of interest and useful to police practitioners and researchers

in this field.
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