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Abstract
In recent years, knowledge extraction from data has become increasingly popular,
with many numerical forecasting models, mainly falling into two major categories—
chemical transport models (CTMs) and conventional statistical methods. However,
due to data and model variability, data-driven knowledge extraction from high-
dimensional, multifaceted data in such applications require generalisations of global to
regional or local conditions. Typically, generalisation is achieved via mapping global
conditions to local ecosystems and human habitats which amounts to tracking and
monitoring environmental dynamics in various geographical areas and their regional
and global implications on human livelihood. Statistical downscaling techniques have
been widely used to extract high-resolution information from regional-scale variables
produced by CTMs in climate model. Conventional applications of these methods
are predominantly dimensional reduction in nature, designed to reduce spatial dimen-
sion of gridded model outputs without loss of essential spatial information. Their
downside is twofold—complete dependence on unlabelled design matrix and reliance
on underlying distributional assumptions. We propose a novel statistical downscal-
ing framework for dealing with data and model variability. Its power derives from
training and testing multiple models on multiple samples, narrowing down global
environmental phenomena to regional discordance through dimensional reduction and
visualisation. Hourly ground-level ozone observations were obtained from various
environmental stations maintained by the US Environmental Protection Agency, cov-
ering the summer period (June–August 2005). Regional patterns of ozone are related to
local observations via repeated runs and performance assessment of multiple versions
of empirical orthogonal functions or principal components and principal fitted com-
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ponents via an algorithm with fully adaptable parameters. We demonstrate how the
algorithm can be extended to weather-dependent and other applications with inherent
data randomness and model variability via its built-in interdisciplinary computational
power that connects data sources with end-users.

Keywords Chemical transport models · Downscaling · Empirical orthogonal
functions · Ensemble modelling · Interdisciplinary computation · Principal
component analysis · Principal fitted components · Unsupervised modelling

1 Introduction and general background

Changing climatic conditions due to space and terrestrial activities and how they
affect our livelihood are well documented. The relationship between solar activities
and terrestrial climatic change has been hotly debated in recent years. Two schools
of thought have emerged, one believing that the climate on earth is directly impacted
by activities on the sun and we therefore cannot predict the climate on earth until
we understand solar activities [1], and the other not seeing a direct solar impact on
terrestrial phenomena. Many studies suggest that climatic conditions affect the levels
of air pollutants [2], with human activity particularly blamed for the increase in green-
house gases. While greenhouse gases reabsorbtion of heat reflected from the Earth’s
surface is essential in regulating the Earth’s temperature, disproportional increase in
greenhouse gases tends to hinder additional thermal radiation from escaping from
the Earth; hence, many researchers have attributed this to rising sea levels and tem-
perature. The recent announcement that concentrations of carbon dioxide CO2 in
the atmosphere had surged to a record high [3] shows that we have serious issues
to address. We are therefore called upon to enhance our understanding not only of
the conditions on the ground—like ground-level ozone levels and extreme weather
events such as flooding, but also of the heat-trapping CO2 in the atmosphere and
of what happens out in space. Despite ubiquitous enhancements in data acquisition,
sharing and modelling technologies, many questions remain unanswered and, hence,
new developments call for equally sophisticated real-life applications, including those
focusing on tackling environmental challenges for global sustainability. We therefore
need robust ways for generalising the impact of various phenomena. Downscaling
can be envisioned from different perspectives—the circulation pattern over a specific
geographical region could be viewed as a large-scale variable while precipitation in
a local area within the region can be described as a small-scale variable [4].

In recent years, knowledge extraction from data has become increasingly popular,
withmany numerical forecastingmodels, typically falling into twomajor categories—
chemical transport models (CTMs) [5,6] and conventional statistical methods [7].
However, due to data and model variability, data-driven knowledge extraction from
high-dimensional, multifaceted data in such applications requires generalisations of
global to regional or local conditions. This paper proposes a general framework for
statistical downscaling based on a data-driven procedure for making use of prior infor-
mation at large scales for generalisation at local scales.The idea is to develop statistical
relationships between local and global attributes that map the latter to the former.
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Mapping global conditions to local ecosystems and human habitats amounts to track-
ing and monitoring environmental dynamics in various geographical areas and their
regional and global implications on human livelihood. Conventional applications of
these methods are predominantly dimensional reduction in nature, designed to reduce
spatial dimension of gridded model outputs without loss of essential spatial informa-
tion. They heavily depend on unlabelled design matrix and distributional assumptions.

We propose a novel statistical downscaling framework for dealing with data and
model variability. Its power derives from training and testing multiple models on
multiple samples, narrowing down global environmental phenomena to regional
discordance through dimensional reduction and visualisation. Repeated samples of
ground-level ozone data are used to illustrate its power for narrowing down global
environmental phenomena to regional discordance through an iterative process—train,
validate, assess, repeat executed by an algorithmwith built-in interdisciplinary compu-
tational power. The proposed algorithm is embedded with the applications agility for
addressing the foregoing issues in different contexts, and we demonstrate how, by con-
necting data sources with end-users, it can be extended toweather-dependent and other
applications with inherent data randomness and model variability. The paper is organ-
ised as follows. Studymotivation, aims and objectives are given in Sect. 1, followed by
methods in Sect. 2—describing data sources in Sect. 2.1 and implementation strategy
in Sect. 2.2. Implementation, results and related discussions and computational envi-
ronment are given in Sect. 3 and concluding remarks and future directions in Sect. 4.

1.1 Motivation and rationale

The key motivation for this paper is twofold. Firstly, the complexity of the dynamics
of our ecosystem—particularly how it is affected by spatio-temporal activities, entails
rigorous and robust strategies to understanding and sustain. Narrowing down global
environmental phenomena to regional discordance may provide insights into the phe-
nomena and therefore help in planning for mitigating strategies. Real-life phenomena
such as space–terrestrial, climatic conditions–human activities and pollutions fit into
this context. Secondly, the notional functional relationship between the large and
small-scale variables makes it possible for one to be described in terms of the other.
Modelling this relationship via downscaling will correct the spatial mismatch between
the variables without loss of useful information which conforms to the mechanics of
dimensional reduction methods, such as principal component analysis (PCA) [8].
Many natural and physical phenomena render themselves readily for such relation-
ships, which may not always be so obvious. This paper seeks to derive knowledge on
local from regional variables via the objectives outlined below.

1.2 General and specific objectives

To account for variability, the paper adopts an ensemble downscaling approach and
enhances its robustness capacity.Outlined below are the general and specific objectives
of the paper.
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1. General: To develop a general framework for training and testing data models
This is fundamental because quite often we adopt simplification due to our lack
of adequate understanding of processes and/or phenomena. We need robust tools,
techniques and analytical skills to scale down real-world data phenomena for a
better understanding. The specific objectives for addressing data complexity are

1.1. To narrow down global environmental phenomena to regional discordance.
1.2. To extract knowledge on simple/local from complex/regional variables.

2. General: Model assessment and optimisation Data randomness and spatio-
temporal parametrisation stipulate that intrinsic characteristics of the environment
beingmodelledwill be a function of specified attributes location, time and samples,
say. In other words, air quality model parameters are not geophysical constants,
and so they cannot be measured with 100% accuracy. More specifically, the paper
seeks

2.1. To carry out multiple sampling and testing for robustness.
2.2. To provide an adaptive statistical downscaling tool.
2.3. To demonstrate how the framework can be adapted to other applications.

Air quality modelling is an area of strong research interest for many reasons.Within
the European Union (EU), for instance, member states are required to design appro-
priate air quality plans for zones where the air quality does not comply with specified
limit values which has led to a wide range of air quality modelling tools and tech-
niques [9]. A thorough assessment of the effects of local and regional emission on
air quality and human health and to identify methodologies and their limitations is
proposed in [9]. The evaluation, based on 59 one-off appraisal contributions from 13
EU member states, relies on indicators collected from questionnaires, which does not
exhibit robustness of the models used. Recent spatio-temporal variations as in [10]
provide good insights into spatio-temporal variations through simulations. The forego-
ing research objectives allude to an interdisciplinary approach to air quality modelling
and to the general research philosophy that interdisciplinary formalisation of mul-
tifaceted environmental-related data, analytical methods and procedures potentially
yields consistent, comprehensive, robust and veracious results as they help minimise
the effect of data randomness [11]. The paper presents a comparative statistical down-
scaling framework based on the core ideas of dimensional reduction as described in
the following exposition.

2 Methods

This section describes the data sources in Sect. 2.1 and the implementation strategy
in Sect. 2.2. An unsupervised algorithm for learning rules from training spatio-
temporal data for future replication elsewhere is developed and implemented via a
data-adaptive algorithm. The section outlines the path to fulfilling the sequence of
objectives in Sect. 1.2, results presentation, computational environment, discussions
and making recommendations for extensions.
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2.1 Data sources

Wehave 24-hour ground-level ozone predictions by theRegional ChEmical trAnsport
Model (REAM) adopted from [12–16] and [17,18]. The forecasts span across 104
grid cells over the south-eastern region of the USA with a resolution of 70 km ×
21 vertical layers in the troposphere. The data, representing hourly ozone observations
fromvarious environmental stations inFig. 1maintained by theUSEnvironmental Pro-
tection Agency (EPA), cover the summer period of June–August 2005, with regional
simulations carried out during the last two weeks of May 2005.

The data are sampled from an n × p data matrix in which the rows, n = 2203, rep-
resent hours of day from 05:00hrs to 23:00hrs on 01 June, while the columns 1 to 109
are the actual ground-level ozone concentrations for 109 monitoring stations scat-
tered across south-eastern USA and columns 110 to 213 are the REAM forecasts for
the 104 grid cells covering the same south-eastern region. Comparability is on model
performance deriving from multiple versions of unsupervised models for identifying
underlying structures in sampled data. The goal is to extract improved knowledge on a
smaller subset x ⊂ X from the super-set X ⊃ x through higher spatial resolution. Let

X = Xi, j where i = 1, 2, 3, . . . , T ; j = 1, .., K ; K � T

x = xi, j where i = 1, 2, 3, . . . , t ≤ T ; j = 1, .., k; k � t (1)

represent the data in Fig. 1. The most obvious approach would be, for each monitoring
station to regress hourly ozone observations on the grid cell that includes the station.
Equation 2, where Zt represent hourly ozone observations and Mt (X) is the data-
dependent REAMmodel output of the grid cell, exhibits how this can be implemented.

Zt = β0 + β1Mt + εt . (2)

The strategy is to repeatedly sample x ⊂ X over multiple combinations of t and
k, recording performance parameters. As noted earlier, modelling Eq. 2—i.e. the
notional functional relationship between the large and small-scale variables, conforms
to mechanics of dimensional reduction techniques such as PCA as expounded below.

2.2 Implementation strategy

The main idea is to use ensemble unsupervised models to map regional to local air
quality patterns based on repeated sampling and performance assessment of multi-
ple versions for different techniques. We adopt PCA—a technique that creates new
uncorrelated variables by linearly combining the original x. j . The components are
extracted in succession, with the first accounting for as much of the variability in
the data as possible and each succeeding component accounting for as much of the
remaining variability as possible. Ordering extracted components in descending order
of the variability each accounts for, allows dimension reduction, and hence, only the
first few components can be used to describe the original data. Each component is
estimated as a weighted sum of the variables as in Eq. 3.
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Fig. 1 Selected ozone monitoring stations in the south-eastern USA shown as ×s and REAM grid cells as
circles [16]

Ci, j = αT
i jX =

K∑

j=1

K∑

i=1

αT
i j Xi , (3)

where i, j = 1, 2, . . . , K and α1, α2, . . . , αK are the eigenvectors corresponding to
the eigenvalues λ1 ≥ λ2 · · · ≥ λK of the covariance matrix x ⊂ X. The coefficients in
Eq. 3 are the directions or loadings of the components, and as such, they represent the
weights associatedwith each of the i variables. For each sample of k ⊂ K variables,we
can extract k components and the decision to retain components is based on the amount
of variance each component accounts for—typically, retaining components for which
λ ≥ 1. To put this into perspective, the grid cells of our REAMmodel hourly data rep-
resent an n× p sourcewhichwill be linearly combined to form a fewer than p grid cells
information fromwhich can be generalised to any of the p cells. Further, if we treat Csi, j
as notional predictors of ozone, we obtain themulti-variate version of Eq. 2 as follows:

Zt = β0 +
K∑

i=1

βi MK (t) + εt , (4)

where Zt is the ozone output, M ≤ p is the number of Csi j , βi are model parameter
and M1(t), M2(t), · · · , MK (t) are Csi, j . There are a number of issues of concern up
to this point. Firstly, PCA extracts p Csi, j and even though retention is determined
by, say, the λ ≥ 1 criterion, randomness due to sampling, produces variations in
loadings. Secondly, this approach to downscaling fully relies on unlabelled data [19]
and therefore proper interpretations of each cluster, i.e. each Csi, j , are required in order
to incorporate the target variable in downscaling.
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Algorithm 1 Unsupervised
1: procedure Optimising Naturally Arising Structures(Csi j )
2: X:=Xi, j ; i = 1, 2, 3, . . . , T ; j = 1, .., K ; K � T
3: x:=xi, j ; i = 1, 2, 3, . . . , t ≤ T ; j = 1, .., k; k � t
4: Initialise: � (.) ← NULL; M := Large constant; ν := 0; m := 0
5: while m ≤ M do
6: Sm ← mth sample xm.i, j ⊂ Xi, j
7: Csi, j ← xm.i, j

8: Update �m (.) ← Sm {αm.1, αm.2, · · · , αm.k ; λm.1 ≥ λm.2 · · · ≥ λm.k }
9: m := m + 1
10: for ν = 1 → dim�m (.) do
11: Update �ν.m (.) ← λm.1 ≥ λm.2 · · · ≥ λm.k ← Sm

{
Av

[
αm−1.k , αm.k

]}

12: Test optimality of the parameters in 8˚.m (.)

13: if �ν.m (.) ∼= �ν+1.m (.) then
14: Cs

ν.i, j ← �ν.m (.)

15: else
16: if �ν.m (.) � �ν+1.m (.) then
17: Cs

ν.i, j ← �ν+1.m (.)

18: end if
19: end if
20: end for
21: end while
22: Output and interpret CsM .i, j
23: end procedure

Notice that Algorithm 1 is generic, designed to cater for various types of
unsupervised modelling and, hence, � is initialised as an empty set of extracted
components—in case of PCA; map dimensionality, in case of SOMs or the num-
ber of clusters, in case of K-Means, say. The large constant M is basically the number
of iterations or the number of different sized samples extracted from Xi, j , and it
is determined by the investigator, typically depending on Xi, j and the visualisations
emerging from�.Note that ν is incremented and used to update and optimise�, a typ-
ical example being that of dimensionality as stated in the algorithm, using eigenvalues
and vectors. The conditional checks in lines 13 through 18 of the algorithm underline
the need for proper interpretation of the resulting structures—i.e. not fully condition-
ing retention to the mechanics of the methods and this helps minimise randomness
due to sampling.

As each component retains elements of randomness, for each Csi, j we record
loadings, eigenvalues and crucial model parameters which are subsequently used to
determine the optimal number of naturally arising groupings in the data. This process
is repeated many times over, storing and comparing relevant parameters as illustrated
in Algorithm 1. The loadings determine the formation of Csi, j and their meaning-
fulness is determined by their magnitude, direction and domain knowledge at each
step of the algorithm using numerical methods, graphical visualisation or both. Each
Csi, j ∝ Y and so the final CsM .i, j can be interpreted as class labels for supervised appli-
cations. Further illustrations of the computational power of the algorithm are provided
in Sect. 3.3.
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Fig. 2 PC patterns from sampled 15 observation stations in the south-eastern USA

3 Implementation, analyses and discussions

The typically low spatial resolution of air quality model forecasts and the relatively
large spatial dimension of griddedmodel outputs entail the application of the foregoing
methods. The underlying idea is that dimension reduction would retain most of the
influential spatial and regional information provided by the air quality model. We
present results from PCA and principal fitted components (PFC) downscaling. Thus,
we combine the power of dimensional reduction with that of predictive modelling for
the purpose of attaining robustness as outlined below.

3.1 Principal components and principal fitted components

PC patterns from sampled 15 observation station for the actual Ozone lev-
els and REAM forecasts are presented in Fig. 2. Both cases exhibit two clear
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Fig. 3 Performance assessment for selected samples and stations

components, a detailed discussion of which is provided in Sect. 3.2 and via
Figs 3, 4.

The two panels are selected plots from multiple samples of size 15 (top) and 20
(bottom), and in both cases, the bimodality of the vectors is evident. The bi-plots at
the top of each panel represent the first 2 Csi j , and they are based on the loadings–
eigenvectors relationship as described in Eq. 3. The high variation accounted by the
first and second Csi j is evident from the panels. Of great values to the first Ci j are several
stations—such as 35, 36, 72 and 12 for the actual plot and 121, 123 and 170 for the
forecasts—having high absolute influences in the construction of both C1 j and C2 j .
The pattern is repeated in the bottom panel, for stations 12, 36 and 53 and 36, 121 and
173, respectively. Although in most cases eigenvalues greater than 1 corresponded to
3 PCs, plots involving the third and higher PCs revealed near-random relationships,
suggesting that very little variability remains after extracting C1 j and C2 j .

3.2 Performance assessment and key results

We assess the performance of both PCA and PFC different techniques using the
receiver operating characteristic (ROC) curves [20] and kernel density estimations
for the same parameters as shown in Fig. 3. The panel on the left-hand side of the plot
shows the ROC curves from selected stations and n × p samples representing ozone
readings in time. While a classifier is usually said to be optimal if it yields results
in the north-western corner of the plot, classifier superiority must always be decided
by taking variation into consideration which is precisely what Algorithm 1 seeks to
achieve. By setting κ large, averaging of ROC curves can yield good, reliable results
through cross-validation or bagging techniques. Multiple runs on κ provide scope for
measuring the margins by which curves vary. The final part of the algorithm seeks
to obtain optimal models based on the information obtained from repeated searches
using transformed plots which may be achieved by evaluating multiple patterns of
the type shown in the two panels of Fig. 3. For the ROC curves, rules may derive
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from multiple tangent lines, iso-performance [21], optimising or otherwise. Extracted
parameters from the plots can be used as inputs in repeated training. The relationships
between different slopes corresponding to the different model versions may guide us
choose a slope or slopes in different points which we can use to adapt the model
architecture and so on. It is also possible to explore the impact of covariates on the
ROC curves by examining the way they inter-cross. For the kernel density estimates
of forecasts, the bi-modal patterns on the right-hand side suggest that ground-level
ozone may be correlated with location. Hence, identifying the grid cell locations for
the stations that constrain the system the most will make it possible to generalise local
conditions from information gathered over the 70 km × 21 vertical layers resolution
as discussed below.

Figure 4 displays the Empirical orthogonal function (EOF) plots—i.e. spatio-
temporal patterns from the data. Like in PCA, orthogonality is with respect to the
bases functions, with the i th basis function being orthogonal to, and capturing more
variation than, the (i − 1) th. These spatio-temporal plots provide great insights into
the strength of the extracted Csi j via the absolute values of loadings which display the
locations in which the Csi j contribute more strongly or weakly.

The distribution of the leading EOFs in Fig. 4 reflects general variations of ozone
levels—higher over emission regions and over land than over the open ocean. The top
left-hand side panel (EOF1) loadings exhibit an ozone gradient decreasing towards
the eastern coastline, while the top right-hand side panel (EOF4) gradient slides down
towards the southern coastline, reflecting generally much lower ozone concentrations
over the ocean than over land. Both the top right and bottom left panels (EOF2 and
EOF3, respectively) reflect regional ozone distribution patterns, with low variations in
Alabama, Northern Georgia, Mississippi and Tennessee likely due to meteorological
conditions.

Fig. 4 Plots of the first four empirical orthogonal functions of the REAM from 6–25 June 2005
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Fig. 5 Plots of the first four fitted empirical orthogonal functions of the REAM from 6 to 25 June 2005

Table 1 Root-mean-squared errors: training period is 6–25 June 2005 and validation period is 26–
30 June 2005

Model All stations (%) Station 29 (%) Station 84 (%) Station 107 (%)

PC 9.35 11.31 10.27 9.89

PFC 9.13 9.86 10.36 8.91

Like the EOFs, F-EOFs display locations at which PFCs contributemore strongly or
weakly. Figure 5 shows the first F-EOFs of REAM outputs corresponding to selected
stations over the period 6–30 June 2005. A west to east sliding gradient in stations 35,
60 and 75 exhibits low ozone levels on the eastern coastline, while station 96 exhibits a
mixture of low ozone levels in the north-western and southern parts. The PFC appears
to be quite capable of reducing the dimension of the problem and capturing spatio-
temporal patterns more efficiently than just the Csi j .

Numerical comparisons of the two models are presented in Table 1, based on their
respective root-mean-squared error (RMSE) at selected stations and overall. Station
29 was fitted with 18 Csi j PCs, station 84 with 5 PCs and station 107 with 20 PCs.
The PFC models were fitted with 1 PFC (polynomial basis function with degree one)
which shows an overall PFC superiority although PFC was actually outperformed in
36 stations—i.e. 38.29% out of the total. One possible explanation is the gridding of
cells covering the locations of those stations as some stationsmay be located at the grid
cells borders—analogous to near-overlapping clusters which reinforces the assertion
of regional variations.

As the locations of these stations are known, any set can be adopted as a regional set
from which one or more local stations may be isolated for testing by simply masking
actual (observed) values. We illustrate the computational set-up of this adoption, iso-
lation and integration, based on the mechanics of Algorithm 1, in the next exposition.
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Fig. 6 A graphical illustration of the interdisciplinary computational environment

3.3 Computational environment

Algorithm 1 seeks to balance model accuracy and reliability, and in this particular
application, one of the focal characteristics is resolution. Attaining high-resolution
seasonal and climate change forecasts has always been at the heart of climate-related
research aimed at enhancing efficiency in many applications, including agriculture
and energy. The algorithm emphasises the interdisciplinary nature of statistical down-
scaling and its inherent requirement to access, process and share large volumes of
high-dimensional heterogeneous data. Successful application of the algorithm will
therefore depend on how these computational environment conditions are fulfilled.
Figure 6 graphically illustrates how weather-dependent applications benefit from an
interdisciplinary computational power that connects data sources with end-users. This
work was accomplished by combining the data acquisition power of the weather data
sources. An integrated interdisciplinary computation is the approach our work seeks
to open research paths to.

Implementation of the interdisciplinary layout in Fig. 6 relies on distributed com-
puting systems providing real-time data sharing and allowing model training and
testing across the computational nodes. Its ultimate usefulness is in being accessi-
ble to weather-dependent applications. There are several tools in use today to meet
such requirements—Hadoop and Apache Spark are currently two of the most popular
open-source distributed computing frameworks. Algorithm- 1 was implemented using
the statistical open source, R, which is readily adaptable to the foregoing distributed
system.

4 Concluding remarks

The paper proposes a framework for deriving knowledge on local from regional data
attributes. An algorithm is presented in a specific framework that provides scope for
model selection. Results show that given air quality data of similar structure, the algo-

123



A statistical downscaling framework for environmental…

rithm can be used to order the models in terms of optimality. Its mechanics derive
from notional functional relationship between the large- and small-scale variables
that makes it possible for one to be described in terms of the other, and it seeks to min-
imise variability through repeated samples and multiple learning models. The generic
graphical illustrations in Fig. 3 exhibit how rules can be learnt from training data and
applied to new, previously unseen, data rules which are driven by domain knowledge
and therefore make the approach readily adaptable to other applications. However,
while many natural and physical phenomena render themselves readily adaptable to
notional functional relationship between the large and small-scale variables, some
useful information may remain hidden in the data attributes. For instance, while solar
energy may not produce environmental pollution, it may indirectly impact the envi-
ronment in that its use may induce some potentially hazardous and toxic materials
and chemicals, despite strict environmental laws and regulations. Large-scale farming
may produce more food but it may also leave lasting effects on the ecosystems—both
issues can be addressed via downscaling techniques.

The algorithm has the potential for deployment of different data mining models,
and it has scope for extension to other applications, focusing on how to carry out com-
parisons, address inconsistencies, draw conclusions in cases of partial agreement and
account for the effect of data and model variability. Applications of the algorithmmay
be extended to interpolations of mean fields for oceanographic variables at various
ocean levels to provide statistical downscaling of average readings at various ocean
depth levels for each variable of interest—i.e. a variable fulfilling specific attributes.
Finally, its interdisciplinary implementation layout, amenable to distributed comput-
ing, not only enhances its computational power and real-time data sharing, but it is
also a perfect environment for model training, validation and testing across the nodes.
We expect that this work will lead to new research avenues in various areas.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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