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Abstract 

The purpose of this study was to compare the effect of resistance training (RT) 

duration, including years of exposure, on agonist and antagonist neuromuscular activation 

throughout the knee extension voluntary torque range. Fifty-seven healthy men (untrained 

[UNT] n=29, short-term RT [12WK] n=14, and long-term RT [4YR] n=14) performed 

maximum and sub-maximum (20-80% maximum voluntary torque [MVT]) unilateral 

isometric knee extension contractions with torque, agonist and antagonist surface EMG 

recorded. Agonist EMG, including at MVT, was corrected for the confounding effects of 

adiposity (i.e. muscle-electrode distance; measured with ultrasonography). Quadriceps 

maximum anatomical cross-sectional area (QACSAMAX; via MRI) was also assessed. MVT 

was distinct for all three groups (4YR +60/+39% vs. UNT/12WK; 12WK +15% vs. UNT; 

0.001<P≤0.021), and QACSAMAX was greater for 4YR (+50/+42% vs. UNT/12WK; [both] 

P<0.001). Agonist EMG at MVT was +44/+33% greater for 4YR/12WK ([both] P<0.001) vs. 

UNT; but did not differ between RT groups. The torque-agonist EMG relationship of 4YR 

displayed a right/down shift with lower agonist EMG at the highest common torque (196 

Nm) compared to 12WK and UNT (0.005≤P≤0.013; Effect size [ES] 0.90≤ES≤1.28). The 

torque-antagonist EMG relationship displayed a lower slope with increasing RT duration 

(4YR<12WK<UNT; 0.001<P≤0.094; 0.56≤ES≤1.31), and antagonist EMG at the highest 

common torque was also lower for 4YR than UNT (-69%; P<0.001; ES=1.18). In conclusion, 

4YR and 12WK had similar agonist activation at MVT and this adaptation may be 

maximised during early months of RT. In contrast, inter-muscular coordination, specifically 

antagonist co-activation was progressively lower, and likely continues to adapt, with 

prolonged RT. 
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Introduction 

Regular resistance training (RT) leads to increases in maximum strength, the 

maximum force/torque that can be produced by the trained musculature. These improvements 

in strength can increase the mobility of older adults 
1
, enhance athletic performance 

2
, reduce 

injury risk 
3
, and may decrease the likelihood of developing musculoskeletal disorders, such 

as osteoarthritis 
4
. Consequently, regular and persistent RT is recommended for athletes, the 

general population, and older adults alike 
5,6

. Neural adaptations have been widely 

documented to contribute to the increases in strength following short-term RT (up to 16 

weeks in duration; 
7-13

). It has often been assumed that changes in neuromuscular activation 

primarily occur in this initial short-term period of RT with no/minimal further adaptations 

thereafter 
14

, although there is evidence that extensive neuroplasticity can occur in response 

to long-term RT 
15-17

. At present, however it is unclear if adaptations in neuromuscular 

activation continue to occur with prolonged RT (i.e. over several years) and might contribute 

to changes in function (strength). 

 

Surface electromyography (EMG) measurements have generally demonstrated 

increased neuromuscular activation of the agonist muscles at maximum torque after relatively 

short-term RT 
8-13

, although whether these adaptations in maximum agonist activation 

continue over longer periods of RT remains largely unexplored. Two longitudinal RT 

interventions with already highly resistance-trained men found no
 18

 or marginal 
19

 

improvements in activation during isometric actions. Furthermore, Moritani and deVries 
20

 

first proposed that changes in the full range of the torque-agonist EMG relationship may 

reveal useful information regarding the nature of underpinning physiological adaptations 

following RT. They hypothesised that changes in the position and extension of the torque-

agonist EMG relationship after training could indicate neural (Fig. 1A), morphological (Fig. 
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1B), or a combination of both neural and morphological adaptations (Fig. 1 C) 
20

. Existing 

literature suggests an extension of the torque-agonist EMG relationship following 4 wk of RT 

11,21
 (e.g. Fig. 1A, neural adaptation), but a shift to the right with no extension after 8 wk to 6 

mo of RT 
22-24

 (e.g. Fig. 1B, morphological, but no neural adaptation) which represents an 

incongruous time course of neural adaptations (increase and then decrease). Whilst it is likely 

the classic Moritani and DeVries model over simplifies the relative contribution of neural and 

morphological adaptations, the influence of more prolonged RT (i.e. for multiple years) on 

the torque-agonist EMG relationship has not been examined, and thus the time course of any 

changes remains unknown. In the first few months of RT the changes in strength appear to be 

primarily dependent on neural adaptations 
25

 and thus a similar, but extended, torque-agonist 

EMG relationship may be expected (Fig. 1A). Whereas with years of RT substantial 

hypertrophic, in addition to neural, adaptations are thought to occur 
26

 and the relationship 

may be expected to shift down/right, whilst extending to a similar maximum EMG as 

observed after short-term RT (Fig. 1C).  

 

Antagonist co-activation at maximum torque has been found to be unchanged 
27

, 

increased 
28

, and decreased 
29

 following short-term RT studies. These differences may be 

because antagonist co-activation is positively related to both torque and agonist activation, 

such that increased maximum torque and agonist activation after RT tend to cause an increase 

in antagonist co-activation, even if antagonist co-activation at the same torque has decreased 

11
. In which case the relationships between antagonist co-activation and torque/agonist 

activation may provide a more complete assessment. In fact, Tillin et al 
11

 found that after 

short-term RT co-activation was reduced at any absolute level of torque/agonist activation, 

even though co-activation at maximum torque was unchanged, likely due to the increase in 

torque/agonist activation. However, whether prolonged RT, leads to further potentially more 
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substantial adaptations in antagonist co-activation, beyond these short-term changes, is 

unclear. 

 

Overall, it is unknown whether several years of RT causes continued adaptations in 

agonist activation and antagonist co-activation, and specifically changes the nature of the 

inter-relationships between these neural variables and torque, beyond those documented by 

short-term intervention studies. Whilst a longitudinal study of several years duration may be 

impractical, a comparison of groups with distinct durations of RT experience may facilitate 

investigation of these issues. Therefore, the purpose of the current investigation was to 

conduct a detailed comparison between untrained (UNT) vs. short-term RT (12 weeks 

[12WK]) vs. long-term RT (average 4 years [4YR]) men for agonist and antagonist 

neuromuscular activation throughout the voluntary torque range. The position of the torque-

agonist EMG and torque-antagonist EMG relationships were assessed by determining their 

slope and also EMG amplitude at the highest common torque (i.e. the highest torque achieved 

by all participants). Based on limited existing evidence it was hypothesised that maximum 

agonist activation would be greater for 12WK vs. UNT, but with no further difference 

between 12WK and 4YR. It was also hypothesised that the torque-agonist EMG relationship, 

would: have a similar position, for 12WK vs. UNT (Fig. 1A); have a down/rightwards 

position for 4YR vs. UNT and 12WK (Fig. 1C). The final hypothesis was that antagonist co-

activation at the same torque/agonist activation would progressively decrease with greater 

training duration (i.e. lower position of the torque-antagonist EMG relationship; 

4YR<12WK<UNT). 

 

Materials and Methods 

Participants 
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A total of fifty-seven young, healthy, asymptomatic, males provided written informed 

consent prior to participation in this study that was approved by the Loughborough 

University Ethical Advisory Committee. Physical activity levels of all participants were 

assessed with the International Physical Activity Questionnaire [IPAQ, short format 
30

]. The 

UNT group consisted of 29 participants (IPAQ: 2358 ± 1476 metabolic equivalent min/wk) 

who had not completed lower-body RT for >18 months and were not involved in systematic 

physical training. The 12WK group comprised 14 participants (IPAQ: 2097 ± 1303 metabolic 

equivalent min/wk) measured within a week of completing 12-weeks of supervised isometric 

knee extension RT (3 x/wk, 40 reps of 3 s at 75% maximum voluntary torque [MVT]), who 

were originally recruited from an identical population to the UNT group (i.e. no RT for >18 

months and not involved in any systematic physical training). Finally, the 4YR group 

consisted of 14 participants (IPAQ: 5568 ± 1457 metabolic equivalent min/wk) who reported 

(via a detailed questionnaire and follow-up oral discussion) systematic, progressive heavy RT 

of the quadriceps (i.e. completion of several knee extensor exercises within an individual 

session ~3 x/wk typically consisting of: squat, lunge, step-up, and leg press) for ≥3 years 

(mean ± SD, 4 ± 1 years; range, 3-5 years) with the primary aim of developing maximum 

strength. The RT of this group had not been experimentally supervised although some of 

these participants had received variable coaching (technique and programming) support. Use 

of androgenic-anabolic steroids was an exclusion criterion for all participants. Many 

individuals in the 4YR group reported regular use of nutritional supplements (e.g. whey 

protein and creatine). 

 

Overview 

UNT, 12WK, and 4YR participants visited the neuromuscular laboratory for a 

familiarisation session involving isometric voluntary maximum and sub-maximum 
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contractions. Thereafter, two duplicate neuromuscular measurement sessions were conducted 

on the dominant leg (7-10 days apart). Finally, MRI and ultrasound scans were performed 

within 7 days of the second neuromuscular measurement session. Neuromuscular 

measurement sessions were at a consistent time of day for each individual and started 

between 12:00-19:00. These sessions involved recordings of isometric knee extension/flexion 

torque and surface EMG of the superficial quadriceps and hamstrings muscles during 

voluntary maximum and a range of sub-maximum contractions (20, 40, 60 and 80%). The 

primary outcome measures were maximum torque and simultaneous agonist and antagonist 

EMG, as well as the position of the torque-agonist EMG and torque-antagonist EMG 

relationships assessed by both relationship slope and EMG at the highest common torque. 

Whilst not primary outcomes the following measurements were also completed: (i) muscle 

size, assessed with a T1-weighted 1.5T MRI scan of the thigh of each participant’s dominant 

leg (see “Muscle size” below), as an additional index of training status and morphological 

differences between the three groups; and (ii) muscle-electrode distance (MED) using B-

mode ultrasonography at the sites where quadriceps EMG sensors were placed to correct for 

the pronounced, confounding influence of subcutaneous tissue thickness, primarily body fat, 

on voluntary EMG amplitude 
31

. 

 

12WK supervised resistance training intervention 

All training sessions involved the same dynamometer and configuration used for the 

measurements (see below). After a brief warm-up of sub-maximum contractions of both legs, 

participants completed four sets of ten sustained unilateral isometric knee extension 

contractions of each leg; with sets alternating between dominant and non-dominant legs until 

4 sets per leg had been completed. Each set took 60 s with 2 min between successive sets on 

the same leg. This training model has been described extensively elsewhere 
8
 and was 
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selected for the 12WK group within the current study as it has shown to produce increases in 

maximum strength during short-term RT interventions 
11,32

. Briefly, participants were 

presented with a target torque trace (on a computer monitor in front of them) 2 s before every 

contraction and were instructed to match this target trace, which increased torque linearly 

from rest to 75%MVT over 1 s before holding a plateau at 75%MVT for a further 3 s. 12WK 

participants performed three maximum voluntary isometric contractions (MVCs; see below) 

at the start of each training week to re-establish MVT and prescribe training torques. 12WK 

participants were instructed to maintain their habitual physical activity and diet throughout 

the 12-week training period. 

 

Torque and EMG recording 

Measurements were completed in a rigid custom-made isometric dynamometer with 

knee and hip angles of 115° and 126° (180° = full extension), respectively (as shown in Fig. 

6B of reference 
33

). Adjustable straps were tightly fastened across the pelvis and shoulders to 

prevent extraneous movement. An ankle strap (35 mm width reinforced canvas webbing) was 

placed ~15% of tibial length (distance from lateral malleolus to knee joint space), above the 

medial malleolus, and positioned perpendicular to the tibia and in series with a calibrated S-

beam strain gauge (Force Logic, Swallowfield, UK). The analogue force signal from the 

strain gauge was amplified (x370) and sampled at 2,000 Hz using an external A/D converter 

(Micro 1401; CED Ltd., Cambridge, UK) and recorded with Spike 2 computer software 

(CED Ltd., Cambridge, UK). In offline analysis, force data were low-pass filtered at 500 Hz 

using a fourth-order zero-lag Butterworth filter, gravity corrected by subtracting baseline 

force, and multiplied by lever length, the distance from the knee joint space to the centre of 

the ankle strap, to calculate torque values. 
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Surface EMG was recorded from the superficial quadriceps (agonist EMG: rectus 

femoris [RF]; vastus lateralis [VL]; vastus medialis, [VM]) and hamstring muscles 

(antagonist EMG: biceps femoris [BF] and semitendinosus [ST]) using a wireless EMG 

system (Trigno; Delsys Inc., Boston, MA). Before single differential Trigno Standard EMG 

sensors (Delsys Inc., Boston, MA; fixed 1-cm interelectrode distance) were positioned skin 

preparation (shaving, abrading, and cleansing with 70% ethanol) was conducted. Individual 

sensors were attached (using adhesive interfaces) at six separate sites over the superficial 

quadriceps muscles at set percentages of thigh length (above the superior border of the 

patella) as follows: RF 65 and 55%; VL 60 and 55%; VM 35 and 30%. Similarly, individual 

sensors were placed on the BF and ST at 45% of thigh length above the popliteal fossa. 

Sensors were placed parallel to the presumed orientation of the underlying fibres. EMG 

signals were amplified at source (x300; 20- to 450-Hz bandwidth) before further 

amplification (overall effective gain, x909), and sampled at 2,000 Hz via the same A/D 

converter and computer software as the force signal, to enable data synchronization. In 

offline analysis, EMG signals were corrected for the 48-ms delay inherent to the Trigno EMG 

system. 

 

Measurement sessions 

Following a brief warm-up of the dominant leg (3 s knee extension contractions at 

50% [x3], 75% [x3], and 90% [x1] of perceived maximum) measurements were completed in 

the following order. 

 

Knee extension maximum voluntary contractions 

Participants performed 3-4 MVCs and were instructed to “push as hard as possible” 

for 3-5 s and rest for ≥30 s between efforts. A torque-time curve with a horizontal cursor 
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indicating the greatest torque obtained within that session was displayed for biofeedback and 

verbal encouragement was provided during all MVCs 
11,34

. Knee extensor MVT was the 

greatest instantaneous torque achieved during any MVC during that measurement session. 

Root mean square (RMS) EMG for a 500 ms epoch at MVT (250 ms either side) was 

calculated for each electrode site. RMS EMG from each quadriceps site was then averaged to 

provide an overall quadriceps EMG measurement during MVT production (agonist 

EMGMVT). RMS EMG from each of the hamstring sites during knee extension MVT 

(antagonist EMGMVT) was normalised to that measured during knee flexion MVT (knee 

flexion EMGMAX; see below) and then averaged across the two hamstring sites. 

 

Knee extension sub-maximum voluntary contractions 

Horizontal cursors indicating four sub-maximum target torque levels were placed on 

the screen displaying the real-time torque-time curve and participants were instructed to 

gradually increase torque (over ~1 s) and match the prescribed torque level for ~5 s at 20, 40, 

60 or 80%MVT, performed in this order, with ≥30 s between efforts. From each recorded 

contraction, a 500 ms period of stable torque at approximately the prescribed level was 

identified and used to calculate mean knee extension torque. RMS EMG of each quadriceps 

and hamstring EMG site was measured for each of these epochs. 

 

Knee flexion maximum voluntary contractions 

Knee flexion MVCs were performed in the same manner as knee extension, except 

participants performed a series of sub-maximum knee flexion efforts to warm-up and were 

instructed to “pull as hard as possible” for 3-5 s, rather than “push” 
11,34

. Knee flexion MVT 

was the greatest instantaneous torque achieved during any MVC during that measurement 
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session. RMS hamstring EMG for a 500 ms epoch at knee flexion MVT (250 ms either side) 

was analysed for each site (knee flexion EMGMAX). 

 

Muscle size 

A 1.5T MRI scan of the dominant leg was made in the supine position at a knee joint 

angle of ~163° using a receiver 8-channel whole body coil (Signa HDxt, GE). T1-weighted 

axial slices (5 mm thick, 0 mm gap) were acquired from the anterior superior iliac spine to 

the knee joint space in two overlapping blocks. Oil filled capsules placed on the lateral side 

of the participants’ thigh allowed alignment of the blocks during analysis. MR images were 

analysed by two trained investigators using Osirix software (version 6.0, Pixmeo, Geneva, 

Switzerland). The quadriceps (RF, VL, VM, and vastus intermedius; VI) muscles were 

manually outlined in every third image (i.e. every 15 mm) starting from the most proximal 

image in which the muscle appeared. The image with the largest anatomical cross-sectional 

area (ACSA) was defined as the maximum ACSA for each individual quadriceps muscle and 

the sum of the muscles was defined as maximum quadriceps ACSA (QACSAMAX). 

 

Muscle-electrode distance and correction of agonist EMG. 

 Images of the distance between the skin surface and the peripheral surface of the 

muscle at each of the six sites where quadriceps EMG sensors were positioned (i.e. muscle-

electrode distance, MED) were collected using a B-mode ultrasonography machine (EUB-

8500, Hitachi Medical Systems UK Ltd, Northamptonshire, UK) with a 9.2 cm wide linear-

array transducer (EUP-L53L), sampling at 32 Hz, interfaced with a personal computer 

operating ezcap video capture software. The transducer was coated with water-soluble 

transmission gel and placed perpendicular to the skin over the RF, VL, and VM at the 

percentages of thigh length listed above for each quadriceps EMG sensor. Images were later 
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imported in to a public domain software (Tracker version 4.92; 

www.cabrillo.edu/~dbrown/tracker) and MED was measured by one trained investigator. 

 

When agonist EMG data for all participants was pooled (i.e. n= 57) there were inverse 

relationships between absolute EMG amplitude and MED for all sensor locations and all 

types of contraction (maximum and all sub-maximum levels; Pearson’s product moment 

bivariate correlations, -0.670 ≤ r ≤ -0.394; 0.001<P≤0.002). Additionally, when comparing 

the three groups MED differed or tended to differ (One-way ANOVA 0.014≤P≤0.070) with 

several “Moderate” to “Large” effect sizes (0.71≤ES≤1.03) between groups at three out of six 

sites. Consequently, all individual agonist EMG measurements were corrected for MED at 

the corresponding site, using the quadratic relationship between agonist EMG amplitude and 

MED at that specific measurement site. Correcting EMG amplitude measurements for the 

amount of subcutaneous tissue at the recording site 
35

 or using MED as a covariate within 

statistical testing 
36

 are approaches that have previously been employed. The MED correction 

in the current study involved summating the individual’s residual absolute agonist EMG 

amplitude, in comparison to the cohort relationship with MED (e.g. agonist EMG amplitude 

vs. MED), with the pooled group mean for absolute agonist EMG amplitude 
37

. Overall 

corrected agonist EMG during all maximum and sub-maximum contractions was then 

calculated by averaging the corrected EMG amplitude measurements from each EMG 

recording site.  

 

Data analysis and statistics 

All torque and EMG measurements from the two neuromuscular measurement 

sessions were averaged to produce criterion values. Bivariate relationships were then 

analysed with Pearson’s product moment correlation. Only agonist EMG values corrected for 

http://www.cabrillo.edu/~dbrown/tracker
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MED were used for establishing relationships. Three relationships were plotted and assessed 

for each individual participant: knee extension torque vs. corrected agonist EMG; knee 

extension torque vs. normalised antagonist EMG; and normalised antagonist EMG vs. 

corrected agonist EMG. Relationships were fitted with linear functions, but not forced 

through zero as forcing the function through zero significantly reduced the R
2
 values of all 

three relationships (paired t-test, [all] P<0.001). The position of the torque-agonist EMG and 

torque-antagonist EMG relationships were assessed with: (i) relationship slope (‘m’ constant 

of the linear function) and (ii) EMG at the highest common torque achieved by all 

participants (196 Nm, equivalent to the MVT of the weakest participant and indicated as a 

vertical dotted line in Fig. 3A and B). EMG values for each participant at the highest 

common torque were derived by solving the individual linear function (for an x axis value of 

196 Nm) for the relationship between isometric knee extension torque and either agonist or 

antagonist EMG. The slope of the antagonist EMG-agonist EMG relationship was also 

calculated. 

All statistical analyses were performed using SPSS Version 24.0 (IBM Corp., 

Armonk, NY). Data are reported or displayed as means ± SD, except in figures displaying 

EMG relationships where for presentation purposes data points with x and y error bars to the 

far right of the figure display average SD for the five load increments across the voluntary 

torque range for each group. One-way ANOVAs were conducted as the main statistical tests 

to assess if differences existed between groups for: descriptive characteristics (i.e. age, 

height, and body mass); agonist EMGMVT; antagonist EMGMVT; the slope derived from the 

relationships (i.e. torque-agonist EMG, torque-antagonist EMG, antagonist EMG-agonist 

EMG); and agonist EMG and antagonist EMG at the highest common knee extension torque. 

When one-way ANOVAs displayed P<0.05, a combined post-hoc criteria involving both a 

least significant difference (LSD) P value of <0.10 and an effect size (ES) >0.50 were 
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required for there to be considered good evidence of between-group differences. LSD P 

values were stepwise corrected for multiple comparisons 
38

 and ES was calculated as 

previously detailed for between-subject study designs 
39

 and classified as follows: <0.20 

“Trivial,” 0.20 – 0.49 “Small,” 0.50 – 0.80 “Moderate,” or >0.80 “Large”. 

 Between-test session reliability of key measurements was assessed by pooling all 

three groups of participants (i.e. n= 57) using: (i) within-participant coefficient of variation 

(CVW, [SD/mean] × 100) as a measure of absolute reliability; and (ii) intra-class correlation 

coefficient (ICC; two-way mixed, absolute agreement) to assess relative reliability. CVW 

values were interpreted as “acceptable” <12%, “intermediate” 12–20%, or “unacceptable” 

>20% 
40

. ICC values were interpreted as ‘‘very high’’ 0.90–1.00, ‘‘high’’ 0.70–0.89, 

“moderate” 0.50–0.69, “low” 0.30–0.49, “negligible” 0.00–0.29 
41

. 

 

Results 

Between-test session reliability 

 Knee extension and knee flexion MVT returned mean CVW values of 2.7% and 

10.8% and ICC values of 0.980 and 0.889, respectively. Absolute agonist and antagonist 

EMG at knee extension MVT demonstrated mean CVW values of 8.8% and 17.8% and ICC 

values of 0.937 and 0.774, respectively. Agonist EMG corrected for MED and normalised 

antagonist EMG (both) at knee extension MVT produced mean CVW values of 8.3% and 

25.8% and ICC values of 0.876 and 0.790, respectively. 

 

Descriptive characteristics, muscle strength and size 

Age, height, and body mass were similar for 12WK (24 ± 2 y; 1.75 ± 0.08 m; 70 ± 9 

kg) and UNT (25 ± 2 y; 1.76 ± 0.07 m; 74 ± 10 kg) groups ([all variables] LSD P≥0.247). 

The 4YR group were younger (22 ± 2 y), taller (1.84 ± 0.06 m), and heavier (92 ± 10 kg) than 
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the other two groups ([all variables] LSD P≤0.004). Knee extension MVT of 12WK (293 ± 

49 Nm) was 15% greater than UNT (255 ± 42 Nm; LSD P=0.021; ES=0.86 “Large”), whilst 

MVT of 4YR (407 ± 63 Nm) was 60% greater than UNT and 39% greater than 12WK ([both] 

P<0.001; 2.02≤ES≤3.07 [both] “Large”; Fig. 2A). Knee flexion MVT of 4YR (104 ± 21 Nm) 

was 72% greater than UNT (61 ± 23 Nm; LSD P<0.001; ES=1.91 “Large”) and 63% greater 

than 12WK (64 ± 15 Nm; P<0.001; ES=2.19 “Large”), but no differences in knee flexion 

MVT occurred between 12WK and UNT (P=0.636; ES=0.16 “Trivial”). QACSAMAX of 4YR 

was 50% greater than UNT and 42% greater than 12WK ([both] LSD P<0.001; 

2.78≤ES≤3.63 [both] “Large”); but did not differ between 12WK and UNT (P=0.204; 

ES=0.42 “Small”; Fig. 2B). 

 

Absolute agonist and antagonist EMG at knee extension maximum voluntary torque 

Absolute agonist EMGMVT was greater for 4YR (+66%; LSD P<0.001; ES= 1.53 

“Large”) and 12WK (+32%; P=0.050; ES=0.78 “Moderate”) compared to UNT (Table 1). In 

addition, absolute agonist EMGMVT was greater for 4YR than 12WK (+25%; LSD P=0.048; 

ES=0.72 “Moderate”; Table 1). In contrast, there were no statistical differences between 

groups for absolute antagonist EMGMVT (Table 1). 

 

Corrected agonist and normalised antagonist EMG at knee extension maximum voluntary 

torque 

 Agonist EMGMVT (corrected for MED) was greater for both 4YR (+44%; LSD 

P<0.001; ES=1.73 “Large”) and 12WK (+33%; P<0.001; ES=1.29 “Large”) than UNT; but 

was not statistically different between the two RT groups (P=0.281; ES=0.35 “Small”; Fig. 

2C and Table 1). Normalised antagonist EMG at knee extension MVT was not different 

between groups (Table 1).  
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Knee extension torque-agonist EMG relationship 

The torque-agonist EMG relationship was well represented by a linear function with 

high R
2
 values for all three groups regardless of RT experience (4YR, 0.978 ± 0.026; 12WK, 

0.970 ± 0.054; UNT, 0.972 ± 0.066). There were no differences between the groups for slope 

of the torque-agonist EMG relationship (Table 1; Fig. 3A). However, agonist EMG at the 

highest common torque (196 Nm) was lower for 4YR compared to UNT (-24%; LSD 

P=0.013; ES=0.90 “Large”) and 12WK (-30%; P=0.005; ES=1.28 “Large”) indicating a 

downward shift in the torque-agonist EMG relationship (Fig. 4A). No differences in agonist 

EMG at 196 Nm occurred between 12WK and UNT (LSD P=0.296; ES=0.35 “Small”; Fig. 

4A). 

 

Knee extension torque-antagonist EMG relationship  

The torque-antagonist EMG relationship was well represented by a linear function 

with high R
2
 values regardless of RT experience (4YR, 0.971 ± 0.020; 12WK, 0.952 ± 0.043; 

UNT, 0.894 ± 0.111). The slope of the knee extension torque-antagonist EMG relationship 

differed between all three groups (Table 1), being lower for 12WK than UNT (-30%; LSD 

P=0.061; ES=0.56 “Moderate”), and lower for 4YR than 12WK (-52%; P=0.094; ES=1.22 

“Large”) or UNT (-66%; P<0.001; ES=1.31 “Large”; Fig. 3B and Table 1). Antagonist EMG 

at 196 Nm of knee extension torque was lower for 4YR compared to UNT (-69%; LSD 

P<0.001; ES=1.18 “Large”; Fig. 4B and Table 1) but not vs. 12WK (P=0.108; ES=1.23 

“Large”). No differences in antagonist EMG at 196 Nm occurred for 12WK compared to 

UNT (LSD P=0.120; ES=0.46 “Small”; Fig. 4B). 

 

Antagonist EMG-Agonist EMG relationship during knee extension contractions 
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The slope of the antagonist EMG-agonist EMG relationship was lower for both 4YR 

(-59%; LSD P<0.001; ES=1.22 “Large”) and 12WK (-37%; P=0.028; ES=0.77 “Moderate”) 

vs. UNT (Fig. 5 and Table 1). The 12WK group appeared to occupy an intermediate position 

between the other two groups although there was no difference between the slopes of the two 

trained groups (12WK vs. 4YR; LSD P=0.202; ES=0.69 “Moderate”; Fig. 5). High R
2
 values 

for the antagonist EMG-agonist EMG relationship were displayed for all groups regardless of 

RT experience (4YR, 0.982 ± 0.012; 12WK, 0.972 ± 0.031; UNT, 0.892 ± 0.135). 

 

 

Discussion 

 The purpose of this study was to compare neuromuscular activation of the agonist and 

antagonist musculature during knee extension contractions throughout the voluntary torque 

range between long-term RT (4YR), short-term RT (12WK) and untrained (UNT) groups. In 

agreement with our hypothesis, maximum agonist activation (corrected for MED) was higher 

for both RT groups than UNT, but did not differ between 12WK and 4YR. As hypothesised, 

the torque-agonist EMG relationship for 12WK had a similar position to UNT (slope and 

agonist EMG at 196 Nm), for 4YR occupied a lower position than the other two groups 

(lower agonist EMG at 196 Nm), although the slope was similar for all groups. The position 

of the torque-antagonist EMG relationship also showed distinct differences between groups 

with lower slope according to RT duration (4YR<12WK<UNT) and lower antagonist EMG 

at the highest common knee extension torque for 4YR vs. UNT. Based on these findings it 

appears that changes in maximum agonist activation predominantly occur in the first weeks 

of RT, but not substantially thereafter, although the 4YR RT group displayed a 

down/rightwards position of the torque-agonist EMG relationship presumably due to 

substantial hypertrophy. In contrast, the lower antagonist co-activation for 4YR than 12WK, 
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evidenced by differences in the slope of the torque-antagonist EMG relationship, suggests 

that inter-muscular co-ordination may be the primary long-term neural adaptation to RT. 

 

 The greater agonist activation (both absolute EMG and corrected for MED) at 

maximum voluntary torque of both RT groups compared to the untrained cohort supports 

numerous previous reports that agonist activation increases following RT 
8-13

, although some 

older studies have reported no change in agonist EMG amplitude after RT 
22,23

. Moreover, the 

greater neuromuscular activation (maximum agonist EMG) of 12WK vs. UNT, coupled with 

the similar muscle size of these groups supports the concept that strength gains following 

short-term RT result predominantly from neural adaptations 
14,20

. In fact, we recently found 

the largest determinant of the change in strength following 12-weeks of RT to be the increase 

in agonist neuromuscular activation (EMG), explaining 30.6% of the variance in strength 

gains 
25

. The greater agonist neuromuscular activation of 12WK vs. UNT may be due to 

increased motor unit firing rate 
42

 and/or recruitment of additional motor units 
43

, but these 

mechanisms were not discernible from the current EMG amplitude measurements. Whilst 

absolute agonist EMG also showed differences between the two RT groups (12WK vs. 4YR) 

this appeared to be in part due to the lower MED of the 4YR group, as there were no 

differences in agonist EMG amplitude between the two RT cohorts, once corrected for MED. 

Overall, these findings suggest that maximum agonist activation increases in the first 12 

weeks of RT, but does not continue to adapt beyond 12 weeks of RT (up to ~4 years). 

 

The consistent position, but extended, torque-agonist EMG relationship of 12WK 

compared to UNT in the current cross-sectional study was in agreement with short-term 

longitudinal RT studies 
11,21

. The lower agonist EMG at the highest common torque of the 

4YR group (vs. UNT or 12WK) confirmed the visual impression that the torque-agonist 
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EMG relationship was positioned further to the right for this group, despite the observation 

that the slope of the torque-agonist EMG relationship was similar for all three groups. The 

longest intervention studies we are aware of reported a qualitative reduction in the slope of 

the torque-agonist EMG relationship after 6 months of RT 
23,24

, which is broadly supportive 

of the observation that the position of the relationship is adaptable and shifts down/right with 

prolonged RT. A logical explanation of the 4YR group’s lower agonist EMG amplitude to 

produce the same knee extension torque, and thus the subsequent down/rightwards position 

of the torque-agonist EMG relationship of this group, is substantial hypertrophy 
20

 and/or 

possible greater neuromuscular efficiency 
44

. Indeed, the 4YR group had considerably larger 

quadriceps than the other two groups (+42/+50% greater QACSAMAX vs. 12WK/UNT). 

Hypertrophied muscle would be expected to require activation of fewer, but larger, fibres to 

achieve the same torque production and hence lower agonist EMG. 

 

Antagonist EMG amplitude at knee extension MVT was not different between 

groups, despite 4YR having 28-38% lower normalised antagonist EMG than the other 

groups. Measurements of antagonist EMG amplitude at MVT are likely confounded by the 

differences in MVT between groups, which demonstrably effects antagonist EMG via the 

extremely strong torque-antagonist EMG relationship we have described (R
2
>0.89), as well 

as the large variability in this measurement 
11

, and these issues probably explain the confused 

findings for antagonist co-activation at MVT within the literature 
27-29

. In this case the 

position of the relationships between antagonist EMG and torque/agonist EMG or antagonist 

EMG at a common torque level may be a more reliable and meaningful measures of 

antagonist co-activation. In fact, the slope of the torque-antagonist EMG relationship was 

distinct between all three groups (4YR<12WK<UNT), being ~two-thirds less steep for 4YR 

than UNT. Similarly, antagonist EMG at the highest common knee extension torque was also 
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substantially lower for 4YR than UNT (-69%), and even though not significantly different 

comparably large differences were demonstrated between 4YR vs 12WK (-57%). Finally, the 

agonist-antagonist activation relationship appeared visually to show distinct and 

progressively lower positions according to RT duration, but only revealed differences for 

both RT groups vs. UNT. Overall, these findings provide convincing evidence that antagonist 

co-activation shows substantial scope for continued adaptation beyond the first 12 weeks of 

training, and thus may be the primary long-term neural adaptation to RT. 

 

The finding that antagonist co-activation was progressively lower as a function of RT 

duration (i.e. slope of torque-antagonist EMG relationship: UNT>12WK>4YR), despite there 

being no difference in maximum agonist activation between groups with 12 weeks or ~4 

years of RT experience, indirectly supports cortical excitability and spinal reflex response 

research suggesting that agonist and antagonist activation are modulated by different 

supraspinal mechanisms 
45

. Whilst our understanding of the precise mechanisms (i.e. 

supraspinal and/or spinal) that modulate antagonist co-activation is still incomplete 
46

, the 

progressive decrease in antagonist co-activation across the three groups with increasing RT 

experience in the current study indicates that with prolonged RT (up to ~4 years) antagonist 

co-activation likely contributes to increased strength due to reduced antagonist knee flexion 

torque. It would be highly interesting to be able to accurately translate these apparent changes 

in antagonist neuromuscular activation to quantitative changes in antagonist torque, however 

this is problematic for several reasons: we have assessed co-activation of only two of nine 

knee flexor muscles; such a calculation would require the agonist EMG-knee flexion torque 

relationship of all these muscles; which is itself confounded by antagonist quadriceps 

activation. Nonetheless, on a relatively simplistic level, assuming a linear knee flexion 

torque-agonist EMG relationship in order to calculate antagonist knee flexion torque (i.e. % 
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normalised antagonist EMG x knee flexion MVT) at the common knee extensor torque of 

196 Nm, reveals antagonist torque for UNT of 11.6 Nm (19.0% x 61 Nm), 8.8 Nm for 12WK 

(13.7% x 64 Nm) and 6.1 Nm for 4YR (5.9% x 104 Nm). The observation that maximum 

agonist neuromuscular activation was similar for 12WK compared to 4YR, whilst antagonist 

co-activation showed some marked but functionally small differences between these groups, 

strongly supports the notion that other adaptations, primarily morphological changes, such as 

the 4YR group’s substantial hypertrophy (QACSAMAX: +42% vs. 12WK), is the primary 

explanation for their much greater strength (MVT: +114 Nm vs. 12WK). 

 

Given the practical issues with implementing supervised RT interventions for 

multiple years the results of the current study provide novel insight in to how the human 

neuromuscular system likely adapts with continued RT. Nonetheless it is important to 

consider the limitations of the current study. The cross-sectional design clearly provides a 

weaker level of evidence than longitudinal intervention studies, and make it impossible to 

fully discern the contribution of selection (i.e. innate differences [nature]), as opposed to the 

influence of RT (nurture), which is the primary question of this research. For example, it is 

conceivable that individuals attracted to regular prolonged RT (i.e. the 4YR group), are 

innately stronger, perhaps due to specific neuromuscular differences conceivably including 

better inter-muscular co-ordination, than the normal population. Nonetheless, whilst the 4YR 

group were clearly selected for their characteristic RT history, and thus were by definition 

distinct from the normal population, this was not the case for the 12WK group that were 

initially recruited from an identical population as the UNT group with only a minor 

proportion randomly assigned to the 12WK RT intervention. Thus, within the current 

findings when there is a clear progression across the groups (i.e. UNT>12WK>4YR as for 

the slope of the torque-antagonist EMG relationship) we can be more confident that this was 



 22 

not due to selection bias, but in all probability due to the duration of RT. In addition, when 

there are no differences between groups (e.g. 4YR vs. 12WK as for corrected agonist EMG 

during MVT) it seems likely that RT duration does not have a pronounced effect. 

 

Although both the 12WK and 4YR groups were performing heavy RT, the contraction 

modes employed were different between the two groups (i.e. 12WK: isometric RT; 4YR: 

concentric and eccentric RT). It is possible that the task specific training of the 12WK group 

(isometric training specific to isometric testing) might have produced task-specific neural 

adaptations 
8,47

, which was not the case for the 4YR group, and thus accentuated task-specific 

adaptations of 12WK may have minimised the neural differences between these two groups. 

In this case the neural, and potentially also strength, differences that we have documented 

between 12WK and 4YR may well have been more pronounced given identical RT modes. 

Nonetheless the pronounced differences in strength between these groups appeared to be 

primarily due to morphological differences, rather than similar corrected agonist activation or 

functionally small differences in antagonist co-activation between the groups. Moreover, 

multiple-year longitudinal RT intervention studies employing contemporary EMG 

techniques, careful antagonist EMG-torque/agonist EMG relationships, and measurements at 

multiple intervals throughout the course of the intervention are required to confirm the 

findings we report here. Whilst we considered including the interpolated twitch technique in 

the current study, it was excluded due to several studies demonstrating its limited sensitivity 

to detect changes in activation after RT 
11,48-50

. 

 

It should also be noted that the results of the present investigation could be specific to 

the knee joint and the open kinetic chain knee extension task that was used. Further thorough 

investigations of agonist, antagonist, and stabiliser muscle activation during other single-joint 
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and also multiple-joint and/or multiplanar strength tasks are necessary to gain greater 

understanding of the nature of neural adaptations to long-term RT. The limitations of surface 

EMG measurements have been widely documented and may not provide an ideal index of the 

neural drive to the muscle 
51

. For example, the size of the surface action potential has been 

found to be only moderately associated with motor unit size 
52

. In addition, it is possible that 

amplitude cancellation (i.e. when positive and negative phases of concurrent action potentials 

overlap and reduce the sum of the surface EMG measurement) could have influenced the 

results of the current study 
53

, especially given there is evidence that increased motor unit 

synchronisation can occur following RT 
15,54

. Therefore, it is recommended that future work 

utilise other techniques (e.g. EMG decomposition, transcranial magnetic stimulation) to 

better understand the changes in muscle activation with prolonged RT. 

 

In conclusion, it appears that maximum agonist activation changes predominantly 

occur in the first weeks of RT (up to 12 wk), but not substantially thereafter, although long-

term RT (up to ~4 years) led to a rightwards shift of the torque-agonist EMG relationship 

presumably due to the substantial hypertrophy of these participants. Interestingly, antagonist 

co-activation was progressively lower according to RT duration suggesting that inter-

muscular co-ordination may be the primary long-term neural adaptation to RT. Multiple-year 

longitudinal RT intervention studies employing appropriate neural measurements at multiple 

intervals throughout the course of the intervention are required to confirm the cross-sectional 

findings observed in the present investigation. 

 

Perspectives 

 Prior to this study it was largely unexplored whether several years of resistance 

training (RT) causes continued adaptations in agonist activation and antagonist co-activation 
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beyond short-term RT, although Moritani & DeVries (1979) hypothesised specific changes in 

the torque-agonist EMG relationship according to neural (short-term) and hypertrophic (long-

term) adaptations. Differences in agonist activation were broadly as speculated by Moritani & 

DeVries (1979) with greater maximum agonist activation after short-term, but without further 

changes after long-term RT, and a rightwards shift in the torque-agonist activation 

relationship only after long-term RT. In addition, it was particularly interesting that there was 

lower co-activation of the antagonist muscles according to RT duration that suggests 

continued improvements in inter-muscular co-ordination. The findings of the current 

investigation have potential implications for the practices and physiological understanding of 

individuals prescribing and/or undertaking long-term RT. Future research in this area is 

clearly warranted to investigate the influence of long-term (multiple-year) RT interventions 

on agonist, antagonist, and stabiliser neuromuscular activation during diverse mechanical 

tasks/conditions (including isometric and isoinertial, and single- and multiple-joint and/or 

multiplanar strength tasks). 
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FIGURE CAPTIONS 

 

Fig. 1 Illustration of pre- to post-training changes in the torque-agonist EMG relationship 

considered to be representative of: (A) exclusively neural adaptations (unchanged slope but 

extended relationship with a right and upward shift of the maximum point; (B) exclusively 

hypertrophic adaptations (lower slope with the maximum point shifted to the right); (C) a 

combination of neural and hypertrophic adaptations (lower slope, but with a maximum point 

shifted to the right and upwards). Adapted from Moritani and deVries 
20

. 

 

Fig. 2 (A) Knee extension maximum voluntary torque; (B) quadriceps maximum anatomical 

cross-sectional area (QACSAMAX); and (C) agonist EMG amplitude (corrected for muscle-

electrode distance) of untrained (UNT), short-term resistance-trained (12WK), and long-term 

resistance-trained (4YR) groups. Data are mean ± SD. Symbols indicate differences between 

groups: * greater than UNT; † greater than 12WK. 

 

Fig. 3 The relationship between torque and (A) agonist EMG amplitude (corrected for 

muscle-electrode distance) and (B) normalised antagonist EMG throughout the knee 

extension voluntary torque range for untrained (UNT), short-term resistance-trained (12WK), 

and long-term resistance-trained (4YR) groups. Data points to the far right of Fig. 3A and B 

display x and y error bars that are the mean SD for torque (x error bars) and EMG amplitude 

(y error bars) for the five load increments across the voluntary torque range for each group. 

Knee Flexion EMGMAX, agonist EMG during isometric knee flexion maximum voluntary 

torque. 

 

Fig. 4 (A) Agonist EMG amplitude (corrected for muscle-electrode distance); and (B) 

normalised antagonist EMG at the highest common isometric knee extension torque achieved 

by all participants (196 Nm; derived by solving individual linear equations) for untrained 

(UNT), short-term resistance-trained (12WK), and long-term resistance-trained (4YR) 

groups. Data are mean ± SD. Symbols indicate differences between groups: * lower than 

UNT; † lower than 12WK. Knee Flexion EMGMAX, agonist EMG during isometric knee 

flexion maximum voluntary torque. 
 

Fig. 5 The relationship between agonist EMG amplitude (corrected for muscle-electrode 

distance) and normalised antagonist EMG throughout the knee extension voluntary torque 

range for untrained (UNT), short-term resistance-trained (12WK), and long-term resistance-

trained (4YR) groups. Data points to the far right of the figure display x and y error bars that 

are the mean SD for agonist EMG (x error bars) and antagonist EMG (y error bars) amplitude 

for the five load increments across the voluntary torque range for each group. Knee Flexion 

EMGMAX, agonist EMG during isometric knee flexion maximum voluntary torque. 
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TABLES 

 

Table 1. Agonist and antagonist surface EMG amplitudes and the slope of the relationship between agonist EMG and torque/antagonist EMG for untrained 

(UNT), short-term resistance-trained (12WK), and long-term resistance-trained (4YR) groups. 

 

  UNT (n=29) 12WK (n=14) 4YR (n=14) ANOVA P value 

    
 

    

Activation at MVT:   
 

    

Absolute agonist EMG (mV) 0.182 ± 0.073 0.241 ± 0.081* 0.301 ± 0.087*† <0.001 

Absolute antagonist EMG (mV) 0.019 ± 0.009 0.020 ± 0.007 0.016 ± 0.008 0.540 

    
 

    

Corrected agonist EMG (mV) 0.192 ± 0.042 0.255 ± 0.061* 0.277 ± 0.060* <0.001 

Normalised antagonist EMG (% Knee flexion EMGMAX) 23.1 ± 14.0 20.0 ± 10.0 14.4 ± 10.9 0.107 

    
 

    

Activation at highest common torque (196 Nm) 
 

    

Corrected agonist EMG (mV) 0.151 ± 0.039 0.164 ± 0.039 0.116 ± 0.040*† 0.004 

Normalised EMG (% Knee flexion EMGMAX) 19.0 ± 13.2 13.7 ± 7.8 5.9 ± 4.5* 0.001 

    
 

    

Slope of linear relationship:   
 

    

Torque (Nm)-Corrected agonist EMG (mV) 8.163 ± 2.186 x 10
-4

 9.280 ± 2.578 x 10
-4

 7.507 ± 2.461 x 10
-4

 0.138 

Torque (Nm)-Normalised antagonist EMG (% Knee flexion EMGMAX) 0.109 ± 0.065 0.077 ± 0.041* 0.037 ± 0.023*† <0.001 

Normalised antagonist EMG (% Knee flexion EMGMAX)-Corrected agonist EMG (mV) 132 ± 72 83 ± 41* 54 ± 43* <0.001 

 

Data are mean ± SD. One-way ANOVAs and subsequent post-hoc tests were used to establish differences between groups. Symbols indicate differences between groups: * Different than 

UNT; † Different than 12WK. Knee flexion EMGMAX, agonist EMG during isometric knee flexion maximum voluntary torque. Corrected agonist EMG was calculated by using the quadratic 

relationship between EMG amplitude and muscle-electrode distance for all participants (n=57) on a sensor and contraction intensity specific basis before averaging across sites to derive overall 

agonist EMG measurements. 
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