

Continuous Analysis within 3D-Printed Structures Using In-Chamber Sensors

DULAKE, Nicholas <http://orcid.org/0000-0003-1841-5848>, PETRELLI, Daniela, STANLEY-MARBELL, Phillip and HEWSON, Rob

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/22942/

This document is the Accepted Version [AM]

Citation:

DULAKE, Nicholas, PETRELLI, Daniela, STANLEY-MARBELL, Phillip and HEWSON, Rob (2018). Continuous Analysis within 3D-Printed Structures Using In-Chamber Sensors. In: Connected Everything Conference 2018, Newcastle University, Tuesday 26 and Wednesday 27 June 2018. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

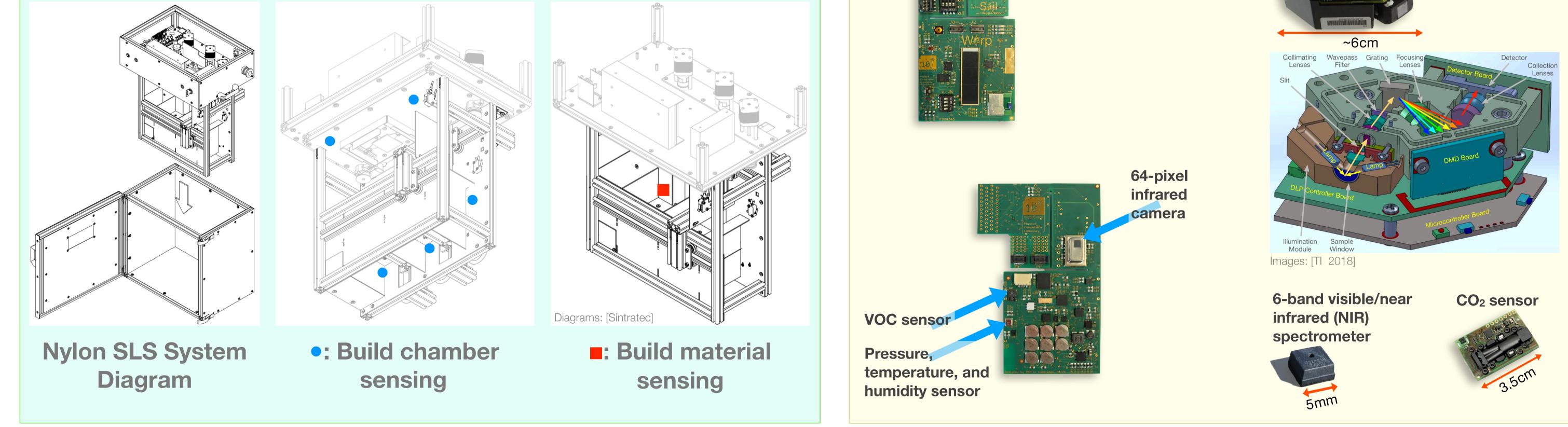
Continuous Analysis within 3D-Printed Structures Using In-Chamber Sensors

Phillip Stanley-Marbell (University of Cambridge), Rob Hewson (Imperial College London), Daniela Petrelli and Nick Dulake (Sheffield Hallam University)

Abstract

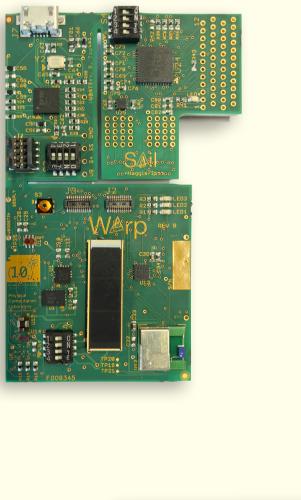
We are investigating how to efficiently and accurately measure perlayer chemical composition and build chamber conditions, in situ, for objects manufactured by selective laser sintering (SLS). Our investigation is a first step towards integrating sensors into the powder bed and eventually into parts themselves.

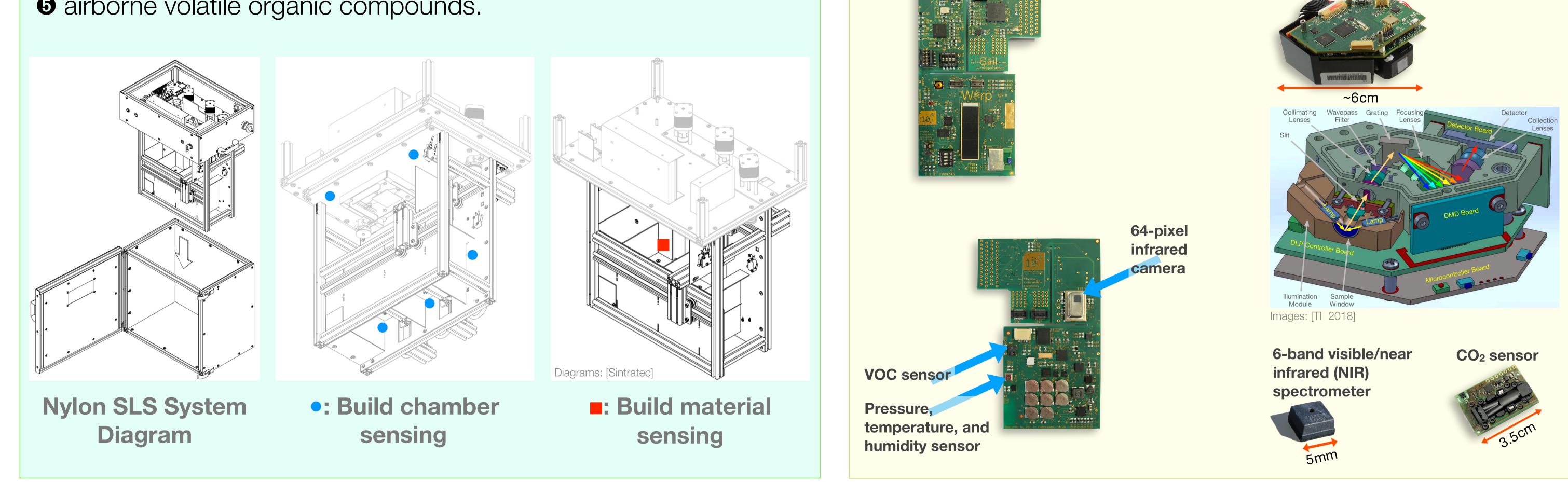
(1) Objective


In-process materials composition sensing for Nylon selective laser sintering (Nylon SLS): To understand whether low-cost sensors provide sufficient accuracy to monitor per-layer build material composition and build chamber properties during the additive manufacturing (AM) process.

Approach (2)

Monitor build material properties using three complementary sensing modalities: 12-band visible/NIR spectrometer in 450 nm-850 nm wavelength range; 248-band NIR spectrometer in 900 nm–1700 nm range; ³ Build surface temperature at 64 points.


Monitor build chamber conditions using five sensing modalities: • temperature, • humidity, • barometric pressure, • CO₂, and • airborne volatile organic compounds.


The results of the project will make it possible, for the first time, to have a per-object "digital **birth certificate**" detailing the entire volumetric / per-layer build process and object parameters, for each Nylon SLS AM part produced.

3 Sensors and sensor signal processing

Warp multi-sensor platform [2]

248-band near infrared (NIR) spectrometer in 900nm–1700nm range [TI, 2018].

Planned outcomes $(\mathbf{4})$

• New methods for using low-cost sensors integrated into AM systems for inprocess material characterization and build chamber monitoring.

Open dataset from materials characterization that captures noise properties of sensors. Potentially useful for machine learning from the data [1].

Open platform (hardware and software) that other research groups can use. Output Concepts for generative documentation and visualization from sensor data.

Project timeline (5)

Official project start: April 2018

Project duration: 8 months

Status: Testbed/apparatus construction

6 New research directions which this feasibility study enables

• Monitor powder bed properties (e.g., compaction, flow, temperature distributions) with **in-powder sensors**. Significant research challenges in energy-efficient signal processing, sensor platform miniaturization, in-situ machine learning on miniature in-powder sensors, and more. Complements existing research on in situ metrology for metal powder bed fusion [3].

Output to the second new understanding for in situ sensor signal processing, localization of sensors, and new approaches to extracting in-situprocessed sensor data.

References:

[1] P. Green, K. Black, and C. Sutcliffe, "Towards Additive Manufacturing Process Control using Semi-Supervised Learning". Connected Everything Feasibility Study, January 2017.

[2] P. Stanley-Marbell and M. Rinard, "A Hardware Platform for Efficient Multi-Modal Sensing with Adaptive Approximation", arXiv preprint arXiv:1804.09241, 2018.

[3] P. Bidare, R.R.J. Maier, R.J. Beck, J.D. Shephard, A.J. Moore, "An open-architecture metal powder bed fusion system for in-situ process measurements", Additive Manufacturing, Volume 16, 2017, Pages 177-185.

London