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Abstract

There is an increasing reliance on wireless computer networks for communicating various types of time sensitive applications such as voice
over internet protocol (VoIP). Quality of service (QoS) can play an important role in wireless computer networks as it can facilitate evaluation
of their performance and can provide mechanisms to improve their operation. In this study probabilistic neural network (PNN) and Bayesian
classification were developed to process delay, jitter and percentage packet loss ratio for VoIP traffic. Both methods successfully categorized the
transmission of VoIP packets into low, medium and high QoS categories but overall the Bayesian approach performed more accurately than PNN.
By accurately determining the network’s QoS, an improved understanding of its performance is obtained.
c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Quality of service (QoS) provides mechanisms to improve
the performance of computer networks by facilitating traffic
prioritization, resource reservation, traffic shaping and policing,
packet scheduling and queue management operations. These
operations are increasingly important for effective communi-
cation of multimedia traffic. The time sensitive nature of mul-
timedia applications means that when their traffic parameters
like delay, jitter and packet loss exceed their bounds, users’
experience can become unsatisfactory. Therefore assessing
the QoS provided by networks is important to both network
users and network service providers for determining how well
the transmission requirements of various applications are met
and in utilizing approaches to improve network performance.
There are however challenges in assessing QoS in multimedia
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networks. These include high traffic throughput, dynamic be-
havior of the network, limited resources (such as bandwidth),
diversity in applications’ transmission requirements and com-
putational requirements of collecting and processing traffic
information [1–6].

A Voice over Internet Protocol (VoIP) QoS evaluation
method that assessed the connection characteristics based on
active measurement and Mean Opinion Score (MOS) approach
has been reported [7]. The study examined network’s perfor-
mance using the users’ opinions of the applications’ quality.
Other studies reported effective evaluation of QoS for multi-
media services using artificial intelligence. They reported that
measured QoS is a good indicator of network operation and
resource (e.g. bandwidth) availability [8–10].

QoS assessment based on analyzing traffic parameters is
quantitative but requires tools to process and interpret end-to-
end transmission measurements for the packets [11]. An exam-
ple of such a tool that showed potential for QoS assessment in
wired and wireless networks is artificial neural network (ANN).
An advanced QoS assessment approach that used ANNs for real
time protocol (RTP) traffic analysis has been reported [10,12].
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In these studies communication networks were simulated using
a package called NS2. The parameters of the network traffic
were initially classified into multiple QoS classes by an unsu-
pervised learning Kohonen neural network. The classified in-
formation was then further processed to measure the network’s
overall QoS by a supervised learning multilayer perceptron
(MLP). The overall QoS assessed by the approach correlated
well with other QoS assessment techniques that used fuzzy
logic and regression analysis [10,12].

A comparison of Kohonen neural network, fuzzy c-means
(FCM) clustering and MLP and fuzzy inference system (FIS)
for QoS evaluation has been carried out, demonstrating that
they provide comparable results [8]. QoS assessment methods
reported in studies [8–10,12] were based on either Kohonen
neural network, FCM, MLP or fuzzy inference system (FIS).
In FCM a piece of data can simultaneously belong to multiple
clusters with different degrees of memberships rather than
exclusively to a single cluster. A limitation of FCM is that its
operation (and thus its results) can be affected by its initial start-
up conditions and parameters. Its training is also iterative and
this can be an issue in real-time operations. FIS based approach
requires the user to develop the rules for its knowledge base
and to determine the types and parameters of the membership
functions for its inputs and outputs. The rules and membership
functions’ parameters are specific to the applications. MLP
and Kohonen network based QoS assessment approaches need
much iteration to train (1000 iterations in Ref. [8]). MLP design
requires a careful determination of the number of neurons in its
hidden layer to avoid overfitting and to ensure proper general-
ization. Kohonen output is a map that requires interpretation by
the user to determine groupings. Linear regression assumes that
the interrelationships between the inputs and outputs are linear.

Probabilistic approaches have been applied to a number of
classification related network operations [11]. Some of these
approaches used the information extracted from packet-header
that may not be sufficient to allow for an accurate QoS analysis.
A number of Bayesian techniques were developed to classify
internet traffic [11] and to assess QoS for Web services [13,14].
A Bayesian approach that gathered information about malicious
users has been reported [15]. A Bayesian decision-theoretic
mechanism for modeling Quality of Experience (QoE) has
been reported that addressed the measurement and prediction
issues related to network traffic [16]. The parameters used for
determining QoE included location, packet loss ratio, delay,
jitter and the user satisfaction. The technique was context-aware
and predicted QoE with an overall accuracy of 98.9%. An
intelligent adaptive prioritization has proved effective for QoS
differentiation in wireless local area networks [17]. Bayesian
network classifiers as predictive models were proposed for net-
work intrusion detection but they showed some downsides [18].
The training data for Bayesian network classifiers often use
heuristic methods. Bayesian network classifiers are typically
trained using large datasets thus making their training time
consuming. However, when the training data size is small,
the performance of a single Bayesian network classifier could
significantly reduce due to its inability to adequately represent
the input data probability distribution. A method to deal with

the limitations of Bayesian networks has been developed [18].
The method was referred to as Bayesian Network Model Av-
eraging (BNMA) classifier. The training data used to evaluate
BNMA classifier were from the NSL-KDD dataset. Their
results showed that BNMA classifier performed considerably
better in detection accuracy than the Naive Bayes and Bayesian
network classifiers. The work showed that the BNMA classifier
using a smaller training dataset outperformed the two other
classifiers. Bayesian approaches for monitoring and predicting
mobile network abnormality [19] and ANNs for network intru-
sion detection [20] were reported.

In this study Bayesian and probabilistic neural network
(PNN) based approaches were developed to classify QoS for
transmission of VoIP packets into low, medium and high cat-
egories. These QoS assessment approaches only need a single
iteration to train or calibrate. They have minimal parameters
as part of their operation, e.g. PNN only needs the smoothing
parameter and the Bayesian approach requires the prior prob-
ability value. They were adapted to assess QoS for VoIP with
minimal development constraints.

In the following sections, a brief description of Bayesian
classification and PNN are provided, the methodology is ex-
plained and the results are presented and discussed.

2. Bayesian classification

Bayesian classification is a supervised learning method that
deals with uncertainty through probabilities with applications
such as classification, prediction and modeling. Bayesian clas-
sification allows apriori information about data to be used
as part of classification [21–23]. Bayes’ theorem uses the
knowledge of prior events as part of determining future events,
i.e.

p(h|e) =
p(e|h)p(h)

p(e)
(1)

where p(h) is the prior probability of hypothesis h, p(e) is the
prior probability of evidence e, p(h|e) is the probability of h
given e, p(e|h) is the probability of e given h. Using Bayes’
theorem the probability that a feature vector X with parameter
vector θ is assigned to a type t1 is given by

p(t1|X, θ ) =
p(t1)p(X|t1, θ )

p(X)
(2)

where p(t1) is the prior probability of type t1, p(X |t1, θ ) is the
probability density function of X for a given type t1 and n is
number of types. The total probability is

p(X) =

t=tn∑
t=t1

p(X|t, θ )p(t) (3)

Eq. (2) can then be written as

p(t1|X, θ ) =
p(t1)p(X|t1, θ )∑t=tn
t=t1

p(X|t, θ )p(t)
(4)

θ is unknown but the calibration dataset (Z) is known and so
p(X|t, θ ) can be replaced by q(X|t, Z) [24], where

q(X|t, Z) =

∫
θ

p(X|t, θ )p(θ |Z)dθ (5)
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So Eq. (4) becomes

p(t1|X, θ ) =
p(t1)q(X|t1, Z)∑t=tn
t=t1

p(t)q(X|t, Z)
(6)

Eq. (6) is the predictive density function for an observation
X on a case of type t measured on the calibration data Z. The
right-hand side of Eq. (5) can be rewritten by [24]

q(X|t, Z) = Std

(
vt , mt ,

{
1 +

1
nt

}
St

)
(7)

where there are nt cases of type t with observation vectors
x1, x2. . . , xnt; vt is the degrees of freedom (given by nt − 1),
mt is the vector of the means of the input features and St the
covariance matrix of the inputs. Std is a d-dimensional student-
type density function defined by

Std (v, b, c) =

Γ [0.5(v + 1)]
π0.5d {[0.5(v − d + 1)]} |vc|0.5

×
1

1 + (X − b)T (vc)−1(X − b)0.5(v+1)

(8)

where Γ is the gamma function. Thus using Eq. (8) the required
values of p(X|t, θ ) can be computed for the case of known
type. To compute the probabilities for the test or evaluation
dataset, Eq. (8) uses the observation vector X for the cases
of known type but retains the mean and covariance matrices
(i.e. calibration information) for the classification of cases
whose types are not known.

In order to further interpret the Bayesian classification re-
sults, the atypicality index can be calculated. High value of this
index for a case indicates that the case is not typical of that type.
The atypicality index for a type t and an observation vector X is
given by [24] as

A(t) = β

⎧⎨⎩d
2
,

nt − d
2

;
wt (X)

wt (X) +
n2

t −1
nt

⎫⎬⎭ (9)

where

wt (X) = (X − mt )T S−1
t (X − mt ) (10)

β indicates the incomplete beta function measured according
to the algorithm of [25] and nt is the number of individuals of
type t.

3. Probabilistic neural network

PNN maps an input feature vector to a number of predefined
classification types. It does not have any local minima issue.
PNN is a supervised learning feedforward artificial neural net-
work introduced by Specht [20]. It is predominantly a classifier
based on a statistical algorithm called kernel discriminate anal-
ysis. PNN training requires examples of known types in order
for it to infer the approximated functions that best describe
its input data [26]. The main advantages of PNN are: its fast
training, an essentially parallel structure and convergence to
optimal classifiers by increasing training examples.

PNN is related to Bayes classification rules [20] and
Parzen nonparametric probability density function estimation

Fig. 1. A probabilistic artificial neural network.

theory [26]. As shown in Fig. 1, PNN has four layers: input,
pattern (also referred to as hidden), summation layer and
output.

An input feature vector is fed to the n input neurons. The
input layer forwards these to the neurons in the pattern layer
where they are divided into k classification types. The neurons
in the pattern layer compute the outputs of an input pattern x
from the input layer by using a Gaussian kernel of the form:

ϕk,i =
1(

2πσ 2
)n/2 exp

(
−

x − xk,i
2

2σ 2

)
(11)

where xki ∈ Rn is the center of the kernel, and σ is known as
the smoothing (spread) parameter which specifies the size of the
kernel’s receptive field. The next layer (the summation layer)
sums the outputs individually for each group and provides the
probabilities for the input to belong to the predefined groups by
combining the previously added densities as,

pk (x) =

Mk∑
i=1

wkiϕki (x) k = 1, . . . , number of groups (12)

where Mk is the number of neurons in the pattern layer of type
k and wki are positive coefficients satisfying

∑Mk
i=1wki = 1.

The neuron at the output layer determines the category or
type of the input vector (x) based on Bayes’ decision rule and
using the information from the neurons in the summation layer,
i.e.

C(x) = arg max1 ≤ k ≤ K (pk) (13)

The smoothing parameter needs to be specified as part of PNN’s
training.

4. Methodology

The developed QoS classification methods were evaluated
on a wireless computer network set up in a network laboratory
(area: 4 m × 6 m). This network is shown in Fig. 2. The network
consisted of two wireless Cisco c⃝ access points (APs) AIR-
AP1852 that had four external dual-band antennae. Cisco c⃝

catalyst 3560 switch connected the APs, Wide Area Network
Emulator (WANem) and the Session Initiation Protocol (SIP)
server via 1 Giga bits per second (Gbps) wired cables.

The arrangement established point-to-point protocol (PPP)
link between the PC-1 that connected to AP-1 and PC-2 that
connected to AP-2. Wide Area Network Emulator (WANem)
was installed at the center of the PPP connection to facilitate
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Fig. 2. Network topology.

Table 1
VoIP QoS requirements [7].

QoS range Delay (ms) Jitter (ms) %PLR

High <150 <1 <2
Medium 150–400 1–3 2–4
Low >400 >3 >4

control over the traffic parameters i.e. delay, jitter and %PLR
and thus to provide good, medium and poor QoS conditions for
measurements. The traffic was sent over this PPP link in such a
way that traffic from PC-1 transmitted to PC-2 through WANem
server and vice versa. The traffic contained high definition
(HD) video, VoIP and TCP traffic. Different traffic to represent
practical scenarios was included but VoIP and the Real-Time
Transport Protocol (RTP) packets were analyzed.

VoIP transmission was established by the Session Initiation
Protocol (SIP) server and used the RTP. X-Lite Softphones
software ran over the Microsoft Windows c⃝ providing SIP VoIP
using G711a coder–decoder (CODEC) format. Packet size for
RTP was 160 bytes and the transmission duration was about
10 min.

Wireshark c⃝ [27] network monitoring software was used
to capture network packets by considering their protocols.
Wireshark c⃝ was configured on two computers, PC-1 connected
to AP-1 and on PC-2 connected to AP-2. These Wireshark
captured packets were used to measure end-to-end delay, jitter
and percentage packet loss ratio for VoIP RTP packets (by using
their sequence numbers and timestamps). The results were
then processed by the QoS classification methods (PNN and
Bayesian). For both Bayesian and PNN approaches, example
patterns consisted of 300 entries that were extracted from
recorded data based on ITU recommendations indicated in
Table 1.

Both Bayesian and PNN approaches provided the probabil-
ity of transmitted packet to belong to low, medium and high
QoS. The implementations of these approaches are described
next.

4.1. Bayesian approach

The Bayesian approach processed input vectors containing
the values for delay, jitter and %PLR for transmitted packets
and produced an output indicating the QoS category. The
algorithm for the Bayesian approach consisted of three parallel

paths that were associated with low, medium and high QoS
categories as shown in Fig. 3.

Three lists of calibration examples were prepared based on
Table 1 which included 300 entries for training file. These
represented different delay, jitter and %PLR values character-
izing low, medium and high QoS categories. Fig. 3 indicates
the manner traffic measures were associated to each QoS type.
When a packet strongly belonged to a category (e.g. low QoS,
represented by BC1-route) then the associated probability was
close to 1. The same operations are followed for BC-2 (medium
QoS) and BC-3 (high QoS). BC-1 used the examples from the
low and not low QoS list, BC-2 used the examples from the
medium and not medium QoS list and BC-3 used the examples
from the high and not high QoS list. Each path provided a
probability value between 0 and 1. High values of probability
indicated QoS associated with that path. In order to have a
continuous range between 0 and 1 for the three paths combined,
the outputs from the paths were mapped as: 0 to 0.33 for low
QoS packets classified through BC-1 path, 0.34 to 0.65 for
medium QoS packets classified through BC-2 path and 0.66 to
1 for high QoS packets classified through BC-3 path.

The test file contained VoIP transmission parameters
X=(x1 = delay, x2 = jitter, x3 = %PLR) in Equations in
Section 2 for traffic that lasted for about 10 min.

4.2. PNN approach

The PNN structure shown in Fig. 1 was used with three
inputs: delay, jitter and %PLR. The training (calibration) con-
tained 300 examples that characterized a range of delay, jitter
and %PLR for different QoS categories. As PNN is a supervised
learning classifier for each example in the training file the
corresponding QoS types (1=low, 2=medium and 3=high) were
specified. When the value of the parameter (spread) was near
zero, the PNN acted as a nearest neighbor classifier. In this
study the value of spread (σ ) in Eq. (11) was chosen as 0.01 by
experimenting with different values and considering the PNN
classifying performance on examples from the training file.

The test file contained VoIP transmission parameters
X=(x1 = delay, x2 = jitter, x3 = %PLR) in Eqs. (11)–(13)
for traffic that lasted for about 10 min.

5. Results and discussion

Fig. 4a, b and c show the measurements from the network,
i.e. actual delay, jitter and %PLR, for VoIP RTP traffic. The
related traffic was produced by using WANem. Fig. 4d and e
show the QoS outputs for the Bayesian and PNN approaches,
respectively. At the beginning the QoS was high as delay,
jitter and %PLR were small. This is then followed by medium
QoS at minute 1.2. At minute 2.8, the QoS started to become
high again. From minute 5.5, the QoS fluctuated between high,
medium and low in relation to the changes in the delay, jitter
and %PLR.

Fig. 5a and b show the QoS classification boxplots for the
Bayesian and PNN approaches. The median values (shown by
the bar inside each box), for the three types of QoS for the two
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Fig. 3. Flow chart for the Bayesian approach.

Fig. 4. (a) Delay, (b) jitter, (c) %PLR, (d) QoS classification by Bayesian and (e) QoS classification by PNN.

approaches are close. The median value for the high QoS is at
minute 3.5, the median for the medium QoS is at minute 4.2
and the median for the low QoS is at minute 7.8. Both methods
have outlier packets for the low QoS between 0 and 4 min.

Fig. 6a and b provide further details about the classification
of packets for the Bayesian and PNN approaches. The two
methods provide consistent results however there are some
differences, e.g. between 1.5 and 2.5 min, PNN has classified
some packets into high QoS while Bayesian has classified them
as Medium QoS.

Fig. 7a and b provide an analysis of the classifications,
the reasons for packets being classified as high, medium or
low QoS by the Bayesian and PNN approaches, respectively,
according to delay values. Red color in the figures indicates
high QoS, green indicates medium QoS and blue indicates
low QoS. The dotted blue line is at 150 ms that represents
the ITU recommendation for high QoS (Table 1). There are
many packets that are assigned into medium (green) QoS that
have delay less than 150 ms, but jitter or %PLR is high. There
are some packets between 1.5 and 2.5 min that are assigned
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Fig. 5. QoS boxplot for (a) Bayesian and (b) PNN.

Fig. 6. Packet classification: (a) Bayesian and (b) PNN.

Fig. 7. Relationship between delay and QoS classification for (a) Bayesian and (b) PNN approaches. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

by PNN as high (red) QoS but that their delay values exceed
150 ms.

Table 2 shows the percentage of packets classed as low,
medium and high QoS by the Bayesian and PNN approaches
using ITU recommendations as reference. The results show
that the Bayesian approach has a higher accuracy for QoS
classification as compared to PNN. The reasons for this could
partly be due to the predefined paths associated with the
Bayesian approach facilitating more specific examples during
its training (as indicated in Fig. 3).

Fig. 8a–c show the atypicality index (obtained using Eq. (9))
for the Bayesian classifier for the packets in the test file asso-
ciated with paths BC-1, BC-2 and BC-3, respectively. These
also correspond to the flow chart shown in Fig. 3. This index
indicates the extent a traffic vector represented by delay, jitter,

Table 2
Percentage of packets classed as high, medium and low QoS by PNN and
Bayesian methods.

QoS category %Classification accuracy

Bayesian PNN

High 99.7 97.9
Medium 98.6 97.3
Low 100 94.9

and %PLR characterizes a QoS type, i.e. low, medium and high.
A high atypicality index value indicates that the traffic vector is
not typical of that QoS category and so a misclassification could
then be attributed not to the classifier but to the appropriateness
of the input. The blue colored circles in Fig. 8a–c represent
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Fig. 8. Atypicality index plots for the Bayesian classifier for (a) low (BC-1), (b) medium (BC-2) and (c) high QoS (BC-3). Blue colored points represent packets
with high probabilities and low atypicality indices. Red colored points represent packets with low probabilities and high atypicality indices, black colored points
represent packets with high probability and are not typical to this class. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

packets that belong to BC-1, BC-2 and BC-3, respectively,
i.e. low, medium and high QoS. These packets have high
probability and low atypicality index indicating correct classifi-
cation. The red colored circles in Fig. 8a–c represent packets
that do not belong to BC-1, BC-2 and BC-3, respectively.
They have low probability and high atypicality index. The
black colored circles in Fig. 8a–c represent packets that are
misclassified. These have high probability and high atypicality
index. Combining the blue colored circles in Fig. 8a–c in a
single figure with their associated times, will provide consistent
results to those in Fig. 4d and e.

6. Conclusion

Bayesian and PNN based QoS classification approaches for
VoIP (RTP) traffic were developed and their performance was
evaluated. The methods were applied to a laboratory based
wireless network. Experimental results illustrated that both
classification approaches are effective in categorizing VoIP
related packets into high, medium or low QoS. However,
the Bayesian approach gave a higher accuracy for classifying
packets than PNN. The effectiveness of the developed methods
was further tested using an atypicality index that confirmed the
classified packet belonged to the suggested categories.
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