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Abstract 

The present review deals with the chemistry of complexes of gold(I) and gold(III) with organic 

ligands. Compounds classified according to the type of coordinating ligands and donor atoms are 

considered from the point of view of their potential application as precursors in the MOCVD 

process, which attract considerable scientific interest. This method has undeniable advantages 

over other technologies (precision multi-parameter monitoring in order to control the properties 

of the obtained coatings, high utilization of precursors, simple equipment design, etc.) and can be 

used to produce thin films and gold nanoparticles with desired characteristics on different types 

of surfaces of complex geometries for various engineering applications. The following main 

results published to date are summarized and analyzed in this review: (a) chemical approaches to 

synthesis, structural characteristics and properties of the main classes of organic compounds of 

gold (I, III), (b) thermal stability of gold compounds in solid state, (c) temperature-dependent 

measurements of vapor pressure used for the characterization of gold compound volatility, (d) 

thermolysis processes of gold complex vapor on heated substrates, (е) examples of modern high-

precision applications of gold precursors in MOCVD technique of metallic layers and 

nanoparticles. Mechanisms and growth processes of gold films and nanoparticles, their 

composition, structure, and characteristics are also considered. 
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1. Introduction 

Interest in the chemistry of volatile compounds of gold is associated, primarily, with the 

growing demand for Metal Organic Chemical Vapor Deposition (MOCVD) precursors used in 

the process of growing gold thin films and nanoparticles. Due to their low resistivity and high 

corrosion stability thin films and nanomaterials of gold find numerous valuable applications as in 

anticorrosion coatings [1], films in optical and microelectronic devices [2-10], protective layers 

for inner surfaces of microwave waveguide resonators [11, 12], electrical contacts and 

interconnects and layers in solar batteries [13]. Furthermore, they find application in 

electrochemical and biomedical applications [14], in the areas of organic synthesis and catalysis 

[15,16], photophysics, photochemistry [17-19] and in chemotherapy [20]. 

In the last two decades, nanotechnology started to take advantage of various forms of CVD 

for the preparation of various composite nanomaterials, such as AuNP/semiconductor oxides 

[21], AuNP/titania composites [22], AuNP/transition metal composites [23], SiO2 sandwiched 

AuNP arrays [24], AuNP-doped vanadium dioxide thin films [25], titanium dioxide/tin dioxide 

nanocomposites [26], and AuNP/organic semiconductors [27]. Gold nanoparticles deposited on 

materials with developed surface (TiO2, Fe2O3 and Al2O3) exhibit a high catalytic activity in 

various chemical processes and are used as active component in the matrix of catalytic systems 

for the photocatalytic production of hydrogen from ethanol, reactions of propylene epoxidation, 

conversion of ethanol to formaldehyde, hydrogenation of unsaturated hydrocarbons, oxidation of 

hydrocarbon and CO at low temperatures [28-31]. In addition, recently, gold-based 

nanostructured materials have been the object of intense research in medicine [32]. Gold 

nanoparticles with tunable plasmon resonance are widely used in modern biotechnology for the 

photothermolysis of cancer cells [33] as well as in combination with carbon nanomaterial [34] 

and organic and oxide semiconductors as chemical sensors and biosensors [35-39]. Moreover, in 

recent years they become to be used in new generation of nanoparticle-doped optical fibers [40].  

Modern trends in the development of high-tech industries constantly increase the 

requirements to the size, composition and structure of film nanomaterials and nanoparticles. 

Along with the physical gas-phase methods (molecular beam epitaxy, pulsed laser deposition, 

cathodic, magnetron, high frequency spray deposition), methods of electrochemical deposition 

[41], sol-gel [42], photochemical deposition [43] MOCVD is one of the fastest developing 

methods used for the above-mentioned high-tech applications MOCVD and its variants (for 

example, Atomic Layer Deposition (ALD), pulsed MOCVD and thermal MOCVD at low and 

atmospheric pressure, photo-enhanced MOCVD, etc.) have all the necessary capabilities to 

control the processes of growth of coatings with the specified composition and structure on 

objects of different geometry [44, 45].  
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The main stages involved in the MOCVD process are the transport of precursor vapor in the 

deposition zone followed by the activated decomposition on the surface, leading to the formation 

of the functional layer. MOCVD method is characterized by a relatively low energy cost, 

precision multi-parameter monitoring in order to control characteristics of the coating and 

dispersion of nanoparticles, and high utilization of the precursor. Furthermore, the method allows 

us to obtain coatings of different composition and surface morphology and structure, adjust 

coating thickness, change the deposition rate, deposit layers and nanoparticles onto substrates 

with any shape and onto materials of different nature (metals, semiconductors, non-conductive 

materials, polymers), and to create novel film materials by varying the composition of the 

coating during its growth. MOCVD method allows the users to control precisely the 

concentration of precursor vapors and, subsequently, to control the growth process of 

nanoparticles and layers with predetermined composition and structure. The method excludes the 

use of solvents, which are a source of contaminants and unwanted impurities. The range of 

thickness for the various layers obtained in this method may vary from nanometers to tens of 

microns.  

The chemistry of precursors plays a key role in the deposition process, since both 

experimental parameters and construction of some units of MOCVD installations are determined 

by the physicochemical properties of the used volatile precursors. The main requirements to 

MOCVD precursors are their volatility, i.e. their ability to transport to the gaseous phase without 

decomposition under reduced or atmospheric pressure and moderate temperatures, and thermal 

stability in the condensed and gaseous phases. The most volatile precursors are molecular 

crystals, however the molecular structure of the compound is essential but not a sufficient 

condition to transfer it to the gaseous phase at low temperatures. Some complexes with 

molecular structure can be polymers (oligomers), and they can include not only organic but also 

other ligands and have low volatility and stability. The compound is volatile when the energy of 

intermolecular interactions (van der Waals, electrostatic and dipole interaction between 

monomer molecules in the molecular crystal) is much smaller than the energy of intramolecular 

bonding. Thus, the volatility and the thermal stability of the compounds are determined primarily 

by their structural characteristics and electronic structure. 

In addition, the precursors should meet the following criteria:  

- vapors should decompose completely under the experimental conditions, and 

decomposition products must be gaseous, with the exception of the coating material;  

- precursor vapors and thermal decomposition products should be inert to the materials 

of the substrate and installation; 

- compounds must be non-toxic or low-toxic, stable in air and stable in storage; 
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- availability of the initial reagents and high yield in the precursors synthesis. 

Thus, for the correct choice of the MOCVD precursor it is necessary first of all to have full data 

on its volatility, thermal behavior and stability. 

The development of MOCVD methods and chemistry of precursor for deposition of Ir, Ru, 

Rh, Pd, Pt, Os coatings have been the subject of several reviews [46-53], however reviews 

summarizing data on chemistry of gold complexes with organic ligands as precursors for 

deposition of Au films and nanoparticles are only sporadic and were written more than 10 years 

ago. A review article written by A. Grodzicki in 2005 [54] was devoted to gold(I) carboxylates 

and its complexes with tertiary phosphines as a new class of CVD precursors. The authors 

analyzed thermal decomposition and mass spectrometry data, described decomposition 

mechanisms of the vapor transport in the gaseous phase and layers growth processes and 

discussed the effect of the precursor molecular structure on the quality of the deposited metal 

coatings. Since 2005 over 70 articles have been published with key emphasis on the 

characterization of new gold precursors, and have provided a brief description of the deposition 

and application of gold thin films and nanoparticles. Therefore, there has been insufficient 

information available to interested readers summarizing the main classes of volatile compounds 

of gold. It can be stressed that the most classical approaches to the synthesis of gold complexes 

with organic ligand were suggested more than 40 years ago, however they still remain valid and 

are used by chemists for the synthesis of volatile gold precursors. 

 In this review, we are providing an overview of a wide range of data concerning existing 

classes of gold complexes. After illustrating the synthesis of the main classes of gold precursors 

and investigating their thermal properties, main emphasis will be placed on the systematic 

analysis of the influence of their molecular structure and properties on the growth of gold films 

and nanoparticles. Such an up-to-date analysis of the literature in combination with the enduring 

knowledge of synthetic chemistry of the main classes of gold complexes with organic ligands 

will allow to us to make recommendations on the choice of precursors and concrete variant of 

MOCVD process for the deposition of gold thin layers and its nanoparticles with required 

structure and properties. The present review will provide detailed analysis of both the results of 

the earlier work related mainly to the chemistry of gold complexes and the most significant data 

describing the use of MOCVD for preparation of metal coatings and gold nanoparticles for high-

tech applications.  

 Currently a number of volatile compounds of gold used as precursors in MOCVD 

processes for the production of gold coatings are known; among them are, inorganic, 

organometallic, intracomplex (chelate complexes with {O,O} coordination center – beta-

diketonates and carboxylates; with {S,S} coordination center – dithiocarbamates and 
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dithiophosphinate; with {O,N} coordination center – iminoketonate, oxychinolinates) and mixed 

(multiligand) compounds. However, only a limited number of precursors are used for the 

deposition of gold films and nanoparticles. The problem of the use of gold precursors in 

MOCVD remains unsolved due to their low stability, difficulties of synthesis and storage. In 

addition, the lack of data on the thermal behavior of volatile gold complexes makes the choice of 

experimental parameters of gold films deposition for the purposeful change of their properties 

difficult and, therefore, hinders their practical application. In this regard, the current review also 

includes the available data on gas-phase reactions, mechanisms of thermolysis of the precursor 

vapor on the heated surface with the description of the temperature ranges of these processes and 

the gas products forming as a result of dissociation and fragmentation of the ligands in the 

gaseous phase. 

 

2. Main classes of compounds of gold with organic ligands 

In this chapter, the main classes of gold(I, III) compounds with organic ligands will be 

discussed. Gold chelates will be classified according to the type of coordinated ligands and donor 

atoms.  

 

2.1. Gold(I) complexes with organic ligands  

Gold(I) complexes with organic ligands have linear coordination. Four main classes of the 

compounds recognized according to the type of coordinated ligands, will be considered below.  

 

2.1.1. Dialkyl- and diarylsubstituted complexes of gold(I) 

The simplest dialkylsubstituted complexes of gold(I) were synthesized by interaction with 

methyllithium MeLi, e.g. according to the reaction [55]: 

[AuMe(PPh
3
)] + MeLi Li+[AuMe

2
]- + PPh

3  

The complex was isolated only in the case of coordination with pentamethyl diethylenetriamine 

(PMDT, Me2NCH2CH2N(Me)CH2CH2NMe2) with the formation of more stable compound 

[Li(PMDT)][AuMe2] melting at 120–123°С, in which gold atom has linear coordination [56]. 

Some stable gold(I) complexes were obtained according to the reaction involving 

trimethylphosphineylide Me3P=CH2 and similar ylide compounds [57, 58]:  
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[AuMe(PMe3)] [AuCl(PMe3)] [Me3PCH2AuCH2PMe3]+Cl-

[Me-Au-CH
2
PMe

3
)]

LiMe ylide

dec. 170 °C

ylide-

[Me
4
P]Cl

m.p. 119-121 °C

 

Synthesis of several types of ylide gold(I) complexes is described in the literature [57, 58], 

among them the simplest [MeAuCH2PMe3] with the melting point of 120°С. Ylide dialkyl 

derivatives obtained in crystalline state were stable in air and in the presence of moisture. The 

compounds can be kept at room temperature under natural light environment and they can 

sublime in vacuum without noticeable decomposition. The introduction of more bulky 

substituents leads to an increase in the compounds stability. The related compounds have high 

volatility and thermal stability, and therefore can be successfully used as precursors in MOCVD 

processes. 

 

2.1.2. Complexes [RAuL] 

A number of gold(I) complexes of the general formula [RAuL] (where L is a stabilizing ligand, 

as a rule, tertiary phosphine) are known in the literature. The first compounds were obtained in 

1959 via the reaction of gold halogenides with alkyl- or aryllithium [59, 60]: 

[AuCl(PR'
3
)] + RLi [AuR(PR'

3
)] + LiCl

R = Me, Ph; R' = Et, Ph  

The chemistry of this class of gold compounds has been described in details by Schmidbaur et al. 

[61]. It was revealed that the most of these compounds, e.g. with R=Me, C6F5, CF3 and L=PMe3, 

PEt3, PMe2Ph, PMePh2, AsPh3, PPh3  etc. exhibit both chemical and thermal stability.  

The main approach to the preparation of these complexes is substitution of halogen 

derivatives [XAuL] (X = Cl, Br) to aliphatic or aromatic radicals; e.g. the complex 

[AuCl(AsPh3)] reacts with 2-pyridyllithium at –40°С with the formation of 2-pyridylgold: 

+   ClAuAsPh
3

- 40 °C - 5 °C

-LiCl -AsPh
3

75-90 %  

2-pyridylgold starts to decompose at 120°С and then it melts at 150°С with the complete 

decomposition to metal gold and for this reason it is potentially applicable for the manufacture of 



8 

 

pure gold films at medium temperatures. Introduction of alkyl groups into pyridine ring leads to 

a substantial increase of the complexes stability.  

As has been noted by Puddephatt et al. [62] the complexes [RAu(CNR’)] (R, R’ = Alk, 

Ar) can be used as MOCVD precursors. All the compounds were obtained according to the 

following reaction:  

- 78 °C, N
2

Et
2
O

[AuR(L)][AuX(SMe)
2
] + RLi(RMgX) + L

X = Cl, Br  

[MeAu(CNMe)] is the most stable volatile complex from this series, which melts with 

decomposition at 95°С and can sublime in vacuum and kept at low temperature for long time. 

Puddephatt et al. indicate [62] that in contrast to alkylphosphine, Au(I) coordinates isocyanide 

ligand to a greater extent than Au(III). For that very reason, the preparation of this complex with 

Au(III) has not been a success. The complex [MeAu(CNEt)] is less stable than its methyl 

analogue and decomposes even at 0°С. As the size of a substituent (R’) grows, the complexes 

stability increases in the following order: i-Pr < t-Bu < Cy < Ph [62]. 

Several approaches to the synthesis of [LAu(β-diketonate)] complexes (where L = PPh3, 

PPh2Et, PEt3, AsPh3 etc. ) have been described by Vicente and Chicote [63]. The Au atom in the 

related complexes bounds with a β-diketonate ligand via σ-bond Au–γC (Fig. 1). 

 

Fig. 1.  

 

So, the [RAuL] complexes are well-studied class of compounds; some of them are used as 

MOCVD precursors, however some drawbacks of [RAuL] complexes should be pointed out. 

Among these drawbacks, the presence of phosphorous and arsenic in the elemental composition 

of the molecule is undesirable in the processes of coating deposition. Moreover, both initial 

reagents and thermolysis products of these compounds contain toxic phosphorous- and arsenic-

containing substances.  

 

2.1.3. Alkynyl, vynil and olefinic complexes of gold(I) 

The chemistry of alkynyl complexes of gold(I) was described in several publications [57, 64, 

65]. Alkynyl complexes of Au(I) generally possess relatively high thermal stability 

(decomposition temperatures are more than 100°С) with a tendency to form alkynyl metal 

polymers. Fluorosubstituted derivatives differ by its improved stability compared to their 

unsubstituted analogues. The corresponding alkynyls of lithium, potassium and free alkynyl are 

usually used for the synthesis of the related compounds.  
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First reports regarding gold(I) olefinic complexes have appeared in 1964 when the light-

sensitive [Au2Cl2(cod)] (cod = C8H12) complex rapidly decompose upon heating has been 

obtained [66]. Along with these compounds, complexes with cyclohexene, cyclopentene, 

cyclooctene, cyclodecene, pentandiene, norbornadiene, cyclododecatriene and some other cyclic 

alkenes were synthesized [67-69]. All these compounds are light-sensitive, unstable and 

decompose even at low temperatures.  

By this means, only some alkenyl and alkynyl-substituted gold(I) complexes were used in 

MOCVD processes. Introduction of methyl or trifluoromethyl groups as a second substituent 

makes these compounds potentially suitable for MOCVD technology. The main drawbacks of 

these complexes are their ability to form polymers and as a consequence their low volatility. As 

for olefinic complexes, their instability as well as the difficulty associated with their synthesis 

procedure makes them unsuitable for application as MOCVD precursors.  

 

2.1.4. Gold(I) complexes stabilized by N, О or S atoms 

The synthesis of [(RO)(R’N=)CAu]3 (R = Me, Me2CH; R’ = Me, Et, CH2Ph, C6H11, п-MeC6H4) 

was described by Minghetti [70] according to the following reaction:  

 

The compounds are thermally stable in the condensed phase, decompose in the temperature 

range from 150 to 210°С depending on the radical type and do not change under ambient 

conditions [70]. Pyridine, benzothiazole or benzoimidazol derivatives can serve as donor ligands 

in these complexes (compounds 1-3, Fig. 2) [71]. 

 

Fig. 2.  

 

Complexes 1 and 2 (Fig. 2) undergo thermolysis at 167 and 298ºС, respectively, with the 

formation of dimers of the organic ligand and metallic gold [71]. Compound 3 loses easily 

trimethylsilyl chloride and transfers to the corresponding oligomer which decomposes at 210°С 

[71] (Fig. 2). Stabilization of (triphenylphosphine)gold by azide, 1,2,3- and 1,2,4-triazole ligands 

leads to the formation of complexes (Fig. 2) with stability against heating and light [72]. 

TG/DTA analysis of these derivatives showed that the weight loss was not observed up to 

decomposition temperature of 195–198°С [72]. 

A wide range of the compounds with the formula [Au(PR3)(OSiR’3)] (R, R’ = Alk, Ar) 

exhibiting stability to exposure to light, air and humidity were obtained [73]. The unstable 

complex AuN(SiMe3)2(PMe3) (Tm= 35–37°С) was formed on stabilization of the alkylsilyl group 

in the Au(I) complexes by nitrogen atom [74, 75]. At the same time PMe3AuОSiMe3 (Tm = 79–

[AuCl(SMe2)]  +  RNC  +  R'OH  +  KOH AuC(OR')=NR  +  KCl  +  H2O  +  Me2S
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80°С) is more tolerant to temperatures, able to transfer to the gaseous phase and decomposed at 

temperatures above 190ºC with the formation of (Me3Si)2O, Me3PO, PMe3 and gold mirror [74]. 

Its analogue AuN(SiMe3)2)(PEt3) was synthesized via the reaction with Li(N(SiMe3)2 and was 

recently used as a precursor in ALD processes [76]. It is worth mentioning that the precursor 

decomposition products are toxic and highly flammable, which makes it difficult to use such 

complexes as MOCVD precursors. 

A number of thio- and selenocyano-complexes of Au(I) with the formula [LAuSCN] were 

studied by Schneider et al. [77]; in dependence on the type of stabilizing ligand L they can 

exhibit various properties. Introduction of trialkylphosphine into the complexes [R3P=SAuX] (R 

= Alk, Ar; X = Cl, Br, CN) allow to increase their stability [78]. The data on the complexes 

[R3PAuSC(O)CX3], [R3PAuOC(O)CX3] (X = Cl, F, H) [79], [R3PAuSS(O)2R’] [80], 

[R3PAuS(O)2R’] and [R3PAuОS(O)2R’] [81] (R, R' = Alk, Ph), which decompose at 

temperatures below 100°С, are also available in the literature. 

Ketenide complexes of Au(I) can be synthesized via the following reaction [82, 83]: 

Au2(C=C=O)L + L + 2[Et3NH]+Cl-2[AuClL] + CH2=C=O + 2Et3N
 

The authors used 2,6-dimetylpyridine as L, but the structural formula of the above-mentioned 

ketenides is unknown. The Au2(C=C=O)L complex easily loses the ligand with the formation of 

Au2(C=C=O) and explodes upon heating above 100°С. However if the controlled thermal 

decomposition was carried out on a glass surface heated to 100°С, a compact metal gold film 

was formed, which was further used in the process of catalytic propylene oxidation [82].  

Stabilization of the gold complexes by donor atoms as N, O and S should give stable 

compounds, however the analysis of the literature data has shown the relative compounds are 

characterized by rather “poor” chemistry and decompose even at relatively low temperatures 

along with their inability to sublime without decomposition. This appears to be connected with 

the features of chemistry of gold(I), whereas gold(III), on the contrary, exhibits affinity to N, O, 

S-donor ligands. Trialkyl- and triarylphosphines are used for the additional stabilization of the 

class of compounds under consideration. Grodzicki et al. in their review [54] have considered 

gold(I) complexes with carboxylates and tertiary phosphines of the general formula 

[Au(OOCR)(PR’3)] where R’ = Me, Et, Ph, 
p
tol and R=CH3, C(CH3)3, CHCl2, CF3, C3F7, C6F13, 

C7F15, C9F19, C6F5, C6F5CH2, CH(CH3)NHC(O)C6H5, CH2NHC(O)CH3, CH2NHC(O)C6H5 as 

alternative organometallic CVD precursors. Compounds were prepared in a metathetical reaction 

of (phosphine)gold(I) halide and silver carboxylates: 

[AuCl(PR
3
)] + AgOOCR [Au(OOCR)(PR

3
)] + AgCl.
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Using structural studies these species were shown to be monomers or dimers depending on the 

steric effects of the tertiary phosphine and carboxylate substituents. 

Recently new ALD precursor dimeric gold(I) tert-butyl-imino-2,2-dimethylpyrrolidinate 

was prepared by Coyle et al. [84] by salt metathesis of lithium tert-butyl-imino-2,2-

dimethylpyrrolidinate and a gold chloride salt providing good yield (Fig. 3). This compound is 

soluble in aromatic or chlorinated solvents and stable in air up to 170°C; it decomposes at the 

temperature of 300 °C as determined by CVD experiments. 

 

Fig. 3.  

 

Two precursors, Au(HMDS)(NHC) (HMDS = hexamethyldisilazide, NHC = 1,3-

diisopropylimidazolidin-2-ylidene) and Au(HMDS)(PMe3) (compounds 1-2, Fig. 4) were 

obtained using similar procedure [84] by salt metathesis of metal chloride and lithiated 

hexamethyldisilazide with a good yield [85]. They were successfully used for the self-seeded 

growth of gold plates and wires with high aspect ratio by MOCVD, however it is necessary to 

point out that the compounds were sensitive to moisture. According to TGA data the complexes 

start to sublime with decomposition at 100 and 80 
o
C, respectively. 

 

Fig. 4.  

 

Whilst on the subject of organic complexes of gold(I) in general, trialkylphosphinylide 

derivatives (dialkyl-substituted gold complexes) should be particularly emphasized. These 

complexes have demonstrated sufficiently good thermal stability together with their high 

volatility. [RAuL] (L = PR3, CNR; R = Alk) complexes can also be considered as promising 

MOCVD precursors, however information on thermal behavior of these compounds both in 

gaseous phase and in condensed state is lacking. The presence of phospine groups in the 

molecules and the fact that some alkylphospines are toxic may restrict the application of these 

compounds in CVD processes. Iminopyrrolidinates and carboxylates of gold(I) could also be 

promising precursors, however the necessity to synthesize them in nitrogen atmosphere using dry 

boxes makes both synthetic procedure and the preparation technology of gold films and 

nanoparticles quite difficult. It is also necessary to note the lack of information about thermal 

behavior of the complexes considered above both in solid and in gaseous phases. 
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2.2. Gold(III) complexes with organic ligands 

Gold(III) complexes with organic ligands are more varied class of compounds than complexes of 

gold(I). This appears to be due to the larger variety of ligands coordinating Au(III) as well as the 

higher stability of organic complexes of gold(III). By convention, gold(III) chelates can be 

divided into four groups according to the number of alkyl and aryl substituents in the 

coordination sphere of the central metal.  

 

2.2.1. Tetraalkyl- and tetraaryl-substituted complexes 

The chemistry of tetraalkyl- and tetraaryl-substituted gold(III) compounds has been described in 

details by Schmidbaur et al. [61]. The simplest complex of this type was synthesized according 

to the following reaction: 

Li[AuMe4] + PPh3[AuMe3(PPh3)] + LiMe  

Interestingly compound Li[AuMe4] was shown to be stable for long time in ether solution at 

room temperature and in air ambient [56], whereas trimethylgold(III) in ether decomposes even 

at –40°С. Rice et al. [56] assumed that gold(III) complexes with even number of alkyl groups 

should be more stable than those with odd number of organic radicals. Upon solvation of lithium 

ion by the PMDT ligand, the complex [Li(PMDT)][AuMe4] which melts with decomposition at 

86–88°С was isolated [56].  

Tetraarylsubstituted complexes of gold(III) are also known [61, 86], e.g. pentaphenyl 

gold(III) stabilized by tetrabutylammonia [Bu4N][Au(C6F5)4] are also stable and melts without 

decomposition at 240°С, but it loses two C6F5 radicals with the formation of [Bu4N][Au(C6F5)2] 

upon further heating. 

The use of ylides as ligands allows obtaining a number of gold complexes containing four 

Au–C bonds [58, 61, 87]. In the reaction of [Me3Au(PMe3)] with Me3P=CH2 the corresponding 

ylide [Me3Au
–
–CH2P

+
Me3] (Tm=111–112ºC) form, which is stable in air and in the presence of 

moisture, is obtained [87]. Moreover, it sublimes in vacuum and decomposes in inert atmosphere 

at 185°С. Schmidbaur et al. [87] have noticed unusual thermal stability of the above mentioned 

ylide complex since other known compounds containing AuR4
–
 fragments do not exist above 

room temperature. Ylides and their derivatives which can lose ethane molecule may also be 

obtained from dimethylgold(III) halogenides [87]: 

+�

[Me
2
Au(μ-Br)]

2
Br- [Me

3
PCH

2
-Au-CH

2
PMe

3
]+Br-

Me
3
P=CH

2

-C
2
H

6

Δ
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In a similar manner trimethylgold(III) complexes of reactive sulfonium and sulfonium ylides 

[Me3Au
–
–CH2S

+
(O)Me2] and [Me3Au

–
–CH2S

+
Me2] which are capable of reacting with PMe2Ph, 

giving [Me3Au(PMe2Ph)] can be obtained from [Me3Au(PR3)] [88]. Bidentate ylide derivatives 

were synthesized via the reaction of dimethylgold(III) chloride with Me3P=C=PMe3 and 

Me3P=N–PMe2=CH2 [88]: 

+ HCl[Au(μ-Cl)Me2]2 + Me3P=C=PMe3

[Au(μ-Cl)Me
2
]
2
 + Me

3
P=N-PMe

3
=CH

2
+ HCl

 

Both products are isostructural and have close sublimation temperatures in vacuum (115 and 

100°С, respectively, at 10
–4

 Torr) and decompose at temperatures above 250°С [88]. The high 

stability of these compounds can be explained by the formation of the stable six-centered π-

system. 

Another example to obtain tetraalkyl-coordinated complex of gold(III) was demonstrated via 

the reactions of methyllithium with halogenated derivatives of dimer ylides (Fig. 5) [89]: 

 

Fig. 5.  

 

Compound 2 (Fig. 5) in crystalline state is thermally stable and decomposes only at 153°С. It is 

worth mentioning that ylide complexes of gold easily undergo transformations, which allows 

compounds with various substituents and functional groups to be obtained [89]. 

By this means among tetraalkyl-substituted complexes of gold(III) ylide derivatives should 

be particularly emphasized. Some of them are distinguished for their high thermal stability and 

volatility and are good enough for MOCVD processes, however the properties of ylides have not 

been adequately studied and still require further investigation. The main drawback in this 

instance is the low stability and high cost of ylide precursors.  

 

2.2.2. Trialkyl- and triarylsubstituted complexes of gold(III) 

As has been discussed earlier, gold(III) complexes triple-substituted by organic ligands have 

less stability compared to their twice- and tetra-substituted analogues. More stable complexes 

can be obtained at low temperatures in the case of coordination of trialkylgold with ligands 

containing donor atoms of group V in the periodic table (N, P or As, etc.) [75]. The synthesis and 
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some properties of [R3AuL] complexes have been described in a book chapter [61]. The melting 

point and thermal stability of these complexes can vary over a wide temperature range depending 

on the type of stabilizing ligands and organic radicals. The main classes of [R3AuL] complexes 

which have potential application as MOCVD precursors will be considered below in more 

details.  

 

2.2.2.1. Gold(III) compounds stabilized by Р atoms 

Trialkyl- and triphenylphosphines are good stabilizers of trimethylgold(III) [90]. 

Me3AuPMe3 compound decomposes even at room temperature, whereas Me3AuPPh3 is quite 

stable and decomposes at 120°С [60]. The products of pyrolysis of Me3AuPPh3В in vacuum 

were studied by Coates et al. [60]; among those products are ethane (95%), a precipitate 

containing PPh3 and gold metal. Obviously, the stability of gold(III) complexes stabilized by PR3 

ligand grows with increasing the inductive effect of R, viz. in the order PMe3 < PMe2Ph < 

PMePh2 < PPh3 when the nature of Au–C bond is the same [60, 91]. The most stable R3AuPR’3 

complexes are those with R’ = Ph, however the nature of R substituents should also be taken into 

account. A series of RMe2AuPPh3, where R = Et, n-Pr, iso-Pr, tert-Bu, neo-C5H11, n-Bu, Ph, σ-

C5H5 and CD3 was also synthesized and studied [71]. The compounds decompose in the range 

from 77 to 142°С.  

Fluorosubstituted derivatives of trialkylgold are of particular interest. Trifluoromethyl 

derivatives of the complexes ((CF3)3AuL) stabilized by phosphorous atom are stable against 

moisture and air and can be easily purified by vacuum sublimation (e.g. in the case when L = 

PMe3) [92]; some of those derivatives are considered as promising precursors for MOCVD of 

film materials [93]. Generally speaking, the approaches used for the synthesis of 

trialkylderivatives of gold(III) through alkyllithium in substitution reactions can be used for the 

preparation of fluorosubstituted complexes [94]. Sanner et al. [95] suggested a new method for 

the synthesis of fluorosubstituted gold trimethylphosphinate (CF3)3AuPMe3, which was purified 

by sublimation in vacuum at 75°С. With the use of stabilizing PPh3 group the thermally stable 

triarylgold complex (C6F5)3AuPPh3 was obtained which was also tolerant to moisture and air. 

When an attempt was made to sublime the compound without addition of stabilizing PPh3 

fragment the formation of decafluorobiphenyl and gold metal was observed. This fact confirms 

once again the applicability of triarylphosphorous for the stabilization of gold(III) complexes, 

however stabilization by triarylphosphorous leads to the decrease of the compounds volatility. 

Accordingly, despite of the low stability of trialkylsubstituted compounds compared to di- 

and tetraalkylsubstituted agalogues some complexes stabilized by phosphorous atom exhibit high 
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thermal stability in solid state. The simplest methyl and trifluoromethyl complexes from this 

class are considered by a number of research groups as promising MOCVD precursors.  

 

2.2.2.2. Gold(III) compounds stabilized by N atoms 

Chemistry of gold(III) complexes with nitrogen-containing ligands has been described in details 

by Cinellu et al. [96 and refs. therein]. The literature analysis has shown that in the case of a 

number of N-donor compounds, viz. aniline, dimethylaniline, n-phenyldiamine, piperidine, 

ethylamine, dimethylamine and glyoxime, the attempts made to stabilize trimethylgold(III) has 

failed. The synthesis of complexes stabilized by substituted amine group in the composition of 

one of the ligands were also described [97], however such compounds decompose within several 

hours in air and in the presence of light. Accordingly, complexes of trialkylgold(III) stabilized by 

nitrogen atom have low thermal stability and cannot be used as precursors for deposition of Au 

coatings by MOCVD. 

 

2.2.3. Dialkyl- and diarylsubstituted complexes of gold(III) 

It is well known that dimethylsubstituted derivatives of gold organic compounds are more stable 

in crystalline state than those of diethylsubstituted analogues, whereas di-n-propyl and di-n-butyl 

derivatives are liquids at normal conditions [61]. The difference in their physico-chemical 

properties appears to be connected with the different inductive effect of aliphatic radicals and 

their size, which in turn influence the energy of crystal lattice formation. The complexes of 

dialkyl- and diarylgold(III) will be considered below in accordance with the type of stabilizing 

donor atom, classified according to the groups of the periodic system.  

 

2.2.3.1. Haloid and pseudohaloid compounds (group VII) 

Diethylgold(III) bromide was the first synthesized compound from this class [98]. It was shown 

that it exists as a dimer, as shown in Fig. 6. 

 

Fig. 6.  

 

Complexes containing other alkyl groups are usually synthesized by addition of gold(III) 

halogenides to Grignard reagents in ether solution [61], as described by the following equation: 

[Au
2
Me

4
(μ-Br)

2
] + 4MgBr

2
[Au

2
Br

6
] + 4MeMgBr

 

To prevent hydrolysis the anhydrous gold(III) halogenides or the complexes [AuCl3(Py)] or 

[AuBr2(Py)2] stabilized by pyridine are used. 
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Organolithium compounds are rarely used because they undergo further reactions forming 

tri- and tetraalkylsubstituted compounds of gold, however in some cases in the reactions with 

halogenides or acids, the latter can form complexes of dialkylgold(III). Almost all haloid and 

pseudohaloid gold(III) complexes have low melting points and decompose even at low 

temperatures. There are three main structural types of pseudohaloid dialkylgold(III) compounds 

[61, 94, 99, 100]. The first one includes azides and cyanates, which form bridged dimers where 

gold atoms are connected via nitrogen atoms, as shown in Fig. 7. 

 

Fig. 7.  

 

The second type includes thiocyanates and selenocyanates of dimethylgold(III) having dimer 

structure, but gold is connected via sulfur or selenium atoms, respectively [61, 94, 101, 102] 

(Fig. 8). 

Fig. 8.  

 

There are also tetramer structures because cyanides form only linear bonds as shown in Fig. 9. 

 

Fig. 9.  

 

Cyanides of dimethylgold(III) quickly decompose upon heating with the formation of the mixed 

complex of Au(I) and Au(III) of the general formula R2AuCN·AuCN as an intermediate [99]. 

The further decomposition processes can be represented as follows:  

2AuCN + 2R-RR
2
Au

2
(CN)

2
 + R-R2R

2
AuCN  

Using [Et2Au(μ-Br)]2 as an initial reagent a number of gold complexes having similar dimer 

structures were synthesized. As a result of interaction with the corresponding silver salts the 

complexes containing azide, acetate, trifluoromethanesulphate brige fragments were obtained 

[99, 103-105]. Preparation of diphenylphosphate, phenylphosphate and phenylarsenate 

derivatives was also described [94].  

Thermochemical and physical properties of R2AuX (R = Et, n-Pr, iso-Pr, n-Bu, iso-Bu, n-

Am, C6H11, PhCH2, Ph and X = Cl, Br, CN) compounds widely vary in dependence on the type 

of radical and stabilizing ligand. It is necessary to mention that cyanides are more stable than 

halogenides of the corresponding dialkyl gold(III) derivatives [94]. [Me2AuBr]2 and [Me2AuCl]2 

can be obtained via the reaction of [Me2AuI]2 with silver nitrate in water solution with the 

subsequent addition of KBr or KCl, respectively, with the yield of 80–90% [105]. IR and Raman 
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spectra of [Me2Au(μ-X)]2 and [Me2AuX2]
-
 (X = Cl, Br, I) are very similar; the Au–X bond 

covalency increases in the order Cl < Br < I [105]. 

Dialkylgold(III) halogenides are usually used as initial reagents for the synthesis of other 

dialkylgold(III) derivatives, which are stabilized by various mono- and bidentate ligands.  

 

2.2.3.2. Compounds stabilized by atoms of group VI elements 

The complex of dimethylgold(III), cis-[Me2Au(OH2)2]
+
, with water exists in water solution as 

dimer; it has short life time in water solution before it undergoes hydrolysis [75]. 

Dimethylgold(III) hydroxide [Me2Au(OH)]4 with unique tetramer structure (Fig. 10) was 

obtained in solid state in organic solvents [106]. 

 

Fig. 10.  

 

The formation of tetramer structure was quite unexpected because most of dimethylgold(III) 

compounds have dimer structures. Dimethylgold(III) acetate [Me2AuОAc]2 (compound 1, Fig. 

11) which was obtained by addition of silver acetate to dimethylgold(III) bromide also exists as a 

dimer [103].  

 

Fig. 11.  

 

The use of dimethylgold(III) iodide instead of bromide gives rise in the yield of [Me2AuОAc]2 to 

93% [103]. Complex 1 (Fig. 11) starts to melt at 97–97.5°С and decomposes at 170°С [103, 

104]. Three carboxylate complexes of dimethylgold(III), viz. trifluoroacetate [Me2Au(OOCF3)]2, 

pivalate [Me2Au(OPiv)]2 and benzoate [Me2Au(OBz)]2 (Fig. 12), were synthesized using a 

similar procedure starting from dimethylgold(III) iodide obtained with the yield of 60% [104]. 

 

Fig. 12.  

 

Similarly to [Me2AuОAc]2 the structures of dimethylgold(III) carboxylates are built from 

neutral bimetal molecules [(СН3)2Au(OOCR)]2 (R = CF3, t-Bu, Ph), in which the bridged 

carboxylate groups form two pentamerous chelate cycles; gold atom has square planar 

coordination. It was shown [104] that the change of terminal substituents in ligands has a 

minimal impact on geometrical characteristics of the coordination center. At the same time, 

except for [Me2AuОAc]2, introduction of more bulky substituent leads to an increase of the 

Au…Au distance between adjacent molecules. These compounds have good solubility in many 
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organic solvents, stable at room temperature within several weeks; the melting points of the 

complexes with R = CF3, t-Bu and Ph are 102-103, 75-76 and 186-187 
о
С, respectively [103, 

104]. They were successfully employed in MOCVD processes. 

A series of sulfur-containing complexes of dimethylgold(III) in which gold atom has a four-

coordinated planar structure was also synthesized. Compound 2 (Fig. 11) has bridged structure 

typical for haloid and pseudohaloid complexes of dimethylgold(III). Among them the monomer 

3 (Fig. 11) is the most unstable compound decomposing even at room temperature [107]. The 

dimer 2 (Fig. 11) is more stable and quickly decomposes when the temperature reaches 115°С. 

According to the observations of Komiya et al. [107] the most stable sulfur-containing 

compound is the complex 4 (Fig. 11) melting without decomposition at 168°С. 

One of the most studied class of volatile compounds of dimethylgold(III) is its complexes 

with β-diketonates [93]. Dimethylgold(III) acetylacetonate was the first complex among this 

class of compounds to be investigated. Various chelate derivatives of dimethylgold(III) with β-

diketone ligands (R-CX-CH2-CY-R’, where X, Y = O, O; O, NH; O, S; S, NH and R, R’ = CH3, 

CF3, C(CH3)3, Ph) have been synthesized [108-112] and studied by various physico-chemical 

methods [108-112]. Their thermal properties and volatility have also been investigated [108-

112]. The decomposition temperature of these chelates in condensed state vary from 75 to 200°С 

in dependence on the ligand type; in the structure of molecules gold atom has square planar 

coordination. Zharkova et al. [108] have determined the crystal structures of volatile 

dimethylgold(III) β-diketonates Me2AuL [L = acetylacetonate (acac), 2,2,6,6-tetramethylheptan-

3,5-dionate (thd), dibenzoylmethanate (dbm)]. It was shown that the crystals consist of 

monomeric molecules organized in polymeric stack connection. At the same time two 

crystallographically independent molecules with different orientation were determined [109] to 

be in the unit cell of volatile iminoketonate chelate Me2Au(i-acac) (i-acac = 

CMe3C(NH)CHC(O)CMe3). Volatile dimethylgold(III) iminovinylthionates 

Me2Au(MeCSCHC(NH)Me) and Me2Au(CF3CSCHC(NH)Me) with melting points 83-85
o
C and 

76-78
o
C, respectively, were studied by the same group of authors [110]. Their molecular 

structures consist of monomeric complexes combined into polymeric stack-type connection; they 

are volatile and thermally [110]. Later volatile dimethylgold(III) complexes based on phenyl-

containing beta-diketones and beta-iminoketone, namely, (CH3)2Au(bac) (Me2Au(Ph-CO-CH-

CO-Me)), Me2Au(btfa) (Me2Au(Ph-CO-CH-CO-CF3) and Me2Au(i-bac) (Me2Au(Ph-CO-CH-

CNH-Me) were analyzed by single-crystal XRD in Ref. [111]. It was shown that the insertion of 

Ph and CF3-substituents into the ligand virtually has no influence on the square coordination core 

of the Au atom in these complexes. The replacement of one oxygen atom by an NH-group results 

in a significant increase in the thermal stability of the β-iminoketonate Me2Au(i-bac) in inert 
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(Ar) and reduced (H2) atmospheres. Chen et al. [113] synthesized the dimethylgold(III) complex 

with (Me-CS-CH2-CS-OEt) as a ligand, which melts at 35–37°С and can be kept in ambient air 

for long time. 

Along with the dimethylgold(III) complexes described above, β-diketonates stabilized by 

orto-nitrobenzene radicals are capable of undergoing transformation under the action of 

triphenylphosphine with the formation of the corresponding trimethylgold(III) derivative (Fig. 

13) [114]: 

 

Fig. 13.  

 

Compound 1 (Fig. 13) exhibits higher thermal stability (Tdec = 205°С) compared to complex 2 

(Fig. 13) (Tdec = 165°С) derivative [114] since the π-system of acetylacetone ligand apparently 

stabilizes the molecule.  

Bessonov et al. [115] have described the preparation techniques of dimethylgold(III) 

complexes with 8-oxyquinoline Me2Au(ox) and 8-mercaptoquinoline Me2Au(tox) from sodium 

salts of the ligands and [Me2AuI]2, refined the single crystal structure of Me2Au(ox) and 

suggested the model of spatial crystal structure of Me2Au(tox) (Fig. 14).  

 

Fig. 14.  

 

Structures of dimethylgold(III) quinolinates are built from neutral Me2Au(L) (L = C9H6NS or 

C9H6NO) complexes. Their melting points differ insignificantly: 131-132
о
С for Me2Au(ox) and 

133-135
о
С for Me2Au(tox). Both compounds are stable in air and can be used in MOCVD 

processes. 

Among gold complexes potentially applicable for MOCVD processes, compounds 

containing alkyloxy groups should be noted. Kodas et al. [93] pointed out that such compounds 

could be good candidates for MOCVD of thin gold films. The first work reporting the synthesis 

and properties of complexes 1 and 2 (Fig. 15) has been published in 1966 [116]. 

 

Fig. 15.  

 

Based on data on the structure and properties of the related complexes of other metals 

Schmidbaur et al. [116] have suggested the procedure of synthesis of complexes 1 and 2 (Fig. 

15) and studied their properties. It is necessary to mention that the dimer 1 exhibits better 

thermal stability than compound 2 and undergoes thermolysis at 135°С with the formation of 
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shining gold mirror [116]. Tris-(trimethylsiloxy)gold(III) (compound 2, Fig. 15) is less stable 

and slowly decomposes even at –20°С. Complex 1 sublimes in vacuum and quite stable in dry 

atmosphere but sensitive to moisture [116]. 

Bessonov et al. [117] have synthesized dimethylgold salicylaldiminates Me2Au(Sal=NMe), 

Me2Au(Sal=N(i-Pr), Me2Au(Sal=NCy) and Me2Au(Sal=NPh) by the use of salicylaldimine with 

the yield from 60 to 90%. Structures of dimethylgold(III) salicylaldiminates are formed by 

neutral mononuclear molecules (CH3)2Au(Sal=NR’), where R’=Me, i-Pr, Cy or Ph as shown in 

Fig. 16.  

 

Fig. 16. 

 

Dimethylgold(III) compounds with AuS2 coordination (Fig. 17) were described in works 

[94, 101, 118]. 

 

Fig. 17.  

 

Some of the compounds shown in Fig. 17 are instable and decompose easily even at room 

temperature. For example, Me2AuS2CSEt quickly loses the CS2 molecular fragment and 

transforms to the dimer Me2AuS2Et2AuMe2 which is stable at normal conditions, and melts 

without decomposition at 50°С. Attekum et al. [119] have studied the kinetics of decomposition 

under exposure to X-ray using volatile complexes AuMe2(S2CNMe2) and AuBr2(S2CN(n-Pr)2) as 

an example. They have shown that the decomposition rate noticeably drops as the temperature 

decreases. Parkhomenko et al. [101] have prepared one solid and two liquid complexes 

[Me2AuSCN]2, Me2AuS2P(OMe)2 and MeAuS2P(OEt)2 as MOCVD precursors. The complex 

[Me2AuSCN]2 had a dimer molecular structure (Fig. 18).  

 

Fig. 18.  

 

The simple sulfurо- and selenosubstituted complexes of dialkylgold(III) can be prepared 

from Au(III) trialkyl derivatives [94], however the most popular method is the reaction of 

metathesis from dialkylgold(III) halogenides: 

2KBr + 2[Me
2
AuS

2
COEt][Me

2
AuBr]

2
 + 2[EtOCS

2
]K  

Monomer dithiocarbamates can also be synthesized with the use of Grignard reagents: 

 

[AuBr2(S2CNR2)]  +  2MeMgBr [AuMe2(S2CNR2)]  +  2MgBr2

R = Alk
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Zharkova et al. [119] prepared dimethylgold(III) diethyldithiocarbamate complex 

Me2AuS2CNEt2 having excellent storage stability by the reaction of [Me2AuI]2 with sodium 

diethyldithiocarbamate. Synthesis and molecular structure (Fig. 19) of low-melting 

dimethylgold(III) complex with dithiophosphinate Me2AuS2P(i-Bu)2 and its thermal properties 

were reported by Turgambaeva et al. [119]. 

 

Fig. 19.  

 

Synthesis of two liquid dimethylgold(III) complexes with substituted dithiophosphinate of the 

general formula Me2AuS2PX2 (X=OMe and OEt) as well as their thermal behavior are also 

reported in the literature [119]. The compounds are stable under storage, do not require special 

handling conditions and exhibit a good volatility and vaporization stability. 

It was found that the Au–X bond in haloid compounds cleaves easily under the impact of 

dialkylsulfides and dialkylselenides with the formation of cis-[AuR2X(SR’2)] complexes [61]: 

2cis-[AuMe
2
X(SeMe

2
)][Me

2
AuX]

2
 + 2Me

2
Se  

The use of RS(CH2)nSR chelate ligands allows to obtain stable dimers (compound 1, Fig. 20), 

whereas for the formation of stable bidentate monomer a counter ion is needed, e.g. a nitro-anion 

(compound 2, Fig. 20) [61]. 

 

Fig. 20.  

 

Among thiocomplexes of dimethylgold(III) (Fig. 20) the compound 2 is the most stable which 

melts without decomposition at 115°С, while the others are less stable and decompose below 

100°С [61]. 

It has been shown earlier that using Au(III) complexes with β-diketones their stability 

increases as a result of using nitrogen as a donor atom [108-112]. By analogy, compounds with 

N,S-coordination (Fig. 21) exhibit higher thermal stability compared to the less stable Au(III) 

dithiocomplexes. 

 

Fig. 21.  

 

It is worthwhile mentioning that in contrast to dialkylgold(III) compounds containing S-

donor ligand, their derivatives stabilized by oxygen atom are more thermally stable and can be 

transported to the gaseous phase without decomposition; therefore, they can be used as 

precursors for MOCVD processes. Dimethylgold(III) β-diketonates are often used as MOCVD 
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precursors for deposition of gold coatings; the only one drawback is their sensitivity to light and 

moisture. Apart from that, the dimethylgold(III) complex with trimethyloxy-group should also be 

recognized as a promising precursor for MOCVD processes.  

 

2.2.3.3. Compounds stabilized by atoms of the group V elements 

Schier and co-worker [99] have found that diethylamine and its derivatives can be good 

stabilizers of Au(III) complexes. For instance, ethylenediaminodimethylgold(III) iodide 

undergoes decomposition only at 168°С, however it exhibits lability to long-term boiling in 

solution. The dimer analogue Me2IAu–NH2C2H4H2N–AuIMe2 is less stable and decomposes 

even without heating. Stabilization of diethylaminoaurates by cyano-groups results in an increase 

of their stability. The majority of complexes of this type are usually obtained by the interaction 

of the corresponding mono- and bidentate ligands with halogenides of dialkylgold(III). However, 

there are some examples of the reactions with tridentate N- and P-donor ligands, but there is no 

information available in the literature about the formation of penta-coordinated compounds. 

Stocco et al. [120] have shown that most [Me2AuXL] complexes have a cis-Me2Au fragment. 

A series of auralactame complexes containing C, N, S, O donor atoms in lactame ring and 

organic groups in lateral substituents were synthesized Cinellu et al. [96 and refs. therein]. All 

compounds are relatively stable, have good solubility in polar solvents, but become degraded in 

air at room temperature, especially under the influence of natural light. Dimethylgold(III) 

halogenides with 2,2’-bipyridine and 1,10-phenanthroline, give the corresponding cis-

[AuMe2(bipy)]
+
cis-[AuMe2Cl2]

-
 and cis-[AuMe2(phen)]

+
cis-[AuMe2Cl2]

- 
ions [121]. The 

compounds exhibit similar properties and are stable in air for up to 120°С. The other good 

stabilizers of dimethylgold(III) complexes are trialkylphospine and trialkylarsine: 

[Me2AuX]2 + 2AsR3
2cis-[AuMe2X(AsR3)]

 

The obtained complexes are capable of undergoing further transformations, and it should be 

pointed out that with an excess of the ligand in reaction the ionic [AuMe2L2]
+
X

–  
complexes can 

be obtained [61, 122]. 

A great number of dialkyl derivatives of R2AuL(X) complexes, including deuteromethyl 

substituted ones, with R = CH3, CF3, CD3, Et, n-Pr; X = NO3, OTf, O2CCF3, O2CCH3, Cl, Br, I, 

ClO4, CN, SCN; L = PMe3, PEt3, PPh3, P(C6H11)3, AsPh3, SbPh3, Py were obtained and studied 

[95]. Most of them start to decompose even at room temperature. Bidentate complexes exhibiting 

noticeably better stability compared to monodentate ones and melting above 170°С can be 

obtained in similar ways [61, 122]. 
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+�

Cl-[Me
2
AuCl]

2
 + Ph

2
PCH

2
CH

2
PPh

2

 

Cis-[AuR2XL] complexes can be synthesized via the reaction of [AuR3L] with acids [92], 

metal halogenides [94] or halogens [55]. The reaction of redistribution can be noted as an 

important synthetic approach: 

3cis-[AuMe2Br(PMe2Ph)]2[AuMe3(PMe2Ph)] + [AuBr3(PMe2Ph)]  

The method of oxidation of gold(I) compounds is used for the synthesis of Au(III) complexes 

with a pentafluorophenyl fragment: 

cis-[Au(C
6
F

5
)
2
Cl(PPh

3
)] + TlBr[AuCl(PPh

3
)] + (C

6
F

5
)
2
TlBr  

Such compounds can enter into an exchange reaction, e.g. with silver salts, giving products 

like [Au(C6F5)2LPPh3]. Fluorosubstituted complexes of dialkylgold(III) are well studied, and 

most compounds from this wide series decompose during melting [61]. 

It is possible to sum up that the O,N-coordinated compounds exhibit better stability in 

comparison with the corresponding O,O-coordinated derivatives. It is only possible to assume 

that gold compounds stabilized by nitrogen atoms exhibit high enough thermal stability, since 

studies dealing with the dialkylgold(III) complexes with N-coordination are sporadic as we can 

see from the literature analysis. As in the case of gold(I) compounds, trialkyl- and 

triarylphosphines are good stabilizing agents of gold(III) complexes, however, compounds 

suitable as MOCVD precursors were not found among their dialkylsubstituted derivatives. 

 

2.2.3.4. Olefinic complexes of gold(III) (group IV) 

The chemistry of olefinic complexes of gold has been described in several review articles [96, 

123]. In most cases these compounds are not stable [94]. For instance, the unstable complex of 

dichlorogold(III) with 1,5-cyclooctadiene quickly decomposes upon heating. Moreover, it is 

insoluble in most organic solvents and unstable when exposed to light [66]. Upon its heating 

above 50°С in CCl4 in the presence of triphenylphosphine, the gaseous 1,5-cyclooctadiene is 

formed and its amount gradually increases when temperature increases. Chalk et al. [66] have 

established that the complex has olefinic rather than allyl nature with one of chlorine atoms 

joined to the ring. Apart from that, dimeric complexes of Au(III) dichlorides with such ligand as 

butene-2, decene-5, cyclooctene, cyclodecene, norbornene, norbornadiene and bicyclopentadiene 
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are known. All π-olefinic complexes of gold(III) are unstable and decompose even at low 

temperatures. 

As a conclusion, the unstable olefinic complexes of dimethylgold(III) cannot be used as 

MOCVD precursors. 

 

2.2.4. Monoalkyl- and monoarylsubstituted complexes 

The reaction of arenes with gold trichloride in dry CCl4 gives rise to the formation of 

arylgold(III) dichloride as a dimer [124]: 

2Au
2
Cl

6
 + 2ArH (ArAuCl

2
)
2
 + 2H[AuCl

4
]

 

The process can be described as an electrophilic substitution of aromatic compounds. The 

reaction product forms as a brown suspension. The reaction itself can be terminated by the 

addition of ether in order to avoid further interaction with the arene. In the case of alkylbenzene, 

the para-derivative is usually formed, which is in a good agreement with the common principles 

of electrophilic substitution [94]. In the case where arene has substituents capable to coordinate 

gold, a simple monomer coordination compound forms: 

2PhCN + [Au
2
Cl

6
] 2[AuCl

3
(PhCN)] 

A number of various monoalkyl- and monoarylsubstituted complexes [AuX2RL] with X = Cl, 

Br, I; R = CF3, C6F5, C6Cl5, C6Br5; L = PPh3, PMe2Ph, PEt3, PMe3, AsPh3 and R = Ph, p-

MeC6H4, p-ClC6H4; L = SPr2, PPh3, PMe3, Py etc. were also synthesized and investigated [61].  

In the last few years the emphasis was on gold complexes with N,N-dimethylbenzylamine 

possessing pharmacological properties [125-128] (Fig. 22). Abram et al. [126] did not describe 

their thermal properties, though it was mentioned that the complexes slowly decompose in 

solutions. 

 

Fig. 22.  

 

Preparation of several examples of gold(III) carborane complexes was also described [129]. 

It was emphasized that the presence of the Au–C bond in such compounds is doubtful. A series 

of arylgold(III) complexes with 2-benzoyl-, 2-phenoxy-, 2-(phenylsulfanyl)-, 2-anilinopyridine 

was studied by Fuchita et al. [130] and Nonoyama et al. [131]. There are also some data 

available in the literature on 2-phenylpyridine and 2-phenyl-4-(methylcarboxylato)quinoline 

derivatives [132]. 

Thus, monoarylsubstituted Au(III) complexes are the most widespread among the 

compounds of this class, however the aryl substituents results in the decreases of their volatility. 
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The presence of halogens in the molecules also limits their application as MOCVD precursors. 

Speaking of gold(III) compounds in general, the most interesting class with potential 

applications in MOCVD technology is dialkylsubstituted complexes of gold(III), in particular 

dimethylgold(III) chelates. They can sublime in vacuum without decomposition and exhibit 

thermal stability acceptable for MOCVD. Besides, most of them can be kept in air for a long 

time. 

 

3. Thermal properties of gold complexes with organic ligands 

3.1. Properties of gold complexes upon heating in solid phase 

The methods of thermogravimetry and differential thermal analysis (TG/DTG) are usually used 

for the determination of temperature ranges in which complexes could vaporize with no change 

of component composition. The methods are also employed for the estimation of volatility and 

sublimation enthalpy based on Langmuir equation and for the determination of decomposition 

temperatures. Such data concerning thermal properties of gold complexes are sporadic due to 

difficulties encountered with their interpretation, which result from overlapping of the processes 

of vaporization and decomposition. Moreover, in most published works only TG data are found, 

which provide very limited understanding of the thermal behavior of these compounds. 

 

3.1.1. Gold(I) complexes with organic ligands 

The [R3PAuCN] complexes (R is various alkyl and aryl substituents) were studied by a 

combined method of TG/DTA to investigate their decomposition in the temperature range 200–

600°С with the formation of gold metal (Table 1) [133].  

 

Table 1. 

 

Griffiths et al. [85] have studied thermal stability of Au(HMDS)(NHC) and 

Au(HMDS)(PMe3) by an air-free TGA method; the complexes start to evaporate at 110 and 

80°C, and decompose at 190°C and 170°C, with residual masses of 26% and 6%, respectively 

(Fig. 23). The temperatures, at which the vapor pressure of Au(HMDS)(NHC) and 

Au(HMDS)(PMe3) is 1 Torr, were estimated from the stepped isothermal TGA to be 115 and 

80°C, respectively. 

 

Fig. 23.  
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Mäkelä et al. processes [76] used a dymanic TGA to estimate the applicability of 

chloro(dimethylsulfide)gold(I) (AuCl(SMe2), chloro(tetrahydrothiophene)-gold(I) 

(AuCl(SC4H8)), methyl(triethylphosphine)gold(I) (MeAu(PEt3)), 

(diethyldithiocarbamate)(triethylphosphine) gold(I) (Au(S2CNEt2)(PEt3), (2,2-dimethyl-

6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato)-(triethylphosphine)gold(I) (Au(fod)(PEt3)), 

(bis(trimethylsilyl)amido)(triethyl-phosphine)gold(I) (Au(N(SiMe3)2)PEt3), and 

chloro(triethylphosphine)gold(I) (AuCl(PEt3)) as precursors for ALD of gold (Fig. 24). It has 

been shown that all compounds transfer to the gaseous phase in one step; most of them 

decompose upon heating and evaporates only partially (Fig. 24). Au(N(SiMe3)2)(PEt3) was 

chosen from the series of investigated complexes as the best liquid ALD precursor. 

 

Fig. 24.  

 

Grodzicki et al. [54] have demonstrated that the decomposition of perfluorinated gold(I) 

carboxylate complexes proceeds in two steps which can be divided or coincided. For most 

complexes, decarboxylation proceeds at the first step between 140 and 160°С in dependence on 

carboxylate. No correlation was observed between the temperature of the decarboxylation onset 

and the length of perfluorinated chain. At the same time, the lowest temperature (220◦C) of gold 

formation was found for [Au(OOCC7F15)(PMe3)] and [Au(OOCC3F7)(PEt3)], while the highest 

(600◦C) was observed for [Au(OOCC6F5CH2)(PPh3)]. Taking into account the thermal stability 

of these complexes it has been concluded that they are applicable as precursors for gold 

deposition in a hot-wall CVD reactor. However, it is worth mentioning that their air and moisture 

instability restrict their application in CVD experiments. 

Coyle et al. [84] have studied gold(I) tert-butyl-imino-2,2-dimethylpyrrolidinate by the TG 

method; the temperature of mass loss onset was 209 °C with a metal residue of 40%. According 

to the DSC analysis the compound showed sharp decomposition at 290 °C. The evaporation 

kinetic was evaluated by a stepped isothermal TG method between 130 and 190 °C. The 

temperature at which the vapor pressure of the compound is 1 Torr was estimated to be 238°C 

using the Langmuir equation. For investigation of the mechanism of compound decomposition 

by NMR, the complex solution in deuterobenzene was sealed in a heavy-walled NMR tube and 

heated in isothermal oven in the presence of light. It has been stated that the complex 

decomposes at 100°C with the formation of gold metal on the walls of NMR tube and protonated 

ligand as a single product which was observed by NMR.  
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3.1.2. Gold(III) complexes with organic ligands 

Zharkova et al. [108-111] have revealed a regularity of the change of volatility and thermal 

stability of β-diketonate derivatives in dependence on terminal substitutes in the chelating ligand. 

It has been concluded that introduction of fluoro-containing ligands leads to an increase in the 

volatility, while it causes a decrease in the thermal stability of these complexes. However, 

Larson et al. [134] have noted that fluorosubstituted β-diketonates demonstrate good enough 

thermal stability and can therefor effectively be used in CVD processes, giving high quality gold 

films. Introduction of t-Bu substituents into the ligand causes a decrease in the volatility of 

dimethylgold(III) β-diketonate, while improving its thermal stability [108-111], which correlates 

with the data on capability of t-Bu groups to improve the thermal stability of another volatile 

chelates [135]. The DTA data (Table 2) also points to the improved stability of chelates 

containing two -СMe3 groups [108-111]. Introduction of Ph group results in an increase of the 

compounds stability compared to dimethylgold(III) acetylacetonate, but the decomposition onset 

temperatures of Ph-containing complexes are lower than those of the complexes with t-Bu 

substituents (Table 2). 

The nature of donor atoms in the chelate center was suggested to be the crucial factor in the 

change of thermal stability of dimethylgold(III) chelates rather than the type of substituents of (R 

and R’) [108-112]. The thermal stability of the complexes is found to decrease in the order (O, 

NH)>(S, NH)>(O, O)>(O, S) depending on the type of chelate center [108-112, 136]. This order 

of thermal stability correlates with the order of the increase in the metal-ligand force constants 

(K(AuN) > K(AuC) > K(AuO) > K(AuS)) obtained from the calculations of vibrational spectra 

of dimethylgold chelates [137]. Bessonov et al. [138, 139] have noticed that similar to β-

diketonate derivatives, carboxylate complexes have a tendency to increase their volatility on 

introduction of trifluoromethyl substituents into the ligand. 

 

Table 2. 

 

In the series of complexes with salicylaldimine ligands [117], the use of “lighter” 

substituents at the nitrogen atom (e.g. Me in Me2Au(Sal=N–Me)) results in the complex 

transition to the gaseous phase with the formation of less percentage of solid residue (mass loss 

~80%). On the other hand, the introduction of cyclohexyl and phenyl substituents into 

salicylaldimine ligands of Me2Au(Sal=N–Cy) and Me2Au(Sal=N–Ph), respectively, leads to the 

complete decomposition of the complexes with the formation of a residue equal to the mass of 

gold in the compounds (46% for Me2Au(Sal=N–Cy) and 47% for Me2Au(Sal=N–Ph)).  
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Bessonov et al. [140] have described the behavior of dimethylgold(III) quinolinates upon 

heating in helium atmosphere; the mass loss for Me2Au(OQ) and Me2Au(SQ) was 35% and 

48%, respectively. The decomposition onset temperature of Me2Au(SQ) (150С) was 

demonstrated by DTA to be lower compared to Me2Au(ox) (220С). As a consequence, the 

replacement of oxygen donor atom by sulfur atoms leads to a decrease in the thermal stability of 

dimethylgold(III) quinolinates similar to dimethylgold(III) β-diketonates.  

Turgambaeva et al. [141] have studied the thermal behavior of dimethylgold(III) 

diethyldithiocarbamate under heating in inert atmosphere and have shown that vaporization 

proceeded in one step (97.9% mass loss at T=240°C). Two liquid dimethylgold(III) complexes 

with substituted dithiophosphinate of the general formula Me2AuS2PX2 (X=OMe and OEt) were 

shown to vaporize with partial decomposition, using TG analysis; the residual masses were 87% 

and 93% at 453K, respectively [142]. 

Mäkelä et al. [143] studied several gold(III) complexes of different classes, namely AuСl3, 

AuCl2S2CNEt2, Me2Au(MeNacac) (dimethyl(4-(methylimino)pent-2-en-2-olato)gold(III)), 

Me2Au(OAc) (dimethylgold(III)acetate), Me2AuS2CNEt2, by TGA in nitrogen atmosphere. It 

was shown that all four compounds decompose at the conditions of TG experiment, except 

Me2AuS2CNEt2, which shows a single step evaporation with a residual mass close to zero; the 

same result was published by Zharkova and Turgambaeva [118, 141]. In addition, 

Me2AuS2CNEt2 is solid at normal conditions with a low melting point (40–44°C) and transforms 

to liquid at the conditions of ALD experiment at 99°C which is an additional advantage for its 

application as an ALD precursor. 

 

3.2. Volatility of gold complexes with organic ligands 

One of the important properties of MOCVD precursors is their volatility, viz. their capability to 

transfer to gaseous phase without decomposition. The quantitative characteristic of volatility is 

the partial vapor pressure at a certain temperature. The temperature dependence of vapor 

pressure is described by the equation lgP = A – B/T, where A = ∆ST
о
/R and B = ∆НT

о
/R [144].  

Published work on the direct measurements of vapor pressure dependence on temperature of 

gold(I, III) complexes with organic ligands are rather sporadic. For Me2AuS2CNEt2 the saturated 

vapor pressure was found to be ~10
−3

–10
−1

 Torr within the temperature range of 50–90°C [141]. 

The equation lgP (Torr) = 11,7  0,3 – (4,61795)/T and thermodynamic parameters ∆НT
о
 = 

88,31,8 kJ/mol and ∆ST
о
 = 168,75,3 J/(molК) were obtained by means of the Knudsen 

effusion method with mass spectrometric recording of gas phase composition. 
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Griffiths et al. [145] have synthesized trimethylphosphinotrimethylgold(III) AuMe3PMe3 

which is liquid at room temperature and estimated the enthalpy of sublimation by isothermal 

thermogravimetry. The compound has a vapor pressure that follows Langmuir equation ln(p) = 

0.059T − 1.65, where p is the pressure in Pascals, and T is the temperature in Celsius [146]. 

Using Knudsen effusion method Semyannikov et al. [147] have studied the temperature 

dependence of vapor pressure of some dimethylgold(III) β-dikenonates with aromatic and 

aliphatic terminal ligands (Table 3). In the series of investigated complexes, Me2Au(acac) and 

Me2Au(thd) have the highest volatility. N,O-coordination in Me2Au(i-aсaс) causes a decrease in 

volatility compared to Me2Au(acac) with O,O-coordination, however Me2Au(acac) becomes 

more stable than Me2Au(i-aсaс) [147]. 

 

Table 3. 

 

The P(T) dependencies of other three dimethylgold(III) complexes (Fig. 25) with fluorinated 

β-diketonates were measured by the flow method (Table 4) [148, 149], however the thermal 

behavior of their vapor in the investigated temperature ranges was not described. These 

derivatives were used as precursors for MOCVD of gold films.  

 

Fig. 25.  

 

Table 4. 

 

Larson et al. [134] have shown that the introduction of fluorine-bearing substituents into the 

ligand improves the volatility of dimethylgold(III) β-diketonates: the saturated vapor pressure of 

Me2Au(acac) was measured at 24ºС to be 9 mTorr; the vapor pressure values of fluorinated 

complexes Me2Au(tfac) and Me2Au(hfac) at the same temperature were 40 and 400 mTorr, 

respectively. 

The fluorosubstituted [Me2Au(OOCCF3)]2 complex was shown to possess the best volatility 

among dimethylgold(III) carboxylates (Table 5) [138, 139], confirming the tendency for 

increased volatility of the complexes with fluorine-bearing ligands [134]. At the same time the 

substitution of methyl group by t-Bu one in the carboxylate ligand results in volatility 

deterioration [147]. [Me2Au(OBz)]2 has quite low vapor pressure because of its high molecular 

weight [139]. It is worth mentioning that dimethylgold(III) carboxylates with the exception of 

benzoate possess quite high vapor pressure despite the fact that they occur as dimmers in vapor 

phase. The values of sublimation enthalpy of [Me2Au(OAc)]2, [Me2Au(Piv)]2 and 
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[Me2Au(OOCCF3)]2 are very close to each other, whereas sublimation entropies are quite 

different (Table 5), suggesting that the lattice energies of these compounds are comparable and 

the entropy factor mainly contributes to the difference in their vapor pressure values.  

Me2Au(Sal=N–i–Pr) is the most volatile compound among N-substituted dimethylgold(III) 

salicylaldiminates (Fig. 26, Table 5) [117].  

 

Тable 5. 

 

Despite the bulky substituent at the nitrogen atom, the vapor pressure of Me2Au(Sal=N–i-Pr) 

is higher than that of Me2Au(Sal=N–Me) at the same temperature because the replacement of Me 

group by i-Pr leads to the weakening of intramolecular interactions and, consequently, to an 

increase of the volatility (Fig. 26). Me2Au(Sal=N–Ph) containing aromatic fragments is the less 

volatile complex in this class of compounds [117].  

Among dimethylgold(III) quinolinates, the complex Me2Au(OQ) (P = 10
–3

 Тоrr at 87С) 

has higher volatility than Me2Au(SQ) (P = 10
–3

 Torr at 114С) (Fig. 26) [140], while their 

sublimation enthalpies are very close (Table 5). The higher value of sublimation entropy of 

Me2Au(OQ) can be explained by the influence of oxygen and sulfur donor atoms on the 

molecular packing in Me2Au(OQ) and Me2Au(SQ) crystals. 

P(T) dependence (Fig. 26) of a number of dimethylgold(III) complexes with N,O,S-donor 

ligands reveals that volatility can be tuned in a wide range of pressures and temperatures by 

variation of ligands of different nature [117, 138-140, 147-149]. 

 

Fig. 26.  

 

Therefore, the main factors that affect the volatility of dimethylgold(III) complexes are 

owing to ligands having different electronic and steric effects and the entropy factor determining 

the degree of disordering of the system upon vaporization. Variation of ligands allows the vapor 

pressure to be changed over a wide range (10
–5

-10
–1

 Тоrr).  

 

3.3. Thermal decomposition of the vapors of gold complexes with organic ligands 

The works devoted to the investigation of gold complexes transformation on heated surfaces 

are also sporadic. Semyannikov et al. [112, 136] were studied temperature dependencies of the 

composition of gaseous phase during thermolysis of dimethylgold(III) β-diketonates by high-

temperature mass spectrometry in the “isolated molecule” approximation with the use of a CVD 

reactor combined with a mass spectrometer and equipped with a high-temperature molecular 
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beam source. The method allowed the gaseous phase composition to be registered in situ and the 

measurements to be carried out over a wide range of temperatures in different atmospheres 

(vaccum, oxygen, hydrogen and some other gas-reactants). Due to the very low-pressure 

operating conditions in a hot wall reactor, any conversions of the compound vapor took place on 

the reactor’s walls. The time between the moment a particle left the reactor and the moment it 

was ionized did not exceed a millisecond. Examination of mass spectrum changes at different 

temperatures allowed revealing the gaseous by-products formed during the thermal 

decomposition of the compound vapor. The suggested scheme of the thermolysis of 

dimethylgold(III) chelates is shown in Fig. 27 [112, 136]. The process starts when adsorption of 

the complex molecule onto the surface and the thermal activation accompanied by opening of the 

chelate cycle. The processes of intermolecular reorganization with the formation of free ligands, 

methyl-ligands and ligand radical will then take place.  

 

Fig. 27.  

 

The main stages of the above described processes can be both parallel and consecutive. The 

probability of one or another variant is determined by the nature of donor atom or the type of 

substituent in the ligand. Such gaseous products of thermolysis as methane and ethane form as a 

result of consecutive decoupling of alkyl substituents of gold(III) derivatives [112, 136]. 

According to the results described by Oglezneva et al. [150] Me2Au(acac) also decomposes in 

solution with the decoupling of the ligand and methyl groups, indicating the presence of ethane 

and free acetylacetone among the main decomposition products. The temperatures of 

decomposition onset and the main thermal decomposition products of dimethylgold(III) 

carboxylate vapors are summarized in Table 6 [117, 138, 139]. 

 

Table 6. 

 

Temperature dependence of the intensities of ion peaks of main gaseous products of thermal 

decomposition in the mass spectra of [Me2Au(OAc)]2 are given in Fig. 28. The presence of the 

free ligand in the by-products can be explained by the dehydrogenation of the complex molecule 

as a result of the intramolecular or intermolecular rearrangements. The peaks corresponding to 

gold-containing ions are absent in the mass spectra because the compound decomposes 

completely above 120С.  

 

Fig. 28. 
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Fig. 29 shows the mechanism of molecules decomposition on the surface as suggested based 

on the analysis of thermal dependence of [Me2Au(OAc)]2 gas phase composition.  

 

Fig. 29.  

 

The temperature of decomposition onset of [Me2Au(Piv)]2 vapor decreases to 60±5С. The 

main volatile products of its decomposition are ethane, carbon dioxide, pivalic acid and its tert-

butyl ester. The mechanism of this decomposition is similar to that of [Me2Au(OAc)]2. A 

distinctive feature of the process is the presence of carbon acid ester in by-products, which is not 

observed in the case of [Me2Au(OAc)]2. 

Thermal decomposition of Me2Au(Sal=N–Me) starts at 120±5С; the main volatile products 

are H–Sal=N–Me, MeSal=N–Me and EtSal=N–Me. Me2Au(Sal=N–i-Pr) decomposes at a lower 

temperature of 110±5С. A similar tendency of the decrease of thermal stability threshold of 

[Me2Au(Piv)]2 on introduction of more bulky substituents was observed in the case of 

dimethylgold carboxylates. The products of Me2Au(Sal=N–i-Pr) thermolysis are similar to those 

of Me2Au(Sal=N–Me): HSal=N–i-Pr), MeSal=N–i-Pr) and EtSal=N–i-Pr). An addition of 

oxygen has no impact on the decomposition onset temperatures and reaction pathways, but leads 

to the oxidation of gaseous products.  

The mechanisms of thermal decomposition of the vapors of dimethylgold(III) complexes 

with salicylaldimine are the same (Fig. 30) and involve the stage of opening of the chelate cycle 

of the adsorbed molecule followed by migration of methyl groups from the gold atom to the 

oxygen atom of salicylaldimine ligand with the formation of methyl- and ethyl-derivatives of the 

initial salicylaldimine. 

 

Fig. 30.  

 

The presence of free N-substituted salicylaldimine in the system points to a possible thermolysis 

pathway with splitting out of dimethylgold. In contrast to the case of dimethylgold(III) 

carboxylates, where most thermolysis by-products are clearly volatile light compounds, only 

bulky organic molecules which do not undergo further destruction with the temperature growth 

are recorded in the mass spectra of dimethylgold(III) salicylaldiminates. This fact suggests 

different mechanisms of film growth in CVD processes of these two classes of dimethylgold(III) 

derivatives.  



33 

 

Parkhomenko et al. [119] have determined temperature ranges and main gaseous products of 

decomposition of three dithiophosphate complexes of dimethylgold(III), viz. Me2AuS2P(OMe)2, 

Me2AuS2P(OEt)2, and Me2AuS2P(i-Bu)2 (Table 7).  

 

Table 7. 

 

Thermolysis of Me2AuS2P(OMe)2 and Me2AuS2P(OEt)2 vapors proceeds with the formation 

of methylated or protonated ligands, that are typical for dimethylgold(III) complexes [142]. Two 

decomposition paths can take place depending on the temperature. The scheme of thermal 

decomposition of Me2AuS2P(OMe)2 vapors on a heated surface is given in Fig. 31 as an 

example. 

 

Fig. 31.  

 

Thermal decomposition of Me2AuS2P(i-Bu)2 [119] can also proceed according to several 

different paths with the formation of protonated ligand as one of the gaseous products. It is worth 

mentioning that sulfur and phosphorous enter into the composition of volatile products of the 

decomposition and do not contaminate the growing coatings. Because the vapor phase 

composition changes depending on thermolysis temperature, the choice of regimes of MOCVD 

experiments can affect the composition and physico-chemical properties of gold coatings, as 

exemplified by XPS study of the composition of gold coatings deposited from Me2AuS2P(OMe)2 

and Me2AuS2P(OEt)2 [142].  

Me2AuS2CNEt2 vapors were shown by mass spectrometry [141] to start decomposing at 

21010
о
С and their decomposition follows three main pathways. Two pathways lead to the 

formation of elemental gold, saturated C2-C4 alkanes and protonated ligand or methylated 

ligand. The third decomposition pathway results in elemental gold and gaseous products of C2-

C3 alkylmercaptanes and MeSCNEt2. 

In summary, the analysis of the presented data shows that the type of the ligand, nature of 

substituents and reaction additives have a considerable impact on the mechanisms of 

decomposition of gold(I, III) complexes. On the first stage of thermolysis of all investigated 

compounds the opening of chelate cycle with the release of free, methylated or protonated 

ligands takes place. The stability threshold depends first of all on the type of terminal 

substituents in the ligand. Both bulky organic substituents and large quantity of carbon-

containing groups in gaseous by-products of complex vapors thermolysis can lead to the 

contamination of deposited gold coatings when using these compounds as precursors. The 
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knowledge of mechanisms of thermal decomposition of precursors and the effects of the reaction 

additives allows the researchers to control the processes of films growth and to govern their 

composition and properties.  

 

4. Applications of volatile compound of gold in CVD/ALD processes 

Gold metal is a highly effective corrosion-resistive material due to its high electrical and thermal 

conductivity. Thin films and nanomaterials of gold have found some wide range applications 

such as in optical devices [4, 6, 8], power sources [151], microelectronic devices [2-10] and so 

on. In the end of last century, Haruta et al. [152-154] have revealed that gold nanoparticles with 

diameters less than 10 nm, uniformly dispersed in metal oxides exhibit high catalytic activity in 

the reaction of CO oxidation at low temperature. Later it has been found that gold nanoparticles 

can be catalysts of many other processes used both in industry and for environmental protection; 

these include, complete and selective oxidation of hydrocarbons, oxidation of methanol to 

formaldehyde, oxidative decomposition of chloro- and fluorocarbon, water gas process and so 

on. Along with its catalytic activity, nanogold demonstrates unusual selectivity to hydrogenation 

of various substances (СО, СО2, alkenes etc.) [31, 148, 153, 154]; the catalytic activity of the 

catalyst depends directly on the size and distribution of nanoparticles [155-157]. Au is also used 

in electrical connectors, contacts, relays, wires, plasmon resonance, photonics and 

microelectromechanical systems (MEMS); conformal continuous films are required for 

application in [143].  

Deposition from gaseous phase is one of the methods, which allows controlling the 

parameters of fabricated nanomaterials [45]. Depending on the required characteristics of gold 

nanomaterial, the methods of CVD and ALD are used for deposition of gold both as 

nanoparticles [147, 154, 158, 159] and as thin films [4, 160, 161]. There are some differences 

between CVD and ALD processes. In the CVD process, the constant and simultaneous supply of 

the vapors of metal-containing precursors (or one precursor) takes place at medium or high 

deposition temperature in the region of a “kinetically limited regime”. At these conditions 

simultaneous heterogeneous reaction with the formation of different intermediate products can 

proceed. The rate of the films’ growth is determined by the pressure of the components in the 

reactor, deposition temperature, speed of carrier gas supply and is equal to tens of microns per 

hour. An excess of the gas-reactant relative to the concentration of metal precursor vapor 

determines the kinetics of the first-order reaction. The region of a “diffusion limited regime” at 

high temperatures is of little practical interest.  

ALD on the other hand is a layer-by-layer gas phase deposition technique [143]. In ALD 

process, sequential non-overlapping pulse injections of at least two gaseous components 



35 

 

separated by purging stages take place. The main characteristics of ALD process are relatively 

low deposition temperatures, self-limiting mechanism, presence of a temperature window, and 

low rate of layer deposition close to the thickness of one monolayer per one experimental cycle. 

In a number of cases, the thickness can be even less than that of monolayer per one experimental 

cycle, pointing to a strong influence of the substrate surface. A simplified mechanism represents 

a reaction on the substrate surface without formation of intermediate products. No linear 

dependence of deposition rate on the number of cycles is observed in the ALD process. As a 

rule, ALD is used for the deposition of conformal continuous metal layers in complex structures 

with high aspect ratios.  

Precursors for CVD and ALD processes meet some common requirements; these are 

volatility and thermal stability of the precursor; however, the two processes differ in their surface 

chemistry. A CVD precursor is activated by a heated surface with the formation of films via 

decomposition or reaction with a gas-reactant. A precursor has limited application in CVD 

processes if its evaporation and decomposition temperatures coincide. An ALD precursor should 

have high thermal stability and reactivity. An ALD precursor is thermally activated via 

chemisorption to a surface forming a self-limiting monolayer, which exists in the “ALD 

window” and is stable during the subsequent stages of the cycle until it reacts with the secondary 

precursor. The film growth here is due to the reaction with the secondary precursor. The «ALD 

window» is observed between the temperatures of evaporation and decomposition of the 

precursor.  

A number of gold(I) and gold(III) complexes have been used as CVD/ALD precursors for 

deposition of gold-containing films and nanoparticles (Fig. 32). Gold(III) complexes 

Me2Au(III)L (where L can be β-diketonates, carboxylates, thiocarbamates, salicylaldiminates, 

dialkyldithiophosphates, β-iminoketonates, β-thioketoiminates, 8-hydroxyquinolinates, 8-

mercaptoquinolinates, dialkylphosphinates) were considered as potential precursors more often 

than those of gold(I), however there are some examples of successful application of gold(I) 

compounds for the formation of gold films nanomaterials [62, 93, 162]. The main classes of 

promising CVD precursors are shown in Fig. 32. 

The commonly used CVD precursors are dimethylgold(III) β-diketonates and their 

derivatives [134, 163-167]. Some examples of gold precursors are given in Table 8. 

 

Fig. 32.  

 

Table 8. 
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Me2Au(acac) [147] was used for the formation of gold nanoparticles (<5 nm) with high 

dispersion on porous surfaces by the vapor infiltration technique. Au/α-Al2O3 systems exhibited 

high catalytic activity in CO oxidation reactions at 40
о
C [147]. Larson et al. [134] used 

Me2Au(acac), Me2Au(tfac) and Me2Au(hfac) as precursors for the deposition of high-quality 

gold films. A series of iminoketonate derivatives with N,O-coordination was also utilized in 

CVD processes [166]. [Me2AuOSiMe3]2 is stable at normal conditions and was therefore 

considered as a promising precursor as reported in several studies [166, 167]. Its evaporation 

temperature was no more than 40°С, indicating high vapor pressure at quite low temperatures; 

the content of gold in the deposited films was >95–97%. Uniform gold films were also obtained 

using MeAu(CNMe) precursor which decomposes at 200°С [62, 137]. Puddephatt et al. [62] 

have studied the dependence of film composition on the type of volatile precursor and the results 

are summarized in Table 9. 

Jansen et al. [169] have used MeAuP(OMe)2Me and MeAuP(OMe)2(t-Bu) as CVD 

precursors for the deposition of gold films and studied the kinetics of their decomposition during 

the deposition processes. The use of these precursors has enabled high growth rates to be 

realized at comparatively low temperatures. 

 

Table 9. 

 

UV- [170] or laser- [93, 170] assisted CVD processes used for the deposition of gold 

coatings allow to decrease the deposition temperature. For instance, in the case of Me3AuPR3 (R 

= Me, Et) and MeAuPMe3 the deposition temperature was decreased to room temperature [170]. 

Moreover, such additional activation has resulted in a decrease of the amount of impurities in 

gold deposited films (98% Au) [170].  

Baum et al. [93] have pointed out that the composition and properties of precursors will 

significantly influence the morphology and characteristics of the deposited gold films. Using 

CVD method, Bessonov and co-workes [138, 171] have carried out experiments to produce gold 

coatings from carboxylates and salicylaldiminates of gold(III). Continuous compact gold 

coatings were produced using [Me2Au(OAc)]2 and [Me2Au(Piv)]2 as precursors (Fig. 33, 1). 

 

Fig 33.  

 

At the same time films deposited from Me2Au(Sa=N–Me) and Me2Au(Sal=N–i-Pr) consisted 

of separate nanocrystallites and did not form a continuous structure as was observed in the 

case of dimethylgold(III) carboxylate precursors (Fig. 33, 2-3). This difference was explained 

https://cofounderslab.com/discuss/laser-assisted-chemical-vapor-deposition-la-cvd
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by the formation of bulk gaseous carbon-containing products during the thermolysis of 

dimethylgold(III) salicylaldiminates as confirmed by mass spectrometry data (see Chapter 2, 

Fig. 30). Those decomposition products prevented the formation of gold film with compact 

structure during its growth. However this peculiarity of Me2Au(Sal=N–i-Pr) was used by 

Bessonov et al. [117, 171] to form gold films on Si(100) and carbon nanomaterials. Gold 

nanoparticles (5-15 nm) were formed by pulse-CVD at 200
о
С (Fig. 34). It has been shown 

that the increase of deposition temperature leads to the increase in the amount of 

nanoparticles, but without a change in their size. 

 

Fig. 34.  

 

The influence of UV-radiation of excimer lamp placed under the substrate on the process of 

gold coating growth were studied by Parkhomenko and co-workers [172] using 

Me2Au(S2CNEt)2, Me2Au(thd), Me2Au(SQ), Me2Au(ОQ), [Me2Au(Piv)]2, [Me2Au(OAc)]2, 

Me2AuS2P(i-Bu)2, Me2AuS2P(O(i-Pr))2, Me2AuS2P(OEt)2, and Me2AuS2P(OMe)2 as volatile 

CVD precursors. It has been shown that the film morphology and structure are mainly 

determined by the precursor molecular structure; for instance, continuous gold films have been 

obtained from [Me2Au(OAc)]2 (image 1, Fig. 35), while Me2Au(ОQ) have been used for the 

deposition of Au nanoparticles (image 3, Fig. 35).  

 

Fig. 35.  

 

It has been shown that the UV-activation has led to the increase in the rate of coating 

growth. Due to additional energy of electromagnetic radiation and possible formation of ozone 

(3O2 → 2O3) during thermolysis the obtained films exhibited 3-5 fold increase in thickness. 

Besides, UV-activation caused the change of gold films growth mechanism, resulting in the 

change of the preferential crystallite orientation from (111) to (200). 

Later Parkhomenko et al. [173] have deposited gold nanoparticles and thin films onto the 

matrix of photonic crystals (180-400 nm SiO2 microspheres) using Me2Au(thd) and 

[Me2Au(OAc)]2 as precursors (Fig. 36). The subsequent etching of the samples in diluted 

hydrofluoric acid resulted in the formation of hollow gold nanoshells (Fig. 36, 3). 

 

Fig. 36.  
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Among gold(I) precursors, mainly perfluorinated carboxylates and t-Bu derivatives of short 

chain carboxylates are used in CVD processes. Since carboxylate ligands form weak bonds with 

gold(I), their thermal stability is usually improved by means of such ligands as tertiary 

phosphines [54], and the complexes with the common formula [Au(OOCR)(PR’3)] become 

applicable as CVD precursors [174]. It has been shown that the film quality depends on the 

deposition temperature and length of the perfluorinated chain (R). For instance, dense metallic 

layers were produced from [Au(OOCC3F7)(PEt3)] and [Au(OOCC7F15)(PMe3)] at deposition 

temperatures between 260 and 290◦C (p = 4 mbar) on Si(111), glass, and glass fiber substrates 

[54]. 

Gold guanidinate has also been used to cover fiber optics for the creation of plasmonic 

devices [175, 176]. Gold(I) tert-butyl-imino-2,2-dimethylpyrrolidinate was used as a precursor 

for the deposition of gold films (96 nm) with the resistivity of 5.58 mΩ·cm in the tube furnace 

reactor at the evaporator temperature of 130°С [84]. Thin films deposited onto substrates held at 

350°C were confirmed by P-XRD and XPS to be pure gold metal films consisted of densely 

packed particles less than 50 nm in diameter. Mandia et al. [10] have also used the same 

precursor for the deposition of thin gold films due to its advantages, which include thermal 

stability, absence of fluoro-containing ligands and Lewis bases. They have prepared gold layers 

with thickness of 30–65 nm on an intermediate Al2O3 layers with the thickness of 50-100 nm to 

investigate the combined effect of dielectric and metallic layers on the refractometric properties 

of optical fiber Bragg gratings. 

Griffiths et al. [85] have used another type of gold(I) precursors, viz. Au(HMDS)(NHC) and 

Au(HMDS)(PMe3), in the processes of self-seeded growth of high aspect ratio gold plates and 

wires on Si(100) substrates in a hot-walled CVD reactor. Au plate grown between 370 and 

460°C was shown to be governed by N-heterocyclic carbene (NHC) and phosphine ligands as 

transient surfactants forming as a result of thermal decomposition of two used precursors. 

Trimethylsilyl fragments of HMDS ligands of both precursors, in their turn, passivated the 

hydroxyl terminated substrate, leading to the island growth and directed decomposition of the 

precursor on the gold surface.  

Pallister et al. [177] studied the mechanism of initial chemisorption of AuMe3PMe3 on high 

surface area silica (HSAS) by C-13, P-31, and Si-29 NMR, which led to the formation of a 

number of surface species on HSAS; these are, gold(III) trimethylphosphine, reduced gold 

phosphine, methylated phosphoxides, and graphitic carbon. The overall coverage of AuMe3PMe3 

on HSAS was only about 10% at 100
o
C. Those processes have influenced the growth rate and 

purity of metal films prepared from that type of precursors. Compound AuMe3PMe3 was also 

used in CVD to produce gold nanoparticles with plasmonic properties on amine-terminated 
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surfaces for biosensing applications [38]. Basova et al. [27] have deposited Au nanoparticles 

using Me2Au(OAc) as a precursor to prepare organic-inorganic conductive hybrid materials 

based on liquid crystalline metal phthalocyanine AuNPs with enhanced electrical conductivity. 

Work devoted to the application of ALD processes for the deposition of gold is not so 

numerous. Griffiths et al. [145] have studied plasma-assisted ALD process using AuMe3PMe3; 

they have revealed that oxygen plasma and water have given pure Au thin films on silicon and 

borosilicate substrates with the growth rate of 0.5 Å/cycle at 120°С. At the same time dark violet 

films containing gold metal as well as impurity oxygen and phosphorous arising from fragments 

of the phosphine ligand are formed if only oxygen plasma was used. Oxygen plasma was shown 

to burn the precursor with the formation of both gold and phosphorous oxides. To avoid the 

formation of phosphorous impurities and to produce high quality gold films, water was used as a 

ternary reactant, providing the hydrolysis of phosphorous impurities with the formation of 

volatile phosphorous acid. The authors have identified AuMe3PMe3 as a promising precursor 

which is liquid at room temperature, due to its good volatility, tolerance to water vapor and 

oxygen under standard conditions.  

Using ALD with O3 Mäkelä et al. [143] prepared homogeneous, continuous, polycrystalline 

and highly conductive (4-16 μΩ·cm) thin Au films of cubic phase with low content of impurities 

at 120-200
o
C on Si(100) and glass substrates using Me2Au(S2CNEt2) as a precursor (Fig. 37). 

Self-limiting ALD growth was observed at 180°C with the rate of 0.9 Å/cycle.  

 

Fig. 37. 

 

The same group of researchers [76] has synthesized seven potential Au(I) compounds and 

checked their applicability in ALD processes. Consequently pure uniform visually smooth Au 

thin films were obtained from liquid Au(N(SiMe3)2)(PEt3) and BH3(NHMe2) on Si(100) and 

glass substrates. FESEM images have revealed thin particulate films (Fig. 38, 1), with cubic 

structure and were non-conductive. Thick films deposited at 160°С with 3000 or 4000 cycles 

were continuous (Fig. 38, 2) and conductive but not uniform. 

 

Fig. 38.  

 

In the last few years an interest in the application of bimetallic gold nanoparticles for 

modern technologies has advanced very rapidly. For instance, nanoporous AuPt thin films 

incorporated in graphene (AuPt@GR) exhibited excellent catalytic activity, sensitivity and 

selectivity due to its unique nanoporous structure and synergetic effect of AuPt nanoparticles and 
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GR. Such films were used as active layers of a binder-free electrochemical sensor toward 

epinephrine [35]. This AuPt@GR hybrid material was prepared via self-assembly of 

ultradispersed AuPt nanoparticles (~ 3 nm) inside graphene layers using CVD method.  

 

Summary 

In this review an outline and critical analysis is presented of literature concerning the 

chemistry of CVD/ALD of gold over the last 20 years together with a historical overview of 

synthetic chemistry of the main classes of gold complexes with organic ligands. The literature 

analysis has allowed us to establish a selection of criteria of volatile precursors and to 

demonstrate their possible application for the deposition of both gold thin films and 

nanoparticles. 

A comprehensive analysis of the available literature has shown that gold(III) volatile 

complexes were studied in greater details than those of gold(I) compounds. Moreover gold(III) 

complexes were shown to be important for the wider variety of coordinating ligands. Ilyde and 

isocyanide derivatives of gold(I) and gold(III) as well as gold(III) complexes with N,O- and 

O,O-donor ligands are the most promising precursors for both MOCVD and ALD processes due 

to the combination of their good volatility and high thermal stability. In some cases however, 

N,S-coordinated complexes can also be used as MOCVD and ALD precursors. Depending on the 

type of chelate center in the order (O, S) < (O, O) < (S, NH) < (O, NH) an increase in thermal 

stability was established using dimethylgold β-diketonates as an example. It is worth stating that 

the combination of donor atoms has stronger effect on the thermal stability of gold(III) 

complexes than the variation of end substituents in their ligands. Dimethylgold β-diketonate 

complexes with N,O-donor ligands exhibit the highest thermal stability. Among N,O-, O,O- and 

N,S-coordinated dialkylgold compounds, dimethylsubstituted gold(III) complexes are the most 

attractive precursors for CVD applications due to their highest thermal stability. It is known that 

dimethyl derivatives of gold complexes with organic ligands are more stable in crystalline phase 

than their diethyl analogues, whereas di-n-propyl and di-n-butyl derivatives are liquids at normal 

conditions. Further analysis of the literature shows that the most promising precursors for ALD 

processes are the complexes of gold(I) since they exhibit high thermal stability when subjected 

to long-term heating. 

As to the thermal behavior of gold compounds and decomposition of their vapors upon 

heating and under the influence of some other factors, there has been very scattered work 

devoted to the investigation of the mechanisms of gold compound vapor transformation nearby 

and on heated substrate surfaces during deposition. In most cases, the presented data are limited 
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by the description of the composition of main volatile products of thermolysis and the 

temperature ranges of decomposition.  

The possibility of deposition of nanoparticles or continuous uniform films is determined to a 

greater extent by the nature of the precursor, or more precisely, by the gaseous products of the 

thermal decomposition of precursor molecules which take place on the heated surface during the 

film growth. The presence of bulk organic fragments within such products leads to the possibility 

of contamination of the film by carbon products, which do not undergo further degradation at 

higher temperatures. In this case, and in contrast to volatile compounds with low carbon content, 

the decomposition products prevent the formation of a dense compact structure of the gold layer 

during its growth. This leads to the accumulation of carbon impurities and the growth of 

individual gold nanocrystallites, which do not form a continuous structure. In this case, CVD and 

ALD precursors differ in their surface chemistry: CVD precursors are activated by a heated 

surface to form a film by decomposition or reaction with a reactant gas, while ALD precursors 

are thermally activated by chemisorption to the surface forming a self-limiting monolayer that is 

stable during the next stages of the cycle until it reacts with the secondary precursor. 
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Figure captions 

Fig. 1. Structure of gold(I) β-diketonates. 

Fig. 2. Pyridine (1), benzothiazole (2) and benzoimidazole derivatives of gold chloride and 

complexes of (triphenylphosphine)gold with 1,2,3- and 1,2,4-triazole. 

Fig. 3. Scheme of preparing gold(I) tert-butyl-imino-2,2-dimethylpyrrolidinate. 

Fig. 4. Compounds Au(HMDS)(NHC) (1) and Au(HMDS)(PMe3) (2). 

Fig. 5. The reactions of methyllithium with halogenated derivatives of dimer ylides. 

Fig. 6. Diethylgold(III) bromide. 

Fig. 7. Azide and cyanate of dimethylgold(III). 

Fig. 8. Thio- and selenocyanate of dimethylgold(III). 

Fig. 9. Cyanides of dimethylgold(III). 

Fig. 10. Structure of dimethylgold(III) hydroxide. 

Fig. 11. Complexes of dimethylgold(III) with O- and S-donor ligands. 

Fig. 12. Structure of dimethylgold(III) carboxylates [Me2Au(OOCR)]2 with R = CF3 (1), t-Bu 

(2), Ph (3).  

Fig. 13. The transformation of β-diketonates stabilized by orto-nitrobenzene radicals  

under the action of triphenylphosphine. 

Fig. 14. Structure of Me2Au(ox) (1) and Me2Au(tox) (2). 

Fig. 15. Gold(III) complexes with trimethylsiloxy group. 

Fig. 16. Structures of Me2Au(Sal=NMe) (1), Me2Au(Sal=N(i-Pr)) (2), Me2Au(Sal=NCy) (3), 

and Me2Au(Sal=NPh) (4). 

Fig. 17. Dimethylgold(III) compounds stabilized by S atom. 

Fig. 18. Molecular structure of [Me2AuSCN]2. 

Fig. 19. Molecular structure of Me2AuS2P(i-Bu)2. 

Fig. 20. Dimer (1) and monomer (2) thiocomplexes of dimethylgold(III). 

Fig. 21. Complexes of diethylgold(III) with N,S-coordination. 

Fig. 22. Gold complexes with N,N-dimethylbenzylamine. 
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Fig. 23. TGA experiments of Au(HMDS)(NHC) (green) and Au(HMDS)(PMe3) (black) are 

shown as solid lines. Derivative curves are shown by dashed lines. Reprinted with permission 

from Ref. [85]. Copyright 2015 American Chemical Society. 

Fig. 24. TGA curves of Au compounds. Reprinted from Ref. [76] with permission from 

American Vacuum Society, Copyright 2017. 

Fig. 25. Dimethylgold(III) β-diketonates: Me2Au(ttfac) (1) (ttfac - 1-(2-thienyl)-4,4,4-trifluoro-

1,3-butanedionate), Me2Au(ftfac) (2) (ftfac - 1-(2-furanyl)-4,4,4-trifluoro-1,3-butanedionate), 

Me2Au(btfac) (3) (btfac - 1-phenyl-4,4,4-trifluoro-1,3-butanedionate). 

Fig. 26. P/T dependence for volatile complexes of dimethyigold(III) with organic ligands:  

1 – [Me2Au(OAc)]2; 2 – [Me2Au(Piv)]2; 3 – [Me2Au(OOCCF3)]2; 4 – [Me2Au(OBz)]2; 5 – 

Me2Au(Sal=N–Me); 6 – Me2Au(Sal=N–i-Pr); 7 – Me2Au(Sal=N–Cy); 8 – Me2Au(Sal=N–Ph); 9 

– Me2Au(OQ); 10 – Me2Au(SQ); 11 – Me2Au(bac); 12 – Me2Au(ttfac); 13 – Me2Au(btfac); 14 – 

Me2Au(i-acac); 15 –Me2Au(acac) [117, 138-140, 147-149]. 

Fig. 27. Scheme of the thermolysis of dimethylgold(III) chelate vapors [112, 136]. 

Fig. 28. Temperature dependence of the intensities of ion peaks of main gaseous products of 

thermal decomposition in the mass spectra of [Me2Au(OAc)]2: (a) – [Au2(OOCCH3)]
+
, (b) – 

[COCH2]
+
, (c) – [OOCCH3]

+
, (d) – [C2H6]

+ 
. Adapted by permission from Ref. [139] Springer 

Customer Service Centre GmbH, Nature Springer, Copyright 2008. 

Fig. 29. Scheme of the chemical transformation of [Me2Au(OAc)]2 vapors on a  

heated surface in vacuum [138, 139]. 

Fig. 30. Scheme of the chemical transformation of the vapors of dimethylgold(III) complexes 

with salicylaldimine on a heated surface in vacuum [117]. 

Fig. 31. Mechanism of thermal decomposition of Me2AuS2P(OMe)2. 

Fig. 32. Volatile gold complexes for CVD processes [93, 162].  

Fig 33. SEM images of gold coatings on Si(100) deposited using [Me2Au(OAc)]2 (1),  

Me2Au(Sal=N–Me) (2) and Me2Au(Sal=N–i-Pr) (3) as precursors. Adapted from Ref. [138] with 

permission from Elsevier, Copyright 2007. 

Fig. 34. SEM (1), AFM (2) and TEM (3) images of gold nanoparticles deposited by pulse-CVD 

on the surface of nanocarbon [171].  

Fig. 35. SEM images of gold films and nanoparticles deposited under similar conditions from 

different precursors: [Me2Au(OAc)]2 (1), Me2Au(Piv) (2), Me2Au(ОQ) (3), Me2Au(SQ) (4), 
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Me2Au(thd) (5), Me2Au(S2CNEt2) (6). Reprinted with permission from Ref. [172]. Copyright 

2012 John Wiley and Sons.  

Fig. 36. SEM images of gold nanoparticle (1) and thin films (2) deposited onto the matrix of 

photonic crystals as well as hollow gold nanoshells (3). Reprinted from Ref. [173] with 

permission from Elsevier, Copyright 2013. 

Fig. 37. FESEM images of Au films deposited with 0.5 s (1) and 2 s (2) 

Me2Au(S2CNEt2) pulses at 180°C. The O3 pulse was 1 s. Adapted with permission from Ref. 

[143]. Copyright (2017) American Chemical Society. 

Fig. 38. FESEM images of Au thin films (1) and thick films (2). Reprinted from Ref. [76] with 

permission from American Vacuum Society, Copyright 2017. 

 

 


