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Abstract 
 The utilization of Portland cement as a construction material is unsustainable 
due to the huge amount of CO2 emissions coupled with the high energy demand during 
its production. New innovations in low impact construction materials require a 
reduction in the use of Portland cement with alternative binders, preferably utilising 
industrial waste materials and aggregates made from recycled waste. Alkali activated 
cementitious materials (AACMs) shows potential benefits when used in place of 
Portland cement in the construction industry. However, market forces mitigating against 
the acceptance of AACMs are fomidable. This is partly because of the limited 
knowledge of the in-service life of AACM concrete, which is linked to the inadequate 
durability investigations available in literature. 
 This research project investigates the durability properties of AACM concrete 
by exposing it to deleterious substances that cause deterioration and damage to 
reinforced concrete structures. The durability properties of AACM concrete were 
investigated under long term exposure to chloride and CO2 environments which are the 
two main corrosion initiators in reinforced concrete structures. Four series of AACM 
concrete mixes were studied with a parallel OPC concrete mix used for the comparative 
analysis. Mix parameters investigated in the research included factors such as activator 
dilution and liquid/binder ratios which are given in relevant chapters. 
 Chapter 1 provides an Introduction to the thesis. Chapter 2 gives an overall 
Literaure Review and also provides information on the materials used in the research. A 
chapter specific literature review is given at the start of each chapter. The third chapter 
presents the investigation of the microsrtucture of AACM and OPC mortar mixes which 
shows that AACM mortar has less porosity than OPC mortar. However, a greater 
capillary pore volume was observed in AACM mortar than OPC mortar but the reverse 
was the case for gel pore volume. The fourth and fifth chapters investigate the 
physically bound, chemically bound and free chloride concentrations in both AACM 
and OPC concrete. The results show a lower degree of physically and chemically bound 
chlorides but a higher degree of free chloride in AACM concrete compared with OPC 
concrete. The free chloride/hydroxyl ion ratio which is an index for corrosion initiation 
in concrete is lower in AACM concrete than OPC concrete due to the higher pH of the 
former. The sixth chapter investigates the carbonation in AACM and control OPC 
concrete. The depth of carbonation is higher in AACM concrete than OPC concrete but 
the phenolpthlain test method has limitations for use in AACMs. Investigations on the 
pH of carbonation specimens gave a greater insight to carbonation in AACMs. The 
influence of mix design parameters of AACMs are reported in each chapter 3, 4, 5 and 6. 
The seventh chapter reports the monitoring of the corrosion activity of steel reinforcing 
bars embedded in AACM and OPC concrete until 860 days of cyclic exposure in a 5% 
NaCl solution and air. The corrosion potentials and current densities were higher in 
AACM concrete than OPC concrete under wet cycles, which is likely due to the 
insufficient oxygen concentration at the steel interface. The visual inspection of the 
reinforcing steel bars in AACM and OPC concrete to detect when corrosion begins will 
confirm the insufficient oxygen concentration at the steel interface. 
 Generally, AACM concrete shows better durability properties than OPC 
concrete except the carbonation aspect which requires further investigation. The 
likehood that the phenolpthalein indicator method which is a standard testing method 
for carbonation of OPC concrete might not be suitable for AACM concrete.  
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CHAPTER 1 
INTRODUCTION 

1.1 BACKGROUND 

 The use of alkali activated cementitious materials (AACM) in place of ordinary 

Portland cement (OPC) has recently been recognised to have great potential in 

construction applications. There is the need for a viable alternative to OPC cement 

because of the high carbon footprint generated during its production with a huge energy 

demand, which is not sustainable in the future. The carbon footprint is significant 

because of the large volume of OPC cement consumed worldwide, which is ranked 

second after the volume of water [1].  A staggering yearly estimate of 1.5 Gt of CO2 is 

emmitted into the atmosphere during the production of OPC cement worldwide [2]. To 

put this into perspective, for each tonne of cement produced an equivalent tonne of CO2 

is emitted into the atmosphere. This translates to the emission of 400 Kg of CO2 when 1 

m3 of concrete is produced [3]. In addition, cement industry is the most energy intensive 

of all manufacturing industries, which consumes between 12 - 15% of the total 

industrial energy use [4]. The electric energy consumption for the burning process 

during cement production is estimated to be 65 kWh/tonne while the thermal energy 

consumption for cement grinding is 2.72 GJ/tonne [4]. Clearly, a dire need for replacing 

OPC cement with a less carbon foot print and a less energy demanding construction 

material is imperative. 

 Until recently, the research effort has been placed in fundamental investigations 

on AACMs and their engineering properties with less emphasis on the service life and 

durability properties. A number of papers have been published on the filler effect of 

AACM materials resulting in a denser microstructure than OPC concrete, thus leading 

to higher mechanical strengh [5][6]. Similarly, the fire resisting potential of AACM 

makes it an attractive construction material in thermal and nuclear stations and in other 

facilities including buildings prone to fire outbreak [3]. Other potential commercial 

applications include repair materials, overlays for bridge decks and pavements, mining 

and turnelling applications, industrial floors, marine structures. 

 However, with the preliminary research findings suggesting numerous attractive 

attributes associated with the use of AACM as a construction material over OPC cement, 

RILEM TC 224-AAM [3] pointed out that the market forces resisting the acceptance of 

AACM are formidable. Some of the reasons given are the 150 years track record of 

OPC cement while rapid advances in AACM began in the 70’s with limited knowledge 
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of its durability and in-service life. The limited knowledge of the in-service life of 

AACM is linked to the inadequate laboratory durability investigations. Secondly, there 

are no existing standards which can serve as a user manual for consulting engineers and 

asset owners regarding liability and risk involved when using the product [3] although 

more recently PAS 8820: 2016 [7] has been published. AACM mix design and test 

methods are currently dependent on the standards used for OPC cement and its 

supplementary materials, which are not always appropriate for AACMs [3]. The 

research investigation carried out on the durability properties of AACM concrete in this 

study will address some of these concerns.  

1.2 AIM OF THE RESEARCH 

 The research investigation focuses of the durability properties of an alkali 

activated cementitious concrete. It has been performed by subjecting AACM and 

parallel OPC concrete to long-term chloride and carbonation exposure, which are the 

two main corrosion initiators in reinforced concrete. The microstructure and corrosion 

behaviour of AACM concrete is also investigated and evaluated relative to OPC 

concrete. The durability and microscructure investigations have been carried out for 

optimum AACM concrete mixes which were developed during the first phase of the 

research. The investigation on the durability properties of AACMs will provide useful 

information for potential applications in deep water constructions. 

1.3 SCOPE OF THE CURRENT INVESTIGATION 

• Carry out a critical state of the art review on AACMs considering different types 

of AACM binders and alkaline activators. 

• Investigate the microstructure of AACM and control OPC mortar through the 

classification of their pore sizes and distribution, pore system parameters and the 

relationship between strength and porosity. 

• Investigate the physically and chemically bound chloride concentrations present 

in AACM and control OPC concrete when exposed in a 5% NaCl solution over 

long exposure periods up to 270 days. 

• Investigate the free chloride concentrations and pH of AACM and control OPC 

concrete  

• Establish the relationships between the free Cl-/OH- for corrosion activity and 

free Cl-/ bound Cl- for chloride binding capacity. 

• Investigate the rate and depth of carbonation and also the carbonation and drying 

shrinkage of AACM and control OPC concrete.  
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• Investigate the pH of the carbonated and non carbornated zones in AACM 

concrete and determine the suitability of the phenolpthalien test for monitoring 

carbonation depth of AACMs. 

• Investigate the corrosion behaviour of reinforcing steel embedded in AACM and 

control OPC concrete when exposed to long-term bulk chloride diffusion and an 

accelerated corrosion environment. Determine the capillary absorption effect of 

AACM and control OPC concrete by using the sorptivity technique and relate it 

to durability. 

1.4 THESIS LAYOUT 

 The thesis reports the durability properties of AACM materials under the 

influence of two main corrosion initiators; chloride and carbon dioxide. The 

microstructure of AACM concrete and capillary absorption tendencies which directly 

relate to the transportation mechanism of the corrosion initiators within the matrix of the 

concrete has been investigated. The thesis is divided into eight chapters which includes 

this introductory chapter 1. 

 Chapter 2 presents a detailed critical literature review of AACM binders 

containing high and low calcium precursors, various alkaline activators normally used 

as a liquid content in the production of AACM concrete. The units of measurements and 

nomenclature of concrete materials reported by various researchers is also reviewed.  

 Chapter 3 presents the details of concrete and mortar mixes. Specimen 

preparation and test methods used during each investigation are presented seperately in 

each chapter. The microstructure of AACM mortar mixes M2 to M5 and the control OPC 

mortar mix M6 are investigated. The AACM mortar mixes M2 to M5 incorporated 

varying levels of activator dilution of 2.15%, 4.25%, 8.12% and 12.0% respectively. 

The corresponding AACM and OPC concrete mixes S2 to S6 with the same levels of 

activator dilution were also used for other investigations reported in subsequent chapters. 

The microstructure of the AACM and OPC mortar was investigated by using the 

mercury intrusion porosimetry (MIP) technique. The experimental results were analysed 

to determine the pore size and distribution parameters such as the gel and capillary pore 

volume, unimodal and bimodal pore distribution, intrudable porosity, critical and 

threshold pore diameters. The strength-porosity relationship of AACM mortar is also 

presented. The results show higher capillary pore volume in AACM concrete than the 

control OPC concrete and the reverse for gel pore volume. The total porosity (i.e 

summation of capillary and gel pore volumes) is lesser in AACM concrete than OPC 



25 
 

concrete. A bimodal pore size distribution is observed in AACM concrete while OPC 

concrete has a unimodal pore size distribution. 

 Chapter 4 investigates the physically and chemically bound chlorides in AACM 

and OPC concrete mixes S2 to S6. A total of 50 slabs (250 mm X 250 mm X 75 mm) of 

AACM and OPC concrete specimens (10 slabs per each mix) were cast and cured for 28 

days before immersing in 5% NaCl solution. The physically and chemically bound 

chloride tests were performed on 2 slabs per each concrete mix at 55, 90, 120, 180 and 

270 days of exposure in the 5% NaCl solution. Chemical analysis were performed on 

the concrete powder collected at 8, 15, 20, 25, 35, 50 and 65 mm depths from the 

concrete surface. The powder samples were dissolved in water and acid solvents to 

extract the water and acid soluble chloride concentrations. Regression analysis were 

performed on the water and acid soluble chloride concentrations by applying Fick's 

second law of diffusion to determine the chloride diffusion profiles, rate of chloride 

diffusion and the surface chloride concentrations. The relationship between the porosity 

which was determined in chapter 3 and the chloride diffusion parameters is also 

determined. 

 Chapter 5 investigates the free chloride and pH of the pore solution that was 

obtained from the cores of AACM and OPC concrete mixes S2 to S6. The coring of the 

slabs of AACM and OPC concrete mixes S2 to S6 was performed at 180, 270 and 540 

days exposure to 5% NaCl solution. An average of four cores (50 mm diameter X 60 

mm depth) were drilled per mix at each test age making a total of 20 cores per each test 

age. Each concrete core was sliced into 20 mm thick discs (i.e. 0 - 20 mm is labelled 1, 

20 - 40 mm is labelled 2 and 40 - 60 mm is labelled 3). The discs with the common 

number from the 4 cores for each mix (e.g. label 1 disc for mix S2) were combined and 

placed inside a pore fluid extractor device. The pore fluid expression device with the 

concrete discs inside it was placed within the platens of a compression testing machine. 

The compression machine exerted pressure on the pore fluid extractor device which 

released the pore solution from the concrete matrix. The free chloride concentration and 

pH of the pore solution from AACM and control OPC concrete were determined. 

Regression analysis was performed on the free chloride concentration profiles by 

applying Fick's second law of diffusion to determine the chloride diffusion parameters. 

The chloride binding capacity between the free and bound chlorides (from chapter 4) 

was investigated. The free chloride/hydroxyl ion ratios for AACM and OPC concrete 

mixes S2 to S6 were also determined and related to the corrosion investigation reported 

in chapter 7. 
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 Chapter 6 investigates the carbonation of AACM and control OPC concrete 

mixes S2 to S6 by the accelerated carbonation method. A total of 30 prisms (300 mm X 

75 mm X 75 mm) per mix were produced to determine the rate of carbonation (10 

prisms), carbonation shrinkage (10 prisms) and drying shrinkage (10 prisms) while 15 

cylindrical specimens (50 mm diameter X 60 mm depth) were produced to determine 

the pH value at the carbonated and non carbonated zones in AACM and OPC concrete 

mixes S2 to S6. All the AACM and OPC concrete mixes S2 to S6 were cured in water (20 

± 20C) for 27 days after demoulding (1 day). The specimens were placed inside an 

accelerated carbonation chamber which was programmed to provide 5% CO2 

concentration at 20 ± 20C and 50% - 70% R.H for 360 days. The drying shrinkage 

control specimens were not placed in the carbonation chamber; instead they were cured 

in the laboratory air (20 ± 20C and 65% R.H) after the 27 days water curing. The 

carbonation depth was determined by the phenolpthalein test method. The rate of 

carbonation was, however, determined by applying regression analysis on the 

experimental data of the carbonation depth. The reading taken for both carbonation and 

drying shrinkage at regular intervals throughout the curing periods were analysed. The 

pH at the carbonated and uncarbonated zones was determined from the cylindrical 

specimens. The results show that the effect of carbonation is greater in AACM concrete 

than OPC concrete, however, the pH values suggest otherwise and, therefore, the 

phenolpthalein indicator method might not be appropriate for determing the depth of 

carbonation in AACM concrete. 

 Chapter 7 investigates the corrosion behaviour of AACM and OPC concrete 

mixes S2 to S6. A total of 10 reinforced concrete slabs (250 mm X 250 mm X 75 mm), 

each having 3 bars of 8 mm diameter steel reinforcement embedded in it, were produced 

for AACM and OPC concrete mixes S2 to S6 (i.e. 2 slabs per mix). Each concrete mix S2 

to S6 was grouped into two seperate batches "a" or "b". Each batch was exposed to bulk 

chloride diffusion, alternative climate chamber, laboratory air and wet/dry cycles. The 

exposure period was 860 days. The steel potential difference and corrosion current 

densities were monitored at regular intervals. At 860 days age, cores were drilled on 

each specimen to investigate free chloride concentration and pH of the pore solution 

near the steel, similar to chapter 5. The results presented include the corrosion potential, 

corrosion current density and the free chloride/hydroxyl ratio. AACM and OPC 

concrete show no active corrosion activity even at the higher threshold value of 0.61 for 

free chloride/hydroxyl ratio. 
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 Chapter 8 provides the overall conclusions from the study and gives 

recommendations for further research. 
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CHAPTER 2 
GENERAL LITERATURE REVIEW 

2.0 INTRODUCTION  

 This chapter presents the review of materials used in the prodution of AACM 

concrete and mortars. The unit of measurements and nomenclature used for the 

materials is also reviewed. However, the details of concrete and mortar mixes, specimen 

preparation and test methods are presented seperately in each chapter. 

 The production of Portland cement worldwide was estimated to be 2.9 billion 

tonnes in 2008, 3.6 billion tonnes in 2012, 4 billion tonne in 2013 and 4.3 billion tonnes 

in 2014 [8]; this makes Portland cement to be the second highest volume of commodity 

produced beside water [1]. Environmental challenges associated with such enormous 

production are quite significant. Its carbon footprint is topmost amongst these 

challenges with 5 to 8% of the total CO2 emitted to the atmosphere being a result of CO2 

generated during the production of Portland cement [9].  

 The use of ordinary Portland cement as binder provides great challenges to the 

environment and makes its use unsustainable in the future. The European commission 

[10], proposed a technological roadmap for the possible reduction of CO2 emissions in 

cement industry by 18% by 2050. To achieve this, the use of industrial alkalis with 

industrial pozzolanic materials offers a promising alternative to cement and is an 

important area of current research. New innovations in low impact construction 

materials require a reduction in the use of Portland cement with alternative binders, 

preferably utilising industrial waste materials and aggregates made from recycled waste. 

 Alkali activated concrete which is classified under geopolymer concrete is a 

relatively new technology with little understanding of its durability characteristics over 

a long period of time [3][11]. One reason for limited field application of geopolymer 

concrete is because of limited knowledge of its structural behaviour [12] when subjected 

to prolonged exposure to corrosion initiators such as chloride ion and carbonation. The 

importance of structural stability cannot be over emphasized since the primary aim of 

design is for a structure to perform optimally during its design lifespan [13]. 

Environmental factors contributing to structural defects or collapse could be attributed 

to the rate at which reinforcement steel corrodes under the prolonged influence of 

chloride; carbonation and the matrix deteriorates with sulphate attack. Millions of 

pounds (an estimate of £550m) [14] per year have been lost in repairs and structural 
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failures due to this corrosion mechanism in the UK [15]. The structural integrity of 

alkali activated concrete under these elements will be critically examined in this project. 

2.1 ALKALI ACTIVATED CEMENTITIUOS MATERIALS (AACMs) 

 The production of an alkali activated cementitious material (AACM) comprises 

of an alumina-silica containing solid precursor such as fly ash, ground granulated blast 

furnace slag, silica fume and natural pozzolans and a suitable alkali activator (alkali 

cations of hydroxides, silicates, carbonates and sulphates) [3]. The first patent on 

AACM was by Kuhl [16] in 1908 which comprises of slag activated by alkalis of 

sulphate and carbonates. The AACM material was further developed by Purdon in 1940 

and the results were published in scientific journals covering 30 different types of blast 

furnace slags activated by sodium hydroxide and calcium hydroxide [3]. The results 

showed that the compressive strength and heat evolution achieved were comparable to 

OPC concrete and a lower solubility of binder phase [17][18]. In the 1980s, cement 

shortage was experienced in former Soviet Union and China which led to the use of 

AACM as an alternative binder to OPC. Much work was carried out by Glukhovsky in 

the former Soviet Union [3]. Similarly, many patents on AACM are accredited to 

Davidovits in France, which were formed by the chemical reaction between alumino-

silicate oxides and alkali polysilicates to yield polymeric Si-O-Al bonds [19] similar in 

composition to natural zeolites [20][21].  

Unlike ordinary Portland cement, the setting mechanism of AACM is by 

geopolymerization which involves the dissolution of silica and alumina in a pozzolanic 

compound of geopolymer precursor species resulting in the formation of hydrated 

calcium silicates and aluminates (C-A-S-H) [22][23] as well as regeneration of caustic 

alkali solution [24]. The performance level of different solid precursors and alkaline 

activators reported in literature is presented in Table 2.1 [3]. The solid material formed 

from the AACM is comparable in mechanical and durability properties to hardened 

Portland cement [3]. 
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Table 2. 1: Performance level of combining different solid precursors with alkaline activators [3] 

Binder  Alkaline activators 

 MOH M2O.rSiO2 M2CO3 M2SO4 Other 

Blast furnace slag  Acceptable Desirable Good Acceptable - 

Fly ash  Desirable Desirable Poor (acceptable with 
cement/clinker 

addition) 

Acceptable (with 
cement/clinker addition) 

Acceptable 
(with NaAlO2) 

Calcined clay  Acceptable Desirable Poor Acceptable (with 
cement/clinker addition) 

- 

Natural pozzolans 
and volcanic ashes 

 Acceptable/Desirable Desirable - - - 

Framework 
aluminosilicates 

 Acceptable Acceptable Acceptable (with 
cement/clinker 

addition) 

Acceptable (with 
cement/clinker addition) 

 

Synthetic glassy 
precursors 

 Acceptable/Desirable (depending 
on glass composition) 

Desirable - - - 

Steel slag  - Desirable - - - 

Phosphorus slag  - Desirable - - - 

Ferronickel slag  - Desirable - - - 

Copper slag  - Acceptable (grinding of slag is 
problematic) 

- - - 

Red mud  - Acceptable (better with slag addition) - - - 

M is the cation of the alkali metal and r is the modulus. 
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Desirable: signifies that high compressive strength and durability of concrete can be 

achieved by using the activator. Good: depicts slightly lower compressive strength than 

the optimal activator but good results can still be achievable. Acceptable: depicts 

drawbacks in strength, durability and workability. Poor: strength development is 

insufficient for most field application.  

2.2 AACM BINDERS 

Alkali activated binders are broadly classified as calcium rich precursors and 

low calcium precursors [3]. Fly ash class C and F are a good example representing high 

and low calcium precursors respectively. Other examples are ground granulated blast 

furnace slag (GGBS), silica fume, rice husk ash and metakaolin. These cementitious 

materials are normally incorporated into OPC concrete in varying percentages to 

achieve desirable properties such as high strength, improve workability, reduced 

bleeding and permeability amongst other properties. Neville [25] pointed out that the 

reason for these materials being used as supplementary or partial replacement to 

Portland cement was because cement was considered the best binder until fairly recently 

when AACM binders were used independently to produce concrete without the 

inclusion of OPC cement. Preliminary results from literature show that concrete 

produced from AACM binders possesses comparable mechanical strength and 

durability properties to OPC concrete [3][6][26]. The durability properties of concrete 

produced from AACM binder is investigated in this research project in parallel with 

control concrete produced from Portland cement. 

2.2.1 High calcium AACM Binders  

2.2.1.1 Ground granulated blast furnace slag (GGBS) 

 GGBS is a latent hydraulic binder which sets and hardens slowly when in 

contact with water or alkali activator unlike silica fume and class F fly ash which only 

sets and hardens when in contact with an alkali activator such as hydrating OPC. This is 

because of the high calcium content (about 45%) in ggbs [22]. The reaction process of 

AACMs based on ggbs involves dissolution of the glassy precursor resulting in the 

growth of initial solid phase, mechanical binding occurs in the phase formed, this is 

followed by the dynamic chemical equilibrium due to the ongoing reaction and lastly, 

the diffusion of reactive species from the curing medium [3]. The structure and 

composition of ggbs based system is strongly dependent on the type of activator used. 

Sodium hydroxide activator was suggested to produce a more structured 

geopolymerisation product with higher Ca/Si ratio than sodium silicate activator 
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[27][28]. The reason suggested was the availablity of silicate species in the pore 

solution of silicate activator based system [3] which produces lower Ca/Si ratio.  

The main geopolymerisation products formed by ggbs based system are the 

aluminium substituted C-A-S-H type and the disordered tobermorit type C-S-H type 

structures [29][30]. This is followed by a secondary reaction which produces AFm type 

phase when sodium hydroxide activator is used [28][31], Si containing AFm phase 

when sodium silicate activator is used [32], hydrotalcite when ggbs containing high 

MgO content is used [33] and zeolite such as gismondine and garronite when ggbs 

containing high Al2O3 content is used [34]. The chemistry controlling the kinetics and 

equilibria of the secondary phase is not fully understood [3].  

The performance of ggbs based systems is based on the type and concentration 

of activator used [3]. These activators include alkali hydroxides (NaOH, Ca(OH)2, 

KOH), alkali silicate salts (Na2O.rSiO2, K2O.rSiO2), strong acid salts (Na2SO4, 

CaSO4.2H2O) and weak salts (Na2CO3, K2CO3, Na2S, K2S) [35]. In addition, all caustic 

alkalis whose anions react with Ca2+ component from ggbs to produce lower solubility 

than Ca(OH)2 can act as activator [36]. The calcium rich content in the ggbs based 

system is produced during the initial reaction of anionic component of the activator with 

Ca2+ dissolved from ggbs binder [3]. The sodium hydroxide and sodium silicate are the 

commonly used activators for ggbs based systems because they produce high pore 

solution pH in its matrix. The pore solution pH of ggbs based system is slightly higher 

when activated with sodium hydroxide than sodium silicate but silicate activated system 

develops higher mechanical strength than hydroxide activated systems [37][38]. This is 

because of the additional supply of silicate species in silicate activator that reacts with 

Ca2+ dissolved from ggbs binder to form dense C-A-S-H products [27]. 

The dense microstructure of ggbs mortar made with OPC reduces water 

permeability up to a 100 times less than OPC mortar, particularly in resisting the 

penetration of chloride [39]. Other advantage observed in ggbs based OPC concrete 

systems is the high resistance to sulphate attack, for example Hooton and Emery [40] 

reported that supplementary cementitious materials containing 50% ggbs by mass with 

Portland cement (Type 1) produce high resistance to sulphate attack similar to sulphate 

resisting (Type 5) cement. The low permeability of ggbs based systems provides 

effective control over alkali-silica reaction because of the reduced mobility of alkali in 

the concrete matrix [25]. In the case of carbonation, no pore blocking formation of 

calcium carbonate was observed in ggbs based concrete because of the lower amount of 
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calcium hydroxide in its pore solution [25]. However, the tight pore structure reduces 

the depth of carbonation in ggbs based concrete [39].  

2.2.1.2 ASTM class C fly ash 

Class C fly ashes are artificial pozzolans produced from the combustion of 

younger lignite or subbituminous coal in large power plants [25]. The lime content in 

class C fly ash ranges from 15% to 30%. The high lime content in class C fly ash makes 

it a self-cementing binder similar to ggbs which sets and hardens when it reacts with 

water without necessarily using an alkali activator [41]. The lime will react with the 

silica and alumina content of the ash in the presence of water to produce 

geopolymerisation products. When incorporated as a supplementary cementitious 

material in OPC concrete, the additional lime content from the hydration products in 

OPC cement will dissolve the silica and alumina compound of class C fly ash rapidly 

[25]. This reaction of class C fly ash accounts for the rapid strength development of 

class C fly ash based systems. 

The reaction mechanism in converting fly ash to a monolithic alkali activated 

gel is complex because of the variability of the material [3]. Variation in the properties 

of fly ash often occurs from one power station to the other. The non-uniformity in the 

coal used can also result in fly ash with varying properties from the same power station 

[25]. This is aided by the inhomogeneous mix of aluminosilicate and silica glasses and a 

small amount of crystalline materials such as quartz, hematite, magnetite and mullite 

present in fly ash [42]. Ferna´ndez and Palomo [43] suggested an optimum binding 

properties for fly ash content as less than 5% unburnt materials, less than 10% of Fe2O3, 

low CaO content, reactive silica should be between 40% -50%, particle size lesser than 

45µm should be between 80% - 90% and the presence of high vitreous phase. 

The beneficial influence of fly ash in OPC concrete is observed in the reduction 

of water content and increased workability [25]. A water reduction of 5% to 15% using 

fly ash based system compared to OPC based system is achieved for the same 

workability. These values increase as the water/cement ratio increases [44]. Other 

beneficial influence of fly ash on OPC concrete include cohesiveness which is an 

essential property for pumping, slipforming and finishing operation [25]. The fineness 

of the particle sizes of fly ash has been identified as the primary factor responsible for 

the desirable properties exhibited by fresh fly ash concrete [25][3]. 
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2.2.2 Low calcium AACM Binders 

2.2.2.1 ASTM class F fly ash 

 Class F fly ashes are artificial pozzolans produced from the combustion of older 

anthracite and bituminous coal in large power plants [25]. The lime content is less than 

10% which is lower than the lime content in class C fly ash [26]. Thus, an alkali 

medium (e.g. an alkali activator, free lime from hydrating OPC cement) is required for 

class F fly ash to set and harden unlike class C fly ash which can set and harden when 

mixed with water only.  

The rate of pozzolanic reaction of class F fly ash is slow when incorporated as 

supplementary cementitious material (in OPC) compared with when activated by an 

alkali solution. The pozzolanic reaction can be delayed when used as supplementary 

cementitious material for up to one week or more after mixing [25]. Fraay et al. [25] 

observed as much as 50% unreacted fly ash in OPC concrete after one year of mixing. 

The reason is the high alkalinity required to activate class F fly ash [45]. The pH of the 

pore solution should be at least 13.2 which requires a certain degree of cement 

hydration coupled with precipitation of the cement hydrate on the surface of class F fly 

ash, thus acting as a nuclei [25]. This distinctive behaviour is beneficial in the reduced 

evolution of heat [25].   

Class F fly ash is deficient in calcium content (< 10%) [26] which accounts for 

the slow pozzolanic reaction but has sufficient aluminate content (< 35%) which is 

critical to the hardening process [26]. The aluminate content is believed to chemically 

trigger an irreversible hardening [46]. The author [46] suggested that dissolution of 

Al2O3 by an alkali activator controls the stoichiometry of the class F fly ash based 

system. Rapid strength development of about 80% is achieved within 24 hrs for high 

alumina cement after the initial setting [25]. Class F fly ash displays slow setting due to 

the high alkalinity demand but a rapid hardening process after the initial setting begins. 

This phase reaction is dependent on the temperature, pH of pore solution, Si/Al ratio 

and alkali concentration [46]. 

2.2.2.2 Silica Fume (SF) 

Silica fume SF is also an artificial pozzolanic material which is produced from 

the oxidation of silicon dioxide gas when silicon metal or ferosilicon alloy from high 

purity quartz and coal is heated in a submerged-arc electric furnace [25][47]. The 

oxidized silicon dioxide gas condenses to form an extremely fine spherical particle in an 

amorphous phase [25]. The high reactivity of silica fume is as a result of its amorphous 
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form which contains high content of reactive silica (≥ 85%) [47]. The fast rate of 

pozzolanic reaction between the amorphous silica and Ca(OH)2 from cement hydration 

product or alkali activator solution results in early strength development. Silica fume 

dissolves in Ca(OH)2 or alkali activator within minutes [48]. In addition, nucleation sites 

are provided by the extreme fineness of SF particles for Ca(OH)2 [25] or alkali activator. 

The beneficial effects of using silica fume in OPC concrete include improved 

cohesion in the mix and reduced bleeding which enhance pumping, slipforming and 

finishing operation [25]. Other important property is the particle packing effect between 

cement grains and inter-transitional zones (ITZ) between the cement grains and 

aggregates. The particle packing is achieved due to the extreme fineness of the particle 

size which is 100 times smaller than the OPC grain [25]. The pore spaces between the 

inter-transitional zones (ITZ) provide the weakest link in concrete, thus the particle 

packing effect of silica fume close to the aggregate surface will improve the strength 

properties of concrete considerably [49]. The particle packing effect also improves the 

microstructure of silica fume concrete by possessing fewer pores for the ingress of 

deleterious substances like chloride, carbon dioxide and sulphate [50]. 

2.2.2.3 Rice husk ash (RHA) 

 Rice husk ash RHA is a natural pozzolan which is produced by slow incineration 

of rice husk at a temperature of 5000C to 7000C in an industrial furnace for few minutes 

until the carbon content is below 5% [51][25]. A high amorphous form of RHA is 

achieved by not exceeding 8000C during the burning of the rice husk. Rice husk 

contains cellulose (C5H10O5), lignin (C7H10O3), hemicellulose, SiO2 and holocellulose 

[52]. Similar to silica fume, RHA has high silica content between 87% to 97% 

depending on the source of rice husk and the efficiency of the combustion process 

[52][51]. It has a porous structure with specific surface as high as 50,000 m2/Kg when 

measured by nitrogen absorption [25].  

 The beneficial influence of RHA in OPC concrete includes early strength 

development at 1 to 3 days [53]. There is reduction in the heat of hydration which helps 

in preventing drying shrinkage, thus facilitating the durability of the concrete [25]. The 

permeability of concrete containing RHA is reduced by particle packing effect similar to 

silica fume [53]. This concrete property will have positive impact on the resistance to 

deleterious substances. 
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2.2.2.4 Metakaolin 

Metakaolin MK is a natural pozzolanic material produced from dehydroxylated 

product of calcinated kaolin clay by applying temperature of 5000C to 8000C [3][26]. 

Kaolin is a clay mineral containing layered tetrahedral silicon atom that is connected to 

octahedral aluminium atom via oxygen [26]. The calcination temperature is just high 

enough to remove the bound water from the clay structure but not so high as to lead to 

the formation of mullite [54][55]. The calcination temperature has been identified to be 

the dominant factor in determining the reactivity of MK with alkaline solution [56][57]. 

Puertas et al [58] suggested that the application of temperature above 5500C will alter 

the hydroxyl ions that are strongly bonded to the aluminium framework leading to an 

ordered system with increased pozzolanic reactivity with alkali solution. 

MK has been identified as a key component in cementitious blends particularly 

with fly ash and various slags because it provides supplementary alumina species to the 

reaction process [59][60][61]. The beneficial influence of incorporating MK in concrete 

is the increased thermal resistance and control over alkali-aggregate reaction. 

2.3 ALKALINE ACTIVATORS 

Alkaline activators are made up of alkali metals of hydroxides (NaOH, Ca(OH)2, 

KOH), silicate salts (Na2O.rSiO2, K2O.rSiO2), strong acid salts (Na2SO4, CaSO4.2H2O) 

and weak salts (Na2CO3, K2CO3, Na2S, K2S) [35]. These activators when mixed with 

AACM binders prompt the precipitation and crystallization of the amorphous 

aluminosilicate species present in the mix [26] to form a hardened concrete. This 

process involves the dissolution of the solid AACM particles by releasing monomeric 

alumina and silica into the solution [62]. The dissolved monomers of alumina and silica 

in concentrated solutions lead to the formation of gel as the oligomers in the aqueous 

solution [62]. The gel formed grows into a well-crystallized structure [26]. The reaction 

process between the alkaline activator and AACM binders is termed geopolymerization.  

A list of alkaline activators together with their use is shown in Table 2.1. 

2.3.1 Sodium and Potassium Silicates (Na2O.rSiO2, K2O.rSiO2) 

 Sodium and potassium silicates is a semi viscous liquid which is classified under 

caustic alkalis [63]. It is produced by blending sand (SiO2) with sodium or potassium 

carbonate (Na2CO3, K2CO3) at a temperature of 1100 - 12000C [64]. The resulting 

product (glass) is dissolved with high pressured steam to form a clear, viscous liquid 

also known as waterglass. The waterglass can be spray dried to form quick dissolving, 

hydrous powder [64]. Sodium and potassium silicates are considered the best material to 
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activate pozzolans because of the effectiveness of both the cation and anion of the 

activator [29]. The cation (Na2O, K2O) activates the siliceous materials present in the 

pozzolans while the anion (SiO2) facilitates the formation of calcium silicate hydrates. 

 The modulus ratio (SiO2/Na2O) is an important property that affects the 

geopolymerisation of AACM binder when sodium and potassium silicates are used as 

an activator. A range of 1.5 to 3.2 SiO2/ Na2O ratio is commercially available with 3.2 

suggested to be best suited to enhance geopolymerization [65]. On the other hand, the 

degree of solubility of the silicate present in the anion is suggested to have positive 

influence on the compressive strength of AACM concrete and mortars [66]. This is 

because the activating solutions containing little or no soluble silicates will saturate in 

the concrete pore solution while the soluble silicate will promote inter-particle bonding 

within the AACM binder as well as the interfacial bonding between the aggregates and 

AACM paste [66]. 

2.3.2 Sodium, Calcium and Potassium Hydroxides (NaOH, Ca(OH)2, KOH) 

Sodium, calcium and potassium hydroxides are commonly used alkaline 

activator in the geopolymerization process of AACM concrete. It is used to buffer the 

pH of concrete pore solution due to its high pH. Unlike sodium and potassium silicates 

that can be used independently to produce desirable properties in AACM concrete, 

sodium, calcium and potassium hydroxides cannot be used independently. A mixture of  

hydroxides and silicates are often used as alkaline activator  rather than using 

hydroxides independently [67][68]. This is because of the undesirable morphology and 

non-uniformity of the final product produced due to the excessive hydroxyl ion OH- 

present in the concrete pore solution when hydroxide is used independently [24]. 

Sodium, calcium and potassium hydroxide activated AACM concrete displays 

lower compressive strength than the sodium and potassium silicate activated concrete of 

similar concentration particularly in high calcium content AACM binder. This is 

because calcium solubility decreases with high pH whereas the silica and alumina 

solubility increases [3]. Since the calcium content is high in GGBS and class C fly ash, 

the Ca+ cation dissolved in hydroxide solution is lesser than silicate solution. Similar 

observations were reported for GGBS concrete showing higher compressive strength 

when activated by silicate solution than when activated by hydroxide solution 

[37][38][69]. 
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2.3.3 Sodium and Pottasium Carbonate (Na2CO3, K2CO3) 

Sodium and pottasium carbonate is classified among the weak salts. It has a low 

pH lesser than 12 which is lower than silicates and hydroxides activators. The 

advantage associated with sodium and pottasium carbonate activator is that it is cost 

effective, environmental and user friendly [70][71]. On the other hand, the prolonged 

setting and delayed compressive strength development are some of the practical 

challenges associated with using sodium and pottasium carbonate independently [72]. 

The delayed hardening process is because of the reduction in the alkalinity of the 

solution that is required to dissolve the reactive silica and alumina present in AACM 

binders [73]. The alkalinity of sodium and pottasium carbonate favours the dissolution 

of Ca+2 from the AACM binder which reacts with the CO3
2- from the anionic component 

of the activator to form carbonate salts such as calcite and gaylussite whereas the Na2+ 

from the cation component of the activator reacts with the hydroxyl ions (OH-) in the 

solution[71][72]. A later stage reaction of sodium carbonate activated AACM system is 

similar to sodium and pottasium hydroxide activated system once the CO3
2- ions have 

been exhausted. 

A mixture of carbonates and silicates is often used as alkaline activator similar 

to the combination of hydroxides and silicates activator. Partial substitution of 

carbonates by silicates reduces the carbonate ions in the pore solution which increases 

the alkalinity of the system compared with using carbonates independently to activate 

AACM binders [73].  

2.4 METHODS OF MEASUREMENT 

Literature often presents different measuring units for analysing the same result 

which could sometimes be confusing when used in the wrong context. A number of 

standard measuring units were adopted during the course of analysing the test results 

and in the discussions in this project report. This section addresses the variation in these 

measuring units for the same result. 

2.4.1 Activator Concentration 

 Alkaline activator concentration plays a vital role in the geopolymerisation 

process of AACM concrete and consequently influences its durability and mechanical 

properties. Regardless of the activator type, an increased concentration facilitates faster 

reaction rate resulting in desirable AACM concrete properties [26]. However, optimum 

limits have been observed for certain activator types such as 10M for KOH solution 
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[24]. Exceeding these limits will reduce the effect on the desired concrete properties. A 

number of measuring units have been adopted in literature to quantify the activator 

concentrations which are discussed in the following subsections. 

2.4.1.1 Percentage dilution 

The activator concentration is expressed as a percentage dilution ratio when 

certain amount of distilled water is added to the concentrated alkaline activator. The 

alkaline activator when used without diluting with water may result in inferior 

properties of AACM concrete. For example, Khale and Chaudhary [24] observed a 

decrease in strength for AACM concrete when high concentration of potassium 

hydroxide KOH solution was used as activator. It was suggested that the excess K+ ion 

in the framework may have contributed to the decrease in its strength. Similarly, Smaoui 

et al. [80] increased the alkali content of the mixing liquid used to produce AACM 

concrete by decreasing the amount of water added to sodium hydroxide NaOH activator. 

The alkali content was increased from 0.6% to 1.25% of Na2O of cement mass. The 

resultant effect was a decrease in its strength, freeze-thaw resistance, increased 

shrinkage and a porous microstructure was observed [80]. 

On the other hand, when too much water is added to the concentrated alkaline 

activator provided by suppliers, it will have a negative effect on the mechanical and 

durability properties. For example, over-dilution of the activator will result in an 

increase in the net drying shrinkage, setting time and decrease in the reaction kinetics 

and strength [81]. Therefore, an optimum mix proportion between the alkali activator 

and water should be produced in order to obtain an activator concentration that can 

produce AACM concrete with desirable properties. The percentage dilution ratio 

between 2.15% to 12% will be adopted in this research project to produce AACM 

concrete mixes. This dilution can also be represented in terms of molarity which is 

discussed in the next section. The range of dilution (2.15% - 12%) was within the upper 

and lower limits of molarity beyond which AACM performance drops. 

2.4.1.2 Molarity or Molar ratio 

Molarity or molar ratio can be defined as the ratio of moles of solute by volume 

of the solution. In the case of quick dissolving hydrous powder of sodium silicate, the 

molarity of the activator is obtained by dissolving the powder in water to provide a 

solution of the required molarity. Similarly, sodium hydroxide activator, which is 

produced as a solid by electrolysis of NaCl solution, is dissolved in water to produce the 

required molarity or molar ratio [82].  
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The pH of AACM concrete pore solution is influenced by the degree of molarity 

present in the activator solution. Williamson and Juenger [83] suggested that an 

increase in the molarity of NaOH activating solution from 6 M to 8 M produced 11% 

increase in the pore solution alkalis while increasing it further to 10 M produced 27.3% 

increase in pore solution alkalis. The authors [83] suggested that the effect is greatest at 

the point of optimum concentration of activator needed to liberate silicate and aluminate 

species from the AACM binder. Presumably, additional alkalis beyond what are 

required for complete polymerization of AACM concrete end up in its pore solution 

[84] where they are charge-balanced by hydroxyl ions [83]. The molarity of any 

solution is given by equation 2.1. 

 �������� = 
��
	��	�����

����
�	��	�������� 2.1 

 
Figure 2. 1: Example of relation between activator dilution and molarity for a 15 M 
activator 
2.4.2 Liquid to Cementitious Ratios 

Various nomenclature in publications have been used to describe cementitious 

materials that play the role of binding together other aggregates present in a concrete 

mix [25]. Some of the generally accepted nomenclatures are as follows; 

1. Portland cement contains 95% or more Portland cement clinker by mass of 

the total constituents. 

2. Pozzolanic materials are substances of siliceous or silico-aluminous 

composition or a combination which reacts with water or alkali solution to 

produce concrete. 

Variations in nomenclature have been used to describe the combination of 

Portland cement clinker lesser than 95% by mass and pozzolanic materials more than 

5% by mass. ENV 197 – 1 [85] uses the term CEM cement to describe the component 
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containing Portland cement clinker lesser than 95% of the total mass. This nomenclature, 

however, is not sufficiently explicit for high alumina cements [25].  ASTM C 1157 - 

94a uses the term hydraulic cement to describe a combination of inorganic constituents 

greater than 5% of total mass when present in cement which aid the strength 

development. Inorganic constituents in this case refer to the natural and industrially 

produced pozzolanic materials. Neville [25] suggested blended cement to describe the 

inter-grinding of Portland cement clinker and inorganic materials (pozzolanic materials). 

The author, therefore, proposed all these materials to be referred to as cementitious 

materials for simplicity and clarity [25]. The term cementitious materials are equally 

adopted in this thesis to describe the alkali activated cementitious materials (AACM) 

which were investigated. 

Similarly, the term liquid is used to describe the mixtures of water and alkali 

metals of hydroxides (NaOH, Ca(OH)2, KOH), silicate salts (Na2O.rSiO2, K2O.rSiO2), 

strong acid salts (Na2SO4, CaSO4.2H2O) and weak salts (Na2CO3, K2CO3, Na2S, K2S) to 

form an activator solution which is used to produce AACM concrete. However, for 

OPC concrete, the activation of cement was done with only water. 

The strength of concrete at a given age, cured under a certain temperature and 

humidity is primarily dependent on its liquid/cementitious ratio and the degree of 

compaction [25]. The cementitious material in a mix remains inert until the liquid is 

added to the mix, which facilitates a chemical reaction of hydration in OPC concrete 

(with water) and geopolymerization in AACM concrete (with alkali activator). An 

inverse relationship was established between strength and water/cement ratio in a fully 

compacted OPC concrete by Duff Abrams [86] as shown in equation 2.2.  

 �� = ��	/���/� 2.2 

Where w/c represents water/cement ratio, K1 and K1 are empirical constants and 

fc is the strength. 

Rene Feret proposed a similar general rule relating strength to volume of water 

and cement [25] as shown in equation 2.3. 

 �� = 	�	 � �
� � !"

�
 

2.3 

Where fc is the strength, c, w and a are the absolute volumetric proportions of 

cement, water and air and k is constant.  

The inverse relationship between strength and water/cement ratio ceases to be 

valid at very low water/cement ratios when full compaction can not be achieved [25].  
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Figure 2. 2: The relationship between strength and water/cement ratio of OPC concrete 
[25] 
2.4.2.1 Liquid/binder ratio 

 Liquid/binder ratio is the nomenclature used to describe the proportion by 

weight of liquid to cementitious material used to produce AACM concrete, mortar or 

paste. Jaarsveld and Deventer [87] acknowledge the importance of low liquid content in 

AACMs leading to the formation of amorphous zeolites with low porosity. Apart from 

temperature, the ratio of H2O/Na2O (liquid content) > Na2O/SiO2 (activator 

concentration) > SiO2/Al2O3 (alkali metal) was proposed for zeolite formation in alkali-

activated mixtures. Zeolite formation is the structural framework which has the 

controlling capacity for the polycondensation and crystal growth in AACMs. 

 In order to maintain a constant molar ratio of H2O to Na2O in a fly ash based 

geopolymer concrete, both the activator concentration (Na2O content) and water content 

was increased but no significant effect was observed on the compressive strength [46]. 

In other words, the higher molar ratio of Na2O/SiO2 (activator concentration) had an 

insignificant impact on the compressive strength at higher liquid content. The durability 

properties of AACM material were enhanced by the presence of lower liquid content 

rather than a higher activator concentration. However, much attention has been given to 

Na2O/SiO2 in literature [26], [88] while limited data exist on the impact of liquid/binder 

ratio on porosity parameters of AACM materials. This aspect has been addressed in this 

project. 
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2.4.2.2 Activator/pozzolan ratio 

Some literature uses the activator/pozzolan nomeclature to express the ratio 

between the effective liquid content to cementitious material in AACM concrete. The 

reason for this choice of nomenclature was to represent the effectiveness of the activator 

type and concentration in dissolving the silico-aluminous species present in the 

pozzolanic materials [89][88]. For example Fernández-Jiménez et al, [88] 

recommended 4% content of NaOH by weight in relation to slag for higher mechanical 

strength. Similarly, Krizan and Zivanovic [89] achieved the highest compressive 

strength by using 5 M of water glass activator and a liquid/fly ash ratio of 0.6. 

2.4.3 Chloride Diffusion 

Chlorides are present in concrete as free, acid soluble and water soluble [90]. 

Chloride concentrations that are physically absorbed by the walls of the binder gel are 

referred to as water-soluble chlorides. Acid-soluble chlorides are chemically bound to 

the concrete matrix which forms by the hydration/geopolymerisation process. The free 

chloride on the other hand is present in the pore solution of the concrete which is 

considered to facilitate chloride induced corrosion [91]. The wall of the binder gel 

which stores the water soluble chloride can either release or absorb chloride ions from 

the free chloride in the concrete pore solution. However, the acid soluble chloride forms 

part of the hydration/geopolymerisation product and cannot influence corrosion. 

 The results of acid and water soluble chlorides in concrete can be expressed as 

percentage by weight of binder or percentage by weight of concrete. The unit of 

measurement for free chloride concentrations is mol/L because it is obtained by 

expression of concrete pore fluid. Some authors have expressed it as a percentage by 

weight of binder because concrete powder was dissolved in water to measure the free 

chloride concentration [92][93]. However, these values do not strictly represent free 

chloride concentration and are more representative of water soluble chloride. 

2.4.3.1 Percent weight of binder 

 The percentage by weight of binder nomenclature is often used in literature to 

express the acid and water soluble chloride concentrations relative to the weight of the 

binder in the concrete mix. The bound (acid and water soluble) chloride reacts directly 

with the binder gel to form Friedel’s salt (Ca6Al2O6.CaCl2.10H2O) and Kuzel's salt 

(Ca6Fe2O6.CaCl2.10H2O) [94][95][90]. Regardless of the amount of aggregate in the 

concrete mix, the Friedel’s salt (Ca6Al2O6.CaCl2.10H2O) and Kuzel's salt 

(Ca6Fe2O6.CaCl2.10H2O) is formed at the C-S-H gel of the binder paste. BS EN 206 
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[74] recommended the maximum permissible chloride concentrations in steel reinforced 

concrete to be 0.4% by weight of binder. However, a single value for chloride threshold 

level is not true for different types of concrete, steel and exposure environment [96]. 

This aspect is discused futher in chapter 4. 
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CHAPTER 3 
POROSITY AND PORE STRUCTURE OF AN ALKALI ACTIVATED 

CEMENTITIOUS (AACM) MORTAR 

3.1 INTRODUCTION 

 The durability properties of concrete have a strong relationship with its 

micropore structure. They are greatly influenced by the refinement of the micropore 

structure of the matrix. The important properties which are influenced by the concrete 

micropore structure include its strength, shrinkage, creep, permeability and diffusion. 

The resistance of concrete to the penetration of corrosion initiators such as chlorides is a 

function of its pore system characteristics [100]. Garboczi [101] applied three different 

types of pore structure and transport (PST) theories (Kozeny-Carman Theory, Archie's 

Law and Katz-Thompson Permeability Theory) to establish the direct relevance of pore 

system characteristics to the durability of concrete. The conclusion suggested that Katz-

Thompson Permeability Theory was applicable to PST while Kozeny-Carman Theory 

and Archie's Law were found wanting.  

 Research shows that diffusivity of harmful ionic species (Cl-, CO2) in the 

concrete pore fluid causes corrosion of the embedded steel reinforcement and fibres in 

concrete [91][102][103]. The deterioration rate is controlled by the ease with which Cl, 

CO2, O2 and sulphate enter concrete and their movement within it. The attacks by these 

harmful species on concrete and steel reinforcement undermine the durability of 

concrete. AACM concrete is a porous cementitious material similar to OPC concrete 

and its porosity and pore structure will impact its properties. Hence, the need to 

investigate the pore structure characteristics of AACM concrete to better understand its 

durability properties with respect to these harmful ionic species (Cl- , CO2 and sulphate) 

is addressed in this chapter. 

 The permeability of fluid carrying harmful ionic species (Cl- , CO2 and Sulphate) 

into concrete is through its hardened cement paste and the interfacial transition zone 

(ITZ) between the cement paste and aggregate [25]. The ITZ which accounts for up to 

one-half of the total volume of hardened concrete could arguably be considered to be 

the predominant factor allowing the ingress of harmful elements. However, studies 

suggest that the diffusion of the ionic elements (Cl- and Na+) is mainly through the 

cement paste matrix [49]. The ITZ between the cement paste and aggregate was found 

to be discontinuous and the pores were isolated from each other thereby preventing the 

diffusion of harmful elements within the concrete matrix.  
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 The common method of testing the microstructure of concrete by mercury 

intrusion porosimetry (MIP) is the application of mercury under high pressure through 

the mortar pores. The method is based on the "non-wetting" effects of mercury on the 

walls of the mortar pores. Mercury intrusion into the concrete matrix is suitable for 

pores within the range of 0.003 µm to 400 µm [104]. This method will be used for 

analysing the accessible pores within the AACM and the control OPC mortar samples. 

 Different mix compositions of the AACM mortar (four mixes) suitable for 

structural applications have been selected for pore structure analysis. These mixes 

represent different concentrations of the alkali activator, curing conditions and different 

binder content. Parallel investigations on control samples of normal OPC mortar of 

similar strength were also conducted. The research into the microstructure of AACM 

mortar will give quantitative measurements to determine the influence of pore 

parameters on the ingress of Cl- and CO2 within the AACM concrete matrix that cause 

its deterioration. 

3.2 LITERATURE REVIEW 

3.2.1 Concrete Pore Structure 

 Similar to the pore system in OPC paste, the hardened AACM paste comprises 

mainly of two types of pore sizes namely gel and capillary pores. Table 3.1 shows the 

classification of pore size in a conventional hydrated cementitious paste presented by 

Mindess et al. [105]. The pore system is further classified as unimodal or bimodal based 

on its distribution. 

Table 3. 1: Classification of pore sizes in hydrated cementitious paste 
Designation Diameter Description 

Capillary Pores 

10,000 - 50 nm Large capillaries (macropores) 

50 - 10 nm Medium capillaries (large mesopores) 

 

 

Gel Pores 

10 - 2.5 nm Small isolated capillaries (small mesopores) 

2.5 - 0.5 nm Micropores 

≤ 0.5 nm Interlayer space 

Source: Mindess, Young, and Darwin, 2003 [105] 

3.2.1.1 Gel pores 

 The gel pores are developed during the poor polymerization of aluminosilicate 

gel of the AACM binder. The polymerization and hardening of alkali activated 



47 
 

cementitious gel governs the desirable properties in AACM concrete, particularly in the 

context of durability, similar to the calcium silicate hydrate (C-S-H) gel in Portland 

cement hydrate [106]. The formation of aluminosilicate gel involves the dissolution of 

aluminosilicate precursor in the presence of alkali activator, thereby releasing silica and 

reactive alumina in monomeric form [107]. The silicate and aluminate species released 

become amorphous aluminosilicates in the presence of water. The amorphous 

aluminosilicate in concentrated solution results in gel formation [108]. The conceptual 

model for geopolymerization  is presented in Fig. 3.1 [108]. 

 

Figure 3. 1: Conceptual Model for Geopolymerization [108] 

The gel pores of OPC are generally considered to occupy about 28 percent of the total 

volume of the gel after drying in a standard manner [109]. However, the gel pores of 

AACM are perceived to be less than 28 percent of the total volume of gel [106]. This is 

due to AACMs having a finer particle size than OPC, resulting in improved particle 

packing. The volume of gel pores in concrete is influenced by the type of cementitious 

binder, water/cement ratio and the hydration rate of hardened cementitious paste [25]. 

The total volume of gel pore increases in AACM with the progression of polymerization 
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and in OPC with hydration. On the other hand, the volume of capillary pores is 

simultaneously reduced as the gel pore volume increases [110]. 

 The mix design factors affecting the pore formation in AACM mortar will be 

evaluated in this research work in order to develop optimal performing mixes in relation 

to engineering properties. 

3.2.1.2 Capillary pores 

 The large capillary pores are orders of magnitude bigger than gel pores as shown 

in Table 3.1. An inverse relationship was suggested between the volume of gel pores 

and capillary pores as hydration progresses [110]. The volume of capillary pores 

decreases while the gel pores increases during the hydration process in the concrete 

matrix. This results in a lower cumulative pore volume within the concrete matrix 

because the comparatively large capillary pores are partially occupied by the binder gel. 

Ultimately, a denser microstructure evolves as the hydration progresses. 

 The capillary pores provide ease of ionic movement of harmful species (Cl-, CO2 

and sulphate) within the concrete matrix, when in solution with water. Solutions of 

these ionic species (Cl-, CO2 and sulphate) are normally absorbed through the capillary 

pores within the concrete matrix because of their relatively large pore diameter. When 

water containing these harmful ionic species (Cl-, CO2 and sulphate) comes in contact 

with a dry concrete surface, it is driven into the concrete pore structure by a moisture 

gradient [111]. This process is known as capillary suction. It is a common transport 

mechanism prevalent in the tidal zone of marine structures and in coastal structures 

exposed to wetting and drying cycles. Therefore, capillary pores play a decisive role in 

the durability of concrete. 

3.2.1.3 Unimodal and Bimodal 

 A unimodal pore distribution in OPC concrete is defined by the single range of 

pore volume within the differential pore distribution graph for OPC concrete as shown 

in Fig. 3.2. Other studies on the microstructure of OPC matrix also show a unimodal 

pore size distribution with most of the pore volume within the range of 0.01 to 0.1 µm 

of pore diameter [3][82].  

 A bimodal pore distribution, on the other hand, is defined by the double range of 

pore volume within the differential pore distribution graph as shown in Fig. 3.3. These 

pore sizes are normally observed between two separate zones. Current studies suggest 

that the pore size distribution of AACMs is bimodal with pores separated into two zones 
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(˃ 1 µm and ˂ 0.02 µm ranges) unlike a similar grade of OPC matrix which is observed 

to be unimodal ranging between 0.01 to 0.1 µm [82]. 

 
Figure 3. 2:  Unimodal pore size distribution in OPC concrete (Author's data) 

 
Figure 3. 3: Bimodal pore size distribution in AACM concrete (Author's data) 

3.2.2 Pore System Parameters 

 There are three pore system parameters that are frequently used in analytical and 

empirical property-microstructure relationship models [112]. These are intrudable 

porosity Фin, critical pore diameter dc and threshold pore diameter dth. These parameters 

are derived from the cumulative porosity curve and the logarithmic differential pore 

volume curve which are represented in Figures 3.4 and 3.5. The cumulative pore 

volume is the vertical scale on the left (blue graph) while the logarithmic differential 

pore volume is the vertical scale on the right (red graph) as shown in Figures 3.4 and 3.5. 

These pore system parameters are applicable to both OPC and AACM mortars (Figures 

3.4 and 3.5 respectively). 
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Figure 3. 4: Definition of Pore System Parameters in OPC Mortar (Author's data) 

 
Figure 3. 5: Definition of Pore System Parameters in AACM Mortar (Author's data) 

3.2.2.1 Intrudable porosity Фin 

 Intrudable porosity Фin which is obtained from the highest point on the 

cumulative porosity curve (Figures 3.4 and 3.5) depends on the connectivity of the 

capillary pores. A percolation intrudable porosity of 18% or less pores (equivalent to 

82% or more solid fraction) was proposed for pore discontinuity in neat cement paste 

[113]. This threshold value is assumed to represent the degree of hydration where pore 

spaces are isolated from each other thereby limiting the intrusion of mercury within the 

pore spaces in a neat cement paste. How connected or disconnected these pores are, has 

a significant effect on the intrudable porosity Фin.. The smaller the intrudable porosity 

Фin, the more refined the pore network thereby limiting the ingress of hazardous ions 

within the mortar matrix. 
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3.2.2.2 Critical pore diameter dc  

 Critical pore diameter dc is referred to as the pore diameter that exists between 

the interconnected net of voids within the concrete matrix [101]. This is used to 

characterise the extent by which harmful ionic species (Cl-, CO2 and sulphate) can 

penetrate into the concrete matrix through the network of these pores. Critical pore 

diameter dc is shown in Figures 3.4 and 3.5 as the highest point on the logarithmic 

differential pore volume curve. At this pore diameter, a high volume of mercury 

intrusion within the concrete matrix is observed. Critical pore diameter dc is applicable 

to AACM and OPC mortars as shown in Figures 3.4 and 3.5.  

3.2.2.3 Threshold pore diameter dth 

 Threshold pore diameter dth was considered by some researchers as the diameter 

obtained from the inflexion point of the cumulative mercury intrusion curve [101] while 

others consider dth as the diameter obtained from the point of abrupt variation in the 

same curve [114]. The inflexion point is often imperceptible and can be best observed 

by logarithm scale unlike the point of abrupt variation, which is visible by plotting on 

both normal and logarithm scales [115]. It was recommended that the values measured 

at the point of abrupt variation were useful indicators for assessing the quality of the 

concrete rather than at the point of inflexion [115][116]. Position of threshold pore 

diameter dth is shown in Figures 3.4 and 3.5. 

3.2.2.4 Effective Porosity 

Porosity can be classified as total or effective porosity. Porosity is defined as the 

fractional volume of pores with respect to the bulk volume of the material [112]. Total 

porosity includes both open and closed pores unlike the effective porosity which takes 

account of only open pores that provide access for liquid to move within the concrete. 

Total porosity affects the bulk density, strength and thermal conductivity of concrete 

while the effective porosity relates to the permeability of concrete [112]. The porosity-

strength relationships of concrete are often investigated in publications [117][118][119]. 

Four major empirical models relating porosity and strength of cement-based materials 

have been proposed [120][121][122][123]. A power function relationship was proposed 

by Balshin [120]. Ryshkevitch [121] proposed an exponential relationship. Hasselmann 

[122] and Schiller [123] proposed a linear and logarithmic relationship model 

respectively. These strength-porosity relationships are shown in Table 3.2., where Ϭ = 
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Compressive strength, Ϭ0 = Compressive strength of fully dense material, p = Porosity 

and p0 = Porosity of fully dense material. 

Table 3. 2: Models of porosity and strength relationships for cement-based materials 
Author and Year Equation Constant Relationship Application 

Hasselmann [122] Ϭ = Ϭ0
 (1- bp) b Linear Originally for glass 

Balshin [120] Ϭ = Ϭ0
 (1- p)n n Power Originally for powder metals 

Ryshkevitch  [121] Ϭ = Ϭ0
 exp(- cp) c Exponential Originally for ceramics and 

rocks 

Schiller [123] Ϭ = k ln (p0/p) k Logarithmic Originally for non-metallic 
brittle materials 

3.2.3 Factors Affecting Pore Structure 

3.2.3.1 Pore System Characteristics 

 The pore sizes and their distribution within the concrete matrix, obtained from 

mercury intrusion porosimetry, are used to characterise the concrete pore structure 

[116][124]. These pore system parameters are also crucial to the mechanical and 

durability properties of AACM concrete. Over the past few years, the AACM concrete 

pore system has been studied in relationship to its hardened properties such as 

compressive strength and durability. Preliminary experimental results reveal that the 

high degree of polycondensation of AACM concrete results in greater densification of 

the AACM paste within the concrete matrix when compared to the same degree of 

hydration of OPC concrete [26].  

The complexity of concrete pore refinement is due to the complex nature of concrete 

pore system [116]. Many researchers [125][126][127] concluded that a true pore size 

distribution cannot be accurately determined in cement-based materials due to 

limitations of the mercury intrusion porosimeter test method (MIP). Mercury intrusion 

under pressure in MIP testing can access only the intrudable connecting pores within the 

concrete matrix, thereby leaving out the non-intrudable pores. It is also argued that 

mercury is accessible only to the connecting pores located at the outer surface of the 

specimen. Despite these limitations, MIP is the preferred alternative for assessing the 

pore structure of cement based materials. 

3.2.3.2 Experimental Factors 
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 Factors influencing the results of mercury intrusion porosimetry are the mercury 

contact angle with the pore walls, the surface tension of mercury, sample preparation 

and conditioning, rate and maximum pressure applied [124][128]. Appropriate input 

values of these factors are introduced in the MIP test for a given test material to obtain 

the output pore structure characteristics. Amongst the notable MIP input parameters are 

the contact angle and surface tension of mercury. Their values are 1400 with the 

concrete pore wall and 0.48N/m surface tension respectively. These values were kept 

constant for all samples under investigation during the research work reported in this 

thesis. 

3.2.3.3 Hydration/Geopolymerisation of Binder 

 The hydration/geopolymerisation in OPC and AACM concrete is dependent on 

time, temperature, type of binder and activator used. The AFm phase (Aluminate 

Ferritemono structure) is responsible for the adsorption and anion exchange with 

chloride ions. The formation of this AFm phase of AACM binder geopolymerisation 

lacks theoretical understanding [3][5] unlike the formation of hydrated calcium silicates 

and aluminates (C-A-S-H) in cement gel. There is little information on the formation of 

AFm phase in alkali-activated binders provided in the literature. Experimental studies 

show the formation of C-(N)-A-S-H gel during the geopolymerisation phase of AACM 

binder which has a mixture of cross-linked and non-cross-linked tobermorite based 

structures [129] as shown in Fig. 3.6. This is unlike the calcium silicate hydrate (C-S-H) 

of Portland cement, which is composed of only non-cross-linked tobermorite and 

jennite-like structures [130] as shown in Fig. 3.7. This difference could account for the 

high densification of AACM gel during hydration.  

 

Figure 3. 6: Model for Hydrated AACM 
Binder. (Myers et al. [129]) 

 

Figure 3. 7: Model for Hydrated Portland 
Cement. (R. F. Feldman and P. J. Sereda, [130]) 

3.2.4 Materials 
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3.2.4.1 OPC 

The production of OPC has risen to 4.3 billion tonnes in 2014 which is the second 

highest commodity produced in the world [8]. The 1998 annual consumption is 

estimated to be 256 Kg of cement per head in UK, 261 Kg per head in US, 647 Kg per 

head in Spain, 664 Kg per head in Japan and 799 Kg of cement per head in Portugal 

[25].  

The OPC used in this research project was supplied by Frank-key group, Sheffield. 

It was supplied in 25Kg bags conforming to CEM type 1 with above 95% clinker [74]. 

The ordinary Portland cement has a strength class of 42.5. The cement was used for the 

control concrete mixes used in the research. The chemical composition of the OPC used 

in this research is shown in Table 3.3  

Table 3. 3: Chemical composition of ordinary Portland cement 

CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O P2O5 TiO2 MnO SrO 

64.2% 11.6% 8.35% 3.16% 3.14% 2.09% 1.19% 2.01% 1.88% 2.14% 0.23% 

BSI 12 [75] suggests chemical composition requirements for the production of 

OPC as follows: 

1. The sum of the reactive portion of CaO and SiO2 should be greater than 50%  

2. The CaO/SiO2 ratio should be greater than 2 in order to ensure that the setting of        

cement paste is not inhibited as well as provide sufficient free lime within the concrete 

pore solution. 

3. The quantity of MgO should not exceed 5%. The presence of high MgO in OPC will          

constitute unsightly cracks in concrete. 

4. The SO3 content should be less than 3.5 ± 0.1%. SO3 content is known to accelerate 

the setting time of cement paste. 

5. The maximum permissible Cl- content should not be more than 0.4%. This is because 

of the possibility of chloride induced corrosion happening due to high amount above the 

specified limit when OPC is used in reinforced concrete structures. 

6. Other chemical constituents such as Al2O3 and Fe2O3 aid the physical appearance of 

OPC as well as assist with faster setting time. 

3.2.4.2 Water 

The tap water used in each mix conforms to the requirement of BS EN 1008 [76]. 

Additionally, distilled/ionized water was used for calibration of instruments, preparation 
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of NaCl solution, dissolving concrete powder into solution for analysis of chloride 

concentration and pH. 

3.2.4.3 Chemical Admixtures 

The retarder used was supplied by Oscrete Construction Products Ltd, Bradford, 

U.K. It was used in accordance with the manufacturer’s specification of 0.75% binder 

weight. Its chloride ion content is less than 0.1% and the alkali content Na2O (sodium 

oxide) is less than 3.5%. The introduction of the retarder in the AACM concrete mixes 

is aimed at prolonging the initial and final setting time of the geopolymerization 

reaction. This provides the time for the AACM concrete to be transported, placed and 

compacted easily. The shrinkage reducing agent SRA was supplied by Oscrete 

Construction Products Ltd, Bradford, U.K.  SRA was added to the mix in accordance 

with the manufacturer’s specification of 2% by binder weight. Its chloride ion content is 

less than 0.1% and the alkali content Na2O (sodium oxide) is less than 3.5%.  

3.2.4.4 Aggregates 

 The coarse aggregates used were 10 mm uncrushed gravel and 6 mm limestone. 

They were both supplied by Tarmac Ltd, Derbyshire. The proportion of 10mm 

uncrushed gravel to 6mm crushed limestone in each concrete mix was 2:1. The 

aggregates were in a saturated surface dry state when placed in the mixer. The main 

properties and oxide compositions of these aggregates conform to relevant standards 

[77]. The grading curve for the 10 mm uncrushed gravel is shown in Figure 3.8. 

Grading was performed in accordance with BS EN 12620: 2002+ A1 [78] and BS 812 - 

103.2 [79]. 

 
Figure 3. 8: Grading curve for 10 mm uncrushed gravel 
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 Silica sand and sharp concrete sand were used as fine aggregates for the 

production of AACM and OPC concrete and mortar. The silica sand was used in the 

production of AACM concrete and mortar while sharp sand was used for OPC concrete 

and mortar. The silica sand and sharp concrete sand were both supplied by WBB 

Minerals Ltd, Congleton, Cheshire. The grading curves for silica and sharp sand are 

shown in Figures 3.9 and 3.10 respectively. The grading curves show a larger 

percentage of silica sand passing sieve size 1.008 mm compared with sharp concrete 

sand. This suggests that silica sand is finer than sharp concrete sand, but they fit the 

same grading zones. 

 

Figure 3. 9: Grading curve for silica sand 

 
Figure 3. 10: Grading curve for sharp concrete sand 
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 Silica sand was produced from consolidated sand deposits. It has high silica 

content (SiO2) of 95.17% as shown in Table 3.4. It is free from impurities like clay and 

refractory minerals such as chromite.  

Table 3. 4: Chemical analysis of silica sand 

SiO2 Fe2O3 Al2O3 K2O LOI 

95.17 0.25 2.17 1.35 0.31 

3.3 TEST PROGRAMME 

3.3.1 Materials and Mix Proportions 

 Four different mix compositions of AACM mortar (M2 to M5) comprising a 

cementitious binder, fine aggregate, and alkali activator were produced and investigated. 

A pilot AACM mortar mix M1 was initially produced to optimise the mix composition 

for AACM mortars (M2 to M5). A parallel control mix (M6) of C40 grade mortar was 

also produced with 100% OPC binder. The AACM cementitious binder used was a 

proprietary hybrid alkali activated precursor comprising of low and high calcium 

constituents, which has been developed at Sheffield Hallam University [131]. A version 

of the AACM cementitious binder and activator is currently manufactured under licence.  

Medium grade silica sand (fine aggregate) was used for the AACM mortar mixes while 

sharp concrete sand was used for the OPC mortar mix. The experimental mortar mixes 

M2 to M6 used in this research were based on the practical mix compositions of AACM 

concrete which were investigated for chloride ingress reported in Chapter 4 and 

published by the author [132]. The samples for MIP study were prepared by 

replacement of coarse aggregate with fine aggregate and the binder to provide mortar 

mixes for MIP analysis. The replacement of the coarse aggregate content in AACM and 

OPC concrete were done by increasing the mix content of the fine aggregate and binder 

proportionately. 

 The liquid/binder and fine aggregate content were adjusted to achieve the 

workability and setting time required to produce practical AACM mortar mixes suitable 

for construction purposes. Two batches of AACM mixes were produced; the first batch 

of mixes had admixtures (retarder and shrinkage reducing admixtures) in it while the 

second batch was without admixtures. A retarder admixture (R42) containing less than 

0.1% chloride ion and less than 3.5% alkali content Na2O (Sodium oxide) was 

introduced in the first batch of AACM mortar mixes. The retarder in these mixes 

prolonged the initial and final setting time of the geopolymerization reaction, thereby 



58 
 

facilitating the required time for AACM mortar to be transported, placed and compacted 

easily. Similarly, a shrinkage reducing admixture (SRA) was added to AACM mortar 

mixes in accordance with the manufacturer’s specification of 2% by binder weight.  The 

composition of the five mixes M2 to M6 is given in Table 3.5. The alkali activator liquid 

[131] was diluted with tap water by 2.15%, 4.24%, 8.12% and 12% in mixes M2 to M5 

respectively, similar to the AACM concrete specimens produced for chloride ingress 

investigation reported in Chapter 4. M6 is an OPC mortar mix with water binder ratio of 

0.486. 
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 Table 3. 5: Composition of AACM and OPC mortar mixes 
Mix Batch Total Binder 

(%) 
Fine Agg. 

(%) 
Total Liquid 

(%) 
Liquid/Binder 

Ratio 
Dilution 

(%) 
R42 

(% Binder) 

SRA 

(% Binder) 

Curing 

Wet/Dry Wet Dry 

M1 

Trial 

mix 

 

 

M2 

a 

b 

c 

d 

 

a 

45.0 

50.0 

50.0 

50.0 

 

50.0 

33.0 

30.0 

33.0 

32.0 

 

29.0 

22.0 

20.0 

17.0 

18.0 

 

21.0 

0.488 

0.400 

0.340 

0.360 

 

0.414 

9.93 

2.04 

1.60 

0.00 

 

2.15 

0.75 

0.75 

0.75 

0.75 

 

0.75 

2 

2 

2 

2 

 

2 

- 

- 

- 

- 

 

√ 

- 

- 

- 

- 

 

√ 

√ 

√ 

√ 

√ 

 

√ 

b 50.0 29.0 21.0 0.414 2.15 0 0 √ √ √ 

            

M3 

a 48.2 28.9 23.0 0.477 4.24 0.75 2 √ √ √ 

b 48.2 28.9 23.0 0.477 4.24 0 0 √ √ √ 

c 48.5 29.1 22.3 0.460 4.24 0.75 2 √ √ √ 

d 47.6 28.6 23.8 0.500 4.24 0.75 2 √ √ √ 

            

M4 
a 48.0 29.0 23.0 0.473 8.12 0.75 2 √ √ √ 

b 48.0 29.0 23.0 0.473 8.12 0 0 √ √ √ 

            

M5 
a 48.0 29.0 23.0 0.470 12.00 0.75 2 √ √ √ 

b 48.0 29.0 23.0 0.470 12.00 0 0 √ √ √ 

            

M6 Ctrl 32(OPC) 53.0 15.0 0.486 - - - √ √ √ 
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3.3.2 Specimen Preparation and Conditioning 

3.3.2.1 Casting of Specimens 

 The AACM mortar mixes were prepared to evaluate their pore structure using 

the mercury intrusion porosimetry technique. The dry binder and aggregate were placed 

in a 12 litre Hobart mixer with a 3-speed option. They were mixed in the Hobart mixer 

with the lowest speed (option-1) for 30 seconds to avoid dispersing the powder into the 

atmosphere. The Liquid component containing alkali activator, water, and retarder R42 

were slowly added to the mix. The mixing continued for 2 minutes until a uniform paste 

was produced. The shrinkage reducing admixture was then slowly added while mixing 

continued. The mortar was further mixed for 1 minute before stopping the Hobart mixer. 

 The mortar was placed in 75 x 75 x 75 mm steel cube moulds which had been 

lightly oiled to prevent the hardened mortar from sticking to the surface. Each mould 

was filled in three layers. Each layer was properly compacted on the vibrating table for 

about 20 seconds to attain homogeneity and minimise the presence of voids. The mortar 

surface was gently trowelled to obtain a smooth and level surface. The cast specimens 

were placed on a flat surface and covered with polythene sheets to prevent rapid 

moisture loss. The specimens were left in the mould for 24 hours under a room 

temperature of 20 ± 2 0C and a relative humidity of about 65% before demoulding. The 

hardened AACM mortar specimens after 24hrs of casting are shown in Fig. 3.11. The 

OPC mortar mix M6 was prepared similar to AACM mortar mixes except that the 

retarder R42 and shrinkage reducing admixture SRA were not added to the OPC mortar 

mix. 

 
Figure 3. 11: AACM mortar specimens after demoulding 

3.3.2.2 Specimen Preparation  

 Two batches (a) & (b) of AACM mortar mixes M2, M4 and M5 were produced as 

shown in Table 3.5. Batch "a" as shown in Table 3.5 contains retarder R42 and 
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shrinkage reducing admixture (SRA) at 0.75% and 2% by weight of binder respectively. 

Batch "b" of the AACM mixes contained no retarder R42 and SRA admixture. However, 

for AACM mortar mix M3, four batches were produced by varying the liquid binder 

ratios as shown in Table 3.5. Batches (a) and (b) of mix M3 had the same liquid binder 

ratio of 0.477 while batches (c) and (d) had liquid/binder ratio of 0.460 and 0.500 

respectively. In addition, batches (a), (c) and (d) contained retarder R42 and shrinkage 

reducing admixture (SRA) while batch "b" contained no retarder R42 and SRA, similar 

to batch "b" of AACM mixes M2, M4 and M5. Mortar mix M3 is based on the AACM 

concrete mix S3 which gave optimum properties of strength, workability and shrinkage 

in the investigation reported in chapter 4 and authors' publication [132]. M3 was, 

therefore, chosen for a more detailed investigation of liquid/binder ratio. The OPC 

control mix M6 (one batch) contained no retarder R42 and shrinkage reducing admixture 

(SRA). 

 Six cubes (three per batch) were cast for each AACM mortar mix M2, M4 and 

M5 and twelve cubes were cast for AACM mortar mix M3 while three cubes were 

produced for OPC control mix M6. A total of thirty-three cubes were cast. 

3.3.2.3 Curing Regime 

 The curing regime is important for the development of the AACM mortar pore 

structure. Three practical curing regimes (wet/dry, wet and dry) applicable in the 

construction field were adopted in this research work as shown in Table 3.6.  

Table 3. 6: Curing regimes for AACM & OPC mortar mixes 
Age(days) Wet/dry Wet Dry 

0-3 Water (200C) Water (200C) Air (200C; 65%RH) 

3-28 Air (200C; 65%RH) Water (200C) Air (200C; 65%RH) 

 Wet-dry curing involved placing the specimens in water at a temperature of 20 ± 

20C for 3 days immediately after demoulding, followed by dry curing in the laboratory 

air at a temperature of 20 ± 20C and approximately 65% relative humidity for 25 days 

(total curing period of 28 days). For wet curing, the specimens were placed in water at a 

temperature of 20 ± 2 0C for 27 days immediately after demoulding. For dry curing, all 

the specimens were cured in the laboratory air at a temperature of 20 ± 20C and 

approximately 65% relative humidity for 27 days immediately after demoulding. The 

specimens cured in the laboratory air were securely covered with polyethene sheets 

during 28 days of dry curing to prevent rapid moisture loss. It simulates site practice of 

preventing moisture loss, for example, with the application of curing membranes. 
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 Compressive strength tests on the 75mm cubes were conducted after the 28 days 

of curing under each regime (Wet/dry, Wet and Dry). Samples for MIP testing were 

obtained from the crushed cubes, which were then dried in an oven at a temperature of 

500C for 3 days (28- 31 days age) and finally preserved in a desiccator for 3 days (31-34 

days). 

3.3.3 MIP Sample Preparation and Conditioning 

3.3.3.1 Cube Crushing 

 Mortar test samples of small dimensions with an average length of 1cm were 

obtained for MIP testing from the 75mm mortar cubes which were crushed after 28 days 

of curing under regimes wet/dry, wet and dry (Table 3.6). This was achieved by 

performing compressive strength tests on the cubes in accordance with BS EN 12390-

3:2009 [133]. The results of the compressive strength tests are presented in section 3.4.1. 

Compression tests on the 75mm cubes produced large chunks of mortar samples. These 

chunks were further broken into smaller pieces by gentle crushing with the test machine 

to produce samples ideal for MIP testing. The aperture of the crushing machine was set 

to 1cm to obtain samples which would pass through the throat of the MIP dilatometer as 

discussed in section 3.3.5.1. 

  
Figure 3. 12: Location of test sample 
used for MIP testing within a mortar 
cube core 

Figure 3. 13: MIP specimens stored in 
self-sealing bags after oven drying 

3.3.3.2 Location of Test Samples  

 The selection of samples from crushed cubes, that will be a true representation 

of the mortar matrix, was achieved by obtaining samples from the inner core of the 

crushed cube as shown in Fig. 3.12. The samples used for MIP testing after crushing the 

cube into suitable small pieces and oven drying were stored in self-sealing bags (Fig. 

 
Inner core 
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3.13). Using samples close to the concrete cube surface will not give an accurate result 

for the MIP test. An investigation was carried out to determine the influence of test 

sample location within the paste matrix relative to the casting position on porosity and 

pore size distribution  [134]. The research revealed that the test sample from the top 

surface (trowelled) and the side surface of a paste has a larger pore volume and 

generally higher proportions of large pores compared to the middle (core). A conclusion 

was that test samples located near the surface are more sensitive to the curing regimes 

and settlement compared to the middle core. 

3.3.3.3 Oven Drying 

 The crushed samples of 1cm average length were dried in an oven at a 

temperature of 500C for 3 days. This was carried out to remove adsorbed water from the 

pore fluid within the mortar pore system, which can obstruct its accessible porosity in 

MIP testing. Oven drying at a higher temperature than 500C was found to cause 

microcracking which may adversely affect the test results [135]. After oven drying at a 

temperature of 500C for 3 days, the samples were placed in a desiccator for another 3 

days to cool down to 200C. The desiccator had silica gel at the bottom to further assist 

with removing adsorbed water and preventing moisture migration from the air. After 

cooling in the desiccator for 3 days, the test samples were stored in a self-sealing bag 

and labelled accordingly as shown in Fig. 3.13. 

3.3.3.4 Details of MIP Test Samples 

 The mass and dimensions of each test sample subjected to MIP testing were 

obtained using an electronic weighing balance and digital callipers as shown Fig. 3.14 

and 3.15.  

  
Figure 3. 14: Weighing of test sample Figure 3. 15: Measuring the dimensions of 

samples 
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 The mass and dimensions for each of these test samples are documented in 

Table 3.6. The dimensions of test specimens required for MIP test, as specified by 

BS1902-316: 1990
 [136] are a particle of maximum size 1cm2. The dimensions of 

mortar test samples used for MIP analysis are within a range of 0.52 to 0.98 cm whose 

area falls within the specified 1cm2 maximum particle size.  However, the mass required 

for MIP analysis is not specified. It was observed that both the mass and dimensions 

affect the total intruded porosity even when many researchers fail to record these details 

in their investigation [137]. The higher mass and dimension give greater total intruded 

porosity when compared to samples of lower mass and dimension.  

 In this investigation, mass ranging between 1.022 to 1.647g was recorded for the 

test samples used for MIP analysis shown in Table 3.7. Both the mass (1.022 to 1.647 g) 

and dimensions (0.52 to 0.98 cm) of all test samples are within an acceptable range 

[136] to minimise the effect of specimen size on the results of MIP analysis of this 

study. The data given in Table 3.7 are an average result of three samples obtained from 

different cubes. The mass and dimension variation between each set of the three 

specimens are less than 5%. 

Table 3. 7: Mass and dimensions of samples under different curing regimes 
Mix Batch Wet/Dry  Wet  Dry 

Mass 
(g) 

Dimensions 
(cm) 

Mass 
(g) 

Dimensions 
(cm) 

Mass 
(g) 

Dimensions 
(cm) 

M2 a 1.148 0.92 x 0.61  1.198 0.93 x 0.62  1.460 0.94 x 0.92 

b 1.264 0.90 x 0.84  1.022 0.96 x 0.68  1.360 0.91 x 0.92 

          
M3 a 1.173 0.93 x 0.52  1.231 0.91 x 0.83  1.283 0.95 x 0.72 

b 1.147 0.90 x 0.67  1.177 0.94 x 0.97  1.211 0.97 x 0.62 

c 1.305 0.98 x 0.85  1.198 0.82 x 0.78  1.202 0.93 x 0.58 

d 1.148 0.89 x 0.91  1.320 0.98 x 0.76  1.103 0.81 x 0.65 

          
M4 a 1.330 0.90 x 0.89  1.330 0.91 x 0.76  1.647 0.98 x 0.99 

b 1.510 0.90 x 0.94  1.266 0.92 x 0.86  1.234 0.96 x 0.70 

          
M5 a 1.208 0.95 x 0.82  1.173 0.97 x 0.72  1.234 0.96 x 0.70 

b 1.192 0.85 x 0.89  1.255 0.98 x 0.74  1.370 0.97 x 0.72 

          
M6 Ctrl 1.156 0.93 x 0.58  1.162 0.89 x 0.60  1.165 0.98 x 0.63 
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3.3.4 Test Procedure  

3.3.4.1 Mercury Intrusion Porosimetry 

 The mercury porosimetry analyses were performed using Pascal 140/240 

Porosimeter [Fig 3.16]. This device is in two parts; Pascal 140 which applies pressure of 

up to 100 MPa and Pascal 240 which applies pressure of up to 200 MPa. The device 

measures pore sizes within the range of 0.007 to 100 µm. The computer microprocessor 

translates the data collected on applied pressures to pore radius using the Washburn 

equation (equation 3.1): 

 # = 	2� cos(�  
3.1 

Where ) is the absolute applied pressure; * is the pore radius; + is the mercury surface 

tension (= 0.48N/m); , is the contact angle (= 1400). 

Washburn equation assumes that the pores in the concrete matrix are cylindrical in 

shape which has been criticised by many researchers. [137] 

Figure 3. 16: Mercury intrusion porosimetry 
device used for analysis 

Figure 3. 17: CD3 dilatometer showing the 
male cone and female bulb components 

3.3.4.2 Mercury Intrusion Porosimetry Test Procedure 

 Test samples of pre-determined mass and dimensions (Table 3.7) were placed 

inside a CD3 dilatometer. The dilatometer consists of a top male cone and a female bulb 

as shown in Fig. 3.17. The lower part of the male cone was lightly lubricated with 

silicon grease to prevent leaking. The male cone was then securely tightened to the 

female bulb (Fig. 3.17) and placed in the PASCAL 140 Porosimeter. The MIP test 

analysis was done in two parts, as follows: 

Male 
Cones 

Female 

Bulbs 

PASCAL 140 PASCAL 240 Dilatometer 

Assembled 
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3.3.4.2.1 Pascal 140 

  The test samples were analysed through seven stages in PASCAL 140 

Porosimeter, which are: Outglass Countdown, Screw Dilatometer, Outglass Run, 

Outglass Ready, Filling Run, Air Pulse, Filling Wait and Analysis Run. The first four 

stages (Outglass Countdown, Screw Dilatometer, Outglass Run and Outglass Ready) 

involve degreasing the sample under vacuum. The essence of degreasing the test 

samples was to avoid the risk of powder elutriation. The mercury filling operation 

(Filling Run stage) commences once the minimum vacuum is reached after degreasing 

the sample. In between mercury filling operations, two air pulses were introduced to 

eliminate the possibility of bubble formation during the mercury filling operation. The 

maximum mercury fill was set to 450 mm3. Once the mercury fill is completed, pressure 

increases from vacuum up to 100 MPa. The applied pressure up to 100MPa will allow 

mercury to intrude into large pore spaces of the mortar matrix. Depressurization 

(extrusion) begins when the pressure has reached 100 MPa. The 100 MPa is the set 

maximum pressure for PASCAL 140. The Depressurization (extrusion) decreases to 

atmospheric pressure before the data is collected and analysed by the computer 

microprocessor. After the seven stages of analysis in PASCAL 140 Porosimeter are 

completed, the sample, mercury fill and dilatometer were weighed and transferred to 

PASCAL 240 Porosimeter for further analysis. 

   

Figure 3. 18: Autoclave (1) 
upper valve (2) locking nut 
(3) lower valve [138] 
 

Figure 3. 19: Filling 
with dielectric oil 

Figure 3. 20: Placing the 
dilatometer into the autoclave  
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3.3.4.2.2 Pascal 240 

 The CD3 dilatometer (Fig. 3.17) containing the mortar sample and filled with 

mercury is placed inside the autoclave of PASCAL 240 (Fig. 3.18). The autoclave 

contains dielectric oil to aid mercury intruding the mortar pore spaces under high 

pressure up to 200 MPa. Using a syringe, the empty space above the mercury fill in the 

male cone of the dilatometer was filled with dielectric oil to avoid any air remaining in 

the capillary, as shown in Fig. 3.19. The autoclave locking nut was tightened after 

properly placing the CD3 dilatometer (Fig. 3.20). The upper and lower valves were 

slightly loosened up to the red mark indicator before the filling operation of dielectric 

oil. The filling operation by dielectric oil was initiated to eliminate possible air bubbles 

in the hydraulic circuit. After all air bubbles were eliminated, the upper and lower 

valves were tightened. The first cycle of mercury intrusion was initiated after tightening 

the upper and lower valves. The first cycle involves the application of high pressure up 

to 200 MPa to aid intrusion of mercury through the pore spaces of the mortar sample to 

pore size down to 0.0073 µm. After the maximum pressure of 200 MPa is reached, the 

second cycle begins which involves the extrusion of mercury from the pore spaces of 

the mortar sample. The second cycle reduces the maximum pressure from 200 MPa 

until it reaches zero. The graphs of pore sizes and pore distribution were obtained at the 

end of the mercury intrusion porosimetry analysis. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Compressive Strength 

 The compressive strengths of mortar mixes M2 to M6 were obtained as explained 

in section 3.3.3.4. The influence of activator dilution, admixtures (R42 and SRA), 

liquid/binder ratios and different curing regimes (wet/dry, wet and dry) has been 

investigated. Compressive strengths presented in this section represent an average of 

two specimens tested in accordance with BS EN 12390-3:2009 [133]. 

3.4.1.1 Effect of Activator Dilution  

 The degree of alkali activator dilution for mortar mixes M2 to M5 is given in 

Table 3.5 (section 3.3.1). The dilution ratio is expressed as a percentage of water by 

mass which is mixed in the activator developed by Sheffield Hallam University [131]. 

Figures 3.21 and 3.22 show the relationship between compressive strength and activator 

dilution of 4.24% to 12% representing AACM mortar mixes M3 to M5 for batch "a" 

(with admixtures) and batch "b" (with no admixtures) respectively.  
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Figure 3. 21: Compressive strength of mortar batch 
"a" containing admixtures (R42 and SRA) 

 
Figure 3. 22: Compressive strength of mortar batch 
"b" containing no admixtures (R42 and SRA) 

 The liquid/binder ratios of the AACM mortar mixes M3 to M5 are equal at 

approximately 0.47 and thus they have been used to investigate the influence of 

activator dilution on compressive strength of AACM concrete. Mix M2 was excluded 

from this analysis since it has a different liquid/binder ratio (0.41). 

 A decrease in the compressive strength was achieved by increasing the degree of 

dilution of the activator. This was observed for AACM mortar mixes M3 to M5 under the 

three curing regimes for both batches (a) and (b) mixes (Figures 3.21 and 3.22). The 

lowest activator dilution of 4.24% (M3) produced the highest compressive strength. For 

example, the compressive strengths of AACM mortar mixes with 4.24% (M3), 8.12% 

(M4) and 12.00% (M5) dilution were 70.9 MPa, 69.9 MPa and 65.2 MPa respectively 

under wet/dry curing (Fig. 3.21). 

 A concentration between 8 to 16 molarity was recommended for sodium silicate 

activator [26] while a concentration of 10 molarity was recommended for potassium 

hydroxide [24]. These authors suggested that the geopolymer formations were delayed 

by a higher activator concentration due to excessive ions thereby limiting the mobility 

and potential to interact with reactive species. This reverse effect was, however, not 

observed in this study because the activator concentrations are within acceptable limits 

of the activator molarity. 

 The activator dilution affects the workability and strength of AACM concrete 

and mortar significantly [139]. A workability of 220 mm slump and compressive 

strength of 45 MPa was achieved by using a 35% activator concentration compared with 

40% activator concentration which produced lower workability of 180 mm slump but 

higher strength of 54 MPa at 28 days age [139]. These results were based on an AACM 

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14

C
om

pr
es

si
ve

 S
tr

en
gt

h 
(M

P
a)

Activator Dilution (%)

Wet/Dry Wet Dry

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14

C
om

pr
es

si
ve

 S
tr

en
gt

h 
(M

P
a)

Activator Dilution (%)

Wet/Dry Wet Dry



69 
 

mix with a liquid/binder ratio of 0.37, binder content of 400 Kg/m3 containing ground 

granulated blast-furnace slag (GGBS) and class F fly-ash cured under ambient 

conditions at a temperature of 20 ± 20C and 70 ± 10% relative humidity [139].  

3.4.1.2 Effect of Admixtures (R42 and SRA)  

 Retarder R42 and shrinkage admixture SRA were introduced in the AACM 

mortar mixes M3 to M5 for batches (a). The admixtures were not added to batches (b) 

mixes M3 to M5.  

 The presence of retarder and SRA admixtures in the AACM mortar mixes 

improved the compressive strength. For example, batch a (with admixtures, Fig. 3.21) 

produced higher strength of 80 MPa compared with 62 MPa for batch b (with no 

admixtures, Fig. 3.22) under wet/dry curing at activator dilution of 4.12%. The strength 

increase in batch "a" relative to batch "b" was observed under the three curing regimes 

although the wet/dry curing shows the greatest effect (Figures 3.21 and 3.22).  

 Similar results from literature show that a 2% (by mass of binder) dosage of 

SRA increases the compressive strength by approximately 8% at 28 days for a sodium 

silicate activated slag paste of liquid/binder ratio 0.5 cured at a temperature of 20 + 20C 

and 99% relative humidity [140]. The reasons proposed by the author [140] were a 

reduction in the surface tension leading to lesser internal stress when water evaporates 

and the redistribution of the pore structure by increasing the smaller pores while the 

larger pores are reduced simultaneously within the AACM concrete matrix.  

3.4.1.3 Effect of Liquid/Binder Ratio  

 The liquid/binder ratios of the AACM mortar mix M3 were varied between 0.46 

and 0.50 to optimise strength and workability. The AACM mortar mix M3 was selected 

for this fine-tuning of strength and workability instead of AACM mortar mixes M2, M4 

and M5 due to its superior resistance to chloride ingress [132] which is reported in 

chapter 4. Fig. 3.23 shows the compressive strength of the AACM mortar mix M3 at 

liquid/binder ratios 0.46, 0.48 and 0.50 under wet/dry and dry curing alongside 

published compressive strength results for AACM mortars from other authors all cured 

under room temperature 20 ± 50C and 70 ± 10% R.H. [141][142][143]. 
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Figure 3. 23: Effect of liquid/binder ratio on compressive strength of AACM mortars 

 The strength of AACM mortar mix M3 decreases with increasing liquid/binder 

ratios. The slope of the graph for mix M3 is similar to the graphs representing the data 

of the other authors [141][142][143]. The strength drops off at liquid/binder ratios under 

0.4 in two cases [142][143] due to workability loss resulting in poor compaction. The 

close range of liquid binder ratios of 0.46 to 0.50 was used in this research work to 

optimise the strength and workability of mix M3.  

 Keun-Hyeoka et al. [141] investigated a wider range of liquid/binder ratios 0.3, 

0.4, 0.5 and 0.6 to give compressive strengths of 72 MPa, 63 MPa, 61 MPa and 38 MPa 

respectively for slag concrete activated by sodium silicate cured under room 

temperature (20 ± 20C) and relative humidity of 70 ± 5%. Another wide range of liquid 

binder ratios 0.65, 0.50 and 0.35 having compressive strengths of 54 MPa, 67 MPa and 

58 MPa respectively were presented by Maochieh Chi [142]. The concrete was cured at 

a room temperature of 250C and relative humidity of 80%. The graph of Maochieh Chi 

[142] in Fig. 3.23 gives the highest compressive strength values due to the high 

temperature of curing (250C) compared with the ambient curing temperature of (20 ± 

20C) adopted by the other researchers.   

 The results of Fernandez-Jimenez and Palomo [143] show the lowest 

compressive strength values of specimens cured at room temperature (20 ± 20C and 75 

R.H). The mix composition used by Maochieh Chi [142] was 574 Kg/m3 of class F fly 

ash, 1581 Kg/m3 of fine aggregate and 270 Kg/m3 of sodium silicate and sodium 

hydroxide activator while the mix details by Keun-Hyeoka et al. [141] and Fernandez-

Jimenez and Palomo [143] were not stated.  
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 The graphs in Fig. 3.23 show a sudden loss of strength at low liquid/binder 

ratios due to poor workability of mortar or concrete. The explanation for the poor 

performance at the lowest liquid binder ratio 0.35 (58 MPa) presented by Maochieh Chi 

[142] was an insufficient alkali solution for the formation of crystallized structure. 

Fernandez-Jimenez and Palomo [143] presented results similar to Maochieh Chi [142] 

showing the lowest compressive strength of 30 MPa at lowest liquid binder ratio 0.38. 

The data from Maochieh Chi [142] and Fernandez-Jimenez and Palomo [143] show a 

sharp decline in strength at liquid/binder ratios below 0.4 as seen in Fig. 3.23. The 

optimum limits for liquid/binder ratios for compressive strength, recommended by 

Fernandez-Jimenez and Palomo [143], are between 0.40 and 0.50. A liquid/binder ratio 

below 0.40 limits the plasticity of the fresh mortar which results in inadequate 

consolidation and strength loss.  

3.4.1.4 Effect of Curing Regime (Wet/dry, Wet and Dry) 

 Three curing regimes (wet/dry, wet and dry) were employed for mortar mixes 

M2 to M6. The strengths of batch "a" mixes (with admixtures) are shown in Figures 3.21 

and 3.24, while the batch "b" mixes (with no admixtures) are represented in Figures 

3.22 and 3.25. The significance of applying practical curing methods (wet/dry, wet and 

dry) is to investigate strength performance under these curing conditions. These curing 

methods are often applied in the field application. The shrinkage reducing admixture 

SRA and retarder R42 will equally influence the concrete mechanical properties. 

 
Figure 3. 24: Compressive strength of AACM 
and OPC mortar batch "a" mixes with 
admixtures 

 
Figure 3. 25: Compressive strength of AACM 
and OPC mortar batch "b" mixes without 
admixtures  

 For AACM mortar mixes M2 to M5, the wet/dry curing which is 3 days in water 
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highest compressive strength for both batches (a) and (b) mixes as shown in Figures 

3.24 and 3.25. This was followed by dry curing (28 days curing in laboratory air at 20 ± 

20C, 65% R.H.). The least compressive strength was recorded for wet curing (28 days 

curing in water at 20 ± 20C).  

 Arie at al., [144] achieved a compressive strength of 63 MPa under moist curing 

at a temperature of 20 ± 20C for a slag/fly ash AACM mortar blend, other researchers 

presented compressive strength as high as 100 MPa for fly ash-based AACM mortar at 

elevated temperature curing (50-800C) [26][145][146]. Heat treatment is required for fly 

ash-based AACM mortar to synthesize. The beneficial effect of heat curing is the 

increased pozzolanic reactions in geopolymer concrete when compared with ambient 

temperature curing. Whilst it may be practicable to expose specimens of geopolymer to 

heat curing in the laboratory, it is impractical on construction sites.  

 The effect of curing conditions on OPC mortar contrasts the AACM mortars by 

providing the maximum compressive strength under wet curing. The availability of 

moisture in OPC concrete supports cement hydration which produces strength. The 

geopolymer reactions in AACMs do not rely on moisture as OPC. The OPC mortar mix 

M6 recorded the highest compressive strength of 51 MPa (Fig. 3.25) under wet curing 

followed by 43 MPa for wet-dry curing, which is slightly higher than 42 MPa for dry 

curing as shown in Fig. 3.25. The results of OPC mortar mix M6 are consistent with the 

work of other researchers which also show a similar effect of curing conditions on 

strength of OPC concrete [147][148]. The relative humidity of moisture in the OPC 

capillary pores is maintained above 80% when cured in water, which favours hydration 

reactions [25]. There will be little loss of moisture when OPC concrete is cured in any 

medium above 80% R.H., hence curing in water may not be needed for continuing 

hydration. 

3.4.2 Classification of Pore Size Distribution 

3.4.2.1 Unimodal and Bimodal Pore Distribution 

 The distribution of pore sizes in AACM and OPC mortar mixes was determined 

from the differential pore volume graphs under wet/dry, wet and dry curing as shown in 

Figures 3.26, 3.27 and 3.28 respectively. The results of two AACM mortar mixes M2 

(2.15% activator dilution) and M5 (12% activator dilution) alongside the OPC mortar 

mix M6 are presented. All mixes were without the admixtures R42 and SRA. AACM 

mixes M3 and M4 provide similar results as mixes M2 and M5, which are recorded in 

Appendix 3.2(a - d). 
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Figure 3. 26: Pore size distribution for AACM and OPC mixes without admixtures 
under wet/dry curing 
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Figure 3. 27: Pore size distribution for AACM and OPC mixes without admixtures 
under wet curing 

  

 
Figure 3. 28: Pore size distribution for AACM and OPC mixes without admixtures 
under dry curing 
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 A unimodal pore distribution in OPC mortar is defined by the single range of 

pore volumes observed within the differential pore distribution graphs for OPC mortar 

shown in Figures 3.26, 3.27 and 3.28.  Other studies on the microstructure of OPC 

matrix also show a unimodal pore size distribution with most of the pore volume within 

the range of 0.01 to 0.1 µm pore diameter [3][82].  However, under dry curing, OPC 

mortar also shows the presence of pore diameters up to 1 µm. 

 A bimodal pore distribution in AACM mortar, on the other hand, is defined by 

the double range of pore volume observed within the differential pore distribution 

graphs in Figures 3.26, 3.27 and 3.28 for the AACM mixes. These pore sizes are 

normally observed between two separate zones of ˃ 1 µm and ˂0.02 µm [3]. The results 

of this investigation in Figures 3.26, 3.27 and 3.28 show AACM mortar falls under this 

category with significant porosity observed at ˃ 1 µm and ˂0.02 µm while there is little 

porosity between these pore size ranges. AACM mixes with admixtures show similar 

bimodal pore distribution which will be discussed in section 3.4.2.2.4. 

3.4.2.1.1 Wet/dry Curing 

 The pore sizes in AACM mortar mixes under wet/dry curing presented in Fig. 

3.26 show a bimodal pore size distribution. The first range of pore sizes in the AACM 

mortar mix M2 is ˂0.02 µm pore diameter while the second range is predominantly ˃ 

0.2 µm. AACM mortar mix M5 shows similar trend of bimodal pore distribution, the 

pore sizes range from under 0.03 µm and greater than 0.2 µm. The OPC mortar mix M6 

shows a unimodal pore size distribution (Fig. 3.26) within the approximate range of 

0.01 to 0.3 µm. The bimodal distribution of pores in AACM mortar mixes M2 and M5 

has a larger maximum pore diameter than the OPC mortar M6.  

3.4.2.1.2 Wet Curing 

 The bimodal pore size distribution in AACM mortar mix M5 is less pronounced 

under wet curing (Fig. 3.27) than under wet/dry (Fig. 3.26) or dry curing (Fig. 3.28) due 

to its highest activator dilution. There is significant continuity of differential pore 

volume above pore diameters 0.01 µm which do not appear under both wet/dry and dry 

curing. There is the possibility of interconnection of pores in wet cured AACM mortar 

mix M5 (12% activator dilution) between the gel pores (0.005 to 0.01 µm) and capillary 

pores (0.01 to 100 µm) which provides continuity to the pores. The interconnection is 

represented by the distribution of peaks throughout the range of pore sizes 0.01 to 100 

µm. The less geopolymerisation product formed in AACM mortar mix M5 due to its 

higher activator dilution are likely to cause interconnected capillary pores. This leads to 
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vulnerability of the wet cured AACM mortar mix M5 to greater permeability of harmful 

ionic elements like Cl-, CO2 and sulphate [132]. 

 AACM mortar mix M2 which has a lower degree of activator dilution (2.15%), 

on the other hand, shows the typical bimodal distribution similar to that observed under 

wet/dry curing in Fig. 3.26. 

3.4.2.1.3 Dry curing 

 AACM mortar mixes M2 and M5 under dry curing (Fig. 3.28) show a bimodal 

pore size distribution similar to wet/dry curing. The first range of pores in AACM 

mortar mix M2 are less than 0.01 µm while the second range of the bimodal pore size 

distribution is greater than 1 µm. AACM mortar mix M5 has a coarser pore range of less 

than 0.2 µm and greater than 1 µm. OPC mortar mix M6 revealed a unimodal pore 

distribution between 0.01 µm to approximately 2 µm, the pore size range is slightly 

higher compared to wet/dry and wet curing.  

3.4.2.2 Gel and Capillary Pore Volumes 

 The total pore volumes within the AACM and OPC mortars were determined 

from the cumulative pore volume curves under wet/dry, wet and dry curing, which are 

shown in Appendix 3.1 (a -c) respectively. Fig. 3.29 shows the total pore volume of 

AACM and OPC mortar mixes under the three types of curing. Only AACM mortar 

mixes M2 and M5 are considered in this section. 

 

Figure 3. 29: Intrudable porosity for AACM and OPC mixes without admixtures under 
wet/dry, wet and dry curing  
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3.4.2.2.1 Wet/dry curing 

 AACM mortar mix M2 had a lower pore volume of 29.82 mm3/g compared with 

81.21 mm3/g for the OPC mortar mix M6 as shown in Fig. 3.29. The application of 

wet/dry curing to AACM concrete was observed to enhance its resistance to chloride 

ingress under prolonged exposure to salt laden environment which is reported in chapter 

4, section 4.4.3. The resistance of heat cured AACM mortar to chloride penetration is 

best achieved when it is initially subjected to adequate wet curing before the application 

of external heat source [149]. The 3 days initial wet curing under the wet/dry curing 

method (Table 3.5) used in this research project provided the much-needed moisture to 

improve particle packing  [149] around the aggregates in the AACMs. This together 

with the geopolymer reactions resulted in lower pore volume when compared to the 

OPC mortar at later ages.  

 The pore volume for AACM mortar mix M2 (2.15% activator dilution) is 

slightly less than AACM mortar mix M5 (12% activator dilution). The pore volume in 

AACM mortar mix M2 is 29.82 mm3/g while it is 30.60 mm3/g for AACM mortar mix 

M5 under wet/dry curing as shown in Fig. 3.29. The higher activator dilution of 12% in 

AACM mortar mix M5 under wet/dry curing reveals almost the same pore refinement as 

AACM mortar mix M2 with 2.15% activator dilution.  

3.4.2.2.2 Wet curing 

 The wet curing of OPC mortar resulted in a pore volume of 68.16mm3/g 

compared with 81.21 mm3/g and 93.51 mm3/g for wet/dry and dry curing respectively 

(Fig. 3.29). The wet curing method normally provides the best mechanical and 

durability properties to OPC concrete. The saturation of OPC mortar pore spaces with 

water supports cement hydration. The hydration is greatly reduced when the relative 

humidity within the capillary pores drops below 80% [60][61]. Since both the wet/dry 

and dry curing methods exposed the specimens to laboratory air curing at relative 

humidity of 65% before cement paste hydration was completed, the result was a slow 

hydration rate with more pores than under wet curing. This is more prominent under dry 

curing (Fig. 3.29) than wet/dry curing because of the lack of wet curing at a very early 

stage. 

 The pore volume of AACM mortar mix M2 under wet curing is greater than 

under wet/dry curing (Fig. 3.29). The intrudable pore volume under wet curing of 38.14 

mm3/g is higher than 29.82 mm3/g under wet/dry curing. AACM mortar mix M5 shows 

a similarly higher pore volume under wet curing (Fig. 3.29). The OPC mortar mix M6 
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on the contrary, has a lower pore volume under wet curing (68.16 mm3/g) compared to 

wet/dry curing (81.21 mm3/g). The wet curing favoured the hydration process of OPC 

mortar resulting in lower pore volume.  

3.4.2.2.3 Dry curing 

 AACM mortar mix M5, under dry curing, has pore volume of 59.13 mm3/g 

compared with 93.51 mm3/g for the OPC mortar mix M6 under the same dry curing (Fig. 

3.29). The results presented in Fig. 3.29 show that AACM mortars possess significantly 

less pore volume than OPC mortars under the three curing methods. This suggests 

AACM mortar contains less pore spaces accessible by mercury than OPC mortar. Since 

the dimensions and mass of all test samples are within the same range (Table 3.6), the 

effect of hysteresis and entrapment will be minimal [137]. The pore volume of the OPC 

mortar mix M6 is higher than the AACM mortar mixes for all curing conditions. 

 RILEM TC 224-AAM [3] reported that the total pore volume (i.e. summation of 

both gel and capillary pores) of AACM is somewhat similar or sometimes higher than 

comparative OPC. On the contrary, the results of this study show that the total intruded 

pore volume was higher in OPC mortar than in AACM mortar. Nevertheless, a higher 

capillary pore volume (0.01 to 100 µm) was observed in AACM mortar than OPC 

mortar, while the gel pore volume (0.0073 to 0.01 µm) was much lower in AACM 

mortar. For example, AACM mortar mixes M2 and M5 under wet/dry curing (Fig. 3.23) 

have a higher capillary pore volume compared to OPC mortar mix under the same 

wet/dry curing as shown later in section 3.4.3.4.4. 

3.4.2.2.4 Effect of admixtures    

 The distribution of pore sizes of batch "a" mixes (with admixtures) are presented 

in Fig. 3.30. The corresponding data for batch "b" mixes (without admixtures) are 

plotted in Fig. 3.31. The specimens under wet/dry curing were only considered amongst 

the three curing methods employed due to the optimal performance of AACM mixes 

under this curing condition as discussed later in section 3.4.3.2. The graphs for other 

curing conditions are shown in Appendix 3.2 (a-d), which is similar to Figures 3.30 and 

3.31. 
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Figure 3. 30: Pore size distribution of AACM mortar mixes (with admixtures) under 
wet/dry curing 
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Figure 3. 31: Pore size distribution of AACM mortar mixes (without admixtures) under 
wet/dry curing 

 The introduction of chemical admixtures in AACM mortar reduces the pore 

sizes as shown in Figures 3.30 and 3.31. The reduction indicates significant pore 

refinement when admixtures were added in the AACM mortar mixes M2 to M5. 

Chemical admixtures (R42 and SRA) induce a better distribution of cementitious 

particles consequently leading to better hydration [152]. Similarly, the inclusion of 

polycarboxylate admixture in OPC cement paste has shown significant reduction in total 

porosity after 2 days of hydration and the pore structure becomes more refined by the 

rise in the percentage of gel pores and a decrease in the capillary pore sizes [152].  

 However, RILEM TC 224-AAM [3] report reveals inconsistencies in the 

rheological properties as well as the hydration process of AACMs by the addition of 

most available admixtures designed for Portland cement-based materials. The 

differences in the chemistry of AACM materials compared with OPC based materials, 

in particular the high pH obtained during the synthesis of most alkali-activated binders, 

is likely to account for such differences in their rheological properties and activation 

process. 

 The volume of pores is reduced under the combined influence of admixture and 

a lower activator dilution. For instance, batch "a" (with admixture) displayed a lower 

pore volume which is 15 mm3/g for mix M2 (Fig. 3.30) compared with batch "b" 

(without admixture) which is 57 mm3/g for mix M2 (Fig. 3.31). Similarly, AACM 

mortar with lower activator dilution (2.15%) has the lowest pore volume of 15 mm3/g 

compared with 46 mm3/g for AACM mortar with highest activator dilution (12%) as 

seen in Fig. 3.30. The porosity results indicated that the permeability of AACM mortars 
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is reduced by the inclusion of chemical admixtures (R42 and SRA) and by lower 

activator dilution. 

3.4.3 Pore System Parameters  

 The pore system parameters were derived from the cumulative porosity curve 

and logarithmic differential pore volume curves as discussed in section 3.2.3. These 

parameters are classified as intrudable porosity Фin, critical pore diameter dc and 

threshold pore diameter dth and their location on the curves is shown in Figures 3.4 and 

3.5 for OPC and AACM mortar respectively. The location of Фin on the cumulative 

pore volume curve is similar for both OPC and AACM mortars (Figures 3.4 and 3.5). 

The location of dc and dth is different with both values representing larger pore volumes 

for AACM mortars. Mercury intrusion porosimetry tests were performed on two 

samples per mix and their average results were calculated. 

3.4.3.1 Intrudable Porosity Фin 

 The Intrudable porosity Фin is obtained by reading the highest point on the 

cumulative porosity curve. This corresponds to the lowest equivalent diameter on the 

cumulative porosity curve. The influence of activator dilution, admixtures, liquid/binder 

ratio and different curing regime (wet/dry, wet and dry) on the the intrudable porosity 

Фin was determined. The intrudable porosity Фin values which were derived from the 

highest point of the cumulative porosity curves are presented in Appendix 4.3 (a-f) for 

all mixes. The liquid/binder of the mixes was 0.48 except mix M2 (2.15% dilution) for 

which it was 0.41. 

3.4.3.1.1 Effect of activator dilution 

 The influence of activator dilution on the intruded pore volume is presented in 

Figures 3.32 and 3.33.  
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Figure 3. 32: Intrudable porosity of AACM 
mortar batch "a" mix with admixtures  

 
Figure 3. 33: Intrudable porosity of AACM 
mortar batch "b" mix withot admixtures  

 Figures 3.32 and 3.33 show that the intrudable porosity increases as the activator 

dilution increases. The increase in activator dilution reduces the pore refinement of the 

mortar matrix. 

 A gas sorption analysis was performed on a fly-ash based AACM system to 

study the influence of activator concentration [153][154]. The authors observed pore 

refinement of the fly-ash based alkali activated material with an increase in the activator 

concentration which is similar to results obtained from this study. A high dosage of 

activator improves the pore refinement of AACM mortar [89]. 

3.4.3.1.2 Effect of admixtures (R42 and SRA)  

 The intruded pore volume of mixes with and without admixtures (R42 and SRA) 

is shown in Figures 3.32 and 3.33 respectively. A lower intruded pore volume was 

observed in batch "a" mixes (with admixtures) compared with batch "b" mixes (without 

admixtures). This could be due to the modified crystal growth or morphology produced 

by the admixtures [3]. A similar modification was observed in the microstructure of 

OPC pastes when 1% polycarboxylate retarding admixture was used, which resulted in 

a slight reduction in the porosity [152]. A similar reduction in the total intrudable pore 

volume of cement paste by inclusion of admixtures was observed [155]. 

 The beneficial influence of the shrinkage reducing agent SRA is explained by 

two factors, firstly, the reduction of surface tension of water present in the pore system 

leading to smaller internal stress when water evaporates and secondly, the redistribution 

of cement particle due to the decreased capillary stress of water induced during the 
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mixing process [156]. On the other hand, the retarder reduces the reaction rate of 

tricalcium silicate with water, thereby, impeding the early growth of calcium hydroxide 

in OPC concrete. During the delayed growth of calcium hydroxide, which is the 

hydration product, realignment of cement particles occurs in the concrete matrix to form 

a denser pore structure [157]. The admixture R42 has a similar retarding effect on the 

early age reactions of the AACMs, which slow down its setting and hardening process. 

However, the chemical processes involved are not clear at present. 

3.4.3.1.3 Effect of curing 

 The lowest intruded pore volumes in batches "a" and "b" occur under wet/dry 

curing, followed by wet curing and then dry curing (Figures 3.32 and 3.33). The 

combined influences of admixtures and wet/dry curing have a more beneficial effect on 

the pore structure than either wet or dry curing. This is due to the high volume of pore 

blocking effect induced by wet/dry curing regime. Figures 3.32 and 3.33 show that the 

intrudable porosity under dry curing is highest at all activator dilution values. This is 

contrary to the results on compressive strength (section 3.4.1.1) which show higher 

strengths achieved by AACMs under dry curing compared to wet curing. For example, 

AACM mortar M2 batch "a" (with admixtures) had intruded porosity of 30.60 mm3/g, 

38.14 mm3/g and 53.44mm3/g for wet/dry, wet and dry curing respectively (Fig 3.32) 

while their corresponding strengths are 73 MPa, 58 MPa and 65 MPa respectively (Fig 

3.24).  

 The availability of water during early age allows for more hydration to take 

place in concrete containing mineral admixtures. This results in the formation of more 

calcium silicate gel [134]. In the case of supplementary cementitious materials, 

reduction of pore spaces occurs with wet/dry curing. Research results from Khatib and 

Mangat [134] agree with the reduction of pore spaces when wet/dry curing is employed 

for cement pastes with 22% and 9% replacement with fly ash and silica fume. The 

authors [134] adopted 14 days moist curing after casting followed by air curing at 450C 

and 25% relative humidity for further 14 days. This phenomenon may be applicable to 

AACM concrete where fewer pores are produced under wet curing at early age due to 

initial hydration reactions which proceed along with geopolymerisation reactions. 

3.4.3.1.3 Effect of liquid/binder ratio  

 The intruded pore volumes for AACM mortar mix M3 with three liquid/binder 

ratios of 0.46, 0.48 and 0.50 are presented in Fig 3.34. The intrudable porosity was 

obtained from the graphs of cumulative pore volume presented in Appendix 3.4 (a-c). 
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The AACM mortar mixes were subjected to curing regimes wet/dry, wet and dry. 

Despite the small range of liquid/binder ratios (0.46 - 0.50), a clear linear relationship is 

observed with the intrudable porosity as shown by the best-fit regression lines plotted in 

Fig 3.34.  

 

Figure 3. 34: Relationship between liquid/binder ratio and intruded pore volume of 
AACM mortar mix M3 (with admixtures) 

 Liquid/binder ratio 0.46 had the lowest intruded pore volume of 30.23 mm3/g 

compared with 38.63 mm3/g at liquid binder ratio 0.5 under wet/dry curing. 

 The lowest intruded pore volumes were recorded for wet/dry curing, followed 

by wet curing and lastly dry curing for the AACM mortar M3 as shown in Fig 3.34, each 

curing condition showing a linear relationship between liquid/binder ratio and porosity. 

This relationship is similar to the strength-liquid/binder ratio relationships discussed in 

section 3.4.1.3 except the contradictory effect of wet and dry curing on the relationships. 

It has been suggested that the reason for lesser intruded pore volume in hardened 

cement paste with low water/cement ratio is the smaller distances between unhydrated 

cement grains [126]. 

3.4.3.2 Critical Pore Diameter dc 

 The tortuosity and randomness of interconnected pores of AACM and OPC 

mortars M2 to M6 are determined by the critical pore diameter dc. This represents the 

extent to which these pores are connected to each other. The influence of parameters 

such as activator dilution, admixtures, liquid/binder ratio and curing regime on the 

critical pore diameter dc was analysed, similar to intrudable porosity Фin. The first 

highest point on the logarithmic differential pore volume curve (pore diameter versus 

dv/dlogD curve) is considered as the critical pore diameter dc as shown in Figures 3.4 

and 3.5, discussed in section 3.2.3.  
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3.4.3.2.1 Effect of activator dilution 

 Four levels of activator dilution of 2.15%, 4.24%, 8.12% and 12.00% were 

adopted for the AACM mortar mixes M2, M3, M4 and M5 respectively. Their critical 

pore diameters dc were obtained from the differential pore volume graphs under wet/dry 

(Fig. 4.31), wet (Appendix 3.2a) and dry curing (Appendix 3.2c) respectively. The 

critical pore diameter dc is plotted against activator dilution in Fig. 3.35.  

 
Figure 3. 35: Effect of activator dilution on the critical pore diameters (with admixtures) 

 The dilution of alkali activator increases the critical pore volume dc as shown in 

Fig. 3.35. This pattern is similar for the three curing regimes wet/dry, wet and dry 

although the slope of the dry cured graph is significantly steeper. The increase in the 

critical pore diameter dc within the AACM mortar matrix leads to greater diffusion of 

deleterious substances such as chlorides and sulphates. The durability properties of 

AACM mortars are, thereby, impaired by higher critical pore diameter dc produced by 

the dilution of alkali activator. 

 The highest critical pore diameters dc were observed under dry curing as shown 

in Fig. 3.35. The combined effect of 3 days wet curing followed by the 25 days dry 

curing (wet/dry curing) improved the crystallinity and pore structure of AACM mortar 

leading to superior mechanical and durability properties compared to dry curing, as 

shown in chapter 4.  

 The pore size distribution of capillary pores in AACM mortar determines its 

permeability to deleterious elements such as chlorides and sulphates [82] while the 

gel/space ratio determines the strength properties of the cementitious materials [25]. 

Consequently, the influence of activator dilution on dc is likely to have greater impact 

on the durability properties of AACM mortar rather than its mechanical strength. In 

conclusion, the wet/dry curing displayed the best result for the critical pore diameter dc 

followed by wet curing and lastly dry curing for AACM mortar. 
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3.4.3.2.2 Effect of admixtures  

 The critical pore diameter dc under wet/dry curing plotted against activator 

dilution is shown in Figures 3.36 for batch "a" (with admixtures) and batch "b" (without 

admixtures). The critical pore diameters dc is derived from the differential pore volume 

curves presented in Figures 3.30 and 3.31 respectively. 

 
Figure 3. 36: Effect of admixtures (R42 and SRA) on the critical pore diameters of 
AACM mixes under wet/dry curing. 

 Batch "a" (with admixtures) possesses lower critical pore diameter dc than batch 

"b" (without admixtures). The presence of admixtures (R42 and SRA) in AACM mortar 

mixes M2 to M5 resulted in a lower critical diameter dc.  

 The effect of SRA on cement based materials has a positive impact on the 

capillary porosity depercolation. The diffusivity of fluid and ions is impeded within the 

mortar matrix when its connecting capillary pores are depercolated, thus improving its 

durability properties. An increase in the capillary pore depercolation was observed in 

cement paste by the addition of water reducing admixture (HRWRA, Glenium 3000NS) 

[158]. Also, 5% by mass of shrinkage-reducing admixture (SRA, Tetraguard AS20) was 

added to a mix of water/cement ratios 0.3 and 0.5 and OPC content of 360 Kg/m2, 

which was cured for 7 days at a temperature of 200C in lime water. The authors [158] 

observed a significant reduction of capillary porosity by around 15% – 25% in the OPC 

paste containing the chemical admixtures compared with cement paste without 

admixtures. The pore discontinuity (depercolation) within the paste matrix was also 

observed using low temperature calorimetry (LTC) and electrical impedance 

spectroscopy techniques. These observations validate the depercolation of intrudable 

porosity  caused by admixtures in concrete, which was proposed by Bentz and Edward 

[113] as discussed in section 3.2.3.1. 
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 On the other hand, Craeye et al., [159] studied the effect of polycarboxylate 

admixture on the critical pore diameters of self-compacting concrete (SCC) and 

observed no significant difference between SCC mixes containing the admixture and 

those without it. The authors concluded that it is not clear if the admixtures have any 

influence on the concrete microstructure. 

3.4.3.2.3 Effect of liquid/binder ratio  

 The critical pore diameters dc for AACM mortar mixes M3 containing three 

liquid/binder ratios of 0.46, 0.48 and 0.50 were obtained from Appendix 3.5 (a-c). The 

mixes were subjected to curing regimes wet/dry, wet and dry. The results in Fig. 3.37 

show a significant influence of liquid/binder ratio on the critical pore diameter dc under 

the three curing regimes.  

 

Figure 3. 37: Relationship between liquid/binder ratio and critical pore diameter dc of 
AACM mortar mix M3 (with admixtures) 

 Depercolation of open pore spaces during geopolymerisation of the gel paste is 

highest at the lowest liquid binder ratio 0.46. A possible explanation could be that the 

faster closing of the pore spacing between the binder particles is aided by a lower 

amount of liquid content present in the mix. These observations are consistent with  

those of OPC concrete [160]. The gel hydration products of OPC pastes at lower 

water/cement ratio occupy greater pore spaces that could otherwise have been water-

filled spaces. Therefore, water/cement ratio influences the connectivity of cement paste 

pores. This impacts the overall durability of concrete.  

 Zeolite formation is the structural framework which has the controlling capacity 

for the polycondensation and crystal growth in AACMs. In order to maintain a constant 

molar ratio of H2O to Na2O in a fly ash based geopolymer concrete, both the activator 

concentration and water content was increased but no significant effect was observed on 

the compressive strength [46]. In other words, the higher molar ratio of Na2O/SiO2 
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(activator concentration) had an insignificant impact on the compressive strength at 

higher liquid content. The durability properties of AACM material were enhanced by 

the presence of lower liquid content rather than a higher activator concentration [46]. 

However, much attention has been given to activator concentration in literature [26][88] 

while limited data exist on the impact of liquid/binder ratio on porosity parameters of 

AACM materials. 

3.4.3.2.4 Effect of curing regimes (wet/dry, wet and dry) 

 The critical pore diameters dc under wet/dry, wet and dry curing were obtained 

from the differential pore volume graphs presented in Appendix 3.6 (a-c) and are shown 

in Fig. 3.38.  

 
Figure 3. 38: Effect of curing regime (wet/dry, wet & dry) on the critical pore diameters 
of AACM and OPC mixes (without admixtures) 

 Fig. 3.38 shows that wet/dry curing regime had the lowest critical pore diameter 

dc. This is followed by wet curing which is reasonably close to wet/dry curing while dry 

curing has the highest critical pore diameter. For example, AACM mortar mix M2 has 

critical pore diameter of 1.26 µm under wet/dry curing, 1.47 µm under wet curing and 

2.40 µm under dry curing.  

 On the other hand, OPC mortar mix M6 under wet/dry curing has the lowest 

critical pore diameter of 0.21 µm followed by wet curing (0.30 µm) while the highest 

critical pore diameter dc is exhibited by dry curing (0.48 µm). The pore blocking effect 

in OPC concrete was proposed by Khatib and Mangat [134] for the wet curing regime. 

The availability of water during curing allowed for more hydration to take place 

resulting in the formation of more calcium silicate gel.  

 OPC mortar mix M6 has a much lower critical pore diameter dc than AACM 

mortar mixes. This may explain the reason for the much higher fire resistance of AACM 

concrete than OPC concrete. This is because the connected pores in AACM concrete 
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reduce vapour pressure induced by fire. A notable increase in strength was observed 

when an alkali-silicate activated concrete was exposed to 10000C [161]. This was 

attributed to the iron oxide content of the fly ash and the better connected microstructure 

of alkali-silicate activated concrete [161]. Kong et al. [162] suggested that the retention 

of strength in fly ash based AACM concrete was due to the different range of pore sizes 

present within its matrix and their distribution which is responsible for the escape of 

pore water during heating, without damaging the structure. 

3.4.3.3 Threshold Pore Diameter dth 

 Threshold pore diameter dth can also be considered as the pore diameter at which 

an abrupt slope change or point of inflexion occurs on the cumulative porosity curve. 

This is the point where the intrusion by a small amount of mercury ends, and just before 

the intrusion by a great portion of mercury begins as shown in Figures 2.4 and 2.5 in 

section 2.3. The threshold pore diameters dth were investigated to determine the 

influence of activator dilution, admixtures (R42 & SRA), liquid/binder ratio and curing 

regimes (wet/dry, wet and dry). 

3.4.3.3.1 Effect of activator dilution 

 The threshold pore diameters dth for AACM mortar mixes M2 to M5 were 

obtained from the combined curves of the cumulative and the differential pore volumes 

which are presented in Appendix 3.7 (a-c). Fig 3.39 shows the relationship between the 

threshold pore diameters dth and the activator dilution in AACM mortar mixes M2 to M5. 

A linear relationship between the threshold pore diameters dth and activator dilution is 

observed by the best-fit regression lines. 

 
Figure 3. 39: Effect of activator dilution on the threshold pore diameters dth of AACM 
mortar mixes M2 to M5 (without admixtures) 

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5T
hr

es
ho

ld
 P

or
e 

D
ia

m
et

er
 (

µ
m

)

Activator Dilution (%)

Wet/dry Wet Dry



90 
 

 AACM mortar mix M2 with the least activator dilution of 2.15% possess the 

lowest threshold pore diameter dth while AACM mortar mix M5 with the highest 

activator dilution of 12.0% has the highest threshold pore diameter. For example, the 

threshold pore diameter dth for mix M2 is 2.12 µm compared with 2.62 µm for mix M5 

under wet/dry curing.  

 The high alkali activator concentration especially using sodium silicate on slag 

based systems facilitates a high degree and rate of reaction, thereby leading to smaller 

pores [163]. However, the arguments put forward by Khale et.al, [24] suggested 

optimum limits for alkali activator concentration in order to achieve superior AACM 

concrete qualities. When this limit is exceeded, the unreacted positive ion will interfere 

with the mortar matrix leading to greater threshold pore diameter dth. A concentration 

between 8 to 16 molarity was recommended for sodium silicate activator [26] while a 

concentration of 10 molarity was recommended for potassium hydroxide [24]. The 

upper limit has not been exceeded in the data presented in Fig. 3.39. 

3.4.3.3.2 Effect of admixtures 

 Fig. 3.40 shows the threshold pore diameters dth of AACM mortar mixes M2 to 

M5 for batch "a" (with admixtures) and batch "b" (without admixture) for wet/dry, wet 

and dry curing. The combined curves of the cumulative and the differential pore 

volumes given in Appendix 3.7 (a-c) and 3.8 (a-c) were used to determine the threshold 

pore diameters dth.  

 
Figure 3. 40: Effect of admixtures (R42 & SRA) on threshold pore diameters dth of 
AACM mortar mixes 

  AACM mortar mixes with admixtures have much lower threshold pore diameter 

than the corresponding mixes without admixtures. The graphs in Fig. 3.40 show a 

strong linear relationship between activator dilution and threshold pore diameter dth 
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especially for batch "b" mixes (without admixtures) which show a greater slope of the 

linear relationship. 

 Studies show that SRA when added to blended cements reduces the capillary 

stress and water evaporation in plastic systems thereby increasing the portlandite 

oversaturation level in solution. This results in higher crystallization stresses which 

could lead to an expansion [164]. Likewise, the presence of retarders in concrete records 

an improvement in its performance, particularly its durability  [164]. The addition of 

admixtures (SRA and R42) in AACM mortar also show an improvement similar to that 

of blended cement mortars. This difference is greater in AACM mortar mixes with high 

activator dilution (Fig 3.37).  For example, AACM mortar mix with 12% activator 

dilution possesses a threshold pore diameter of 2.62 µm for batch "a" (with admixture) 

and 9.04µm for batch "b" (without admixture) under wet/dry curing. This is a 71% 

reduction in the threshold pore diameter due to admixtures. The corresponding 

difference at 2.15% dilution is 65%.  

3.4.3.3.3 Effect of liquid/binder ratio  

 The relationship between the threshold pore diameters dth and the liquid/binder 

ratio of AACM mortar mix M3 is shown in Fig. 3.41. The data are given in Appendix 

3.9 (a-c). 

 
Figure 3. 41: The relationship between threshold pore diameter dth and liquid/binder 
ratio (with admixtures) 

 Threshold diameter dth increases linearly with increasing liquid/binder ratio. For 

example, the mixes with liquid/binder ratios of 0.46, 0.48 and 0.50 had a threshold pore 

diameter dth of 1.38 µm, 1.42 µm and 1.81 µm respectively under wet/dry curing as 

shown in Fig 3.38. The wet and dry curing follow the same trend. The results show a 

significant influence of liquid/binder ratio on the threshold pore diameters dth even at 
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the small incremental increase of liquid/binder ratio from 0.46 to 0.50, particularly with 

dry curing. Wet/dry curing displayed lower threshold pore diameters dth than wet or dry 

curing.  

 Huajun [165] investigated the porosity and pore structure at higher liquid/binder 

ratios between 0.6 - 0.8 for a fly-ash based system. The AACM mortar mixes were 

cured under 200C temperature, 95 ± 5% R.H. for 1 day, followed by 14 days wet curing 

at 200C. The activator used was a mixture of sodium hydroxide and sodium silicate in 

the ratio 2:1. No significant change was observed in the porosity and pore structure of 

this fly-ash based system compared with OPC mortar. This is possible due to the high 

temperature of curing (500C) which dorminated the influence of other factors on pore 

structure. 

3.4.3.3.4 Effect of curing regime (wet/dry, wet and dry)  

 The curves of the cumulative and differential pore volumes that were used to 

determine the effect of curing regimes on the threshold pore diameters dth are presented 

in Appendix 3.10 (a-c). The threshold pore diameters dth for each AACM and the 

control OPC mortar mixes are shown in Fig. 3.42 under the three curing regimes.  

 
Figure 3. 42: Effect of curing on the threshold pore diameters dth (without admixtures) 

 Fig. 3.42 shows that dth for the AACM and OPC mortars was optimum under 

wet/dry curing. AACM mortar mixes displayed higher threshold pore diameters dth than 

the OPC mortar mix. For example, AACM mortar mix M2 under wet/dry curing had a 

threshold pore diameter dth of 5.83 µm compared with 0.31 µm for OPC mortar mix M6. 

The huge difference was because dth for OPC mortar occurred just before the unimodal 

peak (Fig. 3.4)  while for AACM mortar, it occurred just before the second bimodal 

peak (Fig. 3.5). The threshold pore diameters dth of blended cement pastes from Khatib 
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and Mangat [134] also show a similarly big difference between the AACM mortars (M2 

to M4) and the  OPC-pfa paste. 

 The difference in the threshold pore diameters dth of AACM concrete and OPC 

mortar could be attributed to the differences in their pore distribution. A large volume of 

pores for OPC mortar occurs towards the gel pore range while for AACM a greater part 

of pore volume occurs in the capillary pore range. 

3.4.3.4 Effective Porosity 

3.4.3.4.1 Effect of activator dilution 

 The influence of activator dilution under the different curing regimes on porosity 

of AACM mortar mixes M2 to M5 is shown in Fig. 3.43. 

 

Figure 3. 43: Effect of activator dilution on the porosity of AACM mortar with 
admixtures under different curing regimes. 

 The lowest activator dilution in AACM mortar mix (2.15% dilution) had the 

lowest porosity under each of the three curing regimes. Similarly, the highest activator 

dilution (12% dilution) had the highest porosity. The lowest porosity at 2.15% dilution 

suggests a tighter pore structure than the other mixes. For instance, AACM mortar mix 

with 2.15% activator dilution had 5.67%, 6.94% and 9.98% porosity compared with 

10.56%, 11.65% and 12.21% porosity for AACM mortar mix with 12% activator 

dilution under wet/dry, wet and dry curing respectively. Higher activator concentration 

in the AACM mortar mixes increases the rate of pozzolanic reaction.  

Lloyds et al., [153] and Zheng et al., [154] adopted gas sorption analysis to study the 

influence of activator concentration in a fly-ash based system. They observed pore 
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refinement of the fly-ash based alkali activated material with an increase in activator 

concentration which is similar to results obtained from this study.  

3.4.3.4.2 Effect of admixtures (R42 & SRA)  

 The influence of activator dilution on AACM batch "a" mixes (with admixtures) 

and batch "b" mixes (without admixtures) under wet/dry, wet and dry curing is shown in 

Fig. 3.44. The unbroken lines represent batch "a" mixes (with admixtures) while the 

broken lines represent the batch "b" mixes (without admixtures). 

 
Figure 3. 44: Effect of admixtures on the porosity of AACM mortar under different 
curing regimes. 

 AACM mortar mixes containing admixtures (batch "a") have lower porosity 

compared with those without admixtures (batch "b") under the same curing regime. The 

presence of admixtures results in the densification of AACM mortar matrix. The 

shrinkage reducing agent SRA reduces the surface tension of pore water resulting in 

smaller internal stress during its evaporation (drying shrinkage). It also modifies the 

pore structure due to the decreased capillary stress of water added during the mixing 

process [156].  

 Likewise, the retarder reduces the reaction rate of tricalcium silicate with water, 

thereby, impeding the early growth of calcium hydroxide in OPC concrete. Realignment 

of cement particles in the concrete matrix to form denser pore structure evolves [157] 

during the delayed growth of calcium hydroxide. The admixture R42 has a similar 

retarding effect on the early age geopolymerisation reaction of the AACMs. 

 The combined effect of admixtures and low activator dilution in AACM mixes 

produced lower porosity than mixes without admixtures and with high activator dilution. 

For example, batch "a" (wet/dry) at 2.15% activator dilution has 5.67% porosity 
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compared with 11.02% porosity exhibited by batch "b" (wet/dry) at 12% activator 

dilution. The presence of admixtures as well as the lower activator dilution favoured 

densification of AACM mortar matrix. 

3.4.3.4.3 Effect of liquid/binder ratio  

 The relationship between porosity and liquid/binder ratio of AACM mortar mix 

M3 is shown in Fig. 3.45 for different curing regimes. 

  
Figure 3. 45: Relationship between porosity and liquid/binder ratio of AACM mortar 
M3 under wet/dry, wet and dry curing (with admixture) 

 The influence of liquid/binder ratio on the porosity of AACM mortar is 

significant despite the close range of liquid/binder ratio (0.46 – 0.50) as shown in Fig. 

3.45. For instance, the porosity of AACM with liquid/binder ratio 0.46 is 4.85%, 5.16% 

and 6.58% under wet/dry, wet and dry curing respectively compared with 8.12%, 9.03% 

and 10.48% for liquid/binder ratio 0.50.  

 These observations are consistent with those of Bentz and Stutzman
 [160]  who 

suggest a strong influence of water/cement ratio on the pore structure of OPC cement 

paste. The gel hydration products at lower water/cement ratio occupy the spaces which 

would otherwise be water-filled spaces at higher water/cement ratios, thereby providing 

lower porosity at low water/cement ratio. This has impact on the overall durability of 

concrete. 

 The wet/dry curing produces the lowest porosity at different liquid/binder ratios, 

followed by wet and lastly dry curing. The 3 days initial curing in water for the wet/dry 

curing provided the much-needed moisture to improve particle packing around the 

aggregates in the AACMs. This together with the geopolymer reactions resulted in 

lower porosity when compared with wet and dry curing. 
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3.4.3.4.4 Porosity of AACM and OPC mortar 

 The relationship between porosity and incremental pore diameter range of 

AACM mortar mix M2 and OPC mortar mix M6 under wet/dry, wet and dry curing are 

shown in Figures 3.46, 3.47 and 3.48 respectively.  

 
Figure 3. 46: Graph showing the porosity at the incremental diameter (µm) for AACM 
and OPC mortar mixes M2 and M6 under wet/dry curing. 

 Figure 3. 47: Graph showing the porosity at the incremental diameter (µm) for AACM 
and OPC mortar mixes M2 and M6 under wet curing. 

 
Figure 3. 48: Graph showing the porosity at  the incremental diameter (µm) for AACM 
and OPC mortar mixes M2 and M6 under dry curing. 
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 The porosity of AACM Mortar M2 shows that it was distributed along different 

pore diameters with more significant porosity at larger diameters. On the other hand, 

OPC mortar M6 has its porosity distributed along a range of diameters with more 

significant porosity at smaller diameters. The distinctive nature of AACM mortars with 

large volume of pores within the capillary pore zone (0.16 to 6.31 µm) while OPC 

mortars have large volume of pores within the gel pore zone (0.01 to 0.16 µm) has been 

discussed fully in section 3.4.2.1.  

 Fig 3.49 shows the effective porosity of AACM and OPC mortar mixes M2 and 

M6 under wet/dry, wet and dry curing. 

 
Figure 3. 49: Porosity of AACM and OPC mortar mixes M2 and M6 under wet/dry, wet 
and dry curing. 

 The porosity of AACM mortar M2 is much lower than OPC mortar M6 despite 

the presence of larger pores in AACM mortar than the OPC mortar. The porosity of 

AACM mortar M2 is 5.67%, 6.94% and 9.98% compared with 15.28%, 12.62% and 

18.36% for OPC mortar for wet/dry, wet and dry curing respectively. It is clear that 

wet/dry curing is optimum for AACM mortar while wet curing is best for OPC mortar, 

the latter being a well-established fact. The densification of AACM is induced by a 

number of factors which includes the binder particle sizes which are smaller than OPC 

grains. The smaller particle size enhances the filling of pore spaces [166]. In addition, 

the geopolymerisation reaction in AACM mortar produces more hydration products 

compared with OPC mortar [167]. 

3.4.4 Relationship between Effective Porosity and Strength 

 The strength of concrete is significantly affected by the porosity of its internal 

structure like most porous materials. The relationship between porosity and strength of 

OPC concrete has been well investigated and its literature review is given in Section 
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3.2.2.4. Total porosity includes both open and closed pores unlike the effective porosity 

measured by MIP which takes account of open pores only, which provide access for 

liquid to move within the concrete [112]. The effective porosity which accounts for 

open pores is presented in this section.  

3.4.4.1 Effect of Curing 

 The relationship between the strength and porosity of AACM mortar mixes 

under wet/dry, wet and dry curing and the combined plot of wet/dry and dry curing with 

its regression equation is shown in Fig. 3.47. It is expressed as a linear plot for the 

different curing regimes, similar to the relationship proposed by Hasselmann [122]. 

 
Figure 3. 50: Strength-effective porosity relationship of AACM mortar under different curing. 

 The Hasselmann [122] linear relationship model (Table 3.2, section 3.2.2) 

provided the best fit to the AACM experimental data (Fig. 3.50). The results presented 

by Roßler and Odler
 [168] for OPC mortar showed a similar linear strength-porosity 

relationship. The wet/dry and dry curing provides a common relationship of the form:  

 � = 	−2.71843 + 89.186 3.2 

 The coefficient of correlation is 0.79. The experimental data for wet/dry curing 

lies on the upper end of the graph which represents higher strength and lower porosity 

while the dry curing is represented by the lower end of the common graph representing 

lower strength and higher porosity. AACM mortar subjected to wet/dry curing has the 

lowest effective porosity and highest strength (Fig. 3.50). The initial wet curing might 

have aided the production of more geopolymerisation product while the subsequent dry 

curing will result in increased compressive strength [26].  
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 On the other hand, AACM mortar subjected to dry curing has a higher effective 

porosity and higher strength than wet curing as shown in Fig. 3.50. Contrary to the 

expected increase in strength with decreasing porosity, AACM mortar subjected to dry 

curing has higher effective porosity than wet curing but the strength is also higher in dry 

curing than wet curing. For example, effective porosity of 10% possesses compressive 

strength of 61.2 MPa and 52.7 MPa for dry and wet curing respectively. This suggests 

that wet curing produces more pore blocking gel than dry curing, thus a more refined 

AACM pore structure evolves. On the other hand, the alkali reactivity of the pozzolanic 

material in AACM is higher under dry curing than wet curing, thus promoting rapid 

strength development which is a well-established fact. In conclusion, the effective 

porosity is lesser in wet curing than dry curing of AACM but the strength development 

is faster in dry curing than wet curing. 

3.4.4.2 Effect of Liquid/Binder Ratio 

 The experimental results presented by Lian et al., [118], Bu and Tian [119] for 

the strength and porosity relationship of OPC concrete together with the author's data on 

AACM mortar are shown in Fig. 3.48. Lian et al., [118] used OPC cement and fine 

aggregate with mineral admixtures (quary sand and silica fume) with water/cement 

ratios within the range of 0.30 to 0.38. The OPC mortar was cured in water for 28 days 

conforming to AS1012.8.1-2000 [169]. Bu and Tian [119] used a mix proportion of 

16% cement, 48% sand and 29% coarse aggregate with water/cement ratios 0.35 to 0.55. 

The specimens were cured in lime-saturated water at room temperature for 28 days. The 

author's data is the plot of linear equation obtained from Fig. 3.47 for AACM mortars 

subjected to wet/dry and dry curing as shown in equation 3.2.   

 y = 	−2.7184x + 89.186 3.2 

 

Figure 3. 51: Relationship between porosity and compressive strength. 
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 The experimental results from Lian et al., [118] with water/cement ratios 0.30 to 

0.38 and Bu and Tian [119] with water/cement ratios 0.35 to 0.55 show good correlation 

(R2  0.91) with the linear model proposed by Hasselmann [122] as shown in Fig. 3.51. 

The OPC specimens were wet cured for 28 days which provides an optimum condition 

for hydration process [24, 25] while the AACM mortar results presented by the author 

were subjected to wet/dry and dry curing, this provides an optimum condition for 

geopolymerisation. 

 Fig. 3.51 show different linear porosity-strength relationships for different 

compositions of OPC concrete and AACM mortars, all conforming to the Hasselmann 

[122] model. For a given porosity, the strength of AACM mortar is higher. The graph of 

AACMs extends to much lower porosity than the OPC concretes which results in much 

higher strength range of AACM mortar. 

 However, for OPC concrete, the experimental results from Lian et al., [118] with 

lower water/cement ratio (0.30 to 0.38) displayed higher strength and a lower porosity 

than Bu and Tian [119] with water/cement ratios 0.35 to 0.55. Admixtures and silica 

fume were used in Lian et al., [118] concrete mixes.  

3.4.4.2.1 Validation of the effect of liquid/binder ratio 

 Similar influence of liquid/binder ratio on the strength-porosity relationship is 

shown in Fig. 3.52 for AACM mortar. The liquid/binder ratios are 0.46, 0.48 and 0.50 

for AACM mortar mix M3. The line graph for AACM mortar mix M3 subjected to 

wet/dry and dry curing shows similar relationship due to the predominantly dry curing 

period in both cases. 

 
Figure 3. 52: Strength-porosity relationship of AACM mortar mix M3 (with admixtures) 
under different liquid/binder ratios 
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 The lowest effective porosity with the highest strength is displayed by 

liquid/binder ratio 0.46, followed by 0.48 l/b and lastly 0.50 l/b as shown in Fig. 3.52. 

The effective porosity is influenced by the liquid/binder ratios resulting to the 

differences in their compressive strength. AACM mortar with liquid/binder ratio 0.46 

displayed the least porosity (4.2%) and the highest compressive strength of 70.9 MPa. 

This is followed by 4.8% and 5.2% porosity by AACM mortars with liquid/binder ratios 

0.48 and 0.50 respectively and the corresponding strengths of 66.1 MPa and 57.5 MPa.  

 The 0.46 l/b and 0.48 l/b shows similar trend in the strength-effective porosity 

relationship. The correlation is 0.76 for the combined data of 0.46 l/b and 0.48 l/b. On 

the other hand, 0.50 l/b displayed the lowest strength. This suggests an optimum range 

of 0.46 to 0.48 liquid/binder ratios to achieve a lower effective porosity and higher 

strength for AACM mortar.  

 The effective porosity obtained from mortar mixes with various liquid/binder 

ratios cannot be used independently to relate to the material strength. Other pore 

structure parameters such pore size, pore connectivity, pore surface roughness and pore 

volume fraction (porosity) should be considered when relating to material strength [112]. 

3.5 CONCLUSIONS 

The following conclusions are drawn from the investigation on poorosity and pore 

structure of AACM and OPC mortars subjected to ambient (wet/dry, wet and dry) 

curing: 

• The 28 days strength of AACM and OPC mortar mixes was significantly 

influenced by the curing regimes wet/dry curing, wet curing and dry curing. 

AACM mortar mixes developed maximum strength under wet/dry curing 

whereas wet curing is optimum for OPC concrete. Dry curing of AACM mortar 

produced higher strength than wet curing. For example, the 28 days strength of 

AACM mix M2 concrete under wet/dry, dry and wet was 73MPa, 65Mpa and 

58Mpa respectively. 

• An inverse relationship exists between the intrudable porosity and compressive 

strength of AACM mortar under the different curing regimes and liquid/binder 

ratios. Similar relationships exist between strength-critical pore and strength and 

pore diameters (critical and threshold). 

• The combined use of a retarder and shrinkage reducing admixture improved the 

strength of AACM mortar. For example, the 28 days strength mix M3 containing 
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both retarder and shrinkage reducing admixture had 71 MPa compared with 62 

MPa containing no retarder and shrinkage reducing admixture. 

• Strength of AACM mortar increase with decreasing liquid/binder and with 

increasing activator concentration when the range of activator was maintained 

between the upper and lower limits of activator molarity. 

• AACM shows a bimodal pore structure which is most conspicious under wet/dry 

and dry curing. Wet curing indicates a small degree of pore continuity possibly 

due to secondary cementitious hydration reactions overlapping with the 

geopolymerisation reactions in AACMs. 

• AACM mortar cured under the wet/dry regime possessed the lowest intruded 

pore volume Фin, critical pore diameter dc and threshold pore diameter Dth. 

Similarly, the presence of retarder and shrinkage reducing admixture and a lower 

degree of activator dilution with water reduced the intruded pore volume Фin, 

critical pore diameter dc and threshold pore diameter Dth.  

• Lower liquid/binder ratio in AACM mortar M3 mix displayed a lower intruded 

pore space Фin, critical pore diameter dc and threshold pore diameter Dcrit. 

• AACM mortar has lower porosity than OPC mortar. The gel pore volume (pore 

size range 0.5nm to 10nm) is lesser in AACM mortar than OPC mortar but the 

capillary pore volume (pore size range 10nm to 10,000nm) is higher in AACM 

mortar than OPC mortar.  
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CHAPTER 4 
BOUND CHLORIDES IN ALKALI ACTIVATED CEMENTITIOUS (AACM) 

CONCRETE 

4.1 INTRODUCTION 

 Chlorides can be present in concrete in three forms namely chemically bound 

chloride (acid soluble), physically bound chloride (water soluble) and free chloride 

(pore fluid) [97][25][170]. The ingress of chloride in concrete is mainly influenced by 

the concrete microstructure as investigated in chapter 3, the curing environment and age 

amongst others. Chloride ingress in concrete is undesirable because it causes corrosion 

of reinforcement embedded in the concrete matrix. This corrosion is activated when the 

passive protective film covering the surface of steel reinforcement is compromised by 

the presence of chloride ion in the concrete matrix. Chloride-induced corrosion of steel 

reinforced concrete is a major problem leading to structural failure if not properly 

addressed.  

 The presence of chloride ion in concrete is a major durability concern especially 

when the amount present in concrete has exceeded the corrosion threshold limits. When 

this threshold limit is exceeded, localised pitting corrosion of the steel reinforcement 

begins, serving as an active feeding zone to other corrosion sites on the steel surface. 

The impact is mostly felt on structures exposed to marine environment and de-icing 

salts e.g bridges, dams and crossings. Huge financial cost is involved in addressing 

these structural defects. For example, the US spent $552 billion for the total direct and 

indirect costs of repair, which is 6% of the annual GDP [171]. 

 The mobile chloride ion (free chloride) in the pore solution of OPC concrete is 

known to initiate corrosion. It is considered to be dependent on the physically bound 

chloride (chloride bound to the wall of the binder gel) and the chemically bound 

chloride (chloride forming part of the hydration products in OPC concrete). These 

relationships, however, are unlikely in AACM concrete [3]. The chloride binding 

capacity, the bound chlorides (physically and chemically) and pore fluid chloride 

remain to be fully understood in AACM concrete.  

 The microstructure of AACM and OPC concrete investigated in chapter 3 

reveals differences between the porosity and pore structure of these two concrete 

materials, possibly leading to differences in the rate of chloride diffusion between the 

two concretes. The presence of Friedel’s salt (calcium chloroaluminate phase) has not 

been detected in AACM [3]. More research into the chloride diffusion in AACM is 
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required since the chemistry of the pore fluid and the effect of chlorides on its 

microstructure are not fully understood [82].  

 Finally, durability in concrete technology cannot be fully investigated without 

addressing sustainability which is on the world agenda. For example, the recently held 

2
nd

 International Conference on Concrete Sustainability [172] addressed the issues 

relating to sustaining the present needs of concrete demand without compromising the 

needs of future generations to meet their own demands. The use of alkali activated 

cementitious material as an alternative binder to ordinary Portland cement (OPC) 

addresses the issues of sustainability.  

4.2 LITERATURE REVIEW 

4.2.1 Alkali Activated Cementitious Materials (AACMs) 

 New innovations in low impact construction materials require a reduction in the 

use of Portland cement with alternative binders, preferably utilising industrial waste 

materials and aggregates made from recycled waste. The word "Geopolymer" was first 

introduced by Davidovits [19] for alkali activated cementitious materials formed by the 

chemical reaction between alumino-silicate oxides and alkali polysilicates to yield 

polymeric Si-O-Al bonds similar in composition to natural zeolites [20][21]. Unlike 

ordinary Portland cement, the setting mechanism of alkali activated cement is by 

geopolymerization involving the dissolution of silica and alumina in a pozzolanic 

compound by a geopolymer activator resulting in the formation of hydrated calcium 

silicates and aluminates (C-A-S-H) [22][23]. Numerous research advancements have 

been made on the gel chemistry of alkali-activated binders [24][173][167], heat of 

hydration [174], fire resistance [175] and acid resistance [176], mechanical strengths 

[21] with advantageous benefits in comparison to ordinary Portland cement. However, a 

limited database exists on the durability properties of alkali-activated concretes 

describing their variation with time which is essential for service life modelling 

[12][177].  

4.2.1.1 Gel Chemistry 

 The geopolymerisation of an alkali activated cementitious material occurs 

through an exothemal process. The process entails the dissolution of covalent bonds Si-

O-Si and Al-O-Al which is schematised by [19] in Fig. 4.1. 
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Figure 4. 1: Schematics of exothermic reaction of hydroxide (OH) alkali activators with binder 

 Recent studies [19][20][24][178] reveal that sodium hydroxide develops high 

degree of polycondensation compared to silicate, carbonate activators. The high degree 

of polycondensation results in high crystallinity of the pore structure of the matrix thus 

improving the stability against aggressive environments. It is also found to buffer the 

pH of pore fluid thereby directly affecting the geopolymerisation products [26]. On the 

other hand, sodium silicate when used as activator gives better early and final strength 

and is found to be less sensitive to impurities like clay residuals, stone dust and fines 

[3]. 

4.2.2 Pore Structure of AACM and OPC Concrete 

4.2.2.1 AACM Concrete 

 An investigation on pore structure and permeability of AACM concrete found 

that the difference in strength was attributed to the difference in pore structure [179]. 

Porosity and median pore sizes of AACM paste when measured with mercury intrusion 

porosimetry showed a possible reduction when compared to OPC concrete 

[173][179][180]. The porosity and pore structure of the AACM concrete investigated in 

chapter 3 using the mercury intrusion porosimetry techniques equally shows a reduction 

in the MIP parameters (intrudable porosity, critical and threshold pore diameters) and an 

increase in the compressive strength compared with OPC concrete. 

 Findings made by Provis et al., [181] suggested that slag content ≥50% reduces 

the porosity and increases tortuosity. Research on the relationship between pore 

structure and water binder ratio of hydrated OPC concrete has also been reported 



106 
 

[25][182][183]. AACM concrete has a porous amorphous matrix that has both solid and 

liquid phases similar to OPC concrete. There is the potential of pore structure of AACM 

concrete to affect the penetration of corrosion initiators such as chlorides. The mix 

composition of the AACM concrete specimens under investigation in this research 

project was optimised for its liquid binder ratio, alkali content and aggregate 

proportions to achieve a good pore structure for chloride ingress, carbonation and 

corrosion tests.  

4.2.2.2 OPC Concrete 

 A relationship between strength and porosity is not only unique to OPC concrete 

but also applies to other brittle materials. The diffusivity of CO2 and chloride ions in 

hardened concrete is a function of the pore structure of the hydrated cement paste [25]. 

The pore structure determines the diffusion rate of harmful elements like chloride ions 

and CO2 (carbonation) through the matrix of OPC concrete until they reach the surface 

of the embedded steel reinforcement and initiate corrosion [91]. Research on OPC 

concrete shows that the diffusion through the solid phase of the matrix is negligible 

when compared to the rate of diffusion through the liquid phase in its pore structure. 

The rate of diffusion is controlled not only by the diffusion coefficient through the pore 

solution but by the physical characteristics of the capillary pore structure [111].  

4.2.3 Durability Parameters of AACM Concrete 

4.2.3.1 Introduction 

 The structural integrity of any cementitious material is compromised by the 

ingress of chloride, carbon dioxide and sulphate. Understanding the resistance of 

AACMs when exposed to aggressive environments is critical to predicting how the 

material will behave in service. Limited field applications of AACM concrete are due to 

a lack of knowledge of its structural behaviour when subjected to prolonged exposure to 

corrosion initiators such as chloride ions and carbonation [3]. The importance of 

structural stability cannot be overemphasized since the primary aim of design is for a 

structure to perform optimally during its design lifespan [184]. Structural defects or 

collapse can be attributed to the rate at which reinforcement steel corrodes under the 

prolonged influence of chloride diffusion and carbonation. 

4.2.3.2 Chloride Ingress and Transportation Mechanism 

 The penetration of chloride ions in a concrete matrix is a complex interaction of 

both physical and chemical processes which are predominantly affected by the 
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environments to which the concrete is exposed [102][170][185]. The presence of 

chloride ions around the steel bar causes it to corrode as a result of depassivation. 

Carbonation will neutralise the pH of alkaline concrete thereby causing corrosion of the 

steel [25]. The threshold level of chloride deposited on the surface of the rebar must be 

reached to initiate corrosion, thereby activating the surface to form an anode while the 

inactivated surface will be the cathode [25][170].  

 The transportation mechanism by which chloride ions can penetrate hardened 

concrete is governed by the mix composition, degree of saturation within the pore 

structure, temperature and location. Chloride ingress in a fully saturated hardened 

matrix is by the diffusion process which occurs when at least one surface of the fully 

saturated matrix is exposed to a chloride solution [178]. In the process, diffusion occurs 

as the solution seeks to attain equilibrium by moving the chloride ions from high 

concentrations to low concentrations within the matrix. A review of chloride diffusion 

test methods is given by Stanish et al. [111].  

 The bulk chloride diffusion method for determining the basic parameters of the 

diffusion process was used in this research project. This method uses AACM concrete 

specimens completely immersed in an aqueous sodium chloride solution at a regulated 

temperature to attain complete saturation within the pores of the specimen. The chloride 

ions in the aqueous solution diffuse through the pore matrix of concrete to reach an 

equilibrium concentration which is further enhanced by the gradient of the free chloride 

ions in the pore solution [186]. The diffusion of the chloride ions proceeds in one 

direction from the exposed face while the other faces of the specimen are sealed with a 

coating [187][98]. The movement of chloride ions within the pores of concrete can be 

through a combination of mechanisms in marine structures exposed to different 

conditions outlined in Table 4.1. The test procedure used in this research project for 

chloride diffusion measurements represents a submerged substructure where diffusion is 

the sole mechanism of chloride penetration. 
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Table 4. 1: Chloride transport mechanism for various marine exposure conditions  
Exposure Example of structure Primary chloride transport 

mechanism 

Submerged 

Substructures below low tide. Diffusion. 

Basement exterior walls or transport tunnel 
liners below low tide. Liquid containing 
structures. 

Permeation, diffusion and Wick's 
action. 

Tidal Substructures and superstructures in the 
tidal zone. 

Capillary absorption and 
diffusion. 

Splash and 
spray 

Superstructures above high tide in the open 
sea. 

Capillary absorption and 
diffusion. (Also carbonation) 

Coastal 
Land based structures in coastal areas or 
superstructures above high tide in river 
estuary or body of water in coastal area. 

Capillary absorption. (Also 
carbonation) 

Source: Cement Concrete and Aggregates Australia [186]. 

4.2.3.3 Rate of Chloride Ingress 

 Factors influencing the rate of chloride migration in AACM concrete can be 

broadly classified as internal and external factors. The formation of the AACM pore 

structure is expected to be dependent on various factors such as the alkali activator type 

and concentration, the pozzolanic material used, liquid binder ratio, binder content in 

the mix and presence of admixtures. The gel chemistry which is developed as the final 

AACM pore structure evolves determines its properties [12]. This gel chemistry and the 

interface with aggregates within the AACM concrete matrix are the primary internal 

factors that determine the penetration rate of chloride. 

 On the other hand, the external (environmental) factors that determine the rate of 

chloride penetration in AACM concrete include the curing condition, duration of 

exposure, temperature, degree of saturation and the boundary conditions such as the 

chloride concentration of the surrounding medium. Various studies on chloride ingress 

in concrete have been reported to determine diffusion parameters under marine spray 

and tidal cycles [102][188], immersion in NaCl solution [103][189][190]. 

4.2.3.4 Chloride Diffusion Parameters 

 Fick's second law of diffusion was suggested as a suitable model for chloride 

diffusion in concrete by Collepardi et al. [191] as shown in equation 4.1.  



109 
 

 9(;,�) 	= 	 ∁? 	@1 − A�� B x2CDE 	�	FG 
 4.1 

Where: x = distance from concrete surface (m); t = Time (seconds); DC = diffusion 

coefficient (m2/s); C0 = equilibrium chloride concentration on concrete surface; C(x,t) = 

chloride concentration at distance x; time t . This model is used to predict the chloride 

penetration in concrete with age. However, Fick's second law of diffusion assumes a 

constant value for the chloride diffusion coefficient for long-term prediction of chloride 

concentration which has been proven otherwise by recent studies. The diffusivity of 

concrete with age have been studied by various researchers including Mangat and 

Gurusamy [96] , Mangat and Molloy [192], Bramforth and Price [193] and Maage et al., 

[194]. Research findings have shown that the apparent chloride diffusion coefficient Dc 

varies with time t. It is given by the following power function [192]: 

 D	E =	D� 	�HI  4.2 

 where: Dc is the apparent diffusion coefficient at time t; Di is diffusion 

coefficient at reference time t, and m is the age factor. 

Equation 4.2 can be written in a linear form as shown in equation 4.3 [192], 

 ��J	D	E =	 ��J	D� −K	��J	�  4.3 

 Similarly, substituting the time dependency of the diffusion coefficient Dc 

(equation 4.2) into Fick's second law of diffusion (equation 1), a differential equation is 

obtained as shown equation 4.4  [192]. 

 9? 	= 	 ∁(;,�) 	L1 − A�� MNN
O 3
2CD� 	�	(�HI)1 − K PQQ

RS 

 4.4 

 Where C(x,t) is the chloride concentration at depth T and time t, C0 is the chloride 

concentration at the concrete surface. 

Equation 4.3 can be used to predict the rate of chloride diffusion (Dc) in concrete over a 

long period of exposure in NaCl laden environment and equation 4.4 can be used to 

determine the chloride concentration in concrete over a long period [192]. 

 Some authors [195][196] adopted predictive models for chloride ingress by 

using analytical solutions based on Fick's law to generate equation 4.5   
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4.5 

 Where VWX and YXare surface chloride and chloride diffusion coefficients which 

are assumed to be constants, V(T,Z)	is the chloride concentration at depth T and time t, V[, 
is the chloride concentration at the concrete surface and Z\T is the reference time which 

is 28 days. 

The relationships between diffusion coefficient, DC, surface chloride concentration, C0 

and exposure period, t, for marine concrete and repair materials were determined [103] 

[197][198]  which gave diffusion coefficient values ranging between 1 x 10-12 m2/s and 

52.3 x 10-12 m2/s (Table 4.2) under short and long-term marine exposure. The maximum 

value for surface chloride concentration, C0, at 270days is 0.85% by weight of binder 

compared with 28 and 90days having 0.32% and 0.56% by weight of binder 

respectively. Using a semi-empirical relationship between DC and time, a prediction 

model for chloride concentrations after long-term (e.g. 10 years) of exposure was 

established [192]. The build-up of chloride ions in concrete over a passage of time will 

reach and surpass the threshold value for corrosion initiation at the reinforcing steel 

surface [170]. 
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 Table 4. 2: Published chloride diffusion coefficient Dc values for OPC concrete 

4.2.3.5 Chloride Contents and Binding Capacity 

 The chlorides in concrete can be present in three forms namely chemically 

bound (acid soluble chloride), physically bound (water soluble chloride) and free 

chloride (pore fluid chloride) [25][97][170]. The sum of the acid soluble, water soluble 

and free chloride is termed the total chloride. In practice for OPC concrete, the long 

term concentration of free chloride in concrete and the chloride concentration of the 

environment (curing solution) are assumed to be equal [97]. The free chloride is related 

DC 

(m
2
/s x 10

-

12
) 

Curing 

Age 

 

W/C 

Ratio 

Mix Design Author  Remarks 

Binder 

(kg/m3) 
Water 

(kg/m3) 
Total 

Aggregate 

(kg/m3) 

2.5 1.5y 0.43 339 146 -  
 

R.B. Polder, 
1997[199] 

 
 

 
Fly ash based 

concrete exposed to 
salt/dry cycle in the 

laboratory 
 

3 1.0w 0.40 420 168 - 
2 4.0w 0.40 420 168 - 
1 14.0w 0.40 420 168 - 
4 1.0w 0.54 300 162 - 
3 4.0w 0.54 300 162 - 

2.5 14.0w 0.54 300 162 - 
2.86-3.65 2.0m 0.50 330 165 2066 Zhang & 

Gjorv 1999 

[200] 

Theoretical analysis 
of concrete under 

RCPT  
1.19-1.94 2.0m 0.50 330 165 1894 

2.8-3.1 1.0w 0.35 450 157.5 1695  
Luping 1997 

[201] 
 

 
Rapid penetration of 

chloride in silica 
fume concrete 

 

4.4-5.4 1.0w 0.40 420 168 1692 
5.6-13.6 1.0w 0.50 390 195 1636 
9.8-39.7 1.0w 0.75 250 187.5 1784 

2.07 28d 0.66 288 190 1900  
Bertolini 

2013 
 [202] 

 
- 
 

1.49 28d 0.62 275 170.5 1940 
1.77 28d 0.60 315 189 1835 

1.65 3m 0.50 400 200 1800 Collepardi 
et al,1972 

[203] 

 
- 3.24 3m 0.60 384 230.4 1728 

11-14 14d 0.50 423 211.5 1777 Page et al., 

1991[204] 
Concrete slab 
exposed to 5% 

chloride ponding 

4.7 90d 0.35 380 133 1924  
Hooton, 

1997 [197] 
 

 
 

Silica fume concrete 
under bulk diffusion 

test 
 

5.9 120d 0.35 380 133 1924 
5.0 90d 0.40 374 149 1840 

9.3 120d 0.40 374 149 1840  
7.1 90d 0.45 369 165 1770  

10.8 120d 0.45 369 165 1770  

52.3 28d 0.58 530 307 1309 Mangat & 
Molloy, 

1999 
 [192] 

Steel fibre reinforced 
concrete exposed to 
wet/dry cycle in the 

laboratory 
 

23.8 90d 0.58 530 307 1309 
10.0 270d 0.58 530 307 1309 

6.13 154d 0.40 590 236 1392  
Mangat & 
Gurusamy, 
1995 [205] 

Steel fibre reinforced 
concrete under 

marine exposure 
(tidal cycles) 

3.90 304d 0.40 590 236 1392 
2.81 1250d 0.40 590 236 1392 
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to the concentration of the chemically and physically bound chloride. Since acid soluble 

chlorides are chemically bound (immobile) in the concrete matrix, the physically bound 

chloride can either release or absorb chloride ions from the free chloride in the concrete 

pore solution. Only the free chloride which can penetrate into the ferrous oxide 

protective layer of the steel reinforcement will initiate corrosion in reinforced concrete 

[95]. Therefore, the critical threshold level for corrosion initiation is evaluated by the 

amount of free chloride present in the concrete matrix expressed in percentage to the 

total amount of binder in the mix [206].   

 The chemically bound chloride is influenced by the volume of unhydrated 

aluminate (C3A) and tetracalcium aluminoferrite (C4AF) phase during ordinary Portland 

cement hydration. The effective portion of aluminate (C3A) and tetracalcium 

aluminoferrite (C4AF) are those that react during the curing period in the chloride 

solution to form Friedel’s salt (Ca6Al2O6.CaCl2.10H2O) and calcium chloroferrite 

(Ca6Fe2O6.CaCl2.10H2O). The reaction products of aluminate (C3A) and tetracalcium 

aluminoferrite (C4AF) before the curing period in chloride solution do not contribute to 

chemically bound chloride [207]. 

 The physically bound chloride is influenced by the volume of hydrated and 

pozzolanic constituents [207]. Physical binding occurs between the interface of the pore 

solution and hydrated products in the concrete matrix. Physical binding is dependent on 

the content of the CSH gel [95]. The binding capacity of chloride in concrete removes 

free chloride present within its pore structure thereby reducing the mobile chloride that 

can attack passive steel in concrete. Nevertheless, since the diffusion process is based 

on attaining equilibrium between the free chloride concentration and the external 

environment (chloride solution), the concentration of free chloride will continue to 

increase with time [208] and ultimately threshold levels for corrosion initiation in steel 

may be reached. The pore structure may also be altered due to chloride binding effect by 

formation of Friedel’s salt (Ca6Al2O6.CaCl2.10H2O). The result is a less porous 

structure within the concrete matrix to prevent the ingress of chloride [103][209]. 

4.2.3.6 Chloride Threshold 

 Chloride induced corrosion in reinforced concrete commences when a critical 

concentration of chloride is reached at the surface of the embedded steel in the concrete  

[97]. This is termed the threshold chloride concentration for the initiation of pitting 

corrosion in steel reinforcement. A number of factors affect critical chloride levels, 

ranging from concrete mix design, curing method, age, temperature, the presence of 
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oxygen and moisture [97] and importantly the chemical composition and surface 

condition of the steel reinforcement. A single value for chloride threshold level is not 

true for different types of concrete, steels and environment [96]. However, the 

maximum acceptable chloride concentrations expressed as the percentage of chloride 

ions by mass of cement have been recommended and are presented in Table 4.3 [74].  

The chloride concentration threshold for corrosion initiation in AACM concrete 

specimens with steel embedded in them will be determined by monitoring 

electrochemical corrosion in the steel as reported in chapter 7. The specimens have been 

exposed to a 5% chloride solution since November, 2014.  

Table 4. 3:  Maximum allowable total chloride content in concrete, BS EN 206 [74] 

 

4.2.3.7 Chloride Diffusion Coefficient DC  

 Several publications in connection with chloride diffusion coefficients, DC, are 

presented in Table 4.2. The chloride diffusion coefficients, DC, are conveniently 

obtained from simulated experiments performed within a short duration [201][200][202]. 

For long duration predictions, however, semi-empirical expressions based on 

calculations have been applied to test data obtained over periods extending beyond 6 

months. For example, Polder [198] obtained the experimental results of chloride 

diffusion coefficients DC from 1week to 14 weeks of chloride diffusion tests and the 

long-term chloride diffusion coefficient DC value at 1.5 years was determined by using 

empirical expressions. The chloride diffusion coefficients DC presented for long 

durations are best described as predictions due to the complex nature of concrete pore 

structure and the chloride binding isotherm. Some variation between the predicted 

values and the actual experimental values of chloride diffusion coefficients DC are 
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bound to exist. This research investigation presents the results of chloride diffusion 

parameters (DC and C0) of AACM concrete up to 270 days exposure period in 5% NaCl 

solution. 

 Chloride diffusion coefficients DC presented in Table 4.2 are mainly determined 

for short duration exposure except for Mangat and Molloy [192] that presented 

experimental results for up to 270 days exposure. The values of chloride diffusion 

coefficients, DC, were mainly influenced by the cement content, water/cement ratio, 

binder type and exposure period. The relatively high chloride diffusion coefficients, DC, 

(52.3 x 10-12 m2/s) presented by Mangat and Molloy [192] were influenced by the high 

water/cement ratio of 0.58 in fibre reinforced concrete and wet/dry cyles in the 

laboratory. These parameters are noted to increase the chloride diffusion rate in concrete. 

The high water/cement ratio causes a more permeable concrete, a similar observation 

was reported in chapter 3. Luping [201] used a higher water/cement ratio of 0.75 and 

obtained chloride diffusion coefficients, DC, (39.7 x 10-12 m2/s) but the curing age was 

not stated. 

 A longer duration of exposure and higher binder content on the other hand, 

reduces the chloride diffusion coefficients, DC. For example, Mangat and Gurusamy 

[205] showed a reduction in chloride diffusion coefficients, DC from 154 to 1250 days 

exposure. At 154 days, the chloride diffusion coefficient, DC, is 6.13 x 10-12 m2/s but 

reduces to 2.81 x 10-12 m2/s at 1250 days. The explanation given was the significant 

decrease in the permeability of concrete with time limiting the diffusion of chloride. 

4.3 EXPERIMENTAL PROGRAMME 

4.3.1 Mix Composition 

 This research programme was conducted to determine the durability properties 

of an alkali activated cementitious concrete (AACM concrete). The AACM concrete 

comprises of a cementitious binder, fine aggregate, coarse aggregate and the alkali 

activator. The AACM concrete trial mix S1 was performed prior to the selection of the 

mix composition used for the chloride ingress, carbonation and corrosion investigation 

in this research work. A number of mixes were made with the proprietary AACM 

binder and activator by incorporating a range of 438 kg/m3 to 585 kg/m3 of fine 

aggregate and 988 kg/m3 to 1170 kg/m3 of coarse aggregate. The trial mix S1 was tested 

for strength, shrinkage and workability to achieve a practical field mix of AACM 

concrete with high strength. A compressive strength of 72 MPa was achieved at 28 days 

age under dry curing, the slump was between 60 - 180 mm and the shrinkage had a 
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mean value of 683.4 microstrain at 78 days age. The experimental AACM concrete 

mixes S2 to S6 used in this research were produced based on the trial mix S1. The 

AACM binder content and fine aggregate content of the mixes S2 to S5 was reduced 

relative to mix S1 while the liquid/binder and coarse aggregate content was increased to 

adjust the workability and setting time required for practical mixes. As a result the 

strength of mixes S2 to S5 was lower than the trial mix S1. The composition of the five 

series of concrete mixes S2 to S6 is given in Table 4.4. S6 is the control mix produced 

with 100% OPC binder which gave a 28 days strength of 46 MPa. The reference alkali 

activator liquid [210] was diluted with tap water by 2.15%, 4.24%, 8.12% and 12% in 

mixes S2 to S5 respectively (Table 4.4).  

 The total binder content of AACM concrete mix S2 is 688 Kg/m3 while AACM 

concrete S3 to S5 have a lower content of 619 Kg/m3. OPC concrete mix S6 represents 

the control specimens used for comparison with the AACM concrete mixes S2 to S5. 

The OPC (binder) content of mix S6 was 350 Kg/m3. A varied liquid composition for 

each mix was used as presented in Table 4.4. The liquid comprised of alkali activator, 

water, retarder and shrinkage reagents. AACM concrete mix S2 has the lowest 

percentage dilution of alkali activator with water (2.15%) while AACM concrete mix S5 

has the highest dilution (12.00%). The ratios of total liquid (alkali activator + water) to 

binder are 0.41, 0.48, 0.47 and 0.47 for mixes S2, S3, S4 and S5 respectively. The average 

28 day strength of the AACM and control OPC mixes were planned to be fairly similar 

under wet curing, based on trial mix. Wet curing is standard method for quality testing 

in concrete [25]. 
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Table 4. 4: Composition of AACM and OPC concrete mixes 
Mix Total 

Binder 
(Kg/m3) 

Coarse 
Aggregate(Kg/m3) 

Fine 
Aggregate 
(Kg/m3) 

Alkali 
activator 
(Kg/m3) 

Extra 
water 

(Kg/m3) 

Total 
Liquid 

(Kg/m3) 

Liquid/ 
Binder 
Ratio 

Activator 
Dilution  

(%) 

Retarder 
(Kg/m3) 

SRA 
(Kg/m3) 

 10mm 
Gravel 

6mm 
Limestone 

   

            
S2 

S3 

S4 

S5 

S6(Control) 

688 

619 

619 

619 

350 

654 

717 

717 

717 

769 

334 

374 

374 

374 

401 

438 

423 

423 

423 

585 

279 

283 

271 

260 

- 

6 

12 

22 

31 

170 

285 

295 

293 

291 

170 

0.414 

0.477 

0.473 

0.470 

0.486 

2.15 

4.24 

8.12 

12.00 

- 

8 

7 

7 

7 

- 

21 

19 

19 

19 

- 
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4.3.2 Specimen Preparation 

 All the aggregates were in a saturated surface dry state before mixing. Half of 

the aggregate content was first poured inside the cretangle concrete mixer of 0.0625 m3 

(150 kg) capacity followed by the binder composition. The remaining half of both the 

fine and coarse aggregate content was then added to cover the binder. The binder and 

the aggregates were mixed for one minute. Approximately half of the liquid activator 

was added to the mixer and mixed for two minutes. To ensure homogeneity, the mix 

was briefly mixed by hand, particularly concentrating on the material sticking around 

the edge and corner of the mixer. The retarder was mixed with the second half of the 

liquid activator and stirred until fully dispersed. The mixture was then added to the 

mixer and mixed for a further two minutes. A shrinkage admixture (SRA) was then 

added followed by an additional one minute of mixing.  

 75 x 75 x 75 mm dimension steel moulds were used for casting cube specimens 

for compressive strength. Three gang steel moulds of 160 x 40 x 40 mm prisms were 

used for casting specimens for the shrinkage test. 250 x 250 x 75 mm dimension 

polystyrene moulds were used for casting chloride diffusion test specimens. The typical 

250 x 250 x 75 mm polystyrene mould and the test specimens are shown in Figures 4.2 

and 4.3 respectively.  

 Figure 4. 2: Polystyrene moulds used 
for casting AACM Concrete 

 
Figure 4. 3: AACM Concrete Specimens after 
demoulding 

Mould oil was applied to internal surfaces of the moulds to prevent the hardened 

AACM from sticking to the surface. The moulds were filled in three layers. Each layer 

was compacted on a vibrating table for up to 60 seconds to attain homogeneity and 

minimise the presence of voids. The AACM concrete surface was gently trowelled to 

obtain a smooth and level finish. The cast specimens were placed on a flat table surface 



118 
 

in the laboratory environment (200C, 65% R.H.) and covered with polythene sheets to 

prevent moisture loss. The specimens were demoulded after 24 hrs. 

4.3.2.1 Chloride Samples 

 AACM and OPC concrete mixes S2 to S6 were cast into slabs of 250 x 250 x 75 

mm dimensions as shown in Figures 4.2 and 4.3. After demoulding, the chloride 

diffusion test samples of the AACM and OPC concrete mixes S2 to S6 were cured in 

water at 200C for 27 days (total age 28 days). The specimens were taken out of water 

and surface dried. Two coats of bituminous paint were applied to five faces of the slabs 

except the face to be exposed to a chloride solution as shown in Fig. 4.4. 

 Subsequently after the 27 days of wet curing, the chloride diffusion test samples 

were fully immersed in a 5% sodium chloride solution. The face cast against the bottom 

of the polystyrene mould was exposed to the NaCl solution. The chloride diffusion tests 

were carried out at 55, 90, 120, 180, 270 and 540 days of chloride exposure periods. A 

total of 75 slabs (15 slabs per each mix S2 to S6) were cast for the chloride diffusion test. 

An average of two slabs for each concrete mix was used at each chloride diffusion test 

age. For example, chloride diffusion test was performed on two slabs of AACM mix S2 

at 55 days chloride exposure period. 

4.3.2.2 Compressive Strength 

  The compressive strength test was performed in accordance with BS EN 12390-3 

[133]. 75 x 75 x 75 mm cubes of AACM and OPC concrete mixes S2 to S6 (Table 4.4) 

were cast in steel moulds and tested for compressive strength at ages 1, 2, 3, 7, 14, 21 

and 28 days. Two sets of cube specimens (S2 to S6) which were subjected to wet and dry 

curing were produced, six cubes for each mix at each test age making forty-two cubes 

for each mix and one hundred and five cubes for each set of wet and dry curing. A total 

of two hundred and ten cubes were produced for all the mixes (S2 to S6). The first set of 

the test cube specimens (S2 to S6) were cured in air at 20 deg C. and 65% R.H. for 27 

days while the second set of the cube specimens were cured in water at 20 deg C. for 27 

days. The air cured specimens were covered with polythene sheets to prevent rapid 

water loss. AACM and OPC concrete cubes were exposed to both dry and wet curing.  

4.3.2.3 Shrinkage 

 The curing of the third batch (shrinkage test samples) was performed in 

accordance with BS ISO 1920 -8 [211]. Three gang steel moulds of 160 x 40 x 40 mm 

were used to cast prism specimens for the shrinkage test. The concrete was placed in the 

prism moulds in three layers and compacted on a vibrating table. The moulds were 
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covered with polythene sheets to minimise the rate of moisture loss and were stored in 

the laboratory for 16- 24 hrs at 65% R.H. and 20oC. After de-moulding, stainless steel 

demec points were fixed along two parallel longitudinal side faces of each prism 

specimen at a gauge length of 100 mm. The datum reading was taken at 24 hrs age after 

casting. The specimens were then immersed in water for 7 days and expansion readings 

were taken at regular intervals with the demec extensometer. The difference between 

the datum reading at 24 hrs and 7 days was recorded to give the expansion. After 7 days, 

the specimens were carefully removed from water and surface dried with a damp cloth. 

A demec extensometer reading was taken before exposing the specimens to laboratory 

air (65% R.H. and 20oC). The demec extensometer shrinkage readings were taken at 

regular intervals, initially daily. The difference between the 7 days (datum reading) and 

subsequent readings was recorded to give the drying shrinkage. The average reading of 

three specimens (two faces each) per mix was recorded.  

4.3.3 Experimental Procedure 

4.3.3.1 Chloride Ingress Test  

 Bulk diffusion tests [187][98] were adopted for measuring the long-term 

chloride diffusion in the AACM and OPC concrete mixes S2 to S6. The two standard 

test methods have similar procedures apart from the concentration of the chloride 

exposure solution. DD CEN/TS 12390-11 [98] specifies 3% NaCl solution (by weight) 

whereas NordTest 443 [187] specifies 165 g ± 1g NaCl per dm3 solution (16.5% NaCl 

solution by weight). A 5% NaCl solution in tap water was prepared for chloride 

exposure of the test specimens. The 5% NaCl solution provides an accelerated chloride 

diffusion test which gives higher chloride concentrations at given depths than under 

normal marine exposure. Therefore, the permissible chloride concentrations allowed in 

DD CEN/TS 12390-11 [98] for different types of chloride exposure cannot be directly 

related to the data presented in this chapter. The transportation mode of chloride ion was 

by diffusion only. This was achieved by curing the test specimens in water for 28 days 

after casting to fully attain saturation of concrete pores thereby eliminating the initial 

sorption effect upon chloride exposure. All the faces of the chloride diffusion test 

specimens were coated with 1 mm thick layer of bituminous paint except the 250 x 250 

mm face to be exposed to the 5% NaCl solution, as shown in Fig 4.4.  
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Figure 4. 4: Coated surfaces (top picture), 
exposed surface (bottom picture) 

 
Figure 4. 5: Specimens immersed in 5% 
sodium chloride solution. 

Figure 4. 6: AACM specimen sawn into half 
 

Figure 4. 7: Some powder sample 
locations highlighted in red 

4.3.3.2 Concrete Powder Sample Collection 

 At ages of 55, 90, 120, 180 and 270 days, two chloride diffusion test specimens 

for each series of mixes S2 to S6 were removed from the chloride solution.  The test 

specimens were sawn into two equal halves along the plane perpendicular to the 

uncoated face as shown in Figures 4.6 and 4.7. The direction of the masonry sawing 

was from the top uncoated surface of the sample to the bottom coated face. The 

specimens were left to dry in the laboratory for 24 hrs under a temperature of 200C and 

relative humidity of 65% after masonry sawing. Each freshly sawn face perpendicular to 

the exposed face to the chloride solution was drilled at 8, 15, 20, 25, 35, 50 and 65 mm 

depths from the top (uncoated) surface. Six holes were drilled per depth making the 

total of 42 number of holes for each specimen as shown in Fig. 4.7. The diameter of the 
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holes was 4 mm. They were drilled by means of a SDS drill on the freshly sawn face of 

the specimens. Each drilling represented a 20 mm deep hole at a constant depth from the 

chloride-exposed face of the specimen. The initial 5 mm depth of drilled powder was 

discarded from each hole. A further 15 mm depth hole was drilled to provide a powder 

sample for the analysis of physically and chemically bound chlorides. The drilling was 

performed within an area approximately 20 mm from the coated edges of the slab 

specimens to obviate the risk of edge effects and any disturbances of the bituminous 

coating which may interfere with the chloride readings. The concrete powder samples 

were carefully collected to avoid contamination from the bituminous coating. The 

powder samples collected from the six holes drilled at each depth for each specimen 

were combined for the analysis. The carefully collected powder samples per depth were 

stored in a self-sealing polythene bag and labelled accordingly. The concrete powder 

was sieved through a 150 µm sieve to separate the finer powder as shown in Figures 4.8 

and 4.9. The water soluble and acid soluble chloride analysis of the powder samples 

were carried out in accordance with standards NordTest 443 [187] and DD CEN/TS 

12390-11 [98].   

 
Figure 4. 8: AACM powder passing a 150 µm 
sieve 

 
Figure 4. 9: AACM powder passing 
(bottom picture) and retained (top 
picture) by a 150 µm sieve  

4.3.4 Testing Procedure 

4.3.4.1 Physically Bound Chloride Analysis  

 The Chloride Ion Selective Electrode (ISE) used to measure the water-soluble 

chloride has a solid state poly-crystalline membrane that measures chloride ions (Cl-) in 
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aqueous solution. It is suitable for field and laboratory applications. The operation of the 

device is based on the linear relationship between the electric potential developed 

between the internal Silver Silver Chloride (Ag/AgCl) reference electrode and the 

reference electrode immersed in the concrete powder aqueous solution [212]. The 

Chloride ISE was supplied by Vernier Software and Technology.  

 Five grams of the concrete powder passing through a 150 µm sieve was 

dissolved in 50 ml of distilled water. The effective ionic concentration, otherwise 

known as chloride ion activity within the concrete powder solution, was buffered with 

NaNO3 to avoid possible interference by other ions like iodine, bromide, cyanide and 

sulphide [213]. The solution was swirled manually to ensure good, homogeneous 

contact between it and the ISE membrane. The white reference contact near the tip of 

the electrode (ISE) was immersed in the solution without entrapping air bubbles below 

it. The ISE was held in the aqueous solution until the reading stabilized and the 

displayed reading was then recorded as shown in Fig 4.10. The ISE was rinsed by 

spraying with a jet of ionised water and dabbed dry with a low-lint laboratory tissue 

between measurements to prevent hysteresis effects. The ISE was calibrated before and 

after each measurement to achieve accuracy. The chloride ion reading of powder 

samples collected at each depth using ISE was repeated thrice to achieve high level of 

accuracy. The coefficient of variance of repeatability is 10%. The calibration was done 

by using a pre-prepared 1000 mg/l and 10 mg/l standard NaCl solution.  

 The pH of the powder solution at each depth was taken as shown in Fig 4.11. 

The pH readings of the powder dissolved in 100 ml distilled water were taken using a 

digital pH meter. The pH reading was repeated thrice for each powder sample. 

 
Figure 4. 10: ISE reading of concrete 
powder solution 

 
Figure 4. 11: pH reading of concrete 
powder solution 
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4.3.4.2 Chemically Bound Chloride Analysis 

 The determination of chloride content in hardened concrete was performed in 

accordance with BS EN 14629 [214].  

 Volhard’s titration method was used to determine the acid soluble chloride 

concentration on the second part of the concrete powder sample. This involves 

dissolving 5 grams of powder sample in 50 ml of distilled water and adding 10 ml of 5 

mol/l nitric acid followed by 50 ml of hot water. The solution was heated until boiling 

for 3 mins and stirred continuously. The heated solution was filtered immediately 

through a medium-textured filter paper. The filter paper was washed with 1% nitric acid 

to prevent chloride loss. 5 ml of silver nitrate solution was used to precipitate the 

mixture and ammonium thiocyanate solution was used as titrant while continually 

agitating the solution until the faint reddish-brown coloration no longer disappears. The 

volume of ammonium thiocyanate solution used was recorded as V1.  

 To obtain V2, a further 5 ml of silver nitrate solution was added and the titration 

continued until the end-point was reached a second time. The volume of ammonium 

thiocyanate solution used was recorded as V2. The chloride content was calculated as 

percent of chloride ion by mass of sample using the following formula (equation 4.5):  

 9	E = 	3.545 ∗ � ∗ ( �̀ −	 �̀)K  
 4.5 

V1 volume of the ammonium thiocyanate solution used in the first titration [ml];  

V2 volume of the ammonium thiocyanate solution used in the second titration [ml];  

m mass of the concrete sample [g];  

f molarity of silver nitrate solution  

4.4 RESULTS AND DISCUSSION 

4.4.1 Introduction 

The first part of this chapter was to develop an optimal mix of AACM concrete 

with high compressive strength suitable for structural applications. The mechanical 

properties and resistance to diffusion of aggressive ions such as chlorides are dependent 

on the pore structure of cementitious materials. Four AACM concrete mixes were 

developed and characterised to prepare them for a comprehensive investigation of 

durability properties. Their mix composition is given in Table 4.4. The compressive 
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strength and shrinkage of these mixes were determined because they are important 

controlling factors for the quality and crack resistance of the material. Literature has 

shown that the strength development and shrinkage of OPC concrete depends on the 

refinement of its micro-pore structure as does the resistance to diffusion of harmful ions 

(mainly chloride and carbon dioxide). The basic concepts of micro-pore structure in 

concrete are expected to apply to AACM concrete generally, but they need to be 

quantified. The results of micro-pore structure parameters of AACM concrete were 

presented in chapter 3. The shrinkage results will be discussed in chapter 6 along with 

carbonation shrinkage. 

4.4.2 Compressive Strength  

The strength development of concrete is an important property revealing the 

quality of concrete because it is directly related to the micro structure of the hydrated 

cement paste [25]. This investigation involves the assessment of AACM concrete mixes 

in which three liquid/binder ratios, two binder contents and four alkali activator dilution 

ratios were used, as shown in Table 4.4. The liquid binder ratios were 0.41, 0.47 and 

0.48. The binder contents were 688 Kg/m3 and 619 Kg/m3. The alkali activator dilution 

was 2.15%, 4.24%, 8.12% and 12.00%. Control specimens S6 of concrete made with 

100% OPC binder were used to compare the strength of AACM relative to OPC 

concrete. In addition, a predicted strength-age curve for OPC concrete mix S7 

representing water/cement ratio of 0.4 (to complement w/c of 0.486 for mix S6), cured 

at normal temperature [25] is plotted in Fig. 4.12 to compare the strength development 

of AACM concrete with OPC concrete. The strength development under wet and dry 

curing is presented in Figures 4.12 and 4.13 respectively.  

 
Figure 4. 12: Compressive strength with age of AACM concrete (wet cured, 200C) 
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Figure 4. 13: Compressive strength with age of AACM concrete (dry cured, 200C, 65% RH) 

4.4.2.1 Strength Development of AACM and OPC concrete 

Figures 4.12 and 4.13 show the strength development for AACM and OPC 

concretes under wet and dry curing. AACM concrete mix S3 with the highest liquid 

binder ratio of 0.48 reveals a considerably high strength of 62.0 MPa at 28 days under 

dry curing (Fig. 4.14). This is 30% higher than the strength attained by the dry cured 

control mix of OPC concrete (mix S6, 100% OPC) at the same age and similar w/c ratio. 

Among the AACM concrete mixes, the lowest strength was recorded for AACM mix S5 

of liquid/binder 0.47, which had strength of 51 MPa. Generally, all the AACM concrete 

mixes had more strength than OPC concrete S6 and S7 under both wet and dry curing. 

The strength difference between AACM concrete and OPC concrete is more 

pronounced under dry curing. 

The predicted strength of OPC mix S7 with 0.40 w/c ratio, is similar to AACM 

mix S5 at later ages while significant difference in strength is observed between AACM 

mix S2 and OPC mix S7. AACM mix S5 has 0.47 liquid/binder ratio and 12.0% dilution 

ratio. AACM mix S2 had similar liquid/binder ratio of 0.41 to OPC mix S7. The strength 

gain of AACM concrete is observed to be greater than OPC concrete at the same 

liquid/binder ratio. The rate of strength gain at early age (up to 3 days) is much greater 

in AACM concrete compared with OPC concrete. 

4.4.2.2 Strength Development at Early Age 

 A comparison of Figures 4.12 and 4.13 shows that AACM concrete cured in air 

at room temperature (65% RH, 200C) develops higher compressive strength (Fig. 4.13) 

compared with the wet cured specimens as shown in Fig 4.12. The difference in the 28 

day strength between the air and wet cured AACM concrete mixes (S2 to S5) are 3.7 
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MPa, 4.0 MPa, 2.5 MPa and 2.7 MPa respectively. The development of strength in 

AACM concrete is greater under dry curing than wet curing due to the formation of 

more crystalline geopolymerisation product [3][26]. Elevated temperatures through 

steam or dry heat methods, in the range of 50 - 800C, have been used to achieve a 15% 

increase in strength over wet curing methods in AACM concrete [26]. The higher 

strength achieved by AACM concrete mixes S2 to S5 under dry curing is contrary to that 

of OPC concrete mix S6 whose strength is higher under wet curing. Similar trend is 

observed for the 3 day strength. 

 Rapid early strength development of the AACM concrete mixes S2 to S5 was 

recorded for the first 7 days under dry curing. An average strength development of 92% 

of 28 days strength was achieved within 7 days by AACM mix S2 while the lowest 

value of 81% was obtained for AACM mix S4. AACM mixes S3 and S5 achieved 86% 

and 85% of the 28 days strength respectively. The control OPC concrete mix S6 gained 

78% of the 28 days strength within 7 days (Fig. 4.13). The differences are even more 

significant at earlier age (e.g. 3 days) between the rate of strength development of 

AACM and OPC concrete. For example, the strength under wet curing for AACM mix 

S3 and OPC mix S6 are 39 MPa and 28 MPa respectively while it is 40 MPa for mix S3 

and 26 MPa for mix S6 under dry curing.  

 The rate of strength gain increases with a decreasing liquid/binder ratio. AACM 

mix S2 with the lowest liquid/binder ratio, gained strength more rapidly than the other 

AACM concrete mixes. Similarly, OPC mix S7 with 0.4 w/c gained strength more 

rapidly than OPC mix S6 with 0.48 w/c. Lower water/cement ratios in OPC concrete 

increase early strength development as a result of binder grains coming closer to one 

another and rapidly forming a continuous system of gel [25]. The rate of strength gain 

was rapid for AACM and OPC concrete up to 7 days. Beyond 7 days, the strength gain 

was moderate. This strength gain phenomenon is in agreement with other researchers 

[21][25][167][178] 

4.4.2.3 Influence of binder content 

 AACM concrete mixes had much higher binder contents (619 and 688 kg/m3) 

compared with OPC mix S6 (350 kg/m3). The strength of the AACM mixes was higher 

than OPC concrete mix but the increase was not proportional to the much higher binder 

content. This is due to the entirely different strength development mechanisms of the 

two materials.  
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 The effect of binder content on the performance of alkali-activated slag 

concretes relative to OPC concrete has been reported by Susan et al. [22]. AACM 

achieved compressive strengths of 50, 72 and 75 MPa for slag binder contents of 300, 

400 and 500 Kg/m3 respectively at 28 days, thus classifying it as a high-performance 

concrete (HPC). The comparative OPC concrete achieved 30, 57 and 62 MPa for 

cement contents 300, 400 and 500 Kg/m3 respectively at 28 days. It was also found that 

regardless of the binder content, alkali-activated slag concretes (AASC) achieved higher 

compressive strength than comparable concretes. 

4.4.2.4 Influence of alkali activator dilution  

 The alkali activator dilutions are 2.15%, 4.24%, 8.12% and 12.00% for AACM 

concrete mixes S2 to S5 respectively (Table 4.4). The 7 and 28 days compressive 

strengths for AACM concrete mixes S2 to S5 under wet and dry curing (Figures 4.12 and 

4.13) are shown in Fig 4.14 against their activator dilution. 

 
Figure 4. 14: Relationship between Compressive Strength and Activator Dilution 

 A lower alkali activator dilution resulted in higher strength due to higher 

reaction rate and the formation of a less porous concrete matrix (reported in sections 

3.4.2 and 3.4.3, chapter 3). AACM concrete mix S3 (4.24% activator dilution) had the 

highest strength of 62.1 MPa at 28 days under dry curing compared with  50.7 MPa for 

AACM concrete mix S5 (12% activator dilution). The poor correlation of 7 day wet is 

likely due to experimental error. Morsy et al [215] studied the effect of sodium silicate 

activator on the strength of fly ash geopolymer binder. Their results showed that the 

dissolution of silica and alumina was greater for high activator concentration leading to 

improvement in compressive strength of the fly ash geopolymer. 
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4.4.3 Chloride ingress 

4.4.3.1 Introduction 

 Physical and chemical chloride concentration profiles of AACM concrete mixes 

S2 to S5 and OPC concrete mix S6, whose details are given in Table 4.1, are plotted in 

Figures 4.15 to 4.25. The experimental data show good correlation with the regression 

analysis profiles derived from Fick's 2nd law of diffusion which is given by equation 4.1 

(section 4.2.3.4) and re-written below. The Fick’s second law represents one 

dimensional non-steady condition of diffusion and is used to determine the diffusion 

coefficient, DC, and surface chloride concentration, C0, of AACM and OPC concrete.  

 9(;,�) 	= 	 ∁? 	@1 − A�� B x2CDE 	�	FG 
 4.1 

Where: x = distance from concrete surface (m); t = Time (seconds); DC = diffusion 

coefficient (m2/s); C0 = equilibrium chloride concentration on concrete surface; C(x,t) = 

chloride concentration at position x; time t . 

Nonlinear regression analysis of the experimental data by a computer package 

(Microsoft excel) was used to generate the best fitting equation. The analysis 

determined the chloride concentration on the surface (coefficient C0) of the specimen, at 

depth zero and the diffusion coefficient, DC.  

4.4.3.2 Chloride Diffusion Profiles 

 The chloride diffusion profiles were derived by the regression analysis of 

experimental data using the Fick’s second law (equation 1). The regression analysis also 

provides a value for the diffusion coefficient, DC, surface chloride concentration, C0 and 

coefficient of correlation. 

 Figures (4.15 to 4.18)  show the water-soluble chloride profiles for AACM 

concrete mixes S2 to S5 and the OPC concrete mix S6 immersed in 5% NaCl aqueous 

solution for 55, 90, 120, 180 and 270 days. Figures (4.20 to 4.24) shows the 

corresponding acid soluble chloride profiles for the AACM concrete mixes S2 to S5 and 

OPC concrete mix S6. The chloride concentrations are expressed by percentage weight 

of the binder. Chloride concentrations that are physically absorbed by the walls of the 

binder gel are termed as water-soluble chlorides. Acid-soluble chlorides are chemically 

bound to the concrete matrix which is formed by the hydration/geopolymerisation 

process. Detailed explanation is given in section 4.2.3.5. 
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4.4.3.2.1 Water soluble chloride concentration 

 The water-soluble chloride diffusion profiles for the AACM concrete mixes S2 

to S5 and OPC concrete mix S6 at four test ages (55, 90, 120 and 180 days) are presented 

in Figures. 4.15 to 4.18. The 270 days exposure profiles were not determined for water-

soluble chloride because of insufficient test samples. The profiles show the water-

soluble chloride content (expressed as % weight of binder) along the depth of the 

specimens. Non-linear regression analysis was performed on the data using the Fick’s 

second law of diffusion (equation 4.1). The experimental and regression data show high 

level of correlation ranging between 0.92 and 0.99. This shows very good correlation. 

 
Figure 4. 15: Water-soluble chloride profiles (% weight of binder) at 55days exposure 
in 5% NaCl solution 

 
Figure 4. 16: Water-soluble chloride profiles (% weight of binder) at 90days exposure 
in 5% NaCl solution 
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Figure 4. 17: Water-soluble chloride profiles (% weight of binder) at 120days exposure 
in 5% NaCl solution 

 
Figure 4. 18: Water-soluble chloride profiles (% weight of binder) at 180days exposure 
in 5% NaCl solution 

 The water-soluble chloride concentration for AACM and OPC concrete mixes 

S2 to S6 increases with the period of exposure to the chloride solution as shown in 

Figures. 4.15 to 4.18. A much lower water-soluble chloride concentration is exhibited 

by AACM concrete mixes compared with OPC concrete at all ages of exposure (Figures 

4.15 - 4.18).  

 Figure 4.19 shows the relationship between water-soluble chloride content and 

exposure periods for selected depths of 20, 25 and 35 mm for mixes S3 and S6. At depth 

20 mm for AACM concrete mix S3, the chloride concentrations are 0.19%, 0.24%, 

0.62% and 1.23% by weight of binder at 55, 90, 120 and 180 days of exposure 

respectively (Fig. 4.19). The AACM concrete mix S3, with the same liquid binder ratio 

(0.48) as the OPC concrete mix S6, shows a lower chloride content at each depth. 
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 Figure 4. 19: Water-soluble chloride profiles for AACM mix S3 and OPC mix S6 at 20, 

25 and 35 mm depths 

The degree of chloride penetration through these concretes relate to the refinement 

of the pore structure of AACM concretes, which is reported in chapter 3. The AACM 

concrete mix S3 had a porosity of 9.73% at 28 days wet curing (chapter 3, section 

3.4.3.4). The OPC concrete mix S6 had the highest porosity of 12.6% at 28 days under 

wet curing which resulted in higher water-soluble chloride concentration at all test ages 

under the same curing conditions. This suggests that refinement of the pore structure of 

concrete controls the water-soluble chloride penetration. Tina et al. [216] observed an 

apparent difference in water-soluble chloride content between fly ash modified normal 

concrete and unmodified concrete with passage of time. Fly ash concrete exhibited 

lower water-soluble chloride concentration than unmodified concrete, which was 

attributed to lower effective porosity and a high percentage of ink bottle porosity 

leading to higher resistance to chloride penetration of fly ash concrete. Costa and 

Appleton [217] used an ion selective electrode to measure the rate of water soluble 

chloride penetration. Their conclusion suggested that shotcrete containing microsilica 

had better chloride penetration resistance than OPC concrete in all exposure conditions 

due to the effect of microsilica leading to formation of tighter concrete pores. The 

relationship between the chloride diffusion parameters and porosity is discussed in 

detail under section 4.4.4. 

4.4.3.2.2 Acid soluble chloride concentration 

 Figures 4.20 to 4.24 show the acid-soluble chloride diffusion profiles for AACM 

concrete mixes S2 to S5 and the OPC concrete mix S6 at five test ages under the same 

exposure conditions used for water-soluble chloride diffusion tests. The results show 

good correlation with the profiles derived from Fick's 2nd law of diffusion as expressed 
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in equation 1. The best fit profiles have been derived by a non-linear regression analysis 

of the experimental data against Fick’s 2nd law of diffusion (equation 4.1). The 

regression analysis also provides a value for the surface chloride concentration, C0, and 

the diffusion coefficient, Dc. 

 
Figure 4. 20: Acid-soluble chloride profiles (% weight of binder) at 55 days exposure in 
5% NaCl solution 

 
Figure 4. 21: Acid-soluble chloride profiles (% weight of binder) at 90 days exposure in 5% 
NaCl solution 

 
Figure 4. 22: Acid-soluble chloride profiles (% weight of binder) at 120 days exposure in 5% 
NaCl solution 
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Figure 4. 23: Acid-soluble chloride profiles (% weight of binder) at 180 days exposure 
in 5% NaCl solution 

 

Figure 4. 24: Acid-soluble chloride profiles (% weight of binder) at 270 days exposure 
in 5% NaCl solution 

 The acid-soluble chloride concentration profiles for both AACM and OPC 

concrete mixes S2 to S6 show an increase of chloride content with exposure period, both 

on the concrete surface and at all depths from the exposed concrete surface (figures 4.20 

to 4.24).   

 Figure 4.25 shows the relationship between acid-soluble chloride content and 

exposure periods for selected depths of 20, 25 and 35 mm for mixes S3 and S6. The 

chloride concentration at a 20 mm depth from the exposed surface of concrete was 

0.02% by weight of binder for AACM concrete mixes S2 to S5 and 0.1% by weight of 

binder for the OPC concrete mix S6 at 55 days of exposure to 5% NaCl solution (Figures 

4.20 - 4.25). However, at 270 days of exposure to the same NaCl solution, the chloride 

concentration at 20, 25 and 35 mm depths were 0.96%, 0.56% and 0.15% by weight of 

binder for AACM concrete mix S3 while it was 1.62%, 1.20% and 0.75% by weight of 
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binder for OPC concrete mixes S6 respectively. Significant increase in chloride 

concentration was observed between the 55 and 270 days exposure period. Similar 

observations were reported by Mangat and Molloy [192] on blended cement concretes 

up to 540 days of exposure in NaCl solution. 

 
Figure 4. 25: Acid-soluble chloride profiles for AACM Mix S3 and OPC Mix S6 at 20, 
25 and 35 mm depths 

 In the case of OPC concrete, the unhydrated portion of aluminate (C3A) and 

aluminoferrite (C4AF) of the binder reacts with chloride ion in the solution during the 

curing period, transforming it to Friedel’s salt and calcium chloroferrite [207]. This is 

responsible for the increase in acid-soluble chloride concentration in concrete with age. 

The reaction of hydrated aluminate (C3A) and aluminoferrite (C4AF) that takes place 

before the curing period in NaCl solution does not contribute to chloride chemical 

binding [207]. 

 The acid-soluble chloride profile for OPC concrete mix S6 shows a higher 

chloride concentration than AACM concrete S3 mix. It was observed that the chloride 

ingress was influenced by the pore system parameters (intrudable porosity Фin, critical 

pore diameter dcrit and threshold pore diameter dth). The results of these findings are 

presented in chapter 3. The refined pore system parameters (intrudable porosity Фin, 

critical pore diameter dcrit and threshold pore diameter dth) in AACM concrete mixes S2 

to S5 indicate less interconnected pores within the matrix, thereby resulting in lower 

diffusivity of harmful ionic species (Cl-, CO2 and Sulphate) in AACM concrete 

compared with OPC concrete mix S6. Pierre-Claude and Robert [218] concluded that 

the amount of bound chloride strongly depends on the chloride content of exposure, 

cement type and content, pH of pore solution, porosity and pore size distribution. The 
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binder type, porosity and pore size distribution of AACMs have already been discussed 

in chapters 2 and 3 respectively, the pH differences in cement hydration and 

geopolymerisation in AACMs will be discussed in chapter 5. 

4.4.3.3 Surface Chloride Concentration C0  

4.4.3.3.1 Influence of exposure period  

 The surface chloride concentration, C0, (% weight of binder) values obtained 

from the chloride profiles (figures 4.15 to 4.20) at chloride exposures of 55, 90, 120, 

180 and 270 days, for acid and water-soluble chlorides are presented in Table 4.5. (C0)ws 

and (C0)as are used to denoted the surface concentrations for water-soluble and acid-

soluble chlorides respectively. The 270 days exposure was not determined for water-

soluble chloride concentration because of insufficient test samples. 

Table 4. 5: Water and acid soluble surface chloride concentrations, C0, (% weight of binder) 
  Chloride Exposure (Days) 

Mix Type of Cl- 55 90 120 180 270 

S2 
Water-Soluble (%) 0.46 0.54 1.19 1.69 - 

Acid-Soluble (%) 0.06 0.15 0.67 0.93 1.42 

S3 
Water-Soluble (%) 0.58 0.80 1.39 2.07 - 

Acid-Soluble (%) 0.09 0.31 0.81 1.37 1.59 

S4 
Water-Soluble (%) 0.71 1.04 1.57 2.50 - 

Acid-Soluble (%) 0.35 0.48 1.07 2.04 2.14 

S5 
Water-Soluble (%) 0.77 1.21 1.79 2.59 - 

Acid-Soluble (%) 0.63 0.62 1.87 2.12 2.86 

S6 
Water-Soluble (%) 1.06 1.28 2.89 3.27 - 

Acid-Soluble (%) 1.19 2.17 3.25 5.91 4.43 

 The (C0)as values listed in Table 4.5 are plotted against their exposure periods in 

Fig. 4.26. A non linear regression analysis of the test data provide a strong correlation 

between the water-soluble surface chloride concentration, (C0)as and chloride exposure 

period, with the coefficient of correlation ranging from 0.76 to 0.82. 
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Figure 4. 26: Relationship between the acid-soluble surface chloride concentration, 
(C0)as and exposure period 

AACM concrete mix S2 has the lowest surface chloride concentration, (C0)as, of 

0.06% and 0.093% by weight of binder at 55 and 180 days exposure periods 

respectively. The highest (C0)as for AACM concrete is mix S5 which has 0.63% and 

2.12% by weight of binder at 55 and 180 days exposure periods respectively.  

The OPC concrete mix S6 on the other hand has (C0)as of 1.19% and 5.91% by 

weight of binder at 55 and 180 days exposure periods respectively. The (C0)as of OPC 

concrete mix S6 is significantly higher than AACM concrete mixes S2 to S5. This shows 

a higher ingress of acid-soluble chloride in OPC concrete mix S6 compared with AACM 

concrete mixes S2 to S5 at both early exposure period (55 days) as well as at long period 

of exposures (180 days). 

Increase of chloride concentration at the surface (C0)as with exposure period (days) is 

observed for all AACM and OPC concrete mixes as shown in Figures 4.26. The surface 

chloride concentration (C0)as for AACM concrete mix S2 rose from 0.06% at 55 days to 

1.42% at 270 days chloride exposure. The chloride concentration values at the surface 

(C0)as with exposure period (days) exhibited by OPC concrete mix is within similar 

range as other research findings [220][221][222][223]. For example, Chen et al. [220] 

presented (C0)as results of 0.7%, 1.13% and 1.10% by weight of binder at 90, 180 and 

360 days exposure periods in seawater for a 45% blast furnace slag cement concrete 

having a w/c of 0.36. All these results show an increase of C0 with increased exposure 

periods in salt laden environment. However, limited data exist in literature for AACM. 

AACM concrete mix S2 has the lowest surface chloride concentration, (C0)as, of 

0.06% and 1.42% by weight of binder at 55 and 270 days exposure periods while the 

highest for AACM concrete is displayed by mix S5 with 0.63% and 2.86% of binder at 

55 and 270 days exposure periods. OPC concrete mix S6 has the highest surface chloride 
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concentration, (C0)as, of 1.19% and 4.43% by weight of binder at 55 and 270 days 

exposure periods. 

Costa and Appleton [219] suggested that a concrete submerged in a tank 

containing sea water (16-21 g/l of NaCl) for more than 1 year has the tendency to reach 

a constant value of chloride concentration at the concrete surface (C0)as. This, however, 

is not observed in Figures 4.26 and 4.27 probably due to the leaching of alkali metals 

from the concrete matrix. This reduces the chloride concentration at the concrete surface, 

C0. 

 Fig. 4.27 shows the corresponding graph for water-soluble surface chloride 

concentration, (C0)ws, against chloride exposure periods. The coefficient of correlation 

between the exposure period and acid-soluble surface chloride concentration, (C0)ws 

relationship of the test data ranges from 0.91 to 0.99.  

 

Figure 4. 27: Relationship between the water-soluble surface chloride concentration, 
(C0)ws and chloride exposure period 
 The water-soluble surface chloride concentration (C0)ws shows similar trend in 

its relationship with exposure period to that of acid-soluble surface chloride 

concentration graph. The (C0)ws value for the water-soluble surface chloride 

concentration (Fig. 4.27) is higher than the corresponding acid-soluble surface chloride 

concentration (C0)as (Fig. 4.28). For example, the (C0)ws values of water-soluble surface 

chloride for AACM mortar mix S2 are 0.46%, 0.54%, 1.19% and 1.69% by weight of 

binder compared with 0.06%, 0.15%, 0.67% and 0.93% by weight of binder for acid-

soluble surface chloride (C0)as under 55, 90, 120 and 180 days chloride exposure. The 

water-soluble chloride content within the AACM concrete along its penetration depths 

was also higher than acid-soluble chloride. The reasons are discussed further in section 

4.4.3.3.2. 

 AACM mix S2 has the lowest (C0)as value ranging from 0.06%, 0.15%, 0.67%, 

0.93% and 1.42% (by weight of binder) at exposure periods 55, 90, 120, 180 and 270 
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days respectively. In comparison, the OPC concrete mix S6 had the highest C0 values 

among all mixes of 1.19%, 2.17%, 3.25%, 5.91% and 4.43% at these exposure periods. 

These values are 63% to 95% higher than the corresponding values of (C0)as for AACM 

concrete mix S2.  

  

4.4.3.3.2 AACM and OPC surface chloride concentrations C0 

The acid-soluble (C0)as and water-soluble (C0)ws chloride concentration for 

AACM and OPC concrete mixes S2, S5 and S6 at 55 and 180 days exposure, are 

presented in Figures 4.28 and 4.29.  

 
Figure 4. 28: Water-soluble and acid-soluble surface chloride concentrations of mixes 
S2, S5 and S6 at 55 days exposure. 

 
Figure 4. 29: Water-soluble and acid-soluble surface chloride concentrations of mixes 
S2, S5 and S6 at 180 days exposure. 

The acid-soluble surface chloride (C0)as of AACM mixes S2 and S5 are lower than 

the water-soluble  (C0)ws values. This is opposite to the data of OPC concrete mix S6 

which shows significantly higher acid-soluble surface chloride (C0)as than water-soluble 
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surface chlorides (C0)ws. This shows that a higher proportion of chloride is physically 

bound to the walls of the binder gel in AACMs rather than forming chloride binding 

compounds during geopolymerisation. It confirms the limited amount of Friedel’s salt 

and any other crystalline chloride compounds in AACM binders which are responsible 

for the higher chloride binding capacity of OPC concrete as proposed by RILEM TC 

224
 [3].  

In case of OPC concrete mix S6, the acid-soluble surface chloride (C0)as being 

higher than the water-soluble surface chloride (C0)ws indicates a much higher acid-

soluble chloride binding capacity. Both the acid-soluble and water-soluble surface 

chlorides of OPC concrete mix S6 are significantly higher than the AACM mixes S2 and 

S5 indicating both higher chemical and physical chloride binding capacities in OPC 

concrete. This phenomenon will be discussed further in chapter 5. 

The acid-soluble surface chloride concentration, (C0)as of OPC concrete mix S6 

was higher than that of AACM concrete mixes S2 and S5 at both 55 and 180 days 

exposure. This can be explained by the observation made by RILEM TC 224
 [3] that no 

Friedel’s salt is present in AACM concrete and there is neither any other crystalline 

chloride compounds unlike those produced in OPC concrete under chloride exposure. In 

effect, unlike OPC concrete, the chloride exposure period plays an insignificant role in 

producing acid-soluble chloride in AACM concretes.  

4.4.3.3.3 Influence of activator dilution 

AACM concrete mixes S2, S3, S4 and S5 had 2.12%, 4.24%, 8.12% and 12.00% 

activator dilution respectively as shown in Table 4.4. The relationship between the 

water-soluble surface chloride concentration, C0, and the activator dilution is plotted in 

Fig. 4.30.  

 
Figure 4. 30: The relationship between water-soluble surface chloride concentration, 
(C0)ws and activator dilution. 
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The surface chloride concentration (C0)ws decreases with the decrease of alkali 

activator dilution as shown in Fig. 4.30. Activator dilution of 2.12% had the lowest 

surface chloride concentration, C0, while 12% activator dilution had the highest C0 at all 

exposure periods as shown in Fig. 4.30. The water-soluble surface chloride 

concentrations (C0)ws were 1.70 and 2.70% by weight of binder at 180 days chloride 

exposure periods for 2.12% and 12% activator dilution respectively. In addition, the 

water-soluble surface chloride profile increases with the exposure period. The lowest 

water-soluble surface chloride profile is seen at 55 days exposure period while 180 days 

exposure period had the highest water-soluble surface chloride profile (Fig. 4.30). 

Petermann and Saeed [26] suggested that the activator concentration affects the 

reaction rate of pozzolans leading to a less porous and stronger cementitious material. 

The effect of activator concentration on its pore structure is equally observed in AACM 

concrete mixes S2 to S5 which is detailed in section 3.4.3.1.1, chapter 3.  

High concentration of soluble silicate was observed to synthesize alumino-silicate 

gel thereby providing good interparticle bonding and physical strength of geopolymers 

[227]. Gao and Brouwers [228] noted that the presence of high activator modulus 

(provided by low activator dilution) could have a positive effect on mechanical and 

durability properties of AACM concrete depending on the slag/fly ash mass ratio. Some 

researchers, however, recorded a negative impact of high concentration (high modulus) 

of alkali activator in AACM concrete. For example, Cheng and Chiu [229] noted the 

reduction in compressive strength by inclusion of high concentration of KOH. 10M 

concentration of KOH produced the highest strength of 60 MPa, while a decrease in 

strength was witnessed by increasing the KOH concentration from 10M to15M. The 

reason was attributed to excessive K+ ions in the framework. The activator dilution 

(2.12% to 12%) in AACM mixes S2 to S5 falls withing the upper and lower limits of 

optimum molarity range, thus such negative effect of high concentration was not 

observed. 

 The acid-soluble surface chloride concentration (C0)as for AACM concrete 

mixes with 2.15%, 4.25%, 8.12% and 12% activator dilution at 55, 90, 120, 180 and 

270 days exposure period is shown in Fig. 4.31. The surface chloride concentration 

(C0)as increases with increasing degree of dilution. 
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Figure 4. 31: The relationship between acid-soluble surface chloride concentration, 
(C0)as and activator dilution. 

 A lower activator dilution was observed to reduce the volume of larger pores 

while simultaneously increasing the volume of small pores which generally resulted in 

lower porosity for fly ash-based systems [230]. Similar findings were observed in 

chapter 3, whilst investigating the MIP parameters of the hybrid AACM mixes. The 

maximum reduction in the total porosity of AACM concrete with 2.12% activator 

dilution could account for its least chloride content in both the acid-soluble (C0)as and 

water-soluble (C0)ws surface chlorides. Brough and Atkinson [33] acknowledged the 

rapid formation of the geopolymerisation products of the binder gel with increased 

activator concentration. This would also account for the lowest dilution of 2.15% 

resulting in the least surface chloride content due to densification of binder gel at early 

age.  

4.4.3.4 Chloride Diffusion Coefficient Dc  

4.4.3.4.1 Influence of exposure period  

 Fig. 4.32 shows the relationship between chloride diffusion coefficient, DC, and 

chloride exposure period for AACM and OPC concrete mixes S2 to S6. A strong 

coefficient of correlation between 0.87 and 0.99 exists between the DC and chloride 

exposure period relationship (non-linear). 
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Figure 4. 32: Relationship of acid-soluble chloride diffusion coefficient Dc with 
exposure period 

 Fig. 4.32 shows a decrease in the chloride diffusion coefficient, DC, with 

exposure period (days) for both AACM and OPC concrete mixes S2 to S6. The chloride 

diffusion coefficient, DC of 3.5 x 10-12 m2/s at 55 days exposure decreases to 0.89 x 10-12 

m2/s at 270 days exposure for AACM mix S2. The rate of chloride ingress in both 

AACM and OPC concrete matrix tends to reduce considerably with exposure period.  

Higher activator dilution in AACM concrete resulted in a higher chloride 

diffusion coefficient, DC. For example, at 55 days chloride exposure period, the chloride 

diffusion coefficient, DC is highest in AACM mix S5 with 12.0% activator dilution (5.5 

x 10-12 m2/s) and lowest in AACM mix S2 with 2.15% activator dilution (3.5 x 10-12 

m2/s). This denotes a considerable influence of the alkali activator dilution in resisting 

the penetration of chloride ion within AACM concrete matrix. This trend was observed 

for 90, 120, 180 and 270 days exposure periods, where the lowest chloride diffusion 

coefficient, DC, was recorded for AACM mix S2 with the lowest activator dilution.  

The chloride diffusion coefficient, DC is influenced by the concrete pore 

structure which is discussed in detail in section 4.4.4.1. The refined pore structure of 

AACM concrete is because of its binder grain size which is lesser than OPC concrete. 

For example, PFA concrete has pores finer than 0.005 µm whereas OPC concrete pores 

are within 0.005 µm to 0.02 µm [25]. Similarly, the grain size of silica fume is 100 

times finer than the grain size of OPC concrete [25]. These result in a lower total 

intrudable porosity (i.e. summation of both gel and capillary pores) in PFA mortar than 

in OPC mortar. Similar results for AACM concrete were presented in chapter 3. The 

pore blocking effect induced by the secondary reaction of pozzolanic activities has been 

identified in supplementary cementitious concrete. An example was the faster decrease 

in the permeability of PFA concrete compared to OPC concrete [192]. The author [192] 
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suggested that the by-product of hydration, Ca(OH)2, reacts with PFA to produces more 

calcium silicate hydrate (C-S-H) that reduces the pore sizes of SCM.  

 The experimental results of chloride diffusion coefficient, DC, for AACM 

concrete presented in Fig 4.32 are within the limits of 6.5 x 10-12 m2/s and 0.89 x 10-12 

m2/s. The corresponding limits for OPC concrete mix S6 are 8.7 x 10-12 m2/s and 2.5 x 

10-12 m2/s. These values lie within the majorirty of published limits presented in Table 

4.2 (section 4.2.3.7) obtained from literature for OPC concrete. This table is repeated 

below. 

Table 4. 2: Published chloride diffusion coefficient Dc values for OPC 

DC 

(m
2
/s x 10

-

12
) 

Curing 

Age 

 

W/C 

Ratio 

Mix Design Author  Remarks 

Binder 

(kg/m3) 
Water 

(kg/m3) 
Total 

Aggregate 

(kg/m3) 

2.5 1.5y 0.43 339 146 -  
 

R.B. Polder, 
[199] 

 
 

 
Fly ash based 

concrete exposed to 
salt/dry cycle in the 

laboratory 
 

3 1.0w 0.40 420 168 - 
2 4.0w 0.40 420 168 - 
1 14.0w 0.40 420 168 - 
4 1.0w 0.54 300 162 - 
3 4.0w 0.54 300 162 - 

2.5 14.0w 0.54 300 162 - 
2.86-3.65 2.0m 0.50 330 165 2066 Zhang & 

Gjorv [200] 
Theoretical analysis 

of concrete under 
RCPT  

1.19-1.94 2.0m 0.50 330 165 1894 

2.8-3.1 1.0w 0.35 450 157.5 1695  
Luping 

[201] 
 

 
Rapid penetration of 

chloride in silica 
fume concrete 

 

4.4-5.4 1.0w 0.40 420 168 1692 
5.6-13.6 1.0w 0.50 390 195 1636 
9.8-39.7 1.0w 0.75 250 187.5 1784 

2.07 28d 0.66 288 190 1900  
Bertolini 

 [202] 

 
 
 

1.49 28d 0.62 275 170.5 1940 
1.77 28d 0.60 315 189 1835 

1.65 3m 0.50 400 200 1800 Collepardi 
et al, [203] 

 
 3.24 3m 0.60 384 230.4 1728 

11-14 14d 0.50 423 211.5 1777 Page et al., 

[204] 
Concrete slab 
exposed to 5% 

chloride ponding 

4.7 90d 0.35 380 133 1924  
Hooton 

[197] 
 

 
 

Silica fume concrete 
under bulk diffusion 

test 
 

5.9 120d 0.35 380 133 1924 
5.0 90d 0.40 374 149 1840 

9.3 120d 0.40 374 149 1840  
7.1 90d 0.45 369 165 1770  

10.8 120d 0.45 369 165 1770  

52.3 28d 0.58 530 307 1309 Mangat & 
Molloy 
 [192] 

Steel fibre reinforced 
concrete exposed to 
wet/dry cycle in the 

laboratory 
 

23.8 90d 0.58 530 307 1309 
10.0 270d 0.58 530 307 1309 

6.13 154d 0.40 590 236 1392  
Mangat & 
Gurusamy 

[205] 

Steel fibre reinforced 
concrete under 

marine exposure 
(tidal cycles) 

3.90 304d 0.40 590 236 1392 
2.81 1250d 0.40 590 236 1392 
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However, a comparison of the chloride diffusion coefficient, DC, of AACM 

concrete with OPC concrete in Fig. 4.32 shows significantly higher chloride diffusion 

coefficients than the AACM concrete mixes at all exposure periods.  

4.4.3.4.2 Influence of Activator Dilution  

Fig. 4.33 shows the relationship between chloride diffusion coefficients, DC, and 

activator dilution at 55, 90, 120, 180 and 270 days of chloride exposure.  

 
Figure 4. 33: Relationship between acid soluble chloride diffusion coefficient, Dc and 
activator dilution 

The chloride diffusion coefficient, DC increases as the activator dilution increases. 

For example, the chloride diffusion coefficient, DC for 2.12% activator dilution is 0.89 x 

10-12 m2/s relative to 2.5 x 10-12 m2/s for 12% activator dilution at 270 days exposure 

period. The increase in the chloride diffusion coefficients, DC with increased activator 

dilution is observed at all exposure periods. The influence of activator dilution on 

porosity and pore structure of AACM mortar investigated in chapter 3 gives an insight 

to the rate of chloride ingress through its matrix. The relationship between porosity and 

chloride diffusion, DC is detailed in section 4.4.4.1. It was observed that the lower 

activator dilution in AACM concrete resulted in a more refined intrudable porosity than 

with high activator dilution. These refined pores limit the ingress of chloride ions. 

 Unlike the surface chloride concentrations (C0)ws and (C0)as which increases with 

exposure period. The diffusion coefficients DC versus activator dilution relationships 

(Fig. 4.33) show the lowest values of chloride diffusion coefficients, DC, at the oldest 

exposure period (270 days). This is due to a tighter pore structure evolving after 

prolonged curing and the likely interference from the bound chlorides which prevent the 

ingress of chloride. The supersaturation of pores near the concrete surface with chloride 

ions may also be a possible cause for preventing further chloride ingress. 
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The phenomenon of higher chloride diffusion coefficients DC during the initial 

exposure of concrete to salt laden environment followed by a decrease at later exposure 

periods has been reported since late 70’s [188][225][226]. The relative performance of 

AACM and OPC concrete also depends on the duration of exposure to chloride solution 

(discussed in section 4.4.3.6). The chloride diffusion coefficients DC in AACM concrete 

decrease non-linearly with activator dilution, with greater reduction at higher dilution. 

4.4.4 Relationship between Porosity and Chloride Diffusion Parameters 

4.4.4.1 Chloride Diffusion Coefficient DC 

 The relationship between the chloride diffusion coefficient, Dc, at 55, 90, 120, 

180 and 270 days exposure and the intrudable porosity obtained from chapter 3 is 

shown in Fig. 4.34.  

 
Figure 4. 34: Relationship between the chloride diffusion coefficient and intrudable 
porosity at different exposure periods. 

A fairly-good linear relationship was exhibited at early exposure periods (55 and 

90 days) between the chloride diffusion coefficient, Dc, and intrudable porosity. The 

decline in the linear relationship between chloride diffusion coefficient, Dc, and 

intrudable porosity at later exposure periods (120, 180 and 270 days) can be explained 

by the restricted movement of chloride ions within the concrete pore matrix with 

increasing exposure period. This is because of the continuing hydration and 

geopolymerization in AACM and OPC concrete with exposure period. 

 Belch et al. [231] examined the separation of Na+ and Cl- when dissolved in 

water. The sizes of these ionic structures were observed to be in nanomillimeters. The 

radius of Na+ ion at condensation peak is approximated to be 0.58 nm while the 

micellar surface of Cl- ions are not well established for NaCl salt [232]. This suggests 
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that the penetration of NaCl into concrete matrix is only through intrudable porosity 

larger than 0.58 nm.  

On the other hand, the percentage of large intrudable pores reduces with age. At 

early age, a high percentage of pore volumes are observed to be above 0.58 nm but as 

hydration proceeds, the large pore spaces within the concrete matrix reduce, leaving 

behind smaller pores. Therefore, the linear relationship between the chloride diffusion 

coefficient Dc and the intrudable porosity were observed at early ages when Cl- ion 

could easily penetrate the concrete pore matrix but as the porosity lessens with age, 

chloride penetration stops, and chloride diffusion coefficient Dc remains constant. The 

porosity value at 28 days are plotted but they decrease with age and that effect is also 

reflected in the chloride diffusion coefficient Dc values but not in the porosity values in 

Fig. 4.34. 

4.4.4.2 Surface Chloride Concentration C0 

 The relationship between the surface chloride concentration, C0, at 55, 90, 120, 

180 and 270 days exposure and the intrudable porosity at 28 days age is shown in Fig. 

4.35. A linear relationship between surface chloride concentration, C0, and intrudable 

porosity was obtained from the best-fit curves.  

 
Figure 4. 35: Relationship between the surface chloride concentration and intrudable 
porosity at different exposure periods to 5% NaCl solution. 

The surface chloride concentration, C0 increases with the period of exposure. 

The surface chloride concentration, C0 is as a result of the absorption of Cl- ion at the 

surface of the concrete; hence the percentage of pore diameter greater than the diameter 

of Na+ ion of 0.58 nm within the concrete matrix hardly affects the relationship 

between these two parameters. The hydration of concrete with age resulting in a 

reduction of large pores had minimal effect on the surface chloride relationship. 
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Chisholm and Lee [233] proposed the possibility of precipitation of insoluble salt at the 

concrete surface over a long period of exposure, this may also account for the high 

chloride content at the concrete surfaces.  

In conclusion, the porosity and chloride diffusion parameters C0 and Dc of 

AACM and OPC concrete appear to show a linear relationship especially at earlier 

exposure periods. 

4.5 CONCLUSIONS 

The following conclusions are based on the investigation on the strength development 
of AACM and OPC concrete. The chloride diffusion parameters were also investigated, 
in particular the water and acid soluble chlorides in AACM concrete, the rate of 
diffusion and surface chloride profiles. 

• The liquid/binder ratio had great impact on the strength of AACM concrete. 

However, high coarse aggregate content aided an improved compressive 

strength in AACM concrete. For example, AACM mix S2 with liquid/binder 

ratio 0.41 had higher strength than mixes S4 and S5 with liquid/binder ratio 0.48. 

However, mix S3 had similar strength with mix S2 because of its higher coarse 

aggregate and lower activator dilution. 

• The activator dilution played a significant role in strength development of 

AACM concrete similar to AACM mortar in Chapter 3. AACM mixes S2 

(2.15% dilution) and S3 (4.24% dilurion) with lower activator dilution achieved 

greater 28 days strength than mixes S4 (8.12% dilution) and S5 (12% dilution). 

• The strength developed at early age in AACM concrete was faster under dry 

curing (200 C, 65 RH) compared with wet curing (200 C) while the reverse is 

true for OPC concrete. For example, AACM mix S3 and OPC S6 under wet 

curing had 39 MPa and 28 MPa respectively compared with 40 MPa and 26 

MPa under dry curing at 7 days age.  

• The chloride profiles of water and acid soluble concentration for both AACM 

and OPC concrete shows good correlation with Fick's second law of diffusion. 

• The water and acid soluble surface chloride concentration, C0, increases with 

exposure periods for AACM and OPC concrete. This increase was more 

pronounced in water soluble chloride compared with the acid soluble chloride 

for AACM concrete. On the other hand, OPC concrete revealed more surface 

chloride concentration, C0, for acid soluble chloride compared with the water 

soluble chloride. For example, the C0, for AACM mix S3 and OPC S6 water 
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soluble chlorides are 2.07% and 3.27% respectively while it is 1.37% and 5.91% 

for acid soluble chloride at 180 days exposure. 

• A decrease in chloride diffusion coefficient with exposure periods were 

observed for both AACM and OPC concrete. Generally, AACM concrete 

possess a lower chloride diffusion coefficient compared with OPC concrete. For 

example, the chloride diffusion coefficients for AACM mix S3 and OPC S6 at 55 

days chloride exposure are 5.6 x 10-12 m2/s and 8.7 x 10-12 m2/s respectively 

while it is 1.8 x 10-12 m2/s and 2.5 x 10-12 m2/s at 180 days chloride exposure. 

• The more refined pore structure of AACMs (lower porosity, discontinous pore 

structure) aided lower chloride diffusion when compared to OPC concrete. 
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CHAPTER 5 
FREE CHLORIDE AND pH OF PORE SOLUTION IN ALKALI ACTIVATED 

CEMENTITIOUS (AACM) CONCRETE 

5.1 INTRODUCTION 

 The electrochemical reaction between the chloride ions present in the concrete 

pore solution, also known as free or mobile chloride, and the steel reinforcement or 

fibres which are embedded within the concrete matrix usually results in chloride 

induced corrosion in the presence of water and oxygen [25]. This type of corrosion 

initiates when the pH (alkalinity) of the pore solution reaches a certain limit, normally 

below 9 for OPC concrete [25], but not yet agreed upon for AACM concrete. 

 The free or mobile chloride plays a direct role in the corrosion of steel 

reinforcement in concrete rather than the bound (physically and chemically) chloride 

because the movement of chloride ions responsible for the corrosion of steel within the 

concrete matrix is controlled through the pore solution electrolyte when the concrete is 

saturated [209]. The bound chloride regulates the chloride binding isotherm of the 

concrete (i.e. the relationship between the free and bound chlorides). It has been 

suggested that a part of the bound chloride is released into the pore solution when there 

is a local fall in pH thereby increasing the free chloride content [208]. It is shown that 

some of the free chlorides are either absorbed by the hydration products of cement or 

adsorbed by the walls of the binder gel [97] in order to maintain equilibrium between 

the free and bound chlorides in OPC concrete. 

Studies show that the pore solution composition of AACMs is different from that of 

OPC concrete [3][82][234].  The pore solution composition of AACMs is dependent on 

the type of activator used, for example, Puertas et al. [235] observed a significant 

change in the ionic composition of pore solution for a slag cement paste within 3 to 24 

hrs when activated with either sodium silicate or sodium hydroxide. These changes 

were different with the two activators and were represented by a decrease in Na and Si 

contents.  

 The pH of the pore solution, on the other hand, is a determinant factor for the 

formation of a passive thin film comprising of iron oxide around the steel surface, 

which prevents the initiation of corrosion of embedded steel in concrete. The prolonged 

action of free chloride as well as lower pH due to carbonation in OPC concrete destroys 

this protective film [25]. However, it is argued that a reduction in pH of the pore 

solution due to partial replacement of cement by a supplementary cementitious 
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(pozzolanic) material does not necessarily result in the depletion of the protective thin 

film around the embedded steel surface [236]. Therefore, the electrochemical reaction 

between the free chloride and embedded steel in supplementary cementitious concrete is 

partially affected by the reduction of the concrete pore solution alkalinity.  

 The corrosion initiating relationship between the free chloride and pH of pore 

solution in AACMs is not established in literature. This chapter will address this 

relationship between the two parameters as well as their relationship with bound 

chlorides from chapter 4. 

5.2 LITERATURE REVIEW 

5.2.1 Concrete Pore Solution Composition 

 The hydrated products of OPC concrete produce saturated pore solution 

containing calcium hydroxide Ca(OH)2 and different ions depending on the type of 

cement and supplementary cementitious materials (e.g. fly ash, slag and silica fume) 

[237]. These ionic species are principally alkali oxides of sodium and potassium that 

exist in the cement. Sulphate ions could also be present in the concrete pore solution 

due to gypsum added during cement production or from contaminated aggregate or 

mixing water [25].  

 The pH of OPC concrete pore solution increases from about 12.5 to 13.5 by the 

presence of the alkali oxides (Na+ and K+) [238][239]. However, the pH decreases when 

mineral admixtures are added [25]. For example, a 10% replacement of OPC cement 

with silica fume reduced the pH of the concrete pore solution from 13.5 to 12.6 [236]. 

This is due to the secondary pozzolanic reactions of the supplementary cementitious 

material which requires calcium hydroxide Ca(OH)2 from the concrete pore solution to 

activate these reactions. For a fly-ash based system, the glassy material is only activated 

when the pH of the concrete pore solution is about 13.2 [25] but for ground granulated 

blast-furnace slag (GGBS), the glassy material is activated at a lower pH of about 11.5 

[240]. 

 Information on the chemistry of AACM pore solution is scanty unlike that of 

OPC concrete pore solution which is fairly-well documented. Song and Jennings [240] 

performed x-ray diffraction analysis on an alkali-activated ground granulated blast-

furnace slag (GGBS) to determine the chemical composition of its pore solution. The 

ionic species of Si, Ca, Al, and Mg were found to be present in the pore solution and 

were dependent on the pH of the aqueous phase. The high pH of the pore fluid was 

associated with high concentrations of Si and Al but lower concentrations of Ca and Mg.  
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5.2.2 Concrete Chlorides 

5.2.2.1 Free Chloride 

 Free or mobile chlorides are soluble chlorides present in the concrete pore 

solution. The free chloride content and pH of the pore solution are decisive factors in 

the initiation and propagation of chloride induced corrosion in reinforced concrete in the 

presence of oxygen and water [25]. Wan et al. [241] suggested that at an early stage of 

hydration in OPC concrete, the aqueous pore solution contains cations such as sodium, 

potassium and calcium which leave the pore solution by leaching at later stages of 

hydration. The displaced cations are replaced by ions such as chloride, sulphate, 

ammonium and carbon dioxide from the environment. During the ingress of chloride 

into the concrete matrix, a portion of the chloride ions is adsorbed by the hydration 

products to form Friedel’s salt (Ca6Al2O6.CaCl2.10H2O), also known as the acid soluble 

chloride, while some portion is absorbed by the wall of the gel to form Kuzel’s salt 

(Ca6Fe2O6.CaCl2.10H2O), also known as water soluble chloride [207]. This is discussed 

in more detail under section 4.2.3.5 in chapter 4. The remaining portion of the total 

chloride ingress is present in the concrete pore solution, also known as the free chloride. 

Xinying et al. [242] suggested that the free chloride content is about half the quantity of 

bound chloride content (i.e. summation of acid and water soluble chlorides). The free 

and total chloride contents for OPC based steel reinforced concrete specimens under 

laboratory conditions are presented in Table 5.1. 
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Table 5. 1: Published total and free Cl- content in OPC based concrete (laboratory conditions) [238] 

Total Cl- 
(% bw) 

Free Cl- 

(% bw) 
Cl-/OH Cation Cl- Transportation 

Mechanism 
Specimen W/C Cement  

Type 
Exposure Year Reference 

           
0.5-1.8 0.08-1.07 2.5-6 Na capillary, diffusion 

and mix 
mortar, concrete 0.3-0.75 OPC, SF air 1995 Pettersson 

[243] 

           

0.25-0.75 0.06  Na Introduced in mix mortar 0.5-0.6 OPC, SF, 
FA, GGBS 

submerged 1998 Breit  [244] 

           

1.24-3.08 0.39-1.16 1.17-3.98 Na, Ca Introduced in mix mortar 0.5 OPC 100% RH 2000 Alonso et al. 

[245] 
           

0.25-1.25 0.03-0.32  Na Capillary and 
diffusion 

mortar 0.6 OPC  2000 Zimmermann 

et al. [246] 

           

0.62 0.21 1.5 Na Capillary and 
diffusion 

mortar 0.37 SRPC 95% RH 2002  

Castellote et 

al. [247] 

          
0.42 0.19 2.0 Na migration mortar 0.37 SRPC 95% RH 2002 
           

0.04-0.24  0.09-0.62 Na migration mortar 0.5 OPC submerged 2003 Trejo and 

Pillai [248] 

           

0.68-0.97 0.07-0.13 0.16-0.26 Na Introduced in mix concrete 0.35-0.55 OPC, FA, 
GGBS 

95% RH 2003  

Oh et al. [92] 

          
0.45 0.10 0.27 Na Introduced in mix concrete 0.35-0.55 SRPC 95% RH 2003 
           

1.1-2.0 
 

2.0 

1.8 

0.4-0.8 
 
 
1.2 

1.33 

 
 
 
 

Sea water 
 
 
Na 

NA 

Capillary and 
diffusion 

Capillary and 
diffusion 

Concrete 
 

Mortar 

Mortar 

05 
 

0.45 

0.45 

OPC 
 

OPC, FA 

OPC 

Air 
 

Cycle 

Cycle 

2006 
 

1994 

1994 

Mohammed 

and Hamada 

[249] 
 

 

Mangat et al. 
[250] 

  * (% bw) is % by binder weight
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 The free chloride from Table 5.1 ranges from 0.03 to 1.33% by weight of binder 

and the lowest total chloride content is 0.04% by weight of binder while the highest is 

3.08% by weight of binder. Table 5.1 shows that the cement type and the method of 

introducing chloride into the concrete had significant influence on the free and total 

chloride contents. The lowest chloride contents recorded by Breit [244] and Oh et al. 

[92] had chloride introduced into the concrete mix during casting and the presence of 

supplementary cementitious materials. A large portion of the chloride content 

introduced during concrete mixing would have taken part in the hydration reaction 

forming Friedel’s salt (Ca6Al2O6.CaCl2.10H2O). The low pH value in concrete 

containing supplementary cementitious materials and partly inferior binding capacity 

has resulted in higher free chloride content than normal concrete [251]. 

 The curing method and chloride exposure concentrations equally play vital roles 

in the amount of total and free chlorides present in the concrete. Information is not 

provided about the chloride exposure concentrations in Table 5.1 but it is known that 

high chloride exposure concentrations normally result in high total and free chlorides 

due to the driving force provided by the concentration gradient. The wet/dry cyclic 

curing was observed to increase the total and free chlorides significantly. For example, 

Mangat et al [250] gave relatively high free chloride contents of 1.2% and 1.33% by 

weight of binder for fly ash and OPC concrete respectively which was exposed to 

marine cycles for 540 days in the laboratory. The salt content of the seawater used in the 

spray chamber increased with time due to evaporation. 

5.2.2.2 Total Chloride 

 The total chloride is the sum of all the chloride content (i.e. acid-soluble, water 

soluble and free chloride) present in concrete. There is no fixed or critical amount of 

total chloride which initiates corrosion of steel or fibres embedded in concrete [25]. 

Various factors such as binder content and environmental chloride concentration 

determine the proportion of bound chloride present in the total chloride. The proportion 

of bound chloride present in the total chloride varies from 80% to about 50% [25]. This 

in theory means that a larger proportion of the total chloride is either bound to the walls 

of the binder gel or forms a part of the hydration products than is dissolved in the pore 

solution. A fraction of the total chloride is present in the free chloride as seen in Table 

5.1. 

 The proportion of free chloride present in the total chloride from Table 5.1 

varies from 16% to 65%. This somewhat conforms to the proportion of bound chloride 
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present in the total chloride varying from 80% to about 50% for OPC concrete. The 

results of the bound chloride content of AACM concrete presented in chapter 4 reveal 

that a large proportion (between 65% to 87%) of the total bound chloride is absorbed by 

the walls of the binder gel (water-soluble chloride) rather than forming a part of the 

hydration products (acid soluble chloride). This is contrary to OPC concrete, where a 

large proportion of about 65% of the total bound chloride combines with the hydration 

products (acid-soluble chloride). 

5.2.3 pH of Concrete Pore Solution 

 The pH of concrete is a measure of the degree of alkalinity of its pore solution. 

The pH of concrete pore solution is normally high in alkalinity, above 12.6 for OPC 

concrete. A higher pore solution pH is required to activate the pozzolanic reaction in 

AACM or supplementary cementitious concrete ranging from, 13.2 for fly-ash based 

system [25] to 12.8 for ground granulated blast furnace slag concrete and 12.5 for silica 

fume concrete [238]. The pH of the concrete pore solution is initially dependent on the 

type of binder but becomes affected by carbonation and leaching of hydration products 

at a later stage [238]. 

 The pH is defined as the negative logarithm of hydrogen ion [H+] present in the 

pore solution. The relationship between pH and hydroxyl ion [OH-] is shown in 

equation 5.1. 

 [OHH] = 	10H(�fHgh)  5.1 

The pH of concrete pore solution at considerably low values less than 12 is suggested to 

aid the participation of bound chloride in corrosion initiation in a reactive solid material 

[208]. It was argued that the low pH favours the dissolution of chloride ions that are 

physically or chemically bound to the hydration products thereby increasing the free 

chloride content in concrete [252]. Glass and Buenfeld [208] suggested that an 

increased binding capacity under certain circumstances may result in a reduced time to 

initiate corrosion due to bound chlorides participating in the chloride induced corrosion. 

The explanation given was that an increased binding capacity reduces the free chloride 

in the pore solution which supports the transport of chloride; this simultaneously 

increases the chloride concentration differential between the pore solution and the 

external environment chloride content near the concrete surface exposed to the chloride 

source. The increased chloride content at the surface over a long period of time will 

increase the rate of chloride diffusion into the concrete [208]. 
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 This hypothesis could only be true when the hydration of the concrete is 

complete. The pore structure of concrete becomes tighter because of the hydration 

process over time as detailed in chapter 3. Secondly, the chloride ions physically bound 

to the wall of the hydration products reduce the mean pore sizes thereby reducing the 

rate of chloride ingress into the concrete as detailed in chapter 4. 

 Contrary to the dissolution of bound chloride into the pore solution at low pH 

when the source chloride is NaCl, Robert [253] observed the solubility of Friedel’s salt 

at high pH when the chloride source is from CaCl2, thereby releasing the chemically 

bound chloride into the concrete pore solution at high pH. The difference in dissolution 

of bound chloride into the concrete pore solution at various pH for samples containing 

NaCl and CaCl2 could be attributed to the solubility of their cations at various pH values 

[254].  

 The effect of pH on the bound chloride solubility in the concrete pore solution is, 

therefore, greatly influenced by the source chloride. NaCl is used as the source chloride 

for this study. 

5.2.4 Hydroxyl Ion (OH
-
) Concentration 

 Hydroxyl ion concentration is as important as the chloride content of the pore 

solution because it affects the corrosion rate of steel in concrete, although no generally 

valid conclusion exists on its threshold value [25]. There is the possibility of 

depassivation of steel embedded in concrete with an increase in the chloride/hydroxyl 

concentration. However, the threshold value of 0.61 for the chloride/hydroxyl ion 

concentration proposed by Hausmann [255] for the initiation of corrosion in cement 

based materials does not normally apply. For example, Lambert et al. [170] presented a 

chloride/hydroxyl concentration threshold of 3 for steel rods embedded in concrete. The 

chloride/hydroxyl concentration as high as 320 did not result in corrosion of steel fibres 

embedded in fly-ash concrete [102]. Similarly high threshold value of chloride/hydroxyl 

concentration in silica fume concrete was observed by Page and Havdahl
  [256] for 

corrosion initiation.  The reasons attributed to such high values were the lower chloride 

binding and pH which increases the Cl−/OH− ratio in its pore solution. In addition, the 

reduced chloride ingress and oxygen content due to tight pore structure depresses the 

steel potential. 

 Hausmann [255] based the chloride/hydroxyl concentration threshold of 0.61 on 

an idealized solution to represent the pore solution of hydrated cement. This model 

electrolyte cannot simulate an oxygen depletion or limited mobility of chloride ion 
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within the cement matrix unlike the concrete pore solution [252]. The threshold 

chloride/hydroxyl concentration of 0.61 proposed by Hausmann [255]  is lower than the 

threshold values published by other authors as shown in Table 5.1, thus making it 

unreliable for predicting corrosion behaviour of steel in concrete. The highest Cl−/OH− 

ratios of 2.5 to 6 in Table 5.2 were presented by Pettersson [243] for a silica fume 

mortar and concrete while the lowest values of 0.09 to 0.62 were presented by Trejo and 

Pillai [248] for OPC mortar. 

5.2.5 Chloride Binding Isotherms 

5.2.5.1 Introduction 

 Four models commonly adopted to establish the relationship between the bound 

and free chloride are Freundlich, Langmuir, Linear and BET chloride binding isotherm. 

These relationships are defined as chloride binding isotherms. These models are suitable 

for high and low free chloride concentrations [95]. Each model is applicable within a 

specific range of chloride concentration. Freundlich binding isotherm is adopted for the 

range of free chloride concentrations in seawater which is usually high concentration 

while Langmuir binding isotherm is used for low free chloride concentration. The 

Linear binding isotherm oversimplifies the bound-free chloride relationship and BET 

isotherm is rarely used [209]. 

5.2.5.2 Freundlich Isotherm 

 Regression analysis of the free and bound chloride content relationship were 

performed on the experimental data of this research project to obtain the best fit curves 

for the Freundlich, Langmuir and Linear models as shown in Fig 5.1. The Freundlich 

binding Isotherm showing the relationship between the free and bound chloride 

concentrations is given in equation 5.2. 

 Cj 	=	∝ 	Clm  5.2 

Where: Cb = Bound Chloride Concentration (% Wt. by Binder); Cf = Free Chloride 

Concentration (mol/L); α and β = Binding Constants. The prediction (regression line) of 

the binding capacity using the Freundlich binding Isotherm (Red dotted line) is shown 

in Fig 5.1. 
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Figure 5. 1: Free and bound chloride relationships using Freundlich, Langmuir and 
Linear binding isotherms 

 Freundlich binding isotherms are usually applicable to concrete with high free 

chloride concentrations. For example, Thomas et al. [257] used Freundlich binding 

isotherm to relate their experimental data to the chloride binding isotherm for 

supplementary cementitious materials with high concentration of free chlorides. The 

concrete mixes investigated by Thomas et al. [257] showed that 8% cement replacement 

with silica fume exhibited the lowest chloride binding capacity while 25% cement 

replacement with fly-ash had the highest binding capacity. The differences in their 

binding capacities were attributed to the alumina content within the binder gel hydrates. 

The free chloride concentration in this case was greater than 0.1M (0.1mol/L) of NaCl. 

In comparison the maximum free chloride concentration in AACM mixes represented in 

Fig. 5.1 is 0.02 mol/L which is clearly much lower than Thomas et al. [257] results. 

 Similarly, Yuan et al. [258] presented the chloride binding capacities for 

supplementary cementitious materials immersed in 16.5% NaCl for 42 days as well as 

the chloride migration test with 10% NaCl and 0.3 mol/L of NaOH filled at the cathodic 

and anodic cells respectively. The results presented suggested a minimal influence of 

electric voltage on the binding isotherm. The free chloride concentrations present within 

the concrete matrix are from 0.2 to 1.0 mol/L which fit with Freundlich model.  

5.2.5.3 Langmuir Isotherm 

 The Langmuir binding isotherm shows the relationship between the free and 

bound chloride concentrations given by equation 5.3. This model is usually used to 

describe the binding isotherm of free chloride concentration lesser than 0.05 mol/L [95]. 
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Where: Cb = Bound Chloride Concentration (% Wt. by Binder); Cf = Free Chloride 

Concentration (mol/L); α and β = Binding Constants. The free and bound chloride best-

fit relationship using non-linear regression analysis of the Langmuir binding Isotherm 

(Blue dotted line) is shown in Fig 5.1. 

 Yuan et al. [209] suggested that at high chloride concentration exposures, the 

Langmuir binding isotherm indicates that all adsorption sites are occupied by chloride 

ions thereby resulting in lower chloride ion concentration in the pore solution.  

 Glass and Buenfeld [208] adopted the Langmuir binding isotherm to relate their 

chloride ingress data for low (2%), medium (8%) and high (14%) C3A cement which 

gave good correlation with the model. The concrete mix containing 0-3% by weight of 

chloride was cured for 130 days without any change in moisture content of the 

specimen. The values predicted from the best-fit equation by regression analysis of 

Glass and Buenfeld [208] data gave maximum bound chlorides for the low (2%), 

medium (8%) and high (14%) C3A cements as 0.97%, 1.32% and 1.67% by weight of 

cement respectively. The model shows best-fit for (14%) C3A cement than the low (2%) 

and medium (8%) C3A cements. 

5.2.5.4 Linear Isotherm 

 The linear binding isotherm is adopted by many researchers because of its 

simplicity [92][249][93][259] giving the proposed linear relationship model between the 

free and bound chloride concentrations in equation 5.4. 

 9n 	= �	9�  5.4 

Where: Cb = Bound Chloride Concentration (% Wt. by Binder); Cf = Free Chloride 

Concentration (mol/L); k = Binding Constant. The relationship between free and bound 

chloride using the Linear binding isotherm (Green dotted line) is shown in Fig 5.1. 

 Several controversial views on the validity of adopting the linear binding 

isotherm to predict the relationship between free and bound chloride concentration has 

been put forward. Ramachandran et al. [260] and Yuan et al. [209] suggested that the 

results from linear binding isotherm are not valid because the linear binding isotherm 

over-estimates the chloride binding capacity at high concentration of exposures and 

under-estimates the chloride binding capacity at low concentration of exposures. 

 On the other hand, the linear binding isotherm was validated to predict the 

relationship between free and bound chloride for field-exposed concrete under a marine 

environment for long exposure periods of 10 to 30years [249]. Sandberg [261] noted the 

differences between the linear relationship of free and total chloride of the field-exposed 
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and laboratory cured concretes. The differences in their linear binding isotherms were 

ascribed to the leaching of hydroxyl ions. 

5.2.5.5 Chloride Binding Capacity 

 The chloride binding capacity of sulphate-resisting Portland cement SRPC and 

supplementary cement replacement concrete was reported to be lower than OPC 

concrete [25]. This was due to the differences in the binding effect which was 

influenced by the Tricalcium aluminate C3A content in each cement (OPC ~ 15% and 

SRPC~ 2%) [170]. An increase in the Tricalcium aluminate C3A decreases the free 

chloride concentration in the pore solution. Similarly, an increase in the alkali content 

and OH- concentration decreases the free chloride concentration in pore solution thus 

improving the chloride binding capacity [92]. 

 Fig. 5.2 shows the binding isotherm of the published total and free chloride 

content in cement based materials (Table 5.1). Lower limits of the total and free 

chloride contents from the data of Pettersson [243], Alonso et al. [245], Trejo and Pillai 

[248], Oh et al. [92] and Mohammed and Hamada [249] were used from Table 5.1. The 

linear binding isotherm was adopted because of the single value of total and free 

chloride available for the analysis. 

 
Figure 5. 2: Linear binding isotherm of published chloride concentrations from Table 5.1 

 Trejo [248] had the highest binding capacity followed by Pettersson [243]. 

Supplementary materials were incorporated in the mix compositions of these concrete 

and mortar mixes. The binding capacity increases for a fly-ash slag concrete because of 

its high Al-bearing phase although the increase in the binding capacity is dependent on 

the property of the ash [209]. Florea and Brouwers [262] presented the binding 

capacities of slag blended cement pastes containing 0%, 25% and 50% slag content. The 

slag blended cement paste containing 50% slag had the highest binding capacity which 
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was attributed to the aluminate phases in the slag blended cement. AACM materials are 

likely to have high binding capacity because of the high alkali content of mix as a result 

of the alkali activator concentration and due to the use of supplementary binders. 

On the other hand, the lowest binding capacity was observed in the results 

presented by Mangat et al. [250] which contain microsilica and the concrete was 

exposed to the longest curing period under marine spray cycles in the laboratory for 520 

days. 

5.3 EXPERIMENTAL PROGRAMME                              

5.3.1 Mix Composition 

 The specimens used for free chloride and pH analysis were obtained from the 

same AACM concrete mixes that were used to determine the bound chloride 

concentrations, which are detailed in chapter 4. The AACM concrete comprises of a 

cementitious binder, fine aggregate, coarse aggregate and the alkali activator as shown 

in Table 5.2. Trial mix S1 was performed prior to the selection of the mix composition 

used for the free chloride and pH investigation. The mixes for the investigation were 

made with the proprietary AACM binder and activator by incorporating a range of 438 

kg/m3 to 585 kg/m3 of fine aggregate and 988 kg/m3 to 1170 kg/m3 of coarse aggregate 

(Table 5.2). The trial mix S1 was tested for strength, shrinkage and workability to 

achieve a practical field mix of AACM concrete with high strength. A compressive 

strength of 72.25 MPa was achieved at 28 days age, the slump was between 60 - 180 

mm and the shrinkage had a mean value of 683.4 microstrain at 78 days age. The 

experimental AACM concrete mixes S2 to S6 used in this research were produced based 

on the trial mix S1 (Table 5.2). The AACM binder content and fine aggregate content of 

the mixes S2 to S5 was reduced relative to mix S1 while the liquid/binder and coarse 

aggregate content was increased to adjust the workability and setting time required for 

practical mixes. The mix composition of the five series of concrete mixes S2 to S6 is 

given in Table 5.2. S6 is the control mix produced with 100% OPC binder of C40 grade 

concrete. The reference alkali activator liquid
 [210] was diluted with tap water by 

2.15%, 4.24%, 8.12% and 12% in mixes S2 to S5 respectively (Table 5.2). The liquid 

composition of each mix comprised of alkali activator, water, retarder and shrinkage 

admixture. AACM Mix S2 had the lowest percentage dilution of alkali activator with 

water, which was 2.15%, while AACM Mix S5 had the highest with 12.00%. The ratios 

of total liquid (alkali activator + water) to binder are 0.41, 0.48, 0.47 and 0.47 for mixes 



161 
 

S2, S3, S4 and S5 respectively. The water cement ratio of the control OPC concrete mix 

S6 is 0.48. 
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Table 5. 2: Composition of AACM and OPC concrete mixes 
Mix Total 

Binder 
(Kg/m3) 

Coarse 
Aggregate(Kg/m3) 

Fine 
Aggregate 
(Kg/m3) 

Alkali 
activator 
(Kg/m3) 

Extra 
water 
(Kg/m3) 

Total 
Liquid 
(Kg/m3) 

Liquid/ 
Binder 
Ratio 

Activator 
Dilution  
(%) 

Retarder 
(Kg/m3) 

SRA 
(Kg/m3) 

 10mm 
Gravel 

6mm 
Limestone 

   

            
S2 

S3 

S4 

S5 

S6(Control) 

688 

619 

619 

619 

350 

654 

717 

717 

717 

769 

334 

374 

374 

374 

401 

438 

423 

423 

423 

585 

279 

283 

271 

260 

- 

6 

12 

22 

31 

170 

285 

295 

293 

291 

170 

0.41 

0.48 

0.47 

0.47 

0.48 

2.15 

4.24 

8.12 

12.00 

- 

8 

7 

7 

7 

- 

21 

19 

19 

19 

- 
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5.3.2 Experimental Procedure 

5.3.2.1 Concrete Coring 

  Four cores of 50 mm diameter x 60 mm height were drilled using a diamond 

core drill bit from the AACM and OPC concrete specimens of dimensions 250 x 250 x 

75 mm (Fig. 5.3) which were used for the chloride diffusion investigation (section 

4.3.4.1, chapter 4). The coring was performed at 180, 270 and 540 days exposure period 

in 5% NaCl solution. At exposure periods of 180 and 270 days, the concrete cores were 

obtained from the sawn halves of concrete specimens (250 x 125 x 75 mm) that were 

used to collect powder samples for the acid and water-soluble chloride analysis in 

chapter 4. The concrete coring performed at exposure period of 540 days was carried 

out on a complete specimen (250 x 250 x 75 mm) as shown in Fig. 5.3.  

 
(a) 

 
(b) 

Figure 5. 3: Coring of AACM and OPC specimens exposed to 5% NaCl solution. (a) 
Sawn halves, dimensions 250x125x75mm (180 and 270 days exposure) (b) Full 
specimen, dimensions 250x250x75 mm (540 days exposure). 

 Each core specimen of 50 mm diameter x 60 mm depth was sawn into three 

discs of 50 mm diameter x 20 mm depth representing depths of 0 - 20 mm, 20 - 40 mm 

and 40 - 60 mm from the surface of the concrete (Figures 5.4 and 5.5).  
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Figure 5. 4: Cutting the concrete cores into discs of 50 mm diameter x 20 mm depth. 

 The discs were labelled 1, 2 and 3 for depths of 0 - 20 mm, 20 - 40 mm and 40 - 60 mm 

respectively. Four discs for each depth from the concrete surface were produced i.e 4 

Nos of 0 - 20 mm, 20 - 40 mm and 40 - 60 mm as shown in Fig. 5.5. 

 
Figure 5. 5: Obtaining discs of 50mm diameter, 20mm depth from the concrete core. 

 The bituminous coating which was applied to the five faces of the chloride 

diffusion specimens to prevent the ingress of chloride was carefully removed from the 

cores. The coating was removed to prevent possible interference with the measured free 

chloride content. The concrete discs were immediately stored separately for each 

concrete specimen in self-sealing bags to avoid the effects of carbonation of the test 

samples (Fig. 5.6). The test samples were stored in the environmental simulation 

Concrete Discs 

1 (0-20mm) 

2 (20-40mm) 

3 (40-60mm) 

Concrete Core 
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chamber at 100% R.H. to retain the concrete pore solution within the sample and 

prevent carbonation. Expression of the pore fluid was performed on all the samples 

within 10 days. 

 
Figure 5. 6: Concrete discs stored in self-sealing bags 

5.3.2.2 Pore Solution Expression 

 The extraction process of pore solution from concrete required compressing the 

concrete discs at high pressure up to 190 tonnes using the OpiCAD pore fluid extraction 

device (Fig. 5.7). The OpiCAD device consists of the crushing cone, piston and 

punching head, all made from high resistance metal. The core samples were subjected to 

high triaxial pressures of up to1000 MPa in the pore fluid extraction device by the 

compression testing machine. 

 Three concrete discs each of 50 mm diameter x 20 mm depth, which were 

numbered 1 (representing 0-20 mm depth) from the three cores of each AACM concrete 

mix S2 to S5 were combined and placed inside the pore fluid extractor. The pore fluid 

extractor comprised the following parts: the crushing cone, Teflon disc, piston and the 

punching head as shown in Fig. 5.8. The punching head was centrally positioned on the 

teflon disc and the whole assembly was then placed on top of the core discs inside the 

pore fluid extraction device with the punching head pressing on the core discs (Fig. 5.8). 

The teflon discs provide an airtight joint and prevent air intrusion into the pore fluid 

extractor from the outside environment during the application of high pressure through 

the punching head to squeeze the pore solution from concrete (Fig. 5.9). In addition to 

preventing air intrusion, the function of the teflon disc is to centrally position the 
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punching head which might otherwise damage the piston or the crushing cone if not 

placed centrally. 

 
Figure 5. 7: Pore fluid extraction device 

 
Figure 5. 8: Cross section of pore fluid 

extraction device and concrete discs 

 The piston (Fig. 5.7) was placed on the teflon disc. Pressure on the core discs 

was applied by the compression testing machine. The pore fluid extraction device with 

the concrete discs in it was placed under the loading platen (Fig 5.9) in the compression 

testing machine. Compressive load was applied at a steady rate and the pore solution 

was extracted through a suction action without allowing contact with air and was 

immediately stored in plastic vials, labelled and sealed with parafilm (Fig 5.10). The 

same procedure was repeated on concrete core discs labelled 2 (representing 20-40 mm 

depth) and 3 (representing 40-60 mm depth). 

 
Figure 5. 9: Pore fluid extractor placed 
under the compression testing machine 
platen 

 Figure 5. 10: Air tight plastic vials 
containing concrete pore solution. 
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5.3.2.3 Concrete Pore Solution  

 The data of the pore fluid extraction performed on both AACM and OPC 

concrete mixes S2 to S6 are presented in Table 5.4. The pore fluid extraction was 

performed on AACM and OPC concrete at 180, 270 and 540 days of chloride exposure 

periods. A total of 24 pore fluid extractions were performed on the concrete core discs. 

 Table 5. 3: Details of AACM and OPC concrete pore fluid extraction 

540 days chloride exposure 
Mix Depth (mm)  Extraction Pressure 

(MPa) 
 Weight of Pore Fluid 

Sample (g) 

 
S2 

 0-20  954.75  2.05 
 20-40  969.53  2.83 
 40-60  949.69  2.4 

270 days chloride exposure 
Mix  Depth (mm)  Extraction Pressure 

(MPa) 
 Weight of Pore Fluid 

Sample (g) 

 
S2 

 0-20  992.6  1.00 
 20-40  895.7  0.83 
 40-60  896.1  1.15 

 
 

S4 
 0-20  902.4  2.49 
 20-40  901.5  0.94 
 40-60  900.7  1.40 

 
 

S5 
 0-20  980.4  1.35 
 20-40  894.7  1.93 
 40-60  892.8  1.72 

 
 

S6 
 0-20  967.03  1.49 
 20-40  981.23  1.82 
 40-60  975.93  1.40 

180 days chloride exposure 
Mix  Depth (mm)  Extraction Pressure 

(MPa) 
 Weight of Pore Fluid 

Sample (g) 

 
S2 

 0-20  987.5  1.37 
 20-40  891.4  1.79 
 40-60  893.0  3.08 

 
S3  0-20  923.1  2.42 

 20-40  908.3  2.04 
 40-60  889.8  2.60 

 
 

S4 
 0-20  784.6  2.28 
 20-40  713.9  3.12 
 40-60  747.1  2.90 

An average pressure of 900 MPa was applied by the compression testing machine on 

the piston head to squeeze the three combined concrete core discs to obtain a quantity of 

pore solution within the range of 0.94 to 3.12 g. Once the pore solution was extracted, it 

was immediately transferred to an air tight plastic vial (Fig. 5.10). The plastic vial 

containing the concrete pore solution was placed in an air tight container and stored in a 



168 
 

humidity chamber at 100% R.H. to prevent evaporation of the pore solution. The 

determination of free chloride content and pH was done within 7 days. 

5.3.3 Analytical Procedures 

5.3.3.1 Determination of Free Chloride Concentration 

 The Chloride Ion Selective Electrode (ISE) that was used to obtain the water-

soluble chloride concentration in chapter 4 was used to measure the free chloride 

content. It has a solid-state poly-crystalline membrane that measures chloride ions (Cl-) 

in aqueous solution, which is suitable for field and laboratory applications. The 

operation of the device is based on the linear relationship between the electric potential 

developed between the internal Silver/Silver Chloride (Ag/AgCl) reference electrode 

and the reference electrode immersed in the concrete pore solution [212]. The Chloride 

ISE was supplied by Vernier Software and Technology.  

 The small quantity of concrete pore solution obtained during the extraction 

process necessitated the use of an analytical procedure. 0.2 ml of concrete pore solution 

was dissolved in 10 ml of distilled water, which is a ratio of 1:50. The solution was 

swirled manually to ensure good, homogeneous contact between the solution and the 

ISE membrane. The white reference contact near the tip of the electrode (ISE) was 

immersed in the solution without entrapping air bubbles below it. The ISE was held in 

the aqueous solution until the reading stabilized and the displayed reading was then 

recorded. The ISE was rinsed by spraying with a jet of ionised water and dabbed dry 

with a low-lint laboratory tissue between measurements to prevent hysteresis effects. 

The ISE was calibrated before and after each measurement to achieve accuracy. The 

free chloride concentration readings for the pore solution of concrete core discs labelled 

1 (representing 0 - 20 mm depth), 2 (representing 20 - 40 mm depth) and 3 (representing 

40 - 60 mm depth) were determined with the ISE thrice to achieve high level of 

accuracy. The coefficient of variance of repeatability was less than 10%. The calibration 

was done by using a pre-prepared 1000 mg/l and 10 mg/l of standard NaCl solution.  

5.3.3.2 Determination of pH 

 A number of methods have been proposed to measure pH of concrete and the 

free alkali content in the pore solution of mortars amongst which are the pore water 

expression (PWE) and ex-situ leaching methods (ESL) [263]. The ex-situ leaching 

methods use hot or cold water to extract hydroxyl ions by dissolving the concrete 

powder samples in solution and then leaving the solution for leaching process to take 
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place before measuring the pH with an electrode [263]. The pore water expression on 

the other hand does not require adding hot or cold water as described in section 5.3.2.2.  

 Limitations in the accuracy of pH values for ex-situ leaching methods were 

observed when compared with pore water expression due to the addition of water to the 

ground material. The added water to the ground material could lead to secondary 

hydration of the previously unhydrated part, this will lead to the further release of OH− 

ions into the solution and subsequently higher pH [264]. In addition, the partial 

dissolution of the hydration prone phase is observed such as the Portlandite, but no 

impact on the pore solution composition was recorded as long as the phase is not 

modified when water is added [265]. 

 The pH in this study was determined using the pore water extraction method 

explained in section 5.3.2.2 and then dipping a double junction electrode in the pore 

solution. The pH readings from the pore solution were displayed on a benchtop meter 3-

in-1 (Fig. 5.11). This device measures pH ranging from 0.00 to 14.00.  

 
Figure 5. 11: Double junction electrode and benchtop meter 3-in-1 used to measure pH 

 The pH device can measure samples as small as 0.2 mL with an accuracy of ± 

0.01. The body of the double junction electrode is made of glass which makes it suitable 

in very acidic or alkaline solutions. The internal reference comprises of Ag/AgCl double 

junction electrode resulting in exceptionally stable and minimal long-term drift. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Free Chloride Concentration  

 The free chloride concentration obtained from the pore solution of AACM and 

OPC concrete discs is presented in Table 5.5. The three variable parameters that will be 
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used to analyse the free chloride contents are the exposure periods to chloride solution, 

activator dilution ratio and the mean depth of the samples from the exposed surface to 

the chloride environment. 

Table 5. 4: Free chloride concentration (mg/L) for AACM and OPC concrete 
Mix S2 

Depth (mm) Mean Depth (mm) S2(180days) S2(270days) S2(540days) 

0 - 20 10 521.81 951.89 1266.56 

20 - 40 30 278.22 641.48 822.50 

40 - 60 50 194.99 478.68 550.97 

Mix S3 

0 - 20 10 383.92 x x 

20 - 40 30 215.65 x x 

40 - 60 50 162.19 x x 

Mix S4 

0 - 20 10 662.74 999.88 x 

20 - 40 30 331.67 673.67 x 

40 - 60 50 278.22 515.13 x 

Mix S5 

0 - 20 10 x 1086.75 x 

20 - 40 30 x 734.42 x 

40 - 60 50 x 544.89 x 

Mix S6 

0 - 20 10 x 800.63 x 

20 - 40 30 x 459.24 x 

40 - 60 50 x 274.57 x 

 The AACM and OPC concrete specimens were cured in a 5% NaCl (by weight) 

aqueous solution up to 540 days. The exposure periods used for this analysis are 180, 

270 and 540 days. The activator dilution ratios of the AACM concrete mixes are 2.15%, 

4.25%, 8.12% and 12% (Table 5.4) which are common with the bound chloride 

investigation. The free chloride profiles with depth of both the AACM and OPC 

concretes at 270 days exposure period were also investigated. 

5.4.1.1 Free Chloride Diffusion Profiles 

 The effects of chloride exposure on the free chloride concentration of AACM 

concrete mixes S2 and S4 are presented in Fig. 5.12. The free chloride concentration of 

AACM concrete mix S2 was determined at 180, 270 and 540 days of chloride exposure 

periods while for mix S4 it was determined at 270 and 540 days of chloride exposure. 
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The measuring unit of free chloride concentration (mg/L) from Table 5.5 was converted 

to mol/L using equations 5.5. 

 K��/p	 = KJ/p1000 ∗ qr��	s�. ��	9�	( JK��) 
 5.5 

The unit weight of Cl is 35.5 g/mol and mg/L is divided by 1000 to convert it to g/L. 

 
(a) Free chloride profiles for AACM mix S2 

 
(b) Free chloride profiles for AACM mix S4 

Figure 5. 12: Free chloride concentration profiles of AACM concrete exposed to 5% 
chloride solution. 

 An increase in the free chloride concentration within AACM concrete mixes S2 

and S4 is observed with increase in the chloride exposure periods in Fig 5.12. The free 

chloride concentration is 0.036 mol/L at a mean depth of 10 mm for AACM concrete 

mix S2 at 540 days (Fig 5.12a) while it is 0.028 mol/L at a depth of 10 mm for mix S4 at 

270 days of chloride exposure (Fig 5.12b). The free chloride concentration increases 

with the exposure period as the chloride from the external source tends to attain 

concentration equilibrium with the concrete pore solution with passage of time. Similar 

increase in the free chloride concentration has been reported by many researchers 

[93][266][267]. 

 Mangat and Gurusamy [266] presented free chloride concentration for a 26% 

pulverised fly-ash replacement fibre reinforced concrete with water/cement ratio of 0.4. 

The free chloride concentration under 1200 and 2000 tidal cycles (corresponding to 640 

and 1250days of exposure) was 0.1mol/L and 0.3mol/L respectively. The reason for the 

high free chloride concentration presented by Mangat and Gurusamy [266] relative to 

this investigation could be attributed the wet/dry cycles regime provided by the tidal 

exposure and longer exposure period (cycles). 
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 The free chloride concentration of OPC concrete over a long period (10 years) of 

chloride exposure was presented by Cheewaket et al. [267]. The specimens were 

exposed to tidal zone in the gulf of Thailand which has chloride concentration between 

16,000 to 18,000 mg/L. Concrete cores were obtained from the specimen after 10 years 

of chloride exposure which was then dry cut into 10-mm thick slices. The 10-mm thick 

slices were ground to obtain powder which was mixed with water similar to water-

soluble chloride extraction method. The free chloride concentrations at 20 mm depth 

from concrete surface was 0.42%, 0.7%, 2.0%, 2.7%, 3.3%, 3.8% by weight of binder at 

2, 3, 4, 5, 7 and 10 years respectively. However, the chloride extraction method adopted 

by the authors is used to determine water-soluble chloride concentration. The free 

chloride values given by the authors [267] are in fact the water-soluble chloride values. 

The free chloride gets bound (physically or chemically) to gel paste as it penetrates 

through the AACM and OPC concrete matrix. This phenomenon is known as the 

chloride binding capacity or binding isotherm which is discussed fully in Section 5.4.3. 

5.4.1.2 Activator Dilution  

 The influence of activator dilution on the free chloride concentrations for 

AACM concrete at 180 and 270 days of chloride exposure is shown in Fig 5.13a and b. 

The activator dilutions with water represented at 180 days of chloride exposure period 

are 2.15%, 4.25% and 8.12% (Fig 5.13a). The dilutions at 270 days exposure (Fig. 

5.13b) are 2.15%, 8.12% and 12%. 

 
(a) 180 Days Chloride Exposure 

 
(b) 270 Days Chloride Exposure 

Figure 5. 13: Effect of activator dilution on the free chloride concentrations of AACM 
concrete at 180 and 270 days of chloride exposure. 

 Fig. 5.13a shows that the free chloride profiles and its concentration (0.011 

mol/L) at 10 mm mean depth is lowest at 4.25% activator dilution compared with 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40 50 60 70

Fr
e

e
 C

l C
o

n
ce

n
tr

a
ti

o
n

 (
 m

o
l/

L)

Depth (mm)

2.15% Dilution

4.25% Dilution

8.12% Dilution

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40 50 60 70

Fr
e

e
 C

l C
o

n
ce

n
tr

a
ti

o
n

 (
 m

o
l/

L)

Depth (mm)

2.15% Dilution

8.12% Dilution

12.00% Dilution



173 
 

8.12% (0.019 mol/L) dilution. This low free chloride concentration at 4.25% activator 

dilution (AACM mix S3) follows the results of the better mechanical performance of 

AACM concrete mix S3 detailed in chapter 4. This suggests that the free chloride 

concentration in AACM concrete is related to its total porosity. The intrudable porosity 

of the AACM mortar representing the concrete mixes of the pore fluid investigation was 

presented in chapter 3. It gave the lowest intrudable porosity for the matrix of AACM 

concrete mix S3 and highest compressive strength 62 MPa which explains its lowest free 

chloride values. Ideally, however, the total porosity (not intrudable porosity) is related 

to chloride diffusion.  

 Fig. 5.13b shows a close range of free chloride concentration between the three 

dilution ratios at 270 days of chloride exposure. For example, the free chloride 

concentrations at 10 mm mean depth are 0.031mol/L and 0.028mol/L for 12% and 

8.12% activator dilution respectively. The difference, however, is more significant at 

180 days of chloride exposure (Fig. 5.13a). For example, the free chloride concentration 

at 10 mm mean depth is 0.019mol/L and 0.011mol/L for 8.12% and 4.25% activator 

dilution respectively (Fig. 5.13a). This represents a difference of 0.008mol/L in free 

chloride concentration between 8.12% and 4.25% activator dilution for 180 days 

chloride exposure, which is quite significant. The free chloride concentration is likely to 

attain greater stability (equilibrium) with the chloride concentration of its exposure 

environment at the later chloride exposure period (270 days) and also the matrix evolves 

a finer pore structure than at 180 days age, thereby, slowing the rate of chloride 

penetration within the concrete pore solution.  

 In addition to the activator dilution, the liquid/binder ratio clearly influences the 

free chloride concentration in AACM concrete. Mix S2 with the lowest liquid/binder 

ratio 0.41 (Table 5.2) has higher free chloride content than mix S3 with liquid/binder 

ratio 0.48 (Fig. 5.13a) at 180 days chloride exposure. A negligible difference of 0.001 

mol/L free chloride concentration was observed between 8.12% (mix S4) and 2.15% 

(mix S2) activator dilution (Fig. 5.13b) at 270 days chloride exposure. Further 

investigation on the effect of liquid/binder ratio on the free concentration in AACM 

concrete will be required to enable a clear conclusion.   

5.4.1.3 Free Chloride Content of AACM and OPC Concrete 

 The comparative results of free chloride concentrations for AACM and OPC 

concrete are presented in Fig. 5.14. The free chloride concentrations were determined 

for AACM concrete mixes S2, S4, S5 and OPC concrete mix S6 at 270 days chloride 
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exposure. OPC concrete mix S6 has the lowest free chloride concentration profile 

compared with AACM concrete mixes in Fig. 5.14. The free chloride concentration for 

OPC concrete mix S6 is 0.023mol/L at 10 mm mean depth while AACM concrete mixes 

S2, S4 and S5 have 0.027mol/L, 0.028mol/L and 0.031mol/L respectively. AACM 

concrete mix S2, S4 and S5 has 15%, 18% and 26% more free chloride concentration than 

OPC concrete mix S6. 

 It is noteworthy to mention that the increase in strength of the control OPC mix 

required to match AACM strength may require the use of mineral admixtures (silica 

fume, GGBS and fly ash). This will likely reduce its C3A content which is partly 

responsible for the low free chloride content in OPC concrete. 

 
Figure 5. 14: Free chloride concentration profile of AACM and OPC concrete 

 The high free chloride concentration present in the pore solution of AACM 

concrete compared with OPC concrete could be attributed to the low chemically bound 

(acid-soluble) chloride observed in AACM concrete, which was reported in chapter 4. 

RILEM TC 224 [3] observed that no Friedel’s salt is present in AACM concrete neither 

is there any other crystalline chloride compounds unlike in the OPC concrete. In effect, 

the acid soluble chlorides in AACM concrete play an inconsequential role in chloride 

ingress compared with OPC concrete.  

 Therefore, the physically bound (water-soluble) chloride and free chloride will 

add up to make the bulk of total chloride present in AACM concrete. However, the total 

chloride present in OPC concrete is the summation of chemically bound (acid-soluble) 

chloride, physically bound (water-soluble) chloride and the free chloride [25][97][170].   
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5.4.2 Free Chloride Diffusion Parameters  

5.4.2.1 Chloride Profiles 

 The experimental and Fick’s law based regression profiles of free chloride 

concentrations of AACM and OPC concrete at 180, 270 and 540 days exposure periods 

are shown in Figures 5.15, 5.16 and 5.17 respectively.  

 
Figure 5. 15: Experimental data and regression analysis profiles of free chloride 
concentration of AACM concrete at 180 days chloride exposure. 

 
Figure 5. 16: Experimental data and regression analysis profiles of free chloride 
concentration of AACM and OPC concrete at 270 days chloride exposure. 

 
Figure 5. 17: Experimental data and regression analysis profiles of free chloride 
concentration of AACM concrete at 540 days chloride exposure. 
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 The experimental data show strong correlation with the regression analysis 

profiles derived from Fick's 2nd law of diffusion which is given by equation 5.6. The 

Fick’s second law represents one dimensional non-steady condition of diffusion and is 

used to determine the diffusion coefficient, DC(f), and surface chloride concentration, 

C0(f), of AACM and OPC concrete.  

 ∁	= 	 ∁° 	@1 − A�� B x2CDE 	�	FG 
 5.6 

Where: x = distance from concrete surface (m); t = Time (seconds); DC(f)= diffusion 

coefficient (m2/s); C0(f) = equilibrium chloride concentration on concrete surface 

(mol/L); C(x,t) = chloride concentration at distance x, time t  (mol/L). 

Nonlinear regression analysis of the experimental data by a computer package 

(Microsoft excel) was used to generate the best fitting equation. The analysis 

determined the chloride concentration on the surface of the specimen, at depth zero, C0(f), 

and the diffusion coefficient, DC(f). The free chloride diffusion parameters C0(f), DC(f) and 

level of correlation R2
 of the regression analysis, obtained from the data in Figures 5.15, 

5.16 and 5.17 are presented in Table 5.6. 

Table 5. 5: Free Chloride diffusion parameters C0(f), Dc(f) and the coefficient of correlation R2 

 S2 Exposure 
(Days) 

 S3Exposure 
(Days) 

 S4 Exposure 
(Days) 

 S5 
Exposure 

(Days) 

 S6 
Exposure 

(Days) 
 540 270 180  180 270 180  270  270 

C0 (mol/L) 0.053 0.032 0.025  0.018  0.035 0.029  0.039  0.032 

Dc x 10-12 (m2/s) 0.65 5.1 3.6  4.2  5.4 4.5  5.6  2.7 

R2 0.85 0.97 0.93  0.92  0.96 0.99  0.97  0.97 

5.4.2.2 Surface Chloride Concentration C0(f) 

 The free surface chloride concentrations, C0(f), for AACM concrete mixes S2, S3, 

S4, S5 and OPC concrete mix S6 at 180, 270 and 540 days of chloride exposure are 

presented in Fig. 5.18. 
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Figure 5. 18: Free surface chloride concentration, C0(f), of AACM and OPC concrete at 
180, 270 and 540 days of chloride exposure. 

 The free surface chloride concentration, C0(f), increases with chloride exposure 

periods as seen in Fig. 5.18. For example, C0(f) values for AACM concrete mix S2 are 

0.025 mol/L, 0.032 mol/L and 0.053 mol/L for 180, 270 and 540 days of chloride 

exposure respectively. Similarly, for mix S4, the C0(f) increases from 0.029 mol/L to 

0.035 mol/L at 180 and 270 days of chloride exposure respectively. Glass and Buenfeld 

[268] stated that the increase of free chloride concentration at the surface C0(f), in OPC 

concrete could be attributed to a high moisture content of the concrete mix and 

prolonged exposure to chloride laden environment. The chloride concentration in the 

pore solution will be diluted by its high moisture content which will induce further 

chloride ingress through the concrete boundary. The difference in concentration 

gradient between the pore solution and external environment is due to the high moisture 

content within the concrete matrix which will induce further accumulation of free 

surface chloride concentration, C0(f) over time [268].   

 An experimental investigation carried out by Jun et al. [269] on concrete 

specimens immersed in 5% NaCl solution (5.6 mol/L) shows that an increase in 

water/cement ratio increases the free chloride concentration at the surface, C0(f). 

However, with prolonged chloride exposure, the difference in surface chloride 

concentration induced by w/c becomes smaller. The liquid/binder ratios in AACM 

mixes S2, S3, S4 and S5 in this research investigation are within the same range of 0.41 to 

0.48, therefore, the impact of liquid/binder on the free surface chloride concentration 

C0(f), could not be ascertained due to the close range of liquid/binder. 
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 The free surface chloride concentration, C0(f), of AACM concrete is slightly 

higher than OPC concrete at 270 days chloride exposure. C0(f) values of AACM concrete 

mixes S2, S4 and S5 are 0.032 mol/L, 0.035 mol/L and 0.039 mol/L respectively while it 

is 0.032 mol/L for OPC concrete mix S6. Angst et al. [238] suggested that the secondary 

pozzolanic reaction by mineral admixtures with hydration products of cement may have 

induced high chloride concentration at the concrete surface, C0(f), than the hydration 

product of OPC concrete. The additional hydration product in supplementary 

cementitious materials creates more chloride sorption sites compared to OPC concrete. 

There is a tendency for chloride at the concrete surface, C0(f), to increase due to 

additional chloride sorption sites within its matrix.  In the case of AACM, the 

geopolymerisation products are greater than the hydration products of OPC concrete [3]. 

The affinity of chloride at the geopolymerisation sites may have induced more chloride 

build up at the surface, C0(f), than in OPC concrete. 

5.4.2.3 Diffusion Coefficient Dc(f) 

 The diffusion coefficients, Dc(f), for AACM concrete mixes S2, S3, S4, S5 and 

OPC concrete mix S6 at 180, 270 and 540 days of chloride exposure are presented in Fig. 

5.19. 

 
Figure 5. 19: Diffusion coefficient, Dc(f), of AACM and OPC concrete at 180, 270 and 
540 days of chloride exposure. 

 The highest chloride diffusion coefficient, DC(f), was attained at 270 days 

chloride exposure as seen in Fig. 5.19. For example, DC(f) for AACM concrete mix S2 is 

3.6 x 10-12 m2/s, 5.1 x 10-12 m2/s and 0.65 x 10-12 m2/s for 180, 270 and 540 days 

respectively. The saturation of the wall of the gel hydrates with chloride ions (i.e. water-

bound chloride) may be responsible for preventing further chloride ingress beyond 270 

180Days

270Days

540Days

0

1

2

3

4

5

6

1 2 3 4 5

3.6
4.2

4.5

5.1
5.4 5.6

2.7

0.65

D
if

fu
si

on
 C

oe
ff

ic
ie

nt
 D

c 
(x

 1
0-

12
m

/s
2 )

Mix

S2 S3 S4 S5 S6



179 
 

days of chloride exposure. These water-soluble chlorides narrow the concrete pore 

diameter thereby interfering with the progressive chloride ingress with exposure period.  

 Between 0 to 270 days of chloride exposure, the concentration gradient of the 

concrete pore solution and the external environment lead to an increased free chloride 

diffusion. The concentration gradient outweighs the possibility of resistance to chloride 

ingress by narrow pores due to geopolymerization of AACM at early age. However, the 

impact of concentration gradient over prolonged chloride exposure periods (beyond 270 

days) is insignificant because of equilibrium in chloride concentration within the 

concrete matrix and its curing environment. 

 On the other hand, the impact of tightened pores in AACM concrete due to 

geopolymerization is observed when comparing different AACM mixes at the same age. 

AACM mix S2 has the lowest chloride diffusion coefficient DC(f), of 3.6 x 10-12 m2/s at 

180 days exposure compared with 4.2 x 10-12 m2/s and 4.5 x 10-12 m2/s for mixes S3 and 

S4. A similar trend is evident at 270 days exposure with DC(f) values of 5.1 x 10-12 m2/s, 

5.4 x 10-12 m2/s and 5.6 x 10-12 m2/s for mixes S2, S4 and S5 respectively. The lowest rate 

of chloride diffusion coefficient, DC(f), for AACM mix S2 is as a result of its lowest 

intrudable porosity (Chapter 3, Section 3.4.2.1) compared to the other AACM mixes. 

The low intrudable porosity is facilitated by the fast rate of geopolymerisation due to 

the lowest activator dilution (2.12%) in AACM mix S2. 

 OPC concrete mix S6 has the lowest free chloride diffusion coefficient, DC(f), 

compared with AACM concrete mixes at 270 days of chloride exposure. It has DC(f) of 

2.7 x 10-12 m2/s compared with 5.1 x 10-12 m2/s, 5.4 x 10-12 m2/s and 5.6 x 10-12 m2/s for 

AACM concrete mixes S2, S4 and S5 respectively at 270 days of chloride exposure. The 

bound chloride isotherm which is presented in later sections (section 5.4.3 and 5.4.4) is 

solely responsible for the reduced chloride diffusion coefficient, DC(f), in OPC compared 

with AACM concrete. Significantly higher amount of free chloride is physically and 

chemically bound (acid-soluble and water-soluble chloride) to OPC concrete which 

slows the chloride diffusion rate, whereas, free chloride is mainly physically bound 

(water-soluble chloride) to AACM concrete. 

 Contrary to the free lower chloride diffusion rate observed in OPC compared to 

AACM concrete in Fig. 5.19, results from Qianmin et al. [234] suggested a lower 

chloride diffusion rate in alkali activated slag concrete compared to OPC concrete. The 

chloride diffusion coefficient, DC(f), of pore fluid in OPC concrete was compared with 

alkali activated slag (AAS) concrete by measuring the resistivity of their pore solutions 

[234]. The Dc(f) of the pore fluid in AAS concrete is suggested to be lower than the OPC 
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concrete due to its low ionic nature. The lower the ionic activity and conductivity of 

AAS concrete, the lesser the ionic flow within its pore solution [234]. However, the 

limitation of using this method to determine Dc(f) of AAS concrete is the limited ionic 

flow within its pore solution attributed to their dense tortuous pore structure. It is 

noteworthy to mention that cyclic ponding and drying regime of chloride solution was 

adopted during the investigation of Qianmin et al. [234]. The capillary absorption of 

concrete will significantly influence the chloride ingress due to this curing regime 

unlike the diffusion mechanism of the chloride bulk diffusion test used in this 

investigation. 

5.4.3 Chloride Binding Isotherms  

5.4.3.1 Free and Water-Soluble Chloride Relationship 

 Regression analysis using the three chloride binding isotherms (Freundlich, 

Langmuir and Linear) were used to determine the relationship between free and 

physically bound chloride concentrations for AACM concrete mixes S2, S3 and S4 at 

180 days of chloride exposure and 270 days chloride exposure for OPC concrete mix S6. 

The chloride binding isotherms for AACM and OPC concrete mixes S2, S3, S4 and S6 

are presented in Figures 5.20, 5.21, 5.22 and 5.23 respectively. The experimental data 

points, Freundlich model (red dotted lines), Langmuir model (blue dotted lines) and the 

Linear model (black straight lines) are shown in Figures 5.20, 5.21, 5.22 and 5.23. The 

unit of measurement for free chloride concentrations is mol/L because it was obtained 

by expression of concrete pore fluid. Other authors expressed it as a percentage weight 

by binder because concrete powder was dissolved in water (water-soluble bound 

chloride) to measure the free chloride concentration [92][93]. These values do not 

strictly represent free chloride concentration and are more representative of water 

soluble chloride. 
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Figure 5. 20: Langmuir, Freundlich and Linear binding isotherms for AACM concrete 
mix S2 at 180 days chloride exposure. 

 
Figure 5. 21: Langmuir, Freundlich and Linear binding isotherms for AACM concrete 
mix S3 at 180 days chloride exposure. 

 
Figure 5. 22: Langmuir, Freundlich and Linear binding isotherms for AACM concrete 
mix S4 at 180 days chloride exposure. 
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Figure 5. 23: Langmuir, Freundlich and Linear binding isotherms for OPC concrete mix 
S6 at 270 days chloride exposure. 

 The Langmuir binding isotherm best fits the experimental data as shown in 

Figures 5.20, 5.21, 5.22 and 5.23. This is followed by the Linear binding isotherm 

which shows good correlation at high chloride values while the Freundlich binding 

isotherm shows a poor correlation. The level of correlation R2 and binding constants α, 

β and k of equations 5.2, 5.3 and 5.4 are presented in Table 5.7. These parameters were 

derived from the non-linear regression analysis of the experimental data. 

Table 5. 6: Binding coefficients for Langmuir, Freundlich and Linear isotherms 
  Langmuir  Freundlich  Linear 

Mix  α β R
2  α β R

2  K R
2
 

S2  1.1 7.5 0.99  0.011 0.040 0.62  0.0157 0.88 

S3  1.1 8.0 0.99  0.011 0.082 0.70  0.0096 0.90 

S4 

S6 

 1.1 

1.2 

7.2 

7.0 

0.99 

0.99 

 0.011 

0.036 

0.008 

0.23 

0.58 

0.73 

 0.0141 

0.0069 

0.88 

0.91 

 The maximum free chloride concentrations are 0.0147mol/L (Fig. 5.20), 

0.0108mol/L (Fig. 5.21) and 0.0187mol/L (Fig. 5.22) for AACM concrete mixes S2, S3 

and S4 respectively and 0.0222mol/L (Fig. 5.23) for OPC concrete mix S6 at 10 mm 

mean depth. These concentrations are less than 0.05 mol/L limit at any concrete depth 

suggested by Tang and Nilsson [95] at which the Langmuir isotherm is valid. 

 Langmuir binding isotherm has the highest correlation of 0.99 with the 

experimental data, followed by Linear binding isotherm of 0.88 to 0.91 while the least 

correlation of 0.58 to 0.70 is exhibited by Freundlich binding isotherm as shown in 

Table 5.7. The binding coefficient α is constant for each isotherm while β and K vary 
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for AACM concrete mixes S2, S3 and S4. The binding coefficient α is 1.1 for Langmuir 

while it is 0.011 for Freundlich binding isotherm. The binding coefficients β for 

Langmuir binding isotherm are 7.5, 8.0 and 7.2 while they are 0.040, 0.082 and 0.008 

for Freundlich binding isotherm for AACM concrete mixes S2, S3 and S4 respectively. 

The binding coefficient k for linear binding isotherm is 0.0157, 0.0096 and 0.0141 for 

AACM concrete mixes S2, S3 and S4 respectively. The binding coefficients α, β and K 

for OPC concrete vary for Langmuir, Freundlich and linear binding isotherms 

 The Langmuir binding isotherm shall be adopted for analysing the relationship 

between the physically bound and free chloride concentrations because of its good 

correlation with the experimental data. 

5.4.3.1.1 Influence of Activator Dilution 

 The relationship between the free and water-soluble bound chloride using the 

Langmuir binding isotherm for AACM concrete with different degrees of activator 

dilution is shown in Fig. 5.24. 

 
Figure 5. 24: Effect of activator dilution on Langmuir binding isotherms of AACM 
concrete at 180 days chloride exposure. 

 AACM mix S4 which represents activator dilution of 8.12% has the highest free 

chloride concentration isotherm followed by the mixes with 2.15% (AACM mix S2) and 

4.25% (AACM mix S3) dilution respectively. This also indicates the order of physical 

chloride binding capacity with 8.12% providing the lowest chloride binding capacity 

followed by 2.15% and 4.15%. 

 The higher chloride binding capacity of the mix with 4.25% dilution compared 

with 2.15% dilution is unexpected when considering the case of ordinary Portland 

cement concrete where it is established that higher cement content and lower w/c ratio 

provide higher binding capacity due to formation of C3S and C2S content in binder 
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[209]. The likelihood of the result of AACM mix S3 with 4.25% dilution to have higher 

binding capacity is due to mix design parameters rather than activator dilution alone. 

 The silicate phases C3S and C2S and alumina phase C3A of cement binder in 

OPC concrete are primarily responsible for the physical absorption of chloride ion 

present in the pore solution by the wall of hydration products, thereby reducing the free 

chloride content. The higher the C3S and C2S content in binder, the higher the binding 

capacity [209]. In the case of AACM binder, silica and alumina monomer phases are 

formed during the dissolution of aluminosilicate source. The chloride binding 

mechanisms of these monomers are yet to be fully understood. 

 Glass and Buenfeld [208] investigated the chloride binding capacities for low 

(2%), medium (8%) and high (14%) C3A cements. The results presented show the 

chloride binding capacity is highest at high (14%) C3A cement content and lowest at 

low (2%) C3A cement content. Similarly, Oh et al. [92] suggested that the difference in 

the binding capacity between type I ordinary Portland cement and type V sulphate-

resisting cement is their C3A content, OH- concentration and alkali content of their pore 

solutions. 

5.4.3.2 Free and Acid-Soluble Chloride Relationship  

5.4.3.2.1 Influence of Activator Dilution 

 The relationships between free and acid-soluble chloride of AACM concrete 

mixes with different levels of activator dilution at 180 and 270 days chloride exposure 

periods are shown in Figures 5.25 and 5.26 respectively. 

 
Figure 5. 25: Effect of activator dilution on Langmuir binding isotherms of AACM 
concrete at 180 days chloride exposure 

 The free and acid soluble chloride binding relationship at 180 days chloride 
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relationship shown in Fig. 5.24. AACM concrete S3 with 4.25% activator dilution 

possesses the highest binding capacity followed by 2.15% activator dilution (S2) while 

8.12% (S4) has the lowest binding capacity. 

 
Figure 5. 26: Effect of activator dilution on Langmuir binding isotherms of AACM 
concrete at 270 days chloride exposure. 

 Fig. 5.26 shows that at 270 days chloride exposure period, AACM concrete mix 

S4 with activator dilution ratio of 8.12% possesses the highest binding capacity followed 

by 2.15% and lastly AACM concrete mix S5 with 12.00% activator dilution which had 

the lowest binding capacity. The better performance of AACM concrete mix S4 with 

8.12% activator dilution at 270 days chloride exposure period may be attributed to the 

rise in pH at 0 - 20 mm depth (from 13.45 to 13.48) between 180 and 270 days chloride 

exposure. AACM concrete mix S2 with 2.15% activator dilution on the other hand 

witnessed a drop in the pH at 0 - 20 mm depth (from 13.64 to 13.58) near the concrete 

surface. A comprehensive analysis of the pH of AACM concrete pore solution is 

presented in section 5.4.5. 

 Nilsson et al. [97] stated that the increase in the amount of chloride binding in 

OPC concrete was due to the effect of drop in pH close to the concrete surface. 

Deterioration of C-S-H gel by the leaching of hydroxides was suggested as the reason 

for the drop in the pH. Similarly, Tritthart [254] cured cement pastes in chloride 

solution and found that chloride binding increases with decrease in pH value. The 

conclusion drawn was that chloride and hydroxyl ions compete for absorption sites on 

the cement gel surfaces. 

 On the contrary, Reddy et al. [270] observed calcium aluminate cement, CAC, 

releasing most of the bound chlorides into the pore solution before the pH drops to 11. 

The drop in the pH was attributed to the dissolution of the chloride-containing phase. In 

the case of AACM concrete, the presence of Friedel’s salt (calcium chloroaluminate 
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phase) which is responsible for chemical binding is not evident as shown in chapter 4. 

Thus, the possibility of chloride that should have been chemically bound to the 

hydration products being released into the pore solution as the pH value drops is 

unlikely in AACM concrete. 

 As previously stated, AACM concrete has a different pore solution chemistry 

compared with OPC concrete. Therefore, the influence of leaching on pH value and 

how it adversely affects chloride binding is different from that of OPC.  

5.4.3.2.2 Influence of Chloride Exposure Period 

 The relationship between free and acid-soluble chloride under 180 and 270 days 

of chloride exposure periods are presented in Fig. 5.27. Only AACM concrete mix S2 

with 2.15% activator dilution is investigated under this category. 

 
Figure 5. 27: Effect of chloride exposure period on Langmuir binding isotherms of 
AACM concrete. 

 A decrease in the chloride binding capacity is observed with an increase in the 

chloride exposure period. The chloride binding capacity is higher at 180 days than 270 

days of chloride exposure period. The free chloride concentration is up to 0.015mol/L at 

180 days exposure period while it is up to 0.024mol/L at 270 days of chloride exposure 

period. The possible explanation for the differences in binding capacities is the 

oversaturation of the concrete pore solution as chloride diffusion occurs over time from 

the environment without being adsorbed during gel formation and also less gel 

formation in the long term. 

 The binding isotherm curves of free and acid-soluble chloride show higher 

binding capacity at greater depth from the concrete surface while the depth near the 

concrete surface has lower chloride binding. This denotes that the concrete surface zone 

can no longer adsorb chloride ions as the chloride diffuses into the concrete matrix from 

its environment.  
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 On the other hand, the binding isotherm curves of free and water-soluble 

chloride (Figures 5.20, 5.21 and 5.22) show the chloride absorption near and at greater 

depths from the concrete surface to be similar. The chloride is physically bound by the 

wall of the binder gel as chloride ingress occurs into the concrete pore solution from its 

environment.  

5.4.3.3 AACM and OPC Chloride Binding Capacity 

 The relationships between free-acid soluble chloride and free-water soluble 

chloride of AACM and OPC concrete mixes are shown in Figures 5.28 and 5.29 

respectively. The chloride binding capacity of AACM concrete mixes S2, S4, S5 and 

OPC concrete mix S6 are presented in these Figures.  

 
Figure 5. 28: Acid-soluble chloride binding capacity of AACM and OPC concrete at 
270 days chloride exposure period 

 
Figure 5. 29: Acid-soluble chloride binding capacity of AACM and OPC concrete at 
180 days chloride exposure period 

 Clearly, the binding capacity of OPC concrete is higher than that of AACM 

concrete. The maximum free chloride concentration of OPC concrete is 0.0213 mol/L 

while it is 0.0253 mol/L, 0.0246 mol/L and 0.0276 mol/L for AACM concrete mixes S2, 
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S4 and S5 respectively (Figures 5.28 and 5.29). This represents an increase of 13.4% to 

22.8% in the free chloride concentration of AACM concrete relative to OPC concrete. 

The chemical binding capacity of OPC concrete is superior to AACM concrete. This is 

because of the presence of Friedel’s salt (Ca6Al2O6.CaCl2.10H2O) in OPC concrete 

which is responsible for the chemical binding but AACM concrete lacks it. On the other 

hand, Kuzel’s salt (Ca6Fe2O6.CaCl2.10H2O) is found in both OPC and AACM concrete 

[3]. The water soluble chloride concentration range is much higher than the acid soluble 

chloride concentration range in Figures 5.28 and 5.29 respectively. 

 The binding capacity of OPC concrete is influenced by other factors beside the 

C3A content of cement. These factors include the water/cement ratio, mineral and 

chemical admixtures and temperature Glass and Buenfeld [208]. These factors 

contribute substantially to the binding capacity of OPC concrete. An increase in 

water/cement ratio was observed to increase the chloride binding capacity of OPC 

concrete. The increased water content was suggested to have a dilution effect on the 

chloride concentration within the pore solution and lowers the OH- concentration 

thereby increasing the binding capacity [271]. On the other hand, increasing the 

water/cement ratio increases the concrete porosity and the chloride diffusion rate is 

increased proportionately. This reduces the binding capacity. 

 Supplementary cementitious materials like silica fume, fly-ash, ground 

granulated blast furnace slag and gypsum influence the binding capacity. Silica fume 

decreases the binding capacity by reducing the pH of the concrete pore solution [209]. 

In addition, it decreases the binding capacity by reducing the C3A content of cement 

required for chloride binding [271]. On the other hand, fly-ash and ground granulated 

blast furnace slag increase the binding capacity due to the high alumina content which 

promotes the formation of Friedel’s salt (Ca6Al2O6.CaCl2.10H2O) in OPC concrete 

[272].  

 The addition of chemical admixtures such as superplasticisers SP was observed 

to reduce the chloride binding in OPC concrete and it was suggested that the SP impacts 

negative charges on the cement particles resulting in the release of bound chloride ions 

into the concrete pore solution [273]. 

 High temperature decreases the binding capacity of OPC concrete. Elevated 

temperature causes thermal vibration of gel particles resulting in the release of 

physically bound chloride ions while the chemically bound chloride ions present in the 

hydration products (Friedel’s salt) become highly soluble in the concrete pore solution.  



189 
 

 The influence of these factors on AACM concrete can be investigated in future. 

Overall, it can be deduced that the chloride binding capacity of OPC concrete is better 

than AACM concrete because OPC concrete is effective in binding both water and acid 

soluble chlorides whereas the AACM concrete is effective in binding water-soluble 

chlorides while the acid-soluble chloride binding is limited. The free chloride 

concentration of the AACM concrete pore fluid is 13.4% to 22.8% greater than control 

OPC concrete. 

5.4.4 pH and OH
-
 of AACM Concrete  

5.4.4.1 Introduction 

  The pH and hydroxyl ion [OH-] concentration for AACM and OPC concrete 

pore solution at 180, 270 and 540 days are presented in Table 5.8. The hydroxyl ions 

[OH-] content was determined from equation 5.7. 

 [uvH] = 	10H(�fHwx) 5.7 

The dominant factors influencing the pH and hydroxyl ion concentrations in this study 

are the concrete depths at which the pore solution is extracted (0-20 mm, 20-40 mm and 

40-60 mm), activator dilution and the chloride exposure periods. There is limited 

information available in literature on the free chloride/hydroxyl ion [Cl/OH-] ratios of 

OPC mortars while information on the free chloride/ hydroxyl ion [Cl/OH-] ratio on 

OPC concrete is lacking [238]. Information on the free chloride/ hydroxyl ion [Cl-/OH-] 

ratios for AACM materials is not available in literature. The data in Table 5.7 have been 

used to determine the [Cl-/OH-] ratios of AACM concrete, which will be discussed in 

section 5.4.6. 
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Table 5. 7: pH and OH- concentration of AACM and OPC concrete pore solution 
540 Days 

Mix  Mean Depth (mm)  pH  [OH-] (mol/L) 

 
S2 

 10 13.27 0.186 
 30  13.68 0.479 
 50  13.77 0.589 

270 Days 
  Mean Depth (mm)  pH  [OH-] (mol/L) 

 
S2 

 10 13.58 0.380 
 30  13.75 0.562 
 50  13.85 0.708 

 
 

S4 
 10  13.48  0.302 
 30  13.53 0.339 
 50  13.63 0.427 

  
 

S5 
 10  13.33  0.214 
 30  13.5 0.316 
 50  13.58 0.380 

  
 

S6 
 10  12.82  0.066 
 30  13.27 0.186 
 50  13.69 0.490 

180 Days 
 Mean Depth (mm)  pH  [OH-] (mol/L) 

 
S2 

 10 13.64 0.437 
 30  13.73 0.537 
 50  13.74 0.550 

  
 

S3 
 10  13.58  0.380 
 30  13.73 0.537 
 50  13.85 0.708 

  
 

S4 
 10  13.45  0.281 
 30  13.56 0.363 
 50  13.57 0.372 

5.4.4.2 Effect of Activator Dilution and Penetration Depths 

 The pH and hydroxyl ion concentration of AACM and OPC concrete mixes at a 

mean depth of 10, 30 and 50 mm from the concrete surfaces for 180 and 270 days of 

chloride exposure periods is shown in Figures 5.30 and 5.31 respectively. Similarly, the 

relationship between hydroxyl ion concentration and depths (10, 30 and 50 mm) for 

AACM and OPC mixes for 180 and 270 days of chloride exposure are shown in Figures 

5.32 and 5.33 respectively. 
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Figure 5. 30: pH and OH- profiles of AACM concrete at 180 days of chloride exposure 

  
Figure 5. 31: pH and OH- profiles of AACM and OPC concrete at 270 days of chloride 
exposure 

 There is a gradual depletion of hydroxyl ions towards the concrete surface for all 

profiles shown in Figures 5.30 to 5.33. The depletion is more in OPC concrete mix S6 at 

270 days chloride exposure (Figures 5.31 and 5.33). OPC concrete mix S6 has hydroxyl 

ion content of 0.066mol/L, 0.186mol/L and 0.490mol/L at 10, 30 and 50 mm mean 

depths respectively from the concrete surface. The gradual depletion of hydroxyl ions 

towards the concrete surface could be caused by leaching or accumulation of alkali 

content on the concrete surface [274]. All precautions were taken to prevent 

carbonation which, therefore, is unlikely to be a cause of PH reduction in the surface 

zone. Results of the carbonation investigation are given in Chapter 6. 
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Figure 5. 32: The relationship between [OH-] and mean depths (10, 30 and 50 mm) for 
AACM mixes S2, S3 and S4 at 180 days of chloride exposure. 

 
Figure 5. 33: The relationship between [OH-] and mean depths (10, 30 and 50 mm) for 
AACM and OPC mixes S2, S4 , S5 and S6 at 270 days of chloride exposure. 

 Tuuti [90] suggested the possibility of undissolved alkali content which is 

enclosed in the unhydrated slag cement to be responsible for boosting the pH of 

concrete pore solution especially at greater depth from the concrete surface. In the case 

of AACM concrete, the possibility of alkali activator concentration that was not utilised 

during geopolymerisation could account for the high pH when compared with OPC 

concrete as seen in Figures 5.31 and 5.33. AACM concrete mix S2 exhibited high pH of 

13.58 (OH
- 

= 0.380 mol/L) and 13.85 (OH
- 

= 0.708 mol/L) at 10 and 50 mm mean 

depths compared with OPC concrete mix S6 with pH of 12.82 (OH
- 
= 0.066 mol/L) and 

13.69 (OH
- 

= 0.490 mol/L) at 10 and 50 mm mean depths respectively as shown in 

Figures 5.31 and 5.33. 

 Another possible explanation for the gradual depletion of hydroxyl ion towards 

the concrete surface was proposed by Mangat and Gurusamy [266]. Depressed pH was 

observed at the surface zone for concrete submerged in water free of chloride. The 

tendency towards the neutralisation of concrete surface was attributed to outward 
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diffusion of hydroxyl ion. On the contrary, Tritthart [271] proposed that under chloride 

exposure a competition exists between OH- and Cl- at the adsorption sites of the 

hydration products. It was observed that as more chloride ions were chemically 

adsorbed, fewer adsorption sites were left for other ions such as OH- which could be 

adsorbed simultaneously. This hypothesis was suggested as the reason for higher 

binding capacity for concrete with a low pH, the low pH results in more adsorption sites 

for free chloride compared with concrete which has high pH. This may not be entirely 

true for AACM concrete because its poor binding capacity was largely due to the 

absence of Friedel’s salt (acid-soluble chloride) or any form of crystallised salt, leaving 

only the kuzel’s salt (water-soluble chloride) to be actively involved in the chloride 

binding reported in chapter 4. Also, less binding in AACM leaves more sites for OH-. 

5.4.4.3 Effect of Chloride Exposure Period 

 The pH and hydroxyl ion concentration profiles of AACM concrete mix S2 at 

180, 270 and 540 days of chloride exposure periods are shown in Fig. 5.34 while the 

corresponding pH and hydroxyl profiles of AACM concrete mix S4 at 180 and 270 days 

of chloride exposure periods are shown in Fig. 5.35. 

  
Figure 5. 34: pH and OH- profiles of AACM concrete mix S2 at 180, 270 and 540 days 
of chloride exposure 

 A significant reduction of pH and hydroxyl ions is observed at the 10 mm mean 

depth from the concrete surface in Fig. 5.34 at 540 days of chloride exposure period. 

This process involves the release of alkali metals from AACM into a leaching solution 

thereby reducing its pH. A possible reason for such release is the higher concentration 

gradient induced when chloride solution is in contact with the AACM binder, which can 

lead to leaching by the low ionic strength of the solution [3].   
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Figure 5. 35: pH and OH- profiles of AACM concrete mix S4 at 180 and 270 days of 
chloride exposure 

 The difference in pH and hydroxyl ions profiles between 180 and 270 days 

(Figures 5.34 and 5.35) is not significant compared to 540 days of chloride exposure 

period.  

5.4.5 Free Chloride/ Hydroxyl ion Ratio [Cl
-
/OH

-
] 

5.4.5.1 Effect of Activator Dilution 

 Two parameters used to express the critical chloride thresholds for corrosion 

initiation in steel reinforced concrete are the total chloride content relative to the weight 

of binder and the ratio of free chloride to hydroxyl ion concentration present in the pore 

solution which is usually expressed as [Cl-/OH-]. The former is presented in Chapter 4 

and the latter [Cl-/OH-] ratio is discussed in this section. 

 The relationships between chloride/hydroxyl ion [Cl-/OH-] ratio and penetration 

depth at 180 and 270 days of chloride exposure periods are shown in Figures 5.36 and 

5.37 respectively. Similarly, the relationship between [Cl-]/[OH-] and depths (10, 30 and 

50 mm) for AACM and OPC mixes for 180 and 270 days of chloride exposure are 

shown in Figures 5.38 and 5.39 respectively. 
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Figure 5. 36: Chloride/Hydroxyl ion [Cl-]/[OH-] of AACM concrete at 180 days of 
chloride exposure 

 
Figure 5. 37: Chloride/Hydroxyl ion [Cl-]/[OH-] of AACM concrete at 270 days of 
chloride exposure 

 The influence of activator dilution on the free Cl-/OH- ratio is more pronounced 

at 270 days (Figure 5.37 and 5.39) than 180 days (Figures 5.36 and 5.38) of chloride 

exposure. The activator dilution has a negative influence on the free Cl-/OH- ratio. The 

highest free Cl-/OH- ratio at 180 days of chloride exposure (Figures 5.36 and 5.38) was 

observed in AACM concrete mix S4 (8.12% dilution), likewise mix S5 (12% dilution) 

had the highest free Cl-/OH- ratio at 270 days of chloride exposure (Figure 5.37 and 

5.39). AACM concrete mix S2 (2.15% dilution) has the lowest free Cl-/OH- ratio at both 

180 and 270 days of chloride exposure. For example, the free Cl-/OH- ratios are 0.07 

and 0.14 for AACM mixes S2 and S5 respectively at 10 mm mean depth (Figure 5.37 

and 5.39).  Figures 5.36 and 5.38 similarly show AACM concrete mix S4 having the 

highest free Cl-/OH- ratio 0.07 while its 0.03 for mix S2. 

 The hydroxyl ion content in the pore solution is boosted by the presence of high 

concentration of activator in the pore solution. RILEM TC 224 [3] stated that the silicate 

sites present in the alkali activator will lose protons once or twice to become more basic 

when used in AACMs. Silicate activators are buffered by the silicate deprotonation 
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equilibria (i.e. removal of protons) to provide a remarkable high level of available 

alkalinity [3]. 

 
Figure 5. 38: The relationship between [Cl-]/[OH-] and mean depths (10, 30 and 50 mm) 
for AACM mixes S2, S3 and S4 at 180 days of chloride exposure. 

 
Figure 5. 39: The relationship between [Cl-]/[OH-] and mean depths (10, 30 and 50 mm) 

for AACM and OPC mixes S2, S4 , S5 and S6 at 270 days of chloride exposure. 

 The positive influence of high hydroxyl ion content in AACM concrete which 

resulted in low free Cl-/OH- ratios is evident when compared with OPC concrete as 

shown in Figure 5.37 and 5.39. OPC concrete mix S6 possesses the highest free Cl-/OH- 

of 0.34 at 10 mm mean depth compared to AACM concrete. Despite OPC concrete 

having the lowest free chloride content due to its better chloride binding capacity as 

shown in Fig. 5.28, the presence of lower hydroxyl ion content of 0.066 mol/L in its 

pore solution at 10 mm mean depth resulted in the highest free Cl-/OH- ratio compared 

with AACM concrete. In conclusion, therefore, even with the lowest free chloride 

content, a higher free Cl-/OH- ratio is observed in OPC concrete pore solution. AACM 

concrete on the other hand has higher chloride content but a lower free Cl-/OH- ratio in 

its pore solution. The Cl-/OH- parameter is often considered important for corrosion 

initiation of steel in concrete. The effect of this on the corrosion resistance of steel 

reinforcement in AACMs is investigated in chapter 7. 
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5.4.5.2 Effect of Chloride Exposure Period 

 The influence of chloride exposure periods on free Cl-/OH- ratio for AACM 

concrete mixes S2 and S4 are presented in Figures 5.40 and 5.41 respectively. Fig. 5.40 

shows the relationship between free Cl-/OH- and concrete depth at 180, 270 and 540 

days of chloride exposure periods while Fig. 5.41 has free Cl-/OH- profiles at 180 and 

270 days of chloride exposure periods. 

  
Figure 5. 40: [Cl-]/[OH-] of AACM concrete mix S2 at 180, 270 and 540 days of 
chloride exposure 

 
Figure 5. 41: [Cl-]/[OH-] of AACM concrete mix S4 at 180 and 270 days of chloride 
exposure 

 Higher values of free Cl-/OH- ratios were observed at latter chloride exposure 

periods. The highest free Cl-/OH- ratio 0.19 was recorded at 540 days of chloride 

exposure period while 180 days of chloride exposure has the lowest free Cl-/OH- ratio 

0.03 at 10 mm mean depth for mix S2 (Fig. 5.40). Similarly, for mix S4, the highest free 

Cl-/OH- ratio of 0.09 was recorded at 270 days of chloride exposure period while 180 

days of chloride exposure has the lowest free Cl-/OH- ratio of 0.07 at 10 mm mean 
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depth (Fig. 5.41). The free Cl-/OH- ratio of AACM concrete is greatly influenced by the 

depletion of hydroxyl ion within its pore solution with age. 

 A gradual reduction in hydroxyl ion content towards the concrete surface is 

observed with age due to leaching (Figures 5.32 and 5.33). RILEM TC 224 [3] gives 

three major causes of leaching in AACMs as porous microstructure, high alkali 

concentration and weak Na+ binding. The solutions offered to reduce leaching were to 

replace Na+ with K+, which improves binding with the aluminosilicate gel and provides 

a more stable alkali binding capacity. The second solution is to produce AACM with 

low permeability properties.   

 Since AACM mix S2 contains the same mix composition that was subjected to 

180, 270, 540 days of chloride exposure periods, this eliminates the possibility of 

discrepancies in their microstructure and alkali concentrations thus suggesting a weak 

alkali binding capacity of Na+ with the aluminosilicate gel as the reason for rapid 

leaching in AACM mix S2 at 540 days of chloride exposure period (Fig. 5.40). 

 In addition to the depletion of hydroxyl ion content towards the surface, the high 

concentration of free chloride near the concrete surface over time equally contributed to 

the high values of free Cl-/OH- ratios observed at 540 days of chloride exposure (Fig. 

5.40). For example, the free chloride concentration at 10 mm mean depth (0.036mol/L) 

is high at 540 days exposure compared to 0.015mol/L at 180 days exposure (Fig. 5.12). 

A similar trend was observed for AACM mix S4 having high free chloride concentration 

of 0.028mol/L at 270 days exposure compared to 0.019mol/L at 180 days exposure both 

at 10 mm mean depths (Fig. 5.12). 

5.5 CONCLUSIONS 

The following conclusions can be drawn based on the study carried out on the pore fluid 

chloride and pH and the relationship between chloride/hydroxyl raio of AACM concrete. 

• OPC concrete exhibited the lowest amount of free chloride compared with 

AACM concrete because of its better binding capacity. 

• The experimental data of free chloride concentration show strong correlation 

with the regression analysis profiles derived from Fick’s second law of diffusion.  

• The chloride diffusion parameters [C0(f) and Dc(f)] increase with an increase in 

chloride exposure periods except for Dc(f) at 540 days. For example, C0(f) and 

Dc(f) for AACM S2 at 180 days exposure are 0.025mol/L and 3.6 x 10-12m/s2 

respectively while it is 0.032mol/L and 5.1 x 10-12m/s2 at 270 days exposure. 
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The values are 0.053mol/L and 0.36 x 10-12m/s2 for C0(f) and Dc(f) respectively at 

540 days exposure. 

• Langmuir binding isotherm best-fits the free and bound chloride relationship of 

AACM and OPC concrete because of its lower free chloride concentration 

(≤0.02 mol/L).  

• The binding capacity decreases as the chloride exposure periods increases. OPC 

concrete had better chloride binding capacity compared with AACM concrete. 

This due to the presence of higher concentrations of water and acid soluble 

bound chlorides OPC concrete compared to AACM concrete (Chapter 4). 

• The free chlorides and pH are much higher in AACMs than OPC. For example, 

the free chloride concentrations at 10mm mean depth of AACM mix S2 and OPC 

S6 are 0.027mol/L and 0.023mol/L respectively at 270 days exposure. The 

corresponding pH for AACM mix S2 and OPC S6 are 0.38mol/L and 0.066mol/L 

respectively. The higher free chloride in AACMs is due to its lower water and 

acid soluble binding capacity while the higher pH was influenced its activator 

concentration. 

• The Cl-/OH- ratio of pore solution increases with increasing activator dilution. 

The highest activator dilution (12%) produced the highest free Cl-/OH- ratio 

while the lowest activator dilution (2.15%) produced the lowest free Cl-/OH- 

ratio within AACM pore solution. For example, the Cl-/OH- ratio at 10mm mean 

depth is 0.071 and 0.143 for 2.15% and 12% activator dilutions respectively at 

270 days exposure. 

• The AACM concrete had the lowest free Cl-/OH- ratio despite the high free 

chloride concentration compared with OPC concrete. The impact of high pH and 

hydroxyl ion present within pore solution of AACM concrete aided the low free 

Cl-/OH- ratio. For example, the free Cl-/OH- ratio at 10mm mean depth for 

AACM mix S2 is 0.071 while it is 0.34 for OPC S6 at 270 days exposure. 
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CHAPTER 6 
CARBONATION OF ALKALI ACTIVATED CEMENTITIOUS (AACM) 

CONCRETE 

6.1 INTRODUCTION 

The primary effect of carbonation in OPC concrete is to reduce the pH of its 

pore solution to below 9 [275][276]. The pH is reduced when atmospheric carbon 

dioxide, CO2, dissolves in the pore solution to form carbonic acid HCO3 and then reacts 

with the main hydration products of concrete, Ca(OH)2 and C-S-H, to form calcium 

carbonates CaCO3 [277][278]. The hydroxyl ion [OH-] within the pore solution is 

displaced by this reaction thereby causing the depletion of the protective passive film 

around the reinforcing steel in concrete. The progression of these reactions will result in 

carbonation induced corrosion when oxygen and water are present.  

The geopolymerisation products of AACM do not contain calcium hydroxide 

Ca(OH)2 which reacts with carbonic acid, HCO3, to produce calcium carbonates, CaCO3, 

unlike the OPC and supplementary replacement concrete that has calcium hydroxide 

Ca(OH)2 as hydration products. Therefore, the use of phenolphthalein indicator method 

to determine the carbonation front may not give a true carbonation performance in 

AACM concrete [3]. The question of the suitability of phenolphthalein indicator method 

in AACM concrete will be addressed in this chapter.  

In addition to the lowered pH of the concrete pore solution, the porosity and 

pore structure is altered by increasing the concrete pore sizes to more than 100 nm [279] 

because the relatively large calcium hydroxide molecules are replaced by the smaller 

calcium carbonate molecules. The increased pore size facilitates further carbonation. 

The increase in the porosity of concrete reduces the relative gel volume but the absolute 

concrete volume may remain the same. The concrete permeability is increased in the 

process affecting both the durability and mechanical properties of concrete negatively 

[280]. Carbonation in concrete is, therefore, considered as one of the leading causes of 

degradation in cement based structure [3]. 

The rate of carbonation in concrete is a slow process which sometimes takes 

years to manifest. Concrete structures in large cities are prone to carbonation due to 

human activities involving high emissions of CO2, up to 1% by volume of air. Concrete 

linings in road tunnels where a high concentration of CO2 is emitted [25] and reinforced 

concrete car parks are examples where carbonation is important. The CO2 concentration 

in the carbonation chamber which was used to simulate the effect of carbonation on 
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AACM and OPC concrete was maintained at 5% to provide accelerated carbonation 

conditions. A relative humidity between 50 to 70 per cent should be maintained to 

achieve the highest rate of carbonation in OPC concrete [281][282]. If the pores of 

concrete are fully saturated, the CO2 diffuses in it at 4 orders of magnitude slower than 

oxygen while its diffusion remains inactive if the concrete pores are insufficiently 

saturated [25]. Therefore, the moisture level within the concrete pores has considerable 

influence on the rate of carbonation. The relative humidity of the carbonation chamber 

used for this study was maintained at 65% R.H. and a temperature of 200C. 

6.2 LITERATURE REVIEW 

6.2.1 Carbonation in Concrete 

The chemistry and the geopolymerisation products of AACM concrete are 

different from the hydration products of OPC concrete and consequently, the 

carbonation process of these two types of concrete is also different. The reaction of 

atmospheric CO2 with the by-products of geopolymerisation/hydration of AACM and 

OPC concrete is dependent on the amount and type of the by-product formed. The by-

products containing alkali metals or alkali-earth metal cations were suggested to be 

most susceptible to carbonation [283]. These alkali metals which are classed as group 1 

elements in the periodic table react vigorously with water to produce metallic hydroxide 

and hydrogen. An investigation was carried out on the carbonation of different types of 

cement by adding heavy metal wastes originating from electroplating, galvanising and 

metal finishing operations [284]. An increase in the carbonation front was observed in 

the following order for the different types of cement: ordinary Portland cement (OPC) ˃ 

sulphate-resistant Portland cement (SRPC) ˃ white Portland Cement (WOPC). The 

presence of high amount of these metal wastes up to 60% increased the carbonation in 

these cement types. Two major reasons were suggested for the increase of carbonation 

in the OPC concrete [284].  The first reason was the presence of high ferrite content in 

OPC leading to the formation of ettringite which reacts with CO2 to form gypsum, 

calcium carbonate and alumina gel [284]. The second reason was that the presence of 

metal waste which promotes the gas-permeability of a cement product [284]. These 

factors result in a high degree of decalcification of the anhydrous calcium silicate phase 

as well as accelerated hydration leading to rapid formation of CaCO3.  

In the case of concrete with supplementary cement replacement materials, the 

secondary reactions of the pozzolanic material with the hydration products will lead to 

lower Ca(OH)2 content. This results in a faster rate of carbonation since small amount of 
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CO2 will be needed to cause decalcification of the anhydrous calcium silicate phase. An 

investigation on the carbonation of OPC mortar, 30% fly ash replacement mortar and 

50% blast furnace slag replacement mortar was performed by exposing to a 2% CO2 

concentration at a temperature of 200C and 65% R.H [285]. The highest depth of 

carbonation was recorded for the 30% fly ash replacement mortar (8.8 mm) followed by 

the 50% blast furnace slag replacement mortar (6.9 mm) and the lowest carbonation 

depth was observed in OPC mortar (0.4mm) at 154 days of CO2 exposure. The 

polarization and fluorescence microscopy (PFM) was used to observe the capillary 

porosity at the carbonated zones of these mortars. It was discovered that the capillary 

porosity of OPC mortar was lower than the 30% fly ash replacement mortar and 50% 

blast furnace slag replacement mortar. The carbonation effect resulted in a lower 

capillary porosity at the carbonated zone for OPC mortar compared with 30% fly ash 

replacement mortar and 50% blast furnace slag replacement mortar. However, a higher 

capillary porosity was observed at the noncarbonated zone for OPC mortar compared 

with the 30% fly ash replacement mortar and 50% blast furnace slag replacement mortar.  

The diffusivity of CO2 within the supplementary replacement concrete is 

reduced by the dense structure evolving from the secondary reaction between the 

pozzolanic material and hydration product. This is particularly observed in silica fume 

replacement concrete which has 100 times smaller particle sizes than an average particle 

size of ordinary Portland cement. A study was carried out on the effect of 

supplementary cementing materials (silica fume, low-calcium and high-calcium fly 

ashes) to determine concrete resistance against carbonation [286].  

Published results on the carbonation of AACM concrete are incoherent in 

comparison to OPC concrete. For example, high depths of carbonation were recorded 

for silicate-activated blast furnace slag concrete compared with OPC concrete under 

accelerated carbonation conditions [287][288]. Other studies show that the depth of 

carbonation of alkali activated blast furnace slag concrete and mortar is comparable to 

those of OPC concrete or mortar [289]. The author concluded that the refinement of the 

pore structure of alkali activated blast furnace slag concrete is responsible for its 

carbonation resistance [289]. However, a high relative humidity of 90% was adopted 

during the accelerated carbonation of these test samples [289]. The high relative 

humidity used during the carbonation will slow the diffusion of CO2 within the concrete 

matrix which may have invalidated the author’s results. A relative humidity between 

50% to 70% was recommended for optimum degree of carbonation in concrete 

[281][282].  
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6.2.2 Chemistry of Carbonation in Concrete 

The chemistry of carbonation in OPC concrete is fairly well documented while 

limited knowledge is available for AACM concrete [3]. Like other durability properties, 

the carbonation of AACM is significantly influenced by its pore solution chemistry 

which is significantly different from that of OPC concrete. The mechanism of 

carbonation in OPC concrete is represented in equation 6.1 - 6.3: 

 v�u + 9u� =	v9uyH(z�U��{�r��A	��r) + v  6.1 

 v9uyH =	9uy�H(9��{�r��A	��r) +	v  6.2 

 9�(uv)� +	2v +	9uy�H =	9�9uy + 2v�u 6.3 

Bicarbonate ions are formed when CO2 reacts with water at the carbonated zone 

(equation 6.1). These bicarbonate ions dissociate near the uncarbonated zone within the 

OPC concrete to form carbonate ions due to the high pH of the pore solution (equation 

6.2). The carbonate ions precipitate as calcium carbonate (CaCO3) crystals when they 

react with the hydration product of OPC concrete (Ca[OH]2) (equation 6.3). These 

crystals are present in OPC concrete in two forms: vaterite and calcite, the metastable 

vaterite turns to calcite over time [290]. This process will continue until all the 

hydration product of OPC concrete Ca(OH)2 is consumed by the carbonate ions. The pH 

of OPC concrete drops because of the low calcium ions present in the pore solution due 

to this process. 

Other hydration products of OPC concrete, calcium silicate hydrates C-S-H and 

ettringite/monosulphate [AFt/AFm], dissolve as pH of the pore solution drops. First, the 

calcium silicate hydrate C-S-H dissolves followed by monosulphate (AFm) at a pH of 

around 11.6 and then ettringite (AFt) at around 10.6. The phenolphthalein indicator 

method in OPC concrete does not change colour when the pH remains below 9 

indicating that the calcium containing phases have been dissolved [290]. 

In cement replacement concrete, the hydration products (calcium silicate hydrate, 

C-S-H and ettringite/monosulphate, AFt/AFm) will dissolves faster leading to a faster 

rate of carbonation. This is due to the secondary pozzolanic reaction that consumes part 

of the free lime, Ca(OH)2, responsible for the high pH of its pore solution.  

The geopolymerization product of AACM concrete does not contain free lime, 

Ca(OH)2, responsible for the high pH in concrete. The high pH in AACM is influenced 

by the concentration of alkali activator. The chemistry of how carbonate ions will react 

with different activators and subsequently dissolve other geopolymerization products of 
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AACM concrete is a grey area of research. Also, the suitability of phenolphthalein 

indicator method in AACM concrete is in doubt [3] since its functionality depends on 

the non-availability of the stable calcium phase within the concrete matrix. 

6.2.3 Factors Affecting Carbonation in Concrete 

Several factors have been identified to affect the carbonation in OPC concrete. 

These factors range from humidity, temperature, curing regime, binder content, CO2 

exposure concentration, concrete quality, cracks and fissures. Prominent amongst these 

factors are the humidity, binder content and CO2 exposure concentration. 

6.2.3.1 Humidity 

The environmental humidity around the concrete boundary plays a vital role in 

the carbonation of concrete. The diffusion rate of carbonate ions in concrete depends on 

the saturation level within its pores. The optimum speed of carbonation in OPC concrete 

was achieved at a relative humidity between 50 to 70 per cent [281][282]. A dry 

concrete with relative humidity below 50% will permit faster diffusion rate of carbon 

dioxide but it will remain chemically inactive within the concrete pores by not forming 

carbonate ions. This is because only the carbonate ions react with the stable calcium 

phase within concrete matrix which leads to carbonation. However, in a water saturated 

concrete with relative humidity above 70%, the carbonate ions can move freely within 

the concrete matrix but the carbonation is slow. This is because the diffusion of CO2 in 

the saturated concrete will be 4 orders of magnitude slower than for partially saturated 

concrete (50 to 70% R.H.) [25]. Studies were carried out to determine the influence of 

humidity on the carbonation of concrete by adopting three relative humidities of 50%, 

70% and 90% [291]. The highest coefficient of carbonation occurred at 70% relative 

humidity. 

The porosity of the carbonated zone in concrete was suggested to control the 

optimum humidity necessary for carbonation in concrete [290]. It was further explained 

that the possibility of water blocking the pore connectivity in concrete could prevent the 

CO2 gas diffusion which results in slow carbonation for dense concrete.  

6.2.3.2 Binder Content 

Carbonation occurs only in the binder gel and not the aggregates. The depth of 

carbonation decreases with an increased amount of binder content in the concrete mix. 

The effect of carbonation results in the drop of pore solution pH as the free lime 

Ca(OH)2 depletes. Other hydration products of OPC concrete (calcium silicate hydrates 
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C-S-H and ettringite/monosulphate [AFt/AFm]) dissolve as the pH of the pore solution 

drops. First, the calcium silicate hydrate C-S-H dissolves followed by monosulphate 

(AFm) at a pH of around 11.6 and then ettringite (AFt) at around 10.6 [290].  

The rates of carbonation in supplementary replacement concrete have been 

observed to be faster than OPC concrete [275][292][293]. This was largely due to the 

secondary pozzolanic reaction in supplementary replacement concrete producing more 

calcium silicate hydrate C-S-H but less free lime Ca(OH)2. The reduction of free lime 

Ca(OH)2 induced by the secondary pozzolanic reaction promotes the faster rate of 

carbonation compared with OPC concrete. The depletion of free lime Ca(OH)2 by the 

secondary reaction in supplementary replacement concrete is influenced by the 

pozzolanic activity. The lower the pozzolanic activity of a supplementary binder the 

more the demand for Ca(OH)2 for it to be activated, thus the speed of carbonation is 

faster than when the pozzolanic activity of the binder is lower. The carbonation of 

binary and ternary blended cementitious systems based on ordinary Portland cement 

(OPC), pulverised fuel ash (PFA) and silica fume (SF) was investigated [292]. The 

depth of carbonation of pulverised fuel ash (PFA) based system increased significantly 

compared with OPC and SF based systems. This was due to the lower pozzolanic 

activity of PFA compared with SF. Similarly, the author suggested that the blast furnace 

slag (BFS) based system is more susceptible to carbonation than OPC and SF based 

systems [293]. 

However, AACM concrete does not contain free lime Ca(OH)2 but has 

hydrates of calcium silicates. The high pH of AACM concrete pore solution is 

determined by the solution modulus of the type of alkali activator used. The dissolution 

of the hydrates of calcium silicates and other hydrates containing calcium in AACM 

concrete will occur when the pH is reduced to a certain level. AACM concrete becomes 

carbonated when this calcium containing phase is dissolved at lower pH. The chemistry 

of pH reduction of AACM pore solution by the action of carbonation requires further 

investigation. However, the accelerated carbonation testing of AACM concrete was 

suggested to be a far more aggressive test method when compared to OPC concrete 

[294]. This is because the carbonation effect on AACM concrete by using the 

accelerated testing method may have overestimated its actual degradation in service life. 

6.2.3.3 CO2 Exposure Concentration 

The volume of CO2 concentration in the atmosphere will affect the rate of 

carbonation in concrete. High rate of carbonation in concrete is found in large cities due 
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to various human activities resulting in the emission of high volume of CO2, for 

example in road tunnels and car parks. Some environments in which concrete structures 

are located may reduce the rate of carbonation such as coastal areas; these structures are 

least susceptible to carbonation because water absorbs CO2 by a physio-chemical 

process.  

Accelerated concrete carbonation test method is often used to simulate the 

carbonation of concrete in service life. Concrete specimens are subjected to a high-

volume concentration of CO2 under this method. The rate of carbonation of concrete in 

service can be estimated by the ratio of the accelerated CO2 concentration divided by the 

natural CO2 concentration [285]. For example, a 5% accelerated CO2 concentration will 

increase the degradation of concrete in service by 125-fold (carbonation coefficient) 

when the natural CO2 concentration is 0.04%. Whilst this may be applicable to OPC 

concrete, the carbonation effect on AACM concrete by using the accelerated testing 

method may have overestimated its actual degradation in service life  [294]. The change 

in pore solution equilibria was suggested to have caused the formation of sodium 

bicarbonates under accelerated carbonation instead of hydrous sodium carbonate under 

natural carbonation. This favours faster reaction rate and consequently the carbonation 

of AACM concrete under accelerated conditions of high CO2 concentration gives higher 

apparent carbonation rate  [294]. 

6.2.4 Rate of Carbonation 

The rate of carbonation in concrete is principally governed by the accessibility 

of carbonate ions (CO2 dissolved in pore solution) and the reactivity of the diffused 

carbonate ions with the binder gel. These principal factors relate to the concrete 

permeability and the free lime content of the binder gel, the pore solution should also be 

taken into consideration. Other factors such as humidity, porosity, CO2 concentration 

and binder type and content influence these two governing factors. 

Carbonation of concrete in service is a complex process that could not be easily 

described by Fick’s law of diffusion, unlike the chloride ingress in concrete. This is 

because the rate of carbonation in a structure varies at different sections when subjected 

to the same CO2 concentration [3]. It was suggested that the factors which affect 

carbonation, such as humidity, wet/dry condition, sunlight exposure differ at different 

sections in a structure. 

Many authors have used the following equation to approximate the rate of carbonation 

in concrete [90][275]. 
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 |} = |? + ��� 6.4 

Where dk is depth of carbonation; d0 is the initial depth of carbonation which is 

insignificantly small; k is carbonation coefficient (mm/year(n)); n is the power series 

constant.  

The carbonation coefficient k, is a variable that depends on the microclimate especially 

the humidity inside the concrete [290]. On the other hand, the power series constant n, 

depends on the exposure condition. n is assumed to be 0.5 for OPC concrete but could 

be lesser [90]. 

The carbonation coefficient k, as shown in Table 6.1 for CEM I type concrete exposed 

to various environmental conditions for 35years was presented in literature [290]. The 

carbonation coefficient k, for compressive strength class ranging from less than 15 MPa 

to strength greater than 35 MPa is given in Table 6.1.  

Table 6. 1: Depth of carbonation of concrete produced with CEM I Type Cement 
exposed to typical Nordic climate for 35 years. 

Strength ˂ 15 MPa 15-20 MPa 25-35 MPa ˃ 35 MPa 

Wet/submerged 2mm/√year 1.0mm/√year 0.75mm/√year 0.5mm/√year 

Underground 3mm/√year 1.5mm/√year 1.0mm/√year 0.75mm/√year 

Outdoor 5mm/√year 2.5mm/√year 1.5mm/√year 1.0mm/√year 

Indoors 15mm/√year 9.0mm/√year 6mm/√year 3.5mm/√year 

Table 6.1 gives estimated values of carbonation coefficient k, under various 

environmental conditions when the concrete surfaces are without finishes like paint, 

tiles or any wall coverings. The rate of carbonation could be reduced between 30% to 

50% by these wall coverings depending on their thickness [290]. 

The value of carbonation coefficient k decreases as the strength increases for 

all exposure conditions as shown in Table 6.1. The lowest value of carbonation 

coefficient k was observed at strength ˃ 35 MPa while strength ˂ 15 MPa has the 

highest carbonation coefficient k, for all exposure conditions. It is generally accepted 

that the compressive strength of concrete is directly related to its porosity. Hence, the 

carbonation coefficient, k, increases as the concrete porosity increases at lower strength 

while it decreases as the porosity decreases at higher strength. Another study on the 

carbonation depth for different strength class of OPC concrete (25 to 41 MPa) exposed 

to accelerated CO2 concentration (4 + 0.5%) in a chamber (230C and 50% R.H.) up to 1 
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year was reported [275]. The concrete with the highest strength (41 MPa) had the lowest 

carbonation depth of 1 mm while the highest carbonation depth of 6.9 mm was observed 

for concrete with the lowest strength (25 MPa). The influence of porosity on the rate of 

carbonation equally applies to supplementary replacement and AACM concretes when 

investigated independently. However, when these three different concrete types (OPC, 

supplementary replacement and AACM concrete) are compared together, other 

influencing factors like the free lime content Ca(OH)2 played vital roles in the rate of 

carbonation  [275]. 

The exposure conditions shown in Table 6.1 reflect the importance of degrees 

of humidity surrounding the concrete. Wet/submerged exposure condition had the 

lowest carbonation coefficient, k, for all strength grades while indoors exposure 

conditions have the highest carbonation coefficient k. The lowest carbonation 

coefficient, k, possessed by wet/submerged exposure condition was because of the 

diffusion of CO2 is about 4 orders of magnitude slower than for partially saturated 

concrete (50 to 70% R.H.) [25]. On the other hand, the indoor exposure has 

environmental conditions that favour faster rate of carbonation. For example, the 

bathroom often has water vapour ideal for faster carbonation. The underground 

exposure condition has less access to atmospheric CO2. However, the biological decay 

produces CO2 that could contribute to carbonation of buried structures [290]. For the 

outdoor exposure conditions, the rate of carbonation is subject to the environment. 

6.2.5 Carbonation Shrinkage 

Carbonation shrinkage in concrete occurs due to stresses induced in the cement 

paste as the calcium carbonate CaCO3 is formed [3]. This happens at the carbonated 

zone of the OPC concrete where free lime, Ca(OH)2, is dissolved to form calcium 

carbonate CaCO3. The reorganisation of the pores at the carbonated zone reduces the 

total porosity depending on the crystals formed, which is 3% for aragonite, 12% for 

calcite and 19% for vaterite [295]. The reduced porosity at the carbonated zone causes a 

differential shrinkage between the carbonated and the uncarbonated zones of the 

concrete which produces surface crazing.  

The underlying mechanism of carbonation shrinkage is not fully understood for 

supplementary replacement and AACM concrete, unlike drying shrinkage. Recent 

studies were carried out on the carbonation shrinkage of AACM paste activated by 

mixing NaOH and KOH pellets in water [296]. The conclusion was that the carbonation 

shrinkage resulted in mass gain unlike the situation in drying shrinkage which results in 
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mass loss. The carbonation shrinkage induced mass gain together with moisture change 

was due to the drying and pore modification in the carbonated concrete. This produces a 

misleading phenomenon of equilibrium because the drying of concrete should result in 

mass loss rather than mass gain but the CaCO3 formed during carbonation precipitates 

into the pore spaces unlike the pore spaces of concrete undergoing drying shrinkage that 

is partially filled with air. Decalcification of cement paste due to carbonation resulted in 

significant and irreversible shrinkage when the Ca/Si ratio of the C–S–H gel was 

reduced below 1.2 [297]. The carbonation shrinkage is constrained to the surface of the 

concrete unlike drying shrinkage which penetrates the entire concrete. However, drying 

and carbonation shrinkage in AACMs are dependent on relative humidity, curing 

condition, temperature and specimen size [298]. 

6.3 EXPERIMENTAL PROGRAMME 

6.3.1 Mix Composition 

The composition of AACM concrete used for the carbonation investigation was 

the same as used to investigate the chloride diffusion which is detailed in chapter 4 and 

5. Four compositions of AACM concrete, mixes S2 to S5, were produced which are 

given in Table 6.2. S6 is the control mix produced with 100% OPC binder of C40 grade 

concrete. The AACM concrete comprises of a cementitious binder, fine aggregate, 

coarse aggregate and the alkali activator. The AACM concrete trial mix S1 was 

performed prior to the selection of the mix compositions used for the chloride ingress, 

carbonation and corrosion investigation in this research work. The AACM cementitious 

binder used is a proprietary hybrid alkali activated precursor comprising of low and 

high calcium constituents, which has been developed at Sheffield Hallam University 

[131]. A version of the AACM cementitious binder used for this research work is 

currently manufactured under licence. Several mixes were made with the AACM binder 

and activator by incorporating a range of fine aggregate (438 to 585 kg/m3) and coarse 

aggregate content (988 to 1170 kg/m3). The reference alkali activator liquid [131] was 

diluted with tap water by 2.15%, 4.24%, 8.12% and 12% in mixes S2 to S5 respectively, 

similar to the AACM concrete specimens produced for chloride ingress investigation 

reported in chapters 4 and 5 and published [132]. S6 is an OPC concrete control mix 

with water/cement ratio of 0.486. 

Two groups of AACM and OPC concrete specimens were produced for the 

carbonation investigation. The first group were prisms of dimensions 300 x 75 x75 mm 

that were used to determine the carbonation shrinkage and the rate of carbonation. The 
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second group were cylinders of 50 mm diameter x 60 mm depth that were used to 

investigate the pH of the carbonated and uncarbonated AACM and OPC concrete.  
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Table 6. 2: Composition of AACM and OPC concrete mixes 
Mix Total 

Binder 
(Kg/m3) 

Coarse 
Aggregate(Kg/m3) 

Fine 
Aggregate 
(Kg/m3) 

Alkali 
activator 
(Kg/m3) 

Extra 
water 

(Kg/m3) 

Total 
Liquid 

(Kg/m3) 

Liquid/ 
Binder 
Ratio 

Activator 
Dilution  

(%) 

Retarder 
(Kg/m3) 

SRA 
(Kg/m3) 

 10mm 
Gravel 

6mm 
Limestone 

   

            
S2 

S3 

S4 

S5 

S6(Control) 

688 

619 

619 

619 

350 

654 

717 

717 

717 

769 

334 

374 

374 

374 

401 

438 

423 

423 

423 

585 

279 

283 

271 

260 

- 

6 

12 

22 

31 

170 

285 

295 

293 

291 

170 

0.414 

0.477 

0.473 

0.470 

0.486 

2.15 

4.24 

8.12 

12.00 

- 

8 

7 

7 

7 

- 

21 

19 

19 

19 

- 

            

 

 



212 
 

6.3.2 Specimen Preparation 

Two different dimensions of AACM and OPC concrete specimens were 

produced to determine the rate of carbonation, carbonation shrinkage and the concrete 

pH. Prism specimens of dimensions 300 x 75 x 75 mm were used to determine the rate 

of carbonation and carbonation shrinkage (section 6.3.2.1). Cylindrical specimens of 50 

mm diameter x 60 mm depth were used to determine the pH of the concrete (section 

6.3.2.2). 

6.3.2.1 Prism Specimens (300 x 75 x 75 mm) 

The prisms were cast into lightly oiled metal moulds. No air entraining 

admixture was added to the mix. The specimens were then demoulded 24 hrs after 

casting and cured in water for 27 days at a temperature of 20 ± 20C. After curing in 

water for 27 days, the specimens were grouped into two batches. The first batch of 

AACM and OPC concrete prism specimens was used to determine the rate of 

carbonation while the second batch was used to determine the carbonation shrinkage. 

Four specimens were cast per mix (i.e. S2 to S6) and a total of twenty specimens were 

produced for both carbonation rate and shrinkage. 

6.3.2.1.1  Rate of carbonation specimens 

The first batch of AACM and OPC concrete prism specimens were used to 

determine the rate of carbonation. The specimens were removed from water after 27 

days curing (28 days age) and allowed to dry in the laboratory air (20 ± 20C, 65% R.H.) 

before applying two coats of bitumen paint to the two end faces and two longitudinal 

faces (total of 4 faces) of the 300 x 75 x75 mm prisms. The remaining two longitudinal 

(300 x 75 mm) faces which were left uncoated for exposure to CO2 are shown in Fig 6.1. 

The two uncoated faces were the side faces while the top (trowelled) and bottom faces 

of the prisms were coated. After the 28 days preconditioning in water, the specimens 

were placed inside an accelerated carbonation chamber (Fig 6.2). The AACM and OPC 

concrete specimens in the carbonation chamber were exposed to 5% CO2 concentration 

in the air. The relative humidity and temperature inside the carbonation chamber were 

within 50% to 70% and 20 ± 20C respectively. The specimens were exposed to 5% CO2 

concentration in the carbonation chamber for 327 days. The depths of concrete 

carbonation were determined by using the phenolphthalein indicator method at 28, 55, 

90, 145 and 327 days of CO2 exposure.  A total number of ten concrete specimens (2 per 
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mix) were used to investigate the rate of carbonation. The test procedure of the rate of 

carbonation is detailed in section 6.3.3.1. 

 
Figure 6. 1: Four sides coated with bitumen 
paint; the remaining two longitudinal (300 x 
75mm) faces uncoated. 

 
Figure 6. 2: Specimens exposed to 5% CO2 

concentration inside the accelerated 
carbonation chamber.  

6.3.2.1.2 Carbonation shrinkage specimens 

Two stainless steel demec points were fixed, 24 hrs after casting, along the two-

parallel longitudinal (300 x 75 mm) side faces at a gauge length of 200 mm (Fig 6.3). 

The specimens were cured in water at (20 ± 20C) for 7 days. The specimens were 

removed from water after 7 days and allowed to dry in the laboratory air (20 ± 20C, 65% 

R.H.) for 42 days (Fig 6.3). This was to ensure even moisture condition within the 

concrete matrix before accelerated CO2 exposure. No bitumen paint was applied to the 

face(s) of the concrete. The AACM and OPC concrete specimens in the carbonation 

chamber were exposed to 5% CO2 concentration within 50% to 70% relative humidity 

while the temperature was 20 ± 20C. The period of exposure in the carbonation chamber 

was 327 days. The readings of carbonation shrinkage were taken and recorded at regular 

intervals. Two specimens were used per mix (i.e. S2 to S6) with a total of ten specimens 

for the carbonation shrinkage investigation. The test procedure for the carbonation 

shrinkage is detailed in section 6.3.3.2. 
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Figure 6. 3: Stainless steel demec points fixed along the two-parallel longitudinal (300 x 
75 mm) faces 

6.3.2.2 Cylindrical Specimens (50mm diameter X 60mm Depth) 

AACM and OPC concrete specimens were cast in plastic cylinders of 50 mm 

diameter X 60mm depth as shown in Fig. 6.4. Self-adhesive bitumen tape was fixed at 

the bottom of the plastic cylinder moulds before casting to prevent the concrete from 

pouring out (Fig. 6.5). The top cast surface was carefully trowelled to achieve a plain 

surface. No air entraining admixture was used in the mix. A total of 50 specimens were 

produced to determine the pH of carbonated and uncarbonated concrete specimens. The 

specimens, inside the moulds, were air cured in the laboratory air (20 ± 20C, 65% R.H.) 

for 24 hrs after casting while covered with polythene sheets to prevent rapid moisture 

loss. After 24 hrs, the specimens were not demoulded to prevent the ingress of CO2 

through the bottom face and the circumference of the specimens when subsequently 

placed inside the carbonation chamber. The specimens within the plastic moulds were 

cured in water for 27 days at a temperature of 20 ± 20C. The specimens were then cured 

at 65% R.H. and a temperature of 50 0C until the change in their unit weight was less 

than 0.2% in a 24-hour period. After the preconditioning to 65% R.H., the specimens 

were placed inside the accelerated carbonation chamber as shown in Fig. 6.2. The 

specimens were exposed to 5% CO2 concentration in the carbonation chamber for 327 

days at a relative humidity of 50 to 70% and temperature 20 ± 20C.  

   

   

Steel demec 
points 
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Figure 6. 4: Concrete specimens in 50mm 
diameter X 60mm depth cylindrical plastic 
moulds 

Figure 6. 5: Self-adhesive tape fixed at the 
bottom of cylindrical moulds 

6.3.3 Experimental Procedure 

6.3.3.1 Rate of Carbonation Test 

The rate of carbonation was determined by the standard phenolphthalein test for 

concrete [299]. The 300 x 75 x 75 mm dimension specimens were marked at 50 mm 

intervals along the longitudinal face.  An incremental 50 mm long piece was cut at each 

test age (28, 55, 90, 145 and 327 days of CO2 exposures) from the previously cut prism 

cross-section by tensile splitting across the prism cross-section at the first 50 mm 

interval marking from the end face of the specimen. Splitting was performed by placing 

8 mm diameter cylindrical rods along the first 50 mm interval marking at the top and 

bottom face of the prism and performing a tensile split test by applying a compressive 

load through the cylinders. A fairly neat cut was achieved by this method across the 

prism face at a 50 mm incremental length from the end face at each test age. The cut 

face (cross section) of the remaining whole prism e.g. 250 mm length after the first cut 

at 28 days together with the freshly cut face of the 50 mm long end piece were exposed 

to the phenolphthalein test to determine depth of carbonation (Fig. 6.6). Subsequently, 

the cut face of the remaining whole prism was sealed by coating with bitumen paint (Fig. 

6.7) and the specimen returned to the carbonation chamber until the next test age.  

At each test age (28, 55, 90, 145 and 327 days) of CO2 exposure, therefore, two 

freshly cut faces of the prism cross-section were exposed to the phenolphthalein test. 

The depth of carbonation was measured from the two uncoated longitudinal faces of the 

prism, which were directly exposed to carbonation (Fig. 6.8). The carbonation depth 

was measured at four points from each of the uncoated longitudinal faces, thereby 
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providing 8 readings per freshly cut face. A total of 16 depth of carbonation readings, 

therefore, were obtained from the two faces exposed by the freshly cut cross section at 

each test age. 

 
Figure 6. 6: Phenolphthalein indicator applied 
to the two freshly cut faces. 

 
Figure 6. 7: Bitumen paint applied to the 
freshly cut face of the prism. 

 

 
Figure 6. 8: Depth of carbonation dk measured from the two uncoated longitudinal faces of a 
prism 

6.3.3.1.1 Depth of carbonation dk 

A solution of 1g phenolphthalein dissolved in 70ml ethyl alcohol and 100 ml 

distilled water [300] was sprayed on the freshly broken face as shown in Figures 6.6 and 

6.8. The phenolphthalein indicator was just sufficient to wet the concrete surface 

without running down the surface. An instantaneous colour change to red-purple was 

observed at the inner core of the sprayed surface, this is referred to as the uncarbonated 

Uncarbonated Zones 

AACM OPC Carbonated Zones 
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zone (Fig. 6.8). The colour at the edge of the sprayed surface did not change; this is 

referred to as the carbonated zone (Fig. 6.8).  The spraying of phenolphthalein was 

performed on the two freshly cut faces of the prism cross-section for each concrete mix 

S2 to S6. The depth of carbonation dk for each mix is the average of these 16 readings.  

6.3.3.2 Carbonation Shrinkage Test 

The shrinkage test was performed in accordance with the standard method [211] 

on 75 X 75 X 300 mm prism specimens which were cured in water for 7 days (20 ± 

20C) and then cured in laboratory air (20 ± 20C, 65% R.H.) for 42 days before exposing 

to accelerated carbonation. The datum shrinkage reading of AACM and OPC concrete 

mixes S2 to S6 specimens was taken before exposing the specimens to CO2 in the 

accelerated carbonation chamber. The specimens were exposed to 5% CO2 at a relative 

humidity of 50 to 70% and 20 ± 20C temperature. The carbonation shrinkage readings 

were taken at regular intervals with the demec extensometer over a gauge length of 200 

mm. The difference between the datum reading obtained before exposing it to CO2 

concentration inside the carbonation chamber and the periodical readings gave the 

carbonation shrinkage values. The carbonation shrinkage readings were taken on the 

two longitudinal side faces (i.e. 300 x 75 mm) of the prism specimens. The average 

reading of two specimens (two faces each) per mix was recorded. 

6.3.3.3 Powder Collection 

pH analysis was performed on the 50 mm diameter X 60 mm depth cylindrical 

specimens which were detailed in section 6.3.2.2. The cylindrical specimens were 

removed from the accelerated carbonation chamber after 327 days exposure. These 

specimens were demoulded from their plastic moulds (sleeves) and split into halves 

longitudinally along their depths as shown by section A-A in Fig. 6.9. The splitting 

tensile strength test procedure was adopted to break the cylinders into two longitudinal 

halves. The surface of the split cylinder halves revealed the depth of carbonation 

resulting from the top unsealed face of the cylinder, which was exposed to CO2 in the 

carbonation chamber. All the remaining surfaces of the cylinder were sealed as 

described in Section 6.3.2.2. 

 The depth of carbonation was determined by spraying phenolphthalein on the 

exposed (split) surface of the first broken half of each cylinder according to standard 

procedure [300]. The depth of carbonation profile from the exposed face of the cylinder, 

which was revealed by no colour change of the phenolphthalein test, was clearly marked. 

However, phenolphthalein was not applied to the surface of the second half of each split 
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cylinder. The depth of carbonation profile obtained from the first half cylinder was 

marked on the second half of the cylinder that was not sprayed with phenolphthalein. 

The marked depth of carbonation zone on the second half of the specimen was carefully 

chiselled to obtain concrete chunks of the carbonated and uncarbonated zones. This 

procedure was performed on five specimens for each AACM and OPC concrete mixes 

S2 to S6 to obtain sufficient concrete chunks for the pH test. The chunks were ground to 

powder and passed through a 150 µm sieve to obtain concrete powder for the 

carbonated and uncarbonated zones.  

A second set of powder test samples was similarly obtained but by removing the 

coarse aggregate particles from the concrete chunks. The concrete pieces were crushed 

to separate the coarse aggregate particles from the matrix and they were removed by 

sieving. The remaining mortar material was ground to obtain mortar powder for the 

carbonated and uncarbonated zones. The concrete and mortar powder for the carbonated 

and uncarbonated zones for mixes S2 to S6 was stored separately in air proof plastic 

vials and labelled accordingly as shown in Fig. 6.10. pH analysis was performed on 

these carbonated and uncarbonated powder samples.  

 
Figure 6. 9: Demoulded cylinders showing the 

section A-A of splitting 

 
Figure 6. 10: AACM and OPC concrete/mortar 

powder stored in air-proof plastic vials  

6.3.3.3.1 pH analysis 

The ex-situ leaching method of concrete [263] was adopted to obtain the 

solution used for pH analysis of the concrete and mortar samples. This was carried out 

by dissolving 5 grams of the concrete powder in distilled water at a liquid/solid ratio of 

1:1 in the air-tight plastic vials. The solution was shaken thoroughly for 10 seconds to 
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ensure a homogenous mix of the concrete powder. The concrete powder solution in the 

air-tight plastic vial was left undisturbed for 5 mins to allow for leaching. The concrete 

powder solution was then filtered as shown in Fig. 6.11 to obtain a solution that does 

not contain concrete powder particles.  

A double junction electrode connected to a benchtop meter 3-in-1 (Fig. 6.12) 

was dipped inside the filtered solution to measure its pH. This device measures pH 

ranging from 0.00 to 14.00 and can measure sample volumes as small as 0.2mL with an 

accuracy of ± 0.01. The body of the double junction electrode is made of glass which 

makes it suitable in very acidic or alkaline solutions. The internal reference comprises 

of Ag/AgCl double junction electrode resulting in exceptionally stable and minimal 

long-term drift. 

 
Figure 6. 11: Filtering of AACM and OPC 

concrete/mortar powder 

 
Figure 6. 12: Double junction electrode and 
benchtop meter 3-in-1 used to measure pH 

6.4 RESULTS AND DISCUSSION 

6.4.1 Depth of Carbonation (Prism Tests) 

The depth of carbonation readings obtained from tests on 300 x 75 x 75 mm prism 

specimens described in section 3.3.1.1 are presented in Table 6.3. The readings were 

taken at 28, 55, 90, 145 and 327 days of exposure to 5% CO2 concentration in the 

carbonation chamber. 

 

 



220 
 

Table 6. 3: Depth of Carbonation dk (mm) for AACM and OPC concrete mixes S2 to S6 

at different exposure periods to accelerated carbonation 
  1st cut face 2nd cut face Carbonation depth 

Age Mix side 1 
Av. 

side 2 
Av. 

side 1 
Av. 

side 2 
Av. 

dk (mm) 

 
28 days 

exposure  

S2 4.75 4.25 4 3.75 4.19 
S3 6.75 6 5.75 5.75 6.06 
S4 7 8 6.5 8 7.38 
S5 8.75 8.75 8.25 8.75 8.63 
S6 1.5 1 1 1 1.13 

         
 

55 days 
exposure  

S2 8.75 7.75 7.25 6 7.44 
S3 13 13.25 12.5 12.5 12.81 
S4 11 10 9.5 11.5 10.5 
S5 12.25 12.25 11.5 11.5 11.88 
S6 3 3.75 4.5 4.5 3.94 

        
 

90 days 
exposure  

S2 10 10.75 8.75 10 9.88 
S3 17 17.75 16.75 15.75 16.81 
S4 15.25 16.75 15 17.25 16.06 
S5 17.5 16.75 16 15.75 16.5 
S6 2.5 6.5 8.5 6.25 5.94 

        
 

145 days 
exposure  

S2 10 11.5 10.75 10 10.56 
S3 22.25 19.5 22.5 22.5 21.69 
S4 23 21.5 21.25 24.5 22.56 
S5 26.5 26 25.5 25.75 25.94 
S6 9.25 9.5 10.75 11.5 10.25 

       
 

327 days 
exposure  

S2 14 13.5 12.25 13.5 13.31 
S3 26 23.5 25 26.25 25.19 
S4 25.75 26.25 27.25 27.75 26.75 
S5 29.5 29.5 29.25 28.75 29.25 
S6 15.75 14.75 12.75 13.25 14.13 

       
6.4.1.1 AACM and OPC Concrete 

The relationship between the depth of carbonation and exposure period in 5% 

C02 concentration for AACM and OPC concrete mixes S2 to S6 is shown in Fig. 6.13. 

The 5% C02 concentration is 125 times higher than the atmospheric C02 concentration of 

0.04%. 
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Figure 6. 13: Relationship between depth of carbonation dk and exposure period of 
AACM and OPC concrete (300 X 75 X 75 mm prism tests). 

A lower depth of carbonation was observed in OPC concrete compared with 

AACM concrete except for AACM concrete mix S2 (Fig. 6.13). AACM concrete mix S2 

shows a similar depth of carbonation to OPC concrete mix S6 after 150 days of exposure. 

The depth of carbonation is 10.3 mm for AACM and OPC concrete mixes S2 and S6 at 

150 days exposure while it is in the range of 21.69 to 25.94 mm for AACM concrete 

mixes S3, S4 and S5 at 150 days of exposure. Mix S2 is an exception for the reasons 

discussed in Section 6.4.1.2.  This trend is in agreement with other authors, which 

shows deeper carbonation fronts in AACM concrete than OPC concrete [287][288]. 

A significant depth of carbonation was recorded for AACM concrete mixes S3, 

S4 and S5 as shown in (Fig. 6.13). It was suggested that the pH buffer effect of Ca(OH)2 

in OPC concrete is responsible for its lower depth of carbonation compared with 

AACM concrete [301]. However, AACM concrete does not produce Ca(OH)2, its main 

geopolymerization product is C-A-S-H. The Ca(OH)2 maintains the pH of OPC concrete 

between 12.5 to 13.5 while this is not the case in AACM concrete. The CO2 reacts 

directly with the C-A-S-H product in AACM concrete to generate decalcification of the 

binder gel [289].The decalcification of the binder gel in AACM results in the loss of 

cohesion and ultimately larger pore structure [302]. This accounts for the loss in 

compressive strength of carbonated AACM concrete observed by many authors 

[288][303]. For OPC concrete, the calcium carbonate produced during carbonation 

precipitates around the surface area of the concrete to form a barrier which reduces 

further ingress of CO2 [302]. In addition to the ongoing hydration in OPC concrete, the 

precipitated calcium carbonate contributes to the dense structure which leads to higher 

compressive strength observed by some authors [289][301][302]. 
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The presence of high volume of micro cracks in AACM concrete was suggested 

to influence its greater depth of carbonation despite low porosity compared with OPC 

concrete [289][301]. Surface crazing is observed in AACM concrete when it is not 

properly cured. However, the specimens of this study were free from visible crazing and 

cracking. 

6.4.1.2 Effect of liquid/binder ratio 

Lower carbonation front depths were observed for AACM mix S2 as shown in 

Fig. 6.13. The increase in the carbonation depth was significant between Mix S2 and 

Mix S3 especially at longer exposure periods. For instance, the carbonation depth of 

Mix S2 is 13.31 mm while it is 25.19 mm for Mix S3 at 327 days exposure. This 

represents 90% increase in the carbonation depths between Mix S2 and Mix S3. Mix S2 

has the lowest activator dilution (2.15%) and also the lowest liquid/binder ratio of 0.41 

(Table 6.2). 

On the other hand, Mixes S3, S4 and S5 have the same liquid/binder ratio of 0.48 

while the degrees of activator dilution increases from 4.25% to 12.0% respectively. This 

shows an increase in the depth of carbonation profile with the increasing activator 

dilution (Fig. 6.14) which is discussed in detail in the next section. The increase in the 

depth of carbonation between Mix S3 to Mix S5 was much less significant (Fig. 6.13). 

For instance, the carbonation depth is 25.19mm for Mix S3 while it is 29.25mm for Mix 

S5 at 327 days exposure. 

In addition to the low activator dilution and liquid/binder in AACM concrete 

mix S2; its tight pore structure (Chapter 3, Section 3.4.3.4) reduces the ingress of CO2 

and its lower capillary absorption (Chapter 7, Section 7.4.1) reduces moisture 

movement, both of which reduce carbonation. The porosity of Mix S2 is 5.67%, 6.94% 

and 9.98% under wet/dry, wet and dry curing as shown in Fig. 3.40 (Chapter 3, Section 

3.4.3.4) while its capillary absorption gave a sorptivity value of 0.041 mm/sec0.5 

(Chapter 7, Section 7.4.1). The prescence of more binder gel in Mix S2 provided a 

tighter pore structure. This will lead to a decrease in diffusion of CO2 and carbonation 

[304]. The presence of lower liquid/binder ratio in AACM concrete mix S2 resulted in 

lower porosity and lower carbonation than any other AACM mixes. 

6.4.1.3 Effect of Activator Dilution 

The relationship between depth of carbonation and activator dilution is shown in 

Fig. 6.14. The depths of carbonation were measured at 28, 55, 90, 145 and 327 days of 
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exposure to 5% CO2 concentration in an accelerated carbonation chamber. The chamber 

was maintained at a temperature of 20 ± 20C and 65% R.H. 

  
Figure 6. 14: Influence of activator dilution on the depth of carbonation dk in AACM concrete 

Increase in the depth of carbonation is modest with increasing activator dilution 

at 28, 55, 90, 145 and 327 days exposure. A similar trend of lower carbonation front 

was observed for a metakaolin-containing system that has high alkalinity [303]. This is 

because the formation of more C-A-S-H takes longer for the carbonate ions to consume 

the C-A-S-H product produced by the high alkalinity of AACM concrete. An increased 

rate of carbonation in an alkali activated slag concrete with lower activator modulus 

(0.75) was observed compared with that of higher activator modulus (1.25) [301]. It was 

suggested that the increase in the carbonation front for the lower activator modulus was 

because of the high penetration rate of CO2 and water absorption [301].  

6.4.1.4 Effect of Exposure Period 

The carbonation front of AACM and OPC concrete mixes S2 to S6 at 28 and 145 

days of CO2 exposure is shown in Figures 6.15 and 6.16 respectively. 
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Figure 6. 15: Carbonation front at 28 days exposure to 5% CO2 concentration. 

 
Figure 6. 16: Carbonation front at 145 days exposure to 5% CO2 concentration. 

Significant increase in the depth of carbonation is observed between 28 and 145 

days of CO2 exposures for both AACM and OPC concrete as shown in Figures 6.14, 

6.15 and 6.16. The highest increase in the carbonation depth is observed in AACM 

concrete mix S5 while mix S2 displayed the least increase in carbonation depth with age. 

For example, the depth of carbonation for AACM mix S2 and S5 at 28 days are 4.19 mm 

and 8.63 mm respectively while it is 10.25 mm and 25.94 mm at 145 days exposure. An 

increase of 144% and 200% was observed in the carbonation depths between 28 and 

145 days exposure for AACM concrete mixes S2 and S5 respectively. After 145 days 

exposure, the increase in the depth of carbonation was moderate for all mixes, Fig. 6.14.  

Similar increase in the depth of carbonation was observed for water-glass 

activated slag mortar [302]. The author observed a much deeper and intense carbonation 

between 28 and 120 days while moderate increase in the carbonation depth was 

observed between 120 and 240 days.  The specimens were cured in a closed chamber 

AACM Mix S2 AACM Mix S3 AACM Mix S4 AACM Mix S5 OPC Mix S6 

AACM Mix S2 AACM Mix S3 AACM Mix S4 AACM Mix S5 OPC Mix S6 
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containing K2CO3 solution, kept at a relative humidity of 43.2%. The chamber was 

saturated with CO2 gas twice daily but the concentration of the CO2 was not stated. 

Figure 6.16 show that the depths of carbonation front occurred at all the four 

edges of the concrete cross-section at 145 days of exposure even though only two of the 

longitudinal prism faces were free from the bitumen paint sealant. This is because the 

CO2 gas which diffused into the concrete circulated throughout its matrix since the 

moisture content was uniform within the concrete matrix. The presence of optimum 

moisture content and high CO2 gas concentration within the concrete matrix resulted in 

the decalcification of the Ca-rich gel binder at the four edge zones of the concrete cross-

section. The carbonation depth recorded in Fig. 6.15, in contrast, extends only from the 

CO2 exposed (uncoated) surfaces of the prisms since 28 days of CO2 exposure is an 

insufficient period for carbonation to circulate throughout the matrix. 

6.4.2 Rate of Carbonation 

Equation 6.4 is used by many authors to predict the rate of carbonation in 

concrete [275][90]. 

 |} = |? + ��� 6.4 

Where dk is the depth of carbonation; do is the initial depth of carbonation 

which is insignificantly small; k is carbonation coefficient (mm/time(n)); n is the power 

series constant which is assumed to be 0.5 [90]; t is time in years. 

The depth of carbonation with accelerated carbonation exposure period is 

plotted against √years in Fig. 6.17 for the data of mixes S2 to S6. A linear relationship is 

clearly evident in Fig. 6.17 and the carbonation coefficient k has been calculated by 

regression analysis. 

 
Figure 6. 17: Rate of carbonation graph for AACM and OPC concrete S2 to S6 
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Fig. 6.17 shows the rate of carbonation (represented by coefficient k) of 

AACM and OPC concrete mixes exposed to 5% CO2. Each point on the graph 

represents an average of 16 depths of carbonation readings from two cut faces of prism 

test samples, which are presented in Table 6.3. The best-fit curve is linear with strong 

correlation of 0.88 to 0.97. The carbonation coefficient k (mm/time(0.5)) is determined 

from Fig. 6.17 by applying equation 6.4. The carbonation coefficient k (mm/time(0.5)) is 

shown Fig. 6.18. 

  
Figure 6. 18: The carbonation coefficient k (mm/yr0.5) for AACM and OPC concrete mixes 

AACM concrete mix S2 has the lowest carbonation coefficient k of 12.55 

mm/yr0.5 followed by OPC concrete mix S6 19.62 mm/yr0.5 while the coefficient for 

AACM concrete mixes S3, S4 and S5 is 27.29 mm/yr0.5, 30.08 mm/yr0.5 and 32.68 

mm/yr0.5 respectively. The lowest carbonation coefficient k in AACM concrete mix S2 is 

an indication of lower rate of carbonation, which is aided by the refinement of its pore 

structure while that of OPC concrete is aided by the buffer effect provided by Ca(OH)2 

in OPC concrete. The relationship between carbonation coefficient k (mm/yr
0.5

) and the 

activator dilution is shown in Fig. 6.19. The influence of lower activator dilution on the 

carbonation of AACM concrete is due, firstly, to the production of more 

geopolymerisation products within its matrix which take longer to carbonate, secondly 

the evolution of a tighter pore structure which will reduce the penetration of CO2 and 

moisture and thirdly a higher pH compared with AACM concrete with higher activator 

dilution.  
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Figure 6. 19: Relationship between carbonation coefficient k (mm/yr0.5) and activator dilution 

Geopolymerization reaction of AACMs do not produce Ca(OH)2, its main 

product is C-A-S-H.  It has been reported that the rate of carbonation of OPC concrete 

of 5 to 10% replacement with silica fume increases by 5% compared with 100% OPC 

concrete that has the same strength class [290]. Similarly, an increase of 2 to 3 times in 

the carbonation coefficient k was observed for concrete containing 50% fly ash 

compared with OPC concrete [305]. The increase in carbonation is due to the 

consumption of Ca(OH)2 produced by cement hydration for the pozzolanic reactions. 

This reaction results to a lesser concentration of Ca(OH)2 which increases carbonation. 

6.4.3 Shrinkage of AACM and OPC concrete 

6.4.3.1 Carbonation Shrinkage 

 The carbonation shrinkage of the AACM and OPC concrete cured in the 

accelerated carbonation chamber is shown in Fig. 6.20. The shrinkage samples (300 x 

75 x 75 mm prisms) were exposed to 5% CO2 concentration for 360 days at a 

temperature of 20 ± 20 C and 50 to 70% R.H. 
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Figure 6. 20: Carbonation shrinkage of AACM and OPC concrete 

 High carbonation shrinkage strain is observed in AACM concrete compared 

with OPC concrete. The carbonation shrinkage strains in AACM concrete mixes are 

within the range of 1100 µε to 1250 µε while it is 670 µε for OPC concrete exposed to 

5% C02 concentration for 360 days. The high carbonation shrinkage strain in AACM 

concrete mixes could be attributed to the high volume of capillary pores > 1 µm. 

AACM concrete has a lower effective porosity but higher volume of capillary pores 

compared with OPC concrete when measured with mercury intrusion porosimetry 

(Chapter 3, section 3.4.3.4). The high volume of the capillary pores will facilitate the 

diffusion of moisture from AACM concrete.  

 
Figure 6. 21: Effect of capillary pores on carbonation and drying shrinkage 

Fig. 6.21 shows the effect of capillary pore volumes on the carbonation and 

drying shrinkage of AACM and OPC concrete. An increase in both carbonation and 

drying shrinkage is observed at higher percentages of capillary pore volumes. 
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The correlation between the rate of accelerated and natural carbonation of 

AACM concrete is very dissimilar to OPC concrete [294]. The carbonation and 

shrinkage caused by the accelerated carbonation in AACM concrete is much higher. 

The authors [294] observed the formation of sodium bicarbonates during accelerated 

carbonation of AACM concrete compared with hydrous sodium carbonate formed 

during natural carbonation. The shift in the pore solution equilibria was suggested to 

cause high degree of carbonation in AACM concrete compared with OPC concrete 

[294]. 

 Carbonation shrinkage strain increases with an increase in activator dilution. 

AACM concrete with 12% activator dilution (mix S5) has the highest carbonation 

shrinkage strain of 1250 µε while it is 1100 µε for the lowest activator dilution 2.15% 

(mix S2). The lowest carbonation shrinkage strain observed in mix S2 (Fig. 6.20) is 

because of its finer pore structure rather than the restraining effect of coarse aggregate 

observed in drying shrinkage.  

6.4.3.2 Drying Shrinkage 

 The drying shrinkage of AACM and OPC concrete is shown in Fig. 6.22. The 

AACM and OPC concrete samples were air cured at a temperature of 20 ± 20 C and 

65% R.H for 80 days subsequent to 7 days of wet curing after demoulding the shrinkage 

specimens. 

 
Figure 6. 22: Drying shrinkage of AACM and OPC concrete 

 The drying shrinkage of AACM concrete is higher than OPC concrete. The 

drying shrinkage strains for AACM concrete mixes S2 to S5 are within the range of 736 

µε to 910 µε while it is 562 µε for OPC concrete at 80 days. The high shrinkage strain 
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for AACM concrete correlates with the high volume of large capillary pores (> 1 µm) 

within its matrix compared with OPC concrete.  

 Drying shrinkage strains of 800 µε to 1400 µε were observed by other 

researchers in AACM concrete while the shrinkage of comparative OPC concrete was 

700 µε [308]. The specimens were cured at a temperature of 20 ± 20 C and 50 ± 5% R.H 

for 380 days. The author attributed the higher shrinkage observed in AACM concrete to 

its pore structure.  

 AACM concrete mix S3 has slightly lower drying shrinkage strain of 736 µε 

compared with 761 µε observed in mix S2. The reverse would have been expected since 

Mix S2 has a lower liquid/binder ratio (0.41) and lower activator dilution (2.15%) than 

mix S3which has a liquid/binder ratio of 0.48 and activator dilution of 4.25%. The lower 

shrinkage recorded by mix S3 is attributed to two reasons; the total coarse aggregate 

content of mix S3 is 1091 Kg/m3 compared with 988 Kg/m3 for mix S2 as shown in 

Table 6.2. The presence of more coarse aggregate in mix S3 provided greater restraint to 

the shrinkage of the matrix. The shrinkage restraining effect of coarse aggregates in 

concrete, due to their higher elastic modulus than the surrounding matrix, is well 

recognised [25]. A direct relationship was observed between the shrinkage of hydrated 

cement paste and water/cement ratio of 0.2 - 0.6 [309]. This relationship is affected by 

the coarse aggregate content of concrete, which restrains its shrinkage [25].Interestingly, 

the performance of mix S2 and S3 was reversed for carbonation shrinkage (Figures 6.20 

and 6.22) due to the dominant role of pore structure instead of coarse aggregate content 

on carbonation shrinkage. 

6.4.3.3 Carbonation and Drying Shrinkage 

 The carbonation and drying shrinkage graphs up to about 80 days for AACM 

concrete mixes S2 and S5 and OPC mix S6 are shown in Fig. 6.23. The solid lines 

represent the carbonation shrinkage while the dashed lines are the drying shrinkage. 
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Figure 6. 23: Relationship between carbonation and drying shrinkage of AACM and 
OPC concrete 

 The carbonation shrinkage strain is lower than the drying shrinkage strain in 

both AACM and OPC concrete. The carbonation shrinkage strain at 80 days is 700 µε, 

798 µε and 300 µε for mixes S2, S5 and S6 respectively. The corresponding drying 

shrinkage strain is 761 µε, 910 µε and 562 µε for mixes S2, S5 and S6 respectively. The 

drying shrinkage is higher due to greater water loss when compared with carbonation 

shrinkage. The lower volume change in the carbonated OPC concrete could be due to 

the water released when carbonate ion COy�H reacts with Ca(OH)2. This reaction releases 

two molecules of water during carbonation in OPC concrete as shown in equation 6.3: 

[310] 

 9�(uv)� +	2v +	9uy�H =	9�9uy + 2v�u 6.3 

 In addition to the release of water during the carbonation in OPC concrete, 

precipitation of CaCO3 is observed within the matrix of OPC concrete [302]. The 

precipitated CaCO3 fills the capillary pores thereby reducing the stress induced by the 

loss of water during carbonation. The precipitation of CaCO3 results in the densification 

and increased strength of carbonated OPC concrete [302][311]. 

 On the other hand, the carbonated AACM concrete does not contain Ca(OH)2. 

Instead the COy�H  reacts directly with C-A-S-H to produce decalcification within the 

AACM concrete matrix. The decalcification produces white spongy particles which 

have a low Ca content [302] which is shown in Fig. 6.24. Larger pores evolve during 

the carbonation of AACM concrete as a result of the decalcification of the C-S-H. The 

decalcification during the carbonation of AACM concrete reduces its strength 
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[302][311] unlike the precipitation of CaCO3 in OPC concrete which increases its 

strength. 

 
Figure 6. 24: Decalcification of C-A-S-H in AACM concrete 

6.4.4 pH of Carbonated Zone 

6.4.4.1 AACM and OPC Concrete and Mortar 

The pH of the solutions extracted from AACM and OPC concrete and mortar 

powder at the carbonated zones is shown in Fig. 6.25. The pH of solutions at the 

carbonated zones for both AACM and OPC mortar are lower than the corresponding 

concrete. The difference in their solution pH is due to the release of alkaline content by 

the coarse aggregate present in the concrete. OPC concrete S6 which had the highest 

coarse aggregate content of 1170 kg/m3 (Table 6.2) shows the highest pH difference 

between the pore fluid extracted from concrete powder and mortar powder. The pH of 

the mortar pore fluid is considered a more realistic value of the actual pore fluid in the 
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mixes. 

 

Figure 6. 25: pH of pore solutions extracted from AACM and OPC concrete and mortar 
powder at the carbonated zones after 360 days exposure to 5% CO2. 

 The pH of pore solutions extracted from the powder at the carbonated zones of 

AACM concrete mixes S2 to S5 is above the pH threshold of 9 as shown in Fig. 6.25. 

The pH of the solution at the concrete carbonated zones is 10.62, 10.46, 10.37, 10.25 

and 9.56 for mixes S2, S3, S4, S5 and S6 respectively. The corresponding pH of the 

solutions of AACM and OPC mortar mixes M2, M3, M4, M5 and M6 at the carbonated 

zones are 10.33, 10.02, 10.1, 10.05 and 8.69 respectively. The pH of the mortar pore 

fluid is also greater than the carbonation threshold value of 9 for all AACM mixes 

whereas the OPC mix S6 has a pH value significantly lower than the carbonation 

threshold of 9 for the mortar fluid. The pH of the carbonated AACM mortar fluid, 

which is significantly above the pH threshold of 9, indicates that the phenolphthalein 

indicator method provides an inadequate assessment of carbonation in AACM concrete 

compared with OPC concrete.  

 The phenolphthalein test method detects carbonation in the OPC concrete when 

the mortar pH is below the threshold value of 9 (Fig. 6.25). However, for AACM mixes 

S2 to S5 it detects carbonation at mortar pH value exceeding 10 (Fig. 6.25) which is in 

the high alkalinity range. An alternative method to the phenolphthalein indicator test is 

required for assessing the carbonation in AACM concrete. This has also been suggested 

by some authors [3][294][312]. 

6.4.4.2 Effect of Activator Dilution 

 The influence of activator dilution on the pH of solutions extracted from AACM 

concrete and mortar powder at the carbonated zones is shown in Fig 6.26. 
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Figure 6. 26: Alkali activator dilution versus pH of pore solution extracted from 
carbonated AACM concrete and mortar powder. 

 The difference in the pH of pore solutions extracted from AACM concrete and 

mortar powder at the carbonated zones is fairly constant at different activator dilutions 

(Fig. 6.26). This is because the coarse aggregate content in AACM concrete mixes S2 to 

S5 are within the same range of 988 kg/m3 to 1091 kg/m3 (Table 6.2). The release of 

alkaline content by the coarse aggregate present in the AACM concrete mixes S2 to S5 

accounts for the difference in the pH of solutions extracted from concrete and mortar. 

On the other hand, carbonation reacts chemically with AACM mortar while the concrete 

will influence the diffusion rate of CO2 and moisture because of the interfacial transition 

zones around the coarse aggregate [290].  

 The pH of pore solutions extracted from AACM concrete and mortar powders is 

highest at the lowest activator dilution (Fig. 6.26). The difference in the pH of pore 

solution extracted from AACM concrete is attributed to the rate of carbonation which is 

discussed in section 6.4.1.3 and the leaching of alkali content from the coarse aggregate 

into its pore solution.  

6.4.5 Relationship between Carbonation Depth and Porosity 

 The relationship between the carbonation depth at 327 days exposure to 5% CO2 

and effective porosity of AACM mixes S2 to S5 at 28 days is presented in Fig 6.27. The 

effective porosity of the AACM mixes S2 to S5 is obtained from chapter 3, section 

3.4.3.4. A linear relationship is established between the effective porosity and the depth 

of carbonation with a correlation of 0.98 
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Figure 6. 27: The relationship between depth of carbonation dk and effective porosity of 
AACM concrete 

 The lower the effective porosity of AACM concrete the lower the depth of 

carbonation within its matrix. The effective porosity of 5.21% produced a carbonation 

depth of 4.19mm while effective porosity of 12.79% resulted in 8.63 mm carbonation 

depth. Concrete diffusivity which is a function of porosity is a major controlling factor 

for carbonation [25]. The speed of carbonation at lower effective porosity is inhibited by 

limiting the ingress of CO2 and moisture from the environment into the concrete.  

 The carbonation process is complicated because it involves the transport of 

liquid and gas which can not be represented with Fick's law [290]. Lagerblad [290] 

stated that it is difficult to apply Fick’s law because of the simultaneous inward and 

outward diffusions involving these ions. The pore structure is altered during the inward 

and outward diffusions involving carbonate ions and calcium ions. For OPC concrete, a 

dense pore structure evolves as the outward diffusion of CaCO3 forms precipitates that 

block the concrete pores. In the case of AACM, the calcium ions from the 

geopolymerization products disintegrate by a process of decalcification and diffuse 

outward into the environment. Whilst the chemical compound (CaCO3) formed during 

the carbonation in OPC concrete blocks the pores, the disintegration of calcium ion 

during carbonation in AACM concrete enlarges the pores.  

6.5 CONCLUSIONS 

The following conclusions can be drawn based on the study carried out on the 

carbonation of AACM concrete. 

• A lower depth of carbonation was observed in OPC concrete compared to 

AACM concrete. For example, the carbonation depth for AACM mix S3 is 25.19 

mm while it is 14.13 mm for OPC S6 at 327 days CO2 exposure. This is due to 
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the main hydration product of Ca(OH)2 in OPC while AACMs does not have it 

as its geopolymerisation product. 

• The rate of carbonation is higher in AACMs than OPC. For example, the rate of 

carbonation in AACM mixes S3, S4 and S5 are 27.29mm/yr0.5, 30.08mm/yr0.5 and 

32.68mm/yr0.5 respectively while it is 19.62mm/yr0.5 for OPC S6. However, the 

rate of carbonation for AACM mix S2 is lowest because of it lowest 

liquid/bindar ratio 0.41 compared to the liquid/binder 0.48 of other mixes. 

• The carbonation and drying shrinkage is considerably higher in AACMs than 

OPC concrete. For example, the carbonation and drying shrinkage of AACM 

mix S2 at 80 days are 700 µε and 761 µε while it is 300 µε and 562 µε for OPC 

S6. This is due to the precipitation of CaCO3 which fills the pore spaces in OPC 

concrete thereby reducing the stress induced by water loss during shrinkage.  

• The drying shrinkage values are higher than carbonation shrinkage for both 

AACM and OPC concrete. This is because of high water loss during drying 

shrinkage, on the other hand, the carbonation shrinkage shows precipitation of 

CaCO3 within the pores of OPC concrete which restrict further shrinkage. 

• The pH of the carbonated zones of AACM mortar is above the carbonation 

threshold value of 9 while OPC mortar is below it. For example, the pH at the 

carbonated zone of AACM mix M3 is 10.02 while it is 8.69 for OPC S6. This 

suggests that the phenolpthalein test method might not be appropriate to 

determine the carbonation of AACMs. 

• The pH of AACM and OPC concrete is higher than mortar which suggests the 

release of alkaline content by the aggregates. For example, the pH of concrete 

mixes S3 and S6 are 10.46 and 9.56 compared with 10.02 and 8.69 of its 

corresponding mortar mixes M3 and M6 respectively. 

• A non-linear relationship of the form y = 1.0917x0.8234 and a coefficient of 0.99 

is established between depth of carbonation and the porority of AACM concrete. 
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CHAPTER 7 
CHLORIDE-INITIATED REINFORCEMENT CORROSION IN AACM 

CONCRETE 

7.1 INTRODUCTION 

The integrity of reinforced concrete structures may be undermined by the 

corrosion of steel reinforcement embedded in them. Factors affecting the durability and 

sustainability of reinforced concrete structures are attributed to the rate at which steel 

reinforcement corrodes under the prolonged influence of corrosion initiators like 

chloride and carbon dioxide. Addressing these durability concerns require specialist 

skills and incur huge maintenance cost and time. For example, an estimated £550m per 

year have been accrued in repairs and structural failures of OPC concrete structures in 

the UK alone due to this corrosion mechanism [15]. 

 Chloride ingress and carbonation of concrete are the leading factors that induce 

corrosion of steel bars or fibres embedded in concrete [314][315]. The presence of 

moisture and oxygen within the concrete matrix will sustain the corrosion mechanism 

induced by these corrosion initiators [252][316]. The chloride and CO2 interact with the 

concrete matrix in ionic solutions while oxygen is consumed during the corrosion 

process. There is the possibility of a cost reduction in the repairs and structural failures 

due to chloride induced corrosion in AACM concrete structures compared with OPC 

concrete structures. This is because the rate of chloride ingress in an AACM concrete 

matrix is lower than for OPC concrete (Chapter 4, Section 4.4.3). This suggests a longer 

time for chloride-induced corrosion to initiate in reinforced AACM concrete compared 

with reinforced OPC concrete structures. This will be validated in this chapter while 

also conseidering other key factors which initiate corrosion. 

 On the other hand, the rate of carbonation in AACM concrete seems to be 

higher than OPC concrete when using the phenolphthalein test method (Chapter 6, 

Section 6.4.1). The suitability of the phenolphthalein test method for the carbonation of 

AACM concrete has raised some concerns. This is because of the high pH of the pore 

solution at the carbonated zone (indicated by phenolpthlein test) of AACM concrete 

which is above the threshold level of 9 (Chapter 6, Section 6.4.2). The phenolpthlein 

test, however, applies to the control OPC concrete and the pH of the carbonated zone 

remains below the threshold of 9. This suggests that an alternative test method should 

be adopted for AACM concrete instead of the phenolphthalein indicator method. 

RILEM TC 224-AAM [3] states that the use of phenolphthalein indicator method for 
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carbonation of AACM concrete may be over simplified. The phenolphthalein indicator 

method detects the depletion of Ca(OH)2 in OPC concrete, which is responsible for its 

alkalinity, whereas AACM geopolymerization products do not contain Ca(OH)2. 

Carbonation-initiated corrosion in OPC concrete is activated when its pore solution pH 

is less than 9 [25]. Therefore, AACM concrete is likely to have good resistance to 

chloride and carbonation induced corrosion. Only the chloride induced corrosion will be 

investigated in this chapter. 

The diffusion of chloride and CO2 in concrete is in solution with water, which is 

largely dependent on the pore structure of the concrete. The pore structure of AACM 

concrete reveals lower intrudable porosity than OPC concrete (Chapter 3, Section 3.4.3). 

The refined pore structure of AACM will contribute to resisting the ingress of these 

deleterious substances.  

The reaction of the diffused corrosion initiators with the steel reinforcement is 

well documented in literature for OPC concrete but only partially understood in AACM 

concrete. The steel reinforcement in OPC concrete is largely protected from corroding 

by the hydration product Ca(OH)2 which is not present in AACM concrete [3]. Chloride 

ions and carbonic acid, when present in the OPC concrete matrix, will deplete the thin 

protective layer around the steel reinforcement [314][316]. This thin protective film of 

(Fe2O3 or Fe3O4) produced during the hydration process in OPC concrete is destroyed 

when the pH of the concrete pore solution is low to about 9. Once the protective thin 

film is disrupted, chloride ions and carbonic acid (formed when carbon dioxide 

dissolves into the pore water) react with the steel reinforcement surface to form ferrous 

chloride FeCl2 and ferrous carbonate FeCO3 respectively [25]. The ferrous chloride or 

carbonate reacts with moisture to form ferrous hydroxide Fe(OH)2 which is commonly 

referred to as rust [317]. For AACM concrete, the corrosion resistance is maintained by 

the high pH provided by the alkali activator concentration [318] unlike the thin 

protective oxide layer, Ca(OH)2, present in reinforced OPC concrete. The influence of 

activator concentration of AACM concrete in resisting the chloride-initiated corrosion 

will be investigated in this chapter.  

7.2 LITERATURE REVIEW 

7.2.1 Introduction 

 Steel reinforcement corrodes in a neutral or acidic medium but remains passive 

in an alkali medium. The high alkali pH of OPC concrete pore solution prevents the 

embedded steel reinforcement from corroding. A thin protective film develops around 
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the steel reinforcement in OPC concrete which acts as an effective barrier to aggressive 

elements such as carbonic acid and chloride ions. This protective film is composed of an 

inner anhydrous oxide layer (Fe2O3 or Fe3O4)  which is approximately 2.5nm thick and 

an outer hydrous layer approximately 1nm thick [319]. Khan [320] monitored the 

development of passivity of steel reinforcement embedded in concrete for 648 days 

from the day of casting. The curing period included 53 days immersion in potable water 

followed by 595 days exposure to laboratory air. The author observed that it took more 

than a year for the embedded steel reinforcement to attain a passive state. 

 The geopolymerisation of AACM concrete does not produce Ca(OH)2 [3] nor 

does it generate a protective thin film in the manner of OPC concrete. The corrosion 

behaviour of steel in AACM concrete is strongly dependent on the type and 

concentration of activator used [318]. It is suggested that a high resistance to steel 

reinforcement corrosion is provided by NaOH and KOH when monitored by galvanic 

corrosion and half-cell potential. The high alkalinity of the pore solution provides the 

protective barrier against the corrosion initiators.  

 The passivity of the embedded steel reinforcement is destroyed once a low pH 

reaches the vicinity of the steel surface [25]. This is because the protective thin film 

adhering to the surface of steel reinforcement in OPC concrete is no longer maintained 

and corrosion begins in the presence of oxygen and moisture. This process is termed 

depassivation of steel. The depassivation of steel reinforcement in AACM concrete is 

not fully understood. However, it has been suggested that the corrosion resistance of 

steel reinforcement in AACM concrete is aided by the nature and dosage of the binder, 

type of activator and the prevailing internal condition of the concrete [321][322]. The 

nature and dosage of the binder will play a vital role in the concrete microstructure 

while the reaction products will not generate a protective oxide layer formed over the 

steel surface in the manner of OPC concrete. The activator type is suggested to induce a 

protective barrier against the corrosion of steel reinforcement  [318]. The effect of 

prevailing internal conditions on the corrosion of steel reinforcement in AACM 

concrete would then be similar to OPC concrete.  

 Many authors investigated the corrosion behaviour of steel reinforcement in 

concrete by using accelerated corrosion techniques such as applying an anodic current 

to the rebar. Limited information is available on natural corrosion techniques. The 

chloride-induced corrosion was investigated by using the natural technique of bulk 

immersion of specimens in 5% NaCl solution and drying in laboratory air which is 

modelled after a reinforced marine structure [91]. It is unlikely that the accelerated 
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corrosion techniques will provide true representation of steel corrosion behaviour in 

AACM concrete while in service [3]. Hanson [239] stated that any technique designed 

to accelerate the corrosion process should be considered with sceptism.  

7.2.2 Corrosion process 

 The corrosion process of steel reinforcement is the same in both AACM and 

OPC concrete structures. Corrosion of steel is an electrochemical process involving two 

reactions; oxidation (anode) and reduction (cathodic). Fig. 7.1 shows a schematic 

representation of the corrosion cell of the anodic and cathodic sites on the steel surface. 

The anodic and cathodic reactions on the steel surface are mutually dependent on each 

other and must be in balance. 

 

Figure 7. 1: Schematic illustration of steel reinforcement corrosion showing the anodic 
and cathodic sites on the steel surface [323] 
 The potential difference between adjacent areas on the steel reinforcement 

causes the release of electrons in order to preserve electrical neutrality [324]. The 

electrons are released from the most negative sites which are the anodic sites. This 

release of electrons from the most negative site creates a positive site which is the 

cathodic site. Therefore, the surface of the corroding steel functions as a mixed 

electrode that is a composite of both anodes and cathodes electrically connected through 

the body of the steel. The pore solution of the concrete serves as the electrolyte to 

complete the corrosion cell as shown in Fig 7.1.  

7.2.2.1  The Anodic Reaction 

 The corrosion of steel reinforcement dissolves iron into the concrete pore 

solution as ferrous ions at the anodic site as shown in Fig 7.1. The oxidation of iron 

atoms in the pore solution releases two electrons which are negatively charged. In order 

to maintain electrical neutrality on the steel surface, the build-up of negatively charged 

electrons at the anodic site will be consumed elsewhere on the steel surface at the 
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cathodic sites [325]. This is because there cannot be large amounts of electrical charge 

building up at one place on the steel surface [324]. Equation 7.1 shows the the anodic 

reaction. 

 ~A	 → 	~A� + 2AH 7.1 

7.2.2.2  The Cathodic Reaction 

The negatively charged electrons at the cathodic site react with oxygen and 

water from the concrete pore solution as shown in Fig 7.1. Hydroxyl ions are generated 

by this reaction which increases the local alkalinity thus strengthening the passitivity of 

steel reinforcement at the cathodic site [324]. The passivation of the steel surface 

decreases at the anodic site but increases at the cathodic site. The reverse reaction of 

corrosion by applying current can be used to address the decrease in the steel surface 

passivation at the anodic site which is reffered to as cathodic and galvanic protection. 

Equation 7.2 shows the the cathodic reaction. 

 2AH 	+ v�	u +	��u� → 2uvH	                    7. 2 

The redox (oxidation – reduction) reactions are shown in equations 7.3 - 7.5 

 ~A� 	+ 2uvH → ~A(uv)�	Ferrous hydroxide 7.3 

 4~A(uv)� 	+ u� 	+	2v�	u → 4~A(uv)y Ferric hydroxide 7.4 

 2~A(uv)y → ~A�uy. v�	u	 +	2v�	u Hydrated ferric oxide (rust) 7.5 

7.2.2.3  The Pourbaix Diagrams 

 The potential of steel reinforcement embedded in a concrete depends on a set of 

factors such as the standard potentials of the anodic and cathodic reactions, temperature, 

and composition of the concrete pore solution with its ionic concentration [326]. The 

influence of concrete pore solution and its ionic concentration on the steel potential is 

expressed by Pourbaix [327] using pH–potential diagrams (Fig. 7.2). These diagrams 

represent the conditions of potential and pH where a particular corrosion reaction is 

thermodynamically favourable. It should be noted that the diagrams are based on the 

thermodynamics of the reactions and are not empirical. The diagram is divided into 

three main zones: corrosion, immunity and passivation. 
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Figure 7. 2: Pourbaix diagram showing the potential pH of iron in aqueous solutions [327] 

7.2.3 Types of Corrosion 

 Corrosion may proceed by uniform dissolution of steel surface which is referred 

to as generalised corrosion or localised corrosion which attacks metal grains locally to 

form pits [328][329][330].  

7.2.3.1  General or Uniform Corrosion 

 The rate of corrosion under this category proceeds uniformly over the entire 

steel surface. The corrosion rate is slower under the general corrosion than the localised 

corrosion [330] although, a greater overall quantity of rust may be generated in the 

general corrosion type because of the large surface area affected. General corrosion is 

characterized by a uniform distribution of anodes and cathodes over the metal surface 

[331] unlike localised corrosion which has essentially fixed positions of the anode and 

cathode. General corrosion will lead to a gradual thinning of the metal until the section 

fails [331].  

7.2.3.2  Localised Corrosion 

 In the case of localised corrosion, the corrosion is focussed on certain parts of 

the metal surface before spreading out as the corrosion develops [331]. There are three 

common form of localised corrosion: pitting, crevice and bimetallic corrosion. 

7.2.3.2.1  Pitting corrosion 

 Pitting corrosion is initiated in reinforced concrete due to a localized breakdown 

of the protective oxide film on the steel surface by aggressive elements such as chloride 
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[331][332]. The rate of corrosion is rapid, preferentially attacking small phases on the 

metal [332]. Pitting corrosion produces cavities or mouths which can be open or 

occluded (covered) with semi permeable corrosion products [333]. The cavities become 

visible over a period of time which is dependent on the material and its environment 

[332]. These cavities can induce fatigue or stress corrosion at the base which, under 

certain conditions, could lead to catastrophic failure [333]. Such catastrophic failure 

induced by pitting corrosion occurred in Mexico, where a single pit in a gasoline line 

running over a sewer line was blamed for the death of 215 people in Guadalajara [333]. 

7.2.3.2.2  Crevice corrosion 

Crevice corrosion is another localized form of corrosion involving the attack of 

stagnant solution in crevices such as washers, lap joints and clamps, under gaskets, 

insulation material, surface deposits, fastener heads, disbonded coating and threads 

[333]. Poor welding can also form crevices, which can then lead to corrosion [332]. 

Crevice corrosion is initiated when there is a depletion of oxygen within the crevice, the 

shift in acid condition and build-up of aggressive ions at the crevice can also initiate this 

form of corrosion [333]. 

7.2.3.2.3  Bimetallic corrosion 

Bimetallic corrosion, also known as galvanic corrosion, is encountered when 

two metals with significant potential difference are in contact within a common 

electrolyte. A number of factors contribute to bimetallic corrosion such as an 

environment able to induce thermodynamic instability in the anode, the presence of an 

electrolyte bridging the two metals, electrical connection between the two metals and a 

sustained cathodic reaction on the more noble metal [332]. 

7.2.4 Corrosion Mechanisms in Concrete 

 Chloride and carbonation have been identified as the two major corrosion 

initiators for steel reinforcement in concrete and do not require degradation of the 

concrete before the steel is attacked [334]. The increased volume of the corrosion 

product induces the degradation of the concrete though cracking, delamination and 

spalling, which in turn further promotes the problem [334]. These corrosion initiators 

have been investigated independently in Chapters 4, 5 and 6.  

7.2.4.1  Chloride induced corrosion 

 Corrosion induced by chloride attack on reinforced concrete is a common cause 

of deterioration in structures [3]. Chloride ions which are responsible for this type of 
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corrosion are described as "a specific and unique destroyer" [335]. The chloride 

contamination can be from cast-in calcium chloride used as a set accelerator, cast-in salt 

from contaminated mix constituents, chloride ingress from marine environments or de-

icing salt ingress from roads [336]. Chloride can be present in OPC concrete in three 

forms which are free chloride dissolved in pore solution, physically bound chlorides to 

the wall of the binder and chemically bound chlorides to the hydrates of calcium 

aluminates [90]. However, the presence of chemically bound chlorides in AACM 

concrete is minimal compared to OPC concrete as shown in Chapter 4, Section 4.4.3.7. 

RILEM TC 224, [3] describes how, unlike OPC concrete, there is no Friedel’s salt 

present in AACM concrete nor any other crystalline chloride compounds which can 

chemically bind chlorides.. 

 The presence of chlorides at the vicinity of the steel surface can locally destroy 

the passive film, thus initiating localised corrosion. Chloride induced corrosion occurs 

as pitting. The breakdown of the passive film described by Jovancicevic et al. [337] 

involves the adsorption-displacement, chemico-mechanical and migration-penetration 

of the steel passive layer. Legault et al. [338] reported that the destruction of the 

protective film on the steel surface is due to the adsorption of Cl-  with simultaneous 

displacement of O2- at its surface.  A model developed by Chao [339] suggests that the 

Fe2+ complexes are formed when Cl- reaches the steel occupying O2- . This results in a 

decrease in oxygen vacancies while the Cl- increases at the film/solution interface. The 

formation of voids leading to pit growth evolves from this reaction.  

 The reaction of Cl- and the displacement of oxygen at the film/solution interface 

for steel reinforced OPC concrete may not necessary apply to AACM concrete. The 

mechanism of steel protection by the passive thin film where oxygen is displaced during 

pit growth is not present in the case of steel reinforcement embedded in AACM. 

 The depassivation of steel reinforcement in concrete is influenced by the 

concrete mix, type of binder, C3A content of binder, curing method, water content in the 

concrete and presence of mineral admixtures because they influence chloride diffusion 

in concrete. AACM concrete has a more refined pore structure than OPC concrete and 

thus higher resistance to chloride penetration as shown in Chapter 4, Section 4.3. 

Significant reduction of chloride ingress is observed in concrete containing mineral 

admixtures compared with OPC concrete. For example, It was observed that higher 

resistance to chloride ingress occurs in concrete containing fly ash, microsilica and slag 

compared with OPC concrete [50][188]. The use of mineral admixtures improves the 

concrete pore refinement thus providing resistance to chloride ingress. However, the 
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tricalcium aluminate (C3A) content which plays a vital role in chloride binding is higher 

in OPC concrete than AACM concrete. Increases in the water/cement ratio results in 

higher chloride diffusion [340], although it has been suggested that the water-cement 

ratio does not affect chloride penetration at depths greater than 20 mm [188]. 

 The chloride content at the steel depth that is required for the breakdown of the 

local passive film and thereby initiate corrosion is referred to as the chloride threshold 

level [341]. This can be presented as the ratio of chloride to hydroxyl ions [Cl-/OH-] in 

the pore solution. Much research has been been carried out on the threshold levels of 

chloride in concrete but a universal value has not been established.  

 The threshold value of 0.61 for the [Cl-/OH-] concentration proposed by 

Hausmann [255] for the initiation of corrosion in cement based materials does not 

always apply. For example, Lambert et al. [170] presented a [Cl-/OH-] concentration 

threshold of 3 for steel rods embedded in OPC concrete. A [Cl-/OH-] concentration as 

high as 320 did not result in corrosion of steel fibres embedded in fly-ash concrete [102]. 

The reasons attributed to such high values were the lower chloride binding capacity and 

pH of Hausmann composition [255], which increases the [Cl-/OH-] ratio in its pore 

solution. In addition, the reduced chloride ingress and oxygen content due to tight pore 

structure depresses the steel potential.  

7.2.4.2  Carbonation induced corrosion 

The primary effect of carbonation on concrete is to reduce the pH of the pore 

solution to below 9 [275][276]. The pH of concrete pore solution is reduced when 

atmospheric carbon dioxide CO2 dissolves in concrete pore water to form carbonic acid 

(HCO3) which can then react with the main hydration products of OPC concrete, 

Ca(OH)2 and C-S-H, to form calcium carbonates (CaCO3) [277][278]. The hydroxyl ion 

(OH)2 within the pore solution of OPC concrete is displaced by this reaction thereby 

causing the depletion of the protective passive film around the steel in concrete. The 

progression of these reactions can result in carbonation induced corrosion when oxygen 

and water are present.  

The rate of carbonation depends on both the quality of the OPC concrete (mainly 

its alkalinity and permeability) and a number of environmental factors (humidity, 

temperature and CO2 concentration). It has been reported that concrete with low 

permeability typically has good resistance to CO2 penetration [90][342]. Increased OPC 

cement content of concrete is reported to retard the rate of CO2 penetration [343]. The 

hydration products of OPC concrete (calcium silicate hydrates [C-S-H] and 
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ettringite/monosulphate [AFt/AFm]) dissolve as the alkalinity of the pore solution drops 

due to carbonation. First, the C-S-H dissolves at around pH11.6 and then ettringite at 

around pH10.6. In concrete with partial cement replacement, the hydration products will 

dissolve faster, leading to a faster rate of carbonation. This is due to the secondary 

pozzolanic reaction that consumes part of the free lime (Ca(OH)2) responsible for the 

high pH of its pore solution. The geopolymerization products of AACM concrete do not 

contain the free lime responsible for the high pH in OPC concrete. The high pH in 

AACM is influenced by the concentration of alkali activator. The chemistry of how 

carbonate ions will react with different activators and subsequently dissolve other 

geopolymerization products of AACM concrete is not yet fully researched. 

7.2.5 Service Life of Reinforced Concrete Structures 

The service life of reinforced concrete structures is reduced by the action of 

corrosion on the embedded steel reinforcement. The synergetic effect of mechanical and 

environmental loads on reinforced concrete structures will give a realistic design load 

for service life predictions [344]. Mechanical loads such as the design live and dead 

loads combined with the time dependent induced damage from the environment such as 

carbonation, chloride ingress and frost damage, act simultaneously to reduce the service 

life of the structure. 

7.2.5.1  Service life models 

A number of models have been developed to characterize the corrosion of 

reinforcement in concrete and predict its service life. A widely used service life model 

was proposed by Tuttii [90] as shown in Fig. 7.3. This model is subdivided into the 

initiation and propagation stages of corrosion in reinforced concrete. The initiation stage 

is the period when deleterious substances such as chloride and CO2 penetrate the 

concrete cover to induce steel depassivation. Corrosion commences at the end of the 

initiation period [90]. There is a threshold interface between the initiation and 

propagation stages of corrosion. This threshold gives the amount of deleterious 

substances around the steel reinforcement that might initiate the corrosion process. The 

propagation stage is when reduction in the metal thickness commences which leads to 

concrete deterioration such cracking, delamination and spalling. 
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Figure 7. 3: Schematic model of corrosion process in steel reinforced concrete [90] 

 Beaton and Stratfull [345] developed a model to evaluate the environmental 

influence on the corrosion of 239 bridges constructed over the past 50 years across the 

state of California. The model predicts the estimated time of cracking in a reinforced 

concrete submerged in sea water. The modified version of the model of Beaton and 

Stratfull [345] was presented by Virmani et al., [346]. The corrosion data used for the 

model was based on the application of 3% solution of sodium chloride to a reinforced 

concrete slab. Other models presented in literature [347][348][349] assume chloride 

induced corrosion based on the diffusion theory whilst neglecting the interaction of 

chloride ions with the gel phase. However, the reliability of these models were disputed 

by Papadakis [350] who argued that the ingress of chloride in concrete is a more 

complex and complicated transport process than was described by Fick's law of 

diffusion. These models capture only the corrosion initiation stage (Fig. 7.3). 

 Predictive models that capture the corrosion propagation in reinforced concrete 

often assume a uniform loss of steel thickness [351]. Examples of such models were 

presented by Thoft-Christensen [352] and Vu [353]. However, this assumption does not 

accurately depict the chloride induced corrosion of reinforced concrete which usually 

experiences pitting corrosion. An alternative model for the corrosion of RC slab bridges 

was developed by Val and Melchers [354]. This model takes into account the pit 

formations due to chloride induced corrosion as shown in Fig. 7.4. Gonzalez et al., 

[355] used the same model on small dimensions (50 x 50 x 10 cm and 20 x 15 x 10 cm) 

of reinforced concrete. The author suggested that the maximum depth of pit due to 

chloride induced corrosion is about four to eight times the average general corrosion. 
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The size of the embedded steel is 0.8 cm and the first batches (50 x 50 x 10 cm) were 

exposed to repeated wet/dry cycles. The wet curing of the specimens was in an aqueous 

solution of 3% CaCl2 by water weight and the dry curing in the laboratory air at a 

relative humidity of 50% to 60%. However, the second batch (20 x 15 x 10 cm) were 

submerged in natural sea water at insituto de cinencias del mar (CSIC) of Barcelona. 

The salinity of the seawater was 28 g/l, the temperature varies between 140 C to 240 C 

in summer and oxygen content of 5 ppm. The two batches were cured for 6 years [355]. 

 

 
 
 
 
 
 
 
 

 

 

Figure 7. 4: Schematic model of pit formation during chloride induced corrosion [354] 

The symbols in Figure 7.4 are as follows: p(T) is the time of pit formation; D0 is 

the initial diameter of rebar (mm); a is the net section of the corroded rebar and Ar(T) is 

the section of the un-corroded bar. Pits may be of various shapes, but the author 

assumed a hemispherical shape of pits for simplicity sake. 

Darmawan and Sterwart [356] adopted the model on a larger prestressed concrete 

speciamen (150 cm x 100 cm x 25 cm) embedded with wires/strands. The authors 

suggested that the distribution of maximum pits for prestressing wires is best 

represented by the Gumbe (EV-type 1). The concrete mix design has 0.5 w/c ratio, fc
' of 

40 MPa and a 3% CaCl2 by concrete weight was added during concrete mixing. The 

specimens were cured for 28 days before performing an accelerated corrosion test. 

The service life assessment of steel reinforced structures does not account for the 

synergy of combined loads from the environment (chloride and CO2) and mechanical 

(live and dead) loads. These combined loads acting simultaneously are crucial for 

structural safety and should therefore be incorporated in the service life design [357]. 

Somodikova et al., [357] suggested that the mechanical loading may cause cracking and 

pore structure changes in concrete that can result in reduced service life for the structure. 

Val and Melchers [354] used a probabilistic approach to investigate the effect of 

material fatigue and overloading on the corrosion behaviour of a reinforced concrete 

 

 
a 

p(T) 

D0 

Ar(T) 

 

 p(T) 



249 
 

bridge. The two corrosion types (general and localised) were used in the reliability 

model. The authors suggested that the main risk associated with the general corrosion 

type is the loss of bond between the concrete and the corroding steel while the localised 

corrosion is dominated by ductile failure which affects the bridge reliability 

significantly.  

7.2.5.2  Corrosion damage in steel reinforced concrete  

 The corrosion of steel reinforcement is the leading cause of deterioration in 

concrete structures. This deterioration process does not attack the concrete directly 

unlike, for example, the actions of sulphate and acid which can disintegrate the concrete 

before the embedded steel reinforcement is affected. Severe cases of corrosion damage 

are observed in marine structures that are constantly exposed to wet and dry cycles of 

salt spray. For example, about 40% of the 581,862 bridges in the USA were observed to 

be either structurally or functionally deficient due to the extensive loss of serviceability 

and reduced safety [358]. In the United Kingdom, the estimated annual cost of corrosion 

damage is £616.5 million (approximately one billion US dollars per year) which is 

largely caused by salt-induced corrosion on motorway and trunk road bridges in 

England and Wales [359]. The conclusion was based on the survey carried out on 10% 

of the total bridges constructed in the UK [359]. 

 The rust produced during corrosion leads to volume increase at the 

steel/concrete interface. The volume increase at the interface has been observed to be 

six to ten times more than the space occupied by uncorroded steel [324] consequently 

developing tensile stresses within the concrete matrix. The reinforced concrete cannot 

accommodate the tensile stresses induced by the rust product at the steel/concrete 

interface thus resulting in cracking and spalling of the concrete cover [25]. The loss of 

concrete cover will expose the rebar to further corrosion process at an accelerated rate. 

Moreover, corrosion reduces the cross-section of the steel thereby reducing the load 

bearing capacity. The cross-section of the rebars are reduced faster by pitting (i.e. 

localised) corrosion than the generalised corrosion [331]. The reduction in the cross-

section will reach a point where it can no longer withstand the applied load, potentially 

leading to catastrophic failure of the structures [360].  

 McLeish [361] pointed out several factors which may impair the ultimate load 

capacity of structural elements, such as; loss of reinforcement area and ductility, 

delamination of cover to tension reinforcement, bulking of compressive reinforcement, 

loss of cover in the compression zone, reduction of bond strength and possible 
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secondary actions. Similarly, Almusallam et al. [362] suggested that the load carrying 

capacity of corroded reinforced concrete slab decreases due to the reduction in the 

cross-sectional area of the rebars particularly where corrosion was concentrated. In 

addition to the strength reduction of the slab, brittle failure was also observed. The load 

carrying capacity of corroded beams was not only reduced by the strength reduction of 

the rebar, but also by the cracks formed during the corrosion process Uomoto [363]. The 

author observed a reduction in load carrying capacity by 4% to 17% which results from 

a weight loss of 1% to 2.4% in the main reinforcing steel [363]. In another experiment 

performed by Cabrera [364], the author reported a 20% reduction in the ultimate 

bending moment due to the reduction of the cross section of the bottom bar by 9%. 

 The bond behaviour of steel reinforced concrete is significantly affected by the 

corrosion process. A study on the influence of reinforcing bar corrosion and cracking on 

the bond strength of reinforced concrete was carried out by Al-Sulaimani [365]. The 

author used a beam dimension of 150 x 150 x 1000 mm reinforced with one 12 mm Ø 

bottom bar, two 10 mm Ø top bars and 6 mm Ø closed stirrups at 50 mm spacing. 

Accelerated corrosion of the 12 mm Ø bottom bar was achieved by applying a constant 

current density of 2 mA/cm2. The test load has a shear span of 300 mm; the beam shows 

a reduction in the load carrying capacity which was attributed to the reduction of cross 

section of the bar. Also, the ultimate bond capacity increases when corrosion was up to 

0.5% and then decreased beyond 5% corrosion. A similar trend was observation by 

Mangat and Elgarf  [366] on the bond characteristics of reinforced concrete beams 

which were subjected to corrosion. The bond strength at the steel and concrete interface 

increased when the degree of corrosion was up to 0.4% and the decreased beyond 0.4% 

corrosion [366]. A maximum increase of 25% bond strength was observed at 0.4% 

degree of corrosion. On the other hand, Val et al., [367] observed that a complete loss of 

bond has insignificant effect on bridge reliability in flexure. The author used a non-

linear finite element model and probabilistic model for bond characteristics, corrosion 

propagation, material properties and reinforcement placement to analyse the effect of 

reinforcement corrosion on the reliability of highway bridges [367]. 

7.3 EXPERIMENTAL PROGRAMME 

7.3.1 Sample Preparation 

7.3.1.1 Preparation of steel bars and electrical connection 

The corrosion test specimens were prepared by embedding 8 mm Ø high 

strength plain steel reinforcement bars in AACM and control OPC concrete. The length 
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of the steel reinforcement bar is 400 mm. The steel reinforcement bars were grit blasted 

to remove all mill scale, rust and foreign matter as shown in Fig 7.5 The steel bars  were 

prepared to the visual standard Grade Sa 21/2 during the grit blast cleaning [368]. Grade 

Sa 21/2 involves thorough blast cleaning to remove almost all mill scale, rust and foreign 

matter, followed by dry vacuum cleaning with compressed air or a clean brush [368]. 

The steel surface colour after the grit blast cleaning was greyish as shown in Fig 7.5. 

Each steel bar was weighed to the nearest milligram after grit blasting. A 4 mm 

thread was tapped at one end of the reinforcing steel bar to accommodate a copper wire 

connection. This was followed by casting a thin cylindrical layer of cement slurry 

having a w/c ratio 0.5 between 100 mm and 20 mm from the bar end (Fig 7.6). The 

thickness of the slurry was nominally 3 mm around the steel bar. An epoxy resin was 

applied over the hardened cement slurry and beyond to end of the bar, which covered 

the copper wire connection at the end. All this was carried out to avoid crevice 

corrosion at the electrical junction. The epoxy was cured in air to completely seal the 

end connections of the steel bars from chloride ion penetration (Fig. 7.7). Care was 

taken to prevent the epoxy from coming in direct contact with the steel surface to be 

embedded in the AACM and OPC concrete matrix. This is to prevent isolation of the 

electrical connection and the possible formation of a crevice. Each corrosion specimen 

had three steel bars embedded in the AACM and OPC concrete as shown in Fig. 7.8.  

 
Figure 7. 5: Grit blasted steel bars 

 
Figure 7. 6: Cement slurry cast at the bar 

end. 
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Figure 7. 7: Wire connection at one end 

 
Figure 7. 8: Bars positioned in moulds 

7.3.1.2 Casting 

Expanded polystyrene moulds were used to cast 250 x 250 x 75 mm reinforced 

slabs for AACM and the control OPC concrete. The expanded polystyrene moulds were 

drilled at the opposite side faces to allow for proper placing of the three steel bars in 

each specimen as shown in Fig. 7.8. The concrete cover to the steel bars was 30 mm. 

This was measured from the bottom of the expanded polystyrene mould to the surface 

of the steel bars. The expanded polystyrene mould opening around the steel bar was 

completely sealed off to prevent outward pouring of concrete through any gap in the 

opening. The inside of the expanded polystyrene mould was lightly covered with mould 

oil to prevent the concrete from sticking. This was followed by cleaning of the steel 

surface with acetone to degrease the surface and remove any other dirt. The expanded 

polystyrene moulds with the properly positioned steel bars inside were placed on the 

vibrating table for casting. 

 The mix compositions used for the corrosion specimens were the same as those 

for the chloride ingress investigation which is detailed in Section 4.3.1, Chapter 4. They 

are given in Table 7.1. All the aggregates were in a saturated surface dry state before 

mixing. Half of the aggregate content was first poured into a forced action concrete 

mixer of 150 kg capacity followed by the binder. The remaining half of both the fine 

and coarse aggregate content was then added to cover the binder. The binder and the 

aggregates were mixed for one minute. Approximately half of the liquid activator was 

added to the mixer and mixed for two minutes. To ensure homogeneity, the mix was 

briefly mixed by hand, particularly concentrating on the material adhering to the edge 

and corner of the mixer. The retarder reagent was mixed with the second half of the 

liquid activator and stirred until fully dispersed. The mixture was then added to the 
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mixer and mixed for a further two minutes. A shrinkage reducing admixture was then 

added followed by an additional one minute of mixing.  

 The expanded polystyrene moulds with the correctly positioned steel bars inside 

were filled with concrete in three layers. Each layer was compacted on the vibrating 

table for up to 60 seconds to attain homogeneity and minimise the presence of voids. 

The AACM and control OPC concrete surface was gently trowelled to obtain a smooth 

and level finish. The cast specimens were placed on a flat table surface and covered 

with polythene sheets to prevent moisture loss. Two specimens were cast for each 

AACM and the control OPC concrete mixes (S2 to S6, Table 7.1). A total of ten concrete 

specimens which consist of batches "a" and "b" (five specimens in each batch) were cast 

for the corrosion test. Each batch ("a" and "b") were subjected to different corrosion 

inducing curing regimes as detailed in Section 7.3.1.3 and as shown in Table 7.2. 
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Table 7. 1: Composition of AACM and control OPC concrete mixes 
Mix Total 

Binder 
(Kg/m3) 

Coarse 
Aggregate(Kg/m3) 

Fine 
Aggregate 
(Kg/m3) 

Alkali 
activator 
(Kg/m3) 

Extra 
water 

(Kg/m3) 

Total 
Liquid 

(Kg/m3) 

Liquid/ 
Binder 
Ratio 

Activator 
Dilution  

(%) 

Retarder 
(Kg/m3) 

SRA 
(Kg/m3) 

 10mm 
Gravel 

6mm 
Limestone 

   

            
S2 

S3 

S4 

S5 

S6(Control) 

688 

619 

619 

619 

350 

654 

717 

717 

717 

769 

334 

374 

374 

374 

401 

438 

423 

423 

423 

585 

279 

283 

271 

260 

- 

6 

12 

22 

31 

170 

285 

295 

293 

291 

170 

0.414 

0.477 

0.473 

0.470 

0.486 

2.15 

4.24 

8.12 

12.00 

- 

8 

7 

7 

7 

- 

21 

19 

19 

19 

- 

            

Table 7. 2: Exposure duration of corrosion specimens (batches "a" and "b") under different environments 
 Exposure Period (days) 

 0 - 90 days 90 - 190 190 - 220 220 - 260 260 - 340 340 - 440 440 - 510 510 - 690 690 - 860 

Batch "a" Chloride 
diffusion 

(20 ± 20C) 
5% NaCl Soln 

Laboratory 
air (20 ± 20C, 

65% R.H.) 

Chloride 
diffusion (20 ± 

20C) 
5% NaCl Soln 

Chloride 
diffusion (20 ± 

20C) 
5% NaCl Soln 

Climate 
chamber 

(50oC, 75% 
RH) 

Chloride 
diffusion (20 

± 20C) 
5% NaCl Soln 

Laboratory air 
(20 ± 20C, 
65% R.H.) 

Chloride 
diffusion (20 ± 

20C) 
5% NaCl Soln 

1 day wet/6 
days dry 
cycles 

Batch "b" Chloride 
diffusion 

(20 ± 20C) 
5% NaCl Soln 

Laboratory 
air (20 ± 20C, 

65% R.H.) 

Chloride 
diffusion (20 ± 

20C) 
5% NaCl Soln 

Climate 
chamber 

(50oC, 75% 
RH) 

Chloride 
diffusion (20 

± 20C) 
5% NaCl Soln 

Laboratory 
air (20 ± 20C, 

65% R.H.) 

Chloride 
diffusion (20 ± 

20C) 
5% NaCl Soln 

Laboratory air 
(20 ± 20C, 
65% R.H.) 

1 day wet/6 
days dry 
cycles 
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7.3.1.3 Curing and exposure to corrosion environment 

The two batches (a and b) of corrosion specimens were kept under ambient 

conditions in the laboratory (approximately 20 deg C, 65% RH) immediately after 

casting and demoulded after 24 hrs. After demoulding, the specimens were cured in 

water at 20 0C up to 28 days age. After 28 days, the specimens were taken out of the 

water and surface dried. Two coats of bituminous paint were applied to five faces of the 

slabs except the exposed face (300 x 300 mm) which provided the concrete cover of 30 

mm to the embedded steel bars (Fig. 7.9).  The un-coated face allowed the 

unidirectional ingress of chloride ions into the concrete cover zone when the specimens 

were exposed to chloride solution. The smooth face cast against the bottom of the 

polystyrene mould was used as the concrete cover face exposed to the chloride solution. 

The corrosion specimens were cured in water for 28 days to saturate the concrete pore 

spaces. This was followed by subjecting the corrosion specimens to NaCl solution, 

laboratory air, an aggressive alternative climate chamber exposure and wet/dry cycles to 

accelerate corrosion initiation in the steel. 

Figure 7. 9: Two coats of bituminous paint 
applied to five faces of the specimen 

Figure 7. 10: Specimens immersed in 5% 
NaCl solution 

7.3.1.3.1 Chloride diffusion 

 Bulk diffusion test, NordTest [99] and DD CEN/TS 12390-11 [369] method was 

adopted for the exposure of the corrosion specimens of AACM and control OPC 

concrete mixes S2 to S6. The two standard test methods have similar procedures apart 

from the concentration of the chloride exposure solution. DD CEN/TS 12390-11 [369] 

specifies 3% NaCl solution (by weight) whereas NordTest [99] specifies 165g ± 1g 

NaCl per dm3 solution (16.5% NaCl solution by weight). A 5% NaCl solution in tap 
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water was prepared for chloride exposure of the corrosion specimens. The 5% NaCl 

solution allows for accelerated chloride diffusion which gives higher chloride 

concentrations at the steel reinforcement's depth (30 mm). The transportation mode of 

chloride ion was by diffusion only. This was achieved by curing the batches "a" and "b" 

of the corrosion specimens in water for 28 days after casting to attain full saturation of 

concrete pores thereby eliminating the initial sorption effect upon chloride exposure. All 

the faces of the corrosion specimens were coated with 1 mm thick layer of bituminous 

paint except the concrete cover face to the steel bars (250 mm x 250 mm face) which 

was exposed to the 5% NaCl solution, as shown in Fig 7.10. The NaCl solution was 

replaced every month to maintain a constant concentration of 5% by weight. 

7.3.1.3.2 Accelerated corrosion inducing environment 

 The two batches (a and b) of corrosion investigation specimens were subjected 

to wet/dry exposure cycles (Table 7.2) to accelerate the corrosion of steel bars in the 

concrete. The wet exposure involved the bulk diffusion of the specimens in 5% NaCl 

solution as detailed in Section 7.3.1.3.1.  The NaCl solution provided moisture which 

maintains saturated pore spaces of the concrete while also diffusing chloride ions which 

induce corrosion. However, the corrosion process is retarded when the concrete 

specimens are immersed in NaCl solution since a limited amount of oxygen (less than 

1%) was available to sustain the corrosion process [370]. The dry exposure cycle was 

achieved by placing the concrete specimens in the laboratory air (20 + 20C and 65% 

R.H.) as shown in Fig 7.11. The laboratory air contains about 21% oxygen which 

recovers any oxygen depletion in submerged specimens and aids the corrosion process 

[252][316]. The corrosion specimens were exposed to long wet and dry cycles up to 690 

days age, after which they were subjected to weekly cycles of 1 day wet (submerged in 

water) and 6 days dry (laboratory air) up to 860 days age (Table 7.2). 

  
Figure 7. 11: Specimens cured in 
laboratory air 

Figure 7. 12: Specimens cured in 
alternative climate chamber 
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7.3.1.3.3 Climate chamber 

 The climate chamber was supplied by Binder GmgH. The chamber has a 

temperature range of -50 oC to 200 oC and the humidity ranges from 0% to 100%. The 

chamber was set to a temperature of 50 oC and 75% relative humidity (Fig. 7.12). The 

elevated temperature (50 oC) was selected to aid the corrosion process of the AACM 

and control OPC concrete samples. Batch "a" of the corrosion specimens were placed 

inside the climate chamber from 260 days to 340 days age (80 days exposure period). 

Batch "b" was placed in the chamber for 40 days starting from 220 days to 260 days age 

as shown in Table 7.2. The use of the climate chamber was discontinued after the first 

exposure period due to the precipitation of chloride ion within the chamber under high 

humidity.   

7.3.2 Test Procedure 

7.3.2.1 Corrosion potential Ecorr 

 The half - cell potential investigation of the corrosion specimens was performed 

using a digital voltmeter (DVM) in accordance with TR 60 [371] and ASTM C876 - 15 

[372]. A silver-silver chloride (SSC) reference electrode was connected to the digital 

voltmeter for taking the potential reading in order to avoid chloride contamination when 

immersed in NaCl solution unlike a copper-copper sulphate electrode that is prone to 

such contamination [372]. The positive terminal of the voltmeter was connected to the 

connecting wire from the embedded steel bars while the reference electrode was placed 

on the exposed surface of the concrete cover to the steel as shown in Fig. 7.13. The 

reading was taken when the corrosion specimen was in NaCl solution, but care was 

taken to ensure that no electrically conductive part other than the porous tip of the 

reference electrode was in the solution. Corrosion potentials of specimens exposed in 

the climate chamber and laboratory air were measured after wetting the exposed 

concrete cover with a water saturated sponge. The sponge was placed on the concrete 

surface while the reference electrode was placed on top of it for the duration of the 

potential readings. The pre-wetting of the concrete surface was required to reduce the 

high electrical resistance of the dry concrete [372]. 

 The potential of the embedded steel is passive when the measurement is ˃ -200 

mV while a potential reading between -200 mV to -350 mV can indicate the possibility 

of corrosion happening on the steel surface [324][372]. The steel bar is actively 

corroding at a higher negative potential than -350 mV [324][372]. However, in the case 

of submerged concrete structures, a higher negative potential than -350 mV is observed 
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due to the absence of oxygen, even when the steel is passive. This could produce 

misleading interpretation during analysis, which is often considered as a limitation of 

the potential measurement of reinforced concrete [324]. 

 
Figure 7. 13: Schematic diagram showing 

the Half-cell potential test [373] 

 
Figure 7. 14: Galvanic current reading 
using the Zero Resistance Ammeter. 

7.3.2.2 Corrosion current density Icorr 

 A zero-resistance ammeter (ZRA) was used to measure the corrosion current of 

AACM and the control OPC concrete. The 1st working electrode from the ammeter was 

connected to the wire connection from the steel bar while the 2nd working electrode was 

connected to a stainless steel plate placed over the surface of the concrete cover as 

shown in Fig. 7.14. A concrete cube was placed on the stainless-steel plate to ensure full 

contact between the concrete surface and the plate. The instrument was switched to 

isolate and a range of 100 µA was selected. The 100 µA range did not illuminate the 

under/over range LED which indicates that it was suitable to measure the galvanic 

current between the 1st and 2nd working electrodes. After the selection of the correct 

range, the instrument was switched to run to measure the galvanic current between the 

two working electrodes. The readings of the galvanic current between the two working 

electrodes were viewed on the digital meter, which became stable after 3 minutes. The 

procedure was repeated for AACM and the control OPC concrete specimens of mixes 

S2 to S6. The corrosion current density was calculated by dividing the galvanic current 

by the area of the 8-mm diameter steel rod electrode embedded in the concrete 

specimens using the following equation.  

 ����� =	 �� 
7.6 
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where icorr is the corrosion current density (µA/cm2), and A is the surface area of the 

exposed reinforcing steel in concrete matrix. In this study, the exposed steel has the 

nominal surface area of Π x d x l = 3.142 x 0.8 x 40 = 100 cm2. 

The results of the corrosion densities of the AACM and control OPC concrete 

specimens of mixes S2 to S6 are presented in Section 7.4.2. 

7.3.2.3 Sorptivity 

 The sorptivity test was used to determine the capillary absorption tendencies in 

AACM and the control OPC concrete. 75 x 75 x 75 mm cubes were produced to 

investigate the capillary sorptivity of AACM and the control OPC concrete S2 to S6. 

Three cubes were produced for each concrete mix, giving fifteen cubes in total. The 

specimens were cast in a similar procedure to that detailed in Chapter 4, Section 4.3.3. 

The preconditioning procedure used for the sorptivity test were, however, different from 

the chloride diffusion test. The specimens were oven dried for 7 days at 500C to a 

constant moisture condition. After the 7 days oven drying, the specimens were placed in 

a sealed container for 3 days for cooling and redistribution of the moisture to a uniform 

level within the specimen matrix. Afterwards, five faces of the specimens were sealed 

with self-adhesive PVC tape, leaving one side face exposed (Fig 7.15). The partially 

sealed specimens were weighed to the nearest 0.01g. The specimens were placed on a 

support device at the bottom of a container as shown in Fig 7.16. The container was 

filled with tap water at 20 ± 20C to a level that was within 1 to 3 mm above the top of 

the supporting device during the tests. At selected times of 5, 10, 15, 20, 25 and 30 

minutes, the specimens were removed from the water and excess water on the exposed 

surface blotted off with a paper towel. The specimens were weighed to the nearest 

0.01g. The gain in mass per unit area divided by the density of water was plotted against 

the square root of the elapsed time. The slope of the best-fit line of these points 

(ignoring the origin) was reported as the sorptivity value [374][375]. 
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Figure 7. 15: PVC tape wrapped on five 
concrete faces 

Figure 7. 16: Specimen supported on a 
strip of porous membrane. 

7.3.2.4 Determination of [Cl/OH
-
] ratio 

7.3.2.4.1 Concrete coring  

  Concrete coring was performed on the corrosion specimens at 860 days age to 

produce core samples similar to the specimens used to investigate chloride ingress 

(Section 5.3.2.1, Chapter 5). The cores were obtained from locations between the 

embedded steel bars. This was achieved by carefully marking out 50 mm diameter 

circles with a permanent marker on the surface of the concrete cover. The 50 mm 

diameter circles were drawn between the three number of embedded steel bars in each 

concrete specimen as shown in Fig. 7.17. Adequate allowance was provided to prevent 

any damage to the embedded steel bars when performing the coring operation. Four 

number of concrete cores with the dimension of 50 mm diameter X 60 mm depth were 

obtained from each corrosion specimen as shown in Fig. 7.18.  A total of forty concrete 

cores were obtained from the ten AACM and control OPC corrosion specimens. 

 The concrete cores were immediately stored in an enclosed container. The 

moisture content within the core matrix was preserved by placing it on a suspended 

support inside a container that is partially filled with water as shown in Fig. 7.19. The 

water level inside the enclosed container was below the level of the support. Each 

concrete core was sawn into three discs from 0 - 20, 20 - 40 and 40 - 60 mm depths (Fig. 

7.20) similar to Section 5.3.2.1, Chapter 5 which were then returned back to the 

enclosed container until the pore fluid expression was carried out from the disc. The 

pore solution expression was performed within 7 days after the coring operation was 

carried out.  
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Figure 7. 17: Marked 50 mm diameter 
circle for coring  

 
Figure 7. 18: Four cores (50 mm dia X 60 mm 
depth) drilled from corrosion specimens 

  
Figure 7. 19: Concrete cores placed above 
water-filled enclosed container 

Figure 7. 20: Concrete discs obtained from 
cores 

 The cored holes in the AACM and control OPC corrosion specimens (Fig. 7.18) 

were repaired with AACM and OPC concrete respectively as shown in Fig. 7.21 and the 

specimen surfaces re-coated on the bottom and the four side faces with bitumen paint, 

leaving the top cover face uncoated (Fig. 7.22). The samples were then further subjected 

to a continuous wet/dry curing regime while monitoring the corrosion activity of the 

steel bars. 

Concrete Core 

Concrete Discs 

0-20 mm 

20-40 mm 

40-60 mm 
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Figure 7. 21: Repaired core holes 

 
Figure 7. 22: Re-coating of bottom and the four 
side faces with bitumen paint 

7.3.2.4.2 Concrete pore solution expression 

 The pore fluid expression was performed on the concrete discs obtained from 

the cores of corrosion specimens. Similar pore solution expression technique used for 

specimens under chloride ingress (Chapter 5, Section 5.3.2.2) was adopted for the 

corrosion specimens. The technique entails placing 3 core discs of the same depth e.g. 0 

- 20 mm depth only, at a time, from each corrosion specimen core into a pore fluid 

extraction device. The pore solution extraction device with the core discs in it was 

placed in the compression testing machine under the loading platen (Fig 7.23). 

Compressive load was applied at a steady rate and the pore solution was extracted 

through a suction action without allowing contact with air and was immediately stored 

in plastic vials, labelled and sealed with parafilm (Fig 7.24). The same procedure was 

repeated on concrete core discs labelled 2 (representing 20-40 mm depth) and 3 

(representing 40-60 mm depth) (Fig 7.20). 

Figure 7. 23: Pore fluid extraction device 
 

Figure 7. 24: Air tight plastic vials 
containing concrete pore solution. 
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7.3.2.4.3 Determination of free chloride and pH of pore solution 

 The free chloride and pH of AACM and OPC corrosion specimens were 

determined by dipping a chloride ion selective electrode (ISE) and a double junction pH 

electrode into its pore solution.  

 For the free chloride measurement, the white reference contact near the tip of the 

electrode (ISE) was immersed in the solution without entrapping air bubbles below it 

(Fig 7.25). The ISE was held in the aqueous solution until the reading stabilized and the 

displayed reading was then recorded. The ISE was rinsed by spraying with a jet of 

deionised water and dabbed dry with a low-lint laboratory tissue between measurements 

to prevent hysteresis effects. The ISE was calibrated before and after each measurement 

to achieve accuracy. Triplicate free chloride concentration readings for the pore solution 

of concrete core discs labelled 1 (representing 0 - 20 mm depth), 2 (representing 20 - 40 

mm depth) and 3 (representing 40 - 60 mm depth) were taken with the ISE to achieve a 

high level of accuracy. 

 The pH readings from the pore solution of AACM and the control OPC 

corrosion specimens were displayed on a benchtop meter 3-in-1 (Fig. 7.26). This device 

measures pH ranging from 0.00 to 14.00. 

 
Figure 7. 25: Free chloride measurement 
from concrete pore solution 

 
Figure 7. 26: Double Junction Electrode 
and Benchtop Meter 3-in-1 used to 
measure pH 
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7.4 RESULTS AND DISCUSSION 

7.4.1 Sorptivity 

 The sorptivity results of AACM and the control OPC concrete mixes S2 to S6 are 

presented in Fig. 7.27 which shows the capillary absorption tendencies of the AACM 

and control OPC concrete mixes. The sorptivity index of each material is given by the 

slope of the graph. 

 
Figure 7. 27: Relationship between increase in mass of water per unit area and square 
root of time 

 The sorptivity graphs of AACM concrete mixes S2 to S5 show higher absorption 

values than the control OPC concrete mix S6, notably AACM mix S5 which shows 

sorptivity of 0.085 mm/sec0.5 while it is 0.0413 mm/sec0.5, 0.0422 mm/sec0.5 and 0.0617 

mm/sec0.5 for AACM mixes S2, S3 and S4 respectively. The control OPC concrete has 

sorptivity of 0.0408 mm/sec0.5. This is in agreement with the research findings by Law 

et al. [301] on alkali activated slag AAS concrete showing a higher sorptivity value than 

OPC concrete. The authors [301] related the higher sorptivity values observed in AAS 

concrete to the capillary absorption tendencies of the concrete. The results of the 

microstructure of AACM concrete presented in Section 3.4.3.4, Chapter 3 of this 

research project support this observation. The results show that the capillary pore 

volume (pores sizes within 0.01 to 10 µm) of AACM concrete is more than that of the 

control OPC concrete mix S6. The volume of the capillary pores is greatest in the 

AACM mix S5 thus having the highest sorptivity value of 0.085 mm/sec0.5. 

 The diffussion of deleterious substances such as chlorides is controlled by the 

total pore volume of concrete which is the summation of the capillary and gel pore 

volumes. AACM concrete mixes S2 to S5 have lower total pore volumes than the control 
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OPC concrete mix S6 while their capillary pore volume is greater (Section 3.4.3.4, 

Chapter 3). In addition to the lower total volume of pores possessed by AACM concrete 

mixes S2 to S5, a high volume of their pores is discontinuous (Section 3.4.3.4, Chapter 

3). This factor also contributes to the lower diffusion of deleterious substances in 

AACM concrete compared with the control OPC concrete. 

7.4.2 Corrosion Potential Ecorr 

 The half-cell potential readings for batches “a” and “b” of the corrosion 

specimens are presented in Figures 7.28 and 7.29. Each figure gives the corrosion 

potential readings for AACM and the control OPC concrete mixes S2 to S6. The 

corrosion potential readings for AACM concrete mixes S2 to S5 were recorded for 860 

days under different exposure conditions which are detailed in Table 7.2, Section 

7.3.1.2. However, the corrosion potential readings for the control OPC concrete mix S6 

are for 690 days due to 170 days of delay in starting the test. The two batches “a” and “b” 

of the corrosion specimens were subjected to chloride diffusion, laboratory air and 

environmental chamber exposure for accelerated corrosion. 

 
Figure 7. 28: Graph of corrosion potential Ecorr with exposure period for batch “a” 
corrosion specimens 
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Figure 7. 29: Graph of corrosion potential Ecorr with exposure period for batch “b” 
corrosion specimens 

7.4.2.1 Chloride diffusion period 

AACM concrete mixes S2 to S5 were subjected to four exposure periods of 

chloride diffusion. Batch “a” corrosion specimens were exposed to 5% NaCl solution at 

ages 0 - 90, 190 – 260, 340 – 440 and 510 – 690 days (Fig. 7.28). The corresponding 

exposure periods for batch “b” were 0 -90, 190 – 220, 260 – 340 and 440 – 510 days 

(Fig. 7.29). However, the control OPC concrete mix S6 was exposed to three exposure 

cycles of chloride diffusion for each batch, omitting the 1st exposure cycle (0 – 90 days). 

The corrosion potentials Ecorr under these exposure periods in the chloride 

solution show a more negative potential, as much as -700 mV, for AACM concretes of 

both batches “a” and “b”. The corrosion potential Ecorr is more negative during the 1st 

cycle (0 -90 days) of exposure of the AACM concrete to 5% chloride solution. The 

control OPC concrete in both Figures 7.28 and 7.29 showed insignificant drop in the 

corrosion potential Ecorr during chloride solution exposure, unlike the AACM concrete. 

An embedded steel bar is expected to be actively corroding at a more negative potential 

than -350 mV [324][372] but in this case it does not represent intense corrosion activity 

in AACM concrete during these periods. On the contrary, it signifies a deficiency of 

oxygen concentration at the steel rebar/concrete interface. The presence of both 

moisture and oxygen within the concrete matrix is required to initiate and sustain 

corrosion of the steel [252][316] but insufficient oxygen shifts the corrosion potential 
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Ecorr to an even more negative value than -350 mV (Figures 7.28 and 7.29). Similar 

trends have been observed by other researchers [373].  

The dense (lower total porosity) concrete cover in AACM concrete appears to 

limit the diffusion of oxygen which is necessary to drive the corrosion process at the 

surface of the steel bars. The microstructure of AACM and the control OPC concrete 

was investigated in Chapter 3 which shows a significant reduction of pore volume in 

AACM concrete compared with the control OPC concrete. This suggests there may be a 

siginifcantly restricted corrosion process due to oxygen depletion when AACM 

concrete is submerged in NaCl solution unlike the control OPC concrete that did not 

show such a negative shift in corrosion potential. In addition to the dense concrete cover 

that prevents oxygen from diffusing into the concrete matrix, the oxygen concentration 

in NaCl solution is very low. Page and Lambert [370] reported the solubility of oxygen 

in saturated solution of water as 1.50 x 106, 1.23 x 106 and 1.03 x 106 mol/cm3 at 150C,  

250C and 350C respectively. The available oxygen concentration in NaCl solution is 

insufficient to sustain the corrosion process in AACM concrete. OPC concrete shows 

signs of no significant corrosion activity during these exposure periods. 

7.4.2.2 Laboratory air exposure periods 

AACM concretes in batch “a” corrosion specimens were subjected to two 

exposure periods in the laboratory air (20 ± 20C, 65% R.H.) which are (90 – 190) days 

and (440 – 510) days as shown in Fig. 7.28 while in batch “b”, they were subjected to 

three exposure periods which are 90 – 190, 340 – 440 and 510 – 690 days as shown in 

Fig. 7.29. The control OPC concrete specimens in batches “a” and “b” were subjected to 

one and two exposure periods in the laboratory air respectively.  

AACM concrete shows a sharp positive rise in the corrosion potentials Ecorr from 

-700 mV to +50 mV at 90 - 190 days exposure period (Fig.7.28 and 7.29). The oxygen 

concentration in air is about 20 times more than in water. There is sufficient oxygen 

available at the concrete/steel interface which reflects on the corrosion potential 

significantly. The rise in corrosion potential of AACM concrete is observed in both the 

laboratory air and the environmental chamber exposure periods.  

Bastidas et al. [322] studied the passive state stability of steel embedded in 

alkali activated fly ash mortars. The fly ash reinforced mortar was cured for 94 days at 

95% R.H. followed by 150 days in laboratory air and then 220 days at 95% R.H. The 

corrosion potential Ecorr decreases by 400 mV when moved from a dry to a wet 

environment. The authors attributed the low resistivity of the fly ash mortar to the 

wetness of the concrete pores. Ecorr was influenced by the degree of wetness of the fly 
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ash mortar, shifting to more negative values (more active) from a dry to a wet 

atmosphere [322]. Contrary to the conclusion of Bastidas et al. [322] about more active 

corrosion happening when the pores of fly ash mortar are saturated with water, the 

negative shift in Ecorr in the present study is attributed to the insufficient oxygen 

available at the concrete/steel interface [239][376]. Care must, therefore, be taken when 

interpreting the results of Ecorr of AACM under different exposure conditions. The 

control OPC concrete in Figures 7.28 and 7.29 does not show much variation of Ecorr 

under the different exposures and there is no sign of oxygen depletion under saturated 

conditions. The likely reason is the higher total pore volume of OPC concrete relative to 

the AACMs. 

7.4.2.3 Climate chamber exposure 

 Batches "a" and "b" corrosion specimens were exposed in the climate chamber 

for a single period due to the chloride precipitate from the concrete surface causing the 

inner chamber to corrode. The exposure periods of the corrosion specimens in the 

climate chamber were 260 - 340 days and 220 - 260 days for batches "a" and "b" 

respectively. The climate chamber was set to 500C and 75% R.H. Exposure to the 

elevated temperature of 500C accelerates the diffusion and corrosion processes while the 

75% R.H. induces partial saturation of the concrete pore spaces which supports 

corrosion.  

 A rise in the corrosion potentials Ecorr is observed when the AACM concrete is 

cured at a temperature of 500C and 75% R.H (Fig.7.28 and 7.29). The combined effect 

of temperature and humidity that causes partial saturation of the pores of AACM 

concrete resulted in a rise of Ecorr to around +70 mV. The corrosion behaviour of 

AACM and the control OPC concrete under these exposure parameters is considered to 

be passive. 

 Véronique et al. [377] concluded that the temperature and humidity interaction 

increases the corrosion rate from 0.1 µA/cm2 when cured at 200C and 60% R.H to 10 

µA/cm2 at 450C and 80% R.H. The corrosion rate is influenced by the diffusivity of O2 

in concrete similar to the diffusivity of CO2 during accelerated carbonation in concrete 

provided by an optimum temperature and humidity. This is because the diffusion of O2 

and CO2 in the saturated concrete will be approximately 4 orders of magnitude slower 

than for partially saturated concrete (50 to 70% R.H.) [25]. The climate chamber has the 

potential of accelerating the corrosion process if continued. 
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7.4.3 Corrosion Current Density Icorr 

 The corrosion current density Icorr for AACM and the control OPC corrosion 

specimens was measured by using a zero-resistance ammeter. The output results of 

corrosion current density (Icorr) against time are shown in Fig. 7.30. The Icorr 

measurements were taken between 290 and 860 days. The differences in the Icorr 

profiles are associated with the variation of binder type, mix proportions and exposure 

conditions. The Icorr values provide a basis for the measurement of corrosion severity in 

the concrete specimens.  

 
Figure 7. 30: Graph of corrosion current density Icorr of AACM and control OPC concrete 

 The corrosion current density Icorr for AACM is higher than the control OPC 

corrosion specimens as shown in Fig. 30. The Icorr in AACM corrosion specimen is 

relatively low from 290 days up until 450 days before showing high peak values. 

AACM mix S5 has the highest Icorr value of 2 µA/cm2 at 520 days age, followed by 

AACM mix S3, S4 and S2 with Icorr values of 1.11 µA/cm2, 1.03 µA/cm2 and 0.51 

µA/cm2 respectively. On the other hand, the control OPC concrete S6 has the lowest Icorr 

value of 0.13 µA/cm2 at 300 days age followed by a lower Icorr (0.03 µA/cm2). 

Nevertheless, the values of Icorr for AACM and the control OPC corrosion samples are 

considered to remain in the passive range. 

 The process of corrosion induced by chloride is anodically controlled [170]. The 

dissolution of iron into the electrolyte (pore solution) at the anodic site on the steel 

surface is impeded by the limited cathodic reaction for AACM corrosion samples. The 

cathodic reaction involves the reaction of oxygen with negatively charged electrons. 

These negatively charged electrons are released by the iron atom in the pore solution. In 

the case of the AACM corrosion samples, the oxygen demand at the cathodic sites for 

the continuous corrosion process is impeded by the dense microstructure and limited 
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dissolved oxygen in water (˂ 1%). Thus, the reaction at the anodic sites on the steel 

embedded in AACM concrete is hindered.  

Bastidas et al., [322] observed an increase of two orders of magnitude in Icorr for 

steel reinforcements embedded in a fly ash mortar when subjected to wet curing 

compared with dry curing. Holloway and Sykes [378] observed a decrease in the Icorr as 

the passive film develops around the steel surface embedded in slag cement mortar (Fig 

7.31a). This is followed by the steady increase of Icorr exceeding 1 µA/cm2 at 107 days. 

The shift in the Icorr is associated with the depletion of the cathodic reactant. The second 

conclusion drawn by the authors was the sulphur deposition at the cathodic site. The 

sulphur deposits are the products formed from the oxidation of hydrogen sulphide in the 

slag [378]. The inhibition of the cathodic reaction produces a low Icorr and a negative 

Ecorr (Fig 7.31b) whereas the inhibition of anodic reactions will result in lower Icorr and a 

more negative Ecorr [378]. 

                         icorr                      Log i 
(a) 

 icorr                      Log i 
(b) 

Figure 7. 31: Schematic diagram illustrating (a) change of corrosion potential and 
current density as passive film grows (b) fall in corrosion potential and decrease in 
corrosion density as cathode is inhibited [378] 

7.4.4 Pore Solution 

7.4.4.1 Free Cl concentration (mol/L) 

 Figure 7.32 shows the graph of free chloride concentrations against depth of 

AACM and the control OPC concrete mixes S2, S3 and S6 at 850 days exposure to the 

different corrosion inducing environments presented in Table 7.2.  Lower free chloride 

concentrations are observed in batch "b" corrosion specimens compared with batch "a" 

for mixes S2, S3 and S6. The differences in the exposure environments of batches "a" and 

"b" (Table 7.2) are responsible for the variation of free chloride concentrations within 

the two batches. 
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Figure 7. 32: Free chloride concentration (mol/L) of AACM and OPC concrete mixes S2, 
S3 and S6 at 850 days exposure period 

 The exposure of corrosion specimens (batches "a" and "b") presented in Table 

7.2 is different from the exposure method described in Section 4.3.4.1 Chapter 4 

although the mix compositions for these samples are the same. Whilst the AACM and 

the control OPC concrete samples used to investigate the chloride ingress in Chapter 4 

and 5 were completely immersed in NaCl solution (chloride bulk diffusion) throughout 

the exposure period, the corrosion specimens of this chapter were subjected to cycles of 

chloride bulk diffusion, laboratory air and climate chamber exposure as described in 

Section 7.3.1.3.  The mechanism of chloride penetration in the specimens immersed in 

NaCl solution (Chapter 4) was diffusion whereas the corrosion specimens reported in 

this chapter were subjected to diffusion and absorption of chloride ions. The free 

chloride concentration data from Chapter 4 at 270 days exposure are plotted in Figure 

7.33 together with the free chloride concentrations at 850 days obtained from the 

corrosion specimens of this chapter. The graphs in Fig. 7.33 show an exponential 

increase of free chloride concentration at the exposure period of 850 days age due to the 

alternative wetting and drying exposure cycles of the corrosion specimens during the 

850 days of exposure (Table 7.2). Concrete exposed to cyclic wetting and drying has 

been observed by many researchers to aid rapid chloride ingress [91][25] due to 

combined diffusion and absorption of chloride ions. Fick's 2nd law of diffusion does not 

apply to the chloride absorption transportation mechanism. 
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(a) 

 
(b) 

Figure 7. 33: Free chloride concentration (mol/L) of AACM S2 and control OPC 
concrete S6 specimens under (a) diffusion (b) water absorption and diffusion. 

7.4.4.2 Hydroxyl ion concentration (mol/L) 

 The graph of hydroxyl ion concentration with depth for corrosion specimens of 

batches "a" and "b" is shown in Fig. 7.34. AACM concrete mixes S2 and S3 have 

considerably higher OH- concentration compared with the control OPC concrete mix S6. 

This trend is similar to the results of hydroxyl ion content presented for chloride ingress 

specimens in Section 5.4.5, Chapter 5. The hydroxyl ion concentration of AACM 

concrete mixes S2 and S3 is within the range 0.13 to 0.2 mol/L at 10 mm mean depth and 

0.3 to 0.36 mol/L at 50 mm mean depth from the concrete surface. The control OPC 

concrete mix S6 has 0.02 mol/L at 10 mm mean depth and 0.08 mol/L at 50 mm mean 

depth from the concrete surface. This clearly shows that the pore solution of AACM 

concrete has significantly higher alkalinity than the control OPC concrete when 

subjected to diffusion and absorption transportation mechanisms over long exposure 

periods of 850 days. 

 
Figure 7. 34: Hydroxyl Ion concentration of AACM and OPC concrete mixes S2, S3 and 
S6 at 850 days exposure period 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AACM  S2 Control OPC S6

Fr
e

e
 C

l C
o

n
ce

n
tr

a
ti

o
n

 (
m

o
l/

L)

Mix

10mm mean depth

30mm mean depth

50mm mean depth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AACM  S2 Control OPC S6

Fr
e

e
 C

l C
o

n
ce

n
tr

a
ti

o
n

 (
m

o
l/

L)

Mix

10mm mean depth

30mm mean depth

50mm mean depth

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60

H
y

d
ro

xy
l I

o
n

 

Depth (mm)

S2(batch a)

S2(batch b)

S3(batch a)

S3(batch b)

S6(batch a)



 

273 

 The influence of diffusion and absorption exposure conditions presented in 

Table 7.2 is minimal on the hydroxyl ion concentrations (Fig. 7.35) unlike the free 

chloride concentration (Fig. 7.33). A decrease in the hydroxyl ion concentration is 

observed with exposure period as shown in Fig. 7.35. Significant decrease in the 

hydroxyl ion concentration is particularly observed in the control OPC concrete mix S6 

between 270 (0.49 mol/L) to 850 (0.07 mol/L) days exposure at 50 mm mean depths. 

This suggests that the combined effect of diffusion and absorption mechanisms has 

significant effect on the ingress of ions into the concrete and less prevelant in the 

leaching of ions from the concrete matrix. 

 
(a) 

 
(b) 

Figure 7. 35: Hydroxyl Ion concentration (mol/L) of AACM S2 and control OPC 

concrete S6 specimens under (a) diffusion (b) water absorption and diffusion. 

7.4.4.3 Chloride/Hydroxyl ion concentration [Cl
-
]/[OH

-
] 

 The free chloride/hydroxy ion concentration graph is presented in Fig. 7.36. The 

free [Cl-]/[OH-] profiles of AACM and the control OPC concrete specimens of batches 

"a" and "b" of mixes S2, S3 and S6 is shown are Fig. 7.36. 

 
Figure 7. 36: [Cl-]/[OH-]  of AACM and OPC concrete mixes S2, S3 and S6 at 850 days 
exposure period 
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 The free [Cl-]/[OH-] ratio of the control OPC concrete mix S6 for batch "a" 

corrosion specimen shows a value of 15.66 at 10 mm mean depth, which decreases 

sharply at 30 and 50 mm mean depths with ratios of 2.43 and 0.63 respectively. This 

trend is also observed for the control OPC concrete mix S6 in the chloride ingress study 

(Section 5.4.6, Chapter 5), at an exposure period of 270 days, as shown in Fig. 7.37. 

The results of chloride diffusion (Chapter 4) also show similarly sharp reduction of 

chloride concentration in the surface zone due to leaching. This shows that the depletion 

of both hydroxyl and the chloride ion is high near the surface of the control OPC 

concrete, ultimately resulting in a high free [Cl-]/[OH-] ratio. 

 AACM concrete mix S3 has the lowest free [Cl-]/[OH-] ratio of 2.54 at 10 mm 

mean depth while mix S2 has free [Cl-]/[OH-] ratio of 5.21 at 10 mm mean depth for 

batch “a” corrosion specimen. The exposure conditions of batch "a" corrosion specimen 

(Table 7.2) resulted in a higher free [Cl-]/[OH-] ratio and chloride concentration than for 

batch "b" specimen while the  OH- concentration was lower. The longer exposure period 

of batch “a” corrosion specimen in the climate chamber [50
0
C, 75% R.H.] (80 days) and 

bulk chloride diffusion solution (440 days) accounts for the high chloride concentration 

and a lower hydroxyl ion concentration. The batch "b" corrosion specimens were 

exposed to the climate chamber [50
0
C, 75% R.H.] for 40 days and bulk chloride 

diffusion solution for 270 days (Table 7.2). The exposure period to laboratory air is less 

for batch "b" (100 days) than batch "a" (170 days). The exposure periods of 1 day wet/6 

days dry cycles (170 days) is the same for batch "a" and "b" corrosion specimens. 

 
Figure 7. 37: Chloride/Hydroxyl Ion [Cl-]/[OH-] of OPC concrete mix S6 at 270 and 850 
days exposure period 

 In conclusion, the corossion activity in AACM and the control OPC concrete 

remains passive at higher free [Cl-]/[OH-] ratio than the threshold value of 0.61 
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suggested by Hausmann [255]. The free [Cl-]/[OH-] ratios of AACM and the control 

OPC concrete mixes S2, S3 and S6 for batch "a" specimens are 2.29, 0.94 and 2.43 (Fig. 

7.36) and their corresponding potential readings are -100 mV, -125 mV and -16 mV 

(Fig. 7.28) respectively. The corresponding free [Cl-]/[OH-] ratios for batch "b" 

specimens are 1.26, 0.70 and 1.70 (Fig. 7.36) and corresponding potential readings of -

25 mV, +27 mV and -5 mV (Fig. 7.29) for mixes S2, S3 and S6 respectively. 

 The threshold value of 0.61 for the [Cl-/OH-] concentration proposed by 

Hausmann [255] for the initiation of corrosion in OPC based materials does not always 

apply. For example, Lambert et al. [170] presented a [Cl-/OH-] concentration threshold 

of 3 for steel rods embedded in OPC concrete. The [Cl-/OH-] concentration as high as 

320 did not result in corrosion of steel fibres embedded in fly-ash concrete [102]. The 

reasons attributed to such high values of [Cl-/OH-] are the lower chloride binding 

capacity in the AACM concrete and a lowered pH for the control OPC concrete. These 

factors increase the [Cl-/OH-] ratio in its pore solution.  

7.5 CONCLUSIONS 

The following conclusions can be drawn based on the study carried out on the chloride 

initiated corrosion in AACM concrete. The half-cell potential and zero resistance 

ammeter were used to monitor the corrosion activies of the reinforcing steel. 

Investagtion on the sorptivity tendency and chloride/hydroxyl ratio of AACM concrete 

provided an insight to the corrosion activities of the embedded reinforcing steel. 

• The absorption tendency of AACMs is higher than the control OPC concrete. 

For example, the soptivity of AACM mix S3 is 0.0422 mm/sec0.5 while it is 

0.0408 mm/sec0.5 for the control OPC S6 concrete. These results compliment the 

higher volume of capillary pores in AACM concrete (chapter 3). 

• The corrosion potential Ecorr for AACM concrete shows high negative potentials 

as high as -700 mV at early age and during the bulk chloride diffusion exposures. 

The control OPC concrete shows Ecorr values within the passive range of ˃ -200 

mV. The high negative potentials in AACM concrete is due to the deficiency of 

oxygen concentration at the steel rebar/concrete interface. 

• The Ecorr for AACM concrete exposed to air and corrosion inducing environment 

shows a sharp rise from -700 mV to passive range of ˃ -200 mV. There is 

sufficient oxygen concentration available at the steel rebar/concrete interface at 

these exposure environments which reflected significantly on the Ecorr of AACM 

concrete. The Ecorr values for the control OPC concrete shows no significant 
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variation when exposed to air and corrosion inducing environment compared 

with the bulk chloride diffusion exposures. 

• The corrosion potential Ecorr shows less corrosion activities in AACMs than the 

control OPC concrete at 860 days exposure. For example, Ecorr for AACM mix 

S2 and the control OPC S6 concrete are +27 mV and -5 mV respectively. The 

steel reinforcing bars in both AACM and OPC concrete remains passive at 860 

days exposure. 

• The corrosion current densities Icorr is higher in AACMs than control OPC 

concrete. The cathodic reaction at the steel surface for AACM corrosion samples 

is impeded due to the limited oxygen concentration at the reaction site. The high 

Icorr value of AACM concrete may not be the the true indication of its corrosion 

severity. Visual inspection is required to ascertain the corrosion severity of the 

steel embedded in AACM concrete. 

• The free chloride concentration is higher in AACMs than the control OPC 

concrete at 850 days exposure period. For example, the free chloride 

concentrations for batch “b” AACM mix S3 and the control OPC S6 corrosion 

specimens at 30 mm depth are 0.20 mol/L and 0.12 mol/L respectively. 

• The corresponding hydroxyl ion concentration is similarly higher in AACMs 

than the control OPC concrete at 850 days exposure period. For example, the 

hydroxyl ion concentrations for batch “b” AACM mix S3 and the control OPC 

S6 corrosion specimens at 30 mm depth are 0.35 mol/L and 0.07 mol/L 

respectively. 

• The free chloride/hydroxyl ion ratio of AACMs is considerably lower than the 

control OPC concrete. For example, the free chloride/hydroxyl ion ratios for 

batch “b” AACM mix S3 and the control OPC S6 corrosion specimens at 30 mm 

depth are 0.7 and 1.7 respectively. This is due to the high pH of the pore solution 

in AACMs compared with the control OPC concrete. 

• The corrosion activity in AACM and OPC concrete remains passive at higher 

free chloride/hydroxyl ion ratio than the historic Hausmann threshold value of 

0.61. This is because the model developed by Hausmann for corrosion threshold 

did not consider the effect of chloride binding. 
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CHAPTER 8 
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

8.1 INTRODUCTION 

 This research project investigated the durability properties of alkali activated 

concrete and a parallel control OPC concrete under the long term influence of chloride 

and CO2 attack. The mechanical and microstructure properties was also investigated. A 

summary of the conclusions and area of further research are given in this chapter. 

8.2 CONCLUSIONS 

8.2.1 Porosity and pore structure of AACM and OPC mortars 

• The 28 days strength of AACM and OPC mortar mixes was significantly 

influenced by the curing regimes wet/dry curing, wet curing and dry curing. 

AACM mortar mixes developed maximum strength under wet/dry curing 

whereas wet curing is optimum for OPC concrete. Dry curing of AACM mortar 

produced higher strength than wet curing. For example, the 28 days strength of 

AACM mix M2 concrete under wet/dry, dry and wet was 72.9MPa, 64.6Mpa 

and 57.7Mpa respectively. 

• An inverse relationship exists between the intrudable porosity and compressive 

strength of AACM mortar under the different curing regimes and liquid/binder 

ratios. Similar relationships exist between strength-critical pore and strength and 

pore diameters (critical and threshold). 

• The combined use of a retarder and shrinkage reducing admixture improved the 

strength of AACM mortar. For example, the 28 days strength mix M3 containing 

both retarder and shrinkage reducing admixture had 70.9MPa compared with 

61.6MPa containing no retarder and shrinkage reducing admixture. 

• Strength of AACM mortar increase with decreasing liquid/binder and with 

increasing activator concentration when the range of activator was maintained 

between the upper and lower limits of activator molarity. 

• AACM shows a bimodal pore structure which is most conspicious under wet/dry 

and dry curing. Wet curing indicates a small degree of pore continuity possibly 

due to secondary cementitious hydration reactions overlapping with the 

geopolymerisation reactions in AACMs. 

• AACM mortar cured under the wet/dry regime possessed the lowest intruded 

pore volume Фin, critical pore diameter dc and threshold pore diameter Dth. 
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Similarly, the presence of retarder and shrinkage reducing admixture and a lower 

degree of activator dilution with water reduced the intruded pore volume Фin, 

critical pore diameter dc and threshold pore diameter Dth.  

• Lower liquid/binder ratio in AACM mortar M3 mix displayed a lower intruded 

pore space Фin, critical pore diameter dc and threshold pore diameter Dcrit. 

• AACM mortar has lower porosity than OPC mortar. The gel pore volume (pore 

size range 0.5nm to 10nm) is lesser in AACM mortar than OPC mortar but the 

capillary pore volume (pore size range 10nm to 10,000nm) is higher in AACM 

mortar than OPC mortar.  

8.2.2 Strength, shrinkage and bound chlorides of AACM and OPC concrete 

• The liquid/binder ratio had great impact on the strength of AACM concrete. 

However, high coarse aggregate content aided an improved compressive 

strength in AACM concrete. For example, AACM mix S2 with liquid/binder 

ratio 0.41 had higher strength than mixes S4 and S5 with liquid/binder ratio 0.48. 

However, mix S3 had similar strength with mix S2 because of its higher coarse 

aggregate and lower activator dilution. 

• The activator dilution played a significant role in strength development of 

AACM concrete similar to AACM mortar in Chapter 3. AACM mixes S2 

(2.15% dilution) and S3 (4.24% dilurion) with lower activator dilution achieved 

greater 28 days strength than mixes S4 (8.12% dilution) and S5 (12% dilution). 

• The strength developed at early age in AACM concrete was faster under dry 

curing (200 C, 65 RH) compared with wet curing (200 C) while the reverse is 

true for OPC concrete. For example, AACM mix S3 and OPC S6 under wet 

curing had 39.1MPa and 28MPa respectively compared with 40.1MPa and 

26MPa under dry curing.  

• The chloride profiles of water and acid soluble concentration for both AACM 

and OPC concrete shows good correlation with Fick's second law of diffusion. 

• The surface chloride concentration, C0, increases with exposure periods for 

AACM and OPC concrete water and acid soluble chlorides. This increase was 

more pronounced in water soluble compared with the acid soluble chloride for 

AACM concrete. On the other hand, OPC concrete revealed more surface 

chloride concentration, C0, for acid soluble compared with water soluble. For 

example, the C0, for AACM mix S3 and OPC S6 water soluble chlorides are 
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2.07% and 3.27% respectively while it is 1.37% and 5.91% for acid soluble 

chloride at 180 days exposure. 

• A decrease in chloride diffusion coefficient with exposure periods were 

observed for both AACM and OPC concrete. Generally, AACM concrete 

possess a lower chloride diffusion coefficient compared with OPC concrete. For 

example, the chloride diffusion coefficients for AACM mix S3 and OPC S6 at 55 

days chloride exposure are 5.6 x 10-12 m2/s and 8.7 x 10-12 m2/s respectively 

while it is 1.8 x 10-12 m2/s and 2.5 x 10-12 m2/s at 180 days chloride exposure. 

• The more refined pore structure of AACMs (lower porosity, discontinous pore 

structure) aided lower chloride diffusion when compared to OPC concrete. 

8.2.3 Free chloride and pH of AACM and OPC concrete pore solution 

• OPC concrete exhibited the lowest amount of free chloride compared with 

AACM concrete because of its better binding capacity. 

• The experimental data of free chloride concentration show strong correlation 

with the regression analysis profiles derived from Fick’s second law of diffusion.  

• The chloride diffusion parameters [C0(f) and Dc(f)] increase with an increase in 

chloride exposure periods except for Dc(f) at 540 days. For example, C0(f) and 

Dc(f) for AACM S2 at 180 days exposure are 0.025mol/L and 3.6 x 10-12m/s2 

respectively while it is 0.032mol/L and 5.1 x 10-12m/s2 at 270 days exposure. 

The values are 0.053mol/L and 0.36 x 10-12m/s2 for C0(f) and Dc(f) respectively at 

540 days exposure. 

• Langmuir binding isotherm best-fits the free and bound chloride relationship of 

AACM and OPC concrete because of its lower free chloride concentration 

(≤0.02 mol/L).  

• The binding capacity decreases as the chloride exposure periods increases. OPC 

concrete had better chloride binding capacity compared with AACM concrete. 

This due to the presence of higher concentrations of water and acid soluble 

bound chlorides OPC concrete compared to AACM concrete (Chapter 4). 

• The free chlorides and pH are much higher in AACMs than OPC. For example, 

the free chloride concentrations at 10mm mean depth of AACM mix S2 and OPC 

S6 are 0.027mol/L and 0.023mol/L respectively at 270 days exposure. The 

corresponding pH for AACM mix S2 and OPC S6 are 0.38mol/L and 0.066mol/L 

respectively. The higher free chloride in AACMs is due to its lower water and 
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acid soluble binding capacity while the higher pH was influenced its activator 

concentration. 

• The Cl-/OH- ratio of pore solution increases with increasing activator dilution. 

The highest activator dilution (12%) produced the highest free Cl-/OH- ratio 

while the lowest activator dilution (2.15%) produced the lowest free Cl-/OH- 

ratio within AACM pore solution. For example, the Cl-/OH- ratio at 10mm mean 

depth is 0.071 and 0.143 for 2.15% and 12% activator dilutions respectively at 

270 days exposure. 

• The AACM concrete had the lowest free Cl-/OH- ratio despite the high free 

chloride concentration compared with OPC concrete. The impact of high pH and 

hydroxyl ion present within pore solution of AACM concrete aided the low free 

Cl-/OH- ratio. For example, the free Cl-/OH- ratio at 10mm mean depth for 

AACM mix S2 is 0.071 while it is 0.34 for OPC S6 at 270 days exposure. 

8.2.4 Carbonation of AACM and OPC concrete 

• A lower depth of carbonation was observed in OPC concrete compared to 

AACM concrete. For example, the carbonation depth for AACM mix S3 is 25.19 

mm while it is 14.13 mm for OPC S6 at 327 days CO2 exposure. This is due to 

the main hydration product of Ca(OH)2 in OPC while AACMs does not have it 

as its geopolymerisation product. 

• The rate of carbonation is higher in AACMs than OPC. For example, the rate of 

carbonation in AACM mixes S3, S4 and S5 are 27.29mm/yr0.5, 30.08mm/yr0.5 and 

32.68mm/yr0.5 respectively while it is 19.62mm/yr0.5 for OPC S6. However, the 

rate of carbonation for AACM mix S2 is lowest because of it lowest 

liquid/bindar ratio 0.41 compared to the liquid/binder 0.48 of other mixes. 

• The carbonation and drying shrinkage is considerably higher in AACMs than 

OPC concrete. For example, the carbonation and drying shrinkage of AACM 

mix S2 at 80 days are 700 µε and 761 µε while it is 300 µε and 562 µε for OPC 

S6. This is due to the precipitation of CaCO3 which fills the pore spaces in OPC 

concrete thereby reducing the stress induced by water loss during shrinkage.  

• The drying shrinkage values are higher than carbonation shrinkage for both 

AACM and OPC concrete. This is because of high water loss during drying 

shrinkage, on the other hand, the carbonation shrinkage shows precipitation of 

CaCO3 within the pores of OPC concrete which restrict further shrinkage. 
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• The pH of the carbonated zones of AACM mortar is above the carbonation 

threshold value of 9 while OPC mortar is below it. For example, the pH at the 

carbonated zone of AACM mix M3 is 10.02 while it is 8.69 for OPC S6. This 

suggests that the phenolpthalein test method might not be appropriate to 

determine the carbonation of AACMs. 

• The pH of AACM and OPC concrete is higher than mortar which suggests the 

release of alkaline content by the aggregates. For example, the pH of concrete 

mixes S3 and S6 are 10.46 and 9.56 compared with 10.02 and 8.69 of its 

corresponding mortar mixes M3 and M6 respectively. 

• A non-linear relationship of the form y = 1.0917x0.8234 and a coefficient of 0.99 

is established between depth of carbonation and the porority of AACM concrete. 

8.2.5 Chloride initiated corrosion in AACM and OPC concrete 

• The absorption tendency of AACMs is higher than the control OPC concrete. 

For example, the soptivity of AACM mix S3 is 0.0422 mm/sec0.5 while it is 

0.0408 mm/sec0.5 for the control OPC S6 concrete. These results compliment the 

higher volume of capillary pores in AACM concrete (chapter 3). 

• The corrosion potential Ecorr for AACM concrete shows high negative potentials 

as high as -700 mV at early age and during the bulk chloride diffusion exposures. 

The control OPC concrete shows Ecorr values within the passive range of ˃ -200 

mV. The high negative potentials in AACM concrete is due to the deficiency of 

oxygen concentration at the steel rebar/concrete interface. 

• The Ecorr for AACM concrete exposed to air and corrosion inducing environment 

shows a sharp rise from -700 mV to passive range of ˃ -200 mV. There is 

sufficient oxygen concentration available at the steel rebar/concrete interface at 

these exposure environments which reflected significantly on the Ecorr of AACM 

concrete. The Ecorr values for the control OPC concrete shows no significant 

variation when exposed to air and corrosion inducing environment compared 

with the bulk chloride diffusion exposures. 

• The corrosion potential Ecorr shows less corrosion activities in AACMs than the 

control OPC concrete at 860 days exposure. For example, Ecorr for AACM mix 

S2 and the control OPC S6 concrete are +27 mV and -5 mV respectively. The 

steel reinforcing bars in both AACM and OPC concrete remains passive at 860 

days exposure. 



 

282 

• The corrosion current densities Icorr is higher in AACMs than control OPC 

concrete. The cathodic reaction at the steel surface for AACM corrosion samples 

is impeded due to the limited oxygen concentration at the reaction site. The high 

Icorr value of AACM concrete may not be the the true indication of its corrosion 

severity. Visual inspection is required to ascertain the corrosion severity of the 

steel embedded in AACM concrete. 

• The free chloride concentration is higher in AACMs than the control OPC 

concrete at 850 days exposure period. For example, the free chloride 

concentrations for batch “b” AACM mix S3 and the control OPC S6 corrosion 

specimens at 30 mm depth are 0.20 mol/L and 0.12 mol/L respectively. 

• The corresponding hydroxyl ion concentration is similarly higher in AACMs 

than the control OPC concrete at 850 days exposure period. For example, the 

hydroxyl ion concentrations for batch “b” AACM mix S3 and the control OPC 

S6 corrosion specimens at 30 mm depth are 0.35 mol/L and 0.07 mol/L 

respectively. 

• The free chloride/hydroxyl ion ratio of AACMs is considerably lower than the 

control OPC concrete. For example, the free chloride/hydroxyl ion ratios for 

batch “b” AACM mix S3 and the control OPC S6 corrosion specimens at 30 mm 

depth are 0.7 and 1.7 respectively. This is due to the high pH of the pore solution 

in AACMs compared with the control OPC concrete. 

• The corrosion activity in AACM and OPC concrete remains passive at higher 

free chloride/hydroxyl ion ratio than the historic Hausmann threshold value of 

0.61. This is because the model developed by Hausmann for corrosion threshold 

did not consider the effect of chloride binding. 

8.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

A few areas have been identified where further research could be carried out based on 

the observations and conclusions from this study. 

• Some limitation has been identified with MIP test, which was used to investigate 

the porosity and pore structure of AACM and OPC concrete. These limitations 

include; 

� MIP measures only the effective porosity of concrete and not the total 

porosity. The effective porosity relates to the permeability and diffusion 

properties in concrete but less to its strength properties unlike the total 
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porosity. The nitrogen gas absorption test can be used to investigate the 

pore structure of concrete in order to address this limitation. 

�  The minimum accessible pores volume by the mercury intrusion is 

0.0073 µm. The cummulative and differential pore volume graphs 

suggests the possibility of lesser pores than 0.0073 µm could be present 

in the AACM and OPC concrete. This requires futher research. 

• The phenolpthalein indicator method used for investigating the carbonation of 

AACM concrete may not be suitable. This is because of the high pH above the 

threshold value of 9 observed at the carbonated zones in AACM concrete. An 

improved testing method to investigate carbonation in AACM concrete is 

required. 

• The corrosion behaviour of steel embedded in AACM concrete shows false 

higher values of corrosion potential and current densities than OPC concrete. 

This requires further study through breaking up the specimens for visual 

inspection when corrosion activity begins. The steel reinforcing bars is passive 

in both AACM and OPC concrete as at the time of writing this report. 
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APPENDIX II 
Pore size distribution of AACM and OPC concrete 

  

 
Appendix 3.1a: Intrudable Porosity for AACM and OPC Mixes under Wet/dry Curing 
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Appendix 3.1b: Intrudable Porosity for AACM and OPC Mixes under Wet Curing 

  

 
Appendix. 3.1c: Intrudable Porosity for AACM and OPC Mixes under Dry Curing 
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Appendix. 3.2a: Pore Size Distribution of AACM mixes (with Admixtures) under Wet Curing 
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Appendix. 3.2b: Pore Size Distribution of AACM mixes (Without Admixtures) under Wet Curing 

  

  

Appendix. 3.2c: Pore Size Distribution of AACM mixes (with Admixtures) under Dry Curing 
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Appendix. 3.2d: Pore Size Distribution of AACM mixes (without Admixtures) under Dry Curing 
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Appendix 3.3a: Cumulative Pore Volume of AACM mixes (with Admixtures) under Wet/dry 

Curing 

  

  

Appendix 3.3b: Cumulative Pore Volume of AACM mixes (without Admixtures) under Wet/dry 

Curing 
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Appendix 3.3c: Cumulative Pore Volume of AACM mixes (with Admixtures) under Wet Curing 
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Appendix 3.3d: Cumulative Pore Volume of AACM mixes (without Admixtures) under Wet 

Curing 

  

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

C
u

m
m

u
la

ti
v

e 
P

o
re

 V
o

lu
m

e 
(m

m
3
/g

)

Pore Diameter (µm)

AACM Mortar Mix M2

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

C
u

m
m

u
la

ti
v

e 
P

o
re

 V
o

lu
m

e 
(m

m
3
/g

)

Pore Diameter (µm)

AACM Mortar Mix M3

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

C
u

m
m

u
la

ti
v

e 
P

o
re

 V
o

lu
m

e 
(m

m
3
/g

)

Pore Diameter (µm)

AACM Mortar Mix M4

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

C
u

m
m

u
la

ti
v

e 
P

o
re

 V
o

lu
m

e 
(m

m
3
/g

)

Pore Diameter (µm)

AACM Mortar Mix M5

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

C
u

m
m

u
la

ti
v

e 
P

o
re

 V
o

lu
m

e 
(m

m
3
/g

)

Pore Diameter (µm)

AACM Mortar Mix M2

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

C
u

m
m

u
la

ti
v

e 
P

o
re

 V
o

lu
m

e 
(m

m
3
/g

)

Pore Diameter (µm)

AACM Mortar Mix M3



 

293 

  

Appendix 3.3e: Cumulative Pore Volume of AACM mixes (with Admixtures) under Dry Curing 

  

  

Appendix 3.3f: Cumulative Pore Volume of AACM mixes (without Admixtures) under Dry 

Curing 
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Appendix 3.4a: Cumulative Pore Volume of AACM Mortar Mix M3 (different Liquid/Binder 

Ratio) under Wet/dry curing 
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Appendix 3.4b: Cumulative Pore Volume of AACM Mortar Mix M3 (different Liquid/Binder 

Ratio) under Wet curing 
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Appendix 3.4c: Cumulative Pore Volume of AACM Mortar Mix M3 (different Liquid/Binder 

Ratio) under Dry curing 

  

 
Appendix 3.5a: Differential Pore Volume of AACM Mortar Mix M3 (different Liquid/Binder 

Ratio) under Wet/dry curing 
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Appendix 3.5b: Differential Pore Volume of AACM Mortar Mix M3 (different Liquid/Binder 

Ratio) under Wet curing 
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Appendix 3.5c: Differential Pore Volume of AACM Mortar Mix M3 (different Liquid/Binder 

Ratio) under Dry curing 
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Appendix 3.6a: Pore Size Distribution of AACM and OPC mixes (without Admixtures) under 

Wet/dry Curing 

  

  

Appendix 3.6b: Pore Size Distribution of AACM and OPC mixes (Without Admixtures) under 

Wet Curing 
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Appendix 3.6c: Pore Size Distribution of AACM and OPC mixes (without Admixtures) under 

Dry Curing 
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Appendix 3.7a: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Wet/dry Curing (batch a). 

  

  

Appendix 3.7b: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 under Wet Curing 

(batch a). 
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Appendix 3.7c: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Dry Curing (batch a). 
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Appendix 3.8a: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 under 

Wet/dry curing 
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Appendix 3.8b: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Wet Curing (batch b). 

  

  

Appendix 3.8c: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Dry Curing (batch b). 
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Appendix 3.9a: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Wet/dry Curing (batch a). 
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Appendix 3.9b: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Wet Curing (batch a). 
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Appendix 3.9c: Cumulative and Differential Pore Volumes of AACM Mortar Mixes M2 to M5 

under Dry Curing (batch a). 
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Appendix 3.10a: Cumulative and Differential Pore Volumes of AACM and OPC Mortar Mixes 

under Wet/dry Curing (batch b). 
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Appendix 3.10b: Cumulative and Differential Pore Volumes of AACM and OPC Mortar Mixes 

under Wet Curing (batch b). 
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Appendix 3.10c: Cumulative and Differential Pore Volumes of AACM and OPC Mortar Mixes 

under Dry Curing (batch b). 
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