Sheffield Hallam University

FRP Strengthening of RC Beams - Research overview

SERBESCU, Andreea, GUADAGNINI, Maurizio and PILAKOUTAS, Kypros Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/21705/

This document is the Presentation

Citation:

SERBESCU, Andreea, GUADAGNINI, Maurizio and PILAKOUTAS, Kypros (2017). FRP Strengthening of RC Beams - Research overview. In: Institution of Structural Engineers - Linking Academia and Research, Diamond Building, University of Sheffield, 17 May 2017. (Unpublished) [Conference or Workshop Item]

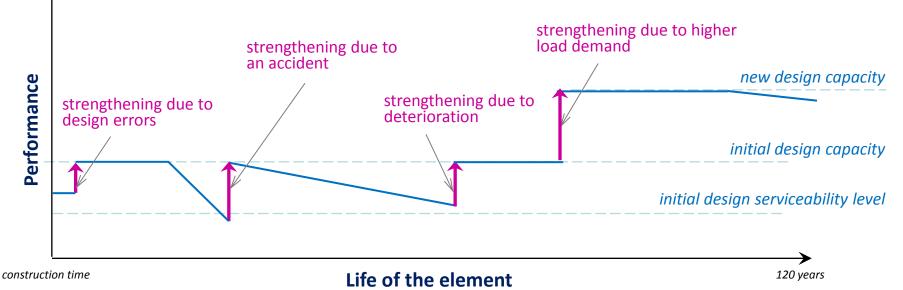
Copyright and re-use policy

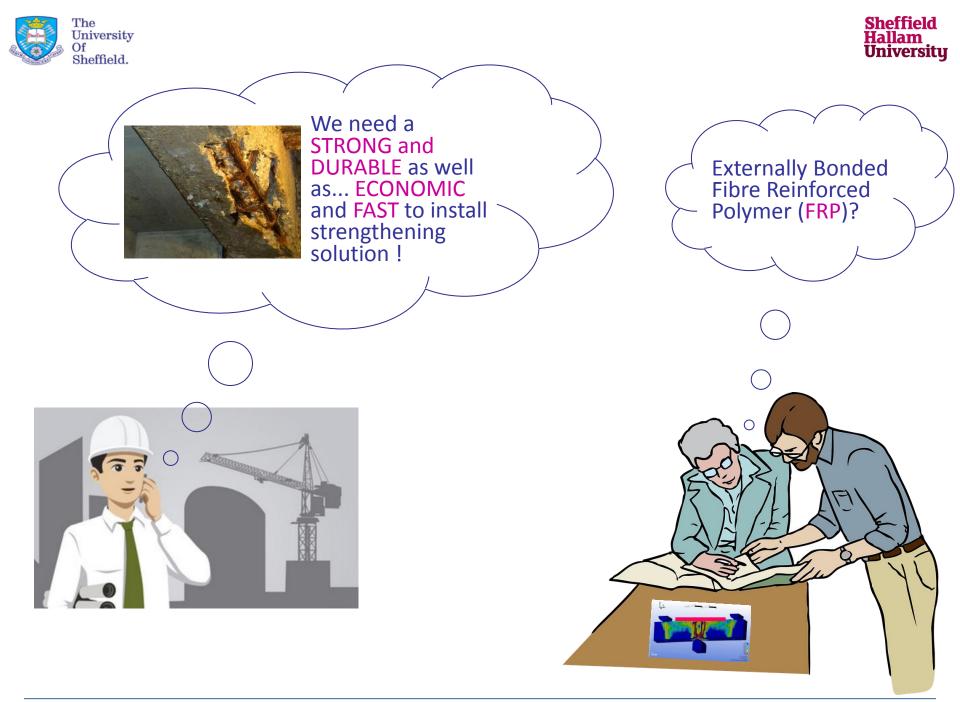
See http://shura.shu.ac.uk/information.html

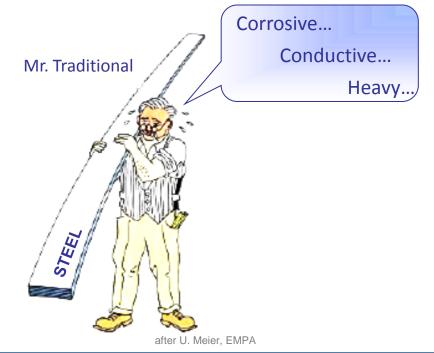
FRP Strengthening of RC Beams

Research Overview

Dr. Andreea Serbescu Dr. Maurizio Gudagnini Prof. Kypros Pilakoutas andreea.serbescu@shu.ac.uk


Need for strengthening



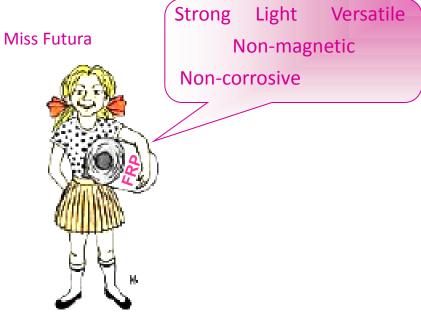

Traditional strengthening

Steel plate bonding

Courtesy of G. Nichols

Sheffield Hallam University

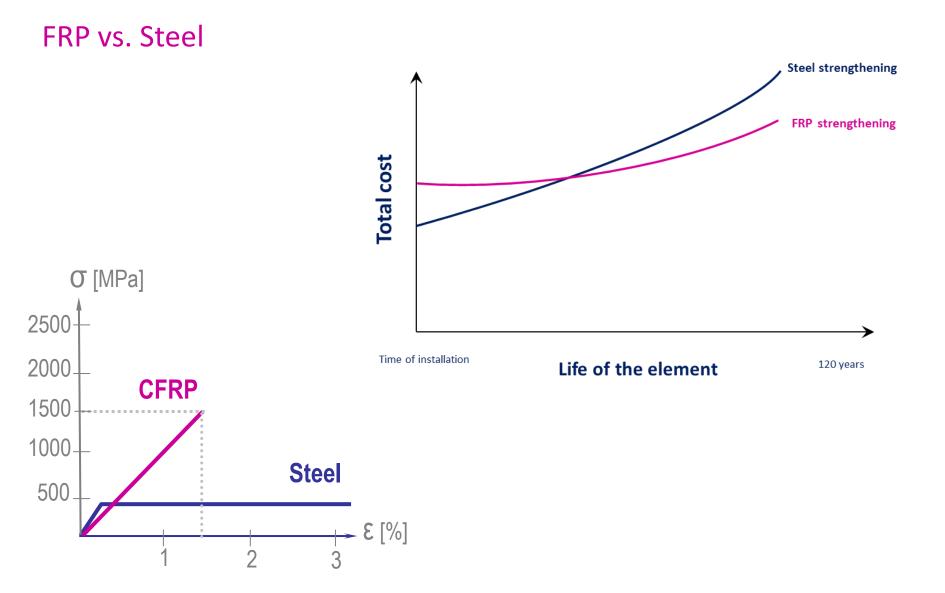
Modern strengthening


FRP plate bonding

sika.com

buildera.com

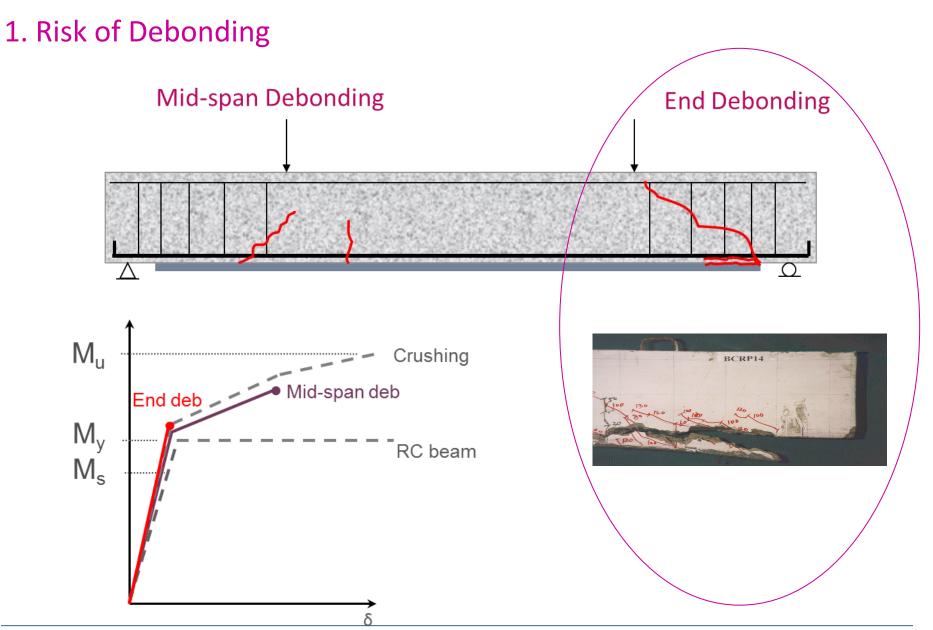
after U. Meier, EMPA



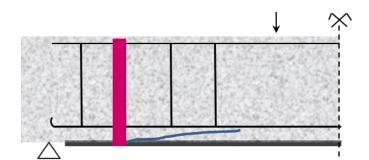
FRP Systems - Issues

- Lack of Ductility
- Risk of Debonding
- Susceptibility to Damage
- Susceptibility to High Temperature
- Uncertain Long-Term Durability
- Lack of Easy-to-Follow Design Procedures

FRP Systems - Issues

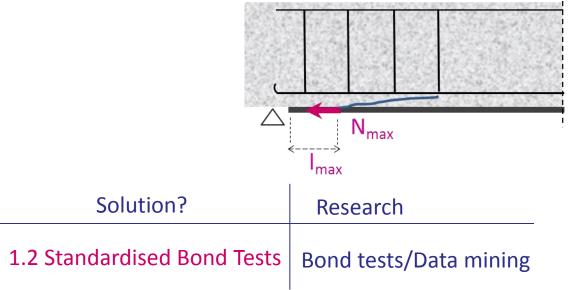


- Lack of Ductility
- **1** Risk of Debonding
 - Susceptibility to Damage
 - Susceptibility to High Temperature
- 2. Uncertain Long-Term Durability
- **3** Lack of Easy-to-Follow Design Procedures



Control of End Debonding

• Provide mechanical anchorages



Issue	Solution?	Research	
Additional cost	1.1 Use of Basalt FRP as anchorage	Beam tests/Analysis	

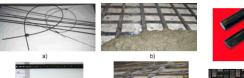
• Predict debonding loads

Issue

No reliable models

 \sim

1.1. Use of Basalt FRP as anchorage


Volcano

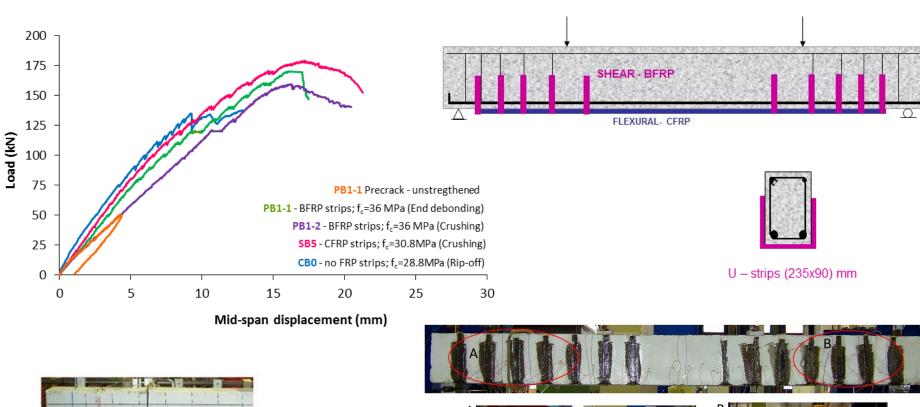
Basalt Rock

Basalt Plant

Basalt Fibres



Furnace


Crushed Basalt Rock

Characteristic of fibres	Basalt	E-Glass	S-Glass	Carbon
Tensile Strength (MPa)	3000~4840	3100~3800	4020~4650	3500~6000
Elongation at break (mm)	3.1	4.7	5.3	1.5~2.0
Elastic modulus (GPa)	79.3~93.1	72.5~75.5	83~86	230~600
Temperature of use (°C)	-260~+500	-50~+380	-50~+300	-50~+700

CB0

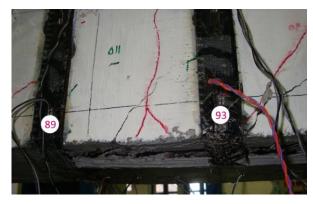
PB1-1

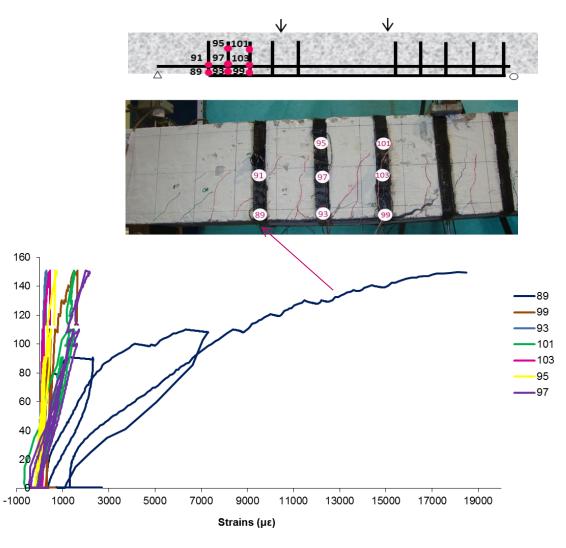
- Increase in debonding load (~27%)
- Pseudo-ductility

CB0 beam (brittle)

PB1-1 beam (distributed cracking)

Sheffield Hallam University




• High strain in Basalt FRP strips

• No debonding of BFRP strips

Load (kN)

1.2. Standardized Bond Tests

Double-shear tests (20 specimens)

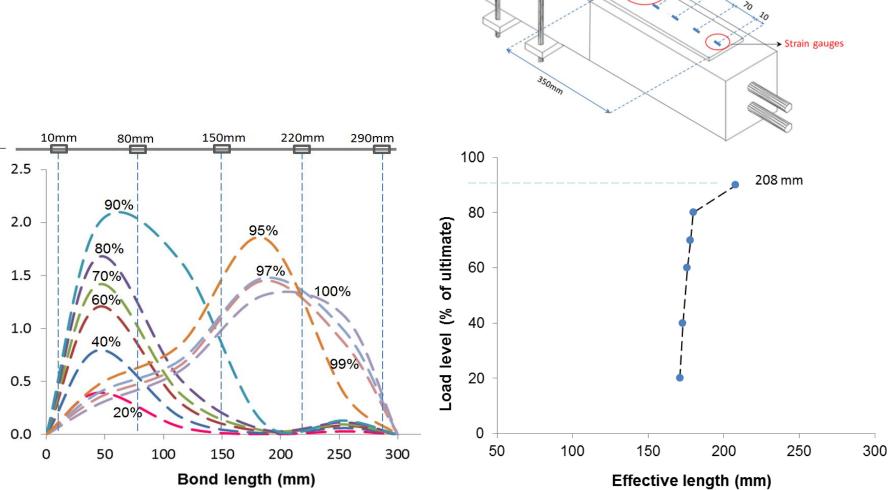
Parameters

Name	Width b _f	Thickness t _f	Area A	Strength fr	Elastic modulus Ef	Ultimate strain ε _u
	[mm]	[mm]	[mm ²]	[MPa]	[GPa]	[%]
C1A	100	1.2	120	3100	165	1.7
C1B	100	1.4	140	3100	210	1.3
C1C	60	1.3	78	3100	165	1.7
C3	100	1.2	120	2850	165	-
C4	100	1.4	140	3100	170	1.6
C5*	80	1.2	96	2590	200	-
C1C-R	60	1.3	78	3100	165	1.7

* - tested at The University of Sheffield only

Surface roughness

Local bond stress (MPa)

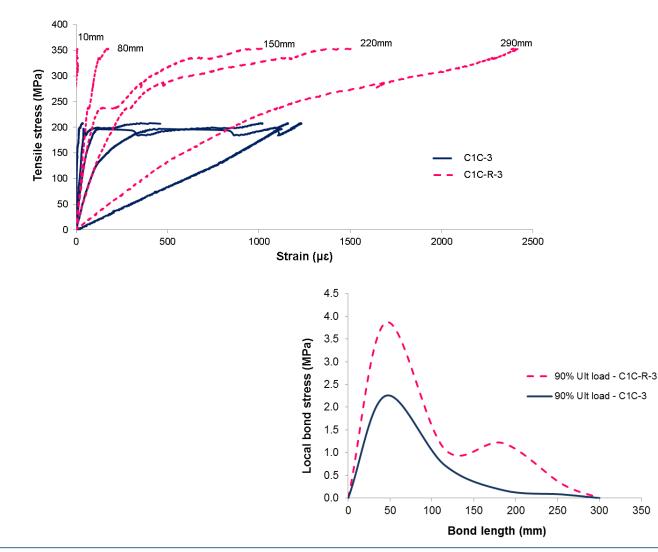


LVDT

20

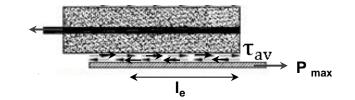
20

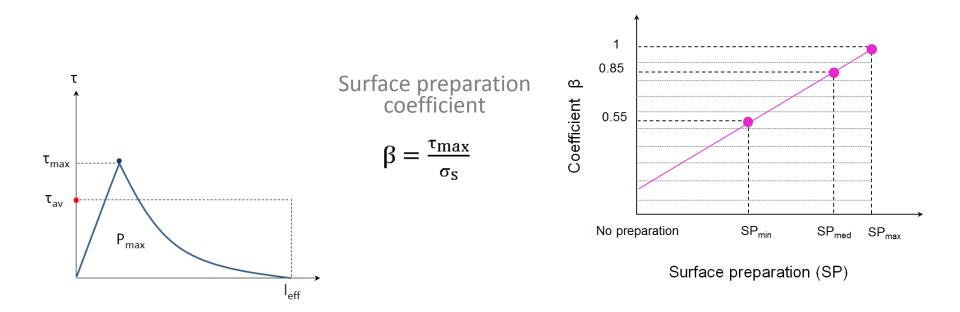
Local bond stress vs. bond length


Effect of surface preparation

Rough surface

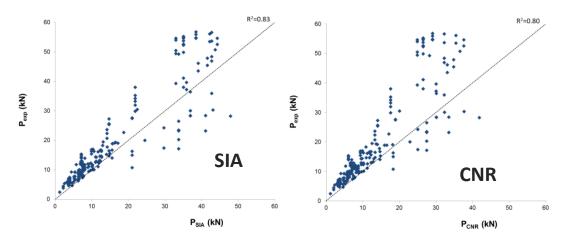
Smooth surface

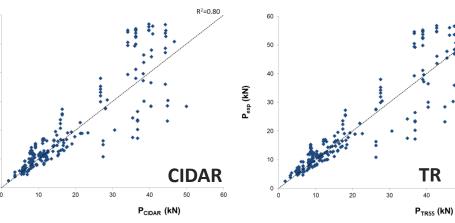


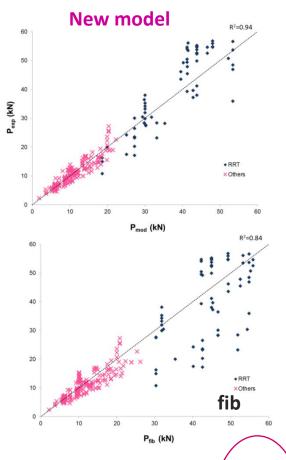


Proposed new model – Debonding force

$$P_{max} = \beta \cdot k_{b_f} \cdot \frac{2}{3} \cdot (0.8 \cdot \sqrt{f_{cu}}) \cdot \left(\sqrt{\frac{E_f \cdot t_f}{2.8 \cdot f_{ctm}}}\right) \cdot b_f$$






P_{exp} (kN)

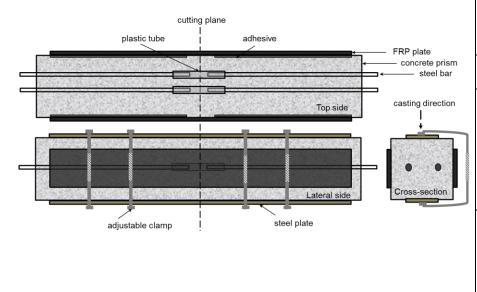
Model verification - database of 278 tests

Predictions		fib	SIA	CNR-DT	CIDAR	TR55	Proposed
	AVG	1.12	0.78	0.70	0.99	0.98	1.01
Pmod/Pexp	STDEV	0.30	0.24	0.21	0.27	0.26	0.17
	COV	0.27	0.31	0.29	0.28	0.27	0.17

R²=0.84

TR

Recommended Standard Test Protocol


Casting

Surface preparation

Loading rate

Transportation

Testing time Bonding procedure

	RRT - Check list	
STAGE	ACTION	Done
	- select FRP systems	V
	- determine experimentally the elastic modulus of FRPs and measure accurately	
Stage 1:	their cross-sectional size	
Test parameters	- estimate the effective length and choose a longer bond length	
1000 F	- select the strain gauge interval	
	- set the loading rate	
	- decide the targeted strength of concrete at 28 days	
	- prepare moulds	
	- cast cubes and cylinders for compressive, tensile and E-modulus tests at 28 days	
Stage 2:	- cast each two specimens as a single prism	
Casting	- prepare 3 specimens per FRP system	
Casting	- tests fresh concrete properties (slump, density and flow)	
	- demould and cut each prism in half (~ 1 week of curing)	
	- test the properties of concrete at 28 days	
	- roughen the side surface of the prisms where the FRP systems will be bonded	
Stage 3:	- remove contaminants of the adherents and apply primer	
Bonding	- apply the adhesive using the template and let it cure for at least 24h	
	- prepare locally the FRP surface and mount the strain gauges	
Stage 4:	- place steel plates on the un-bonded sides of the prisms and hold the prisms	
Transportation	together using G-clamps	
	- test the compressive strength, tensile strength and flexural modulus of concrete at	
	28 days (testing time)	
Stage 5:	- mount the specimens in the testing machine and remove clamps from the test	
Testing	specimen	
Testing	- connect the strain gauges	
	- mount the LVDTs	
	- apply tensile load force to failure at the specified rate	
	- describe the full testing methodology and report concrete mix-design and tested	
	properties	
Stage 6:	- report failure modes	
Reporting	- present the raw data	
	- process the results (local bond stress and slip) and include relevant graphs	
	- include comments if any	
I	I	· '

2. Durability tests

Set ^{bar}	Tests		No. of bars	Nominal	Actual	Total no.
type			per diameter	diameter (mm)	area	of bars
			5	3	9.6	
11	Tensile test (TT1)	5	5	23.8	20
			5	8	57.1	
			5	10	86.8	
	Tensile test ('	,	5	3	9.4	5
		Water/20°C/1000h				
21	Durability test	Water/60°C/1000h	5	3	9.5	20
	(DT2)	pH13/20°C/1000h				
		pH 13/60°C/1000h				
		Water/60°C/200h	3	3	9.1	3
			9	6	33.3	
	Tensile tests (TT3)		5	4	15.5	24
			5	5	23.6	
			5	7	44.4	
		pH 9/20°C/100h	5	б	33.2	5
		pH 9/20°C/1000h	5	б	32.9	5
		pH 9/40°C/100h	5	6	33.2	5
32		pH 9/40°C/1000h	5	б	30.1	5
	Durability test		5	4	15.8	
	-	pH 9/60°C/100h	5	5	22.9	20
	(DT3)		5	б	32.6	
			5	7	44.4	
		pH 9/60°C/1000h	5	б	32.7	5
		pH 9/20°C/5000h	5	б	32.6	5
		pH 9/40°C/5000h	5	б	33.2	5
		pH 9/60°C/5000h	5	6	32.5	5

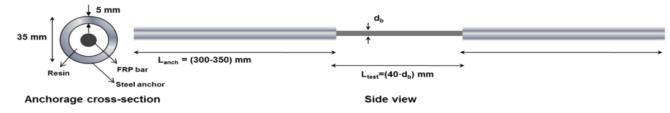
132 Basalt FRP bars

- Time:

100h, 200h, 1000h and 5000h

- Alkalinity:

pH7, pH9 and pH13

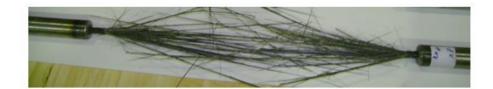

- Temperature:

20°C, 40°C and 60°C

Note: the nominal diameters were verified and used for stress calculations for bars without strain

Basalt FRP bars

type 1 – 10 mm


Conditioning

Tensile testing

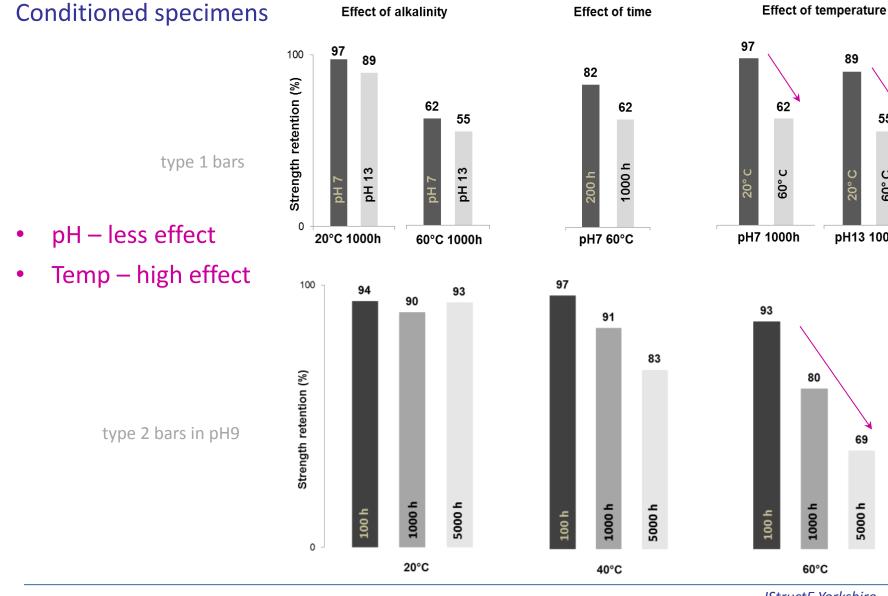
Sheffield Hallam University

89

55

60° C

pH13 1000h


62

60° C

80

1000 h

60°C

IStructE Yorkshire - May'17

69

5000 h

Long-term Strength Prediction Short-term Long-term strength strength $\mathsf{f}_{\mathsf{fk0}}$ (100 years service life) (tests at 1.5 months) 100 $v = ax^m$ Ric †_{fk1000} $1/\eta_{env}$ log decade Strength retention (%) ÷. †_{fk100years} Degradation line in reference ÷. environment when $f_{fk1000h} = f_{fk0}$ Degradation line in reference environment when $f_{fk1000h} < f_{fk0}$ 100 years Degradation line in a given 10 environment t_{on} 1000 10 100 10000 100000 1000000 1 Time to failure (hours) n_{pH} fib 40 (2007) $n = n_{mo} + n_T + n_t + n_d + (n_{mo} + n_T + n_t)$ on

R₁₀ - cst.

n_{on} - changes

IStructE Yorkshire - May'17

Proposed degradation parameters

Degradation	Range	Value
	Dry (50%)	-1
Moisture RH (n _{mo})	Moist (80%)	0
	Saturated (100%)	1
	7	0
pH (n _{pH})	10	0.5
	13	1
Time (nt)	≤ 1000 h	0
Time (iit)	> 1000 h	log(hours/1000)
	≥ tested	0
Diameter (nd)	~ 75% tested	0.5
	~ 50% tested	1
	0°C	-0.5
	10°C	0
	20°C	0.5
Temperature (nT)	30°C	1
	40°C	1.5
	50°C	2
	60°C	2.5
Onset (n _{on})	$f_{fkref} = f_{k0}$	-1.5
511000 (110H)	$f_{fkref} \neq f_{k0}$	non,opt

Proposed long-term strength prediction in any environment - Methodology

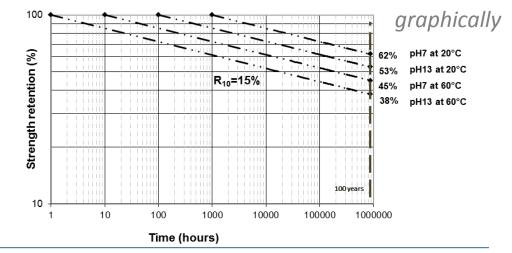
- Step 1. Condition specimens
- Step 2. Measure short term-strength
- Step 3. Establish degradation parameters
- Step 4. Determine the reference degradation curve
- Step 5. Estimate the long-term strength

analytically

- environmental strength reduction factor

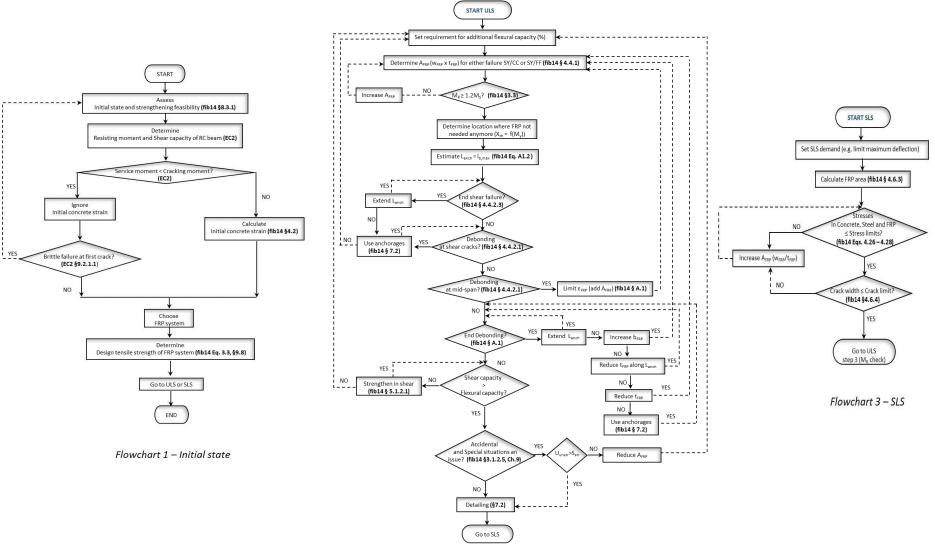
 $\eta_{env,t} = 1/((100 - R_{10})/100)^n$

- percentage of the long-term strength retained


 $f_{fkt\%} = (1/\eta_{env,t}) \cdot 100$

Tensile testing

Use Table


Find n_{on} and R₁₀

3. Proposed design flowcharts - designing with fib bulletin 14

Flowchart 2 – ULS

Sheffield Hallam University

Review

Issue addressed	Main Contributions
1. End debonding	 Bond tests improvements and methodology More accurate debonding model BFRP - effective U-anchorage
2. FRP durability	 Temp - high effect; pH - less effect Improved durability model and methodology
3. Design Procedure	 Design flowcharts

Contribute to providing engineers with more

confidence in designing with FRPs!

Thank you!

Acknowledgments

- Encore RTN and Magmatech Ltd

FRP to Concrete Bond Tests

Published in American Society of Civil Engineers Journal

FRP Durability

Published in Journal of Composites Part B

