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Abstract: Following high profile, life changing long term mental illnesses and fatalities in sports
such as skiing, cricket and American football—sports injuries feature regularly in national and
international news. A mismatch between equipment certification tests, user expectations and infield
falls and collisions is thought to affect risk perception, increasing the prevalence and severity of
injuries. Auxetic foams, structures and textiles have been suggested for application to sporting
goods, particularly protective equipment, due to their unique form-fitting deformation and curvature,
high energy absorption and high indentation resistance. The purpose of this critical review is to
communicate how auxetics could be useful to sports equipment (with a focus on injury prevention),
and clearly lay out the steps required to realise their expected benefits. Initial overviews of auxetic
materials and sporting protective equipment are followed by a description of common auxetic
materials and structures, and how to produce them in foams, textiles and Additively Manufactured
structures. Beneficial characteristics, limitations and commercial prospects are discussed, leading
to a consideration of possible further work required to realise potential uses (such as in personal
protective equipment and highly conformable garments).

Keywords: injury; impact; indentation; comfort; protective equipment; negative Poisson’s ratio;
foam; textiles; Additive Manufacturing; finite element modelling; auxetic

1. Introduction

Auxetic materials have a negative Poisson’s ratio (NPR) [1], meaning they expand laterally in
one or more perpendicular direction/s when they are extended axially. Poisson’s ratio (ν) is the
negative of the ratio of lateral to axial strain (Figure 1). The potential application of foams, textiles
and additively manufactured (AM) auxetic materials to sporting protective equipment (PE), as well as
other forms of impact protection, has been discussed in articles with a focus on materials (e.g., [2–5])
and sport (e.g., [6–8]). Auxetic foam was the first man made auxetic material [9], and makes up
a significant proportion of the scientific literature and therefore this review. Foam studies typically
use relatively established fabrication methods for auxetic polyurethane (PU) foams, with tests often
based upon those outlined in standards used to certify sports safety equipment (i.e., British Standards
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Institution—BSI, International Organization for Standardization—ISO, American Society for Testing
and Materials—ASTM). Idealised structures (e.g., those fabricated via AM) and textiles can be designed
to have repeat patterns that provide NPR in either one or two planes [5].
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Figure 1. Lateral (vertical) deformation due to Poisson’s ratio during tensile axial (horizontal) loading
for (a) a conventional material and (b) an auxetic material. Thick and thin arrows correspond to
deformation due to loading and Poisson’s ratio respectively.

There are numerous reviews into auxetic materials and/or structures [10–17], but there has not
yet been one focussing on their application to sporting goods. Deficiencies in standards (or a lack of
a standard in some instances) and PE [18,19] indicate changes in equipment testing and design are
likely, with the need for novel and improved materials to meet new requirements.

Recent developments in the fabrication of auxetic PU foam have deepened our understanding of
the mechanisms that can fix an imposed cell structure, while improving and diversifying fabrication
methods. Developments include rapid fabrications [20,21] and the ability to tailor elastic modulus
and Poisson’s ratios of anisotropic and gradient foam samples [22,23]. Finite element modelling
(FEM) has been applied to auxetic materials [24–26] but has not been fully explored to support
their implementation within sports equipment. With developments in AM [27], the creation of
idealised auxetic structures (computationally tested using FEM) has become commercially viable [28].
Developing fabrication techniques for auxetic textiles and composites are also bringing both protective
and form-fitting auxetic garments closer to realisation [29].

The focus of this review is on sports equipment and auxetic materials, predominantly auxetic
foams, textiles and FEM/AM for impact protection. NPR can provide uniquely high indentation
resistance [30,31] and fracture toughness [32], lending auxetic materials well to impact force or
acceleration attenuating scenarios, regularly demonstrated by impacting auxetic foams [2,3,33].
Auxetics’ multi-axial expansion [34,35] and double curvature [9,36,37] could improve comfort, fit
and durability in sporting garments and personal protective equipment (PPE). Multi-axial expansion
could also be useful in filtration applications [9,38–40], while gradient structures’ enhanced bending
stiffness [41,42] could reduce the mass of skis, snowboards, tennis rackets or hockey sticks (to name
a few), without sacrificing stiffness. An initial summary of current sporting PE and PPE will lead to
descriptions of common auxetic structures and materials, how to create them and how they could
resolve issues in sporting PE, PPE, garments and other sports equipment.

2. Introduction to Sporting Protective Equipment

Injuries in sport are common and place a significant burden upon participants and national
economies [43,44], estimated at $525 (~£380) million per year in The Netherlands [45] for example.
The main methods of intervention are elimination, modification (a reduction in severity or likelihood
of injury) and reaction (i.e., medical) [44]. Preventative measures such as sports safety equipment,
and/or rule changes, are more cost effective than reactive procedures [44] and successful products
can increase a manufacturer’s share of the sporting goods market (~$90/£66 billion in the USA
in 2017 [46]). Sporting PE is intended to reduce risks and is typically either an addition to the
playing field or environment (i.e., crash matt or barrier, known herein as PE) or PPE. Both equipment
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types provide; (i) protection against impact, dissipating and absorbing energy while reducing
peak forces/accelerations, pressures and in some cases such as helmets, impulses [43,44,47–49] and
(ii) protection from penetration, abrasions and lacerations [18,47,48,50]. Sporting PPE can also provide
support to joints, muscles and the skeleton [18,44,47,48,51].

Sporting PPE (Figure 2a) often contains a shell—typically a stiff material or non-Newtonian
fluid layer—to spread forces and reduce pressures [47,48,50,52]. Impacts are typically attenuated by
elastic [44,52], viscoelastic and/or permanent deformation (i.e., crushable foam in cycling helmets) of
a cushioning material with a lower compressive stiffness than the shell [47,48,50,52]. Visco-elastic and
permanent deformation reduce impulses, improving the level of protection [44].

Sporting PPE must sometimes cover large areas and should ideally be low in mass and bulk to
reduce restriction of movement, fatigue and heat build-up. Foam is typically used for the cushioning
layer in PPE, and with limited thickness to compress and decelerate impacting bodies material selection
is crucial. In contrast, PE such as crash mats (where bulk, mass and ergonomics are less critical) are
often large and thick, allowing more gradual deceleration over a greater distance through compression
of relatively compliant foam [52]. For both sporting PE and PPE, deceleration (or force) ideally reaches
a maximum yet safe value at low strains, before plateauing and deforming with no additional load
to safely maximise energy absorption (the integral of decelerating force with respect to deformation)
before foam densification (at high strains) causes high deceleration (or force) [53]. Crash mats are
used in a variety of conditions; protecting skiers, snowboarders and mountain bikers (who can travel
at high speeds) from hazards on a mountain (i.e., lift poles or trees), often in extreme and variable
climates, to providing padding to gymnasts on flat surfaces at room temperature.
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Figure 2. (a) Schematic of a typical piece of Personal Protective Equipment containing pressure
dissipating material (hard outer shell) and energy absorbing/cushioning material (deformable foam);
(b) Impact adapted from British Standard 6183-3:2000.

Sport safety equipment is often certified according to tests specified in standards and regulations
(i.e., [54–58]), which typically specify a maximum allowable peak force/acceleration under impact
(i.e., Figure 2b). To perform well in these tests, a product should absorb or dissipate as much energy as
possible to prevent force/acceleration from passing its allowable limit [59]. Criteria within standards
(such as impact energies, velocities and masses) are not always well justified and tests typically
feature fixed rigid anvils rather than biofidelic (human like) surrogates, meaning they are not overly
representative of the scenarios where the equipment may be required to perform [44]. In some cases
there is no standard, so manufacturers certify products against a standard for another safety device,
which can be misleading for consumers. McIntosh discusses the increased chance of injury when
perceived protection offered by equipment is incorrect [19].

Crash mats are typically certified to BS EN 12503-1:2013 [60] as intended for gymnasium use,
but include impact tests for outdoor activities such as pole vaulting. BS EN 12503-1:2013 is not
reflective of the sometimes harsh and variable outdoor environment (weather conditions, surfaces, etc.)
where these mats can be located, and tested parameters do not reflect realistic impacts [58]. There are
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other occasions where specific standards are not available, and so a proxy is used. Two examples
from snow sports are wrist protectors, certified to EN 14120:2003 [61] for roller sports [51], and back
protectors, which are often certified to EN1621 (motorbike) [62]. Schmitt et al. found that snow sport
participants expect back protectors to protect the spine, but EN1621 does not test against scenarios
likely to cause spinal injury [18]. Inspection of PPE (impact shorts, knee guards, elbow guards and
back protectors etc.) marketed for adventure sports including mountain biking, kayaking and snow
sports shows EN1621 [62] & EN 14120:2003 [61] (for motor-biking) are repeatedly used in place of
a dedicated standard.

Some standards have received criticism for not providing adequate tests even when applied to
their intended field. Reaction to a number of high profile deaths and serious injuries as well as multiple
awareness campaigns [63] raised the issue of helmet use in snow sports considerably, but head injury
rates have remained fairly constant [63,64]. Scandals in the National Football League (NFL) culminated
in high proportions of Chronic Traumatic Encephalopathy (CTE, up to 99% in a bias but large sample
set) that could have contributed to early death, suicide and dementia in players [65].

In some cases, equipment and regulations intended to protect sports people are clearly
unsatisfactory. As an example of equipment not meeting expectations, attenuation of rotational
acceleration is thought to be critical in protection from concussion in sports [66,67]. Standards,
however, typically assess helmets based upon their attenuation of linear accelerations (e.g., EN1077
& ASTM F2040, & F1446 [54,56,68]) and resistance to penetration (e.g., EN1077 [56]) based upon
direct impacts [69,70]. Standards can be updated or replaced, for example BSI 6685-1985 for motorised
vehicle helmets (a previous revision of Reference [71]) replaced BS2495:1977 and BS5361:1976 to include
oblique impacts. The standard for cricket helmets (BS7928:1998) was amended (BS7928:2013) to include
impacts by cricket balls [72] following findings that cricket helmets were not sufficiently attenuating
acceleration under high speed impacts [73]. Commuter cycling (where cyclists travel alongside motor
vehicles) is becoming increasingly popular due to clear benefits to health, congestion and emission
levels, as well as improved facilities such as dedicated lanes. Safety concerns are a major barrier to
participation in commuter cycling [74,75] but helmets are still only certified to protect from linear
accelerations [76].

Sports equipment is a competitive, rapid uptake market. Manufacturers search for new
technology to remain competitive, achieve the highest possible levels of certification and improve
safety. One approach to solve the problem of rotational acceleration in helmets is a slip plane between
the shell and crushable foam [77]. Slip plane technology is included in some commercial helmets,
despite a lack of experimental evidence to support a reduction in concussion risk [78–81], highlighting
the problem caused by insufficient standards. As an example of material development in sporting PPE,
trends over the past twenty years have favoured lightweight, ergonomic equipment which does not
sacrifice performance in standard tests [49]. Non-Newtonian fluids with high energy absorption were
developed and can act as both a shell and cushion [82,83], offering comfort and flexibility under normal
use and increased stiffness under impact. Non-Newtonian materials in isolation can pass certification
tests for sporting PE and PPE [18,44,47,48,50]. Scientific literature highlights limitations in standards,
as well as associated certified products including helmets [69,79–81], back protectors [18,50] and wrist
protectors [51,84,85]. Recent trends look to include the use of more representative surrogates rather
than rigid anvils [84,86,87] and tests designed for specific sports [50,51] to replace proxy standards
(e.g., [61]). Solutions including novel materials are needed to reduce the effect of sports injuries and
meet required improvements to standards (i.e., as per BSI 6685-1985 [71] and BS7928:2013 [72]).

3. Common Auxetic Materials and Structures

Auxetic research began in earnest with open cell foam [9], the first example of a man made
NPR material. Subsequently, auxetic materials have now been developed or discovered in other
nanocrystalline [88] and microporous [89]) polymer, ceramic [90], metallic [91] and composite [92]
forms, and include natural systems [93]. Auxetic materials such as foams, textiles and AM structures
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are often classed as mechanical metamaterials; with unexpected macro-scalar (effective) characteristics
caused by their micro/nano-structure [15].

This section will first discuss the modelling of auxetic structures and mechanisms, before
considering auxetic foam fabrication, properties and characteristics, followed by some of the other
auxetic materials of relevance including textiles and those manufactured by AM.

3.1. Modelling Auxetic Materials and Structures

Numerical [94–97], molecular [98] and FE models [99–101] have all been applied to auxetic
materials. These models, used individually or combined, typically analyse the elastic deformation
mechanisms of auxetic materials. The most common microstructures of cellular auxetics can be
designated into three types; re-entrant, chiral and rotating units (Figure 3a–c). The 2D re-entrant
structure (such as Figure 3a,d) was the first to be modelled numerically [95] and was developed in
early work on auxetic honeycombs and foams. Other early models included a mechanical model of
isotropic 2D/3D frameworks of rods connected by sliding collars [102] and a thermodynamic model
of a 2D assembly of hard cyclic hexamer ‘molecules’ [103]. Chiral auxetics (Figure 3b)—asymmetric
structures that are non-superimposable on their mirror image [104]—achieve NPR through cooperative
node rotation-induced bending of connecting ligaments. Rigid rotating units (Figure 3c) can have
NPR, dependent on the rotation of connected squares [105] or other shapes [106–108], and this
model has been used as an alternative to the re-entrant model in auxetic foams [109]. Other models
and structures exist, including the missing rib model [110], cellular systems featuring pre-defined
mechanical instabilities [111] and the nodule-fibril model for polymers [112]. Auxetic behaviour
induced by elastic instability includes systems consisting of 2D tessellation of elliptical [113] and other
shape [114,115] voids and 3D tessellations of holes [116]. Non-porous sheets with tessellations of
spherical dimples have also been investigated for auxetic response [117].

Figure 3. (a) Assembled 2D re-entrant structure; (b) 2D Chiral structure; (c) 2D rotating squares
structure; (d) Micro Computed Tomography of polyurethane auxetic open cell foam (depth = 1 mm),
pop-out showing simplified 2D diagram of a re-entrant cell, θ = re-entrant angle (negative value for
angle below horizontal axes); (e) Micro CT scan of conventional open cell PU foam (depth = 1 mm),
with pop-out showing simplified 2D diagram of a conventional polyhedral cell, θ = cell rib angle
(positive value for angle above horizontal axes).
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Re-entrant models have been used to investigate the deformation mechanics of cellular auxetics.
Deformation due to flexure of the cell wall alone was initially considered, with the cell ribs assumed
to behave as beams of uniform thickness [118]. Combined hinging (change of angle between
ribs) and stretching (increase in rib length) of the cell wall was later modelled [98], as well as
a 14-sided polyhedron, specifically for open cell foam, with cell rib bending as the main deformation
mechanism [119]. All three deformation modes have been modelled simultaneously [96,120],
confirming that the change of cell parameters (e.g., cell length or rib angle) directly affected Poisson’s
ratio and Young’s modulus. The combined hinging, stretching and bending model [96] has been
adapted to accurately predict the mechanical properties of gradient, isotropic and anisotropic auxetic
foam [23].

Auxetic application in other fields has progressed with the use of FEM, such as auxetic cores used
in sandwich plates that reduce shear stresses [121], anti-tetrachiral stents demonstrating desired radial
expansion with axial stability [122] and smart auxetic honeycombs in structural health monitoring [123].
FEM can predict the effect of changing design parameters of auxetic structures, such as cell wall
thickness [97,124], unit cell cross-sectional area [94], relative stiffness of modelled beams [125] and
ratio of vertical to oblique cell wall length [126]. Simulation results could therefore aid and inform the
design of future prototypes—e.g., to reduce a structure’s mass while maintaining the maximum load it
can support. FEM has also been used to develop understanding of the effect of plastic deformation
on auxetic behaviour [127,128] and generate specific material models to explore impact resistance of
auxetic honeycomb structures [129]. A framework for modelling auxetic foam using the continuum
approach at large strains has been developed with FEM [130–132] and could be extended to model
composite structures made from auxetic materials.

Several FEM studies established that the angle of re-entrant cell ribs effects Poisson’s
ratio [26,133–135], demonstrating cell parameter manipulation. FEM has also highlighted that other
internal cell parameters (e.g., length, height, thickness) can be changed to tune the Poisson’s ratio, and
that flaws in the re-entrant cell structure can reduce NPR's magnitude towards zero [136]. Innovations
are facilitated by FEM, such as the combination of two auxetic structures within one design (re-entrant
hexagon and arrowhead) [137], honeycombs with ribs made of 2-phase composite material [138],
the development of curved honeycomb unit cell designs [139], the creation of auxetic honeycombs
inspired by the spider’s web [140] and the formation of auxetic systems made out of readily available
materials [141] and recycled rubber [142].

FEM has also been employed to model auxetic two-phase systems without voids by filling the
spaces of a cellular first phase with a matrix second phase. This was an idea first postulated in
1992 and modelled analytically for elastically isotropic laminates by Milton [143] and using FEM
for ‘network embedded composites’ by Evans and co-workers [144]. More recently, FEM has been
extended to a two-phase core employing conventional and/or auxetic phases for out-of-plane auxetic
behaviour [141], and to sandwich panel composites with the two-phase core employing established
auxetic cellular structures and/or auxetic matrix [145–147], as well as structures developed using
topology optimisation routines [145,148]. The ability to have temperature-dependent auxetic behaviour
in such systems has also been investigated using FEM by allowing one or both phases to possess
temperature varying Young’s modulus [149,150].

The effect of design changes on Young’s modulus and Poisson’s ratio can be adjusted and
improved before manufacture [121], and FEM can validate analytical results [151–158]. Full validation
of FEM often requires comparison and agreement with experimental testing [159–167], which can
potentially lead to extrapolation or tailoring of models for specific applications. Experimental test data
can be input into FEM solvers to validate and develop material models [168]. With a validated
model, design changes can be implemented and investigated without numerous iterations of
manufacturing and testing. FEM can then be used alongside optimisation tools to further improve
auxetic designs [169–173], although the ‘modelling theory’ remains to be examined stringently [174].
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Dynamic effects can also be examined with explicit FEM solvers. The energy absorption of
a re-entrant structure when crushed by a rigid wall has been analysed [175], but not experimentally
validated. Analytical formulae were however used to validate FEM suggestions that auxetic
honeycombs have higher energy absorption than conventional honeycombs in crushing strength
analysis [176]. When varying the impact energy on a jounce bumper [27,177], FEM closely matched
experimental values for the material’s Poisson’s ratio and compressive modulus and the jounce
bumper’s force and displacement. A subsequent auxetic bumper model showed less vibration
in compression than a non-auxetic equivalent. A range of (FEM) parametric studies compared
rate-dependent blast resistance performance in military applications [178,179]. Auxetic sandwich
panels had higher impact resistance than their conventional counterparts, validated with comparison
to analytical models rather than experimental data. Sporting PE and PPE typically aims to minimise
harmful impact forces/accelerations through high strain rate compression of energy absorbing
materials [180,181], and explicit solvers have previously facilitated such investigation [47,48,182].

3.2. Fabricating and Characterising Auxetic Foam

Auxetic foam is often fabricated to experimentally show expected enhancements (i.e., to impact
force attenuation or vibration damping) due to NPR [2,3,33,183]. Auxetic foam fabrications typically
change the cell structure of open cell foam (referred to herein as the parent foam) to give it an NPR.
Lakes’ thermo-mechanical fabrication method [9] first applies a volumetric compression ratio (VCR,
normally defined as original/final volume and typically between 2 and 5 [184]) to a parent foam in all
three orthogonal axes to buckle cell ribs [118]. The applied compression changes the cell shape and
causes the re-entrant structure, as cell ribs buckle beyond ~5% compression [118]. The compressed
foam is then heated to a set temperature to encourage permanent plastic deformation. The temperature
is typically between 130 and 220 ◦C [13], often referred to as the ‘softening temperature’ [20,185].
Finally, the foam is cooled to fix the imposed structure [9]. Buckling the originally straight ribs
(Figure 3e) gives the polyhedral cells a re-entrant, contorted cell structure [9] (Figure 3a,d). Typical
sizes were initially small, in the order of 20 × 20 × 60 mm (following fabrication), although larger
‘scaled up’ samples have subsequently been fabricated (e.g., [185–188]).

Fabrication methods for auxetic foams have developed and diversified since Lakes’ initial study [9].
Stretching samples after cooling was introduced to reduce adhesion between cell ribs and residual
stresses [189]. More recently, fabrication processes have been split into stages including; multiple
heating cycles (with foam removed from the mould and stretched by hand in between to reduce
residual stresses, flaws and creases [190]) and the addition of an annealing stage—heating below
the softening temperature. Foams are typically annealed at 100 ◦C [37,185,190], but alternatives to
annealing include slow cooling in the mould in air [20,191] or cooling outside the mould in air [192].
In an attempt to reduce creases and flaws when inserting foam into the mould, olive or vegetable oil
and WD-40 have been used to lubricate moulds [185,189,193].

Another line of investigation has attempted to increase the range of Poisson’s ratios and Young’s
moduli achievable following thermo-mechanical fabrications. The heat, time and compression applied
during fabrication can be adjusted to give higher magnitude NPR and increased stiffness [129]. Heating
for longer or at a higher temperature (‘over-heating’ while using typical compression levels) gives
a positive or near zero Poisson’s ratio re-entrant foam [30,194]. Over-heated re-entrant samples have
comparable density to typical auxetic foams and a linear stress strain curve without the presence of
a plateau region [30,194]. Comparing auxetic and over-heated foam with a positive Poisson’s ratio [194]
could demonstrate the effect of Poisson’s ratio on characteristics such as vibration damping or impact
force attenuation.

In depth analysis shows the complexity and diversity of chemical constitution in polymers
(including those found in foams) [20]. Polymeric microstructure [20], and microstructural changes
caused by heating [195] have only recently been investigated in relation to auxetic foam fabrication.
Li & Zeng targeted styrene acrylonitrile copolymer (SAN) particle bonding, which has a glass transition
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temperature of around 110 ◦C. Such, or other, electron donating groups [15] can provide fixing
mechanisms for imposed structures.

Sporting products often include foam sections which have a larger planar area than typical
auxetic foam samples (~20 × 20 × 60 mm) [9,185,196], and numerous scaled up fabrications have been
attempted [4,7,23,185–187]. Large fabricated samples often exhibit random and ordered inhomogeneity.
Random inhomogeneity is caused by flaws such as surface creasing [185], due to difficulty compressing
large samples of foam into the mould [186]. Ordered inhomogeneity was observed in fabricated cubes
(150 mm sides), where the centre had the lowest density [4,8]. Possible explanations include reduced
compression towards the centre of the cube during fabrication or a thermal gradient that meant the
internal structure was not sufficiently fixed and re-expanded following fabrication. The specific
influence of temperature gradients and compression gradients during auxetic foam fabrication
is unclear.

Solutions to increase homogeneity when fabricating large samples of foam include; (i) a mould with
moveable walls which can be assembled around the foam and then used to apply compression [186,197];
(ii) a multi-stage compression process with an intermediate VCR to reduce insertion forces [185]
and (iii) a vacuum bag to apply compression [187]. Vacuum bags can apply consistent pressure
through thickness, reducing external densification and allowing fabrication of additional shapes
(i.e., curved) [187]. Recent work utilising rods passing through large sheets of foam [7,8,23,188] is the
only published method which seeks to apply controlled distribution of material within the mould.
‘Felted foams’ are fabricated commercially by compressing open cell foam between two heated plates
to impart an anisotropic, re-entrant cell structure and direction dependent NPR [33].

Small scale fabrication parameters depend on the type of foam used and the compression levels
applied [20,185]. It is likely that changes to fabrication parameters may be needed when ‘scaling up’
fabrications, and there may not be a ‘one size fits all’ style best approach. A comparative evaluation
of gradual compression, vacuum bag compression and controlling internal compression using rods
would, nonetheless, highlight advantages and disadvantages and aid selection and adaptation of the
most appropriate method for fabricating large samples of auxetic foam.

Alternatives to the thermo-mechanical fabrication process [9] include using a solvent or softening
agent instead of heating. Acetone [196] and pressurised CO2 [21] can be used, depending on
polymeric constitution and types of bonding present within the original foam. Softening methods
can be combined, and both acetone [2] and CO2 [21] have been used in combination with heat.
Chemicals can be used to target specific bonds (i.e., SAN particle bonds) [20]. Liquid solvents (such
as acetone) will require a drying phase and so some form of gradient is likely in larger samples.
Provided there is no significant gradient due to diffusion of gases from the centre of samples
during/after fabrication, the CO2 softening route could reduce the effect of temperature gradients in
thermo-mechanical fabrications.

Attempts to apply thermo-mechanical fabrication methods typically used for open cell foam to
closed cell foam can rupture the foam’s cell walls [185,198]. NPR has still been achieved along one
axis in closed cell low density polyethylene (LDPE) foam, by combining thermal softening (at 110 ◦C)
and high hydrostatic pressure (662 kPa, applied by a pressure vessel) over 10 h and maintaining the
pressure for a further 6 h after cooling [199]. Heating for an hour at 86 ◦C, then subjecting to vacuum
pressure for 5 min prior to sudden restoration of atmospheric pressure also produced uniaxial NPR in
the same LDPE closed cell foam [199]. Slow diffusion of gas through cell walls was similar to predicted
values, suggesting the cell walls in the auxetic LDPE foam had remained intact. Solid state foaming
(sticking together pieces of closed cell foam cut in a re-entrant shape) [200], syntactic foam processes
(embedding degradable/collapsible beads with a re-entrant shape into a molten/liquid polymer) [201]
and AM [202] have also produced auxetic foam-like structures.

Measuring strain in compliant, often inhomogeneous foam or foam like structures requires
non-contact methods. Wide ranging studies, employing a variety of test protocols, have been
undertaken to characterise auxetic polymeric foams for structural, mechanical, thermal, filtration
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and impact properties, for example. Isotropic auxetic foams with Poisson’s ratio between 0 and
−0.7 have been reported (e.g., [3,9,20,22,23,189,195,203]). Higher magnitudes of NPR (<−1) have also
been reported for anisotropic auxetic foams [187,190]. Density measurements of whole or dissected
samples are useful in assessing the extent of, and variation in, volumetric compression throughout
thermo-mechanically fabricated re-entrant foam [22,204]. Standardisation while characterising
samples would help assess levels of agreement between different studies. Where possible future
testing should be undertaken in accordance with, or based upon, the appropriate ASTM standard
(e.g., ASTM-D412—15a [205]) for quasi-static tensile testing, which requires communication of sample
dimensions, strain rate, range and measurement method and joining/contact methods between sample
and test rigs.

3.3. Fabricating Auxetic Textiles

Auxetic textiles have the potential to contribute enhanced mechanical properties to textile
applications in sport—including for apparel, equipment and injury prevention and treatment.
Developments of auxetic fibres and fabrics, and their production methods, have enhanced the
potential to use auxetic textiles commercially. Auxetic yarn with a high magnitude of NPR (<−2)
can be produced from standard, non-auxetic fibre materials and conventional textile manufacturing
processes [206]. Fabrics can, therefore, be manufactured from auxetic yarns without the need to
develop new techniques.

The auxetic yarn in Reference [206] comprises a relatively high modulus thin wrap fibre around
a lower modulus thick core. Both wrap and core components are typically conventional fibres.
When extended the (initially helical) wrap fibre becomes straight and pushes the (initially straight)
core fibre into a helix. Since the core is thicker than the wrap, the final stretched yarn is thicker with
the helix core than the initial un-stretched yarn with a helical wrap. Due to the double helix nature
of the wrap and core construction, the auxetic yarn is referred to in the literature as the double helix
yarn (DHY) [207] and also the helical auxetic yarn (HAY) [208–211]. In this review we refer to this
yarn as the DHY. Development of the DHY includes an auxetic plied yarn [212], auxetic braided
structure [160], and a DHY where the ‘wrap’ fibre is stitched in place to offer more control over its
behaviour by preventing fibre slippage [213]. Heat treatment has also been utilised to solve the issue of
slippage [214]. The initial angle at which the wrap fibre is spun around the core fibre, and the diameter
ratio of wrap to core fibre influences the value of the NPR, whereby a lower yarn wrap angle increases
the magnitude of NPR [215–217]. The DHY offers increased energy absorption under impact [209].

The production of auxetic polymeric monofilament fibres has also been reported and utilises
a process of continuous melt extrusion [218,219] to form a microstructure of interconnected
surface-melted powder particles. NPR arises at the microscale of these monofilaments, in contrast
to conventional filaments, for which mechanical properties, including Poisson’s ratio, arise at the
molecular (polymer chain) level [220]. The developed auxetic monofilaments have been used to
demonstrate enhanced fibre pull-out resistance of auxetic fibres, requiring double the extraction force
(than their conventional counterparts) [221], which could enhance the longevity and robustness of
sports apparel and equipment.

Auxetic yarns and fibres have been incorporated into fabrics. The DHY has been employed
to produce auxetic woven fabrics for composite reinforcement [206] and potentially as medical
bandages [217]. Auxetic plied yarns have also been used in woven fabrics where yarns with shorter
floating threads promote a greater magnitude of NPR in the fabric [222]. The auxetic monofilament
has been used to develop knitted, woven and non-woven fabrics [223].

Auxetic fabrics can also be produced from conventional fibres. Out-of-plane NPR has been
induced in non-woven fabrics, produced thermo-mechanically [224,225], via compression between two
flat, heated plates to tilt and buckle needle punched fibre bundles. The through-the-thickness auxetic
samples consist of bent fibre bundles perpendicular to the surface of the fabric. Under tension, the
bent fibre bundle becomes re-orientated, in turn pushing on surrounding fibres and causing the fabric
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thickness to increase. More recently, auxetic foldable woven fabrics have been fabricated through the
use of conventional yarns and weaving technologies [226].

Knitting technologies offer the benefit of a high structure variety [29], enabling the fabrication
of a range of different geometrical auxetic textile patterns. Auxetic fabrics can be manufactured
using conventional yarns on commercial warp knitting machinery, which can be produced at rates
and quantities comparable to non-auxetic warp knits [227]. Hexagonal structures are used for NPR
warp-knitted textiles, including a rotational hexagonal structure [228] and re-entrant hexagonal net
structures [229]. These hexagonal meshes have since influenced the fabrication of in-plane auxetic
spacer fabrics (Figure 4a) [230,231]. Auxetic spacers exhibit excellent shape fitting to complex
curves [232], high energy absorption and indentation resistance, and these properties could be
enhanced with a greater magnitude of NPR [233]. Yarn loading capacity in NPR spacers affects
tensile energy absorption [234], and FEM has successfully predicted the tensile NPR of a warp-knit
spacer fabric [166]. Further research and tailoring of NPR spacers could aid the fit of sporting PPE that
covers dome-like surfaces, such as protective head-wear [232].

Auxetic weft-knitted fabrics have also been fabricated with computerised flat knitting machines,
based on three geometrical structures; (i) foldable structures (Figure 4b); (ii) rotating rectangles and (iii)
re-entrant hexagons [235]. When using conventional yarns, the fibre type and geometrical structure
are critical to the NPR of these fabrics and they can be adapted to tailor their Poisson’s ratio and elastic
modulus. Large NPRs (<−1) are possible, depending on the structure and yarns employed [235].
Auxetic foldable weft-knitted textiles have also been used as the reinforcement in polymeric composite
materials [236]. Developments of auxetic weft-knitted fabrics will find a wide variety of potential
applications in different fields, such as PPE for sportswear and headwear, but more research needs to
be undertaken to explore these potential applications further [29].
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3D auxetic textiles have been developed for composite reinforcement applications [5,237]) through
the use of warp and weft yarns [238] with stitch yarns [239] and auxetic fibres [240]. A four layer woven
3D auxetic textile structure has been used as composite reinforcement through a vacuum-assisted
resin transfer moulding process [241]. Charpy impact tests (ASTM D6110-17 [242]) found the energy
absorption of the auxetic textile was 6.7% higher than that of its conventional counterpart [241].
3D Auxetic textiles have also been employed to reinforce a foam matrix fabricated by injecting and
foaming [243,244]. With through-thickness NPR, 3D textiles may soon provide the enhanced protection
associated with NPR materials to sports apparel and PPE [5].
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There has, then, been a significant increase in the development and variety of auxetic fabrics
since 2011. Due to the range of auxetic textiles under development and their unusual properties,
these materials have a wide variety of potential applications [14]. For sports apparel, auxetic textiles
could enhance comfort and performance in PPE, with the unique ability to fit easily to curved shapes
combined with high compressive energy absorption and indentation resistance [245]. In order to
implement auxetic textiles commercially, a future focus should be given to factors affecting their usage
and wearability [246]. To embed or incorporate auxetic materials into sports garments, they should be
relatively soft and flexible, lightweight, breathable and mouldable or available in a variety of shapes
and thicknesses (5 to 10 mm). They may also be required to be homogeneous and/or joinable using
flat lock seams [83].

3.4. Additively Manufactured Auxetic Materials and Structures

As alternatives to often inhomogeneous foams or textiles, the creation of auxetic materials
with repeatable structures using various AM techniques has been investigated (e.g., fused
deposition modelling [137], selective electron beam melting [175], selective laser sintering [247] and
lithography-based ceramic manufacturing [248]). AM is a natural extension of FEM, as the existing
modelling file can be converted to be compatible with most AM technologies to fabricate the modelled
structure [167,249–252]. The AM structure can be experimentally tested to validate and potentially
improve FEM [162,253–255], and key parameters can consequently be tuned and investigated with
a particular application in mind.

Example materials used for AM in auxetic research include compliant rubbers and plastics. Metals
and ceramics can also be made via AM but these studies have been omitted due to their incompatibility
with sporting PE and PPE. Auxetic 3D chiral lattices have been modelled and produced by AM
using TangoBlack® (Stratasys, Eden Prairie, MN, USA), a rubber-like AM filament [256]. AM has also
combined two materials of different stiffness within; (i) one re-entrant unit cell [202,257,258] (Figure 4c);
and (ii) novel chiral auxetic structures consisting of four ‘base’ unit cells surrounding a smaller ‘core’
chiral unit cell [259]. Using two materials of different stiffness provides a designer with greater control
over unit cell deformation. The chiral auxetic has since been developed to use a re-entrant cell as the
‘core’ unit cell [260], meaning softer hinges are not necessary and the structure can be made from one
filament material. The location and amount of each dual material provides additional ways to tune
the mechanical properties (e.g., stiffness) of a structure without changing its geometry; as illustrated
with the FEM of layered auxetic plates [261]. FEM and AM used in conjunction could facilitate such
a parametric study with relative ease, for example by varying repeated structures [262].

AM structure’s Poisson’s ratio can be tuned by altering the geometry of a unit cell [263–265],
enabling the design and analysis of novel auxetic structures using FEM [266,267] to help validate
existing analytical formulae. Matlab has also been used to run FEM parametric analysis [167].
NinjaFlex®, (Ninjatek, Manheim, PA, USA) an elastic and flexible thermoplastic PU, has been used in
the AM of auxetics [137,268–270], and in impact testing studies [269,270], with FEM used to highlight
auxetic structures’ desired shock absorption capacity. Elsewhere, impact testing on non-auxetic
NinjaFlex® honeycombs demonstrated that increasing strain rates (0.01 to 0.1 s−1) resulted in an
increase of energy absorbed (0.01–0.34 J/cm3) [271]. Both strain rate and energy absorption are key
considerations for auxetic material applications in sporting PE and PPE.

3.5. Gradient Materials

Gradient materials can be made from one material by varying its macro-structure to have
different mechanical and structural properties in different regions (e.g., auxetic and conventional regions).
Gradients can be discrete [22,23,272] or continuous [22,272]. Composite sandwich structures employing
discretely gradient honeycombs have a higher compressive modulus and are stronger than conventional
sandwich structures [41]. The same sandwich structures exhibit a large increase in bending stiffness at the
transition between conventional and NPR regions [42]. Opposing synclastic/anticlastic (domed/saddled)
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curvature associated with negative/positive Poisson’s ratio respectively [9] cause increased shear
modulus between regions and a localised stiffening effect. A similar stiffening effect can be seen in
AM honeycombs with re-entrant inclusions during tensile tests [273]. Stiffening between discrete
gradients of conventional and NPR could increase the bending stiffness (of the whole structure or
specific regions) in sports equipment that contains honeycomb or fibre reinforced composites (e.g., skis,
snowboards, tennis rackets and hockey sticks to name a few). Auxetic composite sandwich structures
have not been tested for sports applications.

Gradient foams have been fabricated, by applying variable compression gradients to different
sample sizes (~2 × 2 × 2 cm to ~30 × 30 × 2 cm) using rods [22,23] and/or selecting mismatched
uncompressed foam and mould shapes [22,23,272] (e.g., uniform foam sample compressed in a tapered
mould). These gradient auxetic foam samples can exhibit vastly different cell structure and mechanical
properties in different regions, which can be explained using an analytical model [23]. Gradient
structures could be employed to foams or other materials (i.e., fabrics) to allow the development of
garments which will fit to the wearer and adapt to their shape as they move.

4. Expected Characteristics and Supporting Evidence

Beneficial characteristics of auxetic materials include increased shear modulus, indentation
resistance [10,30], dynamic [274,275] and static compressive energy absorption [8,37] and
decreased bulk modulus [10,30]. Increased indentation resistance [30] and compressive energy
absorption [2,8,33,37,204] have been shown experimentally in comparisons of auxetic and conventional
foams. Lateral expansion due to axial tensile loading makes auxetic structures/materials ideal
candidates for straps in apparel, increasing area to spread increasing loads and prevent ‘digging
in’ [276]. Many of the characteristics which provide unique enhancements for auxetic materials come
from Elasticity theory [10,277].

For isotropic materials experiencing elastic deformation, Young’s modulus (E) and shear modulus
(G) are related (Figure 5a, Equation (1)), as are Young’s modulus and bulk modulus (K, Figure 5b,
Equation (2)) [278]:

G =
E

2(1 + υ)
(1)

K =
E

3(1 − 2υ)
(2)

Elasticity theory states that Poisson’s ratio must be between −1 and 0.5 for 3D isotropic
materials [118,279,280], and between −1 and +1 for 2D isotropic materials [281]. From Equations
(1) and (2), as Poisson’s ratio tends towards −1 both shear (Equation (1)) and bulk (Equation (2))
modulus are driven towards extremely high or low values (respectively) in a 3D isotropic material.
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Indentation resistance is a measure of the load required to indent a material (Figure 6a,b).
From elasticity theory, Hertzian indentation resistance (H, Equation (3)) for an isotropic material
compressed with a uniform indenter depends on Poisson’s ratio, Young’s modulus and a constant (x)
related to the shape of the indenter [31].

H ∝
(

E
(1 − υ2)

)x
(3)
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Figure 6. Simplified 2D indentation showing (a) Axial deformation; (b) Lateral deformation described
in Equation (3); (c) Effect of large shear modulus (Equation (1)) on indentation area (- - -) and lateral
mass flow, both un-accounted for in Equation (3). The red line shows contact area (Equation (4)).

A material with large indentation resistance, but low Young’s modulus, could be used in
a protective pad that will deform by a similar amount for high or low area (i.e., flat surface vs. studded)
impacts. Such a pad would be more versatile, reacting to different surfaces to optimise its resistance
to deformation [282]. Assuming a constant Young’s modulus, as Poisson’s ratio tends towards −1,
a material should exhibit infinitely higher resistance to shear deformation (Figure 5a, Equation (1))
and high indentation resistance (Figure 6, Equation (3)), while becoming increasingly easier to
deform volumetrically (Figure 5b, Equation (2)). Infinite shear modulus and maximum indentation
resistance and volumetric compressibility can only be achieved elastically and isotropically with
auxetic materials [10], and increased indentation resistance has been shown experimentally [30,31,283].

Equation (3) for Hertzian indentation resistance comes from elastic properties and assumes; (i) the
surfaces are continuous and have non-conforming profiles; (ii) the area of contact (Figure 6) is much
smaller than the characteristic dimensions of the contacting bodies; (iii) the strains are small and
purely elastic and (iv) the surfaces are frictionless at the contact interface. These four assumptions for
Hertzian indentation are not always held, although Equation (3) is often referred to and discussed
in the context of non-Hertzian indentations [284,285]. Sporting PPE typically has a low thickness,
so does not often meet assumption (ii). A finite thickness model has been developed for soft and
thin cushion materials where Hertzian theory is expected to become invalid, and auxetic cushions
were found to reduce the contact pressure on the buttocks (indenter) [286]. In another approach,
Equation (3) has been adapted for thin sheets of rubber [287], to include a correctional multiplier
based on a ratio of contact area between the sheet and indenter (At, Figure 6) and the sheet’s thickness
(at) (Equation (4)). As thickness decreases towards zero, contact area/thickness increases and the
correction tends towards unity. The force required to indent rubber to a specific depth increases as
thickness decreases, but it is unclear if the same trend applies to NPR materials. The final assumption
of zero friction has been shown through FEM and continuum mechanics to be invalid in simulations of
infield situations [285,288–290]. In these simulations, friction was found to enhance NPR’s contribution
to indentation resistance.

Correction = 1 − exp−
At
at (4)
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Equations (3) and (4) are for instantaneous, linear values. They do not, therefore, account for
the different amounts of densification and possible hardening caused by lateral deformation due to
Poisson’s ratio (Figure 6c). Auxetic foam (with a relatively high shear modulus, Equation (1)) should
resist shear deformation more than its conventional counterpart. Auxetic foam’s upper surface would,
therefore, compress as a larger, flatter area (represented by the dashed line, Figure 6c) as shown in
cylindrical indentations [30] and using FEM [291]. FEM and analytical models also report a reduction
in contact area for simulations with NPR materials [292], suggesting that deformation occurred over
a larger radius, rather than the foam wrapping around the indenter. The opposite effect (auxetic foam
wrapping around the indenter) has been predicted in FEM simulations of low strain indentation of 2D
linear-elastic isotropic blocks [183] and also observed during impacts with a hemispherical dropper
onto samples covered with 1 to 2 mm thick polypropylene sheets [3]. In the FEM study, a lower Young’s
modulus as well as NPR was employed for the auxetic foam, providing a shear modulus almost a factor
of 2 lower than the conventional foam (Equation (1)), which possibly explains the discrepancy. In the
experimental study, the added complexity when considering multi-material systems (e.g., featuring
a stiff shell and compliant foam), hemispherical or studded indenters (rather than cylindrical) and
high strain rates caused by impact could explain the observed differences. The relationship between
the shell and foam’s elastic moduli (as discussed in relation to coatings [293,294]), the foam’s Poisson’s
ratio [292,294] and synclastic/anti-synclastic (domed or saddled) bending in the upper surface may
affect indentation resistance.

Hertzian indentation requires corrections for high strain indentations, impacts of non-linear
materials or multi-material systems typical in sporting PPE [47,48] and, therefore, testing of auxetic
foams for sports applications [285,288]. As noted above, friction (assumption iv) is expected to
amplify increases in indentation resistance caused by NPR [285,288], and a correction factor has
been applied [288]. Experimental indentations of auxetic materials, particularly foams, are not
common [7,30], although some limitations of Hertzian indentation theory have been noticed and
discussed [30]. Further significant modelling and experimental research examining NPR’s effect on
indentation responses of conforming, non-linear, anisotropic materials subject to a range of indenter
sizes and shapes is therefore required.

One of the difficulties in testing NPR’s effect on expected benefits (i.e., impact force attenuation or
indentation resistance) when using foam is changes to Young’s modulus and stress-strain relationships
following fabrication [9,295]. Studies report auxetic foams with lower initial Young’s modulus than
their conventional counterparts [189,274,295]. Reduced Young’s modulus has been attributed to the
presence of buckled ribs in the auxetic foam being easier to deform than the straighter ribs of the
conventional foam [295]. Elasticity theory (Equation (1), Figure 5a) also supports a reduction in Young’s
modulus as Poisson’s ratio decreases if shear modulus remains constant. Auxetic foams typically have
a higher density than their open cell parent foam, so the reduction in Young’s modulus is contrary to
the usual expectation of an increase in Young’s modulus with increased density [118]. Note, though,
that Gibson and Ashby refer to a density increase caused by thicker ribs, whereas in the auxetic
foam fabrications density increases due to changes in rib orientation. Gibson and Ashby’s cellular
solid theory actually indicates that Young’s modulus can either increase or decrease when moving
from a hexagonal to a re-entrant cell geometry, characteristic of auxetic foams [118]. The increased
Young’s modulus is allowed by elasticity theory—materials with the same bulk modulus (Equation (2),
Figure 5b) will have increased Young’s modulus as Poisson’s ratio decreases. Increases [2,190,197,204]
as well as the aforementioned decreases in Young’s modulus [9,274,295] have been reported in auxetic
foam fabrications.

The re-entrant structures in auxetic foams typically give an initially quasi-linear compressive
stress-strain curve, with hardening as pores close at higher compression levels (>~50%) [9,183,185,275,282].
Conventional open cell foams exhibit a low-stiffness plateau region due to buckling of cell ribs
between ~5% and 80% strain (Figure 7a) [118]. Both of these cases have been explained numerically
and validated experimentally [23,118]. It should be noted that the relatively linear and plateauing
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stress-strain relationships only apply to specific forms of cellular materials that adapt a re-entrant
structure, including PU foams [9,23] and 2D honeycombs [96]. Exceptions have been recently presented;
re-entrant auxetic PU foams with a plateau region [23,195].
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Figure 7. (a) Typical compressive stress vs. strain response of auxetic and conventional open cell foam
(note cellular collapse between 5 to 10% then hardening beyond 80% strain via densification in open
cell foam); (b) Strain energy density (Volumetric (Uv, Equation (5)), Distortion (Ud, Equation (6)) & Ut,
Total) vs. Poisson’s ratio for a linear elastic isotropic material subject to a uniaxial stress. Uniaxial stress
and Young’s modulus set to 1 kPa.

For a linear elastic isotropic material subject to a uniaxial stress (σ), the total strain energy density
(Ut) is the sum of the volumetric strain energy density (Uv) and the distortional strain energy density
(Ud), which are related to the Young’s modulus and Poisson’s ratio (i.e., [278]):

Uv =
(1 − 2υ)σ2

6E
(5)

Ud =
(1 + υ)σ2

3E
(6)

In Figure 7b, an applied compressive uniaxial stress and Young’s modulus are arbitrarily equated
to 1 kPa for simplicity. Plotting these values in Equations (5) and (6) between elastic limits of −1 and
0.5 for Poisson’s ratio (Figure 7b) shows an increase in volumetric strain energy density and a reduction
in distortional strain energy density as Poisson’s ratio tends towards −1. Auxetics material’s tendency
to volumetric (rather than distortional deformation) could effectively increase indentation resistance
(Figure 6c, Equations (3) and (4)). As Poisson’s ratio decreases, so does the stress concentration
at a crack’s tip, preventing crack propagation and increasing toughness [296,297]. Von Mises and
maximum shear stress theory both define failure when distortional strain energy exceeds a maximum
value. The reduction in distortional strain energy (to zero, Figure 7b) as Poisson’s ratio reduces
to −1 [279] is, then, expected to lead to an increase in toughness. A natural example of where this may
be exploited may be found in the nacre layer of certain seashells. Nacre has a reported tensile NPR of
the order of ~−0.1 [93] and ~−0.4 [298] which is thought to increase volumetric strain energy density
by ~eleven times while more than halving distortional strain energy density, allowing the system to
absorb more energy before failure [298].

Increased energy absorption has been shown experimentally for auxetic foam; under flat plate [33]
and studded impacts [274], quasi-statically with flat compression plates [8], within aluminium
tubes [299] and with a studded indenter and a stiff shell [7]. When compressed cyclically at high strain
rates (0.036 to 0.36 s−1 [300] and 0.033 s−1 [2,274]) auxetic foams absorbed up to sixteen times more
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energy than open cell foams of a different polymeric composition and equivalent density, therefore
appearing more useful in cushioning layers of sporting (and general) PE & PPE. The differences in
energy absorption do not account for changes in stress/strain relationship or strain rate dependency
between conventional and auxetic samples. As strain rates increased, Young’s modulus and the
magnitude of NPR increased marginally in samples of auxetic PU foam [301]. In some cases the
increased linear elastic range of the auxetic foam compared to the parent foam with a plateau region in
the stress-strain relationship could have contributed to higher energy absorption [2,8,33].

Energy absorption, strain rate dependency and (often) indentation resistance combine to influence
performance under impact. Theoretically beneficial for impact protection [282], auxetic foam samples
have been shown to exhibit between ~three and ~eight times lower peak force under 2 to 15 J impacts
adapted from BS 6183-3:2000 for cricket thigh pads [3,8,55]. During a comparison of high strain
rate compression (20 to 40 J) to a conventional commercial foam of similar density, auxetic samples
exhibited (1.2 to 1.8 times) higher peak acceleration, but also exhibited higher compressive elastic
modulus [2]. Peak forces can be further decreased (1.2 to 1.5 times) during 5 J impacts by impregnating
auxetic foam with shear thickening fluid [302].

Inward material flow has been shown under impact by rudimental visual inspection of high-speed
camera stills, and the samples with the greatest magnitude of NPR exhibited higher lateral contraction,
lower through thickness deformation and a similar peak force to other samples [33]. Newly developed
3D auxetic textile composites exhibit lower peak forces than their conventional counterpart under 12
to 25 J impacts [5]. In helical yarns, a wrap angle of 27◦ gave the best combination of Poisson’s ratio
and stiffness for energy absorption [209] during 7 to 65 J impacts.

Honeycomb sandwich panels with auxetic cores were found to resist ballistic impacts better
than regular or rectangular cores [303], and absorb more impact energy when the re-entrant cell
structure was non-uniform [304]. Laminated composites containing warp knit auxetic Kevlar® fabric
reinforcement, under 167 m/s impact with a 14.9 g bullet (~200 J), showed similar energy absorption
to laminates containing conventional woven Kevlar® reinforcement [305,306]. The auxetic Kevlar®

laminates, however, displayed enhancements in fracture toughness (225%) and fracture initiation
toughness (577%), and a reduction in front and rear face damage area [305,306]. Auxetic composite
laminates displayed reduced back face damage during 7–18 J impacts by a stud [32,307,308]. Auxetic
composite laminates could, therefore, improve the durability of protective shells in PPE and other
sports equipment (i.e., bicycle frames or boat hulls).

Related to energy absorption, auxetic foams have been tested for vibration damping (to ISO
13753 for vibration protecting gloves [309]). At low frequencies (<10 Hz), auxetic foam exhibited
lower transmissibility than iso-volume open cell samples made from the parent foam and iso-density
uni-axially compressed samples [193]. Auxetic foam had a lower cut off frequency than its parent
foam [310]. The transmissibility of auxetic samples was greater than 1 between 10 and 31.5 Hz,
but less than 1 over 31.5 Hz [183], equivalent to commercial anti-vibration gloves. Auxetic foams
also fatigued uniquely, with higher permanent compression than their parent foam and a general
increase (as opposed to the conventional foam’s decrease) in measured hardness after 80,000 cycles up
to ~120 N (150 mm sided cubic samples) [311].

Curvature of a beam or plate subject to an out-of-plane moment is related to Poisson’s ratio [9,312].
Sheets with a positive Poisson’s ratio will adopt a saddled shape (anticlastic curvature, Figure 8a)
and those with NPR will dome (synclastic curvature, Figure 8b). Doming is caused by axial (due to
loading) and lateral (due to Poisson’s ratio) extension on the upper surface combined with equivalent
contractions on the lower surface. Conventional materials will contract laterally on the upper surface
and expand laterally on the lower surface.
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Figure 8. (a) Conventional honeycomb showing saddled curvature; (b) Re-entrant auxetic honeycomb
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Synclastic curvature has been observed in auxetic foam [9], analysed in detail in sandwich
structures with an auxetic honeycomb core and auxetic laminate skins [312] and demonstrated by
FEM [37,313] and experimentally using a simple paper model [37]. Auxetic fabric can conform
around a spherical surface [36]. Deformation shape could be complicated to predict in nonlinear and
often inhomogeneous auxetic foams [4]. Bespoke complex curvatures are achievable for gradient
honeycombs displaying conventional and NPR regions when subject to an out-of-plane moment [314].

Some auxetic PU foam samples have been shown to exhibit shape memory, meaning they return
to their original dimensions when heated [315] or exposed to solvents [196]. Shape memory auxetic
foams investigated by heating in an oven returned rapidly towards their original dimensions when
the temperature reached 90 ◦C. Samples had reached their original dimensions by the time the oven
reached the original fabrication temperature of 135 ◦C.

Marginally re-entrant structures with NPR which exhibit partially blocked shape memory have
been fabricated [195]. The fabrication process included numerous cycles of thermo-mechanical
fabrication followed by reheating to return samples towards their original state. Auxetic behaviour
was found in ‘returned’ samples from the third returned stage onwards, and has been attributed
to the presence of kinked or corrugated ribs. Clearly shape memory could be detrimental in terms
of sport safety equipment, as pads could be changed irreparably when exposed to heat or solvents
(i.e., when machine washed or dried). Blocking shape memory [195] or investigating solutions to
prevent a return to original dimensions (such as constraining auxetic foam in an outer textile/shell
layer) could improve a product’s lifecycle.

Several characteristics change in the auxetic foam fabrication process, including Poisson’s
ratio, stress/strain relationships and density [3,4,8,9,23,185,190,316]. So, during comparative impact
tests between auxetic and parent foam [2–4,7,8,33,204,316], the specific contribution of individual
characteristics, including Poisson’s ratio, can be difficult to determine, and unambiguous experimental
verification of theoretical enhancements due to the NPR requires further work. The same can
be said for other studies into auxetic foam, including those into vibration damping [183,193],
resilience/strength [317] and energy absorption [37].

Comparing results from scientific literature suggests that the compressive Young’s modulus (30 to
50 kPa) of auxetic open-cell PU foams [3,4,118,185,316] is typically more than twenty times lower than
that of the closed cell foams often found in sporting PPE (~1 MPa) [43,47–49,52]. Such a large reduction
in stiffness suggests that the two materials are not comparable and stiffer auxetic foam is required for
sporting PPE. The enhancements provided by NPR (e.g., indentation resistance) might allow for some
reduction in stiffness, but to absorb an equivalent amount of energy to current sporting PPE, current
auxetic foam would need a contribution from having NPR that would increase energy absorption by
~twenty times. The largest reported increase in energy absorption for auxetic vs. conventional foam
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is sixteen times during dynamic cyclic tests [300], but increases of ~three times are more common in
single impacts/compressions [8,33,204]. Crash mats are typically softer than PPE (~50 kPa [59]) and
(due to their extensive variety of possible applications and impact scenarios) could benefit from the
increased energy absorption and indentation resistance associated with auxetic foams [7]. The authors
are not aware of any publications specifically comparing impacts or indentations of auxetic foam to
foam typically found in sports PE and PPE.

5. The Potential for Auxetic Materials in Sports Products

The sporting goods sector is characterised by early uptake of new technologies and rapid product
development, launch and replace cycles. Consequently, this sector is amongst the first to see commercial
products based on auxetic materials, with two commercial sports shoe ranges that utilise auxetic
structures. The Under Armour Architech sports shoe range [28] incorporates either an AM or moulded
auxetic re-entrant latticed upper (Figure 3a) which is claimed to aid conformability around domed
shapes, fit and comfort. The added manufacturing benefit of being formable as a one-piece upper,
rather than several pieces each individually cut to shape and stitched together is also claimed. The Nike
Free RN Flyknit sports shoe [34], on the other hand, employs an architectured closed cell foam outsole
with an auxetic rotating triangles structure (shown in Figure 9, first proposed in [105–107]). The outsole
is claimed to exhibit bi-axial growth as the wearer accelerates or changes direction, for improved
traction and impact energy absorption.
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Multi-axis expansion (due to NPR) has potential benefits in cleaning/shedding of dirt [39].
Multi-axis expansion could be implemented in a conformable facemask [35] to protect against extreme
weather during outdoor/adventure sports, or commuter cycling—expanding bi-axially when the
mouth is opened to increase breathability [9,38–40]. Other benefits of multi-axis expansion include
large volume change, allowing design of small, easily stored garments which can expand when worn
(i.e., for spare layers in outdoor/adventure sports).

D3O market the Trust Helmet Pad System [318] incorporating pads with a re-entrant auxetic
geometry that are claimed to provide increased fit to the head and decreased acceleration under blunt
impact. More products are likely to emerge if the increased level of comfort and protection offered by
auxetic materials can be further demonstrated, justifying investment in the development of stiffer, more
appropriate auxetic materials (such as closed cell [199] or shear thickening fluid impregnated [302]
auxetic foams, or novel impact hardening auxetic polymers [319]). The emergence of sports products
including auxetic materials could be assisted by the development of a commercially-viable (low cost,
large scale) auxetic foam production process [23,185,186]. ‘Felted’ foams, fabricated by uniaxial
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compression, are already commercially produced and exhibit auxetic behaviour in one loading
direction [33]). Alternatively AM is a commercially viable option [28] to provide fine control over unit
cell structure for auxetic foam-like structures.

The ability to change the shear modulus of a material through Poisson’s ratio [118,151] could
provide a useful tool in designing head protection that can reduce rotational acceleration [6].
When used in place of a comfort layer in a helmet, auxetic foam can significantly reduce the
severity of direct impacts in comparison to its conventional counterpart [320]. Helmets and helmet
certification standards have been criticised for focussing solely on direct rather than both direct and
oblique impacts [69]. Controlling shear modulus by changing Poisson’s ratio (to negative or positive
values) of any layer within the helmet could contribute to solutions to reduce rotational acceleration
(i.e., in combination with or instead of slip plane technology [77]). The benefit of using Poisson’s
ratio to change shear modulus is that elastic moduli would change less, limiting the effect on linear
acceleration and therefore perceived performance according to current certification standards [66,67].

6. Conclusions

In a competitive, rapid uptake market such as sports equipment, it is important to keep searching
for new and improved designs and materials. With frequent, catastrophic high-profile injuries and
scandals (particularly involving head injury) the importance of improvement increases. The chance to
increase market revenue, while reducing costs to health services, national economies and burdens on
injured individuals, warrants continued research through commercial and state investment.

Auxetics have a wide range of potentially useful characteristics, including increased indentation
resistance, vibration damping and shear modulus as well as decreased bulk modulus. These have
been shown using auxetic foam compared to its parent foam and iso-density conventional foams.
Further experimental comparisons of auxetic and conventional foam’s indentation resistance, impact
force attenuation and vibration damping are required to determine contributions from other variables,
such as elastic modulus and density, to clearly identify the contribution due to Poisson’s ratio.

The creation of auxetic foams appropriate and beneficial to sporting goods will require
development of fabrication processes, especially for larger samples. Fabricating samples with
comparative characteristics (e.g., Young’s modulus and density) is also required to show the NPR’s
benefits (i.e., to indentation resistance). The solvent and CO2 softening routes provide alternative and,
in the latter case, faster auxetic foam fabrication. Increasing the stiffness of auxetic foam closer to the
closed cell foam found in sporting PPE or ensuring that impact energy absorption is equivalent or
higher is an important step for commercialisation. With dynamic energy absorption reported up to
sixteen times greater in auxetic foams some reduction in stiffness is likely acceptable, but requires
confirmation by appropriate testing. AM presents an alternative for the creation of auxetic cellular
solids with bespoke properties. There is increasing confidence, then, that commercial auxetic foam
production will be achievable, either by AM or by improved fabrication methods from open cell foams.
Commercially available auxetic foam would improve access, allowing more sport safety equipment
manufacturers to design, test and evaluate auxetic prototypes.

Another option to increase auxetic materials range of moduli and impact force attenuation is
combining materials. Auxetic foam’s impact force attenuation increased up to ~1.5 times when
supported by shear thickening fluid. Enhancing the characteristics of auxetic fabrics and textiles
by combining with a conventional, gradient or auxetic material could facilitate the production of
sports garments and performance apparel that deforms with the wearer and attenuates impact forces.
Combining conventional and auxetic sections of honeycombs in gradient sandwich structures increases
bending stiffness close to transitions. Snowboards, skis, tennis rackets and hockey sticks (to name
a few) use conventional sandwich structures, and could benefit from increased rigidity or equivalent
rigidity and lower mass.

The more obvious characteristics of auxetic materials that are backed up with strong supporting
evidence (multi axis expansion and domed curvature) have been implemented as auxetic foam and AM
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materials into sporting footwear and helmet pad products. Commercial success for auxetic sporting
PPE requires stronger supporting evidence that responds to trends accurately re-creating infield
collisions and falls. Other auxetic materials such as laminates and knitted/woven fabrics that exhibit
characteristics including increased fracture toughness and, potentially, tailorable shape change, are
currently untested for sports applications within the peer-reviewed scientific literature. Unlike auxetic
foam production, the fabrication of auxetic composite laminates and many of the auxetic fabrics is via
established commercial processes, requiring little or no modification. With further development and
testing auxetic laminates and fabrics could be applied to a range of sporting products, from carbon
fibre reinforced composite bicycle frames to swim suits or rugby tops that deform with the movements
of the wearer.
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