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h i g h l i g h t s
� A dense ceramic wasteform is prepared by hot isostatic pressing Cs-exchanged IONSIV®.
� Cs was encapsulated in two phases, Cs2TiNb6O18 and Cs2ZrSi6O15, in the HIPed Cs-IONSIV®.
� HIPed Cs-IONSIV® samples have low aqueous leach rates of Cs ions that are very comparable with those reported for hollandite.
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a b s t r a c t

A simple method to directly convert Cs-exchanged IONSIV® IE-911 into a ceramic wasteform by hot
isostatic pressing (1100 �C/190 MPa/2 hr) is presented. Two major Cs-containing phases, Cs2TiNb6O18 and
Cs2ZrSi6O15, and a series of mixed oxides form. The microstructure and phase assemblage of the samples
as a function of Cs content were examined using XRD, XRF, SEM and TEM/EDX. The chemical aqueous
durability of the materials was investigated using the MCC-1 and PCT-B standard test methods. For HIPed
Cs-IONSIV® samples, the MCC-1 normalised release rates of Cs were <1.57 � 10�1 g m�2 d�1 at 0e28
days, and <3.78 � 10�2 g m�2 d�1 for PCT-B at 7 days. The low rates are indicative of a safe long-term
immobilisation matrix for Cs formed directly from spent IONSIV®. It was also demonstrated that the
phase formation can be altered by adding Ti metal due to a controlled redox environment.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

IONSIV® R9120-B Selective Media (formerly IE-911) is a com-
mercial mixture of crystalline silicotitanate (CST) in the acid form
with the formula of (H,Na)2-x(Ti2-xNbx)SiO7~2H2O and an amor-
phous Zr(OH)4 binder to produce a granular product suitable for
engineering use. It has been widely applied in several Magnox
storage ponds in the UK and various US locations including Three
Mile Island, Savannah River and Oak Ridge National Laboratory as
an inorganic ion exchanger [1,2]. It shows an excellent selectivity
and great performance to separate 137Cs and 90Sr relative to Naþ, Kþ

and Hþ from waste streams in a broad pH range [3,4]. After the
severe accident at the Fukushima Daiichi nuclear power station in
).

B.V. This is an open access article
2011, it has been estimated by Tokyo Electric Power Company
(TEPCO) that approximately 10 PBq of 137Cs released into the at-
mosphere [5]. IONSIV® was utilised in the Simplified Active Water
Retrieve and Recovery System (SARRY) to remove caesium from the
contaminated wastewater [6]. The CST sorbent contains significant
quantities of titanium, which is historically difficult for processing
into a wasteform via vitrification, other disposal options that have
been investigated are cementation [7] and thermal conversion [8,9]
to a ceramic wasteform.

To be a viable wasteform, a monolithic solid is usually preferred
over a powder due to the smaller surface area, thus the release rate
of any elements is reduced if the wasteform contacts water. Hot
isostatic pressing (HIP) involves heating a powder sample in a
sealed metal can whilst simultaneously applying pressure and it
has been widely studied in the past few decades for the feasibility
for nuclear waste treatment [10e17]. After HIPing, internal pores
and defects within a solid are eliminated, as a consequence a
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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monolithic material with a uniform grain size and a nearly 100%
density is achieved [18,19]. The waste to be treated is sealed in a
metal can, which may also form the primary waste package
containment, and processed at relatively low temperature, thus
high temperature volatility losses are greatly reduced and no off-
gas emission processing system is required. Furthermore, HIPing
generally provides higher waste loadings than vitrification and also
flexibility in handling problematic waste.

Studies of the mechanism of Cs ion selectivity in crystalline
silicotitanate [20,21], the crystal structures of Cs-exchanged CST
[22] and microstructure and phase transformation effected by ra-
diation and heat [23] have been reported. To further examine the
technological applicability of HIPing in Cs immobilisation, the high
temperature behaviour of Cs-exchanged IONSIV® under HIPing
conditions and also the chemical durability after HIPing were
investigated. Preliminary aspects of this research have already been
reported [9].

In addition, it is also of interest to see if hollandite, one of the
titanates for hosting Cs in Synroc, can be produced during the
HIPing of IONSIV® when a suitable environment is created. Hol-
landite has a general formula of AxByC8-yO16 where x � 2, the A site
is occupied by large monovalent and/or divalent cations (e.g. Csþ

and Ba2þ), and the B and C sites contain octahedrally coordinated
cations such as Ti4þ or Al3þ with a valence between 2 and 5. Kesson
et al. [24] reported certain conditions that must be met to obtain a
hollandite ceramic without forming other minor phases of poor
chemical durability. Firstly, the trivalent elements must be present
in sufficient quantities and the trivalent elements must not be
represented by Al3þ alone but also by Ti3þ. Finally, the presence of
‘reduced rutile’ is also indispensable to prevent the formation of
secondary phases. To test this hypothesis further HIPing studies
were done with added Ti metal.

2. Experimental

2.1. Sample preparation and HIPing

Cs-exchanged IONSIV® materials were prepared by impreg-
nating powdered IONSIV® with aqueous CsNO3 at various nominal
Cs loadings (0, 2, 4, 6, 8, 10 and 12 wt.%) for 3 days. The nominal
loading is calculated from the mass of Cs/(mass of Cs þ initial mass
of IONSIV®) ¼ 0.02, 0.04,…., 0.12. As the exact Nb, cation and water
contents of the IONSIV can vary there are some inherent errors
associated with these nominal loadings. Samples were washed
with DI-water and recovered by filtration, dried and calcined in air
at 800 �C for 12 hrs before filling into the cans. Cs-exchanged
IONSIV® samples were packed into mild steel cans with 2 mm
wall thickness and hot isostatically pressed at 1100 �C and 190 MPa
of argon for 2 h. Some of the 6 and 12 wt.% Cs-IONSIV® materials
were also HIPed under the same conditionwith either 2 or 4 wt.% Ti
metal powder to produce a strongly reducing environment and a
source of sufficient trivalent elements (e.g. Ti3þ) to test if hollandite
might form.

To investigate the chemical durability of the Cs phases individ-
ually, Cs2TiNb6O18 and Cs2ZrSi6O15 were prepared and HIPed under
the same condition. The powders were synthesised via a modified
aqueous precursor route reported by Balmer et al. [25] for
Cs2ZrSi3O9 synthesis. A solution was prepared by mixing 50 wt.%
aqueous solution of caesium hydroxide (CsOH) with an equal vol-
ume of ethanol. 1 mL aliquots of the CsOH/ethanol solution were
injected into a mixture of titanium isopropoxide/niobium ethoxide
or 70 wt.% zirconium propoxide/tetraethyl orthosilicate under
stirring, followed by the injection of 1 mL of ethanol. The injections
of CsOH/ethanol and ethanol were repeated until the CsOH/ethanol
was used up. Then an extra 2 mL of ethanol and water were added
to the mixture. The concentrations of the reactants were based on a
final Cs:Ti:Nb or Cs:Zr:Si cation ratio of 2:1:6. Themixturewas aged
overnight and then dried in an oven at 100 �C. The precursor was
then ground and pressed into pellets, these were placed in a plat-
inum crucible and heated in air at a rate of 10 �C/min to 1200 �C and
held for 15 hrs.
2.2. Characterisation

Fused borate glass beads were analysed using X-ray fluores-
cence spectrometry (Bruker S8 Tiger WDXRF, QUANT-EXPRESS
software analysis) for elemental composition determination. Cir-
cular glass beads with flat surfaces were prepared by mixing
ground samples with lithium tetraborate in a 1:10 ratio and heating
in a platinum/gold crucible at 1050 �C. Ammonium iodide (NH4I)
was added to help the bead exfoliate from the crucible.

The phase assemblage of the HIPed IONSIV® samples were
investigated using XRD, Rietveld refinement and scanning electron
microscopy (SEM). HIPed IONSIV® samples were ground and their
powder diffraction patterns were collected using laboratory
(Bruker D8 Advance diffractometer operating in transmissionmode
using Cu Ka1 radiation) and synchrotron (I11, Diamond, U.K.
l ¼ 0.826036 Å) X-rays. Rietveld refinements of synchrotron data
were performed using TOPAS 5 Academic software [26]. The
starting models for each phase including lattice parameters, atomic
positions, and displacement parameters were taken from the
literature for (Ti0.833Nb0.167)O2 [27], ZrSiO4 [28], NaNbO3 [29],
ZrTiO4 [30], SiO2 [31], Cs2TiNb6O18 [32], and Cs2ZrSi6O15 [33],
respectively. For multi-phases refinements, due to the large num-
ber of variables the atomic displacement parameters were kept at
default values of Beq ¼ 1.58 Å2. Lattice parameters were optimised
after the scale factors had converged and the background was
graphically fitted. The peak profiles were fitted to symmetric
pseudo-Voigt functions.

Weight fractions of all the phase in a multiphase system can be
directly calculated by their scale factors obtained after a good
pattern fitting. The relationship between the weight fraction (Wi)
for each phase i and its refined scale factor (Si) is obtained from the
following equation [34].

Wi ¼
SiðZMVÞiPn
i¼0SiðZMVÞi

where Z is the number of formula units per unit cell, M is the unit
molecular weight of the formula, and V represents unit cell volume
of phase i in a mixture of n phases.

Microstructure characterisation using SEM in backscattering
electron image mode on polished samples was carried out on a
Philips XL30 ESEM-FEG with an Oxford Inca 300 EDS system
operating at 10 kV. The microstructure of the 8 wt.% HIPed sample
was also examined on a TEM (FEI Tecnai T20, operating at 200 kV)
with an EDX system. The TEM sample was prepared by mechanical
polishing using SiC paper and a rotating polishing wheel, followed
by dimpling and ion milling using a Gatan Precision Ion Polishing
System to achieve electron transparency.
2.3. Aqueous durability testing

The durability tests of monolithic and powdered HIPed IONSIV®

6 wt.% and 12 wt.% were carried out in deionised water at 90 �C,
according to ASTM standard methods MCC-1 [35] and PCT-B [36].
The leachate liquid was analysed by ICP-MS (Agilent 7500ce) for
element leaching. The normalised elemental leach rates were
calculated as



Fig. 2. TEM micrograph and diffraction pattern of the selected area in the sample of HIPed Cs-IONSIV® 8 wt.%. (a) phase map (b) amorphous silicon-rich phase detected in the other
area.

Fig. 1. The backscattering electron SEM images of HIPed (a) 2 wt.% (b) 4 wt.% (c) 6 wt.% (d) 8 wt.% (e) 10 wt.% (f) 12 wt.% Cs-IONSIV®.

T.-Y. Chen et al. / Journal of Nuclear Materials 498 (2018) 33e43 35



Fig. 4. Synchrotron (l ¼ 0.826036(10) Å) XRD patterns of HIPed (a) 2 wt.% (b) 4 wt.% (c) 6 wt.% (d) 8 wt.% (e) 10 wt.% (f) 12 wt.% Cs-IONSIV®.

Fig. 3. Rietveld refinement fit of laboratory X-ray powder diffraction for HIPed unexchanged IONSIV®. The observed (green cross symbol), calculated (red line), and difference (grey
line) profiles are shown as well as allowed positions of peaks for all phases (vertical lines). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

T.-Y. Chen et al. / Journal of Nuclear Materials 498 (2018) 33e4336
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Li ¼ Mi/(As � t � Fi)

where Li is the leach rate (g m�2 d�1) of element i,Mi is the mass of
element i in the leachate (g), As is the surface area (m2) of the
sample, t is the leaching time (day) and Fi is the mass fraction of
element i in the original sample. The surface area used was esti-
mated using the following equation. (see supporting information).

Surface Area ¼ Mass of sample� 862:2
Theoretical density
Fig. 6. Simulated (green cross symbol) and experimental diffraction patterns (red line) as we
lines) for HIPed Cs-IONSIV® 12 wt.% sample. (For interpretation of the references to colour

Fig. 5. Simulated (green cross symbol) and experimental diffraction patterns (red line) as we
lines) for HIPed Cs-IONSIV® 6 wt.% sample. (For interpretation of the references to colour i
3. Results and discussions

3.1. Microstructure

The SEM backscattered images of HIPed Cs-IONSIV® samples
with variable Cs loadings shown in Fig. 1 reveal that the micro-
structure of the crystalline ceramic phases reduces in grain size
with an increase in Cs loading. It was also observed that more
bright grains, suggesting Cs containing phases, with rectangular
shape exist with the increasing Cs loading. At higher Cs content, a
large number of Cs heterogeneities can act as efficient internal
nucleating centres for the growth of small, randomly orientated
and interlocking ceramic crystal during the heating process,
ll as difference pattern (grey line) and allowed positions of peaks for all phases (vertical
in this figure legend, the reader is referred to the web version of this article.)

ll as difference pattern (grey line) and allowed positions of peaks for all phases (vertical
n this figure legend, the reader is referred to the web version of this article.)



Table 2
Elemental composition (wt.%) of Cs-IONSIV® samples derived from the multiphase refine
and synchrotron data for the others. Estimated standard deviations were calculated by p

Element 0 wt.% 2 wt.% 4 wt.%

Nb 11.4 ± 0.2 9.4 ± 0.4 11.5 ± 0.1
Zr 16.9 ± 0.2 22.5 ± 0.4 21.1 ± 0.3
Ti 20.6 ± 0.2 20.6 ± 0.3 20.6 ± 0.2
Cs e 0.9 ± 0.1 3.4 ± 0.1
Si 5.2 ± 0.1 5.7 ± 0.3 4.4 ± 0.3
Na 0.9 ± 0.1 0.8 ± 0.1 e

O 45.0 41.2 40.2

Table 3
Elemental compositions (wt.%) of Cs-IONSIV® samples acquired using XRF, the values f
standard deviations are 10% relative.

Element 0 wt.% 2 wt.% 4 wt.%

Nb 15.8 ± 1.6 15.6 ± 1.6 15.3 ± 1.5
Zr 14.3 ± 1.4 13.7 ± 1.4 13.8 ± 1.4
Ti 22.0 ± 2.2 21.3 ± 2.1 20.6 ± 2.1
Cs e 2.7 ± 0.3 4.3 ± 0.4
Si 8.5 ± 0.9 8.4 ± 0.8 8.6 ± 0.9
Na 2.5 ± 0.3 2.1 ± 0.2 1.6 ± 0.2
O 36.9 38.9 37.4

Table 1
Phase assembly as a function of nominal Cs wt.% in the HIPed Cs-IONSIV® samples from

Cs-exchanged IONSIV® samples

0 wt.% 2 wt.% 4 wt.% 6 wt.%

(Ti0.833Nb0.167)O2 59.9 ± 0.5% 32.1 ± 0.6% 32.9 ± 0.5% 33.9 ± 0.4%
ZrSiO4 34.0 ± 0.5% 9.1 ± 0.4% 9.1 ± 0.4% 3.7 ± 0.3%
NaNbO3 6.0 ± 0.4% 5.6 ± 0.7% e e

(Zr0.5Ti0.5)O2 e 40.0 ± 0.6% 36.8 ± 0.4% 40.6 ± 0.4%
SiO2 e 9.2 ± 0.6% 6.4 ± 0.5% e

Cs2TiNb6O18 e 4.1 ± 0.3% 14.8 ± 0.3% 21.9 ± 0.3%
Cs2ZrSi6O15 e e e e

Cs2ZrSi3O9 e e e e

Refinement parameters
0 wt.% 2 wt.% 4 wt.% 6 wt.%

c2 1.430 3.811 3.457 2.906
Rwp 4.32 18.42 15.74 13.29
Rp 3.17 14.13 11.78 10.04

Fig. 7. The variation in the amounts of the various crystalline phases in the Cs-
exchanged IONSIV® samples as a function of Cs loading.
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resulting in the observed morphology with many smaller grains.
However, acquiring elemental compositions of individual grains
using EDS was not successful due to the inaccuracy that arose from
the much larger size of the incident beam compared to the grains
themselves which will excite a volume larger and deeper than a
single grain.

In the bright field TEM image of HIPed 8 wt.% Cs-IONSIV® shown
in Fig. 2, the identified phases are Cs2ZrSi6O15, (Zr,Ti)O2 and (Ti,Nb)
O2, confirmed using EDX. The average ratios of Zr/Ti and Ti/Nb in
(Zr,Ti)O2 and (Ti,Nb)O2 are 5 and 1, respectively. Although
Cs2TiNb6O18 was not found in the region under TEM observation in
Fig. 2, it was observed in other images. In addition, the EDX analysis
and the corresponding diffraction pattern for a selected region in
the other area confirm the presence of small amounts of an
amorphous silicon-rich phase in this HIPed sample, as shown in
Fig. 2b.

3.2. Phase assemblage and elemental compositions

The phase assembly of a HIPed non-exchanged IONSIV® sample
was analysed using XRD and quantitative Rietveld refinement. As
shown in Fig. 3, the crystalline ceramic phases consist of
ment of the crystalline components using laboratory XRD data for the 0 wt.% sample
ropagation of the errors in the weight fractions from the Rietveld analysis.

6 wt.% 8 wt.% 10 wt.% 12 wt.%

15.0 ± 0.1 14.3 ± 0.2 14.2 ± 0.1 13.7 ± 0.1
20.1 ± 0.2 17.5 ± 0.2 15.4 ± 0.2 14.7 ± 0.2
22.1 ± 0.2 17.9 ± 0.2 16.3 ± 0.1 16.6 ± 0.1
5.0 ± 0.1 10.6 ± 0.2 13.2 ± 0.2 13.4 ± 0.2
0.6 ± 0.1 3.9 ± 0.1 5.3 ± 0.1 5.6 ± 0.1
e e e e

38.4 36.8 36.5 37.0

or oxygen are by difference to 100 wt.% rather than directly measured. Estimated

6 wt.% 8 wt.% 10 wt.% 12 wt.%

14.8 ± 1.5 14.6 ± 1.5 14.1 ± 1.4 14.2 ± 1.4
14.0 ± 1.4 12.9 ± 1.3 13.0 ± 1.3 13.1 ± 1.3
19.7 ± 2.0 19.7 ± 2.0 19.2 ± 1.9 19.1 ± 1.9
7.5 ± 0.8 10.0 ± 1.0 12.0 ± 1.2 12.2 ± 1.2
8.4 ± 0.8 8.2 ± 0.8 8.0 ± 0.8 7.9 ± 0.8
0.9 ± 0.1 0.5 ± 0.1 0.2 ± 0.1 0.3 ± 0.1
35.6 34.6 33.7 33.5

refinement results and the refinement parameters.

Metal Ti addition

8 wt.% 10 wt.% 12 wt.% 2 wt.% Ti 4 wt.% Ti

27.7 ± 0.4% 26.4 ± 0.3% 28.4 ± 0.3% 44.6 ± 0.9% 60.9 ± 0.6%
2.7 ± 0.2% 1.2 ± 0.2% 0.8 ± 0.2% 30.4 ± 0.8% 31.0 ± 0.7%
e e e e e

31.7 ± 0.4% 26.8 ± 0.3% 25.3 ± 0.3% e e

e e e e e

22.0 ± 0.3% 22.3 ± 0.3% 20.6 ± 0.3% e e

15.9 ± 0.5% 23.3 ± 0.5% 24.9 ± 0.5% 25.0 ± 0.9% e

e e e e 31.0 ± 0.7%

8 wt.% 10 wt.% 12 wt.% 2 wt.% Ti 4 wt.% Ti

2.205 2.049 2.222 2.200 1.374
11.79 10.30 11.11 6.780 4.365
9.12 8.12 8.63 4.567 3.257
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34.0 ± 0.5 wt.% of ZrSiO4, 6.0 ± 0.4 wt.% of NaNbO3 and
59.9 ± 0.5 wt.% of Nb4þ substituted rutile-TiO2 due to the reducing
HIP condition.

Understanding the phase formation of Cs-exchanged IONSIV®

under HIP conditions and the related crystallography studies of the
phases is essential to reproducibly achieve the desired partitioning
of Cs and predict the long-term performance of wasteforms for
hosting Cs. XRD patterns of HIPed Cs-IONSIV® samples shown in
Fig. 4 demonstrate the effect of Cs levels on phase assemblages. At
low nominal Cs loadings, 2 to 4 wt.%, a series of oxides and a single
Cs containing phase, Cs2TiNb6O18, are present. A growth in intensity
Fig. 9. Simulated (green cross) and experimental diffraction patterns (red line) as well as dif
HIPed Cs-IONSIV® 12 wt.% sample with 4 total weight percent of metal Ti addition. (For inte
web version of this article.)

Fig. 8. Simulated (green cross) and experimental diffraction patterns (red line) as well as dif
HIPed Cs-IONSIV® 6 wt.% sample with 2 total weight percent of metallic Ti addition. (For inte
web version of this article.)
of the peaks for Cs2TiNb6O18 is seen with an increase of the Cs
loading in the samples until about 6 wt.%, then a second Cs-
containing phase, Cs2ZrSi6O15, is formed and the amount of crys-
talline SiO2 decreases.

To further explore the phase evolution, quantitative Rietveld
refinements for weight fraction evaluation of each phase found in
the samples were carried out and the results are presented in Figs. 5
to 7 and Table 1. The phase indexing was confirmed and elemental
weight fractions based on the refinement results of the synchrotron
data, which are shown in Table 2, generally exhibit good consis-
tency with the elemental composition obtained from XRF, given in
ference pattern (purple) and allowed positions of peaks for all phases (vertical lines) for
rpretation of the references to colour in this figure legend, the reader is referred to the

ference pattern (purple) and allowed positions of peaks for all phases (vertical lines) for
rpretation of the references to colour in this figure legend, the reader is referred to the
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Table 3. Some of the discrepancy for Nb, Ti and Zr is likely due to
fixing the Ti:Nb ratio in (Ti,Nb)O2 to 5:1 and the Zr:Ti ratio in (Zr,Ti)
O2 to 1:1 (both averages based on TEM/EDX results from several
grains in the 8 wt.% sample); due to the complexity of the XRD
patterns the Nb, Ti and Zr ratios in these phases were not varied in
any refinements. In addition, as noted earlier, small amounts of
amorphous materials containing Si and traces of Zr and Ti were
observed by TEM. The weight fractions of these amorphous sub-
stances will not be accounted for in the Rietveld analyses as an
internal standard was not used. This will introduce small errors in
both the derived weight fractions and elemental compositions.
Importantly, both XRF and refinement results showed the weight
fractions of Cs increased with the Cs loadings, as expected. The
amount of Cs2TiNb6O18 increases to 6 wt.% but then plateaus and
Cs2ZrSi6O15 forms at increased Cs loading. This appears to be due to
the fact that all of the Nb becomes partitioned into (Ti0.833Nb0.1667)
O2 and Cs2TiNb6O18 at that point and therefore the remaining Cs
must partition into the zirconium silicate, consistent with a con-
comittant decrease in the amount of ZrSiO4. The additional missing
SiO2 is likely in glassy phases which would not be accounted for in
Fig. 10. Normalised leach rates from MCC-1 tests for t
the Rietveld refinement.
Early work by Su et al. [37] revealed that a mixture of crystalline

phases appear when Cs-exchanged IONSIV® is heat-treated in air.
NMR and XRD results indicated that Cs resides in a crystalline
Cs2ZrSi3O9. However, Cs2ZrSi3O9, was not found in any of the HIPed
IONSIV® samples in this work. It is suggested that a different phase
formation route was created due to a more reducing environment
in the HIP process than normal sintering in addition to the effect of
Cs loadings.
3.3. Effect of metal additive

XRD characterisation reveals the phase assemblage in the 6 wt.%
Cs-IONSIV® HIPed with 2% (total weight percentage) Ti metal
addition, as shown in Fig. 8. A rutile form of (Ti,Nb)O2, ZrSiO4, and
the Cs-containing phase Cs2ZrSi6O15 were identified as the main
phases. Quantitative phase analysis reveals that the product is
comprised of 44.6 ± 0.9% of Ti0.833Nb0.167O2, 30.4 ± 0.8% of ZrSiO4
and 25.0 ± 0.9% of Cs2ZrSi6O15. The absence of Cs2TiNb6O18, which
was found in the HIPed Cs-IONSIV® without a metal additive,
he HIPed (a) 6 wt.% and (b) 12 wt.%. Cs-IONSIV®.



Fig. 11. Normalised Cs leach rate from MCC-1 tests for the HIPed 6 wt.% and 12 wt.%.
Cs-IONSIV®, Cs2TiNb6O18 and Cs2ZrSi6O15.

Table 4
Normalised leach rates (g m�2 d�1) from PCT-B leach tests over 7 days for HIPed Cs-IONSIV® samples, HIPed Cs2TiNb6O18 and HIPed Cs2ZrSi6O15.

Element IONSIV® 6wt% IONSIV® 12wt% Cs2TiNb6O18 Cs2ZrSi6O15

Average Esd Average Esd Average Esd Average Esd

Na 0.1176 0.0166 0.1110 0.0043
Si 0.0424 0.0036 0.0408 0.0005 0.0248 0.0004
Ti 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Zr 0.0005 0.0001 0.0002 0.0001 0.0004 0.0001
Nb 0.0005 0.0001 0.0001 0.0001 0.0001 <0.0001
Cs 0.0323 0.0019 0.0378 0.0015 0.0021 <0.0001 0.0030 <0.0001
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indicated that the phase transformation has been affected due to
the more reducing environment; no Nb5þ phases (e.g. Cs2TiNb6O18)
form but Nb4þ is still found in (Ti,Nb)O2. The large increase in this
phase removes a significant fraction of Ti from the mixture and this
is likely why no (Zr,Ti)O2 is seen, the excess Zr this leaves is taken
into the Cs phase and formation of a significant amount of ZrSiO4.
However, there is the same uncertainty in the exact Ti:Nb ratio in
(Ti,Nb)O2 (assumed to be 5:1) and this analysis of laboratory data
suffers from significant peak overlap from that phasewith ZrSiO4 so
the resultant weight fractions should be treated with some caution.

XRD characterisation shown in Fig. 9 reveals a slightly different
phase assemblage forms in 12wt.% Cs-IONSIV®HIPedwith 4% (total
weight percentage) Ti metal. With the higher Cs content and more
Ti added, 60.9 ± 0.6% of Ti0.833Nb0.167O2, 8.1 ± 0.3% of the wadeite
form of Cs2ZrSi3O9 and 31.0 ± 0.7% of Cs2ZrSi6O15 were detected as
main phases in the sample. No Cs2TiNb6O18 was observed, as ex-
pected, and with more Cs the ZrSiO4 is consumed to produce the
two caesium zirconium silicates. Cs2ZrSi6O15 seems to be the first
Cs-containing phase to form in this Cs2O-TiO2-Nb2O5-SiO2-ZrO2
system under these reducing conditions and when the Si is
restricted Cs2ZrSi3O9 with a Cs:Si ratio of 2:3 forms instead of Cs:Si
with a ratio of 2:6.

3.4. Aqueous durability

A systematic durability study on HIPed Cs-IONSIV® samples and
the pure Cs-containing phases has been carried out using the MCC-
1 and PCT-B test protocols. The MCC-1 normalised elemental leach
rates of the 6 wt.% and 12 wt.% Cs-loaded HIPed IONSIV® samples
against the leaching time (3, 7,14 and 28 days) in deionisedwater at
90 �C are shown in Fig. 10. Both showed a relatively high but
decreasing Na leach rate and almost non-leachable Ti, Nb and Zr,
which is in line with PCT-B leach tests (Table 4). The Na loss is likely
due to it being present in the glassy silicate phase rather than a
more durable ceramic, consistent with the absence of an observed
Na-containing crystalline phase in the X-ray analysis. The Cs release
rates examined using both methods are not merely low but very
comparable with those of HIPed Al-rich Hollandite
(0.02e0.36 g m�2 d�1) [38]. Importantly, increasing the Cs loading
did not result in an increase in the normalised leach rate.

The relative stability of the phases with which these elements
are associated is consistent with the dissolution nature of the
wasteform. Ti and Nb, for example, are mainly related to the
leaching behaviour of (Ti,Nb)O2 and Cs2TiNb6O18, and Zr and Si are
attributed to Cs2ZrSi6O15 and ZrSiO4. Therefore, a Cs leaching study
on the pure Cs-containing phases after HIPing, Cs2TiNb6O18 and
Cs2ZrSi6O15, is of importance. Cs leaching experiments of HIPed
Cs2TiNb6O18 and Cs2ZrSi6O15 were therefore carried out usingMCC-
1 and PCT-B standard methods and results are shown in Fig. 11 and
Table 4. Based on the MCC-1 test, the HIPed 6 and 12 wt.% Cs-
IONSIV® samples have essentially the same (within likely errors) Cs
leach rates as either pure Cs phase from approximately 14 days.
Initially the leach rate of Cs2ZrSi6O15 is higher than that of
Cs2TiNb6O18, but with time they appear to reach approximately the
same value. We believe that the explanation for the decreasing
leach rate of the zirconium phase is verymuch like that of a titanate
hollandite where the formation of an insoluble surface oxide
coating protects the bulk [39]. However, in the PCT-B test, the Cs
leach rates of the HIPed IONSIV® samples are an order of magnitude
higher than those of pure Cs2ZrSi6O15 and Cs2TiNb6O18. This is likely
due to a small number of very soluble grains of a Cs-rich phase that
forms during the HIP process and become exposed to the leachate
in a ground sample. Indeed some amorphous Cs and Nb containing
phase(s), which were not detected by XRD, were found in the HIPed
6 wt.% Cs-IONSIV® sample using SEM/EDX (see supporting
information).

It is interesting to compare the chemical durability with those of
other reported potential Cs wasteforms. Although the published
wasteforms were produced in different ways or the conditions of
the leach tests carried out were not exactly the same, the Cs
retention in the HIPed Cs-IONSIV® samples and the pure Cs-
containing phases is very comparable with those of Cs waste-
forms such as hexagonal tungsten oxide bronze (MoW-doped HTB,
MCC-1 <0.0039 g m�2 d�1 [40]), zirconium phosphates (MCC-1
~0.01 g m�2 d�1 [41]), or pollucites (PCT 0.49 � 10�5 to 2.31 � 10�5

[42]; MCC-1 0.093 g m�2 d�1 for 28 days [16]).
It is believed that Cs2TiNb6O18 exhibits good durability at least in

part due to its structural features. The crystal structure of
Cs2TiNb6O18 (trigonal, space group P3m1, a ¼ 7.53923(2) and
c¼ 8.19426(3) Å) consists of layers of (M6O15)n sheets linked by the
(MO3)n octahedral parallel to the c-axis by sharing corners (shown
in Fig. 12a), thus cavities bounded by 21 oxygen atoms are formed.
Cs cations are located between two (M6O15)n layers and almost
occupy the entire volume of the “O21

00cages. The structure of



Fig. 12. (a) polyhedral (Ti/Nb) representations of Cs2TiNb6O18 view along the b-axis. Blue and green octahedra correspond to two different mixed Ti/Nb sites. Pink spheres represent
Cs atoms. (b) Crystal structure of Cs2ZrSi6O15 as viewed down the [010] direction. Blue tetrahedra correspond to SiO4 and green to ZrO6 octahedra. Pink spheres represent Cs atoms.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Cs2TiNb6O18 is rigid with no microporosity, thus the mobility of the
Cs cation is limited [43,44]. A complete description of Cs2TiNb6O18
structure and chemical durability can be found in our previous
work [45].

Likewise Jolicart [33] has reported that the Cs2ZrSi6O15 structure
(monoclinic, space group C2/m, a ¼ 26.61(1) Å, b ¼ 7.506(2) Å and
c ¼ 11.602(4) Å.) consists of connections of Si6O15

6� sheets that are
linked by ZrO6 octahedra leaving large cavities for Cs atoms
(Fig. 12b). Cs atoms are located in the cavities with 10-, 11- and 12-
coordination indicating a good binding environment. The material
shows low Cs release at high temperature, which accounted for
diffusion pathways with no ease within the structure along which
the Cs can migrate. In this work, the excellent durability in HIPed
Cs-IONSIV®s, HIPed Cs2TiNb6O18 and HIPed Cs2ZrSi6O15 has shown
that the immobilisation of Cs from IONSIV® by hot isostatic pressing
is of great promise.

4. Conclusions

A durable ceramic wasteform for Cs immobilisation has been
developed by direct HIPing of Cs-IONSIV® at 1100 �C/190 MPa/2 hr.
XRD and Rietveld refinement results have confirmed that the Cs-
IONSIV® samples were thermally decomposed and converted to
two durable Cs-containing phases, Cs2TiNb6O18 and Cs2ZrSi6O15,
and a series of mixed oxides. Cs leach rates of HIPed IONSIV®

samples as well as HIPed Cs2TiNb6O18 and Cs2ZrSi6O15 measured
using the MCC-1 and PCT-B standard tests have been carried out
and compared to those of HIPed hollandite. The results showed
almost no leachable Cs released from HIPed Cs-IONSIV®. Pure
Cs2TiNb6O18 and Cs2ZrSi6O15 were also resistant to Cs leaching due
to their structures.

In subsequent experiments, Ti metal has been mixed with Cs-
IONSIV® and then the samples HIPed to investigate the effect of the
metal additive on phase formation, with the possibility of pro-
ducing hollandite-like compounds. Unfortunately, hollandite pha-
ses were never found. However, the phase assemblage has been
affected due to the more reducing environment; it appears that the
redox status of the sample during HIPingwas changed leading to all
Nb5þ being reduced to Nb4þ to form (TiVI, NbVI)O2. Cs2TiNb6O18 was
not observed, instead the main Cs-containing phases were
Cs2ZrSi6O15 and Cs2ZrSi3O9, but these are also considered potential
Cs wasteforms based on the structural studies reported in the
literature [25,33,46]. It also means that these Cs-containing phases
can be alternative options for Cs immobilisation rather than
hollandite.

HIPing provides great flexibility for producing various waste-
forms such as glass, ceramic, and glass-ceramic composites that are
difficult to consolidate by established methods due to factors such
as high volatilisation of components/elements or low waste
loading. In this work, HIPing has demonstrated to be an efficient
route for densifying thematerials suitable for direct and permanent
disposal. More importantly, this work can provide guidance for the
stabilisation of real radioactive wastes such as those generated in
the cleanup efforts after the Fukushima Daiichi disaster.
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