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Abstract 

Selenium species, particularly the oxyanions selenite and selenate, are significant 

pollutants in the environment that leach from rocks and are also released by 

anthropogenic activities. In the environment, microbial transformations of selenium 

play important roles in the biogeochemical cycles of the element. For instance, 

microbial reduction of the toxic and water-soluble selenium oxyanions to 

nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of 

selenium and has a major role in bioremediation. Also, microbial methylation after 

reduction of selenium oxyanions is another potentially effective detoxification process 

if limitations with low reaction rates and capture of the volatile methylated selenium 

species can be overcome.  

Methane-oxidizing bacteria are well known for their role in the global methane cycle 

and their potential for microbial transformation of wide range of hydrocarbon and 

chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-

oxidizing bacteria interact with inorganic pollutants in the environment. Here, the 

selenium-transforming properties of methane-oxidizing bacteria have been 

investigated for the first time. The interaction of selenium containing chemical species 

has been studied with pure strains of the commonly used laboratory model strains of 

methane-oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus 

trichosporium OB3b.   

The two strains were both able to convert the toxic selenite but not selenate or DL-

selenocystine to extracellular red spherical nanoparticulate elemental selenium, which 

was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray 

absorption fine structure (EXAFS). The selenium nanoparticles were characterized by a 

variety of techniques, including transmission electron microscopy (TEM) energy 

dispersive X-ray (EDX) spectrometry, high-angle annular dark-field (HAADF) scanning 

TEM (STEM), X-ray photoelectron spectroscopy (XPS), SDS-PAGE analyses, Fourier-

transform infrared spectroscopy (FTIR), zeta potential and Raman spectroscopy. The 

results showed that the reduction process is an enzymatic reaction and mediated by 

cell wall-associated proteins. The elemental red selenium nanoparticles formed during 

selenite reduction were found to be amorphous containing a certain amount of sulfur. 
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The results also indicated that the produced selenium nanoparticles are coated with 

organic materials, likely to be proteins and extracellular polymeric substances (EPS).   

The cultures also produced volatile selenium-containing species when challenged with 

selenite, which shows that both strains have an additional activity that can transform 

either elemental selenium or selenite into volatile methylated forms of selenium, 

including dimethyl selenide, dimethyl diselenide, dimethyl selenenyl sulphide, 

methylselenol and methylselenoacetate. Selenate (at concentrations higher than 100 

µg mL-1) or DL-selenocystine-amended cultures of Methylococcus capsulatus (Bath) 

(but not Methylosinus trichosporium OB3b) produced volatile selenium-containing 

species. From a biotechnological standpoint, these results are promising for the use of 

methane-oxidizing bacteria for bioremediation of selenium-contaminated 

environments and suggest possible uses in the production of selenium nanoparticles 

for technological applications.   
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 Selenium  1.1

Selenium (Se) is a chemical element that was discovered in 1817 by the Swedish 

chemist Jöns Jakob Berzelius, when he was working on the oxidation of sulfur dioxide 

from selenium-bearing copper pyrites. The element was given the name selenium, 

derived from Selene (the Greek goddess of the moon) (Weeks 1932; Kieliszek & 

Błażejak 2013). Selenium has an atomic number of 34 and atomic mass of 78.96, and 

belongs to Group VIA of the Periodic Table; it thus displays chemical behaviour similar 

to sulfur. The element has been classified as a metalloid, having properties of both a 

metal and nonmetal. It ranks 69th in elemental abundance in the Earth’s crust, where it 

occurs in concentration of 0.05-0.09 mg kg-1 (Janz 2011; Fordyce 2013).  

Selenium exists in several natural oxidation states and in a variety of chemical forms 

(inorganic and organic) (Table  1-1). Inorganic Se species found in water and soils are 

mainly selenite [Se (IV), SeO3
2-] and selenate [Se (VI), SeO4

2-], which are both known to 

be highly soluble and the most mobile Se forms (Tolu et al. 2011). Both oxyanionic 

species are of major concern, because they are toxic and known to bioaccumulate 

(Presser & Ohlendorf 1987; Weres et al. 1989). Organic Se-containing compounds that 

can be found in air or in the aqueous environment include volatile methyl species such 

as dimethylselenide (DMSe, CH3SeCH3), dimethyldiselenide (DMDSe, CH3SeSeCH3), 

dimethylselenenylsulfide (DMSeS, CH3SeSCH3) and methane selenol (CH3SeH, MeSeH) 

(Pyrzynska 1998).  

The main sources of selenium in the environment are natural and anthropogenic. The 

natural sources include volcanic activity, weathering of rocks, sea spray, atmospheric 

flux, volatilization, and recycling from biota. The anthropogenic activities may include 
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industrial uses such as electric component, glass manufacture, pigments, rubber, metal 

alloys, and photocopier component, as well as burning of fossil fuels. The agricultural 

sources of selenium are mainly pesticides; manure; lime; phosphate fertilizers 

(National Research Council (US). Subcommittee on Mineral Toxicity in Animals 1980; 

Haygarth 1994).   

In natural environments, selenium like many other elements is subject to microbial 

transformations. Microorganisms play a crucial role in Se bio-transformations by 

changing its chemical forms. Many of these transformations are important 

components of the biogeochemical cycle of the element. Microbial transformations of 

selenium, in particular; ones that may be applicable in bioremediating selenium-

contaminated environments are discussed in section 2 of this chapter ( 1.2).   

 

Table  1-1 Chemical Forms of Selenium in the Environment. Adapted from (Fordyce 
2013).  

Oxidative state Chemical forms 

Se2- Selenide (Se2-, HSe-, H2Seaq) 
Se0 Elemental selenium (Se0) 
Se4+ Selenite (SeO3

2-, HSeO3
-, H2SeO3aq) 

Se6+ Selenate (SeO4
2-, HSeO4

-, H2SeO4aq) 
Organic Se Methylated selenium species, selenomethionine, selenocysteine 

 

1.1.1 Biochemical functions of selenium   

Since its discovery, the metalloid was considered as only a toxic element and its 

essential role in biology was not established until the 1950s. In 1954 Pinsent observed 

that certain bacteria grew faster in selenium-amended media (Pinsent 1954). In 1957, 

selenium was first identified as an essential micronutrient element in mammals during 

pioneering work by Schwarz and Foltz into selenium-responsive diseases (Schwarz & 
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Foltz 1957). As a consequence of those findings, selenium has been recognized as an 

essential trace element for growth and metabolism in most living organisms. Minute 

quantities of Se are essential for normal biological functions in diverse life forms, 

mainly as selenocysteine, a genetically encoded amino acid incorporated into the 

active centres of selenoenzymes including glycine reductases, formate 

dehydrogenases, glutathione peroxidases (GPx), iodothyronine deiodinases (DIO) and 

thioredoxin reductases (TrxR), which play key roles in prokaryotic and eukaryotic cells 

(Stadtman 1991; Heider & Bock 1993; Patching & Gardiner 1999; Birringer et al. 2002; 

Johansson et al. 2005; Taylor et al. 2009; Shamberger 2012). However, excessive 

amounts of selenium can be toxic to animals and humans (Birringer et al. 2002; Lenz & 

Lens 2009; Qin et al. 2013). Indeed, there is a very narrow margin between the 

concentration at which the element exerts beneficial effects on an organism and the 

level at which the element exerts toxic effects (dietary deficiency < 40 μg day-1 and 

toxic levels > 400 μg day-1) (Figure  1-1). The recommended dietary allowance is 55-70 

µg per day, based on a reference dose of 0.005 mg kg-1 body weight day-1 (Pyrzynska 

1998; National Research Council 2005; Fordyce 2013).  

 

 

 

         Adapted from (Nancharaiah & Lens 2015a). 
Figure  1-1 Effects of selenium deficiency and excess in animals and humans.  
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To date, selenium has been identified in at least 25 selenoproteins that commonly 

occur in the human organism as well as in 12 selenoproteins in yeast cells (Letavayová 

et al. 2008; Tastet et al. 2008; Lenz & Lens 2009; Fairweather-Tait et al. 2010). 

Historically, glutathione peroxidase was the first enzyme identified as containing 

selenium (Flohe et al. 1973; Rotruck et al. 1973). The biochemical function of GPxs is to 

catalyze the reduction of hydrogen peroxide and organic hydroperoxides, thus 

protecting the cell against oxidative damage (Papp et al. 2007; Lenz & Lens 2009). The 

selenoamino acid selenomethionine (Se-Met) has radioprotective properties and 

protects against UV-light-induced cell damage (Schrauzer 2000). A simplified overview 

of selenium metabolism in mammals is shown in Figure  1-2. 

 

 

Dietary selenium metabolites are taken up into the cell, where, together with the 
existing intracellular pool, they become metabolized by different pathways, ultimately 
to yield selenide, which serves as the selenium source for Sec biosynthesis. (Se, 
selenium; GSSeSG, selenodiglutathione; CH3SeH methylselenol; H2Se selenide; SeMet, 
selenomethionine; Sec, selenocysteine; GSH, glutathione; TrxR, thioredoxin reductase; 
Trx, thioredoxin). Adapted from (Papp et al. 2007). 
 

Figure  1-2 Selenium metabolism in mammalian organisms.  
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1.1.1.1 Selenium deficiency 

Although the biological significance of selenium was initially recognized with its toxicity 

to livestock, selenium deficiency is a more widespread practical problem. It has been 

reported that selenium deficiency is associated with several metabolic diseases in 

animals such as liver necrosis in rats, exudative diathesis in chicks, white muscle 

disease in ruminants, and reproduction failure in various species (National Research 

Council 1983). In humans, selenium deficiency is regarded as a major health problem 

for 0.5 to 1 billion people all over the world (Haug et al. 2007). Although the 

pathological condition resulting from selenium deficiency alone has not been fully 

understood, the element has been implicated in a number of diseases. In this context, 

selenium deficiency has been linked to a heart disorder termed “Keshan disease” 

(Chen et al. 1980) and bone and joint condition (Kashin-Beck disease) (Ge & Yang 

1993) in humans in some areas of China. In a study by Clark and co-workers (1996) 

supplementation of free-living people with selenized brewer’s yeast was capable of 

decreasing the overall cancer morbidity and mortality by approximately 50%.  

1.1.1.2 Selenium toxicity 

Selenium toxicity had been recorded in the 13th century in livestock, by the Italian 

merchant traveller Marco Polo during his journey from Venice to China in 1295. He 

reported that his horses suffered from hoof disease after eating poisonous plants 

which are now known as selenium accumulators (Birringer et al. 2002). Selenium 

poisoning in livestock causes two main syndromes, “alkali disease” and “blind 

staggers”. The syndromes occur when an animal consumes selenium accumulating 

plants. “Alkali disease” often presents with emaciation, loss of hair, deformation and 
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shedding of hooves. The symptoms of “blind staggers” include impaired vision, 

depressed appetite, and the tendency to wander in circles (Moxon 1937; Oldfield 

2002).   

Selenium toxicity in humans is far less widespread than selenium deficiency. The 

toxicity is characterized as short-term (acute) or long term symptoms (chronic or 

selenosis). Acute poisoning typically involves a single dose that produces symptoms 

within minutes to hours, causing stomach upsets including vomiting, nausea, diarrhea, 

and intestinal cramps. Whereas chronic poisoning involves smaller doses given 

repeatedly, producing symptoms that become apparent over days or longer, resulting 

in hair loss, brittle nails, deformed nails, and discoloration of teeth and skin (Nuttall 

2006). The precise mechanism of selenium toxicity remains unclear, but it has been 

speculated that it is linked to the generation of free radical species, which induce DNA 

damage, and its reactivity with thiols, affecting the integrity and/or function of DNA 

repair proteins (Letavayová et al. 2006). Selenium toxicity in humans depends on its 

chemical forms, concentration and on a number of compounding factors. For example, 

ingestion of any significant quantity of selenious acid (H2SeO3) is usually fatal to 

humans, preceded by stupor, severe hypertension, and respiratory depression 

(Matoba et al. 1986; Quadrani et al. 2000; Hunsaker et al. 2005). Whereas the toxicity 

of methylated selenium compounds depends not only on the dose administered but 

also on the previous level of selenium intake (Fordyce 2013).    
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 Microbial transformations of selenium species for bioremediation 1.2

1.2.1 Background 

Since the discovery in 1954 by Pinsent that the oxidation of formate by cell 

suspensions of Escherichia coli requires growth medium containing molybdate and 

selenite, there has been a growing interest in the biochemical role of selenium in 

microorganisms (Pinsent 1954). Se is an essential component of selenoamino acids, 

such as selenomethionine and selenocysteine (the 21st proteinogenic amino acid) that 

occur in certain types of prokaryotic enzymes. Indeed, the requirement for selenite in 

E.coli growing on formate is linked to the fact that dehydrogenase contains 

selenocysteine. Other prokaryotic enzymes containing selenocysteine include glycine 

reductase in several clostridia, formate dehydrogenases in diverse prokaryotes 

including Salmonella, Clostridium, and Methanococcus, as well as hydrogenases in 

Methanococcus and other anaerobes. In addition, other bacterial Se-dependent 

enzymes, in which the selenium is part of the active site molybdenum-containing 

cofactor, include nicotinic acid dehydrogenase and xanthine dehydrogenase, which is 

present in certain clostridial species (Stadtman 1991; Heider & Bock 1993; Johansson 

et al. 2005).  

Reactions that are involved in the cycling of Se in soil, including those influenced by 

microbes, are diagrammatically summarized in Figure  1-3. Of the four transformation 

reactions, dissimilatory reduction and methylation are considered the most important 

in terms of bioremediation. For example, the microbial reduction of toxic Se oxyanions 

(SeO4
2- and SeO3

2-) to the insoluble and less biologically available elemental selenium 

(Se0) results in its removal from solution. Microbial transformation of non-volatile Se 
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forms to volatile compounds is a significant pathway of Se transfer from aquatic and 

terrestrial environments to the atmosphere. Moreover, the reduction and methylation 

of SeO4
2- and SeO3

2- are an effective detoxification processes because the product 

(dimethylselenide or dimethyldiselenide) is 500 to 700 times less toxic than SeO4
2- or 

SeO3
2- (Franke & Moxon 1936; Wilber 1980; Dungan & Frankenberger 1999; Ranjard et 

al. 2003).  

 

Figure  1-3 Schematic Se cycle in soil, and the influence of microbial processes on the 
transformation of the element. The bold arrows indicate the preferred direction of the 
process (Eswayah et al. 2016).  

 

Zehr and Oremland (1987) tested the assumption that microorganisms involved in the 

S cycle can also reduce Se oxyanions since Se is adjacent to S in group 6 of the periodic 

table and both commonly occur in the +6, +4 and -2 oxidation states. Washed cell 

suspensions of Desulfovibrio desulfuricans (a sulfate-reducing bacterium) were found 

to be capable of reducing small (nanomolar) amounts of SeO4
2- to Se2- at the same 

time as reducing SO4
2- to S2-. The reduction was dependent on the relative 
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concentrations of SeO4
2- and SO4

2-. Increasing concentrations of SO4
2- inhibited rates of 

SeO4
2- reduction but enhanced SO4

2- reduction rates (Zehr & Oremland 1987). 

Subsequently, however, Oremland et al. (1989) reported a novel bacterial dissimilatory 

reduction of SeO4
2- which occurs by pathways different from those for SO4

2-, and was 

spatially separated from sulfate reduction in the environment despite the presence of 

substantial concentrations of sulfate where it occurred. Thus, it can be concluded that 

Se and S have different reductive biogeochemical cycles and appear to involve distinct 

populations of microorganisms (Oremland et al. 1989).  

With respect to the remediation of seleniferous environments, microbial oxidation and 

demethylation of Se compounds are not often considered because of the low rates at 

which these reactions proceed. Microbial demethylation of Se compounds occurs 

when some microorganisms utilize methylated Se forms as their sole source of carbon 

and energy (Doran & Alexander 1977; Dungan & Frankenberger 1999). The aim of this 

review is to discuss the reactions involved in the microbial transformation of different 

forms of selenium and to consider these in an environmental context, with reference 

to the bioremediation of the element in polluted environments.  

1.2.2 Microbial reduction of selenium species 

During microbial assimilation of Se oxyanions, selenate (SeO4
2-) and selenite (SeO3

2-) 

are transported into the cells by different permeases. In the cell, both oxyanions are 

reduced through assimilatory reduction to selenide (Se2-) (Karle & Shrift 1986). In 

bacteria, selenophosphate is then produced by selenophosphate synthase (Figure  1-4). 

Selenocysteine is subsequently synthesised via enzyme-catalysed reaction of serine 

with selenophosphate, whilst the serine is attached to the tRNASec specific for insertion 
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of selenocysteine into ribosomally synthesized proteins (Forchhammer & Bock 1991). 

Also, in the presence of excess available Se, cells begin to incorporate Se instead of S 

into cellular components that normally contain S (Dungan & Frankenberger 1999). 

 

 

  

 

 

 

 

 

 

 

 

In soil, sediment and water, microbial reduction of SeO3
2- and SeO4

2- is known to be an 

important process for removing toxic soluble Se oxyanions (Staicu & Barton 2017). In 

dissimilatory Se reactions, the reduction of Se oxyanions is a mechanism by which 

certain microorganisms can obtain metabolic energy (Nancharaiah & Lens 2015b). 

Dissimilatory Se-reducing microorganisms are known to use a number of different 

electron donors such as alcohols, sugars, organic acids, humic substances, and 

Selenate (SeO4
2-) Selenite (SeO3

2-) 

Selenoproteins 

Selenodiglutathione 
(GS-Se-SG) 

Selenophosphate Hydrogen selenide  
H2Se 

Glutathioselenol 
(GS-SeH) 

GSH 

GSH 

GSH 

Selenophosphate 
synthetase / ATP  

Glutathion (GSH) 

  SeCystRNA 

  UGA / selenocysteine insertion sequence (SECIS)  

Figure  1-4 The biosynthesis of selenocysteine and decoding of the UGA 
codon via a quaternary complex. Adapted from (Taylor et al 2009).   
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hydrogen (Lovley et al. 1999; Kashiwa et al. 2000; Astratinei et al. 2006; Chung et al. 

2006; Zhang et al. 2008). In terms of bioremediation of seleniferous environments, 

assimilatory reduction of Se is expected to make only a minor contribution because of 

the small selenium fluxes involved. In contrast, the dissimilatory reduction of Se is 

considered to be the more important process for bioremediation. Assimilatory 

reduction is the process whereby selenite and selenate are reduced and incorporated 

into organic compounds, whereas dissimilatory reduction generally refers to reduction 

of compounds as terminal electron acceptors in energy metabolism.  

The reduction of selenium oxyanions, including reduction that is apparently not linked 

to respiration or assimilation, is a highly active reaction among many bacterial isolates 

and may play an important role in the environment (Wilber 1980; Staicu et al. 2017).  

Research into dissimilatory reduction of Se is receiving increasing attention, not least 

because results from these investigations offer a potentially cost-effective means of 

remediating selenium pollution. In contrast to insoluble Se0, SeO4
2- and SeO3

2- are 

environmentally problematic in aqueous phases because of their high solubility. 

However, they become immobilized when the selenate and selenite are microbially 

reduced to Se0 (Schröder et al. 1997). Microbial reduction of Se0 to selenide (Se2-) has 

received limited attention, but it is noteworthy that partially soluble Se0 can be 

reduced microbiologically to soluble selenide (Herbel et al. 2003; Pearce et al. 2009).  

Certain bacteria are able to grow anaerobically through the dissimilatory reduction of 

selenium oxyanions.  The product from dissimilatory reduction of selenite is generally 

Se0, which appears in the form of Se nanoparticles. Microbial reduction occurs either in 

the periplasmic space (intracellularly) (Debieux et al. 2011; Sonkusre et al. 2014; Li et 

al. 2014b) or extracellularly (Oremland et al. 2004; Zhang et al. 2012; Jiang et al. 2012). 
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The reduction of Se oxyanions to Se0 nanoparticles can also be mediated aerobically by 

diverse species of bacteria, namely, selenium-resistant bacteria (Prakash et al. 2009; 

Wang et al. 2010; Dhanjal & Cameotra 2010; Bajaj et al. 2012).  

Several investigations have dealt with the mechanisms of microbial formation of Se 

nanoparticles (Zhang et al. 2001; Dobias et al. 2011; Jain et al. 2015b; Wadhwani et al. 

2016; Jain et al. 2017; Song et al. 2017). The Se nanoparticles are known to have 

microbial proteins associated with them, which play a role in the formation and growth 

of the Se nanoparticles (Wang et al. 2010) as well as in controlling their size 

distribution (Dobias et al. 2011). Jain et al. (2015b) used biogenic elemental selenium 

nanoparticles (BioSeNPs), which were produced by anaerobic granular sludge in the 

treatment of pulp and paper wastewater, in an investigation of a presence of 

extracellular polymeric substances (EPS) on the BioSeNPs. Functional group 

characteristic of proteins and carbohydrates were detected on the BioSeNPs, 

suggesting that EPS form a coating that determines the surface charge on these 

BioSeNPs. It is probable that EPS contribute to the colloidal properties of the BioSeNPs, 

and thereby influence their fate in the environment and consequently the efficiency of 

bioremediation technologies (Jain et al. 2015b). Microbial reduction of Se may not only 

be exploited in Se bioremediation but also in the production of selenium nanoparticles 

for biotechnological applications (Dobias et al. 2011; Jain et al. 2014). However, the 

mechanisms involved in the formation of the nanoparticles, and more importantly, in 

their physical and chemical properties are yet to be fully elucidated.   

Microorganisms that reduce the Se oxyanions SeO3
2- and SeO4

2- are not confined to 

any particular group of prokaryotes and are widely distributed throughout the 

bacterial and archaeal domains (McCready et al. 1966; Oremland et al. 1994; Macy 
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1994; Tomei et al. 1995; Yanke et al. 1995; Fujita et al. 1997; Losi & Frankenberger 

1997; Ike et al. 2000; Siddique et al. 2006; Hunter 2007; Han & Gu 2010; Kuroda et al. 

2011; Slobodkina et al. 2015). However, compared to the SeO3
2--reducing 

microorganisms that have been isolated, the number of known SeO4
2- reducers is 

relatively small.  

The reduction of SeO4
2- to Se0 is generally a two-step process in which SeO3

2- is an 

intermediate product. Some bacteria are capable of reducing both SeO4
2- and SeO3

2- to 

Se0 (Doran 1982; Lortie et al. 1992; Turner et al. 1998), while other bacterial species 

can only reduce SeO3
2- to Se0 (Bebien et al. 2001; Roux et al. 2001). In some instances, 

dissimilatory reduction of SeO4
2- supports growth via anaerobic respiration. In other 

cases, reduction of selenium oxyanions may serve a detoxifying function or be an 

adventitious reaction of enzymes with a different function. The reductions of SeO4
2- 

and SeO3
2- are considered in detail below. Major cultured selenium-reducing 

prokaryotes and their properties are summarised in Table  1-2. 
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Table  1-2 Cultured SeO4
2-- and SeO3

2--reducing microorganisms and observed Se 
transformation reactions. 
Microorganism(s) Se transformation   Reference 

Bacteria – dissimilatory Se reduction supporting anaerobic respiration 
 

Thauera selenatis Respiration via reduction of SeO4
2- to SeO3

2- in the 
absence of NO3

–, minor reduction of SeO3
2- to Se0. In the 

presence of NO3
–, SeO4

2- completely reduced to Se0 

(Macy 1994)  

Chrysiogenetes S5 
Deferribacteres S7 
Deltaproteobacteria KM 

Respiration via reduction of SeO4
2- to Se0 (Narasingarao & 

Haggblom 2007)  

Sulfurospirillum barnesii SES-3 Respiration via reduction of SeO4
2- and SeO3

2- to Se0 (Oremland et al. 1994)  
Bacillus arsenicoselenatis E-1H Respiration via reduction of SeO4

2- to SeO3
2-. (Switzer Blum et al. 

1998)  
Bacillus selenitireducens MLS10 Respiration via reduction of SeO3

2_ to Se0 (Switzer Blum et al. 
1998) 

Selenihalanaerobacter shriftii DSSe-1 Respiration via reduction of SeO4
2- to Se0 (Switzer Blum et al. 

2001)  

Archaea – dissimilatory Se reduction supporting anaerobic respiration 
 

Pyrobaculum arsenaticum; Pyrobaculum 
aerophilum 

Anaerobic chemolithotrophs that also grow 
organotrophically with SeO4

2- as electron acceptor. 
Hyperthermophiles. 

(Huber et al. 2000)  

Pyrobaculum ferrireducens Anarobic organotrophic growth on SeO4
2- and SeO3

2-. 
Produces Se0. Hyperthermophile. 

(Slobodkina et al. 2015)  

Bacteria – dissimilatory Se reduction not clearly supporting respiration 
 

Rhodospirillum rubrum Extracellular reduction of SeO3
2- to Se0; reduction under 

anoxic conditions greater than under oxic conditions.   
(Kessi et al. 1999)  

Rhodobacter sphaeroides Reduction of SeO3
2- to Se0 with intracellular accumulation 

under aerobic and anaerobic conditions 
(Bebien et al. 2001)  

Shewanella oneidensis MR-1 Extracellular reduction of SeO3
2- to Se0 under aerobic or 

anaerobic conditions 
(Klonowska et al. 2005)  

Clostridium pasteurianum Enzymatic reduction of SeO3
2- using hydrogenase I (Yanke et al. 1995)  

Enterobacter cloacae SLD1a-1 Reduction of SeO4
2- to Se0 through SeO3

2- as intermediate 
in the presence of NO3

- 
(Losi & Frankenberger 
1997)  

Azospira oryzae  Reduction of SeO4
2- and SeO3

2- to Se0 under anaerobic and 
microaerobic conditions, using O2 or NO3 as terminal 
electron acceptors for growth. 

(Hunter 2007)  

Desulfovibrio desulfuricans  Reduction of SeO4
2- and SeO3

2- to Se0, with formate as 
electron donor and fumarate or sulfate as electron 
acceptor 

(Tomei et al. 1995)  

Enterobacter cloacae SLD1a-1 Reduction of SeO4
2- to Se0 through SeO3

2- as intermediate 
in the presence of NO3

-. 
(Losi & Frankenberger 
1997)  

Pseudomonas stutzeri NT-1 Aerobic reduction of SeO4
2- and SeO3

2- to Se0 (Kuroda et al. 2011)  
Rhodopseudomonas palustris N Aerobic reduction of SeO4

2- and SeO3
2- to Se0 (Li et al. 2014a) 

Wolinella succinogenes. Aerobic reduction of SeO4
2- and SeO3

2- to Se0 (Tomei et al. 1992)  
Salmonella heidleberg Reduction of SeO3

2- to intracellular granules Se0 (McCready et al. 1966)  
Ralstonia metallidurans CH34 Aerobic reduction of SeO3

2- to Se0 (Roux et al. 2001)  
Salmonella heidelberg Aerobic reduction of SeO3

2- to Se0 (McCready et al. 1966)  
Azospirillum brasilense Reduction of SeO3

2- to Se0 nanoparticles (Tugarova et al. 2014)  
Pseudomonas sp. CA-5 Reduction of SeO3

2- to Se0 under aerobic conditions (Hunter & Manter 2009)  
Bacillus cereus CM100B Reduction of SeO3

2- to Se0 under aerobic conditions (Dhanjal & Cameotra 
2010)  

Bacillus megaterium BSB6, BSB12. Aerobic reduction of SeO3
2- to Se0 at high salt 

concentrations 
(Mishra et al. 2011)  
 

Duganella sp. C1 and C4 
Agrobacterium sp. C 6 and C 7 

Reduction of SeO3
2- to Se0 nanoparticles (Bajaj et al. 2012)  

Pseudomonas sp. strain RB Reduction of SeO3
2- in the presence of cadmium 

producing CdSe nanoparticles 
(Ayano et al. 2014)  

Burkholderia fungorum DBT1 
Burkholderia fungorum 95 

Reduction of SeO3
2- to Se0 nanoparticles under aerobic 

conditions  
(Khoei et al. 2017) 

Archaea – dissimilatory Se reduction not clearly supporting respiration  
Halorubrum xinjiangense Aerobic reduction of SeO3

2- to Se0.  Halophile. (Güven et al. 2013)  

Bacteria – a well-studied example of assimilatory Se reduction 
 

Escherichia coli Reduction of SeO4
2- and SeO3

2- to Se0, incorporation of Se 
into proteins 

(Turner et al. 1998)  
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1.2.2.1 Reduction of selenate 

The mechanism of selenate reduction varies among the cultured microorganisms 

studied to date. Several selenate-respiring bacterial species (i.e. bacteria that can use 

selenate as the terminal electron acceptor to support growth) including Thauera 

selenatis, Sulfurospirillum barnesii, and Bacillus arseniciselenatis have been well-

characterized and shown to respire anaerobically by using SeO4
2- as the terminal 

electron acceptor (Macy et al. 1993; Switzer Blum et al. 1998; Stolz et al. 1999). 

Membrane-bound nitrate reductase (Nar), periplasmic nitrate reductase (Nap) and 

selenate reductase (Ser) have all been shown able to catalyse reduction of SeO4
2- to 

SeO3
2-.   

Current evidence from Enterobacter cloacae (Watts et al. 2003) and other organisms 

indicates that selenate reductases have evolved specifically for the reduction of 

selenate and are more important in cultures of specific strains and, by implication, 

environmentally than adventitious capacity of nitrate reductases to reduce selenate. 

Selenate reductase (Ser) has been purified and characterized from T. selenatis 

(Schröder et al. 1997). It is a heterotrimer that is located in the periplasm, forming a 

complex of approximately 180 kDa containing the subunits SerA (96 kDa), SerB (40 

kDa) and SerC (23 kDa). It contains molybdenum, iron and acid-labile sulfur as 

prosthetic groups (Schröder et al. 1997). Ser has been demonstrated to be specific for 

SeO4
2- reduction to SeO3

2- and does not use nitrate, nitrite, chlorate, or sulfate as 

electron acceptors. In contrast, the selenate reductase complex in S. barnesii is found 

in the membrane. It is a heterotetramer with subunits of 82, 53, 34 and 21 kDa and 

also contains molybdenum at the active site (Stolz et al. 1997; Stolz & Oremland 1999; 

Barton 2005).  
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In the facultative anaerobe Enterobacter cloacae SLD1a-1, which can reduce selenate 

under aerobic conditions, the selenate reductase is located in the membrane fraction. 

It discriminates between SeO4
2– and NO3

– and is expressed under aerobic and 

anaerobic conditions.  It is located in the cytoplasmic membrane, with its active site 

facing the periplasmic compartment (Watts et al. 2003). The enzyme is a 

heterotrimeric (αβγ) complex with an apparent molecular mass of approximately 600 

kDa. The individual subunit masses are 100 kDa (α), 55 kDa (β), and 36 kDa (γ). It 

contains molybdenum, heme, and nonheme iron in its prosthetic groups and displays 

activity on chlorate and bromate but none on nitrate (Ridley et al. 2006; Han & Gu 

2010). It is noteworthy that the reductase of E. cloacae SLD1a-1 is similar to 

periplasmic Ser from T. selenatis. Both have active sites located in the periplasm, both 

are molybdo-enzymes with catalytic α subunits of similar sizes (SerA is ~96 kDa), and 

both possess b-type cytochromes. Yee et al (2007) investigated the mechanisms of 

SeO4
2– reduction by the Se-reducing bacterium E. cloacae SLD1a-1 in order to identify 

gene(s) required for SeO4
2– reduction. They demonstrated that the selenate reductase 

of the bacterium is controlled at the genetic level by the global anaerobic fumarate 

nitrate reduction (FNR) regulator and is induced under suboxic conditions.      

1.2.2.2 Reduction of selenite 

Microorganisms can carry out the conversion of SeO3
2- to Se0 via a number of different 

mechanisms (Kessi et al. 1999; Kessi & Hanselmann 2004; Kessi 2006). SeO3
2- reduction 

can be catalysed by reductases, including the periplasmic nitrite reductase, sulfite 

reductase, and dimethyl sulfoxide (DMSO) reductase (Harrison et al. 1984; DeMoll-

Decker & Macy 1993; Afkar et al. 2003). A number of thiol mediated reactions have 
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also been observed to reduce selenite to elemental selenium (Nancharaiah & Lens 

2015b).   

In T. selenatis, which is able to grow anaerobically with SeO4
2- as the electron acceptor, 

little of the SeO3
2- produced is reduced to Se0 when SeO4

2- is supplied as the sole 

electron acceptor. In contrast, SeO3
2- formed during SeO4

2- respiration is completely 

reduced to Se0 by the same bacterium when NO3
– and SeO4

2- are available as electron 

acceptors. Mutants of T. selenatis that lack periplasmic NO3
– reductase activity are 

unable to reduce either SeO3
2- or NO3

-, while mutants with increased nitrate reductase 

activity show rapid reduction of NO3
– and SeO3

2-. Together, these observations suggest 

that the nitrate reductase is required for the reduction of SeO3
2- to Se0 by T. selenatis 

(DeMoll-Decker & Macy 1993).  

Pseudomonas selenitipraecipitans strain CA-5 is capable of reducing both SeO3
2- and 

SeO4
2- to Se0. The strain is resistant to selenite at high concentrations (>150 mM). Two 

activities capable of reducing selenate were detected by zymography, one of which 

may correspond to nitrate reductase (Hunter & Manter 2009). Analyses of fractions 

from this strain indicate the presence of two reductases that can reduce SeO3
2- to Se0 

in the presence of NADPH and that (based upon proteomics analysis of mixed protein 

samples) may correspond to glutathione reductase and thioredoxin reductase, both of 

which are able to reduce SeO3
2- to Se0 when derived from other sources (Hunter 

2014a). Similar zymography and proteomic analysis of fractions from Rhizobium 

selenitireducens suggest that a protein belonging to the old yellow enzyme (OYE) 

family of flavoproteins is capable of reducing SeO3
2- to Se0 using NADH as the electron 

donor (Hunter 2014b).  
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In a study by Li et al. (2014), Shewanella oneidensis MR-1, an organism that shows 

substantial metabolic versatility and is known for its ability to perform biological 

electrons transfer to solid minerals, is also able to reduce SeO3
2- to Se0. Specific 

mutants of S. oneidensis MR-1 have been used to investigate the contribution of the 

anaerobic respiration system to microbial reduction of SeO3
2-. Deletions of the genes 

that encode nitrate reductase (napA), nitrite reductase (nrfA), and two other 

periplasmic mediators of electron transfer for anaerobic respiration (mtrA and dmsE) 

were not impaired in their ability to reduce SeO3
2-, which indicated that neither nitrate 

reductase nor nitrite reductase was essential for selenite reduction. In contrast, in the 

fumarate reductase (fccA) mutant of S. oneidensis MR-1, selenite reduction was 

decreased by 60% compared to that of the wild-type strain. This suggests that FccA 

contributes substantially to selenite reduction in the organism (Li et al. 2014b).  

Deletion of cymA, which encodes a membrane-anchored c-type cytochrome that 

transfers electrons from the quinol pool in the cell membrane to various reductases 

(including fumarate reductase) that are involved in anaerobic respiration, resulted in a 

strain that exhibited only 9.6% of the selenite-reducing rate of the wild-type strain.  

Whilst this indicates that a respiratory electron transport chain is involved in supplying 

electrons for reduction of selenite, it is unclear whether this could support growth in S. 

oneidensis MR-1. In these experiments, the culture actually lost biomass when it 

reduced selenite anaerobically, using lactate as electron donor. Thus, the culture may 

have employed fumarate reductase to reduce the selenite and used it as a means of 

detoxifying selenite in the periplasm to prevent it from entering the cytoplasm, where 

it could be toxic (Li et al. 2014b; Nancharaiah & Lens 2015b).  
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Reduction of selenite to elemental selenium has also been observed in living systems 

via a reaction that appears to be partly abiotic. Here, the selenite reacts chemically 

with biological thiol compounds, such as glutathione, via Painter-type reactions to 

produce molecules containing an S-Se-S bridge moiety known as a selenotrisulfide. It 

may break down spontaneously with the generation of reactive oxygen species, but it 

may also be reduced enzymatically by thioredoxin reductase or glutathione reductase, 

whose natural principal function is to regenerate the thiols in gluthatione and 

thioredoxin by oxidation of S-S bridges. When the substrate is a selenotrisulfide, the 

selenium is liberated as Se0 (Zannoni et al. 2007). This may, of course, be the reaction 

via which glutathione and thioredoxin reductases are involved in reduction of selenite 

to elemental selenium in Pseudomonas selenitipraecipitans (Hunter 2014a) detailed 

above. Other reports of reduction of SeO3
2- to Se0 by bacterial cultures include a 

detoxification mechanism in Salmonella (McCready et al. 1966). The reduction of 

selenite to elemental selenium is clearly of pivotal importance to bioremediation of 

selenium species, so further work is needed to provide information about the role and 

mechanisms of selenite reductases. 

1.2.2.3 Reduction of selenium species to selenide  

Dissimilatory reduction of selenium species to selenide (Se2-) has been observed in a 

limited extent in environmental microorganisms. The obligate acidophile, Thiobacillus 

ferroxidans can convert Se0 to hydrogen selenide (H2Se) under anaerobic conditions 

(Bacon & Ingledew 1989). The selenite-respiring bacterium Bacillus selenitireducens 

produces significant amounts of selenide when supplemented with Se0. The strain is 

also able to reduce SeO3
2- through Se0 to Se2- (Herbel et al. 2003; Pearce et al. 2009). 
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1.2.3 Oxidation of selenium compounds 

The oxidation of reduced selenium species may be relevant with respect to availability 

of selenium as a trace nutrient for crop plants. It is not, however, considered of major 

relevance to environmental toxicity of selenium species because of the low rates of 

transformation involved. Various studies indicate that microorganisms are capable of 

aerobic oxidation of Se0 and SeO3
2- in soil (Lipman & Waksman 1923; Torma & Habashi 

1972; Sarathchandra & Watkinson 1981). A photosynthetic purple sulfur bacterium has 

been reported to use the oxidation of Se0 to selenic acid (H2SeO4) as a sole source of 

energy (Doran 1982), and Acidithiobacillus ferrooxidans has been shown to use copper 

selenide oxidation as a source of energy (Torma & Habashi 1972). Oxidation of Se0 by 

an aerobic heterotrophic bacterium, a strain of Bacillus megaterium, that was isolated 

from soil via an enrichment procedure using elemental selenium has also been found 

to be capable of oxidizing Se0 to SeO3
2- and a trace of SeO4

2- (˂ 1 % of SeO3
2-) 

(Sarathchandra & Watkinson 1981). The genes and enzymes and the pathways 

involved in the biological oxidation of selenium species have not yet been reported.  

Studies with bulk soil have indicated that oxidation of Se0 in soils is largely biotic in 

nature, occurs at relatively slow rates, and produces SeO3
2- and SeO4

2- (Losi & 

Frankenberger 1998). In a study of the oxidation of Se0 in oxic soil slurries, SeO3
2- was 

the predominant product, with small amounts of SeO4
2- also produced. The oxidation 

rate constants were found to be between 0.0009 and 0.0117 day-1 in unamended soil 

slurries (at 25°C). Oxidation of Se0 may have been carried out by heterotrophic 

bacteria, sulfur-oxidising bacteria, and possibly fungi (Dowdle & Oremland 1998). 

These rates indicate that the removal of Se0 from soil via biological oxidation would 

take hundreds of days. In contrast, field studies have shown that the SeO4
2- pool of 
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contaminated anoxic sediments can have turnover times of less than 1 hour due to 

reductive processes that are much more rapid (Oremland et al. 1991). Oxidation, as 

well as reduction, of the selenium species also occurs during the methylation of the 

selenium species, which is considered in the next section.  

1.2.4 Methylation of selenium species 

Environmental microorganisms can use the Se methylation process as mechanism to 

remove SeO3
2- and SeO4

2- by converting them to volatile compounds, such as dimethyl 

selenide (DMSe) and dimethyl diselenide (DMDSe). They may also be important in the 

natural cycling of Se to the atmosphere and play a role as a detoxification mechanism 

(McConnell & Portman 1952). Although the biological significance of Se methylation is 

not clearly understood, once volatile Se compounds are released to the atmosphere 

and diluted, Se has lost its hazardous potential. 

A number of studies have shown microbial production of DMSe and DMDSe in various 

environmental samples, including soil, sewage sludge, and water, from selenium 

sources, including SeO4
2-, SeO3

2-, selenocysteine, and selenomethionine (Francis et al. 

1974). A substantial number of cultured microorganisms, both bacteria and fungi, are 

now recognised as being able to produce methylated forms of selenium. Methylated 

forms of selenium produced by microorganisms also include dimethyl selenone 

[(CH3)2SeO2, also known as methyl methylselenite] (Reamer & Zoller 1980), dimethyl 

triselenide (DMTSe, CH3SeSeSeCH3), and mixed selenium/sulfur-methylated species, 

dimethyl selenyl sulfide (DMSeS, CH3SeSCH3,), dimethyl selenyl disulfide (DMSeDS, 

CH3SeSSCH3), and dimethyl diselenenyl sulfide (DMDSeS, CH3SeSeSCH3) (Burra et al. 

2010). Known cultured microorganisms that are capable of producing methylated 



23 
  

selenium species are summarised in Table  1-3. The predominant groups of Se-

methylating organisms that can be found in soils and sediments are bacteria and fungi, 

while bacteria are the active Se-methylating organisms in the aquatic environments 

(Doran 1982; Dungan & Frankenberger 1999). 

Table  1-3 Se-methylating organisms, showing the Se-containing substrate and 
methylated product. 
Organisms Substrate Product Reference 

Bacteria     
Corynebacterium sp. SeO4

2-, SeO3
2-, Se0 DMSe (Doran & Alexander 

1977) 
Aeromonas sp. SeO4

2- DMSe, DMDSe (Chau et al. 1976)  
Rhodocyclus tenuis SeO4

2-, SeO3
2- DMSe, DMDSe (McCarthy et al. 

1993)  
Aeromonas veronii SeO4

2-, SeO3
2-, Se0, SeS2, H2SeO3, 

NaSeH 
DMSe, DMDSe, methyl 
selenol, DMSeS 

(Rael & 
Frankenberger 1996)  

Bacillus sp SeO3
2-, SeO4

2-, selenocyanate DMSe, DMSeS, DMDSe, 
DMSeDS, DMDSeS, DMTSe 

(Burra et al. 2010)  

Rhodospirillum rubrum S1 SeO3
2-, Se0 DMSe, DMDSe (Van Fleet-Stalder & 

Chasteen 1998)  
Desulfovibrio gigas SeO3

2- DMSe, DMDSe (Michalke et al. 2000)  
Methanobacterium formicicum SeO3

2- DMSe, DMDSe (Michalke et al. 2000)  
Pseudomonas fluorescens K27 SeO4

2- DMSe, DMDSe, DMSeS (Chasteen & Bentley 
2003)  

Citrobacter freundii KS8 SeO4
2- DMSe, DMDSe, DMSeS (Chasteen & Bentley 

2003)  
Pseudomonas strain Hsa.28 SeO4

2-, SeO3
2- DMSe, DMDSe (Chasteen & Bentley 

2003)  
Stenotrophomonas maltophilia SeO4

2- and SeO3
2- DMSe, DMDSe, DMSeS (Dungan et al. 2003)  

Pseudomonas stutzeri NT-I SeO4
2-, SeO3

2-, Bio-Se0 DMSe, DMDS (Kagami et al. 2013)  
 
Fungi 

   

Scopulariopsis brevicaulis SeO4
2- , SeO3

2- DMSe (Challenger & North 
1934)  

Penicillium notatum and  
p. chrysogenum 

SeO4
2- , SeO3

2- DMSe (Bird & Challenger 
1939)  

Penicillium sp. SeO4
2- DMSe (Fleming & Alexander 

1972)  
Cephalosporium sp. SeO4

2-, SeO3
2- DMSe (Barkes & Fleming 

1974)  
Fusarium sp. SeO4

2-, SeO3
2- DMSe (Barkes & Fleming 

1974)  
Candida humicola SeO4

2-, SeO3
2- DMSe (Cox & Alexander 

1974)  
Alternaria alternata SeO4

2-, SeO3
2- DMSe (Thompson-Eagle et 

al. 1989)  
Penicillium citrinum SeO3

2- DMSe, DMDSe (Chasteen et al. 1990)  
Acremonium falciforme SeO3

2- DMSe, DMDSe (Chasteen et al. 1990)  

 

1.2.4.1 Selenium methylation pathways  

If the initial form of selenium is one of the selenium oxyanions or elemental selenium, 

Se-methylation must involve both reduction and methylation reactions. To date, a 

number of pathways have been suggested for biomethylation of selenium, with 
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evidence from proposed intermediates. Methyltransferases capable of methylating 

selenium species have been identified. The original pathway proposed by Challenger 

(1945) suggested that methylation of SeO3
2- by fungi involved the methylation and 

reduction of the Se atom in four steps to form DMSe as the final product (Figure  1-5). 

 

 

 

 

 

 

 

 

Reamer and Zoller (1980) subsequently reported that inorganic selenium compounds 

(SeO3
2- or Se0) are converted into DMDSe, DMSe, and dimethyl selenone [or possibly 

DMSeS (Chasteen 1993)] by microorganisms in soil and sewage sludge. Challenger's 

proposed scheme was modified to introduce a branch that yielded DMDSe (Figure  1-6). 

In this pathway, the methaneseleninic ion intermediate can form either 

methaneselenol or methaneselenenic acid, which would then be reduced to DMDSe. It 

was found that at low concentrations of SeO3
2- (1 - 10 mg L-1 Se), DMSe was the 

predominant product, while DMDSe or dimethyl selenone was produced at high 

concentrations of SeO3
2- (10 - 1000 mg L-1). In contrast, when Se0 was added to sewage 
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Figure  1-5 Challenger's pathway for the microbial transformations of selenium 
(Challenger 1945). 
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sludge, DMSe was the only product. There was a direct dependence of the production 

of DMDSe on the concentration of added SeO3
2- as at high concentrations of Se, DMSe 

production was inhibited. During the 30-day period of the experiment, the maximum 

proportion of selenium across the tested concentration range that was volatilised was 

7.9 % (Reamer & Zoller 1980).    

 

 

Zhang and Chasteen (1994) observed that the amounts of DMSe and DMDSe released 

from cultures of the Se-resistant bacterium Pseudomonas fluorescens K27 amended 

with dimethyl selenone were more than those formed from SeO4
2-. This finding 

suggested that dimethyl selenone may be an intermediate in the reduction and 

methylation of selenium oxyanions, which is consistent with the proposed pathway for 

production of DMSe (Figure  1-5).  
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Figure  1-6 Reamer and Zoller's pathway for the microbial transformations of selenium 
(Reamer & Zoller 1980).  
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In the scheme proposed by Doran (1982), the methylation of inorganic Se by soil 

Corynebacterium involved the reduction of SeO3
2- to Se0 and then a reduction to the 

selenide. The selenide was then methylated to form DMSe (Figure  1-7). Although 

hydrogen selenide and methane selenol were not identified as intermediates, the roles 

of selenide and methane selenol as intermediates have been suggested in other 

investigations (Bird & Challenger 1942; Bremer & Natori 1960; Hsieh & Ganther 1975).  

 

 

  

 

 

 

 

The bacterial thiopurine methyltransferase (bTPMT) from Pseudomonas syringae, 

which catalyses methyl transfer reactions using S-adenosyl methionine (SAM) as the 

methyl donor, confers upon Escherichia coli the ability to transform selenite into DMSe 

and selenomethionine or (methyl)selenocysteine into DMSe and DMDSe (Ranjard et al. 

2002). Production of methylated selenium species was also observed with an E. coli 

that was transformed with a methyltransferase gene (amtA) from a freshwater isolate 

of Hydrogenophaga sp. that produced DMSe and DMDSe (Ranjard et al. 2004).  

While rates for biological production of methylated selenium species are generally low, 

applications of selenium-methylating microorganisms in bioremediation and 
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Figure  1-7 Doran's pathway for the microbial transformations of selenium (Doran 
1982).   
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biotechnology have been suggested, such as for recovery of selenium from 

seleniferous water via biovolatilization. A fermenter culture of Pseudomonas stutzeri 

NT-I under aerobic conditions was able to produce methylated selenium species at 

rate of 14 mol L-1 h-1. The selenium could be recovered from the gas phase via a simple 

gas trap containing nitric acid (Kagami et al. 2013), and preserving the selenium in the 

(-II) oxidation state in each of these compounds: DMSe and DMDSe as 

dimethylselenoxide [(CH3)2SeO or DMSeO] and methylseleninic acid (MSA) 

[CH3Se(O)OH or Methylseleninic acid], respectively.  

1.2.5 Demethylation of selenium compounds 

Doran and Alexander (1977) isolated from seleniferous clay a pseudomonad able to 

grow on DMSe as well as strains of Xanthomonas and Corynebacterium that were able 

to grow on DMDSe as sole carbon and energy sources. The pathways for breakdown of 

methylated selenium compounds, which presumably involve demethylation in such 

organisms, are currently unknown. In anoxic sediments, DMSe undergoes rapid 

demethylation. It has been suggested that DMSe could be anaerobically transformed 

to methane (CH4), carbon dioxide (CO2), and hydrogen selenide (H2Se) by sediment 

organisms (methanogens and sulfate-reducing bacteria) in a pathway similar to 

dimethyl sulfide (DMS) degradation in freshwater and estuarine sediments (Oremland 

& Zehr 1986).  

1.2.6 Selenium bioremediation 

As its industrial and agricultural usage increases, increasing amounts of selenium 

(particularly in the forms of SeO3
2- and SeO4

2-) will be discharged into the environment, 

posing a threat to the aquatic and terrestrial environments. Indeed, of the 2,700 
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tonnes of selenium that is produced annually only about 15% is recycled (Haug et al. 

2007). Therefore, there is a need to develop efficient, eco-friendly and cost-effective 

methods for remediation of Se pollution and also, where possible, for recovery of this 

valuable element. As more stringent regulations come into force in order to limit the 

discharge of Se containing waste, the use of bioremediation technologies are 

preferable because they will offer more cost effective approaches for the removal of 

the pollutant. There has been a growing interest in the use of microorganisms in 

remediating Se-contaminated environments (Higashi et al. 2005; Soda et al. 2012; 

Williams et al. 2013; Santos et al. 2015; Jain et al. 2016; Barlow et al. 2017; Ike et al. 

2017). In this context, a number of studies have been carried out in order to exploit 

the use of Se-oxyanion-reducing microorganisms in small/large-scale remediation 

schemes. These studies have demonstrated that many microorganisms may be used in 

remediation approaches designed for the treatment of Se-contaminated soil, 

sediments, and wastewater. Selenium is to a large extent immobilized and can be 

recovered in solid form after biological reduction of selenium oxyanions to Se0. 

Alternatively, if limitations due to slow reaction rates can be overcome, the biological 

conversion of Se0 to volatile methylated forms potentially permits remediation and 

subsequent removal and collection in a controlled manner.  

A range of carbon and energy sources have been tested as electron donors for the 

microbial reduction of selenium species. These included inexpensive algal biomass, 

which has been explored as an electron donor and carbon source for bacterial 

reduction of SeO4
2- to Se0 as well as reduction of NO3

- to N2 in agricultural drainage 

(Gerhardt et al. 1991). In another study, the SeO4
2--respiring bacterium Thauera 

selenatis was used to treat Se-oxyanion-containing oil refinery wastewater in a 
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laboratory-scale bioreactor. A reduction of 95% of the soluble element was achieved 

from an initial concentration of 3.7 mg L-1 (Lawson & Macy 1995). The SeO4
2--reducing 

bacterium, Bacillus sp. SF-1, has been tested in an anoxic continuous flow bioreactor 

under steady-state conditions for removing SeO4
2- from a model wastewater 

containing 41.8 mg L-1 SeO4
2-, with lactate as the electron donor. The system 

effectively removed SeO4
2- at short cell retention times (2.9 h), but there was 

accumulation of SeO3
2- under these conditions. As the retention time was increased, 

more of the selenium was reduced to Se0. Conversion of Se0 was ≥99% at a cell 

retention time of 92.5 h and an Se0 production rate of 0.45 mg L-1 h-1 (Fujita et al. 

2002).  

T. selenatis has been employed on a pilot-scale for the remediation of Se-containing 

drainage water from the San Joaquin Valley, CA. The inflow to the reactor had a Se 

oxyanion (SeO3
2- plus SeO4

2-) concentration of 0.237 mg L-1. The reactor effected 97.9% 

conversion to recoverable insoluble Se0 and left the treated water containing only 5 µg 

L-1 of selenium. This high removal of Se0 was achieved via polymer coagulation with 

Nalmet 8072, which helped to overcome the general technical challenge of recovering 

Se0 due to small particle size (Cantafio et al. 1996). The Se-reducing bacterium 

Pseudomonas stutzeri NT-I has also been effectively employed for the bioremediation 

of a Se-containing refinery wastewater in 256-litre pilot-scale bioreactors via reduction 

to elemental selenium (Soda et al. 2012).  

In a high-throughput sequencing study to investigate the effect of an electron acceptor 

on community structure during respiration of an activated-sludge derived microbial 

population using hydrogen as the electron donor, principal component analysis 

revealed a substantial shift in the composition of the microbial population upon first 
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addition of nitrate as an alternative to selenate as the electron acceptor (Lai et al. 

2014). This gives additional evidence for the presence of environmental communities 

of microorganisms that utilize selenite as an electron acceptor and that these are, to a 

significant extent, distinct from nitrate-reducing microorganisms. 

Since some algae can volatilize substantial quantities of inorganic Se compounds 

(Oyamada et al. 1991; Fan et al. 1997; Neumann et al. 2003), algal methylation of 

selenium compounds offers a possible way to remove selenium from the aqueous 

phase. The inclusion of an algal pretreatment unit into a constructed wetland system 

was investigated in order to remove Se from river water entering the Salton Sea in 

California. The alga Chlorella vulgaris (Cv) removed 96% of Se supplied as selenium 

oxyanions (1.58 mg L-1) from the microcosm water column within 72 hours. With this 

arrangement, up to 61% of the selenium was removed by volatilization to the 

atmosphere, suggesting that an algal pre-treatment stage could be included into 

constructed wetland systems for selenium bioremediation (Huang et al. 2013).    

In addition to the problems that it causes as an environmental pollutant, selenium is 

an essential micronutrient and a valuable metalloid for which there are a dearth of 

high-yielding geological sources. Hence, the most advantageous systems for 

remediation of selenium pollution would put the recovered selenium to good 

nutritional or technological uses. Elemental selenium is used in industry, the growth of 

some crops, prevention and treatment of certain diseases including cancer, as well as 

antifungal activities. In this connection, it must be noted that a great diversity of 

prokaryotes are able to reduce selenium oxyanions to elemental selenium in the form 

of nanoparticles, which have properties difficult to mimic by chemical technologies. 

The microbially produced nanoparticles could be used in a variety of technological 
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applications (Oremland et al. 2004; Nancharaiah & Lens 2015b). In effective selenium 

bioremediation, the selenium may have several acceptable fates. The likely fates of 

selenate in the presence of a variety of organisms have been demonstrated in an 

engineered aquatic ecosystem designed for brine shrimp production. In this 

investigation, selenate was taken up and metabolized differently by microalgae, 

bacteria, and diatoms to selenite, selenide or elemental Se. Some of the 

biotransformed selenium species were incorporated and bioaccumulated as organic 

selenium compounds as they were transferred between the different trophic levels. 

Organic selenium-enriched invertebrates suitable for human and animal consumption 

were produced as a result of these metabolic biotransformations (Schmidt et al. 2013).  

Microbial methylation of inorganic Se oxyanions to volatile species offers a possible 

approach to bioremediation of selenium compounds in Se-polluted soils and aquatic 

environments. This has the attraction that the selenium may be completely removed in 

the vapour phase, although the limitation of low reaction rates would have to be 

overcome. In principle, organisms that demethylate selenium species may be used to 

recover vapour-phase selenium, provided reaction rate limitations and possible 

production of toxic and volatile H2Se can be overcome. Genetic characterization of the 

pathways of selenium methylation and demethylation may enable their modification 

by overexpressing the necessary enzymes, resulting in acceleration of these processes. 

 

Selenium species may be transformed in a diversity of metabolic reactions. Interest in 

the microorganisms capable of transforming selenium compounds involved in 

environmental pollution and in making selenium nutritionally available will increase as 



32 
  

the activities of these organisms become better understood. Further characterizations 

of the mechanisms of selenite reduction to elemental selenium and of selenium 

methylation and demethylation are needed. Culture-independent analysis will be 

useful in studying the diversity and distribution of selenium-transforming organisms in 

a range of environments using a combination of functional gene analysis and 

metagenomics. Sequencing with 16S rRNA gene analysis should be fruitful in 

unraveling the role of microorganisms in the global selenium cycle. Their ability to 

produce selenium nanoparticles will be industrially exploited. Their ability to transform 

different selenium species by reduction, methylation, and demethylation will be 

harnessed further in the remediation of selenium-containing wastewater. 

As discussed above the microbial transformation of selenium has been demonstrated 

in a wide range of bacteria under aerobic and anaerobic conditions (Switzer Blum et al. 

1998; Switzer Blum et al. 2001; Bebien et al. 2001; Klonowska et al. 2005). However, 

the potential contribution of aerobic methane-oxidizing bacteria, which are 

widespread in the environment, has not been assessed until recently. The ecology, 

taxonomy, physiology and biochemistry of methane-oxidizing bacteria, as well as their 

potential in remediation of environments contaminated with toxic chemicals are 

discussed in section  1.3. 
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  Methane-oxidizing bacteria     1.3

Methane-oxidizing bacteria (methanotrophs) are a diverse and ubiquitous group of 

Gram-negative bacteria within the environment that are able to grow using methane 

as their sole source of carbon and energy (Hanson & Hanson 1996; Smith & Murrell 

2009). This group of bacteria exist in a variety of habitats including soils, peatlands, rice 

paddies, sediments, freshwater and marine systems, acidic hot springs, mud pots, 

alkaline soda lakes, cold environments, and tissues of higher organisms (Pester et al. 

2004; Abell et al. 2009; Moussard et al. 2009; Smith & Murrell 2009; Antony et al. 

2010; Semrau et al. 2010), as well as in a wide range of pH, temperature, oxygen 

concentrations, salinity, heavy metal concentrations, and radiation (Pandey et al. 

2014). Methanotrophs are of great interest for their role in the global carbon cycle as 

the largest biological sink for atmospheric methane (Singh et al. 2010; Finn et al. 2015; 

Tiwari et al. 2015).  

Although methanotrophs were first described in 1906 by Söhngen (Rasigraf et al. 2014), 

their classification was not until 1970, when Whittenbury et al. (1970) isolated and 

characterized over 100 new strains of methane-oxidizing bacteria. Whittenbury et al. 

(1970) established the fundamental construction of current classification of these 

organisms. Methanotrophs are currently classified into two broad taxonomic groups, 

namely type I and type II methanotrophs, based on cell morphology, phenotypic traits 

including carbon assimilation pathways, 16S rRNA gene phylogeny, phospholipid fatty 

acid (PLFA) profiles and intracellular membrane system architecture (Hanson & Hanson 

1996; Smith & Murrell 2009; Bissett et al. 2012). Type I methanotrophs belong to the 

Gammaproteobacteria and are further divided into the type Ia and type Ib (or type X) 

methanotrophs. The type Ia comprises the genera Methylomicobium, Methylomonas, 
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Methylobacter, Methylosarcina, Methylosphaera, Methylosoma, Crenothrix, and 

Clonthrix, while the type Ib includes Methylococcus, Methylocaldum, Methylohalobius, 

Methylothermus. The type II belongs to the Alphaproteobacteria and comprises the 

genera Methylosinus, Methylocystis, Methylocapsa and Methylocella ( 

Table  1-4).  
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Table  1-4 Classification of aerobic methanothrophic bacteria. Adapted from (Smith & Murrell 2009; Bissett et al. 2012).  

 

 

Type Phylum Genus MMO type C1 assimilation Tropic niche 

Type I γ -Proteobacteria type Ia  
 

Methylobacter pMMO RuMP some psychrophilic 

Methylomonas pMMO+/-sMMO RuMP some psychrophilic 

Methylosoma pMMO not known not extreme 

Methylomicobium pMMO+/-sMMO RuMP halotolerant; alkaliphilic 

Methylosarcina pMMO RuMP not extreme 

Methylosphaera pMMO RuMP psychrophilic  

Crenothrix pMMO  not extreme 

Clonthrix pMMO  not extreme 

𝛾 -Proteobacteria type Ib (X) Methylococcus pMMO + sMMO RuMP/Serine thermophilic 

Methylocaldum pMMO RuMP/Serine thermophilic 

Methylohalobius pMMO RuMP halophilic 

Methylothermus pMMO RuMP thermophilic 

Type II α -Proteobacteria  Methylosinus pMMO + sMMO Serine not extreme 

Methylocystis pMMO+/-sMMO Serine some acidophilic 

Methylocapsa pMMO Serine acidophilic 

Methylocella sMMO Serine acidophilic 
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Methanotrophs contain the enzyme methane monooxygenase (MMO), which occurs in 

two forms, namely, copper-dependent membrane-associated or particulate form 

(pMMO), and iron-containing soluble or cytoplasmic form (sMMO). It is noteworthy 

that sMMO and pMMO are different their protein components and active-site metals, 

but more importantly substrate specificity. pMMO is found in all known 

methanotrophs, except Methylocella spp (Theisen et al. 2005), while sMMO is only 

found in a few methanotrophs (Murrell et al. 2000). In methanotrophs such as 

Methylosinus trichosporium and Methylococcus capsulatus that are able to produce 

both the copper-containing pMMO and iron-containing sMMO, the switch between 

expression of pMMO and sMMO is effected by available copper in the culture, with 

sMMO being expressed at low copper-to-biomass ratio and pMMO at high copper-to-

biomass ratio (Stanley et al. 1983).   

The copper demand for proteobacterial methanotrophs expressing pMMO is high, 

approximately 10-fold higher than the copper requirement observed in other 

microorganisms (Semrau et al. 2013). Thus, in order to meet their high copper 

requirement, γ- and α-Proteobacteria methanotrophs synthesize and secrete a small 

modified peptide, high-affinity copper-binding compound called methanobactin. The 

compound functions as a chalkophore (siderophore-like molecule, the function of 

which is to bind copper rather than iron) by binding Cu2+ or Cu+, then shuttling the 

copper into the cell (Kim et al. 2004; Krentz et al. 2010; El Ghazouani et al. 2012; 

Kalidass 2016). Methanobactin uses a unique sulfur and nitrogen coordination system 

to bind copper (Kim et al. 2004). It has been demonstrated that methanobactin can 

increase the bioavailability of copper for methanotrophs (Knapp et al. 2007; Semrau et 

al. 2013). Methanobactin is known to play a significant role in the copper-switch that 
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controls expression of the two forms of MMO. Indeed, the first form of methanobactin 

characterized was from Methylosinus trichosporium OB3b (Figure  1-8), and it was 

found to be a small modified polypeptide of 1,154 Da (DiSpirito et al. 1998; Tellez et al. 

1998; Kim et al. 2004).  

More recently, methanobactins from five other methanotrophs have been structurally 

characterized, including Methylocystis strain SB2, Methylocystis hirsuta CSC1, 

Methylocystis strain M, Methylocystis rosea SV97T, and Methylosinus sp. LW4 (Behling 

et al. 2008; Krentz et al. 2010; Bandow et al. 2012; El Ghazouani et al. 2012; Kenney et 

al. 2016). These methanobactins are all small with molecular mass of 851.20, 910.20, 

825.13, 914.13 and 1334.23 Da, respectively. The molecular structures of these 

methanobactins were characterized via nuclear magnetic resonance and X-ray 

crystallography. Although copper is the most physiologically relevant metal ion that 

binds to methanobactin, methanobactin from Methylosinus trichosporium OB3b also 

binds other metal ions including Au3+, Ag+, Cd2+, Mn2+, Fe3+, Co2+, Zn2+, Hg2+, Ni2+ and 

U4+ (Bandow 2014; DiSpirito et al. 2016; Dassama et al. 2017).    

 

Figure  1-8 Primary structure of methanobactin from Ms. trichosporium OB3b.  
Reprinted with permission from (Semrau et al. 2013).  
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Methanotrophs use the enzyme methane monooxygenase (MMO) to catalyse the 

oxidation of methane to methanol. They assimilate the formaldehyde produced from 

the oxidation of methane via the ribulose monophosphate (RuMP) or the serine 

pathway. The formaldehyde is an important branch point in methylotrophic 

metabolism. The conversion of methane to methanol by the methanotrophic MMOs is 

an essential step of methane oxidation, in which an oxygen molecule is incorporated 

across C-H bond to produce methanol (Dalton 1980; Wallar & Lipscomb 1996; Merkx et 

al. 2001) as in Equation 1.1, 

 

                                                                                                                                    

MMO catalyzes a classic monooxygenase reaction in which two reducing equivalents 
from NAD(P)H are utilized to split the O-O bond of O2. One atom of oxygen is reduced 
to water while the second is incorporated into the substrate to yield methanol. 

 

1.3.1 Remediation of toxic chemicals by methanotrophs     

The MMOs from methanothrophs have been shown to not only oxidize methane to 

methanol but also a wide range of other organic substrates, including aromatic 

compounds, halogenated benzenes, toluene and styrene as well as aliphatic 

hydrocarbons (Lontoh & Semrau 1998; Kikuchi et al. 2002; Jiang et al. 2010). 

Consequently, methanotrophs are well known for their potential in remediating these 

organic pollutants and, more recently, their capacity for remediating inorganic 

pollutants has also been recognised. Certain methanotrophs have been found able to 

reduce chromium (VI) to the less toxic and less bioavailable chromium (III) (Al Hasin et 

al. 2009; Lai et al. 2016a) and to reduce mercuric ions to metallic mercury (Boden & 

CH4 + NAD(P) H + H+ + O2 CH3OH + NAD(P)+ + H2O                    Equation 1.1      MMO 
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Murrell 2011). During the course of his investigations, Lai et al (2016) have reported a 

mixed culture capable of the bio-reduction of selenate to elemental selenium using 

methane as the electron donor in a membrane biofilm reactor containing a microbial 

community including aerobic methanotrophs (Lai et al. 2016b).   

The research related to bioremediation potential of methanotrophs is still in its infancy.  

However, with the combination of biotechnology and genetic engineering, 

methanotrophs can be exploited for in situ bioremediation of a wide range of inorganic 

and organic pollutants.  
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 Aims of the work reported in this study 1.4

Although a considerable number of studies have been conducted on the microbial 

transformations of selenium in the environments, no attention has been paid to the 

role of methane-oxidizing bacteria in transforming selenium species. The present 

investigation is the first study of the selenium-transforming properties of methane-

oxidizing bacteria which are ubiquitous in the environment. If methane-oxidizing 

bacteria are exposed to the toxic selenium oxyanions, then the bacteria will transform 

the oxyanions into less toxic selenium species, because this group of bacteria has been 

shown to degrade/co-oxidize diverse type of heavy metals and organic pollutants. 

MMOs and methanobactin may play a role in the transformation of selenium 

oxyanions.  

The interaction of selenium containing chemical species has been studied with well 

characterised representatives of two major groups of methane-oxidizing bacteria, the 

type I methanotroph Methylococcus capsulatus (Bath) and the type II methanotroph 

Methylosinus trichosporium OB3b.  

The overall aim of this study was to investigate the microbial transformation of 

selenium using methane-oxidizing bacteria for developing and implementing 

successful bioremediation of selenium. As a first step to developing a bioremediation 

strategy for selenium in the field, it was essential to investigate the mechanisms by 

which these microorganisms convert selenium into different chemical forms under 

laboratory conditions.  

The main objectives are as follow: 
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 To investigate the efficiency of soluble selenium species, namely selenite and 

selenate reduction by methanotrophs.  

   To characterise the elemental selenium nanoparticles produced after 

reduction.   

 To detect and identify volatile selenium species that may be produced during 

the biotransformation reactions.  

 To investigate the involvement of methane monooxygenases (MMOs) in the 

selenium transformations. 

 To study the possible mechanism(s) of the reduction.  

 To identify and purify the enzyme(s) responsible for selenium 

biotransformation.   
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Chapter 2 

Materials and methods 
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 Materials 2.1

All reagents used were of analytical grade. All solutions and media were prepared with 

high-purity deionized water (18.2 M cm, MilliQ, Millipore).  

 Methods 2.2

2.2.1 Bacterial strains and growth conditions 

The methanotrophic bacteria Mc. capsulatus (Bath) (NCIBM 11132), Ms. trichosporium 

OB3b (NCIMB 11131) were chosen for investigation in order to establish whether the 

pure strains of methane- oxidizing bacteria can bio-transform selenium oxyanions. In 

addition, Ms. trichosporium SMDM (a derivative of Ms. trichosporium OB3b in which 

the genes encoding soluble methane monooxygenase [sMMO] have been inactivated 

via marker exchange mutagenesis) (Borodina, et al. 2007) was used to test the 

hypothesis that MMO may be involved directly in the transformation of the selenium 

oxyanions.   

The strains were grown and propagated aerobically in sterile nitrate mineral salts 

(NMS) media (Smith & Murrell 2011) using methane (1:4 v/v in air) as the source of 

carbon and energy. The NMS media contained (per L of deionized water) KNO3, 1000 

mg; MgSO4.7H2O, 1000 mg; CaCl2.2H2O, 200 mg; NaMoO4.2H2O, 0.5 mg; Fe-EDTA, 3.8 

mg; CuSO4.5H2O 0.1 mg; FeSO4.7H2O, 0.5 mg; ZnSO4.7.H2O, 0.4 mg; H3BO3, 0.15 mg; 

CoCl3.6H2O, 0.05 mg; Na2EDTA, 0.25 mg; MnCl2.4H2O, 0.02 mg; NiCl2.6H2O, 0.01 mg; 

Na2HPO4, 497 mg; KH2PO4, 390 mg. The experiments were performed in 50 mL liquid 

cultures in 250mL conical Quickfit® flasks capped with Suba-Seals (Sigma-Aldrich) to 

prevent methane loss while allowing the addition and removal of material using 
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hypodermic syringes. The Ms. trichosporium OB3b and Mc. capsulatus (Bath) cultures 

were incubated at the optimum growth temperature of 30 and 45°C, respectively, on a 

shaker at 180 rpm and allowed to grow to an OD600 of between 0.5-0.8. Under the 

conditions used in these experiments, the Mc. capsulatus (Bath) strain grew 

substantially faster than the Ms. trichosporium OB3b stain, reaching an OD600 of 0.7 

typically at 24 - 30 hours, whereas cultures of Ms. trichosporium OB3b took 50 -72 

hours.  

2.2.2 Determination of the minimum inhibitory concentration (MIC) of 

selenite and selenate for methanotrophs 

Minimum inhibitory concentrations (MICs) for selenite and selenate were determined. 

The MIC of selenite for Mc. capsulatus (Bath) and Ms. trichosporium OB3b in NMS 

medium was determined by inoculating the two strains with various initial 

concentrations of selenite salt (Na2SeO3): 0 (control), 5, 10, 20, 40, 60, 80 and 100 mg 

L-1, and 0, 1, 2, 3, 4, 5, 6, 7 and 8 mg L-1 for Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b, respectively. While MIC for selenate was determined by 

inoculating the organisms with various initial concentrations of selenate salt (Na2SeO4): 

0, 1000, 1500, 2000, 2200, 2300, 2400 and 2500 mg L-1 and 0, 1000, 1200, 1500, 1600, 

1700, 1800 and 2000 mg L-1 for Mc. capsulatus (Bath) and Ms. trichosporium OB3b, 

respectively. Cultures were then incubated and after 48 and 72 hours for Mc. 

capsulatus (Bath) and Ms. trichosporium OB3b, respectively, cultures were assessed 

visually for turbidity. Cultures, in which growth does not occur, as measured visually by 

a lack of visible turbidity, represent the MIC for the agent (selenite or selenate). The 

choice of these concentrations was based on the effect of selenite toxicity on the two 

strains by carrying out preliminary experiments. The growth profile of the bacteria was 
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studied by addition of different concentrations of selenite and selenate in the growth 

medium under the conditions used in these experiments, taking into account the 

inoculum size and the volume of the media. The Mc. capsulatus strain grew in up to 60 

and 1700 mg L-1 selenite and selenate, respectively. In contrast, the Ms. trichosporium 

OB3b stain grew in up to 5 and 1600 mg L-1 selenite and selenate, respectively and 

growth does not occur at higher concentrations.  

 

2.2.3 Bacterial growth under selenite or selenate stress  

The effect of selenate on the growth of the two strains was determined in the 

presence of 0 (control), 100, 400 and 800 mg L-1; and 0, 100, 200 and 600 mg L-1 

selenate for Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively. Bacterial 

growth was measured by recording the optical density at 600 nm (OD600).  

For selenite, the effect of the oxyanion on the growth of the two strains was 

determined in the presence of 0, 10 and 20 mg L-1, and 0, 2 and 4 mg L-1 sodium 

selenite for Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively. Optical 

density was not used to follow growth of cultures in these experiments because the 

Se0 particles would contribute to the OD600 measurements, which would therefore not 

be an accurate measure of growth. Therefore, the total protein content was measured 

at different time intervals, and used as a measure of the growth of the microorganisms. 

Protein concentration in bacterial cell extracts was determined using the bicinchoninic 

acid (BCA) assay method (PierceTM BCA Protein Assay Kit, Thermo Scientific, 23227). A 

1.5 mL aliquot of bacterial culture was collected at different time intervals of bacterial 

growth and was centrifuged at 11,000 × g for 10 min. The pellet was washed and 
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resuspended in 200 μl of extraction buffer (140 mM NaCl; 2.7 mM KCL; 10 mM 

Na2HPO4; 1.8 mM KH2PO4; pH 7.3) containing protease inhibitor cocktail (1% v/v) 

(Sigma-Aldrich, Dorset, UK, P2714). The resulting suspension was sonicated in an ice 

bucket 4 x 10 sec (Sonics VCX-750 Vibra Cell Ultra Sonic Processor) and centrifuged at 

12,000 × g for 15 min at 4°C. The supernatant was collected and measured for protein 

content. Flasks with inoculum without the addition of selenite served as control.  

2.2.3.1 Changes in cell size of cell population under Se oxyanions stress 

(Flow Cytometry)  

The size of the cell population under selenite or selenate stress was determined by 

Forward scatter using FACS Calibur™ (Becton-Dickinson) with the help of Dr Sarah 

Haywood-Small (Sheffield Hallam University). Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b were grown in the presence of 50 and 100 mg L-1 sodium selenate. 

Similarly, the two strains were grown in the presence of 5 and 10 mg L-1, and 1 and 2 

mg L-1 sodium selenite for Mc. capsulatus (Bath) and Ms. trichosporium OB3b, 

respectively. An aliquot of 1 ml bacterial culture was collected at different time 

intervals of bacterial growth to determine the cell size. The samples were centrifuged 

at 1200 × g for 10 min. The cell pellet was gently washed twice with phosphate 

buffered saline (PBS) pH 7.2 and re-suspended in the same buffer for analysis. Cultures 

without addition of selenite or selenate oxyanions served as control.  

2.2.4 Reduction of selenium oxyanions by methanotrophs 

Under the conditions used in these experiments, the cultures were allowed to grow to 

an OD600 of 0.5-0.8 before addition of either sodium selenite (Na2SeO3) or sodium 

selenate (Na2SeO4) (Sigma-Aldrich, Dorset, UK). Selenium stock solutions of 1000 and 
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10,000 mg L-1 Se as selenite, and selenate were prepared and sterilized by filtration 

using 0.22 µm syringe filter (Millex®-GP). Addition of the oxyanions to give the desired 

selenium concentration was done towards the end of the logarithmic growth phase. 

The initial selenite concentrations used were 20 and 40 mg L-1 for the Mc. capsulatus 

(Bath) and 10 and 20 mg L-1 for the Ms. trichosporium OB3b stain, respectively. The 

initial selenate concentration was 10 mg L-1 for either strain, respectively. Three 

controls were set up for each experiment, with bacterial inoculum, methane and the 

selenium species omitted, respectively. In addition to selenite and selenate, selenide in 

the form of DL-selenocystine (Sigma-Aldrich, Dorset, UK) was investigated. 

2.2.5 Evaluation of selenium oxyanions reduction and elemental 

selenium formation by methanotrophs 

Selenite reduction capability and elemental selenium production were determined for 

Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively.  

2.2.5.1 Quantitation of aqueous selenium species  

The selenite, selenate and DL-selenocystine concentrations in the amended cultures 

were determined by using high performance liquid chromatography (HPLC)-inductively 

coupled plasma mass spectrometry (ICP-MS) system. 0.5 mL aliquots of the amended 

cultures were collected at intervals and centrifuged (11000 × g; 10 min; room 

temperature), to remove the cells and other debris. An aliquot of the supernatant (20 

µl) was injected into HPLC-ICP-MS system using a PerkinElmer LC Flexar autosampler 

attached to a PerkinElmer Flexar HPLC pump connected to Hamilton PRP-X 100, 5 µm 

particle size,  250 mm length x 4.6 mm internal diameter (id) column, and coupled to a 

PerkinElmer ICP-MS NexION 350X. Separation was achieved at a flow rate of 1 mL min-
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1 using a mobile phase made up of 5 mmol L-1 ammonium citrate buffer containing 

methanol (2% v/v) with the pH adjusted to 5.2 (Bueno, 2007). The HPLC-ICP-MS 

interface was a polyetheretherketone (PEEK) tubing. The HPLC and ICP-MS conditions 

are summarized in Table  2-1. Both the HPLC and ICP-MS were fully controlled by the 

PerkinElmer Chromera® speciation software. 

For the DL-selenocystine amended cultures, the cells were harvested and kept for total 

selenium content analysis (see  2.2.5.3).  

Table  2-1 The operating conditions for ICP-MS and HPLC instruments 

HPLC  

Column Hamilton PRP-X 100 PEEK, 4.6 x 250 mm, 5 µm  
Mobile phase 5 mmol L-1 ammonium citrate (pH 5.2) 
Flow rate 1 mL min-1 
Separation scheme Isocratic 
Column temperature Room temperature 
Injection volume 20 µl 
LC Vials 2 mL-amber glass 

ICP-MS  

Nebulizer SeaSpray, 2 mL min-1 
Spray chamber  Peltier Cooler includes Quartz spray chamber 
Interface cones  Nickel 
RF power  1600 W 
Plasma gas flow 18 L min-1 
Nebulizer gas flow  0.87 L min-1 
Helium gas flow 4.4 mL min-1 
Interference correction  kinetic energy discrimination (KED) 
Isotope 78Se, 82Se 
Dwell time 1000 ms 
Peristaltic pump speed 20 rpm 
Sampling rate 1 point second-1 

 
 

2.2.5.2 Quantitation of elemental selenium 

The pellets were analysed for elemental selenium using a method previously described 

by Biswas et al (2011) with minor modifications, as follows; before analysis the pellets 

were washed twice with 1 mL of 1 M NaCl in order to remove non-metabolized 
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selenite. This high concentration of NaCl was employed because it had been previously 

found to be effective in the collection of colloidal elemental sulfur (Roy & Trudinger 

1970). The washed red colloidal selenium was dissolved in 1.5 mL of 1 M Na2S, and the 

solution centrifuged to remove bacterial cells and cell debris. 

A standard calibration curve for elemental selenium was constructed using red 

powdered selenium metal (Pfaltz & Bauer, Waterbury, USA). Appropriate volumes of 

red selenium dissolved in 1 M Na2S solution to give a 1 g L-1 stock suspension were 

transferred into 1.5 mL Eppendorf tubes and the volume made to 1 mL with 1 M Na2S 

to give concentrations ranging from 10 to 50 mg L-1 of elemental selenium. The 

absorbance of each of standard solutions and samples were measured at 500 nm. 

 

2.2.5.3 Analysis of total selenium content in dry cell biomass of DL-

selenocystine amended cultures 

Cells were harvested after centrifugation at 11000 × g for 10 min, the supernatant was 

removed, and cells were washed three times with sterile NMS media by centrifugation 

(11000 × g, 10 min). Biomass was freeze-dried and stored at -20°C until analysis. Prior 

to the total selenium analysis, samples were digested by concentrated nitric acid using 

a microwave system (CEM MARS 6) equipped with Xpress vessels. The vessels were 

heated in the MARS 6 Xpress system to 200°C over 20 min and held at this 

temperature for 20 min. After the digest vessels were cooled to room temperature the 

digest solutions were transferred into volumetric flasks and diluted by ultrapure water 

to a final volume of 25 mL. The total contents of selenium in the bacterial biomass 

were determined by the ICP-MS according to the ICP-MS conditions summarized in 
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Table  2-1. The reagent blank solutions were prepared using the same preparation 

method as for the sample.  

2.2.6 Investigation into the role of s/pMMO in the reduction of selenium 

oxyanions 

In order to investigate the involvement of MMOs (sMMO and pMMO), Ms. 

trichosporium OB3b cultures at different stages of expression of the MMOs (sMMO-

positive and sMMO-negative cultures) were amended with 10 mg L-1 selenite and 

selenate, respectively. Ms. trichosporium OB3b cultures expressing sMMO activity 

were identified using the naphthalene oxidation assay reported by Brusseau at al 

(1990). The naphthalene oxidation assay is a well-known biochemical assay for 

identifying and quantifying sMMO activity. sMMO oxidises naphthalene to a mixture of 

1-naphthol and 2-naphthol. The naphthols are detected by reaction with tetrazotized 

o-dianisidine to form purple diazo dyes with large molar absorptivities. Naphthalene is 

not a substrate for pMMO and all expressiry pMMO do not oxidise naphthalene. The 

culture of the sMMO-deleted mutant of Ms. trichosporium SMDM was amended with 

either selenite or selenate and then incubated under the above conditions. The Ms. 

trichosporium OB3b and Mc. capsulatus (Bath) were also grown in Cu-free NMS media 

prior to adding selenite or selenate (10 mg L-1).   

2.2.7 Investigation of the involvement of methanobactin in 

selenite/selente reduction  

In order to investigate the involvement of methanobactin in the reduction of selenite, 

a stock solution of 1000 mg L-1 was prepared by dissolving methanobactin in high-

purity deionized water. Methanobactin used in these experiments was provided by Dr 
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Jeremy Semrau (University of Michigan). 270 µL aliquots of various concentration of 

methanobactin (50, 100 and 200 mg L-1) were transferred into a 96-well microtitre 

plates. Subsequently, 30 µL of Na2SeO3 or Na2SeO4 solution (to a final concentration of 

100 mg L-1 Se[IV] or Se[VI]) was added to each well. The mixture was then incubated at 

room temperature and 30°C for 96 hours. The mixtures were assessed visually for 

colour change.  

2.2.8 Cell fractionation.  

In order to determine the location of reductase activity, the grown culture (OD600 ~ 

0.7) was centrifuged at 11000 × g for 10 min at 4°C to obtain a pellet. The pellet was 

washed with ice-cold 50 mM Tris-HCl (pH 7.5) and re-suspended in 10 mL of the same 

buffer, and protease inhibitor cocktail was added (1% v/v) (Sigma-Aldrich, Dorset, UK). 

The suspension was passed through a French pressure cell (1500 Psi, 4°C). The lysate 

was then fractionated by a modification of the method reported by Smith and Foster 

(1995), as follows: the whole procedure was performed at 0 to 4°C to minimize protein 

degradation. The lysate was centrifuged (3,000 × g, twice for 2 min each) to remove 

debris before being centrifuged (27,000 × g, 20 min) to sediment cell wall fragments. 

The cell walls were washed by resuspension in 50 mM Tris-HCl (pH 7.5), and kept in the 

same buffer. The supernatant fraction was centrifuged again (27,000 × g, 20 min) to 

remove remaining cell wall material. Membrane fragments were sedimented by 

centrifugation (105,000 × g, 60 min) of the supernatant. The pellet (cell membranes) 

was washed in 50 mM Tris HCl (pH 7.5), centrifuged again under the same conditions, 

resuspended in the same buffer. The supernatant from the first ultracentrifugation 

was centrifuged again under the same conditions to remove remaining membranous 

material, and kept as cytoplasmic fraction. 
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2.2.9 Reductase activity assay  

The total protein content of each fraction was measured using the BCA assay kit. 200 

μL aliquots of different cell faction suspensions (cell walls, cell membrane and 

cytoplasm) of Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively were 

transferred into the 96-well plate. Subsequently, SeO3
2- was added to give final 

concentrations of 100 mg L-1. The mixture was then incubated at 30°C for 72 hours. 

Reaction mixture without addition of the three fractions served as controls. 

Additionally, in addressing the hypothesis that NADH may be involved directly in the 

reduction of the selenium oxyanions, the same mixtures were incubated in the 

presence of NADH (2.0 mM).    

2.2.10   Transmission electron microscopy (TEM) and energy dispersive X-

ray (EDX) spectrometry/high-angle annular dark-field (HAADF) 

scanning TEM (STEM) analysis  

Samples of selenite amended culture (1.5 mL) were pelleted by centrifugation (11000 × 

g; 10 min; room temperature), and washed with 0.1 M sodium phosphate buffer (pH 

7.4). The specimens were then fixed in 3% glutaraldehyde in the same buffer overnight 

at room temperature and washed again in the same buffer. Secondary fixation was 

carried out in 1% w/v aqueous osmium tetroxide for 1 hour at room temperature 

followed by the same wash step. Fixed cells were dehydrated through a graded series 

of ethanol dehydration steps (75%, 95% and 100% v/v), and then placed in a 50/50 

(v/v) mixture of 100% ethanol and 100% hexamethyldisilazane for 30 min followed by 

30 min in 100% hexamethyldisilazane. The specimens were then allowed to air dry 

overnight. A small sample of the fixed sample was crushed and dispersed in methanol, 



53 
  

with a drop placed on a holey carbon coated copper grid (Agar Scientific). The samples 

were examined in an FEI Tecnai F20 field emission gun (FEG)-TEM operating at 200 kV 

and fitted with a Gatan Orius SC600A CCD camera, an Oxford Instruments X-Max SDD 

EDX detector and a high angle annular dark field (HAADF) scanning TEM (STEM) 

detector.  The HAADF and TEM measurements were carried out with the help of Dr 

Nicole Hondow, School of Chemical and Process Engineering, University of Leeds, UK. 

For thin section analysis, after the ethanol dehydration steps, the cells were embedded 

in EM bed 812 epoxy resin and cut into thin sections (90 nm, using a diamond knife on 

a Reichert Ultracut S ultramicrotome). The sections were supported on copper grids 

and coated with carbon. TEM specimen holders were cleaned by plasma prior to TEM 

analysis to minimize contamination. Samples were examined with a high-resolution 

Philips CM 200 transmission electron microscope at an acceleration voltage of 200 kV 

under standard operating conditions with the liquid nitrogen anticontaminator in place. 

The thin section analyses were carried out at the “Centro de Instrumentación 

Cientifica”, University of Granada, Spain by Dr. Mohamed Merroun. 

2.2.11   X-ray absorption spectroscopy measurements 

For XAS examination, the cultures were grown as described above followed by 

supplementation with sodium selenite (final concentration of 20 mg L-1 Se). After the 

development of the red colour, the cultures were centrifuged at 11,000 x g for 10 min. 

The pellet was freeze dried and analyzed without further treatment. Selenium K-edge 

X-ray Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine-

Structure (EXAFS) spectra were collected at the Rossendorf Beamline at the European 

Synchrotron Radiation Facility (ESRF), Grenoble, France with the help of Dr. Andreas 

Scheinost. The energy of the X-ray beam was tuned by a double crystal 
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monochromator operating in channel-cut mode using a Si(111) crystal pair. Two 

rhodium-coated mirrors were used for collimation and suppression of higher 

harmonics. A 13-element high purity germanium detector (Canberra) together with a 

digital signal processing unit (XIA XMap) was used to measure reaction samples in 

fluorescence mode. Reference samples were measured in transmission mode using 

ionization chambers (300 mm, FMB Oxford) filled with 95% N2 and 5% Ar (I0) and with 

100% Ar (I1 and I2). Spectra were collected at 15 K using a closed cycle He cryostat with 

a large fluorescence exit window and a low vibration level (CryoVac). Photoinduced 

redox reactions were effectively prevented by the cold temperature, since XANES 

edges remained stable during short-term exposure (10 min) as well as during the 

EXAFS measurements which took up to 8 h. For energy calibration, a gold foil (K-edge 

at 11919 eV) was chosen because of its greater inertness in comparison to Se. Data in 

the XANES region were collected in steps of 0.5 eV, i.e. with higher resolution than the 

resolution of the Si(111) crystal at the given vertical divergence (1.7 eV) and the 

broadening due to the core-hole life-time (2.3 eV). A comparison of single scans of the 

same sample showed an accuracy of better than 0.5 eV. Dead time correction of the 

fluorescence signal, energy calibration and the averaging of single scans were 

performed with the software package SixPack. (Webb 2005). Normalization, 

transformation from energy into k space, and subtraction of a spline background was 

performed with WinXAS using routine procedures (Ressler 1998). The EXAFS data were 

fit with WinXAS using theoretical backscattering amplitudes and phase shifts calculated 

with FEFF 8.2 (Ankudinov & Rehr 1997). This method provides a precision of ±0.01 Å 

for shell distances and a resolution of about ±0.1 Å for neighbouring shells. The error 

of coordination numbers is ±25%. Statistical analysis of spectra (Eigen analysis and 
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iterative target test) was performed with the ITFA program package (Rossberg et al. 

2003). 

2.2.12   Extraction of selenium nanoparticles produced by methanotrophs 

Grown cultures (an OD600 of 0.5-0.8) were supplemented with SeO3
2-. After the 

development of the reddish colour, the cultures were pelleted by centrifugation (at 

12500 × g; 10 min). SeNPs were extracted by a modification of the method of 

(Sonkusre, 2014). The resultant pellet was washed and resuspended in 10 mL of sterile 

water followed by addition of lysozyme to give a final concentration of 500 mg mL-1, 

and the tube was incubated at 37°C for 3 h. The suspension was passed through a 

French pressure cell (1500 Psi, 4°C). The resultant slurry containing both cell debris and 

NPs was washed four times at 15000 × g for 10 min with 1. 5 M Tris-HCl (pH 8.3) 

containing 1% sodium dodecyl sulfate (SDS). The resultant pellet containing SeNPs and 

the insoluble cell wall fraction was washed and resuspended in 4 mL sterile water in 15 

mL falcon tube, and 2 mL of 1-octanol were added. The solution was mixed vigorously 

on a vortex mixture for few min and centrifuged at 2000 x g for 5 min at 4°C. The tubes 

were then kept undisturbed at 4°C for 24 hours. The upper phase and interface 

containing the insoluble cell fraction were removed, and the bottom water phase 

containing SeNPs was transferred to a clean 15 mL centrifuge tube. This was washed 

sequentially with chloroform, absolute ethanol, 70% ethanol, and water at 16000 × g. 

Collected NPs were resuspended in water and stored at 4°C. 
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2.2.13   X-ray photoelectron spectroscopy (XPS) analysis 

Harvested SeNPs samples were deposited on silicon wafer, left to dehydrate in the 

load lock of the XPS instrument overnight. The analyses were carried out using a Kratos 

Axis Ultra DLD instrument with the monochromated aluminium source. The XPS 

spectra were collected at Sheffield Surface Analysis Centre, University of Sheffield with 

the help of Dr. Debbie Hammond. Survey scans were collected between 1200 to 0 eV 

binding energy, at 160 eV pass energy and 1 eV intervals. High-resolution C 1s, N 1s, O 

1s, Se 3d and S 2p spectra were collected over an appropriate energy range at 20 eV 

pass energy and 0.1 eV intervals. The analysis area was 700 µm by 300 µm. Two areas 

were analysed for each sample, collecting the data in duplicate. Charge neutralisation 

was used with intention of preventing excessive charging of the samples during 

analysis. The data collected was calibrated in intensity using a transmission function 

characteristic of the instrument (determined using software from NPL) to make the 

values instrument independent. The data can then be quantified using theoretical 

Schofield relative sensitivity factors. The data was calibrated for binding energy by 

making the main carbon peak C 1s at 285.0, and correcting all data for each sample 

analysis accordingly.  

2.2.14   Raman spectroscopy analysis of SeNPs 

Aliquots of 2 μL of SeNPs suspended in water were transferred onto a calcium fluoride 

(CaF2) slide and air-dried prior to Raman analysis. Raman spectra were collected at 

Department of Geography, University of Sheffield with the help of Dr. Emma Wharfe. 

Raman spectra were obtained using a Horiba LabRam HR and a modified Horiba 

LabRam HR (Wellsens Biotech. Ltd., China). Three factors have been modified in this 
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new Raman system to improve Raman spectral quality. These include shortening the 

Raman light path, employing a low noise and sensitive EMCCD for the Raman signal 

detection, and increasing incident laser power. The old and new modified systems are 

identical except these three factors. The Raman signals were collected by a Newton 

EMCCD (DU970N-BV, Andor, UK) utilizing a 1600 × 200 array of 16 μm pixels with 

thermoelectric cooling down to −70°C for negligible dark current. A 532 nm Nd:YAG 

laser (Ventus, Laser Quantum Ltd., UK) was used as the light source for Raman 

measurement. A 100× magnifying dry objective (NA = 0.90, Olympus, UK) was used for 

sample observation and Raman signal acquisition. A 600 l/mm grating was used for the 

measurements, resulting in a spectral resolution of ∼1 cm−1 with 1581 data points. The 

laser power on sample was measured by a laser power meter (Coherent Ltd.). The 

Raman spectra were processed by background subtraction (using spectra from cell free 

region on the same slide) and normalization using the Labspec5 software (HORIBA 

Jobin Yvon Ltd., UK).   

 

2.2.15  Fourier transform infrared (FT-IR) spectroscopy measurements of 

SeNPs  

In order to determine the functional groups present on the SeNPs, the FTIR spectra of 

SeNPs were recorded on a PerkinElmer Spectrum 100 FT-IR Spectrometer. Spectra 

were recorded from 650 to 4,000 cm-1, and 4 scans were averaged at a resolution of 4 

cm-1. Extracted SeNPs were freeze dried overnight and analyzed without further 

treatment. For comparison, the FTIR spectra of samples of bacterial cells (as controls) 

and chemically synthesized SeNPs (Chem-SeNPs) were also recorded. For the controls, 
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the grown cultures (OD600 ~ 0.7) of Mc. capsulatus (Bath) and Ms. trichosporium OB3b 

were centrifuged at 11000 × g for 10 min to obtain the cell pellet. Pellet was washed 

twice with phosphate buffered saline (PBS) pH 7.2, and then freeze dried overnight. 

The synthesis of Chem-SeNPs was done according to the procedure of (Lampis et al. 

2017). 1.0 mL of 50 mM L-cysteine (Sigma-Aldrich, Dorset, UK) solution was added 

dropwise into 1.0 mL of 0.1 M Na2SeO3. The mixed solution was then stirred for 30 min 

at room temperature. The Chem-SeNPs were pelleted by centrifugation (at 15000 × g; 

10 min), and then freeze dried overnight.  

2.2.16  Dynamic light scattering (DLS) and zeta potential analysis of the 

SeNPs   

The zeta potential and average particle size of the SeNPs were measured by a Nano-ZS 

instrument (Malvern Instruments Limited, UK). Aliquots of 500 μL of SeNPs suspended 

in 1 mM NaCl solution were transferred into cuvettes (Disposable Capillary Cell, 

Malvern Instruments, DTS-1070). Data recorded at 25°C with equilibrium time of 30 

seconds. Each sample was measured at least 3 times to ensure the validity. All the 

values were obtained using the Malvern software. The measurements were carried out 

at Department of Chemistry, University of York, UK with the help of Dr. Tamim Chalati.    

2.2.17  Bacteria protein-associated SeNPs  

In order to investigate the proteins associated with the SeNPs, extracted SeNPs 

samples were denatured at 95°C for 10 min in Laemmli sample buffer (Bio-Rad, 161-

0747) and then separated in a 12% SDS-PAGE gel (Mini-PROTEAN® TGX Precast Protein 

Gels, Bio-Rad, 456-1046) in the presence of 1 x Tris-Glycine running buffer (Sigma) 

containing 1% SDS (Sigma) at a constant voltage of 120 V. Silver staining (Pierce® Silver 
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Stain Kit, Thermo Scientific, 24612) was performed. The staining was carried out 

according to manufacturer instructions. To aid molecular weight determination, 5 µL 

SeeBlue® Plus2 Pre-Stained molecular weight marker (Novex, LC5925) was loaded.   

2.2.18  Detection of volatile selenium species 

The presence of volatile selenium-containing metabolites was detected by GC-MS. 

Analytical standards of dimethyl selenide (CH3SeCH3, DMSe) and dimethyl diselenide 

(CH3SeSeCH3, DMDSe) (Sigma-Aldrich, Poole, UK, >99.0 %, 98%, respectively) were 

used. Since dimethyl selenenyl sulfide (CH3SeSCH3, DMSeS) and methylselenol (CH3SeH, 

MeSeH) were not commercially available, the compounds were synthesized as 

described previously (Chasteen 1993). Cultures of Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b were grown as detailed in section  2.2.1 and amended with either 

selenite (40 and 20 mg L-1, respectively) or selenate (ranging from 100 - 2500 mg L-1). 

Flasks containing medium inoculated with the bacteria but with no SeO3
2- salts added, 

were run as controls. Samples (200 mL) of the headspace gas were collected through a 

needle attached to a sorbent tube (Tenax TA/, SulfiCarb C2-CXXX-5314, Markes 

International, UK) connected to a hand-held pump (Easy-VOC grab-sampler, Markes 

International UK) after 24 and 48 hours for Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b, respectively. To ensure that the tubes were contamination free, 

before use the sorbent tubes were preconditioned with helium at flow rate of 90 mL 

min-1 using the following temperature program: 15 min at 100°C, 15 min at 200°C, 15 

min at 300°C and 15 min at 335°C.   

Samples analyse was performed on a combined thermal desorption GC–MS system. 

The volatiles were desorbed at 250oC  and concentrated on a thermal desorber (Unity®, 
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Markes International Limited) at -10°C cold trap for 5 min (helium flow 50 mL min-1) 

and then were transferred onto the GC/MS system (7890A-GC with 5975C-MS, Agilent 

Technologies) equipped with a capillary column (Agilent J&W HP-5ms GC Column, 30 

m, 0.25 mm, 0.25 µm). Helium was used as the carrier gas at a flow rate of 1 mL min-1, 

injector temperature, 250°C, and the chromatogram was obtained using the following 

temperature programme: 35°C for 1 min; 10°C min-1 to 250°C; and then held at 250°C 

for 1 min. The National Institute of Standards and Technology (NIST) MS search 

program (version 2011) was used to identify the compounds based on their MS 

spectrum.   
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Chapter 3 

Interaction of methanotrophs with selenium oxyanions and 

evaluation of their reducing ability 

 

 

 

 

 

 

 

 

 

 

 

3 Interaction of methanotrophs with selenium oxyanions and 

evaluation of their reducing ability   
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 Bacterial response to selenium oxyanions  3.1

3.1.1 Minimum inhibitory concentrations of selenium for 

methanotrophs 

Minimum inhibitory concentrations (MICs) for selenate and selenite were determined 

for Mc. capsulatus (Bath) and Ms. trichosporium OB3b. Concentrations between 0 - 

2500 mg L-1 of selenium (as selenite and selenate) were investigated and the results 

from the MIC study are shown in Table  3-1 

 

Table  3-1 Minimum inhibition concentrations of selenium for methanotrophs. Data 
shown from two independent cultures at each selenate or selenite concentration (n=2). 
Both compared visually to the control media. 

 Selenate (mg L-1) Selenite (mg L-1) 

Mc. capsulatus (Bath) 2400 70 

Ms. trichosporium OB3b 1700 5 

 
 

As can be seen from Table  3-1, when the selenate concentrations between 1000 to 

2500 mg L-1 were investigated, the MICs for selenate for Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b were found to be 2400 and 1700 mg L-1, respectively. In contrast, 

the MICs for selenite were found to be much lower than those of selenate. For Mc. 

capsulatus (Bath), the MIC was found to be 70 mg L-1. Similarly, the MIC was found to 

be 5 mg L-1 for Ms. trichosporium OB3b. Indeed, it is known that MIC is not an absolute 

constant and that it may vary with several variables such as the nature of the organism 

being studied, the inoculum size, incubation time, composition of the culture media, 

and the specific conditions of incubation (e.g., pH, temperature and aeration) (Brock et 

al. 1991). In previous animal studies on the toxicology of selenium and selenium 

compounds, it has been shown that, selenite in general is the more toxic of the two 
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selenium oxyanions (Cooper & Glover 1974; Brasher & Ogle 1993; Oehme 1972; 

Stadtman 1990; Yu et al. 1997). Similarly, it is known that selenate is much less toxic 

than selenite for bacteria (Frankenberger & Engberg 1998; Sarret et al. 2005; Zannoni 

et al. 2007). In a study in which the effects of selenite and selenate on growth of 

Tetrathiobacter kashmirensis strain CA1 were investigated, Hunter and Manter (2008) 

reported that selenite was more toxic to the strain than was selenate. Even at 

concentrations of 8.1 mg L-1, selenate had no clear impact on growth, while selenite 

slowed growth around 50% when additions to the growth media were 2 mg L-1 or more. 

These results are consistent with the relative toxicity of selenate and selenite to 

methanotroph cells.   

3.1.2 Bacterial growth under selenite/selenate stress 

The growth profile of Mc. capsulatus (Bath) and Ms. trichosporium OB3b in NMS media 

in the presence of various concentrations of selenate and selenite was studied based 

on the MIC measurements. The growth profile in the presence of selenate is shown in 

Figure  3-1. For Mc. capsulatus (Bath), the control (no selenate) exhibited a lag phase of 

less than 24 hours, followed by faster growth (putative logarithmic growth phase). 

After 48 hours of growth, the culture entered the stationary phase. A similar growth 

curve was observed with 100 mg L-1 selenate amended media. In contrast, when 400 

and 800 mg L-1 selenate were present, the lag phase was prolonged to around 24 hours, 

followed by a 48 h long logarithmic growth phase. The stationary phase of the culture 

treated with 400 or 800 mg L-1 of selenate started at around 72 hours of incubation 

(Figure  3-1a). For Ms. trichosporium OB3b, as shown in Figure  3-1b, the control (0 mg 

L-1 SeO4
2−) exhibited a lag phase at around 24 hours, followed by a steep logarithmic 

growth phase at around 48 hours. The stationary phase started after around 72 hours 
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of incubation. A similar growth curves were observed with 100, 200 and 600 mg L-1 

selenate amended media.  
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Figure  3-1 Time course of bacterial growth of Mc. capsulatus (Bath) 
(a) and Ms. trichosporium OB3b (b) in the presence of various 
concentrations of sodium selenate. Data shown is from three 
independent cultures at each selenate concentration. Results 
plotted as mean ± 1 standard deviation (n=3). 
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The presence of selenate at concentrations of 100 mg L-1 did not have a negative 

impact on the growth curve compared to the control culture. The control and the 

selenate amended cultures showed a typical sigmoid growth curve. However, at higher 

selenate concentrations, inhibition of growth was observed. It is worth noting that 

cultures of Mc. capsulatus (Bath) and Ms. trichosporium OB3b failed to form reddish 

cell suspensions, when amended with sodium selenate, indicating that neither strain is 

able to reduce selenate to red elemental selenium.  

In order to determine the toxicity of selenite to the methanotrophs, the growth profile 

of the bacteria was studied by addition of different concentrations of sodium selenite 

(0, 10 and 20 mg L-1, and 0, 2 and 4 mg L-1 selenite for Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b, respectively) in the cultures. The growth profiles of Mc. 

capsulatus (Bath) and Ms. trichosporium OB3b in NMS media in the presence of 

different concentrations of selenite are shown in Figure  3-2. 
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Compared to selenate, the presence of selenite at much lower concentrations elicited 

a toxic effect and the strains were able to reduce selenite to putative red elemental 

selenium. The formation of the red precipitate of elemental selenium in the cultures 

started amended with selenite after 4 and 24 hours for Mc. capsulatus [Bath] and Ms. 

trichosporium OB3b, respectively of exposure.  Optical density was not used to follow 

growth of the cultures in these experiments because the presence of Se0 particles 
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Figure  3-2 Bacterial growth profile of Mc. capsulatus (Bath) (a) and 
Ms. trichosporium OB3b (b) under different selenite concentrations. 
Bacterial growth was measured via the quantification of total cell 
protein using BCA kit, and expressed as total protein per mL culture. 
Data shown is from three independent cultures at each selenite 
concentration. Error bars show ± 1 standard deviation (n=3).  
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would contribute to the OD600 consequently the results would not be an accurate 

measure of growth. Therefore, the total protein content was measured at different 

time intervals and used as a measure of the growth of the bacterium. When the 

cultures of Mc. capsulatus (Bath) were amended with 10 and 20 mg L-1 selenite, 

respectively, the cell protein concentrations of the cultures were diminished by 43% 

and 78%, in the stationary phase relative to the cultures not amended with selenite. 

Meanwhile, when the cultures of Ms. trichosporium OB3b were amended with 2 and 4 

mg L-1 selenite, respectively, the cell protein concentrations of the cultures were 

diminished by 20% and 70% in the stationary phase relative to the cultures not 

amended with selenite. Whilst selenite reduced the amount of protein produced by 

the cultures, the timing of the different phases of growth was not affected. Although, 

selenite was found to be much more toxic than selenate to the methanotrophs, 

simultaneous protein estimation by BCA method indicated that there was a short time 

lag period between the growth of the methanotrophs either in the presence or 

absence of selenite.  

Although the precise mechanism of toxicity of selenate and selenite is not known, 

there is increasing evidence that the toxic character of these compounds is associated 

with their oxidising capacity; it has been shown that selenite reacts with glutathione or 

cysteine forming toxic reactive oxygen species (H2O2 and O2
-) that trigger the 

production of further oxidative stress enzymes (Kramer & Ames 1988; Bebien et al. 

2001; Letavayová et al. 2006; Lenz & Lens 2009). 
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3.1.3 Flow cytometric studies  

In a study conducted on Bacillus cereus (strain CM100B) by Dhanjal and Cameotra 

(2010), it was shown that there was a gradual decrease in average bacterial cell size 

grown in the presence of selenite as compared to the control cells which were grown 

without the addition of the oxyanion as determined by forward scatter in flow 

cytometric analysis. Under the stressful condition of toxic selenite ions the morphology 

of the cells is altered resulting in decrease in cell size, which has been attributed to the 

surface/volume ratio. The authors suggest that the organisms reduce their cell size and 

increase their relative surface area for better uptake of the nutrients in order to 

survive under environmental stress conditions. It is also probable that the protein 

concentration of the cultures decreased in the presence of selenite but the timing of 

the growth phases is not affected because the smaller cells were dividing with the 

same kinetics.    

To address the hypothesis that selenium oxyanion may affect bacterial cell size of both 

Mc. capsulatus (Bath) and Ms. trichosporium OB3b; bacterial cells exposed to toxic 

selenate or selenite ions were analyzed for difference in their cell size at various time 

intervals as measured by forward scattering within flow cytometric analysis. Forward 

scattering analysis of both strains are shown in Figure  3-3 and Figure  3-4. At all time 

intervals investigated, there was no significant shift in the cell populations tested in 

comparison to the control cell population, indicating no substantial change in the 

bacterial cell size. The results indicate that the presence of the selenium oxyanions 

results in the production of fewer cells of approximately the same size. These results 

are in agreement with the results of TEM and HAADF imaging detailed in section  4.1.  
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Figure  3-3 Forward scattering analysis of Mc. capsulatus (Bath) (a) and Ms. trichosporium OB3b 
(b)  grown in the presence of selenate for 48 and 72 h, respectively. Based on visual inspection 
of the curves, no significant effect on bacterial cell size was observed as measured by flow 
cytometry, The X-axis is the log scale and the Y-axis indicates the number of bacterial cells 
(counts in 100). Shift towards left/right on the X-axis indicates decrease/increase in cell size. 
The measurements were repeated twice with different cultures (n=2).  

Figure  3-4 Forward scattering analysis of methanotroph cultures grown in the presence of 
selenite. (a) Mc. capsulatus (Bath) after 48 h of bacterial growth (i) and after 72 h of bacterial 
growth (ii). (b) Ms. trichosporium OB3b after 48 h of bacterial growth (i) and after 96 h of 
bacterial growth (ii). Based on visual inspection of the curves, no significant effect on bacterial 
cell size was observed as measured by flow cytometry, The X-axis is the log scale and the Y-axis 
indicates the number of bacterial cells. Shift towards left/right on the X-axis indicates 
decrease/increase in cell size. The measurements were repeated twice with different cultures 
(n=2). 
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 Optimization of the separation and detection conditions of selenium 3.2

species by HPLC-ICP-MS  

High performance liquid chromatography (HPLC) is a chromatographic technique used 

to separate a mixture of compounds in analytical chemistry and biochemistry with the 

purpose of identifying, quantifying and purifying the individual components of the 

mixture. Inductively coupled plasma mass spectrometry (ICP-MS) is capable of 

detecting metals and several non-metals at concentrations as low as ng L-1. This is 

achieved by ionizing the sample with inductively coupled plasma and then using a 

mass spectrometer to separate and quantify the ions according to their size-to- charge 

ratio. HPLC when coupled with ICP-MS offers the opportunity to carry out elemental 

speciation studies and high sensitivity and selectivity (Zioła-Frankowska et al. 2015). 

For inorganic selenium species, the hyphenated technique (HPLC–ICP-MS) is the 

technique of choice for selenium speciation in biological and environmental samples.  

In order to separate, detect and quantify different selenium species, namely, selenate, 

selenite and DL-selenocystine. Simultaneously, in a single analysis, a methodology 

based on the coupling of HPLC with ICP-MS was developed (see operating conditions in 

Table  2-1). The chromatogram obtained for a Se standard mixture containing SeO3
2-, 

SeO4
2- and DL-selenocystine, each at a concentration of 100 µg L-1 Se is shown in 

Figure  3-5. As can be seen, baseline separation of both species was achieved in less 

than 15 minutes. Better detection limits were achieved for 78Se compared to 82Se 

because of the abundance of Se (23.8% and 8.7% for the two isotopes, respectively). 

The method was then applied to the selenite and selenate levels in the amended 

cultures.  
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 Colour and concentration changes in selenium oxyanion-amended 3.3

cultures 

Each culture, after growth to OD600 of 0.5-0.8, was amended separately with selenate 

or selenite in order to test the ability of the two methanotrophic bacteria 

82Se 

78Se 

Selenite 

Selenate 

DL-selenocystine 

Figure  3-5 Chromatogram of a standard containing of selenite, selenate and 
DL-selenocystine at 100 µg(Se) L-1. Chromatographic separation of the 
selenium species was on a Hamilton PRP-X 100 column, ammonium citrate at 
pH 5.2 and 2% methanol as mobile phase with a flow rate of 1 mL min-1.   
Chromatogram is representative of more than 8 runs.  
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Ms.trichosporium OB3b and Mc.capsulatus (Bath) to reduce both selenium oxyanions. 

Colour changes and the selenate or selenite concentrations in each solution were 

monitored. The reddish precipitate in the cultures indicates the formation of Se0 via 

the reduction of the colourless selenite or selenate. The difference in the colours of 

the selenite amended solutions and corresponding spectra of the solutions are shown 

in Figure  3-6. Similar colour change as in the Ms. trichosporium OB3b culture 

(Figure  3-7a) was obtained when Ms. trichosporium SMDM (a derivative of Ms. 

trichosporium OB3b in which the genes encoding soluble methane monooxygenase 

[sMMO] has been deleted) was used in the same experiment. When Ms. trichosporium 

OB3b and Mc. capsulatus (Bath) were grown in Cu-free NMS media and amended with 

10 mg L-1 selenite, the cultures turned red Figure  3-7b. The fact that the sMMO-

deleted mutant of Ms. trichosporium (SMDM) was unaffected in its ability to transform 

SeO3
2- indicated that components of sMMO are not needed for this reaction. In 

addition, both sMMO-positive and sMMO-negative cultures of Ms. trichosporium Ob3b 

(as confirmed via the naphthalene oxidation assay, section  2.2.6) were able to reduce 

SeO3
2- to red elemental selenium. Changes in concentration with time at different 

initial selenite concentrations are shown in both Figure  3-8 and Figure  3-9. Also shown 

in Figure  3-10 is evidence that the presence of methane is essential for the reduction 

of selenite. No colour or concentration changes were observed in the selenate 

amended cultures. Results for the determination of the selenate concentrations (10 

mg L-1) are shown in Figure  3-11.    
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Figure  3-6 Reduction of SeO3
2- to red Se0 by the methanotrophs Mc. capsulatus (a) and Ms. 

trichosporium OB3b (b) at 2 and 3 day incubation respectively. Flask 1 contains no added 
SeO3

2-; flask 2, with SeO3
2- added (40 and 20 mg L-1 respectively). (c) Absorption spectra of 

the contents of the four flasks showing the differences in the absorption peak maximum as 
reflected in the solution colours. The images are representatives of more than 10 replicates 
of the experiments. 

Figure  3-7  Reduction of selenite (10mg L-1) to red Se0 by sMMO-deleted mutant of Ms. 
trichosporium OB3b (SMDM) (a) without (i) and with (ii) selenite after 48 h incubation times, 
respectively. Reduction of selenite (b) by and Mc. capsulatus (i), Ms. trichosporium OB3b (ii), 
grown in Cu-free NMS media and amended with 10 mg L-1 of the oxyanion after 48 h 
incubation times. The images are representatives of more than 5 replicates of the 
experiments.  

(i) (ii) 

a b 

(ii) (i) 
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Figure  3-8 Time course of selenite reduction after an initial addition of 10 mg L-1 of the 
oxyanion to the culture containing Mc. capsulatus (Bath) (i) and Ms trichosporium 
OB3b (ii), respectively. The selenite concentrations were monitored with HPLC-ICP-MS 
system. Values plotted as mean ± 1 standard deviation (n=3). 
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Figure  3-9 The effect on the time course of selenite reduction after an initial addition of 10 
(green line), 40 (red line) and 100 (blue line) mg L-1 of the oxyanion to the culture 
containing Mc. capsulatus (Bath) (i), and after an initial addition of 10 (green line), 20 (red 
line) and 40 (blue line) mg L-1 of the oxyanion to the cultures containing Ms trichosporium 
OB3b (ii), respectively. The selenite concentrations were monitored with HPLC-ICP-MS 
system. Values plotted as mean ± 1 standard deviation (n=3).  
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Figure  3-10 Reduction of SeO3
2-(10 mg L- 1) to red 

putative Se0 by Mc. capsulatus (Bath) (b) without (i) 
and with (ii) methane after 24 h incubation in both 
cases using the optimum temperature for the growth 
of each bacterium. Image is representative of 3 
replicates of the experiment. 

Figure  3-11 The variation of the mean selenate concentrations with time after 
incubation in the cultures containing Mc. capsulatus (Bath) (a) and Ms trichosporium 
OB3b (b), respectively. The selenate concentrations were monitored with HPLC-ICP-MS 
system. Values plotted as mean ± 1 standard deviation (n=3).   
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In the selenate amended cultures no colour or selenate concentration changes were 

observed, which is a strong indication that in the presence of either of these two pure 

strains of methantrophs selenate is not bio-transformed into elemental selenium. This 

finding is in contrast to that of Lai et al. (2016b), who used a biofilm microbial 

community in the presence of methane to show that selenate is reduced to elemental 

selenium. In our experiments, there were changes in the colour and oxyanion 

concentration only in the selenite amended solutions. Hence, if the mixed population 

of methanotrophs in the study of Lai et al. had the same selenium-transforming 

properties as the pure strains analysed here, the overall reaction to convert selenate 

to elemental selenium may have been accomplished by the combined activities of 

methanotrophs and other selenate-reducing bacteria. Although there were 

concentration colour changes in both the Ms. trichosporium OB3b and Mc. capsulatus 

(Bath) culture media to which selenite was added the rate at which these occurred was 

dependant on the type of bacteria used. The slower rate of selenite reduction by the 

Ms. trichosporium OB3b, maybe linked to its slow growth rate compared with the Mc. 

capsulatus (Bath).  

The colour change in the cultures containing Mc. capsulatus was rapid with perceptible 

reddish tinge occurring in a matter of hours and developing into an intense reddish 

hue in less than 24 hours. In contrast, the colour change in the Ms. trichosporium OB3b 

culture was less intense and much slower to develop, appearing after about two days. 

However, it is noteworthy that the Se0 may have begun to form long before any 

perceptible colour change occurs in the solutions as indicated by the reduction in the 

selenite concentrations at the beginning of the experiments.  
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 Transformation of selenium oxyanions and elemental selenium 3.4

content of cultures  

Preliminary confirmation that the reddish/yellowish orange suspensions were 

primarily made-up of putative elemental selenium was obtained by harvesting the 

particles, and subjecting them to sample pre-treatment followed by selenium 

determination using UV-vis spectrometry. As shown in Figure  3-12, as the selenite 

concentrations decreased over time in each culture, the elemental selenium 

concentrations increased. The decrease in selenite concentrations was monitored with 

HPLC-ICP-MS system. Values reported are the mean of triplicates reported along with ± 

1 standard deviation. It is noteworthy that not all the selenite in solution was 

converted to elemental selenium as shown by the differences in the initial selenite and 

the final elemental selenium concentrations for both bacteria. About 75% and 68% on 

average were transformed into elemental selenium by Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b, respectively. Indeed, substantial amounts of selenite had been 

converted into volatile methyl species of selenium, as will be discussed in Chapter  5. 

Assimilation into organic selenium compounds might have also occurred beside Se0 

formation. In cultures amended with selenate, no change was observed in the selenate 

concentration 10 mg L-1 during the experiment. This is an indication that neither 

bacterium is able to reduce selenate to elemental selenium.  
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 Conversion of DL-selenocystine by methanotrophs 3.5

In order to find whether some form of selenium other than selenite or selenate could 

be converted by methanotrophs, selenide in the form of DL-selenocystine 

(organoselenium species) was investigated. DL-selenocystine has been reported to be 

about as effective as selenite in stimulating the formation of formate dehydrogenase 

(FDH) in the metabolism of Escherichia coli, whereas DL-selenomethionine was only 1% 

as effective (Enoch & Lester 1972). Shum and Murphy (1972) reported that selenite 

was required in a defined medium for the formation of formate dehydrogenase in 

aerobically as well as anaerobically grown cells of E. coli. They also demonstrated that 

selenocystine could replace the selenite but with selenomethionine only half of the 

activity was obtained compared with that when selenite was present in the medium.     
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Figure  3-12 Time course of selenite reduction and elemental selenium production by Mc. 
capsulatus (a), and Ms. trichosporium OB3b (b). The selenite concentrations were monitored with 
HPLC-ICP-MS system, and elemental selenium production with UV-vis spectrometry at 500 nm. 
Values plotted as mean ± 1 standard deviation (n=3).  
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In the present study, after the growth of Mc. capsulatus (Bath) and Ms. trichosporium 

OB3b had reached an OD600 of 0.5 - 0.8 (putative stationary phase) under the above 

mentioned growth conditions, the cultures were amended with 20 mg L-1 DL-

selenocystine. Figure  3-13 shows the change in DL-selenocystine content in 

supernatant from the amended bacterial cultures of two strains, monitored by HPLC-

ICP-MS system, as well as the change in total selenium content in the bacterial 

biomass, measured by ICP-MS. A decrease in the supernatant DL-selenocystine 

concentration was observed. The cultures caused a fall in the DL-selenocystine 

concentration of approximately 55% from an initial value of 19.1 mg L-1 over 72 hours, 

and around 38% from an initial value of 18.9 mg L-1 over 288 hours for Mc. capsulatus 

(Bath) and Ms. trichosporium OB3b, respectively. No colour changes were observed in 

the DL-selenocystine amended cultures, which indicate that the DL-selenocystine has 

not been converted to red elemental selenium. Interestingly, the longer the incubation 

time for either bacterium, resulted in an increase in the total selenium content in the 

bacterial biomass, suggesting that the DL-selenocystine may be assimilated by the 

methanotrophs into organic selenium compounds. In addition, the HAADF-STEM 

imaging with EDX maps of the two bacteria showed selenium adsorbed on the cells 

(see Figure  3-14 and Figure  3-15). The DL-selenocystine depletion in the cultures could 

not only be attributed to the assimilation into organic selenium compounds but also 

into selenium volatile selenium species, as will be discussed in Chapter 5.  
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Figure  3-13 Time course of DL-selenocystine change and total selenium content in the 
bacterial biomass after an addition of 20 mg L-1 of the DL-selenocystine to Mc. 
capsulatus (a) and Ms. trichosporium OB3b (b) cultures. The DL-selenocystine 
concentrations in the amended cultures were determined by using HPLC-ICP-MS, and 
the total selenium content by the ICP-MS. Results are given as ± 1 standard deviation 
(n=3).   
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Figure  3-14 HAADF-STEM imaging of Mc. capsulatus (Bath) cultures exposed to DL-
selenocystine (a) and selenite (b) at 2 day incubation. In the case of DL-selenocystine, the 
images show selenium adsorbed on the cells with EDX maps (generated from spectra collected 
from the indicated areas) of relevant elements. The Se from the samples exposed to DL-
selenocystine appears to be more evenly distributed, as opposed to the clusters observed in 
the samples exposed to selenite. This could be attributed to the DL-selenocystine uptake and 
assimilation into organic selenium compounds. Cells were fixed with 3% glutaraldehyde and 
2% OsO4 immediately before HAADF-STEM. The images are representatives of 4 replicates.    
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Figure  3-15 HAADF-STEM imaging of Ms. trichosporium OB3b cultures exposed to DL-
selenocystine (a) and selenite (b) at 4 day incubation. In the case of DL-selenocystine, the 
images show selenium adsorbed on the cells with EDX maps (generated from spectra collected 
from the indicated areas) of relevant elements. Cells were fixed with 3% glutaraldehyde and 
2% OsO4 immediately before HAADF-STEM. The images are representatives of 2 replicates.   
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 EXAFS and XANES measurements 3.6

X-ray absorption spectroscopy provides an approach for determining the chemical 

nature of almost any element without the need for any chemical pretreatment 

(Pickering et al. 1995; Pickering et al. 1999). Selenium is a particularly suitable element 

for this approach, since different chemical forms exhibit significantly different spectra. 

The XANES of all samples show white-line features typical for red Se as shown at the 

top of Figure  3-16a. The white line of SeO3
2- shown at the bottom is about 5 eV higher 

in energy, and coincides with the post-edge minimum of the samples and of red Se0, 

indicating that there are no discernible traces of Se(IV) remaining. The assignment of 

the spectra as due largely to red elemental selenium is also confirmed by the 

reconstruction of the EXAFS spectra of all samples by only one principal component, 

shown as red traces in Figure  3-16a, b. The phase identity of red Se0 was confirmed by 

the Fourier transform magnitude (see Figure  3-16c), which shows the two Se-Se peaks 

typical for the crystalline as well as the amorphous variety of red Se. The EXAFS fit 

shows the typical local structure, with 2 Se atoms at about 2.35 Å, and an additional 

Se-Se shell at 3.69 Å; the coordination number of this latter shell was much smaller 

than expected, as has been observed before for amorphous as well as for crystalline 

red Se (Scheinost & Charlet 2008; Scheinost et al. 2008). The EXAFS fit values also show 

small variations between the different samples. For strain Mc. capsulatus, as well as 

for Ms. trichosporium, the Debye-Waller factors (2) of both bacteria decrease with 

reaction time, suggesting an increase of structural order with time, (see Table  3-2) 

synchronous with the particle growth observed by TEM (see “TEM and HAADF-STEM 

imaging of cell associated selenium” section).   
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Figure  3-16  K-edge X-ray absorption spectra of cultures of Mc. capsulatus and Ms. 
trichosporium and selected references. a) X-ray absorption near-edge structure 
(XANES) spectra, b) Extended x-ray absorption fine structure (EXAFS) spectra and c) the 
corresponding Fourier transform magnitude. Experimental data are shown as black 
traces, the red traces in b) and c) are reconstructions of the experimnetal data by one 
principal component. Cells were freeze dried before analysis. 
 

 

Table  3-2 Se-K edge EXAFS data of Se(IV)-reacted methanotrophs. 
Sample CN R / Å 

2
 / Å

2
 CN R / Å 

2
 / Å

2
 E0 (eV) res. 

Mc. capsulatus 6 h 2.2 Se 2.35 0.0030 1.0 Se 3.68 0.0063 10.5 4.2 
Mc. capsulatus 24 h 2.1 Se 2.35 0.0024 0.9 Se 3.69 0.0047 11.1 2.8 
Mc. capsulatus 48 h 2.0 Se 2.35 0.0022 0.6 Se 3.69 0.0010 10.8 4.1 
         
Ms. trichosporium 
OB3b 48 h 

1.9 Se 2.35 0.0027 0.8 Se 3.69 0.0034 11.0 2.5 

Ms. trichosporium 
OB3b 480 h 

2.1 Se 2.35 0.0032 0.6 Se 3.70 0.0027 11.5 3.8 
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 Confirmation of the site of selenite reduction and role of methane 3.7

In order to confirm the site of selenite reduction and to test the hypothesis that 

methane gas acts as the source of electrons for the bio-reduction of the selenium 

oxyanions, control experiments were performed with both strains from which 

methane was omitted, and no red colour was formed in the presence of selenite 

indicating that the presence of the carbon and energy source methane is needed for 

reduction of the selenite (see Figure  3-10).  In order to determine the cellular location 

of the selenite-reducing activity, experiments were performed with cell fractions: cell 

wall, cell membrane and cytoplasm fractions were separately amended with selenite 

and monitored visually (see Figure  3-17). The results showed that the red colour of 

elemental selenium was detected in the cell wall fraction, and a weak red tinge in the 

cell membrane fraction probably due to the traces of reductase enzyme(s) 

contamination, which may have diffused from the cell wall to the cell membrane 

(Dhanjal & Cameotra 2010). By contrast, no reduction activity was observed in the 

cytoplasmic fraction for both strains, suggesting that this fraction possess no selenite-

reducing ability. 
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The results of the experiments with the cell fractions show that the reduction occurs 

on the cell wall fraction of both bacteria, which is consistent with the likely 

extracellular location of the selenium particles that are formed. Reduction of selenite 

Cell walls Cytoplasm Cell membranes 

Fraction with selenite 

Fraction with no selenite 

Selenite with no fraction 

(1) 

(2) 

(1) 

Cell walls Cytoplasm Cell membranes 

Fraction with selenite 

Fraction with no selenite 

Selenite with no fraction 

(2) 

a 

b 

Figure  3-17 Results of experiments showing selenite reduction after an 
initial addition of 100 mg L-1 of the oxyanion incubated in the reaction 
mixture without methane in the presence of different cell factions: cell 
walls, cell membrane and cytoplasm of Mc. capsulatus (Bath) (a) and Ms 
trichosporium OB3b (b) immediately after the addition of the oxyanion 
(1) and after 72 hours (2), respectively. The Images are representatives 
of more than 8 replicates of the experiments.    
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by the cell wall fractions occurred in the absence of methane. Also, since the sMMO-

deleted mutant of Ms. trichosporium OB3b (SMDM) formed nanoparticles 

indistinguishable from the wildtype strain, it appears that the components of the 

sMMO enzyme system (including its NAD(P)H-dependent reductase) are not essential 

for the reduction of selenite. Since the cell wall fraction of the cells is capable of 

reducing selenite in the absence of added reducing agents, although the cultures as a 

whole require methane to perform the reaction, it seems that methane (activated 

either by sMMO or the particulate methane monooxygenase system) is likely the 

ultimate source of reducing agents, though other mediator(s) are involved in 

transferring the electrons to selenite (Smith & Murrell 2011). However, boiling the wall 

fraction and membrane fraction samples resulted in a complete loss of reduction 

activity (Figure  3-18), indicating that the reduction process was an enzymatic reaction 

and mediated by cell wall-associated proteins.  
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Figure  3-18 Results of experiments showing loss of selenite reduction after an initial 
addition of 100 mg L-1 of the oxyanion incubated in the reaction mixture without 
methane in the presence of boiled cell wall and cell membrane factions of Mc. 
capsulatus (Bath) (a) and Ms. trichosporium OB3b (b) immediately after the addition 
of the oxyanion and after 72 hours, respectively. The images are representatives of 3 
replicates of the experiments.     
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 Search for enzymes with possible selenite reductase activity in Mc. 3.8

capsulatus (Bath) and Ms. trichosporium OB3b contains genome  

To identify enzymes that could be involved in reduction of selenite by Mc. capsulatus 

(Bath) and Ms. trichosporium OB3b, the database of translated open reading frames 

from the complete genome sequence (i.e., all the known and potential proteins of the 

organism) was searched using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) in order to 

find homologues of known classes of selenite reductases from other bacteria. Selenite 

reductases from other bacteria were used as queries to screen potential homologues 

in the methanotrophs studied.  

Initially old-yellow-enzyme NADH:flavin oxidoreductase from Sinorhizobium medicae 

(Hunter 2014b; accession no. YP_001326930), which was reported to act as aerobic 

selenite reductase was used as query to screen potential homologues in Mc. 

capsulatus (Bath) and Ms trichosporium OB3b. The results of the protein-protein BLAST 

search indicated that the enzyme is similar to a single protein from each of the two 

methanotrophs studied (accession no. WP_010959983, E = 2 x 10-130 and accession no. 

WP_003609730, 6 x 10-30 for Mc. capsulatus and Ms. trichosporium OB3b, 

respectively). Glutathione reductase (GR) from Pseudomonas seleniipraecipitans 

(Hunter 2014a; accession no. YP_791214), which shows selenite-reductase-activity 

(reduces SeO3
2- to Se0), has a significant homologue in Mc. capsulatus (accession no. 

WP_010962191, E = 1 x 10-55) and Ms. trichosporium OB3b (accession no. 

WP_003611917, E = 7 x 10-156). The Pseudomonas mendocina thioredoxin reductase 

(Hunter & Manter 2009; accession no. YP_001187877), which also reduces selenite, 

has two significant homologues in Mc. capsulatus (accession no.  WP_010960952, E = 

http://www.ncbi.nlm.nih.gov/BLAST/


89 
  

0.0 and WP_010960098, E = 2 x 10-3), and one significant homologue in Ms. 

trichosporium OB3b (accession no. WP_003609996, E = 4 x 10-126)    

The fumarate reductase of Shewanella oneidensis MR-1, (accession no. 

WP_011070758, Li Bao 2014), a flavoprotein capable of mediating selenite reduction 

and sulfite reductase of Clostridium pasteurianum (Harrison et al. 1984; accession no. 

OMH22246), did not have any significant homologues in in the two strains. The nitrate 

reductase of Thauera selenatis (DeMoll-Decker & Macy 1993; accession no. 

AAL86933), which may catalyse the reduction of selenite to elemental selenium, also 

did not have any significant matches in the genome of Mc. capsulatus or Ms. 

trichosporium OB3b.    

These results identify five candidate selenite-reducing enzymes in the two 

methanotrophs studied and are consistent with a similar mechanism of selenite 

reduction in Mc. capsulatus (Bath) and Ms. trichosporium OB3b. These findings suggest 

that the methanotroph homologues of an enzyme may be responsible for selenite 

reductase.  

 

 The role of methanobactin in the reduction of selenium oxyanions  3.9

In addressing the hypothesis that methanobactin may play a role in the reduction of 

selenium oxyanions, experiments were performed by mixing various concentration of 

methanobactin (50, 100 and 200 mg L-1) with Se(IV) or Se(VI) solutions (to a final 

concentration of 100 mg L-1) in a 96-well microtitre plates. No colour change was 

observed as the mixtures in the wells were assessed visually during the incubation 

time (96 hours, at room temperature and 30°C). This finding indicates that 

methanobactin is not essential for the reduction of selenium oxyanions.    
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 Conclusions 3.10

Selenite is the more toxic of the two selenium oxyanions and, as would be expected, it 

was more toxic to the two strains than was selenate. The minimum inhibitory 

concentrations (MICs) for selenite were 70 and 5 mg L-1 for Mc. capsulatus (Bath) and 

Ms. trichosporium OB3b, respectively. Meanwhile, the MICs for selenate were 2400 

and 1700 mg L-1 for Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively. 

Unlike selenate, bacterial growth in the presence of selenite was accompanied by the 

production of red Se0. Although the two strains tolerate high levels of selenate, cell 

growth was negatively affected by the increase of both selenate and selenite 

concentrations. When the bacterial cells are exposed to selenate or selenite, no 

substantial change in the bacterial cell size was observed as measured by flow 

cytometry (forward scatter plots). Mc. capsulatus (Bath) and Ms. trichosporium OB3b 

are both able to reduce the toxic selenite but not selenate to extracellular red 

spherical nanoparticulate elemental selenium. This could be attributed to the absence 

reductases that catalyse selenate reduction. The presence of elemental selenium is 

confirmed by X-ray absorption near-edge structure and extended X-ray absorption fine 

structure. Selenite reduction activity was observed mainly in the cell wall fraction. The 

reduction process was an enzymatic reaction and mediated by cell wall-associated 

proteins. Neither particulate monooxygenase (pMMO) nor soluble monooxygenase 

(sMMO) was essential for selenite reduction. No indication that methanobactin is 

involved in selenite reduction. These results provide the bases for understanding the 

growth characteristics of this group of bacteria in the presence of toxic selenium 

oxyanions. Information that is useful in the design of bioremediation strategies for the 

treatment of selenium-contaminated soil, sediments, and wastewater.  
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 TEM and HAADF-STEM imaging of cell-associated selenium 4.1

Electron micrographs with corresponding EDX spectra of the cells of the two species of 

bacteria amended with selenite are shown in Figure  4-1. The EDX analysis of the 

electron dense particles shows that they contain selenium, a trace of sulfur and 

phosphorus in addition to copper from the grid and possibly from the medium, and 

osmium from the cell fixing agent. The nanoparticles were spherical and in a variety of 

sizes. It was found that the mean elemental selenium particle sizes formed in the Mc. 

capsulatus cultures were in the main larger than those produced by Ms. trichosporium 

OB3b. This is borne out in the difference in colour intensity of the selenite-amended 

cultures, and confirmation in the differences in the two peak maximum obtained in the 

spectra of the two solutions. The more intense reddish colour was found in the Mc. 

capsulatus solutions with the larger elemental selenium particles in contrast to the 

yellowish orange observed in the Ms. trichosporium OB3b cultures. The mean particle 

sizes in the Mc. capsulatus cultures was about 387 nm compared to 221 nm for Ms. 

trichosporium OB3b cultures after 48 and 288 hours incubation, respectively.  
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The electron micrographs suggest that the elemental selenium nanoparticles are in 

extracellular space and attached to the surface of the cells suggesting that extracellular 

selenite reduction is followed by subsequent growth. The HAADF-STEM imaging with 

EDX maps of the two bacteria are shown in Figure  4-2. The electron micrograph image 

(delimited by white square) of Mc capsulatus (Bath) shows the bacteria and a selenium 

Figure  4-1 TEM of Mc. capsulatus (a) and Ms. trichosporium OB3b (b) cultures 
exposed to SeO3

2- (20 mg L-1), and EDX analysis within the electron dense regions (Se0 
nanospheres). c and d TEM thin-section micrographs of Mc. capsulatus (c) and Ms. 
trichosporium OB3b (d), showing the locations of the Se0 nanospheres (extracellular) 

The images are representatives of more than 10 replicates of the experiments. (e) and 
(f) HRTEM of SeNPs of Mc. capsulatus and Ms. trichosporium OB3b, respectively, 
showing cloud like layer surrounding the selenium nanoparticles. Cells were fixed 
with 3% glutaraldehyde and 2% OsO4 immediately before TEM. The images are 
representatives of 4 replicates. 
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nanoparticle. The distribution of the elements, C, O and P map to the bacteria, and 

that of Se and S overlap in the area corresponding to the nanoparticle. Similar image 

and mapping  of the same elements for Ms trichosporium OB3b show that C, P and O 

map well to the bacteria, and S and Se overlap but this time the nanoparticles are 

distributed all over the bacteria. In addition, HRTEM-EDX images showed that the 

SeNPs of both Mc capsulatus (Bath) and Ms trichosporium OB3b are surrounded by a 

cloud like layer (Figure  4-1e and f), suggesting the presence of organic material on the 

BioSeNPs such as extracellular polymeric substances EPS, which has been previously 

reported (Jain et al. 2015b).  

 

 

 

 

 

 

 

 

 

A more detailed examination of the particles with the aid of HAADF-STEM imaging and 

EDX mapping provided evidence that the maps of selenium and sulphur overlap, which 

Figure  4-2 HAADF-STEM imaging of Mc. capsulatus (a) and Ms. trichosporium OB3b (b) 
showing Se nanospheres attached to the cells with EDX maps (generated from spectra 
collected from the indicated areas) of relevant elements. Cells were fixed with 3% 
glutaraldehyde and 2% OsO4 immediately before HAADF-STEM. The images are 
representatives of more than 10 replicates of the experiments.   
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would suggest that both elements are present in a single structure. This is hardly 

surprising since the initial reactions in the previously proposed pathways for the 

biological reduction of selenium involve a variety of thiol group containing compounds 

(Painter 1941), which react as shown in Equation 4.1,  

4 RSH + H2SeO3 => RS-Se-SR + RSSR + 3H2O                                       Equation 4.1 

Thiol groups react with selenite producing disulfide (RSSR) and an unstable 
intermediate, selenotrisulfides (RS-Se-SR), which subsequently may decompose to 
elemental selenium.   

  

The close Se and S mapping the EDX images of the cultures would indicate that the 

pathways involving the reaction of the intermediate RS-Se-SR is likely to result in the 

co-precipitation of both elements. Of relevance is the observation that both sulfur and 

selenium are co-precipitated in the presence of sulfate-reducing bacteria (Zannoni et 

al. 2007). This is further evidence to indicate that there may be reactions common to 

the biological transformation of both elements. Abiotic and biotic reactions could 

together account for the co-precipitation of both elements. One example of a possible 

abiotic reduction reaction involving both selenium and sulfur is given in Equation 4.2,  

SeO3
2- + 2HS- + 4H+ => Se0 + 2S0 + 3H2O                                              Equation 4.2 

The reaction as given in this equation predicts a 1:2 ratio in the formation of elemental 
Se and S.  Proposed by Hockin and Gadd (2003).  

 

 Time course experiments for the formation of elemental selenium 4.2

nanoparticles 

Time course experiments to show the formation of elemental selenium nanoparticles 

in each selenite-amended culture were performed in order to establish whether the 
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particle sizes changed with incubation time. As shown in Figure  4-3, the longer the 

incubation time for either bacterium, resulted in an increase in the mean selenium 

nanoparticle sizes, obtained by measuring one hundred and forty particles at random 

at the selected time. Histograms of the distribution of 170 nanoparticles obtained 

using the two strains of bacteria are shown in Figure  4-4. The nanoparticles sizes were 

measured from the TEM data using the freely available ImageJ programme 

(version1.48v). TEM images taken at three different times show the growth of the 

particles (Figure  4-5). The results of the time course experiments (Figure  4-3) provide 

evidence that the initial particles act as nuclei for further growth. In addition, it is 

indicative that both of these bacteria can be used to produce nanoparticles of a variety 

of sizes provided there is timely intervention to stop further nanoparticle growth.  

Indeed, in the scheme proposed by Jain et al (2015b) the synthesis of biogenic 

elemental selenium (BioSeNPs) by an anaerobic granular sludge and wastewater 

occurs in two steps: initial reduction of selenite to elemental selenium particles either 

intracellularly or extracellularly followed by growth of the nanoparticles. Intracellularly 

produced elemental selenium nanoparticles are first coated with protein before they 

are expelled into extracellular space. Irrespective of the origin of the elemental 

selenium particles, they are invariably capped and stabilized with extracellular 

polymeric substances (EPS) (Jain et al. 2015b).     

It can be seen from these experiments that for the production of nanoparticles of sizes 

less than 100 nm, the slower reacting Ms. trichosporium OB3b is to be preferred over 

the faster Mc. capsulatus. Further examination of the particles produced by both 

bacteria for diffraction patterns did not show evidence of any crystalline structure.  
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Figure  4-3 Time course of Se nanospheres growth and SeO3
2- reduction by Mc. capsulatus (a) and Ms. 

trichosporium OB3b (b). The mean selenium nanoparticle size ± 1 standard deviation (n=140) was 
measured by TEM.  

Figure  4-4 The frequency distribution histogram of the selenium nanoparticles produced from 
the TEM images after the formation in the cultures containing the methanotrophs Mc. 
capsulatus (Bath) (a) and Ms trichosporium OB3b (b), at incubation times of 24 h and 144 h, 
respectively. Histograms are representatives of 170 nanoparticles for each strain.  
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 Extraction and purification of SeNPs 4.3

The BioSeNPs were collected by lysing the cells using lysozyme and French press, 

cleaned by successive washes with 1.5M Tris-HCl buffer (pH 8.3) containing 1% SDS 

and finally separated from insoluble debris by two-phase water-octanol extraction 

(Figure  4-6a). Purified SeNPs (Figure  4-6b) were kept for further characterization by 

SDS-PAGE; transmission electron microscope (TEM)-energy dispersive X-ray (EDX); 

high-angle annular dark-field imaging (HAADF)-STEM; X-ray photoelectron 

spectroscopy (XPS); Raman analysis and zeta potential.  

 

 

Figure  4-5 TEM micrographs of the cells and selenium nanoparticles at different incubation 
times 6, 24 and 48 h in the cultures containing Mc. capsulatus (Bath)(i), and at incubation 
times of 48, 144 and 288 h in the cultures containing Ms. trichosporium OB3b(ii), 
respectively. The images are representatives of more than 10 replicates of the experiments.   
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  SDS-PAGE analyses of selenium nanoparticles   4.4

Biogenic selenium nanoparticles (BioSeNPs) are known to be associated with protein 

(Lenz et al. 2011; Dobias et al. 2011; Jain et al. 2015b; Tugarova & Kamnev 2017). In 

addressing this hypothesis, SDS-PAGE analyses was performed for SeNPs produced by 

both Mc. capsulatus (Bath) and M. trichosporium OB3b.  As shown in Figure  4-7, SDS- 

PAGE results showed that the particles were associated with proteins in support of our 

hypothesis. Silver staining revealed a number of protein bands for SeNPs produced by 

the two strains. Protein bands were found to be most abundant at apparent molecular 

masses of around 18 kDa (shown in the red boxes).  

 

 

b 

Organic phase 
(Containing insoluble cell debris) 

Aqueous phase  
(Extracted nanoparticles) 

Se
0

 NPs 

a 

Figure  4-6 Extraction of purified SeNPs by a two-phase water-octanol extraction system 
(a). TEM image of the purified SeNPs produced by methanotrophs (b). The images are 
representatives of more than 5 replicates of the experiments. 
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 X-ray photoelectron spectroscopy analysis 4.5

X-ray photoelectron spectroscopy (XPS) is an analysis technique used to obtain 

chemical information about the surfaces of a wide range of materials. Both 

composition and the chemical state of surface elements can be measured by XPS. The 

XPS measurements were performed to further investigate the composition and 

functional groups on the surface of the BioSeNPs. Regarding the SeNPs produced by 

Mc. capsulatus (Bath), the wide scan XPS spectra are shown in Figure  4-8a while high 

Figure  4-7 SDS-PAGE gel images of SeNPs of proteins associated with 
biogenic selenium nanoparticles produced by Mc. capsulatus (Bath) (a) and 
Ms. trichosporium OB3b (b) with loading volumes of 5 (lane i) and 15 (lane 
ii) µl. Protein bands of ~ 18 kDa (indicated by red rectangle boxes) represent 
key proteins. The image is representative of more than 5 replicates of 
experiments. 
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resolution spectra for Se 3d, C 1s, O 1s and N 1s are shown in Figure  4-8b, c, d and e, 

respectively. The data processing and deconvolution of photoelectron peaks were 

obtained using a commercial software package (Casa XPS v2.3.16PR1, Casa Software 

Ltd., UK). Elemental selenium is generally observed between 54.9 and 56.3 eV, 

whereas selenite is generally found at 58.2 eV (Naveau, 2007). In our case, the 

deconvolution of high-resolution Se 3d spectra, which exists in a weak doublet showed 

two prominent peaks of Se 3d5/2 at binding energy of 55.9 and 55.1 eV, respectively. 

The two peaks correspond to elemental selenium, no oxidized selenium species was 

detected on the SeNPs. This finding is consistent with the results found in the EXAFS 

and XANES measurements, which indicated that there were no discernible traces of 

Se(IV) on the SeNPs.  

Figure  4-8c shows strong emission due to C 1s. Several species of C 1s from different 

functional groups constitute this strong emission. The XPS peak for C 1s at binding 

energy of 285.0 eV can be assigned to C-C or C-H in lipids or amino acid side chains 

(Song et al. 2014). The XPS peak at binding energy of 286.34 eV is attributed to C–O or 

C–N from alcohol, ether amine, or amide (Yuan et al. 2010). While the peak at 288.19 

eV assigned to C=O or O–C–C in carbonyl, amide or hemiacetal (Sun et al. 2009). The O 

1s spectra were deconvoluted into two component peaks. The O 1s peak at 532.91 eV 

is attributed to the alcohols, hemiacetal, or acetal groups (Yuan et al. 2010). The 

second O 1s peak at 531.37 eV is mainly attributed to the O double bonded to C (O=C), 

as in carboxylate, carbonyl, ester, or amide. N 1s produces a peak at 400.1 eV due to 

associated amine groups, which is commonly found in amino acids and aminosugars 

(Kaur et al. 2009).  
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Figure  4-8 Wide scan X-ray photoelectron spectra of the SeNPs produced by Mc. capsulatus (a) 
and high resolution spectra for Se 3d, C 1s,O 1s and N 1s  are shown in b, c, d and e, respectively. 
The spectra are representatives of 2 runs of the experiments.  
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The XPS peak for S was not observed in the wide scan spectra or on the high resolution 

S 2p and S 2s spectra of SeNPs produced by Mc. capsulatus (Bath) although S was 

clearly observed in the HAADF-STEM measurements. Both the S 2p and S 2s transition 

are overlapped by selenium peaks, by the Se 3p and Se 3s peaks, respectively. The 

relative peak intensities for all these features seen in the spectra collected and shown 

here can be compared to what would be expected for selenium and for sulphur 

samples. For example, for sulphur the S 2s and S 2p peaks are of similar heights, but 

the Se 3p peaks is nearly three times as intense as the Se 3s peak. Based on this 

comparison, the wide scans have all been fitted on the assumption that there is no 

sulphur present, only selenium, as this seemed most likely given the relative intensities 

of the peaks at these positions in the spectra associated with these samples. However, 

this is an assumption; there may be some sulphur present.  

Similarly, the SeNPs of Ms. trichosporium OB3b, the wide scan XPS spectra are shown 

in Figure  4-9a, while high resolution spectra for Se 3d, C 1s, O 1s and N 1s are shown in 

Figure  4-9b, c, d and e, respectively. The deconvolution of the Se 3d peak gives two 

prominent peaks of Se 3d at binding energy of 56.02 and 55.16 eV that refer to the 

elemental selenium. The C 1s signal was characterized by three components, localized 

at binding energy 285.0 eV, 286.41 eV and 288.12 eV and assigned to C–C/C–H (in 

lipids or amino acid side chains), C–O/C–N (from alcohol, ether amine, or amide) and –

COO groups (in carbonyl, amide or hemiacetal), respectively. The O 1s peak is 

decomposed into two peaks. The peak at 532.84 eV is attributed to the alcohols, 

hemiacetal, or acetal groups, and the other peak at 531.58 eV is attributed to C (O=C), 

as in carboxylate, carbonyl, ester, or amide (Yuan et al. 2010). N 1s peak at binding 

energy of 400.1 eV was assigned to the amine group. Although the peak for S was not 
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observed in the XPS spectra due to the overlap of Se on the S peaks in the spectra, the 

element seems to be absent since the element was not observed in the HAADF-STEM 

measurements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-9 Wide scan x-ray photoelectron spectra of the SeNPs produced by Ms. trichosporium 
OB3b (a) and high resolution spectra for Se 3d, C 1s,O 1s and N 1s  are shown in b, c, d and e, 
respectively. The spectra are representatives of 2 runs of the experiments. 
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In general, the BioSeNPs of both Mc. capsulatus and Ms. trichosporium OB3b are 

mainly composed of Se C, O, N and/or S (see Tables 4-2 to 4-5), indicating that Se 

nanoparticles are coated with organic materials probably proteins and extracellular 

polymeric substances (EPS). The latter material has been shown to be present as the 

capping compounds in the bioproduction of selenium nanoparticles (Jain et al. 2015b). 

This is in good agreement with SDS-PAGE analyses of the SeNPs, which showed that 

the particles were associated with proteins. This would suggest that proteins are 

responsible for both the formation and the stabilization of Bio-SeNPs as described 

previously (Debieux et al. 2011; Zhang et al. 2011; Ramya et al. 2015; Kora & Rastogi 

2016; Lampis et al. 2017; Kamnev et al. 2017).  

 

Table  4-1 Results of curve-fitting Se 3d spectra 
Sample B.E.(eV) %Area B.E.(eV) %Area B.E.(eV) %Area B.E.(eV) %Area 

  Se3d5/2 
   

Se3d3/2 
   SeNPs of Mc. 

capsulatus 55.1 52.0 55.8 5.6 56.0 38.2 56.6 4.1 
SeNPs of Ms. 
trichosporium OB3b  55.2 40.6 55.5 17.1 56.0 29.8 56.3 12.6 

 

 

Table  4-2 Results of curve-fitting C 1s spectra 

Sample 
B.E. 
(eV) %Area 

B.E. 
(eV) %Area 

B.E. 
(eV) %Area 

SeNPs of Mc. capsulatus 285.0 42.2 286.3 35.0 288.2 22.8 
SeNPs of Ms. trichosporium 
OB3b 285.0 37.7 286.4 39.4 288.1 22.9 
 

 

Table  4-3 Results of curve-fitting O1s spectra 

Sample B.E. (eV) %Area B.E. (eV) %Area 

SeNPs of Mc. capsulatus 531.4 68.4 532.9 31.6 

SeNPs of Ms. trichosporium OB3b 531.6 39.2 532.8 60.8 
 

 

 

Table  4-4 Results of curve-fitting N 1s spectra 

Sample B.E. (eV) %Area 

SeNPs of Mc. capsulatus 400.1 100.0 

SeNPs of Ms. trichosporium OB3b 400.1 100.0 
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 Fourier transform infrared (FTIR) analysis 4.6

FTIR spectroscopy is a well-established highly informative analytical technique which 

has been successfully used in microbiology (Beekes et al. 2007; Kamnev 2008; Ojeda et 

al. 2008; Alvarez-Ordóñez et al. 2011; Ojeda & Dittrich 2012; Saulou et al. 2013; Skotti 

et al. 2014; Ferreira et al. 2016; Tugarova et al. 2017; Kamnev et al. 2017). FTIR 

spectroscopy can provide useful semiquantitative information on the presence of 

bioorganic components of nanoparticles’ capping layers and their relative contents 

featured by vibration modes of their typical functional groups. Particularly for proteins 

of the SeNPs ‘capping layer’, their secondary structure can differ from that of natural 

cellular proteins, as featured by the positions of various spectral components of the 

amide I band (typically within the region 1620–1680 cm–1) (Kora & Rastogi 2016; 

Kamnev et al. 2017).   

In this study, the nature of the organic components of microbially produced SeNPs was 

further analyzed by FTIR spectroscopy. The FTIR spectra of the SeNPs produced by 

both Mc. capsulatus and Ms. trichosporium OB3b, samples of biomass of the two 

strains (controls), as well as the Chem-SeNPs were recorded in order to identify the 

functional groups capping the synthesized SeNPs. The FTIR spectra (registered in 

transmission mode) are shown in Figure  4-10.  Wavenumbers of the maxima for the 

main bands in the FTIR spectra are summarised in Table  4-5. together with their 

tentative assignment (Naumann et al. 1995; Beekes et al. 2007; Burattini et al. 2008; 

Kamnev 2008; Alvarez-Ordóñez et al. 2011; Ojeda & Dittrich 2012; Kamnev et al. 2017). 
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Figure  4-10 The FTIR spectra of freeze dried Bio-SeNPs (blue lines) and bacterial biomass 
(red lines) of Mc. capsulatus (a) and Ms. trichosporium OB3b (b) harvested at OD600 ~ 0.7, 
separated by centrifugation, washed with phosphate buffered saline pH 7.2 and freeze 
dried; as well as Chem-SeNPs (black lines) obtained through reaction of Na2SeO3 with L-
cysteine. The spectra are representatives of more than 5 runs of the experiments.       
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Table  4-5 Tentative assignments of main bands to the relevant functional groups 
(wavenumber, cm-1) (Naumann et al. 1995; Beekes et al. 2007; Burattini et al. 2008; 
Kamnev 2008; Alvarez-Ordóñez et al. 2011; Ojeda & Dittrich 2012; Kamnev et al. 2017). 
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Cell biomass of Mc. 
capsulatus 

3288 2922  1644  1538  1392   1234 1075   

SeNPs produced by 
Mc. capsulatus 

3297 2927   1644  1538  1366  1239 1150 
1077 
1015 

919 
 

859 
762 

Cell biomass of Ms. 
trichosporium 

3284 2927  1639  1537  1386  1241 1036    

SeNPs produced by 
Ms. trichosporium 

3278 2931 1723 1634  1532 1451 1380 1279 
 

1229 1131 
1056 
 

980  

Chem-SeNPs  2923   1606   1409      

 

For the SeNPs produced by Mc. capsulatus, the peak centred at 3297 cm−1 correspond 

to the −OH and −NH stretching vibrations of the amine and carboxylic groups. Peaks at 

2927 cm−1 corresponded to the aliphatic saturated C−H stretching modes (Naumann et 

al. 1995; Kamnev et al. 2017). The peaks at 1644, 1538, and 1239 cm−1 are 

characteristic of amide I, amide II, and amide III bands of the proteins, respectively 

(Alvarez-Ordóñez et al. 2011; Ojeda & Dittrich 2012). The symmetrical stretch of 

carboxylate group can be attributed to the bands observed at 1366 cm−1. The peaks at 

1150, 1077 and 1015 cm−1 corresponded to the C−O stretching vibrations of ether 

groups (Naumann et al. 1995; Beekes et al. 2007). The presence of phosphoryl groups 

was confirmed by the peak at 919 cm−1. Additionally, peaks at 859 and 762 cm−1 

(fingerprint region) could be mainly attributed to aromatic ring vibrations of aromatic 

amino acids (tyrosine, tryptophan, phenylalanine) and nucleotides (Burattini et al. 

2008; Kamnev 2008).    
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Meanwhile, the SeNPs of Ms. trichosporium OB3b had a peak at 3278 cm−1; 

corresponding to the −OH and −NH stretching vibrations of the amine and carboxylic 

groups; and the band at 2931 cm−1 corresponded to the aliphatic saturated C−H 

stretching modes (Naumann et al. 1995; Kamnev et al. 2017). The peaks at 1634, 1532, 

and 1229 cm−1 corresponded to amide I, amide II, and amide III of the proteins, 

respectively (Alvarez-Ordóñez et al. 2011; Ojeda & Dittrich 2012). The peaks at 1131 

and 1056 cm−1 are assigned to the C−O stretching, which reveals the occurrence of 

carbohydrates and polysaccharides. The peak at 980 cm−1 reveals the presence of 

phosphoryl groups (Burattini et al. 2008; Kamnev et al. 2017). Indeed, the peaks of 

SeNPs of Ms. trichosporium OB3b resembled that of SeNPs produced by Mc. 

capsulatus. However, unlike the SeNPs of Mc. capsulatus, SeNPs of Ms. trichosporium 

OB3b exhibited two peaks at 1723, and 1451 cm−1. The peak recorded at 1723 cm−1 is 

assigned to C=O stretching in lipid esters, while that at 1451 cm−1 corresponds to 

various CH2/CH3 bending vibrations in lipids and proteins.      

The FTIR spectra of SeNPs of both Mc. capsulatus and Ms. trichosporium OB3b differ 

from those of the bacterial biomass (controls) and the Chem-SeNPs. The main 

difference between the spectra is that the Bio-SeNPs exhibit more peaks in the 

polysaccharide vibration region, indicating the presence of proteins and 

polysaccharides in the biomacromolecules capping the SeNPs (Shirsat et al. 2015; Jain 

et al. 2015b; Wadhwani et al. 2016; Kamnev et al. 2017; Tugarova & Kamnev 2017). 

This finding is consistent with the results found in the SDS-PAGE and XPS analyses, 

which demonstrated the presence of proteins and organic material on the 

nanoparticles.   
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By contrast, Chem-SeNPs obtained through reaction of Na2SeO3 with L-cysteine 

displayed a broad absorption band around 3350 cm−1 and absorption band at 2923 

cm−1 that are assigned to O−H vibrations of the absorbed H2O and C−H vibration in the 

alkyl chain of L-cys, respectively. The peak at 1606 cm−1can be mainly attributed to 

C=O vibrations. It is noteworthy that the presence of organic residues such as 

carbohydrates, lipids, and proteins on the surface of biogenic SeNPs were completely 

absent in Chem-SeNPs (see Figure  4-10). FTIR spectra of SeNPs separated from 

bacterial cells showed bands typical of proteins, polysaccharides and lipids associated 

with the particles (in line with their TEM images showing a thin layer over the particles), 

in addition to strong carboxylate bands, which evidently stabilise the SeNPs structure 

and morphology.  

 

 Raman spectroscopy 4.7

Raman spectroscopy permits the observation of vibrational, rotational, and other low-

frequency modes in a sample, and it provides useful information on the structure, 

morphology and chemical composition of materials (Yang et al. 2007). Raman 

spectroscopic technique was used to monitor molecular-level changes in the structure 

and composition of cellular macrocomponents that accompanied metabolic responses 

of different strains of the ubiquitous rhizobacterium Azospirillum brasilense (Pereg et 

al. 2016; Cassán & Diaz-Zorita 2016) (which showed different adaptation capabilities 

and often different ecological behaviour) to various stress conditions. This vibrational 

spectroscopic technique can also be useful in studying microbially synthesised 

selenium nanoparticles (Tugarova et al. 2017; Tugarova & Kamnev 2017).    
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In the present study, Raman was used in order identify the vibrational mode of the 

produced SeNPs. Figure  4-11 shows the measured Raman spectra of Se nanoparticles 

produced by Mc. capsulatus (a) and Ms. trichosporium OB3b (b). The spectra were 

recorded in the range 50 to 500 cm-1 excited using the 532 nm line of argon ion laser.   

The spectra show prominent peaks at 251.6 cm-1 and 247.9 cm-1 (for SeNPs of Mc. 

capsulatus and Ms. trichosporium OB3b, respectively). The two peaks, which 

correspond to the Se–Se covalent bond, are a characteristic stretching mode of 

amorphous selenium (a-Se) (Lucovsky et al. 1967; Okano et al. 2007; Scopigno et al. 

2011; Van Overschelde et al. 2013). In a study on photoinduced structural changes in 

amorphous selenium, Lukács et al. (2010) reported a Raman spectra peaks around 250 

cm−1 wavenumbers correspond to 2.35 Å Se–Se covalent bond vibrational modes in 

amorphous selenium. This finding is in a good agreement with Raman and X-ray 

absorption spectroscopy data of the present study. The latter showed two Se-Se peaks 

typical of amorphous red selenium, and a typical local structure with two Se atoms at 

about 2.35 Å. Meanwhile, the bands for trigonal selenium (t-Se) at about 234 cm-1 

(Quintana et al. 2002) and the monoclinic Se (m-Se) at about 264 cm−1 (Rajalakshmi & 

Arora 1999; Kuzmin et al. 2012) are not observed in Figure  4-11a and b.  

The Raman scattering spectra provided further evidence that the selenium 

nanoparticles are in the amorphous state. The band at 359.1 cm−1 for SeNPs of Mc. 

capsulatus can be assigned to the S–Se stretching vibrations (Eysel & Sunder 1979; 

Vogel et al. 2017). In comparison with the Raman spectra published by Eysel and 

Sunder who studied a homologous series of various SenS8-n mixed crystal compounds, 

the spectrum is a close match that of Se6S2 species. Similar to the results in the 

literature, the spectrum is only characterized by the stretching vibration of Se–Se and 
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S–Se interactions. Unlike SeNPs of Mc. capsulatus, the band of S–Se stretching 

vibrations was not observed for SeNPs of Ms. trichosporium OB3b. This finding is 

consistent with the results found in the HAADF-STEM and XPS measurements, which 

suggested the absence of S in the SeNPs.  

 

 

 

 

 

 

 

 

 

 Zeta potential and average particle size values of selenium 4.8

nanoparticles 

Zeta potential analysis is a technique for the determination of the surface charge on 

NPs in colloidal solution by measuring the effective electrical charge associated with 

the surface of particle/molecules in the medium (Hunter 2013). In the present study, 

zeta potential and average particle size analyses were performed in order to establish 

whether the surface charge of the generated SeNPs changed with incubation time. The 

Figure  4-11 The Raman spectra of purified Se nanospheres from Mc. capsulatus 
(a) and Ms. trichosporium OB3b (b). The spectra are representatives of more 
than 3 runs of the experiments. a.u., stands for arbitrary units. 
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zeta potential of the SeNPs was measured using a Zetasizer Nano ZS particle analyzer 

(Malvern Instruments Limited, Malvern, UK), and the size distribution was measured 

by dynamic light scattering method (DLS) with the same instrument.    

Zeta potential and average particle size of the SeNPs are presented in Table  4-6. The 

longer the incubation time for either bacteria, resulted in an increase in the mean 

selenium nanoparticle sizes, obtained with the DLS measurements, which is in good 

agreement with the TEM results presented in Figure  4-3. Zeta potential measurements 

indicate a slightly negative charge on the selenium nanoparticles (around -16.5 and -

9.82 for Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively). Similar 

negative zeta potential values were reported for BioSeNPs formed at ambient 

temperature by bacterial cultures of Bacillus cereus (Dhanjal & Cameotra 2010), 

Bacillus selenatarsenatis (Buchs et al. 2013) and Azospirillum brasilense (Vogel et al. 

2017). Jain et al. (2015b) reported that the zeta potential for BioSeNPs produced by 

anaerobic granular sludge was -17.5 ± 0.9 mV at pH 7.0 and 100 mM NaCl.  

In the present study, it is worth noting that no significant change was observed in the 

zeta potential over time, indicating that the nanoparticles grow gradually with the 

same surface chemical composition. If all the particles in suspension have a negative or 

positive zeta potential, then they will tend to repel each other and there is little 

tendency for the particles to aggregate. However, if the particles have low zeta 

potential values then there is a propensity for the particles to come together and form 

aggregates (Dhanjal & Cameotra 2010). The slightly negative charge on Se0 particles 

probably accounts for the stability of the selenium nanoparticles without the 

formation of aggregates.  
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Table  4-6 Time course of growth and Zeta potential of Se nanoparticles produced by Mc. 
capsulatus and Ms. trichosporium OB3b. 

Sample Time Size (nm) Zeta potential (mV) in 10% NaCl 

SeNPs of Mc. capsulatus (Bath) 

6 hours 225 ± 24 -16.5 ± 1.6 

16 hours 233 ± 31 -16.1 ± 1.3 

48 hours 364 ± 36 -15.3 ± 1.1 

SeNPs of Ms. trichosporium OB3b 

48 hours 77 ± 16 -9.82 ± 0.9 

144 hours 123 ± 19 -8.93 ± 1.2 

240 hours 156 ± 31  -8.27 ± 0.8  

 

 

 Application of SeNPs 4.9

Synthesis of selenium nanoparticles has been the subject of many studies due to its 

important commercial and therapeutic applications (Shoeibi & Mashreghi 2017). 

Selenium nanoparticles are known to exhibit diverse biological properties including 

antibacterial (Tran & Webster 2011), antifungal, anti-protozoan, antitapeworm 

(Bartůněk et al. 2015), antioxidant (Rezvanfar et al. 2013; Kong et al. 2014; Forootanfar 

et al. 2014), antitumor (Ren et al. 2013; Kumar et al. 2015), antibiofilm (Shakibaie et al. 

2015; Khiralla & El-Deeb 2015), anti-inflammatory (Wang et al. 2014), antiviral, wound 

healing (Ramya et al. 2015), chemopreventive, chemotherapeutic (Chen et al. 2008), 

mercury sequestration (Fellowes et al. 2011; Jiang et al. 2012) and metal adsorption  

activities (Jain et al. 2015a).  

SeNPs can be synthesized using either biological or chemical methods. Several 

chemical methods have been reported for the synthesis of SeNPs of desired size and 

polydispersity index. The chemical synthesis methods may include reduction of sodium 

selenite by glutathione (GSH, glutamyl cysteinyl glycine) (Johnson et al. 2008; Ramos & 

Webster 2012) or glucose (Chen et al. 2010), by reaction of an ionic liquid with sodium 

selenosulfate (Langi et al. 2010), by redution of selenious acid with glutathione in the 



115 
  

presence of sodium alginate (Vekariya et al. 2012), and reaction of acetone with 

selenium dioxide (Shah et al. 2010). However, these methods are environmentally 

hazardous, expensive and in many cases, require specialized equipment. In contrast, 

the biosynthesis of selenium nanoparticles under ambient temperature and pressure 

at neutral pH utilizing bacteria has gained much attention as an alternative approach 

due to the natural abundance of diverse bacteria (e. g. methane-oxidizing bacteria), 

fast growth rate, high productivity, low cost, ease of culturing, downstream processing, 

handling and genetic manipulation (Wang et al. 2010; Srivastava & Mukhopadhyay 

2013; Li et al. 2014a). The degree of control over the size and shape of SeNPs is 

extremely high in the case of chemical synthesis, whereas in the case of microbial 

synthesis of SeNPs, most of the reported microorganisms resulted in the synthesis of 

spherical SeNPs and in rare cases nanowires. All of the microorganisms studied so far 

have synthesized only polydisperse nanoparticles with sizes ranging from 50 nm to 500 

nm, with the average size being 100 nm (Dhanjal & Cameotra 2010; Kuroda et al. 2011; 

Prakash et al. 2009). The major challenges in the biogenic production method are 

deprived product quality, i.e., higher polydispersity index and larger size along with the 

need for meticulous postproduction treatment (Shirsat et al. 2015). Nevertheless, 

literature gives us enough indications suggesting that the challenges can be addressed 

by understanding the mechanism of action involved in the biogenic production of 

SeNPs. 

Specific properties of biogenic SeNPs which differ from those obtained chemically have 

been outlined in a study by Oremland et al. (2004) who compared features of 

biologically and chemically produced selenium nanoparticles. The authors showed that 

monoclinic crystalline structures of selenium nanoparticles produced by selenium 
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oxyanion respiring bacteria were compact, uniform, stable and their size ranged from 

200 to 400 nm. In contrast, the size of selenium nanoparticles produced by auto 

oxidation of H2Se gas and chemical reduction of selenite with ascorbate ranged 

between 10 nm to 50 mm. Moreover, all the three different microbial species 

Sulfurospirillum barnesii, Bacillus selenitireducens and Selenihalanaerobacter shriftii 

used in their study, showed unique and different spectral (UV-visible and Raman 

spectra) properties. The band gap energy, the energy required to excite a valence 

electron to the conduction band, was lower for all three biologically synthesized 

nanospheres compared to chemically synthesized nanospheres. The band gap 

calculated for the chemically synthesized nanospheres was 2.1 eV, which was 

considerably higher than the band gaps for selenium nanospheres derived from S. 

barnesii (1.62 eV), S. shriftii (1.52 eV), and B. selenitirducens (1.67 eV). The microbial 

synthesis of SeNPs results in unique, complex, compacted nanostructural 

arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes 

involved in the dissimilatory reduction that are subtly different in different microbes. 

Remarkably, these conditions cannot be achieved by current methods of chemical 

synthesis reported (Yadav et al. 2008). Recent report by Vogel et al. (2017), 

Azospirillum brasilense was shown to be capable of producing selenium particles 

containing a certain amount of sulfur Figure  4-12. The particles were homogeneous 

and stable Se8-nSn structured spheres with an average size of 400 nm and negative 

surface charge of −18 mV at neutral pH range. 
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Figure  4-12 Structure of selenium-sufur nanoparticles produced by Azospirillum 
brasilense.The particles were homogeneous and stable Se8-nSn structured spheres. 
Reprinted with permission from (Vogel et al. 2017). 

 

In addition, biogenic SeNPs are stable because of the natural coating of the organic 

molecules and do not aggregate with time, whereas external addition of stabilizing 

agents is required when chemical synthesis is used (Nancharaiah & Lens 2015b). In a 

study on proteins associated with SeNPs, Dobias et al. (2011) compared SeNPs 

produced by E. coli to chemically synthesized SeNPs. They identified four proteins with 

different functions: propanol-preferring alcohol dehydrogenase (AdhP), isocitrate 

dehydrogenase [NADP] (Idh), Outer membrane protein C precursor (Porin ompC, 

OmpC) and isocitrate lyase (AceA) that bound specifically to SeNPs and observed a 

narrower size distribution as well as more spherical morphology when the particles 

were synthesized chemically in the presence of proteins. The authors also 

demonstrated that when the chemical synthesis of selenium nanoparticles occurs in 

the presence of alcohol dehydrogenase, the size of the produced nanoparticles was 

three-fold smaller (122 ± 24 nm) than the size of chemically synthesized selenium 

nanoparticles in the absence of E. coli AdhP (319 ± 57 nm). These results support the 

assertion that a protein sheath may be important in the industrial-scale synthesis of 

SeNPs of uniform size and properties.    

There are a variety of applications of SeNPs in industry, the growth of some crops, 

prevention and treatment of certain diseases including cancer, as well as antifungal 
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activities (Shirsat et al. 2015). The most prominent feature of the SeNPs is reducing 

oxidative stress through antioxidant actions which are useful in the treatment of 

cancers and heart diseases (Chen et al. 2008; Flohé 2011; El-Batal et al. 2012). Orally 

administered SeNPs-enriched Lactobacillus brevis to mice with breast cancer was 

found to highly stimulate the immune responses (Yazdi et al. 2013). In addition, 

selenium encapsulation in non-viral carriers such as chitosan acts as a proteinase 

inhibitor and increases the immune response in the treatment of colorectal cancer and 

fibrosarcoma (Shakibaie et al. 2010). In addition to the numerous reports that show 

anticarcinogenic activity of SeNPs against several types of cancers, selenium 

nanoparticles also have antibacterial properties, especially in biofilm-forming bacteria 

(Tran & Webster 2011; Shoeibi & Mashreghi 2017). Study of these antibacterial 

properties has demonstrated that elemental selenium-enriched probiotics have 

antibacterial effects in vitro and in vivo against Escherichia coli. Furthermore, studies 

have demonstrated that selenium nanoparticles reduce S. aureus adhesion and pro-

liferation on commercial endotracheal tubes by over 99% (Ramos 2012). In addition to 

therapeutic uses, SeNPs have been used in detector devices and quantum dot (QD) for 

medical and environmental diagnostics. SeNPs can form the core of the nanocrystals in 

QD engineering (Prasad 2009; Tian et al. 2012). They are also good biosensors for the 

detection of toxic compounds such as H2O2 in food, pharmaceutical, clinical, industrial 

and environmental analyses (Wang et al. 2010) as well as the detection of the toxic 

dinitrobutylphenol (DNBP), which is released into wastewater, causing environmental 

pollution, and a SeNPs-based chemiluminescence system is, so far, the best method for 

its detection (Iranifam et al. 2013). Future perspective of biological synthesis of SeNPs 

process should move towards a controlled manipulation of the microorganisms to 

produce the desired shape and size of nanoparticles.  
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 Conclusions 4.10

In conclusion, the pure strains of the methanotrophic bacteria Mc. capsulatus and Ms. 

trichosporium OB3b are able to reduce the toxic selenite form to nontoxic 

nanoparticulate Se0. The produced SeNPs were characterized by TEM-EDX, HAADF-

STEM, SDS-PAGE, XPS, FTIR, Raman and Zeta potential. The nanoparticles were 

extracellular, spherical and in a variety of sizes. The longer incubation time for either 

bacterium, resulted in an increase in the mean selenium nanoparticle sizes. The 

nanoparticles grow gradually with the same surface chemical composition as no 

significant change was observed in the negative surface charge over time. The 

elemental red selenium nanoparticles formed during selenite reduction were found to 

be amorphous containing a certain amount of sulfur. The SDS- PAGE results showed 

that the purified selenium nanoparticles were associated with proteins. The mean 

elemental selenium particle sizes formed in the Mc. capsulatus cultures were in the 

main larger than those produced by Ms. trichosporium OB3b. The potential uses of 

biogenic SeNPs in the field of nanobiotechnology, is indicative that methanotrophs 

represents a very valuable biological resource. In fact, whilst being exploited for the 

bioremediation of selenite-polluted environments, it could be used concomitantly for 

the production of new biomaterials of nano-technological value.  
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Chapter 5 

Detection and identification of volatile selenium species 
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 Volatile selenium species of selenite-amended cultures  5.1

In order to detect volatile selenium species for selenite-amended cultures, the 

headspace of the incubation flask was sampled using a syringe and injected into a GC-

MS after sample preconcentration through a sorption tube. Each test was performed 

in triplicate (from three independent cultures). It was observed in preliminary 

experiments with selenite-amended culture medium solutions that the colour of the 

suspensions tended to fade with time, an indication that Se0 was probably being 

transformed into other selenium species. Indeed, separate experiments with harvested 

nanoparticles from both bacteria revealed that volatile selenium species were formed 

in the headspace of the flasks. Interestingly, the distribution profile of the methylated 

species was different compared to those formed when selenite was added to the 

culture medium. In the former solutions, two species dimethyl diselenide and dimethyl 

selenenyl sulphide, were detected in the headspace of both bacteria. It has been 

suggested by a number of investigators (Chau et al. 1976; Doran & Alexander 1977; 

McCarthy et al. 1993; Michalke et al. 2000; Chasteen & Bentley 2003; Kagami et al. 

2013) that diverse microbes are capable of transforming selenite into volatile selenium 

species.  

In the selenite-amended cultures of both bacteria, it was observed that the volatile 

selenium species were detected as the red elemental selenium colour was developing. 

The headspace of the culture medium of both bacteria with and without selenite 

addition and standards were sampled and analysed for volatile selenium-containing 

species. GC-MS chromatograms of all the samples analysed are shown in Figure  5-1 

and Figure  5-2, showing a variety of volatile methylated selenium and mixed selenium-

sulphur species produced by both organisms. In addition to the two previously 
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identified methylated species (DMSeS and DMDSe), methylselenol (MeSeH), dimethyl 

selenide and methylselenoacetate were detected in the Mc. capsulatus (Bath) 

headspace. Table  5-1 presents a summary of the volatile selenium-containing species 

produced when each bacterium culture is amended with selenite, biogenic selenium 

produced by the bacterium and commercial amorphous red selenium, respectively.   

 

 

 

 

 

 

 

Figure  5-1 GC-MS chromatograms of the headspace gas of the Mc. capsulatus (Bath) 
cultures amended with (40 mg L−1) (a & b) and without selenite (c & d) at 24 hours, 
and that of mixed standards containing MeSeH, DMSe, dimethyl disulphide (DMDS), 
DMSeS and DMDSe (e and f). Chromatograms are representatives of at least triplicate 
runs. 
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Figure  5-2 GC-MS chromatograms of the headspace gas of the Ms. trichosporium OB3b 
cultures amended with (20 mg L−1) (a & b) and without selenite (c & d) at 24 hours and 
that of mixed standards containing MSeH, DMSe, dimethyl disulphide (DMDS), DMSeS 
and DMDSe (e & f). Chromatograms are representatives of at least triplicate runs. 
 

 

 

Table  5-1 Volatile selenium species produced by methanotrophs from different 
selenium-containing substrates. 

Strain Substrate 

Product 

DMSe DMDSe DMSeS 
methyl 

selenol 
methylselenoacetate 

Mc. capsulatus 

(Bath) 

selenite + + + + + 

Bio-Se
0
 + + + - - 

 Che- Se
0
 + + + - - 

Ms. trichosporium 

OB3b 

selenite - + + - - 

Bio-Se
0
 + + - - - 

 Che- Se
0 

 + - - - - 

 

a b 

c d 

e f 
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Identification of the selenium-containing species in the headspace of the cultures was 

achieved by matching the retention times of the standards together with mass spectra 

information stored in the instrument NIST library database. Using this approach, it was 

possible to detect methylselenol (CH3SeH, MSeH), methylselenoacetate (C3H6OSe), 

dimethyl selenide (CH3SeCH3, DMSe), dimethyl diselenide (CH3SeSeCH3, DMDSe) and 

dimethyl selenenyl sulphide (CH3SeSCH3, DMSeS) in the headspace of selenite-

amended Mc. capsulatus culture medium. In contrast, only two volatile selenium-

containing species, DMDSe and DMSeS, were detected in the headspace of the 

selenite-amended Ms. trichosporium culture.  

It is noteworthy that with both culture media, these selenium species were detected 

soon after selenite addition (4 and 20 hours for Mc. capsulatus and Ms. trichosporium 

OB3b, respectively). Results of experiments with the harvested nanoparticles clearly 

show that these are required for the formation of volatile selenium species, but also, 

other species are directly formed through other possible pathways as suggested by 

Challenger (1945) and Reamer and Zoller (1980). The manner in which the methylation 

of selenium may link to the one-carbon central metabolism of the methanotrophs 

remains to be established. The ability of Mc. capsulatus (Bath) and Ms. trichosporium 

OB3b to produce DMSe from SeO3
2− may support Doran’s (1982) hypothesis that 

SeO3
2− is reduced via elemental selenium to a selenide form before it is methylated to 

form methylselenol and finally DMSe. The presence of methylselenol in the headspace 

of Mc. capsulatus (Bath) cultures could be a proof of its existence as an intermediate.   
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The results presented above clearly indicate that the pure strains of the 

methanotrophic bacteria Mc. capsulatus and Ms. trichosporium OB3b are able to 

reduce selenite to produce elemental selenium and volatile selenium species. The 

formation of elemental selenium appears to be mainly an extracellular process, 

probably accomplished indirectly with electrons derived from methane. It is probable 

that reducing agents containing sulfhydryl groups on the cell wall plays a key role in 

the bioreduction process of selenite. This opens up the possibility that methanotrophs 

(which are widespread across diverse environments) may play a significant role in the 

global selenium cycle. The results also suggest that these bacteria may be useful in 

preparing selenium nanoparticles of a range of sizes for biotechnological applications. 

Much remains to be determined about the pathway of selenium biotransformations in 

methanotrophs, though it appears that elemental selenium may not necessarily be an 

intermediate on the pathway to the formation of all volatile selenium species. 

 

 

 Volatile selenium species of selenate-amended cultures 5.2

Similar to the test with selenite, the production of volatile selenium species for 

selenate-amended cultures was investigated at various concentrations of selenate 

(ranging from 10 to 800 mg L-1). For the headspace of Mc. capsulatus (Bath) cultures, 

no volatile selenium species were detected when the cultures were amended with 10 

or 20 mg L-1 selenate. However, at higher selenate concentrations (ranging from 50 to 

800 mg L-1), three methylated selenium species, DMSe, DMDSe, and DMSeS were 

detected. As shown in Figure  5-3, DMSe, DMDSe, and DMSeS were identified as 
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volatile selenium species in the headspace above cultures amended with 600 mg L−1 

selenate at 24 hours. Since selenite and elemental selenium were not detected in the 

Mc. capsulatus (Bath) cultures, it thus appears that a distinct process, which does not 

require reduction to elemental selenium, is likely to be involved. This methylation 

process could be volatilizing selenium directly into DMSe, DMDSe, and DMSeS from 

selenate.  

    

 

 

 

Figure  5-3 GC-MS chromatograms of the headspace gas of the Mc. capsulatus (Bath) 
cultures amended with selenate (600 mg L−1) at 24 hours. The upper chromatograms 
were obtained by monitoring total ion current (TIC), and the lower chromatograms by 
selecting the 80 m/z ion. Chromatograms are representatives of at least triplicate runs.  
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In contrast, no methylated selenium species were detected in the headspace gas 

above the cultures of Ms. trichosporium OB3b amended with different concentrations 

of selenate (ranging from 10 - 500 mg L-1), indicating that the strain is not able to 

transform selenate to methylated selenium species.    

 Volatile selenium species of DL-selenocystine-amended cultures 5.3

To identify the volatile selenium species produced by the strains, the headspace gas 

above the DL-selenocystine-amended (20 mg L-1) cultures were analyzed by GC-MS 

system. For the Mc. capsulatus (Bath), as shown in Figure  5-4, DMSe, DMSeS, and 

DMDSe were identified as methylated selenium species in the head space at all time 

intervals investigated. Identification of these species was achieved by matching the 

retention times of the standards together with mass spectra data stored in the NIST 

database. As can be seen from the Figure  5-4, there is a gradual increase in the 

concentration of the three species with the time, as there is an increase in their peak 

heights/areas. It is noteworthy that as the DMSe, DMSeS, and DMDSe concentrations 

increased over time in the headspace gas above the cultures, the DL-selenocystine 

concentrations decreased in the cultures (see Figure  3-13a).     
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Figure  5-4 Mass chromatograms of the headspace gas of the Mc. capsulatus (Bath) 
cultures amended with DL-selenocystine (20 mg L-1) at different time intervals. The 
chromatograms were obtained by selecting the 80 m/z ion by using GC-MS system. 
Chromatograms are representatives of at least triplicate runs.   
 

 

In contrast, no methylated selenium species were detected in the headspace gas 

above the cultures of Ms. trichosporium OB3b amended with DL-selenocystine (20 mg 

L-1), indicating that the strain is not able to transform DL-selenocystine to methylated 

selenium species.  
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 Conclusions  5.4

Mc. capsulatus (Bath) and Ms. trichosporium OB3b are both able to convert selenite to 

methylated selenium species. The methylation of inorganic oxyanions by the two 

strains could be occurring through (i) several possible pathways as postulated by 

Challenger (1945), Reamer and Zoller (1980) and Doran (1982), in which selenite is first 

reduced to Se0 before it can be methylated, (ii) methylated species are directly formed 

through other possible pathways. Mc. capsulatus (Bath), but not Ms. trichosporium 

OB3b is capable of considerable volatilization of selenate and DL-selenocystine. The 

bacterium transformed these compounds into DMSe, DMDSe, and DMSeS. The 

mechanisms for the reduction and methylation of selinite by Mc. capsulatus (Bath) and 

Ms. trichosporium OB3b are not clearly understood. A detoxification mechanism seems 

likely because the products are 500 to 700 times less toxic than selenite. It is also 

unclear why Ms. trichosporium OB3b was not able to methylate selenate and DL-

selenocystine. Further investigations are required to determine the nature of the 

intermediates that are formed during the selenium methylation processes. From a 

biotechnological standpoint, these methylation processes might be effectively 

exploited for the remediation of selenite-contaminated environments. Although the 

biological significance of Se methylation is not clearly understood, once the selenium 

volatilized as methyl derivatives is released and dispersed to the atmosphere, Se has 

lost its hazardous potential by dilution.   
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 General discussion 6.1

Although a considerable number of studies have been conducted on the microbial 

transformation of selenium in the environments, no attention has been paid to the 

role of methane-oxidizing bacteria in transforming selenium species. The overall aim of 

the studies reported in this thesis was to investigate the microbial transformation of 

selenium using methanotrophs for developing and implementing successful 

methanotrophic bioremediation of selenium. The major achievement of this research 

is that for the first time, it has been shown that the methanotrophs, a major group of 

microorganisms with a critical role in the global methane cycle, can be used for the 

biotransformation of selenium oxyanions pollution. In the presence of methane as a 

sole carbon source, the commonly used laboratory model strains of methane-oxidizing 

bacteria Mc. capsulatus (Bath) and Ms. trichosporium OB3b, were shown to transform 

selenium oxyanions to elemental selenium and volatile selenium species.   

Results reported in Chapter 3 have shed light on the interaction of methane-oxidizing 

bacteria with selenium oxyanions and their reducing ability. Mc. capsulatus (Bath) and 

Ms. trichosporium OB3b can grow aerobically in the presence of both selenite and 

selenate but exhibits different growth patterns. While the presence of selenate does 

not appear to have a negative impact on the growth curve compared to the control 

treatment, the presence of selenite elicits a toxic effect. Minimum inhibitory 

concentrations (MIC) assay showed that selenite is the more toxic of the two selenium 

oxyanions (selenate and selenite). Although, Mc. capsulatus (Bath) and Ms. 

trichosporium OB3b exhibited high tolerance to selenate compared to selenite, the 

strains were both able to reduce selenite but not selenate to red elemental selenium. 
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The reduction of selenite by methanotrophs perhaps a detoxification mechanism in 

order to diminish toxic potential of the oxyanion.   

Flow cytometry (forward scatter plots) measurements clearly indicate that no 

substantial change in the bacterial cell size when the bacterial cells are exposed to 

selenate or selenite.  This is in contrast with results reported by Dhanjal and Cameotra 

(2010), who found that there was a significant decrease in average bacterial cell size of 

Bacillus cereus (strain CM100B) which was grown in the presence of selenite. Possibly, 

the changes in cell morphology could be explained by the surface/volume ratio. The 

organisms reduce their cell size and increase their relative surface area for better 

uptake of the nutrients for survival under environmental stress conditions.  

Unlike selenite, only a limited number of bacterial species have been shown to reduce 

selenate to red elemental selenium under aerobic conditions [reviewed in Kuroda et al. 

(2011)]. Enterobacter cloacae strain SLD1a-1 was reported to reduce selenate to 

elemental selenium under aerobic cultivation (Losi & Frankenberger 1997). Indeed, 

selenate reduction by this strain was observed only after oxygen depletion from the 

nutrient medium, suggesting that selenate reduction occurs during anaerobic 

respiration. This is consistent with the results of a genetic study into this strain which 

revealed that selenate reduction is related to the transcription factor FNR (Yee et al. 

2007), which generally activates global expression of genes for anaerobic growth when 

oxygen levels are depleted (Unden et al. 1995). However, the use of E. cloacae SLD1a-1 

in the bio-treatment of industrial wastewater may be limited because a longer lag time 

is required for selenate reduction at higher concentrations (Losi & Frankenberger 

1997). In addition, the reduction of selenate at concentrations over 1 mM by this 

bacterium has not been reported to date. Therefore, further studies are required in 
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order to determine whether E. cloacae SLD1a-1 can be applied to the treatment of 

high concentrations of selenate. Stenotrophomonas maltophilia was reported to 

reduce selenate and selenite under microaerobic conditions (Dungan et al. 2003).  

Visual observations of Mc. capsulatus and Ms. trichosporium OB3b cultures amended 

with selenate and selenite indicated that reduction of selenite leads to the production 

of red elemental selenium in the growth medium, whereas selenate had no visible 

effect on the cultures. TEM analysis of the Mc. capsulatus and Ms. trichosporium OB3b 

cultures amended with selenite demonstrated the formation of spherical nanospheres 

adhering to bacterial biomass (extracellular). EDX spectra of these nanospheres clearly 

indicated the presence of selenium, as the specific absorption peaks at 1.4, 11.22, and 

12.5 keV were recorded. This observation is in contrast to the mainly intracellular Se0 

particles seen by Tugarova et al. (Tugarova et al. 2013; Tugarova et al. 2014) after the 

reduction of selenite by Azospirillum brasilense. Cell lysis can be an explanation for 

occurrence of extracellular particles (Tugarova et al. 2014).  

In the current study particles were not detected inside the cells and the observed 

number of extracellular particles and intact cells gives rise to the assumption that 

enzymatic reactions were occurring on the cell surface are involved in the reduction of 

selenite. In order to determine the cellular location of the selenite-reducing activity, 

experiments were performed with cell fractions: cell wall, cell membrane and 

cytoplasm fractions were separately amended with selenite and monitored visually. 

The results showed that the red colour of elemental selenium was detected in the cell 

wall fraction, and a weak red tinge in the cell membrane fraction was probably due to 

the traces of reductase enzyme(s) contamination, which may have diffused from the 

cell wall to the cell membrane (Dhanjal & Cameotra 2010). By contrast, no reduction 
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activity was observed in the cytoplasmic fraction for both strains, suggesting that this 

fraction possess no selenite-reducing ability. Therefore, It can be ruled out that 

selenite reduction starts inside the cells followed by secretion of small particles which 

then grow further outside the cells as described for S.maltophilia (Lampis et al. 2017).  

The cell-associated selenium nanospheres were not composed entirely of selenium, 

and signals of other elements such as carbon, oxygen, sulfur and phosphorus were also 

detected in the TEM-EDX spectra and STEM-HAADF-EDX maps, suggesting that some 

bioactive compounds excreted by bacteria might be associated with the selenium 

nanospheres. In order to establish the oxidation state of selenium in the red particles 

formed by methanotrophic reduction of selenite in the growth medium, XAS was 

performed. An X-ray Absorption Near-Edge Structure (XANES) edge energy of 11,919 

eV as well as the overall shape of the white line and post white line features confirm 

the zero-valent oxidation state of the cell-associated selenium nanoparticle samples. 

The phase identity of red Se0 was confirmed by the Fourier transform magnitude, 

which shows the two Se-Se peaks typical for amorphous red Se0.   

The formed selenium nanoparticles were separated from the biomass and purified for 

further characterization. The isolated selenium nanoparticles were characterized by a 

combination of techniques including ICP-MS, Transmission electron microscopy (TEM) 

energy dispersive X-ray (EDX) spectrometry, high-angle annular dark-field (HAADF) 

scanning TEM (STEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform 

infrared spectroscopy (FTIR), zeta potential and Raman spectroscopy techniques 

(Chapter 4). The mean selenium content of the isolated selenium nanoparticles was 

70% and 67 % (n=2) for Mc. capsulatus and Ms. trichosporium OB3b, respectively as 

measured by ICP-MS. Thus, the data further supports results obtained from the TEM-
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EDX spectra and STEM-HAADF-EDX maps, which indicated that the cell-associated 

selenium nanospheres were not composed entirely of selenium.   

XPS and FTIR were applied to provide further information about the composition and 

functional groups on the surface of the selenium nanoparticles. The XPS and FTIR 

analyses indicated the presence of an organic outer coating, as previously reported in 

the bioproduction of selenium nanoparticles by E. coli (Jain et al. 2015b), which is likely 

to keep the particles in solution in aqueous solvents. In this respect, there is a 

significant knowledge gap in understanding the mechanism of bioformation of 

selenium NPs so as to preclude, at the present research stage, mass production on an 

industrial scale using bacterially based nano-manufacturing (Borghese et al. 2017). In 

addition to the XPS and FTIR analyses, SDS-PAGE results obtained from this study 

confirmed the presence of proteins in the isolated selenium nanoparticles. 

Bacterial synthesis of NPs is generally achieved by a reduction step followed by a 

precipitation step with the latter composed of two parts: nucleation and crystal 

growth (Pearce et al. 2008). To date, only the reduction step has been studied 

extensively (Zannoni et al. 2007; Turner et al. 2012) whereas the biological processes 

responsible for nucleation and crystal growth are not fully understood although there 

is some evidence that proteins might play a key role in the nucleation and crystal 

growth of bacteriogenic metallic NPs (Dobias et al. 2011; Jain et al. 2015b). A bacterial 

protein – cytochrome c3 – was found to reduce selenate in aqueous solution leading to 

the formation of one-dimensional chain like aggregates of selenium nanoparticles 

(Abdelouas et al. 2000).  Single proteins (Mms6 and BSA) were shown to be able to 

control the shape of the final selenium nanoparticles (Kaur et al. 2009). In a study by 

Pearce et al (2009), the mechanisms of selenite reduction to elemental selenium 
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nanospheres and then selenide were compared between V. atypica and the subsurface 

metal-reducing bacteria G. sulfurreducens and S. oneidensis. In the same study, the 

potentially important role of extracellular proteins in stabilizing the Se-based 

nanoparticles was addressed. A topic that has also been studied in E. coli in an 

investigation by Dobias et al. (2011) where four proteins (AdhP, Idh, OmpC and AceA) 

were shown to play a critical role in controlling particle size and morphology.   

Selenium nanoparticles produced by S.barnesii, S. shriftii and B. selenitireducens 

exhibit Raman spectra with different peaks (Oremland et al. 2004). Selenium 

nanospheres produced by S. barnesii and B. selenitireducens formed Se6 conformation 

(i.e. chains of 6 Se atoms), while S. shriftii nanoparticles had a Se8 (i.e. chain of 8 Se 

atoms). The Raman spectra of selenium nanoparticles produced by S. shriftii displayed 

a peak at 260 cm-1 that indicates a single chain of Se while a peak at 234 cm-1 indicates 

Se polymer formation, thus further confirming the bimodal distribution. Selenium 

nanospheres formed by S. barnesii and B. selenitireducens had a Se6 structure, but 

their vibrational spectra differ from each others. This is indicative that they differed in 

the configuration of the Se6 chains. For selenium nanospheres produced by B. 

selenitireducens, Se6 vibrational modes A1g and Eg were dominated in the stable D3d 

(chair) structure as compared to those in the unstable C2v (boat) structure of selenium 

nanospheres formed by S. barnesii. 

In the present study, Raman spectra showed a peak at 251.6 cm-1 and 247.9 cm-1 (for 

SeNPs of Mc. capsulatus (Bath) and Ms. trichosporium OB3b, respectively). These two 

peaks are characteristics of amorphous selenium (Okano et al. 2007; Van Overschelde 

et al. 2013). In addition to these peaks, the spectrum SeNPs of Mc. capsulatus showed 

a peak at 359.1 cm−1 corresponds to the S–Se stretching vibrations (Eysel & Sunder 
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1979). This finding is consistent with data obtained in the very recent report by Vogel 

et al. (2017) who reported Azospirillum brasilense was shown to be capable of 

producing mixed Se–S extracellular particles with the composition close to Se6S2. The 

isolated particles gave a strong broadened Raman Se–Se stretching band centred at 

257 cm–1 and a weak but noticeable broadened band at 356 cm–1 ascribed to S–Se 

stretching vibrations. Therefore, the Raman data obtained from the present study 

further supports results of the HAADF-STEM mapping, which showed high levels of 

sulfur are associated with the nanoparticulate Se0 of Mc. capsulatus (Bath).  

In order to establish whether the surface charge of the generated SeNPs changed with 

incubation time, zeta potential analyses were performed. It is worth noting that no 

significant change was observed in the zeta potential over time, indicating that the 

nanoparticles grow gradually with the same surface chemical composition. Zeta 

potential measurements demonstrate a slightly negative charge on the selenium 

nanoparticles (around -16.5 and -9.82 for Mc. capsulatus (Bath) and Ms. trichosporium 

OB3b, respectively). Similar negative zeta potential values were reported for BioSeNPs 

formed at ambient temperature by bacterial cultures of Bacillus cereus (Dhanjal & 

Cameotra 2010), Bacillus selenatarsenatis (Buchs et al. 2013) and Azospirillum 

brasilense (Vogel et al. 2017). Jain et al. (2015b) reported that the zeta potential for 

BioSeNPs produced by anaerobic granular sludge was -17.5 ± 0.9 mV. 
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In the biological system, certain elements are transformed into a variety of volatile 

methylated forms. In the case of selenium, two dominant species i.e. dimethylselenide 

and dimethyldiselenide have been reported. These species are volatile and the 

microorganism may get rid of toxic effects of selenium through the transformation of 

the excess of this element to its volatile forms followed by its removal from the 

micro/macro ecosystems. Several investigations have been carried out to develop a 

detailed understanding of the mechanism/pathways of biomethylation and 

transformation of selenium (Challenger 1945; Reamer & Zoller 1980; Doran 1982; 

Chasteen 1993). In general, methylation of inorganic selenium involves a reduction and 

a methylation step, but the exact order in which these reactions occur is yet to be fully 

elucidated.  

In the present study, Mc. capsulatus (Bath) and Ms. trichosporium OB3b were 

investigated for their volatilization potential. Substantial amount of the toxic selenite 

was volatilized by the two strains; however, Mc. capsulatus (Bath) but not Ms. 

trichosporium OB3b volatilized both selenate and DL-selenocystine. For selenite 

reduction, results of experiments with the harvested nanoparticles clearly show that 

these are required for the formation of volatile selenium species, but also, other 

species are directly formed through other possible pathways as suggested by 

Challenger (1945), Reamer and Zoller (1980) and Doran (1982). For selenate-amended 

cultures of Mc. capsulatus (Bath), since selenite and elemental selenium were not 

detected in the cultures, it thus appears that a distinct process, which does not require 

reduction, is likely to be involved. This methylation process could be volatilizing 

selenium directly into DMSe, DMDSe, and DMSeS from selenate.  
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Methylation and volatilization of selenium has been shown to be mainly a biotic 

process and is primarily thought to be a protective mechanism used by 

microorganisms to detoxify their surrounding environment (Dungan & Frankenberger 

1999). This may explain therefore the ability of the cultures of Mc. capsulatus (Bath) 

and Ms. trichosporium OB3b to convert selenium oxyanions to volatile species. The 

biotransformation of selenium to volatile selenium compounds is considered a major 

process in the movement of selenium in the environment (Haygarth 1994). Although 

biological significance of selenium methylation is yet to be elucidated, once volatile 

selenium compounds are released to the atmosphere, selenium lose its hazardous 

potential it precipitates through rain. Therefore, microbial transformation of selenium 

to less toxic volatile forms may ultimately prove to be an effective approach to 

remediate seleniferous environments (Gupta et al. 2012).   

In an experiment a constructed wetland was shown to effectively remove selenium 

from selenite contaminated oil refinery wastewater. Almost 89% of the selenium 

entering the constructed wetland was removed (Hansen et al. 1998). A large 

proportion of the Se removed by the wetland was accumulated in plant tissues and 

sediments, and it was estimated that 10% to 30% of the removed Se was volatilized. 

Rhizospheric bacteria associated with Indian mustard plants were observed to enhance 

selenium reduction and volatilization by several folds (de Souza et al. 1999). Climatic 

conditions such as precipitation and temperature significantly affect the selenium 

volatilization in the constructed wetland. Volatilization within a surface flow wetland 

has been observed to vary from approximately 9% in the winter to over 50% in the 

summer months in the constructed wetland in California (Terry et al. 1992; Johnson et 

al. 2009). At molecular level over-expression of bacterial thiopurine methyl 
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transferease (bTPMT) gene conferred resistance in E. coli towards selenium oxyanions 

along with methylation of inorganic and organic selenium into dimethylselenide 

(DMSe) and dimethyldiselenide (DMDSe) (Ranjard et al. 2002). This enzyme could 

become a key in the remediation of anthropogenically or naturally Se-contaminated 

sites. A novel genes encoding COQ5 methyltransferease (BoCOQ5-2) in ubiquinone 

biosynthetic pathway has been isolated and found to specifically promote selenium 

volatilization in both bacteria and plants. Transgenic bacteria expressing BoCOQ5-2 

produced an over 160-fold increase in volatile selenium compounds when they were 

exposed to selenate in addition to enhanced tolerance to selenate and selenite (Zhou 

et al. 2009). The successful demonstration of alteration of ubiquinone biosynthesis in 

stimulating selenium volatilization through enhanced oxidative stress tolerance has 

opened a new perspective for the study of Se metabolism as well as genetic 

engineering of microorganisms and/or Se accumulators for the remediation of 

selenium-contaminated environments.   
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 Future directions 6.2

The transformation of selenium oxyanions by methane-oxidizing bacteria to elemental 

selenium/volatile selenium species were studied in this thesis. The results obtained 

from this study provide the bases for understanding the growth characteristics of this 

group of bacteria in the presence of toxic selenium oxyanions. This study has extended 

our understanding of the formation of selenium nanoparticles and methylation of 

selenium by this group of bacteria.   

There are still many areas identified in this study that needs to be explored. An area of 

potential interest is the identification of enzyme(s) responsible for selenite reduction, 

since the results reported in this study showed that the reduction of selenite by 

methane-oxidizing bacteria is enzymatic. Identification of the enzyme(s) may prove 

useful in the design of remediation strategies. The results from this study indicated 

also that the produced selenium nanoparticles are coated with organic materials 

probably proteins and extracellular polymeric substances (EPS). The role these play in 

the formation and stabilisation of selenium colloidal solutions needs to be explored. 

For selenium methylation, further investigations are required to determine the nature 

of the intermediates that are formed during the selenium methylation processes.  

Over 100 new strains of methane-oxidizing bacteria have been cultivated, of which 

only two have been tested for selenium oxyanions transformation during the work 

reported in this thesis. In order to find new and useful organism for bioremediation of 

selenium, it can be proposed that the interaction between Se oxyanions and other 

methanotroph species should be investigated.   
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The results presented in this study suggest that this work should be repeated using a 

field scale investigation, rather than small scale (under laboratory conditions), to 

determine whether the observed bioremediation of selenium can be scaled up to a 

practical process of industrial use. The potential uses of biogenic SeNPs in the field of 

nanobiotechnology, is indicative that methanotrophs represents a very valuable 

biological resource. In fact, whilst being exploited for the bioremediation of selenite-

polluted environments, it could be used concomitantly for the production of new 

biomaterials of nano-technological value. 

It is hoped the results presented in this thesis, together with the results of the 

additional work proposed in this section, will allow widespread implementation of 

methane-oxidizing bacteria for the remediation of selenium pollution as well as the 

production of SeNPs for technological applications.   
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