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Abstract 

A 3D cell culture is an artificially created environment in which cells are permitted to grow/interact 

with their surroundings in all three dimensions. Derived from 3D cell culture, organoids are generally 

small-scale constructs of cells that are fabricated in the laboratory to serve as 3D representations of in 

vivo tissues and organs.  Due to regulatory, economic and societal issues concerning the use of 

animals in scientific research it seems clear that the use of 3D cell culture and organoids in for 

example early stage studies of drug efficacy and toxicity will increase.  The combination of such 3D 

tissue models with mass spectrometry imaging provides a label free methodology for the study of 

drug absorption/penetration, drug efficacy/toxicity and drug biotransformation. In this article, some of 

the successes achieved to date and challenges to be overcome before this methodology is more widely 

adopted are discussed. 

 

A 3D cell culture is an artificially created environment in which cells are permitted to grow/interact 

with their surroundings in all three dimensions. Derived from 3D cell culture, organoids are generally 

small-scale constructs of cells that are fabricated in the laboratory to serve as 3D representations of in 

vivo tissues and organs. The phenotypic analysis of organoids by proteomics has recently been 

reviewed by Gonneaud et al [1].  Due to regulatory, economic and societal issues concerning the use 

of animals in scientific research it seems clear that the use of 3D cell culture and organoids in for 

example early stage studies of drug efficacy and toxicity will increase.  The combination of such 3D 
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tissue models with mass spectrometry imaging provides a label free methodology for the study of 

drug absorption/penetration, drug efficacy/toxicity and drug biotransformation. 

An organ that has been successfully modelled via 3D cell culture techniques is human skin. A range 

of commercially available models have been become established for toxicological and pharmaceutical 

studies. These include models of human reconstructed epidermis (HRE), 3D differentiated epidermis 

cultures derived from human keratinocytes, i.e. EpiSkin (Epskin, Lyon, France) and EpiDerm 

(Mattek, Ashland USA) and  full thickness living skin equivalents (LSE) e.g.. EpiDermFT (Mattek 

Ashland USA), T-skin (Episkin, Lyon, France) and Labskin (Innovenn(UK) Ltd York UK). The full 

thickness LSEs comprise a differentiated epidermis supported by a dermal component consisting of 

fibroblasts in a 3D scaffold. A comprehensive review into their use in drug development has been 

published by Mathes et al. [2] 

The combination of 3D tissue models of human skin with mass spectrometry imaging (MSI) 

potentially provides an elegant label free methodology for the study of both drug absorption and drug 

biotransformation in skin.  The earliest work in this area was reported by Avery et al [3] who 

examined the absorption of the drug imipramine into a commercial 3D tissue model of the epidermis 

“Straticel”.  Other studies of a similar type have been reported by Francese et al [4] and Mitchell et al 

[5]. In the work of Francese et al  [4] MSI was used to map the distribution of the drug acetretin 

within a commercial living skin equivalent model with the purpose of investigating the efficiency of 

curcumin as matrix compared to CHCA.  MSI data of Labskin 4 hours post treatment samples showed 

the penetration of acetretin into the epidermal layer.  In further development of this work reported by 

Harvey et al [6], the localisation of the same drug was analysed using MALDI-MSI, after the creation 

of a LSE exhibiting psoriatic like properties by treatment of the commercial product with the pro-

inflammatory cytokine interleukin-22. In this modified model, the distribution of acetretin was studied  

at 24 hours and 48 hours post treatment and the data obtained demonstrated that after 48 hours it was 

possible to observe the drug penetration into the dermal region, whereas after 24 hours it was still 

localised in the epidermal layer only [6].  

A concern that has been expressed in the use of 3D cell culture models for absorption studies relates 

to the difference in the absorption properties of such models compared to human skin [7].  It was 

found in a large-scale validation study carried out in Germany that the permeation of chemicals was 

overestimated when using 3D models [7]. This seems to be an instance where a discussion of the 

philosophy of the use of tissue models is appropriate. For acceptance of the use of these models in 

absorption studies what is required is an acknowledgement that the models are “models”, not human 

skin. In order for the models to be used to predict absorption behaviour in human skin what is 

therefore required is for their absorption behaviour to be fully characterised for substrates with a range 

of physio-chemical properties so that conversion/scaling factors can be derived.  
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Similar issues surround the use of 3D models of skin for the study of drug biotransformation. This is a 

complex area where there is not at present even a consensus on the range and distribution of 

metabolising enzymes present in human skin itself [8-10]. Nevertheless given the difficulties in 

reliably obtaining human skin for metabolism studies (and sufficient skin for a representative study 

given issues including, race, gender, age and genetic polymorphisms)  there has been interest in the 

use of 3D models in this area.  In the UK the NC3Rs (National Centre for the Replacement, 

Refinement and Reduction of Animals in Research) instigated in 2016 a challenge to researchers "To 

establish, both qualitatively (which metabolites are produced) and quantitatively (concentration of the 

metabolites produced), the extent to which skin metabolism determines xenobiotic availability in 

human skin" (https://crackit.org.uk/challenge-20-metaboderm). Working towards this aim, we became 

interested in examining the use of MSI to localise where in human skin and a commercial full 

thickness skin model the presence of functional metabolising enzymes could be detected.  In order to 

achieve this we developed the idea of "Substrate Based Mass Spectrometry Imaging" (SBMSI) [11].  

Here the surface of the skin or model was treated with a known substrate for a specific metabolising 

enzyme, left to incubate for 48hrs before a section through the skin model was examined by MSI. 

Figure 1 shows the results of such an experiment carried out to detect the presence of esterase activity 

in a full thickness skin model using methyl paraben as a probe [12]. In these data the biotransformed 

methyl paraben (shown in green) is clearly detected in the epidermal layer, hence indicating esterase 

activity in this region. Quantitative mass spectrometry imaging of the amounts of such metabolites 

formed could be used to give a measure of the amount of enzyme present in different regions of the 

skin model and human skin. Derivation of scaling factors would then allow the building of robust in-

silico models to predict skin metabolism [13]. 

In a recent study Lewis et al [14] have utilised MSI to study wound healing in a full thickness 3D skin 

model. The aims of this experiment were to develop a project for the testing wound-healing products. 

Sections of skin wounded by incision were examined by MSI after 4 days. It was observed that the 

wound in the skin had healed and migration of epidermal cells into the wound bed could be observed. 

Using a multivariate statistics approach signals associated with the wound bed were highlighted and 

then identified by a combination of accurate mass measurement and MS/MS.  All of the 14 

metabolites highlighted as having elevated levels within the wound bed were associated with 

biochemical pathways associated with wound-healing including re-epithelialization, reduction of 

inflammation and cell proliferation.  

An area where use of 3D models might be expected to increase is in the study of chemical toxicity. 

Most countries in the world require comprehensive toxicity testing of newly created chemicals, which 

may be used as/in industrial chemicals, pesticides, food additives, biotechnology products or 

pharmaceuticals. Legislation requires the conduction of specific tests depending on whether the 

https://crackit.org.uk/challenge-20-metaboderm
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chemicals are for example, mono-constituent or multi-constituent substances, mixtures of chemicals, 

pesticide formulations or cosmetic products. There are several legislative organisations in the world, 

including the Organisation for Economic Co-operation and Development (OECD), which provides 

regulatory frameworks to assess the safety of any chemicals, which have to be agreed by government, 

industry and independent laboratories (http://www.oecd.org/). One aspect of the legislation studies the 

effect of chemicals on human health through assessing toxicokinetics, topical toxicity and systemic 

toxicity. There is clearly a role for 3D tissue models in this area and indeed an increased use of 3D 

tissue models of human skin in toxicology was stimulated by European legislation, Directive 76/768 

EEC which detailed with the upcoming prohibition of the use of animal models for the toxicity testing 

of cosmetics and cosmetic ingredients. It has to be considered in risk management strategies carried 

out by industry that societal pressure could lead to similar legislation being drafted in other areas of 

chemical/pharmaceutical  safety and hence research now into the use of 3D models for toxicokinetic 

studies in these other areas seems essential. Indeed 3D models would seem to be ideal platforms for 

investigations into adverse outcome pathways (AOP) and associated molecular initiating events 

(AOP) widely proposed as the route to large scale toxicity screening of chemicals [15]. 

Mass spectrometry imaging (MSI) has also emerged as a powerful analytical tool to visualise specific 

species and drug therapeutics in three-dimensional (3D) cell culture models of cancer: tumour 

spheroids.  Spheroids, have become essential tools for in vitro research in this area due to their ability 

to replicate  the tumour microenvironment [16].  These spheroid models mimic the complexity and 

structure of in vivo tumours that is not possible by traditional 2D cell culture [17].  Additionally, 

spheroids are a cost effective way of modelling the intricate processes of tumour environments, with 

added benefits of higher throughput results and avoiding ethical issues associated with animal models 

[18].  For the analysis of drug penetration, spheroids are of a particular interest due to the formation of 

a pathophysiological gradient within its structure [19] .  Spheroids consist of three layers, a necrotic 

core encapsulated by a quiescent layer and an outer proliferating region.  The structure of spheroids 

mimics the physiological barrier for drugs to penetrate making it a highly representative model of a 

solid tumour [19].  By understanding the molecular composition and structure of spheroids, the 

distribution of drugs and the responses from treatment can be further understood.  Therefore an MSI 

approach to monitor drug penetration is a highly desirable method for pharmaceutical development.  

Conventional methodologies including fluorescent microscopy [20] and magnetic resonance imaging 

[21] have previously been used to measure drug distribution in 3D tissues.  These methods, however, 

require the addition of labels or probes which can impact the efficacy of drug distribution, and 

possibly alter the biological composition of 3D samples.  MSI has the ability to directly map a variety 

of molecular species, drugs and metabolites within 3D culture models without the use of any labels or 

probes [22].  Spheroids and drug treatment are therefore not compromised when analysed by MSI.  



www.proteomics-journal.com Page 5 Proteomics 

 

 
This article is protected by copyright. All rights reserved. 
 

Li and Hummon were the first to examine the molecular composition within spheroids using MSI 

[23].  MALDI-MSI was used to determine the spatial distribution of predominant species in 3D colon 

cancer cells, HCT116.  Specific species including cytochrome C and histone H4 were identified and 

validated by protein sequencing and LC-MS/MS.  This approach successfully located and identified 

specific peptides without prior knowledge or labelling, proving it to be a valuable methodology to 

analyse the true genetic make-up within spheroids.  An alternative study also utilised the MALDI-

MSI approach to examine lipid metabolism of 3D primary colon cancer cells [24].  Identification of 

phospholipids in the surface region of spheroids gave a further understanding of the importance of 

colon cancer progression.  These studies revealed the benefits of spatial distribution of specific 

species in spheroids to distinguish possible biomarkers and potential targets for cancer therapeutics.  

The ability of MALDI-MSI has expanded to the analysis of drug distribution and molecular responses 

in spheroids.  Liu et al demonstrated time-dependent distribution of a chemotherapeutic, irinotecan, 

and its metabolites by MALDI-MSI on colon spheroids, validated by LC-MS/MS [25].  A more recent 

study used this technique in combination with iTRAQ MS/MS for the identification of proteomic 

changes in response to a combinational chemotherapeutic drug, FOLFIRI [26].  These projects have 

demonstrated that MSI to be an excellent methodology for exploring pharmaceutical distribution 

within spheroids.  Subsequently, further studies have utilised this approach to determine the spatial 

distribution of other therapeutics. Liu and Hummon quantitatively tracked the penetration and 

metabolism of platinum-based drugs in colon cancer spheroids by MALDI-MSI in combination with 

UPLC-MRM [27].  Results from this study show great potential as a pre-clinical methodology for the 

analysis of metal-based drugs.  The Lukowski group have applied the MSI-spheroid approach for 

analysing the efficacy of liposomal drug delivery [28].  The study, however, showed slower metabolic 

rates compared to free-drug delivery and suggested expanding the approach to actively quantify the 

amount of drug in spheroids for future work.   

This multiplex nature of MSI creates an advantage for analysing the efficacy of chemotherapeutics for 

treatment of different cancers. Further studies, however, could be achieved to evaluate alternative 

cancers and representative therapeutics due to current research primarily focussed on colon cancer cell 

lines. Additional benefits of this approach also allow for high throughput analysis of representative 

biological models that also impacts the usage of animal models in such experiments. MSI could also 

be further expanded to actively quantify drug concentrations within spheroids; however methods 

including LC-MS can still be utilised for this [27, 28].  Nonetheless, MSI of spheroids offers a 

valuable approach for pre-clinical screening of therapeutics for the pharmaceutical industry.  

 



www.proteomics-journal.com Page 6 Proteomics 

 

 
This article is protected by copyright. All rights reserved. 
 

MSI has therefore emerged as an attractive tool for the analysis of drug distribution within 3D cell 

cultures models, such as skin and spheroids. MSI techniques have the ability to localise drugs and 

metabolites within the structure of the models and in addition biological changes in response to 

treatment/exposure can be observed.  
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Figure Legends: 

Figure 1: Substrate Based Mass Spectrometry Imaging (SBMSI): MSI used to detect the presence of 

esterases. A commercially available full thickness 3D skin model was treated with the esterase 

probe-Methyl paraben. After 48 hours sections were taken and examined by MSI, the image shows 

the localisation of methyl  paraben (red) and its esterase generated phase 1 metabolite p-

hydroxybenzoic acid (green) confirming the presence of esterase activity in the model [11]. 

 

 


