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Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed therapeutic agents used world­
wide, to treat various inflammatory diseases. However, these drugs do not solve the underlying problem of  
inflammation and their long-term administration is associated with serious gastrointestinal complications, such as 
gastric ulcers and bleeding. Curcumin 1, (figure A) the diferuloylmethane, a yellow pigment found in the 
rhizomes o f turmeric (Curcuma longa) possesses a well established role as an anti-inflammatory agent since 
ancient times to treat various inflammatory diseases. Thiophene features in many natural products and possesses 
anti-inflammatory properties. Similarly, nitric oxide donating NSAIDs are emerging as a novel class o f NSAIDs 
which offers better efficacy and possesses lesser side-effects associated with the conventional NSAIDs. In search 
o f better NSAIDs, we have successfully synthesised and spectroscopically characterised four thiophene 
curcuminoids 47a-d and novel nitric oxide donating derivatives o f curcumin 51a-d, (figure A) using Pabon’s 
method. The cytotoxic effects o f these drugs along with the lead compound curcumin 1 and their effect on the 
production o f reactive oxygen species i.e. nitric oxide and pro-inflammatory cytokines IL-ip, TNF-a and CXCL-8 
were evaluated using THP-1 and CACO-2 cancer cells.The thiophene curcuminoids 47a at 10,50 and 100 pM and 
47d at 10 and 50 pM, appeared to be non-cytotoxic to THP-1 cells, whereas, 47b and 47c were non-cytotoxic at 
10 pM only .When compared with curcumin 1, at 10 pM, 47a and 47d were as non-cytotoxic as curcumin 1, 
however, 47b and 47c were more toxic than curcumin 1. In CACO-2 cells, 47b and 47d appeared to be non-toxic 
at 10 to 100 pM, whereas, 47a was non-toxic at 10 and 100 pM and 47c was non-cytotoxic at 10 pM only. In 
THP-1 cells, drugs 47a-d significantly decreased the IL-l-p production at their non-cytotoxic concentrations, 
whereas, did not decrease the TNF-a production. For the effects on CXCL-8 in CACO-2 cells, 47a at 100 pM and 
47b and 47d at 50 and 100 pM showed significant decrease in CXCL-8 production. In comparison to curcumin 1 
at 10 pM only drug 47c significantly reduced CXCL-8 production. All o f the nitric oxide donating curcuminoids 
51a-d are non-cytotoxic to THP-1 cells at a concentration range of 10-100 pM and in comparison with curcumin 
1, all drugs at 10 pM were as non-toxic as curcumin 1, whereas at 50 and 100 pM were significantly more non­
toxic to the cells. All o f them except 51c enhanced the production o f nitric oxide in unstimulated THP-1 cells, 
whereas in LPS stimulated cells drugs 51a and 51d showed similar effects to unstimulated cells, however drug 
51b equally produced NO at 10, 50 and 100 pM and 51c was effective at 100 pM only. In comparison with 
crucumin 1 drug 51b at 10 pM enhanced the NO production both in LPS stimulated and unstimulated cells.These 
results clearly indicate that the replacement o f both o f the phenyl rings o f the curcumin 1 with unsubstituted 
thiophenes and the introduction o f a nitroxybutyl moiety to curcumin 1 reduce the cytotoxic effect o f the parent 
curcumin 1, whereas, methyl substituted thiophenes increase its cytotoxic effects in THP-1 cells.The synthesis of 
fused-ring aromatic heterocyclic curcuminoids 57b and 61 (figure A) was carried out via two different routes 
however both methods resulted in poor yields. On the other hand in case o f nitrogen derived curcuminoids 63, 65 
and 69 (figure A) no product was obtained at all. New method for the synthesis o f curcuminoids using Claisen 
condensation reaction was tried but complete evidence o f curcumin formation was not achieved.

R-. R« R , R-, HjC°  * *  (

Figure A : Chemical structures o f curcumin 1, thiophene curcuminoids 47a-d, nitric oxide donating curcuminoids 
51a-d, fused ring aromatic heterocyclic curcuminoids 57b, 61 and nitrogen containing curcuminoids 63, 65 and

69.
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Ar Aromatic

AP Alternative pathway
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JC-1 5,5',6,6'-tetrachloro-l,l',3,3'-

tetraethylbenzimidazolocarbocyanine iodide 

LP Lectin pathway

LPS Lipopolysaccharide
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mAb Monoclonal antibody
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NO-CUR Nitric oxide donating curcuminoids
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inflammatory drugs 
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inflammatory drugs 
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RA Rheumatoid arthritis
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siRNA Small interfering ribonucleic acid
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CHAPTER 1 

INTRODUCTION
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Scope of investigations

Various inflammatory diseases (e.g. arthritis, inflammatory bowel disease, 

neurodegenerative diseases, parasitic diseases and cancer) are among the most serious 

and debilitating group of pathological conditions affecting humans world-wide. 

Current therapies, while being effective, often find limited use, either because of their 

inefficiency towards the effects on the disease processes or due to the occurrence of 

serious adverse drug reactions. In this thesis the potential for the natural product, 

curcumin 1 (figure 1.1), to serve as a platform for the development of novel 

derivatives (curcuminoids) is explored. Curcumin 1 has recently been shown to have 

many novel actions on molecular components of inflammatory processes which are 

considered as advanced and novel targets for therapeutic intervention in various 

inflammatory diseases. It is from this basis and the long-standing recognition that 

turmeric (curcumin 1) has therapeutic benefits, albeit modest, in various chronic 

inflammatory diseases, that derivatives of curcumin 1 could be developed which may 

be more potent than curcumin 1 itself, or other anti-inflammatory drugs, as well as 

having the favourable safety profile of this natural product. The focus on novel 

derivatives of curcumin 1 was directed to preparing nitroxybutyl, thiophene and furan 

derivatives. These moieties have been found to have potency enhancing and novel 

actions when applied to other established drugs, e.g. the non-steroidal anti­

inflammatory drugs (NSAIDs).



H 3 C 0

Curcumin or [l,7-bis-(4-hydroxy-3-methoxyphenyl)-l,6-heptadiene-3,5-dione]

Figure 1.1 : Chemical structure of curcumin 1.
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The main focus of this chapter is to review (1) the mechanisms of inflammatory 

reactions showing the potential molecular and cellular targets that may be affected by 

curcumin 1 and its derivatives, (2) the actions of conventional anti-inflammatory 

drugs on these inflammatory processes, and (3) the effects of curcumin 1 (turmeric) 

recognised in folk medicine, as a nutraceutical and on pathways and cells involved in 

inflammation

1.0 Definition of inflammation

Inflammation is an active defensive reaction of multi-cellular organisms against 

diverse insults, designed by nature, not only to remove or inactivate noxious agents 

but also to inhibit and reverse their detrimental effects1 and hence is necessary for 

survival. In order to achieve this ultimate goal the inflammatory reaction represents a 

non-specific and dynamic response that consists of a highly coordinated set of 

humoral and cellular events which allow tissues to respond to injury or infection by 

the participation of various cell types, expressing and reacting to diverse mediators.2 

However, the persistence of an inflammatory stimulus (due to the inadvertent 

activation of the inflammatory cascade) or the dysregulation of the endogenous anti­

inflammatory mechanisms (due to the lack of appropriate termination signal)3 leads to 

chronic tissue injury associated with typical inflammatory disorders with high 

morbidity and mortality rates e.g. arthritis, colitis, inflammatory bowel disease, 

asthma and many other pathologies that have an inflammatory component associated 

with them, such as stroke, atherosclerosis, Alzheimer’s disease.4
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1.1 Definition based on the signs and symptoms of inflammation

Based on signs and symptoms, the term inflammation was defined in the first century 

as "Redness and swelling with heat, pain and disturbed function". The observation of 

plasma exudation and local leukocyte extravasation into the affected tissues was 

pioneered by Julius Conheim. Collectively, these concepts still hold true for the
f

current definition of inflammation as the phenomenon that involves local vascular 

changes in diameter and blood flow, increased vascular permeability and leukocyte 

infiltration.5

1.2 General aspects of inflammation

A wide array of insults that include microbial invasion, trauma, thermal, 

immunological, physical/chemical injury is responsible for the tissue injury that 

results in the subsequent inflammatory response (figure 1.2), and regardless of the 

cause or anatomical site; the tissue injury initiates a series of biochemical events that 

result in the following three major pathophysiological components of the 

inflammatory response.6

• Increased tissue perfusion

• Increased vascular permeability

• Leukocytic exudation

In normal circumstances the inflammatory response is closely linked with the process 

of repair that begins during the early phase of inflammation, but completes usually 

after the injurious influence has been neutralized to heal and reconstitute the damaged 

tissue as soon as possible.7 This process of injury and repair usually involves a series



of events. The production of specific cytokines and chemokines initiates the 

processes of inflammation that is further promoted by the leukocyte recruitment to 

the site of damage. Attracted leukocytes exhibit new adhesion properties and produce 

several mediators that both increase local blood flow and activate phagocytes to 

eliminate dead cells and tissue debris. Damage is eventually repaired by proliferation 

of vascular capillary endothelial cells and fibroblasts. At this step, various molecules 

with anti-inflammatory properties are synthesized to resolve the process.2

6
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Figure 1.2 : Diagram showing the pathophysiological signs o f inflammation followed
by an injury.8
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1.3 Mechanism of inflammation

In order to understand the process o f inflammation, the following major aspects are 

taken into consideration in this thesis:

• Molecular mediators o f inflammation

® Vascular events involved in inflammation

© Cellular events involved in inflammation including chemotaxis.

1.4 Molecular mediators of inflammation

Although various inflammatory diseases have different inflammatory responses, they 

can be characterized by the common spectrum of genes and a multitude of 

endogenous mediators involved. These include soluble proteins (specifically 

histamines, kinins, complement system), cytokines interleukin-1 (3 (IL-1J3), tumor 

necrosis factor-a (TNF-a), chemokines CXCL-8, macrophage inflammatory protein 

la ,p  (MIP-la,|3), reactive oxygen species e.g. nitric oxide and free radicals9and 

eicosanoids (prostaglandins, leukotrienes).10The molecular mediators of 

inflammation are summarised in table 1.1.



Table 1.1 : Molecular mediators of inflammation and their functions.11

Functions Mediators

Increased vascular permeability 
of small blood vessels

Histamine, serotonin, bradykinin, 
complement components (C3a, C5a), 
prostaglandin E2 (PGE2), leukotrienes (LTC4, 
LTD4), prostacyclins, activated Hageman 
factor, high-molecular-weight kininogen 
fragments, fibrinopeptides.

Vasoconstriction Thromboxane A2 (TXA2), leukotrienes 
(LTB4, LTC4, LTD4), complement component 
(C5a), N-formyl peptides.

Smooth muscle contraction Complement components (C3a, C5a), 
histamine, leukotrienes (LTB4, LTC4, LTD4), 
thromboxane A2 (TXA2), serotonin, platelet 
aggregation factor (PAF), bradykinin.

Increased endothelial cell stickiness Interleukin-1 (IL-1), tumor necrosis factor-a 
(TNF-a), chemotactic protein (MCP), 
endotoxin, leukotriene B4 (LTB4).

Mast cell degranulation Complement components (C3a, C5a).
Phagocytes

Stem cell proliferation Interleukin-3 (IL-3), granulyte colony 
stimulating factor (G-CSF), granulyte 
macrophage colony stimulating factor (GM- 
CSF), macrophage colony stimulating factor 
(M-CSF).

Recruitment from bone marrow Colony stimulating factors (CSFs), interleukin- 
1 (IL-1).

9



Adherence/aggregation Proteolytically inactive product of complement 
cleavage factor C3b (iC3b), immunoglobulin G 
(IgG), fibronectin, lectins.

Chemotaxis Complement component (C5a), leukotriene 
B4 (LTB4), interleukin-8 (IL-8) and other 
chemokines, platelet aggregation factor (PAF) 
PAF, histamine (for eosinophils), laminin, N- 
formyl peptides, collagen fragments, 
lymphocyte-derived chemotactic factor, 
fibrinopeptides.

Lysosomal granule release Complement component (C5a), interleukin-8 
IL-8, platelet aggregation factor (PAF), most 
chemoattractants, phagocytosis.

Production of reactive oxygen 
intermediates

Complement component (C5a), tumor necrosis 
factor-a (TNF-a), platelet aggregation factor 
(PAF), interleukin-8 (IL-8), phagocytic 
particles, interferon-y (IFN-y).

Phagocytosis Complement component (C3b), proteolytically 
inactive product of complement cleavage 
factor C3b (iC3b), immunoglobulin G (IgG, Fc 
portion) fibronectin, interferon-y (IFN-y) 
increases Fc receptor expression.

Granuloma formation Interferon-y (IFN-y), tumor necrosis factor-a 
(TNF-a), interleukin-1 (IL-1).

Pyrogens Interleukin-1 (IL-1), tumor necrosis factor-a 
(TNF-a), prostaglandin E2 (PGE2), interleukin- 
6 (IL-6).

Pain Prostaglandin E2 (PGE2), bradykinin.
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1.4.1 Histamine

Histamine 2 (figure 1.3), is an important naturally occurring mediator that is not only 

responsible for the various physiological responses of the multi-cellular organisms12 

and functions as a neurotransmitter13 but is also involved in several pathological 

responses and has a well established role as a mediator of inflammation.14 The 

pleiotropic functions of histamine 2 are mediated through four distinct G-protein 

coupled receptors that are classified as HI, H2, H3 and H4. A fifth receptor; 

histamine Hie located intracellularly has also been described in hematopoietic cells.15 

During normal physiological conditions, histamine 2 is metabolically degraded to the 

biologically inactive compounds by one of the two enzymatic pathways : (/) 

Histaminase (found in neutrophils and eosinophils) which converts histamine 2 to N- 

methylhistamine 3 and (ii) imidazole-acetic acid 4 (figure 1.3); whereas its cellular 

release is initiated by specific antigen-IgE reactions or by C5a and is calcium ion 

dependent. Histamine 2 has been found to influence the release of cytokines and 

inflammatory mediators from a variety of inflammatory and immune cells.16 

Following are the major aspects of histamine 2 reactions that are considered to 

contribute to both types (e.g. acute and chronic) inflammation.

11
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Figure 1.3 : Histamine 2 and its major metabolic pathway.19

Histamine 2 is metabolized mainly by the action of histamine N-methyltransferase 
and monoamine oxidase.
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1.4.1.1 Different histamine responses towards early and late inflammatory 

conditions

In response to the early stages of acute allergy or inflammatory reactions, histamine 2 

causes bronchoconstriction, vasodilation and increased vascular permeability, which 

are responsible for most of the symptoms of rhinitis, asthma, urticaria and phylaxis.17 

On the other hand, during the progression of allergic-inflammatory responses; 

histamine 2 contributes towards the enhancement of the secretion of pro- 

inflammatory cytokines e.g. IL-1 a, IL-lp, IL-6 and chemokines.18

1.4.1.2 Mode of histamine release

Another aspect that can also contribute to the histamine 2 dependent chronic allergy 

or inflammatory reactions, involves the mode of release of histamine 2. When 

histamine 2 is released from mast cells and basophils the interaction of antigen with 

IgE antibodies anchored to the cell surface triggers a rise in the cytosolic 

concentration of free calcium ions that results in the exocytosis of histamine 2 storage 

granule and then the release of histamine 2 from the granules by the process of cation 

exchange.19 In contrast to this, cells other than mast cells and basophils produce 

histamine 2 through the induction of histamine forming enzyme called histidine 

decarboxylase (HDC). Such histamine 2 production has been suggested to play a part 

in the exacerbation of collagen-induced experimental arthritis, muscle fatigue, the 

prolonged accumulation of gastric acid induced by lipopolysaccharide (LPS) and 

interleukin-1 (IL-1), and has a distinct feature of rapid formation and release
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associated with it in comparison to the mast cells and basophils which can store 

histamine 2 before release.20

1.4.1.3 Storage sites for histamine

Mast cells and basophils are the major sites of histamine 2 storage and within these 

cells it is stored as a granular complex with high molecular weight heparin and an 

acidic protein. Based on the fact that mast cell numbers are abundant in the lung, skin 

and gastrointestinal mucosa, the highest concentrations of histamine 2 is therefore 

found in these tissues, whereas in blood, histamine 2 is stored in basophils. However, 

there is evidence regarding the involvement of other types of cells including 

histaminocytes of stomach and histaminergic neurons of the hypothalamus that also 

supply histamine 2.19

1.4.2 Serotonin

Serotonin 5 (figure 1.4) is another vasoactive amine which also acts as a 

neurotransmitter21 and is synthesized by the decarboxylation of tryptophan 6 (figure

991.4) in the diet and is found in the mast cell granules of rodents , however, in 

mammals 95% of the serotonin 5 is produced and stored by the mucosal 

enterochromaffin cells of the gastrointestinal tract where as only 5% is restricted to 

brain.23 Results from various studies of carrageenan-induced inflammatory models 

show the involvement of serotonin 5 along with histamine 2 during the early phase of 

inflammation.24
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Figure 1.4 : Chemical structures of serotonin 5 and tryptophan 6.25

15



1.4.3 Kinins

Kinins are amongst the first agents produced at the site of injury or inflammation in 

the periphery.26 Kinins that include bradykinin (plasma kinin) and Lys-bradykinin 

(tissue kinin) are biologically active peptides, generated from their kinin precursor

97proteins, kininogens by the action of the enzyme kallikrein from its inactive form 

prekallikrein, which is activated either by the Hageman factor or by tissue
r s r

proteases. Kinins are inflammatory mediators that are not only considered to be 

responsible for the constriction of venules, dilation of arteriole, increasing 

permeability of the capillary membrane and interacting with sensory nerve terminal 

transmitters and serve as autocoids to evoke pain and mediate oedema respectively, 

but are also involved in the release of substance P (known transmitters from nerve 

terminals), stimulate the synthesis of IL-1 and induce the formation of prostaglandins

• 9Rand leukotrienes by activating phosphohpase A2 . The fore mentioned inflammatory 

responses of kinins are exhibited by two specific types of receptors Bi and B2 .26

1.4.4 Complement system

The complement system is a part of the innate immune system that is mainly involved 

in defence against invading pathogens (particularly microbial) and in the acquired

90immune response however the cascade is also likely to be activated during tissue 

injury as well as it plays a role in cellular injury associated with major trauma and 

bums.30,31 Inappropriate activation and/or inefficient regulation of the complement 

system can result in various inflammatory and immunologic diseases.32 Activity of 

the complement system is established by the interaction of 30-40 soluble plasma and
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cell surface proteins, regulators, complement factors (Clq. C3a, C4a, C5a) and their 

receptors (CR1, CR2 and CR3).33'34

The biochemical cascade of the complement system proceeds through controlled 

proteolysis and conformational changes of the constituent proteins via three 

activation pathways (table 1.2). These include the Classical Pathway (CP), the 

Alternative Pathway (AP) and the Lectin Pathway (LP).35
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Components of the Early and Late Events in the Complement Cascade

Lectin Pathway Classical Pathway Alternative Pathway
Early events
MASP-1, -2, -3 C1 factor D

C4 C4 C3b

C2 C2 factorB

Late events
C5 C5 C5

C6, C 7.C8,C 9 C6. C7, C8. C9 C6, C7, C8, C9

Table 1.2 : Activation pathways o f complement cascade and their early and late event
com ponents/6
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Deficiencies o f complement components o f all three pathways have been reported to

07 . . .
be involved in distinct pathologies including sepsis, adult respiratory distress

T T •

syndrome, hyperacute rejection o f transplants and various neuroinflammatory

TO

diseases including multiple scelerosis, ischemia, Alzheimer’s disease etc.

Describing the events that take place during the CP, Bonifati and Kishorej9 suggest 

that the CP is activated by the binding o f the C lq  to IgG or IgM containing immune 

complex which leads to the auto-activation o f C lr, which in turn activates C ls, C lr  

and C ls together with C lq  from the first component C l o f the complement system. 

The activation o f the C lq  complex (C lq+ C ls-C lr-C l-r-C ls) subsequently activates 

the complement through the cleavage o f C4 and C2 to yield C3 convertase that 

cleaves C3, leading to the activation of the C2-C9 components and the formation of 

the terminal membrane attack complex (M A C)f9 The MAC inserts or binds itself to 

the bacteria or viruses’ membrane leading to death however, if  the host cells are 

inadequately protected then MAC can contribute to their damage as well through a 

process called ‘bystander lysis’.40

The alternative pathway is initiated by the spontaneous hydrolysis (slow rate =

0.005% per minute) of the thioester bond o f the C3, resulting in conformational

t  n . . .  •

changes o f the protein. This intermediate form o f C3 can bind factor B and cleavage 

o f factor B by factor D yields the C3 convertase C3 (PfCOBb which continues the 

alternative pathway by cleaving the additional C3 molecules into C3a and C3b 

fragments. The C3b binds to factor B resulting in the activated C3bBb complex 

which forms more C3 convertases and hence amplify the cascade (explosively fast 

reaction, rate o f C3b production = 1015 molecules per minute). As the complement
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cascade progresses, active C5 convertase enzymes specifically convert C5 into C5a 

and C5b. The newly formed C5b initiates the assembly of the terminal complement 

membrane attack complex C5b-C9 (also known as terminal complement complex, 

TCC).41

The lectin pathway of the complement system can be activated by binding of its 

recognition molecule mannose binding lectin (MBL) to one of its carbohydrate 

ligands found either on the surface of the microorganism bond IgG, or altered self­

molecule. Binding of MBL, activates MBL-associated serine proteases (MASPs) 

which cleave C4 and C2 leading to the formation of C4b2a, cleavage of C3 and
<37

complement activation up to the formation of MAC.

1.4.5 Cytokines

Cytokines are a group of cell-derived poly-peptides which to a larger extent 

orchestrate the inflammatory response i.e. they are the major determinants of the 

make-up of the cellular infiltrate, the state of cellular activation and the systemic 

responses to inflammation.42 These are pleiotropic in their effect and elicit their 

effects locally or systematically in autocrine or paracrine manner 42 Cytokines 

activate many signal transduction pathways, which engage in a high level of 

crosstalk.43 Macrophages play an important role in the production of inflammatory 

cytokines such as interleukin-1 p, tumour necrosis factor-a and other inflammatory 

mediators i.e. nitric oxide and prostaglandins.44

20



1.5 Vascular events of inflammation (change in vascular flow and calibre)

1. Vasodilation

Immediately following an injury, there is frequent vasoconstriction of arterioles due 

to the vasomotor reflux; that lasts for few seconds and is followed by the 

hemodynamically more important vasodilation of capillaries and venules. Dilation is 

mediated by vasoactive agents and results in the increased blood flow to the injured 

site and consequently the area becomes red and gets warm, however over time, the 

rate of blood flow decreases.8,45

2. Increased vascular permeability

Vasodilation and increased vessel permeability are histological events commonly 

observed during acute inflammation 46 Vasodilation is usually accompanied by 

increased permeability of the microvasculature, which usually affects the venules and 

refers to the outpouring of the fluid rich proteins from the blood vessels into the 

extravascular tissues resulting in the slowing down of the blood circulation due to the 

increased viscocity.8

3. Leukocyte adherence and emigration

Vasodilation and exudation are accompanied by leukocyte (mainly 

polymorphonuclear leukocytes, PMNs) adherence, followed by their emigration, and 

although these events occur simultaneously these are not necessarily 

interdependent.45 The adherence of neutrophils to the endothelial cells and their 

emigration from the blood stream into the tissues is an essential part of the host



defence against invading pathogens.30 However, if the pro-inflammatory properties of 

these neutrophils are not properly regulated, these normally beneficial leukocytes can 

also contribute to the pathogenesis of infectious diseases or excessive inflammation.47 

During inflammation, the resident cells in tissues, for example macrophage, release 

neutrophil chemotactic factors that are mainly responsible for rolling and adhesion of 

neutrophils on endothelial cells, followed by their transmigration. The 

transmigration phenomenon consists of the following overlapping steps.30

a. Margination b. Rolling c. Adhesion

d. Diapedesis e. Chemotaxis

Margination

Margination is a passive rheological phenomenon49 that allows neutrophil movement 

from the central blood stream to the periphery of the vessel and is facilitated by the 

process of stasis and fluid exudation at the site of inflammation and physical 

interactions between erythrocytes and neutrophils.30 Using Pentoxifylline (PTX), a 

Theologically active drug Hussain et al50 have demonstrated that adhesion of 

leukocytes to endothelial cells is only possible if the cells undergo margination due to 

these rheological interactions.
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Rolling

After margination, the endothelial cells, lining the blood vessels of the infected 

tissues are stimulated to express receptors belonging to the selectin family (E and /or 

P-selectin), that capture neutrophils from the bloodstream and support their rolling 

form of adhesion along the endothelium, driven by the shear force applied by the 

flow51 (figure 1.5).

As a result of rolling, the leukocytes are simultaneously halted in the microcirculation 

and exposed to chemoattractants or activators either present on the endothelial surface 

or released from the injured tissue.52
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T i g h t  b i n d i n gR o l l i n g  a d h e s i o n M i g r a t i o n

CXCL8R 
(IL-8 receptor)

<50

selectin'

CD31

Figure 1.5 : Leukocyte rolling along the surface o f endothelial cells.53

E-selectin is binding reversably with carbohydrate on the leukocyte cellular 
membrane. P-selectin is not shown.
PEC A M -1 or CD31 = Cluster o f differentiation molecule, ICAM-1 = Intracellular 
adhesion molecule 1, LFA-1 = Lymphocyte function-associated antigen 1.
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Adhesion

As rolling progresses, a high affinity adhesive interaction known as adherence 

develops which is necessary for subsequent neutrophil diapedesis and chemotaxis.30 

Binding of leukocytes to the blood vessel wall is controlled by a complex cascade of 

molecular interactions between the leukocyte and the endothelial cell layer mediated 

by cell adhesion molecules and leukocyte activating factor.54 Cell adhesion molecules 

that have been charactarized to date include E-selectin, P-selectin, vascular cell 

adhesion molecules (VCAM)-1, intercellular adhesion molecules (ICAM)-1 and 

platelet/endothelial cell adhesion molecule (PECAM)-1.55

Diapedesis

Following a period of stationary adhesion, a leukocyte may leave the postcapillary 

venule by extending pseudopodia between endothelial cells and pulling itself into the 

subendothelial space and the adjacent interstitial compartment, through a complex 

process which is often termed as leukocyte diapedesis, extravasation or emigration. 

This event is dependent on an array of cellular processes including adhesion molecule 

expression and activation, cytoskeletal reorganisation and alteration in membrane 

fluidity.56 Members of three major families of adhesion receptors that have been 

implicated in this cascade include selectins, integrins and the immunoglobulin 

superfamily.57
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1.6 Chemotaxis

Chemotaxis is a process that directs the orientation of cell motility in response to 

chemical gradients (chemotactic agents) and is necessary for the maintenance of 

normal biological functions, including the immune response of neutrophils, growth of 

blood vessels, embryonic development and the aggregation of the amoeboid cell.58 

However, negative consequences are also associated with the process when 

inflammation leads to a chronic response.59

Cell motility is a complex process that involves the coordination of many cellular 

functions, including the conversion of information from the environment into a series 

of coordinated responses that culminate in directed cell moment.60 The following 

description of the chemotatic response of the neutrophils is one of the examples 

(among the fore-mentioned biological functions involving chemotaxis), that 

illustrates the mechanism of chemotaxis involved in the immune response.

In humans, polymorphonuclear leukocytes (PMNs), bind to various chemoattractants 

or chemotactic chemical substances (that include host tissue derived chemokines e.g. 

CXCL-8, leukotrienes LTB4, complement reaction product C3 or C5a and pathogen 

products e.g. bacterial N-formylated peptides) through cell surface G protein-coupled 

receptors, that further activate multiple downstream signalling molecules involved in 

the stepwise regulation of PMN migration.61 (figure 1.6).The sequence of events 

involved in the cellular chemotactic response is believed to occur as follows:45

• Recognition of the chemoattractant at the cell surface

© Transduction of the initial signal into the effector mechanism.

• The effector mechanisms.
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Figure 1.6 : Chemotactic response o f neutrophils.

Schematic view o f the chemotactic migration o f leukocytes towards an inflammation 
site. Neutrophils move through the endothelium and within tissues by responding to 
successive combinations o f chemoattractant gradients. Chemoattractants are released 
by endothelial cells, by activated stromal cells (macrophages, epithelial cells), and by 
the inflammatory targets, i.e, bacteria or dying cells. The direction o f neutrophil 
movement is first guided by the steepest local chemoattractant gradient and is then 
regulated by successive receptor desensitization and attraction by secondary distant 
agonists. Finally, end-target attractants are dominant over regulatory cell-derived 
agonists.
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1.7 Inflammatory responses

As recently reviewed by Lawrence,6j inflammation involves the sequential activation 

of pro- and anti-inflammatory pathways (mediators). Among these two pathways 

relatively little is known about the anti-inflammatory mechanisms that "switch-off' or 

resolve inflammation because the resolution of the acute inflammatory response does 

not simply involve the catabolism of pro-inflammatory mediators, but is actively 

coordinated by its own endogenous ‘prosolving and anti-inflammatory’ mediators, 

however the activation of the transcription factor NFkB is considered to be involved 

in both the events. The aim o f the acute pro-inflammatory response is to neutralize 

the noxious or foreign agents or the injurious process and remove it before it spreads 

to other parts of the body.

During the pro-inflammatory pathway the activation of NFkB is responsible for the 

expression of pro-inflammatory mediators such as cytokines (TNF and IL-1|3), 

adhesion molecules, chemokines, growth factors and inducible enzymes 

cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), whereas such 

activation during the resolution (anti-inflammatory pathway) of inflammation is 

associated with the induction of apoptosis and the expression of the anti­

inflammatory mediators (TGF(31 and cyclopentenone prostaglandins).
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Part B

1.8 Anti-inflammatory drugs

In general, the major therapeutic agents used for the treatment of a variety of 

inflammatory and autoimmune diseases (e.g. arthritis, psoriasis, atopic dermatitis, 

inflammatory bowel disease, multiple sclerosis, asthma etc) have been classified as: 

the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), the Corticosteroids, the 

Disease-Modifying Anti-Rheumatic Drugs (DMARDs), the antagonists of bradykinin 

and kallidin and the anti-histamines.64,65 This classification is based on the action of 

these drugs towards the production and propagation of the inflammatory mediators 

(eicosanoids, cytokines, peptides, histamine, serotonin, and platelet-activating 

factor.64 Rheumatoid arthritis (RA) is a systemic inflammatory disorder of joints that 

affects about 1% of the world’s population and leads to substantial societal effect in 

terms of functional loss, disability and increased mortality.66 Drugs used for the 

treatment of RA are usually divided (following the pyramid approach) into first-line 

drugs (the NSAIDs) and the second-line drugs (the DMARDs); whereas the 

glucocorticoids are usually considered as a separate category and are often considered 

essential for the treatment of RA.67

1.9 The traditional therapeutic “ pyramid approach”

ASGardner describes the evolution involved in the treatment philosophy of RA based 

on the “pyramid approach”. In the late 1960’s and early 1970’s, the patients were 

prescribed NSAIDs along with physical therapy. In the beginning, this approach was
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based on the fact that all NSAIDs readily suppress the signs of inflammation i.e. pain 

and stiffness; but subsequently it was realized that the NSAIDs do not prevent joint 

damage and disability in many patients.69 With the phenomenal advancements made 

in molecular biology defining the molecular, humoral and cellular events of RA, new 

therapeutic opportunities were defined to inhibit specific events involved in the

70inflammatory process. Thus the successive steps then progressed up the pyramid to 

second-line drugs, the DMARDs; at first with low toxic ones like anti-malarial and 

then to the more toxic ones like gold preparations, depending upon the severity or 

progression of the disease.68 Furthermore, based on the statistical findings over 90% 

of arthritic patients had joint erosions by 2 years of disease, that 5-10% went on 

disability each year, remission was very rare and men died 4 years earlier and women 

10 years earlier than normal population; the period for a patient to start DMARDs 

was also evolved starting from 120 months (1965) to 30 months (1975) and to only 5 

months (1985).68

1.10 Nitric oxide (NO)

Nitric oxide (figure 1.7) is a pleiotropic, short-lived free radical that participates in

diverse biological processes such as regulation of blood vessel and airway tone,

inflammation, neurotransmission, apoptosis and is widely utilised as a signalling

molecule in cells throughout the body, carrying out numerous roles but most notably

regulating local vascular tone and blood flow. In general, NO causes local

vasodilatation and increases oxygen delivery.71 During normal endothelial nitric

oxide pathway; NO diffuses from endothelial cells into the vessel lumen and into the

neighbouring smooth muscle cells, where it activates soluble guanylate cyclase
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leading to an increase in intracellular cyclic guanosine monophosphate (cGMP). In 

smooth muscle cells cGMP causes smooth muscle relaxation and hence dilation of 

the artery.72 On the other hand, several non-cGMP dependent actions activated by 

NO have also been reported, such as inhibition of the transcription factor nuclear 

factor-xB, leading to the inhibition of pro-inflammatory cytokines.73 In biological 

systems, NO is produced via two different metabolic pathways, (i) Nitric oxide 

synthase (NOS) dependent pathway in which the oxidation of the guanido group of 

L-arginine 7 to L-citrulline 8, results in NO production and the reaction is catalyzed 

by NOS,74 (figure 1.7) and (ii) by the chemical reduction of the nitrite anion (NO2 ') 

to NO, a reaction that is generally accelerated in an acidic milieu.75 There are three 

isoforms of NOS, namely, neuronal NOS (nNOS or type I), endothelial NOS (eNOS 

or type III), and inducible NOS (iNOS or type II). nNOS and eNOS are 

constitutively expressed in the gut under normal conditions and are primarily 

regulated by the levels of intracellular calcium via calmodulin and release NO in 

response to calcium fluxes, on the other hand, the induction of iNOS usually occurs 

during inflammation and immune activation and does not depend on 

calcium/calmodulin.76 The NOS-independent pathway of NO generation was first 

described in the stomach but more recent studies show that nitrite reduction can take 

place also in blood and in other tissues. The substrate for intragastric NO generation 

(nitrite) is derived from saliva. Saliva naturally contains much nitrate as a result of an 

active uptake from blood by the salivary glands. By the action of nitrate reductase in 

commensal bacteria inhibiting the oral cavity much of this nitrate is reduced to 

nitrite.75
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Figure 1.7 : Synthesis of nitric oxide (NO) via NOS dependent pathway.77

In the first step, arginine 7 is hydroxylated to produce an enzyme-bound intermediate 
N“-hydroxy-L-arginine (NHA), and 1 mol of NADPH and oxygen are consumed. In 
the second step, NHA is oxidized to citrulline 8 and nitric oxide with the 
consumption of 0.5 mol of NADPH and 1 mol of oxygen.
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The physiological chemistry of NO is variable and complex, however, the most 

important and direct reaction of NO in cells are of two general types: those between 

NO and metal complexes of protein (as occurs in guanylate cyclase activation) and 

those between NO and radical intermediates of biological transformations e.g. 

capture of the tyrosyl radical formed during ribonucleotide reductase.78 Hence due to 

its versatile nature, NO may affect diverse cellular responses and have both pro- and 

anti-inflammatory properties.79

1.11 Nitric oxide donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs)

1.11.1 Rationale behind the development of NO-NSAIDs

Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely used to mitigate 

pain and inflammation; however, their use is associated with serious gastrointestinal 

side effects.80 The development of nitric oxide donating nonsteroidal anti­

inflammatory drugs (NO-NSAIDs) (figure 1.8 A) or nitric oxide donating steroidal 

anti-inflammatory drugs (NO-SAIDs) (figure 1.8 B) is based on the strategy of 

introducing a NO-donating moiety (e.g. nitroxyalkyl group or other nitro linker) 

which is covalently bonded to a spacer molecule, into a bioactive molecule such as 

conventional NSAIDs81 or SAIDs.82 Their development is based on various findings 

that have shown that NO possesses some of the properties of prostaglandins (PGs) 

within the gastric mucosa and hence the NO-coupled NSAIDs might deliver NO to 

the site of NSAIDs induced damage, thereby decreasing the gastric toxicity which is 

often a consequence of diminished PGs level in the gastric mucosa.81 Therefore, the
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development of NO-NSAIDs has been the next step forward in the search for safer 

NSAIDs.

To the best of our knowledge the data available on the NO-donating oxicams (the 

enolic acid class of NSAIDs) figure 1.9, is limited. Therefore, the NO-aspirin 9 is 

used in this thesis to help understand the mechanism of action of NO-NSAIDs via 

their pharmacokinetic and pharmacodynamic properties and their safety profile over 

the conventional NSAIDs.
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Figure 1.8 : (A) Structural features of various nitric oxide donating non-steroidal anti­
inflammatory drugs (NO-NSAIDs).
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Figure 1.8 : (B) Structural features of various nitric oxide donating steroidal anti­
inflammatory drugs (NO-SAIDs).
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Figure 1.9 : Chemical structures of various oxicams.
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1.11.2 Mechanism of action of NO-aspirin

As reviewed by Wallace86, due to its ability to suppress platelet aggregation and 

thereby inflammation, while sparing the gastrointestinal (GI) tract, NO-aspirin 9 

(figure 1.10) has attracted a particular interest among several other NO-aspirin 

candidates and therefore has been best characterized both experimentally as well as 

clinically. Also from structure-activity relationship, both individual bioactive 

moieties e.g. conventional aspirin and the NO, collectively appear to be responsible 

for the effectiveness of NO-aspirin 9.

1.11.3 Pharmacokinetic properties of NO-aspirin

Regarding their pharmacokinetic properties, NO-aspirins in general, are stable in 

aqueous solutions in contrast to conventional NO donors, however, NO-aspirin 9 in 

particular; is well absorbed after oral administration. As a consequence of efficient 

absorption after oral administration, the ester linkage of the conventional aspirin 

moiety in NO-aspirin 9 is rapidly cleaved by the action of esterase enzymes in the 

liver and in plasma, on the other hand the release of NO occurs at much slower rates 

over many hours after administration of NO-aspirin 9, as shown by the peak levels in 

plasma as well as the increase in cyclic guanosine monophosphate (cGMP) levels in 

platelets was lower than the ones found using equimolar doses of traditional organic 

nitrates such as glyceryl trinitrate or isosorbide dinitrate. This low level of NO release 

provides an evidence of lack of effect of NO-aspirin 9 on systemic arterial blood 

pressure in contrast to other NO-donors.86
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1.11.4 Pharmacodynamic properties of NO-aspirin 

Metabolism of ester linkage of NO-aspirin

In rats : Using rat liver subcellular fractions (S 9000 x g, microsomes and cytosol), 

Carini et al87 have studied the metabolic fate of NO-aspirin 9 in vitro. The authors of 

the study have postulated that the drug is largely absorbed by the small intestine, 

reaches the liver where it is readily metabolized. HPLC, LC and LC-MS techniques 

were used in order to elucidate the structures of the postulated metabolites (figure 

1.11) which could arise from different biotransformation pathways via single or 

multiple hydrolytic cleavage of the different ester moieties e.g. acetate, benzoate or 

nitrate ester. The presence of salicylic acid 17 (SA), 3-(nitromethyl) phenol 18 (HBN) 

and 3-hydroxybenzylalcohol 19 (HBA) (figure 1.10) and the absence of other 

postulated acetyl derivatives (acetylsalicylic acid 20,21 and 22) (figure 1.11) 

revealed that the most labile functionality in NO-aspirin 9 is the acetate ester. 

Furthermore, the retention of HBN 18 and the absence of 23 (figure 1.11) show that 

the nitrate group of NO-aspirin 9 is more resistant to the enzymatic attack.
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Figure 1.10 : Metabolites of NO-aspirin 9 obtained by the cleavage of 
acetyl ester moiety in rat liver.87

(SA) 17 = Salicylic acid, (HBN) 18 = 3-(nitromethyl) phenol, (HBA) 19 = 
3-hydroxybenzylalcohol.
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Figure 1.11: Postulated metabolites of NO-aspirin 9.87 

(ASA) 20 = Acetylsalicylic acid.



1.12 Cytoprotective and cytotoxic effects of nitric oxide (NO)

Several studies have shown that NO-releasing agents can either cause endothelial cell

death by activating intracellular mediators associated with apoptotic pathway or
Q Q

rescue cells from apoptosis thereby confirming its dual role in cell life.

1.12.1 Cytoprotective effects of nitric oxide (NO)

In spite of the cytotoxic effects various studies have convincingly demonstrated, 

using different cell types of essentially every organ and tissue such as human B 

lymphocytes, splenocytes, eosinophils, ovarian follicles, cardiac myocytes and 

endothelial cells, a cytoprotective role of NO that occurs via suppression of 

apoptosis.89 It has been reported that the defensive mechanism exhibited by NO (both 

exogenous and endogenous) against cell death induced by pro-apoptotic stimuli is 

triggered via two main mechanisms: (a) regulation of mitochondrial respiration and
o o

(b) regulation of cytochrome c release.

Effect o f  exogenous nitric oxide (NO) on cell respiration

Using human adult T cell leukemia (Jukart) cells, Beltran et al90 have studied the 

effects of exogenous nitric oxide on cell respiration and investigated the effects of 

continuous inhibition of cell respiration by NO donor, DETA-NO, 24, (figure 1.12) 

on mitochondrial energy status and cell viability in serum-deprived and staurosporin, 

25, (figure 1.12) treated cells. Using the cationic lipophilic fluorochrome, JC-1,26, 

(figure 1.12), serum-deprived cells showed a gradual decrease in mitochondrial 

membrane potential (A\|/m, an indicator of energy status of mitochondria in particular
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and of cellular homeostasis in general), signifying apoptotic cell-death, however there 

was a significant increase in A\j/m after the addition of DETA-NO 24, (0.5mM) for 3- 

5 h. This shows that despite the respiration being blocked the A\j/m was maintained 

and the cells were protected from apoptosis. Similar results were obtained with 

staurosporin 25. On the other hand as the exposure of serum-deprived cells to NO 

was continued (>5 h) the fall in A\|/m was observed correlating the appearance of 

early apoptotic features and a decrease in cell viability.
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Figure 1.12 : Chemical structures of nitric oxide donor (diethylenetriamine nitric 
oxide DETA-NO) 24, pro-apoptotic stimulus (staurosporin) 25 and fluorochrome

(JC-1) 26.
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The effect of NO on energy metabolism of serum-deprived cells was also assessed, 

based on the fact that there is an involvement of a source of energy other than the 

respiratory chain as A\|/m was initially maintained despite the inhibition of 

respiration. This was confirmed by analysing the role of glycolytic ATP in 

maintaining the A\|/m. Glucose deprivation or iodoacetate treatment of the cells in the 

presence of NO resulted in a collapse of A\|/m demonstrating the involvement of 

glycolytic ATP in its maintenance. Treatment with 8pM of oligomycin 27 (an 

inhibitor of the ATP synthase) (figure 1.13) and 50pM of bongkrekic acid 28 (an 

inhibitor of adenine nucleotide translocator, ANT), (figure 1.13) in the presence of 

DETA-NO 24 resulted in a partial depolarization, suggesting that the maintenance of 

A\j/m during the exposure to NO is caused by the reversal of the ATP synthase and 

ANT. These results demonstrate that in the presence of exogenous NO a constant 

inhibition of complex IV (mitochondrial enzyme cytochrome c oxidase) occurs that 

results in inhibition of mitochondrial respiration and initiates a protective action in 

the mitochondria to maintain A\|/m through a mechanism that involves the hydrolysis 

of glycolytic ATP, and hence in the prevention of apoptosis.90
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Figure 1.13 : Chemical structures of oligomycins 27 and bongkrekic acid 28.
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Effect o f endogenous nitric oxide (NO) on cell respiration

Describing the role of endogenous NO in cell respiration, Beltran et al96 have 

reported that the activation of human adult T cell leukemia (Jukart cells) with pro- 

apoptotic stimulus, anti-Fas Ab (lO-lOOng/mL) induced an immediate (2 minutes, the 

earliest reading) and concentration-dependent (that progressed for up to 1.5 h) 

increase in intracellular NO production that was decreased to the control levels 

thereafter. This NO production inhibited mitochondrial respiration, as a 

concentration-dependent hyperpolarization was observed after the addition of anti- 

Fas Ab (10-100 ng/mL). The hyperpolarization of the mitochondrial membrane was 

described to be the result of the inhibition of cell respiration by the endogenously 

released NO as confirmed by the use of 500pM ofN “-nitro-L-arginine methyl ester 

29, (L-NAME, an inhibitor of NO) (figure 1.14), which reverses both, the inhibition 

of respiration and hyperpolarization. Furthermore, in these studies also, the 

hyperpolarization was dependent on the reversal of FiF0-ATP. In addition to 

hyperpolarization, the generation of reactive oxygen species (ROS) was also 

observed. Treatment of the cells with anti-Fas Ab (lOng/mL) resulted in an increase 

in hydroetidine (HE) fluorescence from 30 minutes onwards reaching a maximum 

after 1 h and returning to control levels after 2 h. The early peak of ROS can be 

completely inhibited by L-NAME 29 and by rotenone confirming that the production 

of ROS depends on NO production and is generated in mitochondria.

47



After 2 h stimulation with anti-Fas Ab, a distinct second phase was detected which 

resulted in a concentration-dependent collapse in mitochondrial membrane potential, 

a second wave of free radical production and activation of caspase-8 leading to 

apoptosis.

In conclusion, these results demonstrate that endogenous NO generates the 

mitochondrial membrane hyperpolarization as well as an early release of free radicals 

both of which are protective events and occur before the activation of caspases in the 

second phase and may overcome by the pro-apoptotic mechanisms that occur in 

parallel.96
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Figure 1.14 : Chemical structure of L-NAME 29.97
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1.13 Curcumin

Modem scientific investigation has proved that the ancient use of spices and culinary 

herbs in food was associated not only to enhance the flavour and taste of the food but 

also to serve as a dietary medicine. Moreover, because most of these spices and 

culinary herbs are a rich source of antioxidants and phyto-nutrients they may help to 

improve health and reduce the risks of diseases; without the addition of calories, 

added salt or artificial flavour to the food.98 The emerging renewed interest for the 

use of plants as pharmaceuticals or neutraceuticals relies heavily on the knowledge of 

their indigenous use in traditional medicine systems.99

Curcuma longa

Turmeric, the aromatic, yellow-orange coloured spice is obtained from the dried and 

ground rhizomes of the plant Curcuma longa (figure 1.15 A) which belongs to the 

family Zingirberaceae (the ginger family) and is naturally distributed or widely 

cultivated (as a cash crop) throughout the tropical and subtropical regions of the 

world100 including India, China, Indonesia, Jamaica and Haiti.101 

Curcuma is a Latin name for curcumin 1 (figure 1.15 A), derived from Arabic word - 

“Kouroum” meaning saffron. Due to its specific aroma, flavour, colour-imparting, 

preservative, digestive and many other medicinal properties; turmeric has a long

10'?(dating back to thousands of years) and distinguished use in Eastern civilization.
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1.14 Use in folk medicine

Because of its apparent lack of cytotoxicity, turmeric finds a prominent place in two 

of the world’s ancient traditional medicinal systems i.e. Traditional Chinese 

Medicinal System (TCM) and Indian Medicinal System (IMS) (composed of two

1 mmajor branches -  Unani and Ayurveda). It has been administered effectively via 

different routes for the treatment of various ailments, diseases and injuries.104 In the 

Unani system of medicine turmeric has been reported to be used internally to remove 

liver obstruction dropsy and jaundice while externally it is used to treat ulcers and 

inflammation.105 In both the Ayurveda and the traditional Chinese medicine100,101 the 

topical use of turmeric or its poultices is associated with the treatment of bruises, 

pains, sprains, boils, swellings, sinusitis and other skin disorders. When taken orally 

(as decoction) it is considered to be effective for flatulence, hepatic disorders and 

menstrual difficulties. In chronic rhinitis and coryza (cold) it has been used via 

inhalation.104 Further more, in the Ayurveda medicinal sytem, turmeric rhizomes and 

flowers have long been used with other natural supplements to treat a wide variety of 

health disoders; e.g. rhizome with tobacco for hazy vision, inflammation of eye, night 

blindness; with ginger and green gram for fever, body pain, rheumatism and scabies; 

with Dolichos biflorus for sores; with mustard and roots of Solanum surattense for 

coughs. Flowers on their own are used to treat dyspepsia and cholera while with 

flowers of Shorea robusta and bark of Ventilago calyculata for sore throat and 

syphilis.106 In traditional Chinese system of medicine turmeric has been reported to 

serve as an effective remedy to cure angina, abdominal pain, stomach-ache and 

gallstones.107



1.15 Morphology

Curcuma longa (figure 1.15B), is a perennial herb which measures up to 60-90 cm in 

height. The leaves are very large 30-40 cm in length and 10-15 cm in breadth with 

prominent mid-rib underneath. The flowers are pale-yellow and grow in autumnal

i ns 1 c\ospikes. Above the ground the stem is usually short and tapered at the base while 

underground it modifies into a rhizome.

1.16 Rhizome

Externally, the rhizome is yellowish or yellowish-brown whereas internally it is 

yellow or yellow-orange, bears an aromatic odour and tastes somewhat bitter. Based 

upon its morphology, the rhizome has been classified into the following two types: 

o Primary rhizome: It is an ovate, oblong, pyriform or round denominated bulb;

and is the main source of commercially available turmeric.

® Secondary rhizome: This is also named as “fingers” and is more cylindrical 

measuring 4-7 cm in length and 1-1.5 cm in width.

1.17 Structural features of curcumin molecule and structural-activity 

relationships with regard to its anti-inflammatory properties

In an effort to develop a robust and effective pharmacophore model of curcumin 1

analogues and to understand the basis of their biological activity, the structural

features of the molecule of curcumin 1 can be divided into three regions as shown in

figure 1.16. These include, two substituted aromatic moieties (A and C) joined

together by a conjugated P-diketone linker (B).110
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(A) (B)

Figure 1.15 : (A) Whole and powdered rhizomes o f Curcuma longa, containing the
bioactive ingredient curcumin 1, (B) The plant Curcuma longa. 109
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Figure 1.16 : Structural features of curcumin 1 molecule.110
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In a recent review, Anand et al111 describe that saturation of the alkenes and reduction 

of the carbonyl moiety in the 7-C linker of curcumin 1 appear to reduce its anti­

inflammatory activity, and the mechanism involved behind this behayiourisJhe 

suppression of NF-kB through inhibition of IkB kinase activity. However, regarding 

the involvement of the para-hydroxyphenyl rings, there are contradictory findings in 

the literature, as some studies claim that 4-hydroxyphenyl rings are required for anti­

inflammatory activity.111 For example, Nurfina et al11̂  studied the anti-inflammatory 

properties of several symmetrical curcuminoids on the inhibition of carragenin- 

induced oedema and have suggested that para-hydroxyl groups in curcumin 1 are 

important for its anti-inflammatory activity and this effect is enhanced when in 

combination with the para-hydroxyl groups, the meta-positions are also occupied 

withless bulky alkyl groups. On the other hand, many analogues of curcumin 1 that 

lack 4-hydroxyphenyl moieties such as 30a and 30b, (figure 1.17) have been reported 

to be morej3otent COX: l inhibitors than curcumin.111
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30a : R] — R2  — R3 — OCH3  

30b : Rj = R2  = -H, R3 = COOCH3

Figure 1.17 : Chemical structures of curcuminoids 30a and 30b.113
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1.18 Biological activities of curcumin

Curcumin 1 and essential oils found in turmeric are the major secondary metabolites 

shown to be largely responsible for the pharmacological properties of turmeric 

powder.114 The main biological activities of curcumin 1 are summarised in table 1.3, 

however, its anti-inflammatory property will be dealt with detail as it is the main 

focus of the present study.
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Table 1.3 : Biological activities of curcumin 1 (Modified from Han et al)115

Biological
activity

Protective effects and their 
mechanism

Experimental
model

Level Reference

Anti­
inflammatory
properties.

- Decreased myeloperoxidase 
(MPO) activity and tumour 
necrosis factor-a (TNF-a) on 
chronic colitis.

- Reduced nitrite levels and the 
activation of p38 mitogen 
activated protein kinase 
(MAPK).

- Down regulation of 
cyclooxygenase-2 (COX-2) and 
inducible nitric oxide synthase 
(iNOS) expression.

Rats In vivo 116

- Up regulation of MAPK 
58hosphatise-5.

Prostrate cells In vitro 117

- Suppressed induction of COX-2 
and iNOS.

- Inhibition of the expression of 
ICAM-1 and monocyte 
chemoattractant protein-1 
(MCP-1).

- Janus associated kinase-signal 
transducers and activators of 
transcription protein (JAK- 
STAT) suppression via 
activation of Src homology 2 
domain conataining protein 
tyrosine phosphatases-2 (SHP- 
2).

Rat primary 
microglia and 
murine BV-2 
microglial 
cells.

In vitro 118
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Biological
activity

Protective effects and their 
mechanism

Experimental
model

Level Reference

- Inhibition of cytochrome P 
(CYP1A2, CYP3A4, 
CYP2B6, CYP2D6 and 
CYP2C9).

Plasmids with
human
cytochrome
P450NADPH
reductase.

In vitro 119

Anti-oxidant 
and free

- Inhibition of mitochondrial 
proton F0F1- 
ATPase/ATPsynthase.

Rat brain and 
liver F0F1- 
ATPase.

In vitro 120

radical
scavenging
properties.

- Increased expression of 
glutathione ^-transferase PI 
(GSTP1) by the activation of 
anti-oxidant response element 
(ARE) and NF-E2 related 
factor 2.

HepG-2 cells. In vivo 121

- Increased catalase (CAT), 
superoxide dismutase (SOD) 
activity and heat shock 
protein 70 expression.

- Decreased iNOS activity.
- Decreased malondialdehyde 

(MDA), N 02" + N 03* and 
MPO levels and serum 
transaminase concentration.

Rat model. In vivo 122

Modulation of 
signal
transduction
pathways.
(cont.)

- Inhibition of 
homodimerization of toll-like 
receptor 4 (TLR4) in addition 
to IkB kinase (IKKP).

- Inhibition of 
lippopolysaccharide (LPS) 
induced nuclear factor-kappa 
B (NF- kB) and interferon

293-T cells, 
RAW-264.7 
cells.

In vitro 123
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Biological
activity

Protective effects and their 
mechanism

Experimental
model

Level Reference

Modulation of 
signal
transduction
pathways.
(cont.)

regulatory factor 3 (IRF3) 
activation through 
inhibition of myeloid 
differential factor 88 
(MyD88) and TIR domain 
containing adapter inducing 
interferon-p (TRIF) 
dependent pathways.

- Reduction of 130kDa 
protein and 4.5kb, mRNA 
level of iNOS.

- Inhibition of activation of 
NF-kB through prevention 
of I kB degradation.

RAW-264.7
cells.

In vitro 124

- Inhibition of interleukin-6 
(EL-6) inducible STAT3 
phosphorylation and 
nuclear translocation.

Human multiple 
myeloma cells.

In vitro 125

- Up regulation of CYP3A4 
via pregnane X receptor 
(PXR) activation.

- Activation of the 
electrophile responsive 
element (EpRE) of heme- 
oxygenase-1 (HO-1) and 
enhancing the 
gastrointestinal glutathione 
peroxidise (GI-GPX) 
activity.

HepG-2 cells. In vitro 126
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Biological
activity

Protective effects and their 
mechanism

Experimental
model

Level Reference

- Suppression of JAK-STAT 
inflammatory signalling 
through activation of SHP- 
2.

Rat primary 
microglia and 
murine BV-2 
microglial cells.

In vitro 118

Anti-diabetic
properties.

- Inhibition of diabetes- 
induced elevated levels of 
interleukin-1(3 (IL-lp), 
vascular endothelial growth 
factor (VEGF) and NF-kB).

- Decrease in oxidatively 
modified DNA and 
nitrotyrosine production.

Streptozotocin 
induced diabetic 
rats.

In vivo 127

Anti-
mutagenic/
anti-
carcinogenic
properties.

- Suppression of proliferation 
and angiogenesis.

- Inhibition of NF-kB 
regulated gene products 
(cyclin D l, c-myc, Bcl-2, 
Bcl-xL, cellular inhibition 
of apoptotic protein-1, 
COX-2, matrix 
metalloproteinase (MMP) 
and VEGF.

Various 
pancreatic 
cancer cell lines. 
Nude mice.

In vitro 

In vivo

128

- Induction of apoptosis by 
sustained phophorylation of 
c-jun N-terminal kinase 
(JNK) and p38 MAPK.

- Inhibition of NF-kB 
transcriptional activity.

- Induction of 
phosphorylation of c-jun

HCT-116 cells. In vitro 129
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Biological
activity

Protective effects and their 
mechanism

Experimental
model

Level Reference

and stimulation of AP-1 
transcriptional activity.

- Induction of apoptosis 
through activation of 
caspase-8, BID cleavage 
and cytochrome c release.

- Suppression of ectopic 
expression of Bcl-2 and 
Bcl-xL.

HL-60 cells. In vitro 130

- Inhibition of Akt, 
mammalian target of 
rapamycin (mTOR), p70 
ribosomal protein S6 
kinase (p70S6K) pathway 
and activation of ERK1/2 
pathway.

- Inhibition of tumour 
growth and induction of 
autophagy.

U87-MG, U373- 
MG cells. 
Subcutaneous 
xenograft model 
of U87-MG 
cells.

In vitro 

In vivo

131

Neuroprotective
properties.

- Disruption of existing 
plaques and distorted 
neuritis.

- Crossing the blood brain 
barrier and labels senile 
plaques and
cerebrovascular amyloid 
angiopathy.

Alzheimer 
mouse and 
APPswe/PSldE9 
mice.

In vivo • 132
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1.19 Anti-inflammatory action of curcumin

The main molecular targets involved in the anti-inflammatory action of curcumin 1 

are described as follows.

Nuclear factor k-B fNF- kB)

Figure 1.18 shows the multiple levels at which curcumin 1 interrupts the NF- kB

1 'X ̂signalling. NF-kB is a dimeric protein built up from different members of the Rel 

family and is a ubiquitous transcription factor which is involved in the pro- 

inflammatory response to cytokines (such as IL-1 or TNF-a) and some particular 

stresses and is maintained in the cytoplasm in its inactive form.134 However, in 

response to an extracellular signal such as IL-1 or TNF-a, its inhibitory subunit IkB is 

phosphorylated, polyubiquitinated and targeted to the proteasome where it is 

degraded and results in the nuclear localization sequence of NF-kB, which is rapidly 

translocated to the nucleus and binds to specific nucleotide sequences.134 This binding 

recruits the RNA polymerase complex and leads to the specific transcription of 

several genes involved in the pro-inflammatory response.134

Using both, the in vitro.as well as in vivo models of inflammation various reports in 

the literature have shown that curcumin 1 inhibits NF-kB in various tissues via 

different mechanisms. Describing the mechanism of NF-kB suppression by curcumin

i  <3 C

1 in human articular chondrocytes, Shakibaei et al have shown that curcumin 1 

suppressed IL-lp induced NF-kB activation via inhibition of IicBa phosphorylation, 

IicBa degradation, p65 phosphorylation and p65 nuclear translocation, and these 

events resulted in the down regulation of NF-kB targets including COX-2 and



MMP-9.135 In another study, Reyes-Gordillo et al136 have shown that curcumin 1 at 

dose of 200mg/kg, protects against carbon tetrachloride induced acute liver damage 

in rats by blocking the NF-kB-DNA binding activity. These findings suggest that 

curcumin 1 prevents acute liver damage by at least two mechanisms, that is, acting as 

an antioxidant and by inhibiting NF-kB activation and thus production of pro- 

inflammatory cytokines.

Interleukin-1B fIL-1 B)

Interleukin-ip is one of the cytokines that is involved in the inflammatory process 

and exhibits its action through its ability to induce the expression of genes associated 

with inflammatory and autoimmune diseases.137 When it binds to the cell-surface of 

its receptor, it initiates a cascade of signalling events, including activation of 

extracellular signal-regulated kinase, p38 MAP kinase, June N-termnal kinase (JNK) 

and NF-kB.137

Curcumin 1 inhibits IL-1 p production by affecting the early as well as late signalling 

events of the inflammatory cascade. Investigating the curcumin 1 mediated inhibition 

of IL-1 p, Jurrmann et al138 have shown that in murine thymoma EL-4 cells, curcumin 

1 blocks IL-lp signalling by inhibiting the recruitment of the IL-1 receptor-associated 

kinase IRAK. Other studies on intracellular signalling have shown that curcumin 1 

inhibits late events in the TNF-a and IL-1 p mediated signalling cascade e.g. inhibitor 

of IkB, kinase activation and thus NF-kB activation finally blocking the expression of 

intercellular adhesion molecule-1.
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Figure 1.18: Schematic representation of the molecular mechanisms for the anti­
inflammatory activity o f curcumin l . 133

Curcumin 1 is known to exert its anti-inflammatory effects significantly by 
interrupting NF-kB signalling at multiple levels. For example, reactive oxygen 
species (ROS) mediate inflammation through the activation o f stress kinases and 
redox-sensitive transcription factors such as NF-kB, however, curcumin is a ROS 
scavenger and thus prevents the inflammatory signalling. In addition, curcumin can 
interfere with the functions of Akt and MAPKs, and in turn down-regulate the 
downstream molecule NF-kB.

65



Tumour necrosis factor-a (TNF-a)

1As reviewed by Menon and Sudheer, TNF has been shown to mediate tumor 

initiation, promotion and metastasis, and the induction o f pro-inflammatory genes by 

TNF has been linked to many diseases. The pro-inflammatory effects o f TNF are 

primarily due to its ability to activate NF-kB, and almost all cell types when exposed 

to TNF activate NF-kB leading to the expression o f inflammatory genes. Curcumin 1 

has been shown to significantly affect the production o f TNF. The constitutive 

activation o f NF-kB in mantle lymphoma cells is due to autocrine expression of TNF. 

TNF mRNA is constitutively expressed in mantle cell lines. Suppression o f TNF by 

curcumin 1 led to inhibition o f NF-kB and cell proliferation.

CXCL-8

Interleukin-8 (IL-8) was first purified and molecularly cloned as a neutrophil 

chemotactic factor from lipopolysaccharide-stimulated human mononuclear cell 

supernatants, and because most o f them exhibit chemotactic activity for a limited 

spectrum o f leukocytes these are now called chemokines (chemotactic cytokines).140 

It is a 6-8 kDa protein, which has been detected in synovial fluid from patients with 

various inflammatory rheumatic diseases and elevated mucosal levels of CXCL-8 are 

also found in patients with ulcerative colitis.42 CXCL-8 mediates its broad biological 

activity by binding to two highly regulated receptors, CXCR1 and CXCR2, both o f 

which are the members o f the seven-transmembrane domain rohdopsin-like G protein 

coupled receptor superfamily, sharing 78% amino acid sequence homology.141 The
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angiogenic effects of CXCL-8 in intestinal endothelial cells are mediated by CXCR2 

receptor, while modulation of neutrophil functions like transepithelial neutrophil 

migration is CXCR1 dependent.141 Suppression of CXCL-8 production by curcumin 1 

has been associated with the simultaneous increase in the expression of CXCL-8 

receptors CXCR1 and CXCR2 indicating that curcumin inhibits CXCL-8 induced 

internalization of CXCL-8 receptors.142

1.20 Synthesis of curcumin and curcuminoids
\

Due to the facts that curcumin 1, is remarkably non-toxic to humans (at an orally 

administered dosage of up to 12g/day), however, it is cytotoxic to a variety of tumor 

cells, and exhibits multifunctional pharmacological properties including anti­

inflammatory and anti-cancer activities as shown by several recent clinical trials 

conducted in patients with rheumatoid arthritis, inflammatory bowel disease, 

psoriasis, pancreatic cancer, multiple myeloma, cystic fibrosis and other disorders.143 

Its poor bioavailability and pharmacokinetic profiles (due to its instability under 

physiological conditions) have limited its application, and hence synthetic 

modifications of curcumin 1 have been sought to overcome these limitations as well 

as to develop molecules with enhanced bioactivities.143

Curcumin 1 was first isolated in 1870 and its chemical structure was determined in 

1910.144 So far, the method devised by Pabon144 is the best method used for the 

synthesis of curcumin 1 and most of its analogues that have an intact 7 carbon a,p- 

unsaturated di-enone moiety, with aromatic (substituted or unsubstituted) and 

heterocyclic ring systems.



1.21 Pabon’s method of curcumin synthesis

Before Pabon, various synthetic methods were reported for the synthesis of curcumin 

1, however these methods resulted in low yields. For example, Lampe for the first 

time in 1918 synthesized curcumin 1, in eight steps using vanillin but this method had 

little practical value.144 Later on, Pavolini prepared curcumin 1 in only one step by 

heating vanillin, acetylacetone and boric anhydride in (2:1:2) ratio over a free flame 

for 30 minutes, however the yield claimed from this procedure was only 10%.144 

Pabon then continued to follow the method of Pavolini but with amendments such as 

using butanol, piperidine and introduced for the first time the use of boric ester, 

which promotes the formation of acetylacetone boron oxide complex 31144 (figure 

1.19). By this improved method, Pabon synthesized curcumin 1 at elevated 

temperatures (100 °C) with 45% yield, as well as at room temperature, with 73% 

yield and studied the effects of various factors involved. However, the procedure for 

synthesizing curcumin 1 at room temperature did not always yield the desired 

products and therefore the reaction to synthesize curcumin 1 at elevated temperature 

was adopted as a suitable method. The best temperature range for the condensation, 

proposed by Pabon was 85-110 °C. Amongst the different variety of bases that were 

studied, n-butylamine gave the best results. From the different alkylborates that were 

used in the study, tri-sec-butylborate and isopropylborate gave the best yields i.e.

78% and 80% respectively. Pabon further reported that higher yields could be 

obtained by using a solvent in the reaction and showed that ethyl acetate was the 

solvent of choice.144
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1.22 Basic steps of Pabon’s synthesis

The main steps involved in the synthesis of curcumin 1 using Pabon's method are 

shown in figure 1.19. The first step is the reaction of acetylacetone with boron oxide 

to form acetylacetone-boron oxide complex 31.113 The purpose of this strategy is to 

avoid Knoevenagel condensation at the active methylene group, so that the aldol 

condensation takes place at the terminal carbons.145 In the second step, after the 

addition of the corresponding benzaldehyde in the presence of a base, the 

condensation of the acetylacetone-boron oxide complex 31 with benzaldehyde 

occurs, and eventually in the third step, heating with dilute acid cleaves the boron 

complex to give the desired curcumin 1 molecule in free form.113
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Step 1: Formation of acetylacetone-boron oxide compelex 31 

9 OH

h3c  ^  c h 3

E n ol form

f
o oX X

h3c ^ ^ ^ x h 3

K eto  form

BiO-i

CH.

+  B O 2" +  h 3o

31

A cety laceton e-b oron  o x id e  co m p lex  

Step 2: Condensation of acetylacetone-boron oxide complex 31 with aromatic aldehyde

H,C CH,

O O

h3c  ^  c h 3

31

n -B u ty la m in e

A cety laceton e-b oron  o x id e  curcum in  c o m p le x

Step 3: Cleavage of acetylacetone-boron oxide curcumin complex via acid hydrolysis

HC1

Free curcumin

Figure 1.19 : Basic steps involved in Pabon's method of curcumin 1 synthesis.
Modified from reference113
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1.23 The aldol reaction

Pabon's method of curcumin 1 synthesis follows the strategy of aldol condensation 

reaction as the product obtained is an a,p-unsaturated ketone or keto-enol, or strictly 

speaking (by excluding the type of the base which is usually employed, i.e. the n- 

butylamine), the Claisen-Schmidt condensation reaction, in which the condensation 

of an aromatic aldehyde with an aliphatic ketone or aldehyde in the presence of 

relatively stronger base (such as alkoxide ion) occurs to form the aldol product i.e. the 

a,p-unsaturated ketone or aldehyde. However, the basic mechanism involved in both 

the reactions is the same as discussed previously.

As reviewed by Mestres146, aldol reaction is a carbon-carbon (C-C) bond forming 

reaction that results in p-hydroxy aldehydes (aldols) 36 or p-hydroxy ketones (ketols) 

37 through the addition reaction (aldolization) or to the a,p-unsaturated aldehydes 40 

or ketones 41 that result from a subsequent dehydration (aldol condensation). The 

reaction may involve two molecules of the same aldehyde 32 or ketone 33 (self- 

aldolization or self-condensation) or two different substances 34 and 35 (cross- 

aldolization or cross-condensation). However in any case one of the molecule reacts 

as a carbon acid that donates its lone pair of electrons to the carbonyl group of the 

other molecule which behaves as a lone pair acceptor (figure 1.20).
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1.24 Aims and objectives

In the light of the previous findings describing the side-effects of NSAIDs (that result 

in high rate of morbidity and mortality), as well as the beneficial role of curcumin 1  

in inflammation and on gastrointestinal tract, using curcumin 1  as a lead compound 

our aim was to discover a new class of drugs which have anti-inflammatory 

properties without the side-effects associated with the conventional NSAIDs.

The project had the following two major aspects associated with it.

1.24.1 Synthetic aspects

Specific objectives

• To synthesise nitric oxide donating derivatives of curcumin 1, as nitric oxide

donating NSAIDs are emerging as a new interesting class of anti­

inflammatory drugs without the side-effects which accompany the other 

NSAIDs used thus far. 147

• To synthesise (un)substituted thiophene and furan derivatives of curcumin 1.

• To synthesise benzothiophene and benzofuran derivatives of curcumin 1.

© To synthesise nitrogen containing heterocyclic curcuminoids.

Thiophene, furan and likewise benzofuran and benzothiophene feature in many 

natural products and possess anti-inflammatory properties, and hence it was 

envisaged that curcumin 1  derivatives of these would make good candidates for 

pharmacological activities. 148,149’150 Few selected examples of thiophene and furan 

derived curcuminoids had appeared in the literature at the time this work was started,
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however there was no literature precedence for benzo[b]thiophene or benzo[b] furan 

derived curcumins.

• To develop a new method of curcumin 1 synthesis.

1.24.2 Pharmacological aspects 

Specific objectives

Using two different cancer cell lines i.e. the human monocytic leukemia or THP-1 

cells and the human Caucasian colon adenocarcinoma-2 or CACO-2 cells, the 

objective was to determine the actions of the synthesised compounds on (a) the 

effects in vitro on several novel cellular reactions involving cytokine-mediated 

responses that underline chronic inflammatory reactions, and, (b) to ascertain the 

cytotoxic effects of the synthesised curcuminoids as a guide to the concentrations 

used for testing, as well as a guide to their intrinsic toxicity.

© To evaluate the effects of nitric oxide donating curcuminoids on the

production of nitric oxide in cell supernatants of THP-T cells.__________

© Assay activities of synthesised (un)substituted thiophene curcuminoids on the 

production of pro-inflammatory cytokines IL-ip, TNF-a using THP-1 cells 

and CXCL- 8  using CACO-2 cells, as it has been reported that the 

accumulation of IL-1p and TNF-a, initiates a cascade of events leading to 

inflammation and tissue destruction in various inflammatory diseases. 151
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Similarly, CXCL- 8  has been reported to be involved in the pathogenesis of 

inflammatory bowel diseases. 152

o To compare the effects of the active compounds with the parent compound 

curcumin 1 .

• Determine structure-activity relationship of the active compounds as a guide 

to design future derivatives of curcumin 1  with enhanced biological potency.
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Part A

Chemistry section

2.0 Materials 

Chemicals

4-Hydroxy-3-methoxybenzaldehyde (vanillin), 3-hydroxybenzaldehyde, 4- 

hydroxybenzaldehyde, thiophene-2-carboxyaldehyde, thiophene-3-carboxyaldehyde,

3-methylthiophene-2-carboxyaldehyde, 5-methylthiophene-2-carboxyaldehyde, 2,4,6- 

trimethoxybenzaldehyde, 4-hydroxy-1-napthaldehyde, furan-2-carbaldehyde, 3- 

methylfiiran-2-carbaldehyde, 5-methylfuran-2-carbaldehyde, benzaldehyde, (+/-)-2- 

butanol 99%, 1,4-dibromobutane, n-butylamine. tri-n-butyl-borate, silver nitrate, 

phenol, 4-methoxyphenol 98%, 4-chlorophenol 99%, trans-cinnamaldehyde 98+%, 

selenium oxide, 2,3-dichloro-l-propene 97%, 2,3-dibromo-l-propene with copper 

tech. 85% stabilized, 1,2-dichlorobenzene 99%, diethyl ether (anhydrous) 99.7%, 

dioxane, tetrahydrofuran, methylmagnesium bromide, ethyl cinnamate were 

purchased from Alfa Aesar, (Lancaster, UK). Magnesium sulphate, boric acid, 

calcium chloride (anhydrous), potassium bromide, potassium carbonate, acetyl 

acetone, petroleum ether, ethyl acetate. ethanol, acetone, toluene, cyclohexane, 

trifluoroacetic acid were obtained from Fisher Scientific (Leicestershire, UK). 2- 

Hydroxvbenzaldehvde (salicylaldehyde), 4,7-dichloroquinoline, sodium hydride and 

sodium metal in kerosene were obtained from Sigma-Aldrich Inc. (St. Louis, MO, 

USA). Acetonitrile 99.93%, (HPLC grade) was purchased from Sigma-Aldrich 

(Gillingham, England). Hydroxypropyl-y-cyclodextrin was purchased from Sigma-
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Aldrich (Ayrshire, UK). Boron oxide was obtained from Aldrich Chemical Company 

Inc. (Milwaukee, USA). Deuterated chloroform (CDCI3) was purchased from Apollo 

Scientific Ltd. UK. Silica gel for flash chromatography was purchased from VWR 

International (Poole, England). Thin layer chromatography (TLC) plates 20 x 20 cm 

aluminium sheets silica gel 60 F254 were from Merck (Germany).

2.1 Methods 

General procedures

All apparatus were oven-dried over night prior to use. Ethanol and ethyl acetate were 

dried over molecular sieves, other solvents and chemicals were used as received 

without further purification. ̂ The progress of the chemical reactions and the purity of 

the synthesised compounds were confirmed by thin-layer chromatography TL(^. The 

ultra-violet analysis of the TLC was performed at wavelengths of 254 and 365 nm 

using Mineral Light® Lamp, MultiBand UV- 254/365 nm, Model UVGL-58.|' 

Detection of the desired product was further confirmed by spraying the TLC plates 

with a solution of alkaline potassium permanganate solution. |

!H and 13C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AC 

250 spectrometer operating at 250 and 62.9 MHz respectively, for solutions in 

deuterated chloroform unless otherwise stated. Chemical shifts (8 ) were recorded in 

parts per million (ppm) relative to the reference, tetramethylsilane (TMS) and 

coupling constants (J) were calculated in Hz. Electron impact mass spectra (EIMS) 

were recorded on a VG 7070 Analytical Mass spectrometerj Electrospray mass 

spectra (ESMS) were obtained on Micromass Platform single quadrupole mass
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spectrometer fitted with a Harvard syringe driver. The accurate mass of the 

compounds was detected using an Applied Biosystems/MDS Sciex Hybrid 

quadrupole time-of-flight instrument (Q-Star Pulsar-i) fitted with an orthogonal 

MALDI ion source and an ND:VAG Laser. Infra-red spectra were recorded on ATI 

Mattson Genesis Series FTIR spectrophotometer using either potassium bromide 

pellets as a support for solid samples or sodium chloride disc for liquid samples. Data 

was recorded as wave number n (cm"1). (°C) were recorded on Stuart

SMP 3 digital electrothermal melting point apparatus and are uncorrectecj. The 

drugs/hydroxypropyl-y-cyclodextrin complexes were freeze-dried using Thermo 

ModulyoD freeze-dryer.

y\2.\X  Preparation of tri-sec-butyl borate

f ' A mixture of powdered boric acid (12.4 gm; 0.2 mol) and 2-butanol (44.4 gm; 0.6 

\ mol) in toluene ( 1 2 0  ml) was refluxed with azeotropic removal of water using the 

Dean - Stark apparatus. The toluene was evaporated on a rotary evaporator at 60 °C to 

^give tri-sec-butyl borate as a clear liquid which was stored in a tightly sealed bottle.

Preparation of acetylacetone-boron oxide complex 31

1 Acetyl acetone/boron oxide complex 31 was prepared according to the method of

Pabon. 144 In a 100 ml round-bottom flask, ground boric oxide (5 gm; 0.07 mol) was 

mixed with acetyl-acetone (10 gm; 0.14 mol). The reaction mixture was stirred for

1 h, and the complex obtained as a thick white paste was stored in a tightly sealed

bottle.



2.1.3 Synthesis of bromobutoxybenzaldehyde 45a-d

cho ,

R3

4 4 a : R 1 =  -0 H , R 2 =  R 3 =  -H  
4 4 b : R 1 =  R 3 =  -H ,R 2 =  -0 H  
44c :R j  = R 2 =  -H ,R 3 =  -OH  
44d : R! =  -H, R2 =  -OCH3, R3 =  -OH

(i) N a OEt/EtOH  
- ----------------------------

(ii) Bl—^
reflux, 12 h

CHO

45a : R , =  -0 -(C H 2)4-Br, R2 =  R3 =  -H  
45b : Rj =  R 3 =  -H, R2 =  -0 -(C H 2)4-Br 
45c : R , =  R 2 =  -H , R3 =  -0 -(C H 2)4-Br 
45d : Rj =  -H, R2 =  -OCH3, R 3 =  -0 -(C H 2)4-Br

'Scheme 2.1

General procedure

fAll of the four compounds 45a-d, (scheme 2.1) were synthesised by a typical 

I procedure which is illustrated for the formation of compound 2-(4- 

\bromobutoxy)benzaldehyde, 45a. A three-neck round bottom flask fitted with a 

dropping funnel, double surface condenser having a calcium chloride drying tube was
f
I charged with dry EtOH (60 ml). Freshly cut sodium metal (2.3 gm; 0.1 mol) pre­

washed in toluene was added slowly to EtOH with gentle stirring under reflux, until 

all the sodium had reacted. 2-Hydroxybenzaldehyde 44a (0.1 mol) was added and the 

reaction mixture was heated at 80 °C fojrJ3,0_minutes. 1,4-Dibromobutane (65 gm; 0.3 

mol) was added dropwise to the reaction mixture through a dropping funnel over a 

period of 35 minutes. The reaction mixture was refluxed for 12 h after which the 

mixture was allowed to settle and then filtered by suction filtration on a Buchner 

flask. To the filtrate was added water (60 ml) and extracted with EtOAc (2 x 60 ml).

80



^The organic layers were combined and dried over MgSC>4 , filtered and the solvent 

was evaporated on a rotary evaporator. The residue was distilled under reduced 

pressure (boiling point 45-50 °C/8 mmHg) to remove the excess 1,4-dibromobutane 

and the crude product was purified by silica-gel flash chromatography using 

^[petroleum ether: EtOAc, 8:1 v/v] as eluent, to yield product 45a, (58%) as a light 

yellow oil, Rf 0.45 [petroleum ether : EtOAc, 5:1 v/v]. IR (v) 3075 (aromatic C-H 

stretch), 2932 (aliphatic C-H stretch), 2759 (aldehyde C-H stretch), 1687 (conjugated 

>C=0 stretch), 1598 and 1577 (aromatic C=C stretch), 1242 (asymmetric C-O-C 

stretch), 1042 (symmetric C-O-C stretch), 758 cin' 1 (ortho di-substituted out of plane 

C-Hstretch); 'H N M R 8  1.89-2.17(4H, m,-CH2-CH2-),3.50(2H,t, J = 6.2H z,- 

CH2-Br), 4.11 (2H, t, J = 5.6 Hz, -0-CH2-), 6.95 - 7.05 (2H, m, Ar H-3 and H-5),

7.53 (1H, td, J = 6.9 and 1.5 Hz, ArH-4), 7.82 (1H, dd, J = 7.7 and 1.5 Hz, ArH-6 ),

10.5 (1H, s, -CHO);/3C NMR 8  28.0 (-0-CH2-CH2-), 29.4 (Br-CH2 -CH2-), 33.4 (Br- 

CH2-), 67.9 (-0-CH2-), 112.8 (Ar C-3), 121.0 (Ar C-5), 122.5 (Ar C-l), 128.7 (Ar C- 

6 ), 136.2 (Ar C-4), 161.4 (Ar C-2), 189.9 (-CHO); ( EIMS m/z 256 [M 79Br]+ (12%), 

258 [M 81Br]+' (12%), 227 [M-CHO]+' (3%), 135 [C4H8 79Br]+(62%), 137 [C4H8 

slBr]+(59%), 121 [C7Hs0 2]+ (85%); Accurate mass found: m/z 256.0093 (Br 79), 

calculated for CnHi3 0 2 79Br : 256.0099.

3-(4-Bromobutoxy)benzaldehyde, 45b, (79%) as a pale yellow oil, Rf 0.50 [petroleum 

ether: EtOAc, 5:1 v/v]. IR (v) 3067 (aromatic C-H stretch), 2945 (aliphatic C-H 

stretch), 2729 (aldehyde C-H stretch), 1696 (conjugated C=0 stretch), 1596 and 1585 

(aromatic C=C stretch), 1262 (asymmetric C-O-C stretch), 1043 cm' 1 (symmetric C-

O-C stretch); ‘H NMR 8  1.90 - 2.16 (4H, m, -CH2-CH2-), 3.48 (2H, t, J = 6.4 Hz, -



CH2-Br), 4.04 (2H, t, J = 5.9 Hz, -0-CH2-), 7.11 - 7.46 (4H, m, Ar H), 9.95 (1H, s, - 

CHO); l3C NMR 8  28.0 (-0-CH2-CH2-), 29.7 (Br-CH2-CH2-), 33.5 (Br-CH2-), 67.4 

(-0-CH2.), 113.0 (ArC-2), 122.1 (ArC-4), 123.8 (ArC-6 ), 130.3 (ArC-5), 138.1 (Ar 

C-l), 159.4 (Ar C-3), 192.3 (-CHO); EIMS m/z: 256 [M 79B r f  (7%), 258 [M slBr]+' 

(7%), 135 [C4H8 79Br]+ (71%), 137 [C4H8 slBr]+ (69%), 121 [C7H50 2]+ (69%); 

Accurate mass found: m/z 256.0089, calculated for Ci iHi3 0 2 79B r: 256.0099.

4-(4-Bromobutoxy) benzaldehyde, 45c, (81%), as golden yellow oil, R f  0.47 

[petroleum ether: EtOAc, 5:1 v/v]. IR (v) 3074 (aromatic C-H stretch), 2945 

(aliphatic C-H stretch), 2738 (aldehyde C-H stretch), 1690 (conjugated C=0 stretch), 

1600 and 1577 (aromatic C=C stretch), 1255 (asymmetric C-O-C stretch), 1040 

(symmetric C-O-C stretch), 832 cm' 1 (para di-substituted out of plane C-H stretch);

’H NMR 8  1.85 - 2.13 (4H, m, -CH2 -CH2-), 3.49 (2H, t, J = 6.4 Hz, -CH2-Br), 4.08 

(2H, t, J = 5.9 Hz, -0-CH2-), 6.98 (2H, d, J = 8.5 Hz, Ar H-3 and H-3'), 7.82 (2H, d, J 

= 8.5 Hz, Ar H-2 and H-2'), 9.87 (1H, s, -CHO); 13C NMR 8  28.0 (-0-CH2-CH2-),

29.6 (Br-CH2-CH2-), 33.4 (Br-CH2-), 67.5 (-0-CH2), 115.0 (Ar C-3), 130.3 (Ar C-l),

132.2 (ArC-2), 164.3 (Ar C-4), 191.0 (-CHO)EIMS m /z256 [M 79Br]+' (6 %), 258 

[M 8 ,Br]+' (6 %), 135 [C4H8 79Br]+ (58%), 137 [C4H8 81B rf  (56%); Accurate mass 

found: m/z 257.0176, calculated for Ci2Hi40 2 79B r: 257.0171.

4-(4-Bromobutoxy)-3-methoxybenzaldehyde, 45d, (50%), as a white solid, R f  0.33 

[petroleum ether: EtOAc, 3:1 v/v], m.p. 49.7 °C. IR (v) 3081 (aromatic C-H stretch), 

2872 and 2933 (aliphatic C-H stretch), 2756 and 2821 (aldehyde C-H stretch), 1679 

(conjugated C=0 stretch), 1596 and 1584 (aromatic C=C stretch), 1263 (asymmetric 

C-O-C stretch), 1046 cm' 1 (symmetric C-O-C stretch); *H NMR 8  2.06 - 2.08 (4H, m,
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-CH2-CH2-), 3.51 (2H, t, J = 6.4 Hz, -CH2 -Br), 3.92 (3H, s, -0-CH3), 4.14 (2H, t, J = 

5.9 Hz, -0-CH2-), 6.96 (1H, d, J = 7.7 Hz, Ar H-5), 7.40 - 7.46 (2H, m, Ar H-2 and 

H-6 ), 9.85 (1H, s, -CHO); 13C NMR 5 27.9 (-0-CH2-CH2-), 29.6 (Br-CH2-CH2-),

33.5 (Br-CH2-), 56.3 (0-CH3), 68.4 (-0-CH2.), 109.7 (Ar C-2), 111.8 (Ar C-5), 126.9 

(Ar C-6 ), 130.5 (Ar C-l), 150.2 (Ar C-3), 154.1 (Ar C-4), 191.1 (-CHO); EIMS m/z 

286 [M 79Br]+- (9%), 288 [M 81Br]+' (8 %), 135 [C4H8 79Br]+ (54%), 151 [C4H8 81Br]+ 

(54%); Accurate mass found: m/z 286.0200 (79Br), calculated for Ci2Hi5 0 379Br : 

286.0205.

2.1.4 Synthesis of curcuminoids

r

Method A:144 In this procedure the synthesis of curcuminoids was carried out 

according to Pabon’s method144 in which separately prepared acetvl acetone-boron 

oxide complex 31 was used.
//

V̂ A typical procedure for making the curcuminoids shown in scheme 2 . 2  is illustrated

by the formation of (lE,6E)-l,7-bis(2/(4-bromobutoxy)phenyl)hepta-l,6-diene-3,5-

dione, 46a. In a round bottom flaSk7 fitted with drying4ube,_compound 45a7T0:0 f  

mol) was dissolved in dried EtOAc and tri-seobutyl-borate (4.6 gm; 0.02 mol) was 

added to it with constant stirring. The acetyl-acetone/boron oxide complex 31 (0.9375 

gm) was added and the whole reaction mixture was left to stir for 15 minutes, n- 

Butylamine (0.125 ml) was added dropwise over 10 minutes/ and the stirring was 

[, continued for 4 h at 60 °C. After that, the reaction mixture was allowed to stand 

/overnight. Hydrochloric acid (0.4 M, 8  ml) was added and the mixture was stirred at 

^60 °C for an hour, and then extracted with EtOAc (3x30 ml). The combined organic
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'layer after drying over anhydrous MgS04 was filtered and evaporated on the rotary 

/evaporator. The crude product obtained was purified by flash column 

chromatography using [petroleum ether: EtOAc 8:1 v/v] as eluent to give pure 46a, 

(34%) dark brown gum, Rf 0.44 [petroleum ether: EtOAc, 3:1 v/v]. IR (KBr pellet) v 

3032 (aromatic C-H stretch), 2924 (aliphatic C-H stretch), 1620 (H-bonded >C=0 

stretch), 1595 and 1570 (aromatic C=C stretch), 1244 (asymmetric C-O-C stretch), 

1046 (symmetric C-O-C stretch), 750 cm' 1 (ortho di-substituted out of plane C-H 

stretch); lH NMR 6  1.98 - 2.20, (8 H, m, -CH2 -CH2-), 3.55 (4H, t, J = 5.9 Hz, -CH2- 

Br), 4.10 (4H, t, J = 5.6 Hz, -0-CH2-), 5.87 (1H, s, enolic -CH), 6.75 (2H, d, J = 16.0 

Hz, Ar-CH=CH-CO-), 6.91 (2H, d, J = 8.0 Hz, Ar H-3), 6.98 (2H, t, J = 8.0 Hz, Ar 

H-5), 7.33 (2H, td, J = 8.0 and J = 1.6 Hz, Ar H-4), 7.57 (2H, dd, J = 8.0 and J = 1.6 

Hz, Ar H-6 ), 7.97 (2H, d, J = 16.0 Hz, -CO-CH=CH-Ar); 13C NMR 6  28.1 (-0-CH2- 

CH2-), 29.8 (Br-CH2-CH2-), 33.7 (Br-CH2-), 67.7 (-0-CH2-), 101.9 (enolic methine 

C), 112.4 (Ar C-3), 121.1 (a-olefinic C adjacent to enol), 124.5 (Ar C-5), 125.5 (Ar 

C-l), 129.1 (ArC-4), 131.5 (P-olefinic C adjacent to enol), 136.0 (ArC-6 ), 157.9 (Ar 

C-2), 184.0 (enolic C); EIMS m/z 576 [M 79Br]+- (4%), 580 [M 81Br]+' (6 %), 577 [M 

+ H]+’, (2%), 578, [M + 2H]+ , (7%), 135 [C4H8 79Br]+ (39%), 137 [C4H8 81Br]+

(37%); Accurate mass found: m/z 577.0583, calculated for C2 7H3 i0 4 79Br2 : 577.0589. 

The compound 46a was obtained in 21% yield under the conditions of method B. 

(1E,6E)-1,7-bis(3-(4-bromobutoxy)phenyl)hepta-l,6-diene-3,5-dione, 46b, (24%) as a 

dark brown solid, Rf 0.41 [petroleum ether_^EtOAc, 3:1 v/v], m.p. 74.6-75.9 °C. IR 

(v) 3426 (OH stretch), 3052 (aromatic C-H stretch), 2947 (aliphatic C-H stretch),

1625 (H-bonded >C=0 stretch), 1596 and 1579 (aromatic C=C stretch), 1508 (enol),
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1243 (asymmetric C-O-C stretch), 1044 (symmetric C-O-C stretch), 885, 791, 677 

cm' 1 (meta di-substituted out of plane C-H stretch); !H NMR 5 1.95 -2.18 (8 H,jn, - 

CH2-CH2-), 3.51 (4H, t, J = 6 .4 5_Hz,^CH2-Br), 4.04 (4H, t, 1=5.9 Hz,-0-CH2:),

5.85 (1H, s, enolic -CH), 6.62 (2H, d, J = 16.0 Hz, Ar-CH=CH-CO-), 6.92 (2H, d, J =

7.7 Hz, Ar H-4), 7.07 (2H, s, Ar H-2), 7.16 (2H, d, J = 7.7 Hz, Ar H-6 ), 7.31 (2H, t, J 

= 7.7 Hz, Ar H-5), 7.63 (2H, d, J = 16.0 Hz, -CO-CH=CH-Ar); 13C NMR 6  28.1 (-0- 

CH2-CH2-), 29.8 (Br-CH2-CH2-), 33.6 (Br-CH2-), 67.2 (-0-CH2-), 1 0 2 . 0  (enolic 

methine C), 113.9 (Ar C-2), 116.7 (Ar C-4), 121.2 (a-olefinic C adjacent to enol),

124.7 (Ar C-6 ), 130.2 (Ar C-5), 136.7 (Ar C-l), 140.8 (P-olefinic C adjacent to enol),

159.5 (Ar C-3), 183.5 (enolic C); ESMS m/z 576 [M 79Br]+’, 577 [M 79Br + H]+', 578 

[M 79Br + 2H]+', 580 [M 81Br]+’, 581 [M 81Br + H]+-, 582, [M 81Br + 2H]+‘; Accurate 

mass found: m/z 576.0543, calculated for C27H30O4 79Br2 : 576.0511.

The compound 46b was obtained in 21% yield under the conditions of method B.
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(iii) 45a, 45b, 
45c, 45d

(iii)

(i) B20 3/Acetylacetone
(ii) tri-ic'c-(BuO)3B
(iv) n-BuNH2, 30 minuteO OX X

H3C CH3 (v ) EtOAc, 60 °C
(vi) HC1 ( 0.4 M )

(iii)

(iii)

"VC
R2 Ri 

--►

R3^ Av CHO
" W
r2 r

46a : R! = -0-(CH2)4-Br, R2 =  R3 = -H 
, 46b : Rj = R3 = -H, R2 = -0-(CH2)4-Br 
46c : R, = R2 = -H, R3 =  -0-(CH2)4-Br 
46d : Rj = -H, R2 =  -OCH3, R3 =  -0-(CH2)4-Br

n n

47a*: A  = -S-, R 3 =  R2 = R3 = -H 
47b : A  =  -S-, R! =  -CH3, R2 =  R3 =  -H 
47c : A =  -S-, Ri = R2 = -H, R3 = -CH3

, S

W h C l l

0  0  

47d

0  0

48a : A  = -0 - , Rj = R2 =  R3 =  -H 
48b : A  = -0 - , R! = -CH3, R2 =  R3 =  -H 
48c : A  =  -0 - , R, = R2 = -H, R3 =  -CH3

Scheme 2.2

* Synthesised by method B, (scheme 2.3).
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(lE,6E)-l,7-bis(4-(4-bromobutoxy)phenyl)hepta-l,6-diene-3,5-dione, 46c, (6 6 %) as a 

bright yellow solid, R?0.42 [petroleum ether : EtOAc, 3:1 v/v], m.p. 145.9-146.9 °C. 

IR (v) 3433 (OH stretch), 3035 (aromatic C-H stretch), 2945 (aliphatic C-H stretch), 

1628 (H-bonded >C=0 stretch), 1600 (aromatic C=C stretch), 1510 (enol), 1420 

(olefinic in plane bending vibration), 1257 (asymmetric C-O-C stretch), 1046 

(symmetric C-O-C stretch), 837 cm' 1 (para di-substituted out of plane C-H stretch); 

^ N M R d  1.92-2.14 (8 H,m,-CH 2-CH2-), 3.50 (4H, t, J = 6.4 Hz,-CH2 -Br), 4.04 

(4H, t, J = 5.6 Hz, -0-CH2-), 5.78 (1H, s, enolic -CH), 6.50 (2H, d, J = 15.5 Hz, Ar- 

CH=CH-CO-), 6.90 (4H d, J = 8.7 Hz, Ar H-3 and H-3'), 7.50 (4H, d, J = 8.7 Hz, Ar 

H-2 and H-2’), 7.62 (2H, d, J = 15.5 Hz, -CO-CH=CH-Ar); 13C NMR 6  28.1 (-0- 

CH2-CH2-), 29.7 (Br-CH2-CH2-), 33.6 (Br-CH2-), 67.3 (-0-CH2-), 101.6 (enolic 

methine C), 115.1 (Ar C-3, C-5), 122.1 (a-olefinic C adjacent to enol), 128.2 (Ar C- 

1), 130.0 (Ar C-2, C-6 ), 140.3 (P-olefinic C adjacent to enol), 160.8 (Ar C-4), 183.6 

(enolic C); EIMS m/z 576 [M 79Br]+ (3%), 578 [M 79Br + 2H]+‘ (8 %), 135, [C4H8 

79Br]+(100%), 137 [C4H8 81Br]+ (98%); Accurate mass found: m/z 576.0535, 

calculated for C27H30O4 79Br2 : 576.0511.

The compound 46c was obtained in 41% yield under the conditions of method B.

(lE,6E)-l,7-bis(4-(4-bromobutoxy)-3-methoxyphenyl)hepta-l,6-diene-3,5-dione, 46d, 

(57%) was obtained as a dark yellow solid, between EtOAc and aqueous layers 

during work-up and no further purification was required; Rf 0.38 [petroleum ether : 

EtOAc, 2:1 v/v], m.p. 124.4-125.4 °C. IR (v) 3548-3235 (OH enolic), 3003 (aromatic 

C-H stretch), 2955 and 2870 (aliphatic C-H stretch), 1620 (H-bonded >C=0), 1597 

and 1581 (aromatic C=C stretch), 1508 (enol), 1422 cm' 1 (olefinic in plane bending



vibration); !H NMR 5 2.00 - 2.17 (8 H, m, -CH2 -CH2-), 3.51 (4H t, J = 6.4 Hz, -CH2- 

Br), 3.92 (6 H, s, -OCH3), 4.10 (4H, t, J = 5.9 Hz, -0-CH2-), 5.82 (1H, s, enolic -CH), 

6.50 (2H, d, J = 15.7 Hz, Ar-CH=CH-CO-), 6.87 (2H, d, J = 8.2 Hz, Ar H-5), 7.08 

(2H, d, J = 1.7 Hz, Ar H-2), 7.13 (2H, dd, J u  = 8.2 and J U2= 1.7 Hz, Ar H-6 ), 7.61 

(2H, d, J = 15.7 Hz, -CO-CH=CH-Ar); 13C NMR 5 28.0 (-0-CH2-CH2-), 29.5 (Br- 

CH2-CH2-), 33.6 (Br-CH2-), 56.3 (-0-CH3), 68.3 (-0-CH2-), 101.5 (enolic methine 

C), 110.7 (Ar C-2), 113.0 (Ar C-5) 122.4 (a-olefinic C adjacent to enol), 123.0 (Ar C- 

6 ), 128.5 (Ar C-l), 140.6 (P-olefmic C adjacent to enol), 149.9 (Ar C-3), 150.7 (Ar 

C-4), 183.5 (enolic C); EIMS m/z 637 [M+H]+ (18%), 619 [M+H - H20 ]+ (31%), 324 

[C15H 180 3 79Br + H f  (31%), 326 [Ci5H,80 3 slBr + H]+ (29%), 324 [C14H 160 3 79Br]+ 

(20%), 313 [C14H160 381Br]+(18%), 135 [C4H8 79Br]+(100%), 137 [C4 H8 slBr]+

(99%); Accurate mass found: m/z 636.0714 (Br79), calculated for C29H34O6 79Br2 : 

636.0722.

(lE,6E)-l,7-bis(3-methylthiophen-2-yl)-l,6-heptodiene-3,5-dione, 47b, (51%) was 

obtained as a brown solid, purified by flash chromatography using [petroleum ether : 

EtOAc, 8:1 v/v] as eluent, Rf 0.44 [petroleum ether : EtOAc, 5:1 v/v], m.p. 114.9-

115.6 °C. IR (v) 3421 (OH stretch), 3068 (aromatic C-H stretch), 1606 (H-bonded 

>C=0), 1499 cm' 1 (conjugated C=C); ’H NMR 8  2.38 (6 H, s, -CH3), 5.73 (1H, s, 

enolic -CH), 6.35 (2H, d, J = 15.5 Hz, Ar-CH=CH- CO-), 6.89 (2H, d, J = 5.1 Hz, Ar 

H-4), 7.28 (2H, d, J = 5.1 Hz, Ar H-5, overlapped with CDC13), 7.84 (2H, d, J = 15.5 

Hz, -CO-CH=CH-Ar); 13C NMR 5 14.5 (-CH3), 102.1 (enolic methine C), 122.5 (P- 

olefinic C adjacent to enol), 126.9 (a-olefinic C adjacent to enol), 127.4 (Ar C-2),

131.8 (Ar C-4), 135.0 (Ar C-5), 141.6 (Ar C-3), 183.1 (enolic C); (EIMS m/z 316



[M]+'( 54%), 205 [CnH90 2S]+(17%), 165 [C9H9OS]+(ll% ), 151 [C8H7OS]+(100%), 

123 [C7H7 S]+ (28%), 111 [C6H7S]+ (65%); Accurate mass found: m/z 316.0600, 

calculated for C17H16O2 S2 : 316.0592.

(lE,6E)-l,7-bis(5-methylthiophen-2-yl)-l,6-heptadiene-3,5-dione, 47c, (53%) was 

obtained as a brown solid, purified by flash chromatography using [petroleum ether : 

EtOAc, 8:1 v/v] as eluent, R f  0.44 [petroleum ether : EtOAc, 5:1 v/v], m.p. 119.9-

121.5 °C. IR (v) 3448 (OH stretch), 3029 (aromatic C-H stretch), 1605 cm' 1 (H- 

bonded >C=0). ‘H NMR 5 2.51 (6 H, s, -OCH3), 5.70 (1H, s, enolic -CH), 6.27 (2H, 

d, J = 15.5 Hz, Ar-CH=CH- CO-), 6.72 (2H , d, J = 3.6 Hz, Ar H-4), 7.06 (2H , d, J =

3.6 Hz, Ar H-5), 7.68 (2H, d, J = 15.5 Hz, -CO-CH=CH-Ar); I3C NMR 5 16.1 

(-CH3), 101.4 (enolic methine C), 120.7 (f3-olefinic C adjacent to enol), 122.1 (a- 

olefinic C adjacent to enol), 127.0 (Ar C-4), 133.4 (Ar C-3), 138.9 (Ar C-2), 144.9 

(Ar C-5), 183.0 (enolic C); EIMS m/z 316 [M]+' (31%), 298 [M - H2 0]+' (23%), 205 

[CiiH90 2 Sf(5% ), 165 [C9H9OS]+(39%), 151 [C8H7OS]+(100%), 110 [C6H6 S]+ 

(3%); Accurate mass found: m/z 316.0592, calculated for Ci7Hi6 0 2 S2: 316.0592.

(lE,6E)-l,7-bis(thiophen-3-yl-)-l,6-heptadiene-3,5,dione, 47d, (36%) was obtained 

as a yellow solid, purified from column chromatography using [petroleum ether : 

EtOAc, 6:1 v/v] as eluent, Rf 0.48 [petroleum ether : EtOAc, 5:1 v/v], m.p. 140.1-

141.3 °C. IR (v) 3435 (OH stretch), 3092 (aromatic C-H stretch), 1624 (H-bonded 

>C=0), 1584 (conjugated C=C), 1507 (enol), 1412 cm' 1 (olefinic in plane bending 

vibration); NMR 8  5.79 (1H, s, enolic -CH), 6.45 (2H, d, J = 15.5 H z,, Ar- 

CH=CH- CO-), 7.33 - 7.38 (4H, m, Ar H), 7.52 (2H, d, J = 2.6 Hz, Ar H-2), 7.66 (2H, 

d, J = 15.5 Hz, -CO-CH=CH-Ar); 13C NMR 5 101.7 (enolic methine C), 124.2 (a-



olefinic C adjacent to enol), 125.2 (Ar C-5), 125.6 (Ar C-4), 126.9 (Ar C-2), 127.4 

(Ar C-3), 134.3 (P-olefinic C adjacent to enol), 183.6 (enolic C); EIMS m/z 288 [M]+' 

(60%), 270 [M - H2 0]+ (8 %), 192 [Ci0H8O2 S]+ (4%), 179 [C9H70 2 S]+ (5%), 151 

[C8H7OS]+ (21%), 137 [C7H5OS]+ (100%), 109 [C6H5S]+ (43%), 97 [C s ^ S f  (21%); 

Accurate mass found: m/z 288.0277, calculated for CisHi20 2 S2: 288.0279.

Using method B, 23% product was obtained after purification by column 

chromatography using [petroleum ether : EtOAc, 6:1 v/v] as eluent. However some 

aldehyde peaks were also found in the lH NMR of the product.

(lE,6E)-l,7-bis(furan-2-yl)hepta-l,6-diene-3,5-one, 48a, (26%) was obtained as a 

dark brown solid m.p. 96-98.5 °C. IR (v) 3448 (OH stretch), 3147 (aromatic C-H 

stretch), 2963 (aliphatic C-H stretch), 1627 cm' 1 (>C=0); *HNMR 6  5.76 (1H, s, 

enolic -CH), 6.55 (2H, d, J = 15.5 Hz, Ar-CH=CH- CO-), 6.64 (2H, s, Ar H-4’)> 7.27 

(2H s, H-3’), 7.42 (2H, d, J = 16.0 Hz, -CO-CH=CH-Ar), 7.50 (2H, s, H-5’), 15.90 

(1H, broad s, enol OH); 13C NMR 8  102.5 (enolic methine C), 112.8 (Ar C-4), 115.1 

(Ar C-3), 122.1 (P-olefinic C adjacent to enol), 127.1 (a-olefinic C adjacent to enol),

145.0 (Ar C-5), 152.0 (Ar C-2), 183.0 (enolic C); EIMS m/z 256 [M]+‘ (76%), 239 

[M-OH], (8.5%), 121 (100%, M-2furanyl rings); Accurate mass found: m/z 256.0707, 

calculated for CisHi2 0 4  : 256.0737.

(IE,6E)-1,7-bis(3-methylfuran-2-yl)hepta-l, 6-diene-3,5-dione, 48b, (13%). IR (v) 

3322 (OH stretch), 1620 cm' 1 (>C=0); *HNMR 8  2.32 (6 H, s,-CH3) 5.68 (1H, s, 

enolic -CH), 6.70 (2H, s, Ar H-4’), 6.92 (2H, d, J = 15.5 Hz, Ar-CH=CH- CO-), 7.55 

(2H, d, J = 15.5 Hz, -CO-CH=CH-Ar), 7.90 (2H, s, Ar H-5’), 15.30 (1H, broad s,
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OH); EIMS m/z 284 [M+]; Accurate mass found: m/z 284.1062, calculated for 

Ci7Hi60 4 : 284.1048.

(IE,6E)-1,7-bis(5-methylfuran-2-yl)hepta-l, 6-diene-3,5-dione, 48c, (63%), m.p. 

137.2-138.4 °C. IR (v) 3325 (OH stretch), 1623 cm’ 1 (>C=0); *HNMR 

5 2.42 (6 H, s, -CH3) 5.71 (1H, s, enolic -CH), 6.11 (2H, s, Ar H-4’), 6.43 (2H, d, J =

15.5 Hz, Ar-CH=CH- CO-), 6.50 (2H, s, Ar H-3’), 7.32 (2H, d, J = 15.5 Hz, -CO- 

CH=CH-Ar), 15.90 (1H, broad s, enol OH ); 13C NMR 6  14.2 (-CH3), 102.2 (enolic 

methine C), 109.4 (Ar C-4), 116.8 (Ar C-3), 120.5 (a -olefinic C adjacent to enol),

127.0 (P-olefinic C adjacent to enol), 150.7 (Ar C-2), 155.7 (Ar C-5), 183.1 (enolic 

C); EIMS m/z 284 (32%) [M]+‘, 266 [M-H2 0] (5%), 202 [M-methylfuranyl] (2%), 

135 [methylfuranyl-CH=CH-CO] (67%); Accurate mass found: m/z 284.1064, 

calculated for C17H16O4 : 284.1048.

1Method B : In this procedure the synthesis of curcumin 1 and its derivatives 47a, 49 

and 50 was carried out by the in situ formation of acetyl-acetone-boron oxide 

complex 31.
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4 7 b * : A  =  -S - R , =  -C H 3, R 2 =  R 3 =  -H  

4 7 c ‘ : A  =  -S -, R [ =  R 2 =  -H , R 3 =  -C H 3

0  0  

47d*

0  0

R2 Ri R, R2

4 8 a * : A  =  - 0 - ,  R , =  R 2 =  R 3 =  -H

4 8 b * : A  =  - 0 - ,  R ! =  -C H 3, R 2 =  R 3 =  -H  

4 8 c * : A  =  - 0 - ,  R ,  =  R 2 =  -H , R 3 =  -C H 3

Scheme 2.3 

* Synthesised by method A, (scheme 2.2).
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A typical procedure for making the curcuminoids shown in scheme 2.3 is illustrated 

by the formation of {1E,.^E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-l,6-heptadiene-3,5- 

dione, (curcumin, l).un a round bottom flask equipped with a drying tube and a 

dropping funnel, acetylacetone (0.5 gm, 0.005 mol) and boron-oxide (0.25 gm,

0.0035 mol) were mixed in EtOAc (5 ml) and stirred for 0.5 h at 40 °C followed by 

the addition of the corresponding aromatic aldehyde (0 . 0 1  mol) and tri-seobutyl 

borate (2.3 gm, 0.01 mol) and stirred for additional 0.5 h. A solution of n-butylamine 

(0.5 ml) in EtOAc (5 ml) was added dropwise over a period of 30 minutes. After 

\ being stirred for further 4 h at 40 °C, the reaction mixture was allowed to stand 

lovemight and then hydrolysed with HC1 (0.4 M, 8  ml) and extracted with EtOAc (3 x 

(30 ml). The combined organic layers were washed with water, dried over MgS0 4 , 

and then concentrated under vacuum. The residual crude product was subjected to 

flash silica column chromatography using [petroleum ether: EtOAc v/v] as eluent, to 

^afford compound 1 in pure form, (33%, lit. 48%)153 as orange solid, Rf 0.35 

[petroleum other: EtOAc, 1:l v/v], rmp. l79-180Jô (lit.__m.p.T78-r86 °C) . 154 IR (v) 

3501-3387 (OH stretch), 3015 (aromatic C-H stretch), 1627 (H-bonded >C=0), 1602 

(conjugated C=C), 1510 (enol), 1428 cm' 1 (olefinic in plane bending vibration); *H 

NMR 6  3.95 (6 H, s, -OCH3), 5.80 (1H, s, enolic -CH), 6.48 (2H, d, J = 15.5 Hz, Ar- 

CH=CH- CO-), 6.93 (2H, d, J = 8.2 Hz, Ar H-5), 7.05 (2H, d, J = 1.5 Hz, Ar H-2), 

7.12 (2H, dd, J = 8.2 and 1.5 Hz, ArH-6 ), 7.59 (2H, d, J=  15.5 Hz, -CO-CHCH- 

Ar); EIMS m/z 368 [M]+‘ (35%), 369 [M + H]+' (3%), 350 [M - H20]+’ (59%), 177 

[CioH90 3]+(100%), 191 [CiiHh03]+(24%), 137 [C8H90 2]+(32%), 232 [Ci3Hi2 0 4]+ 

(9%); Accurate mass found: m/z 368.1256, calculated for C2 iH2o06 : 368.1260.
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(1E,6E)-1,7-bis(thiophen-2-yl-)-l,6-heptadiene-3,5-dione, 47a, (62%) obtained after 

the work-up as orange precipitates, Rf 0.44 [petroleum ether : EtOAc, 5:1 v/v], m.p.

183.5-184.7 °C. IR (v) 3537 - 3412 (OH enolic), 3103 (aromatic C-H stretch), 1626 

(H-bonded >C=0), 1569 (conjugated C=C), 1504 (enol), 1419 cm' 1 (olefinic in plane 

bending vibration); !H NMR 6  5.75 (1H, s, enolic -CH), 6.42 (2H, d, J = 15.5 Hz, Ar- 

CH=CH- CO-), 7.07 (2H, t, J = 4.5 Hz, Ar H-4), 7.27 (2H, d, J = 4.5 Hz, Ar H-3, 

overlapped with CDC13), 7.39 (2H, d, J = 4.5 Hz, Ar H-5), 7.78 (2H, d, J = 15.5 Hz, 

-CO-CH=CH-Ar); 13C NMR 8  102.0 (enolic methine C), 123.3 (p-olefinic C adjacent 

to enol), 128.3 (a-olefinic C adjacent to enol), 128.8 (Ar C-4), 131.1 (Ar C-3), 133.4 

(Ar C-5), 140.8 (Ar C-2), 183.2 (enolic C); EIMS m/z 288 [M]+> (48%), 270 [M - 

H20]+- (21%), 192 [Ci0H8O2 S]+ (8 %), 179 [C9H70 2 S]+ (6 %), 151 [C8H7OS]+ (31%), 

137 [C7H5OS]+ (100%), 109 [C6H5 S]+ (53%), 96 [C5H4 S]+ (3%); Accurate mass 

found: m/z 289.0351, calculated for CisHi30 2 S2 : 289.0351.

With method A, 23% yield of compound 47a was obtained after purification by flash 

column chromatography using [petrolum ether: EtOAc, 6:1 v/v] as eluent.

(1E,6E)-1,7-bis(2,4,6-trimethoxyphenyl)hepta-l,6-diene-3,5-dione, 49, (55%) 

obtained after the work-up as a red solid, R f  0.46 [petroleum ether: EtOAc, 1:1 v/v], 

m.p. 193.4-193.6 °C. IR (v) 3462 (OH stretch), 3001 (aromatic C-H stretch), 2937 

and 2837 (aliphatic C-H stretch), 1600 (H-bonded >C=0), 1569 (conjugated C=C), 

1504 (enol), 1414 cm' 1 (olefinic in plane bending vibration). ]H NMR (DMSO) 8  

3.88 (18H, s, -OCH3), 5.88 (1H, s, enolic -CH), 6.29 (4H, s, Ar H-3 and 5), 6.95 (2H, 

d, J = 16.0 Hz, Ar-CH=CH- CO-), 7.91 (2H, d, J = 16.0 Hz, -CO-CH=CH-Ar); 13C 

NMR 8  55.8 (-OCH3), 90.8 (Ar C-3, C-5), 101.8 (enolic methine C), 107.0 (Ar C-l),
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124.8 (a-olefinic C adjacent to enol), 131.2 (p -olefinic C adjacent to enol), 161.5 (Ar 

C-2, C-6 ), 162.8 (Ar C-4), 185.0 (enolic C); ESMS m/z 457 [M+Hf', 479 [M4-Na]+; 

Accurate mass found: m/z 456.1682, calculated for C25H2 8O8 : 456.1784.

(lE,6E)-l,7-bis(4-hydroxynapthalen-l-yl)hepta-l,6-diene-3,5-dione, 50, (25%) was 

purified as a blackish red solid, by flash chromatography using [petroleum ether : 

EtOAc, 1:1 v/v] as eluent, Rf 0.43 [petroleum ether : EtOAc, 1:1 v/v], m.p. 167.9-

168.9 °C. IR (v) 3135 (aromatic C-H stretch), 2744 (aliphatic C-H stretch), 1620 (H- 

bonded >C=0), 1567 (conjugated C=C), 1516 (enol); *H NMR (DMSO) 8  6.34 (1H, 

s, enolic -CH), 6.89 (2H, d, J = 15.5 H z,, Ar-CH=CH- CO-), 6.98 (2H, d, J = 8.2 Hz, 

Ar H-2), 7.51 -  7.73 (4H, m, Ar H-5, H-8 ), 7.97 (2H, d, J = 8.2 Hz, Ar H- 3), 8.25 

(4H, t, J = 8.9 Hz, Ar H-6 , H-7), 8.40 (2H, d, J = 15.5 Hz, CO-CH=CH-Ar); EIMS 

m/z 408 [M]+- (100%), 409 [M + H]+ (25%); Accurate mass found: m/z 408.1247, 

calculated for C27H2 0O4 : 408.1362.

2.1.5 Synthesis of butoxy nitrate curcuminoids 51a-d

‘ 2  A g N 0 3 / C H 3C N  R .

reflux 5 h

4 6 a :  R 3 =  - 0 - ( C H 2) 4- B r ,  R 2 =  R 3 =  - H  

46b :  R ,  =  R 3 =  - H ,  R 2 =  - 0 - ( C H 2) 4- B r  

4 6 c :  R ]  =  R 2 =  - H ,  R 3 =  - 0 - ( C H 2) 4- B r

51a :  R i  =  - 0 - ( C H 2) 4- 0 N 0 2, R 2 =  R 3 =  - H  

51b :  R ,  =  R 3 =  - H ,  R 2 =  - 0 - ( C H 2) 4- 0 N 0 2 

5 1 c :  R j  =  R 2 =  - H ,  R 3 =  - 0 - ( C H 2) 4- 0 N 0 2

46d :  R i  =  - H ,  R 2 =  - O C H 3 , R 3 =  - 0 - ( C H 2) 4- B r 51d :  R ,  =  - H ,  R 2 =  - O C H 3, R 3 =  - 0 - ( C H 2) 4- 0 N 0 2

Scheme 2.4
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General procedure

All of the desired butoxy nitrate curcuminoids 51a to d (scheme 2.4) were 

synthesised by the following method which is illustrated by the formation of (1E,6E)~ 

1,7-bis(2-(4-butoxy-nitrate)hepta-l, 6-diene-3,5-dione, 51a. In a one-neck round 

bottom flask, a mixture of silver nitrate (1.17 gm, 6.9 mmol) in acetonitrile (3 ml) 

was stirred for 30 minutes and then a solution of 46a, (0.86 mmol) in acetonitrile 

(2 ml) was added. The reaction mixture was refluxed under stirring for 5 h at 80 °C. 

An aluminium sheet was wrapped round the flask to protect it from light and the 

mixture was allowed to stand overnight. Water (5 ml) was added and after filtration 

the mixture was extracted with EtOAc (2x30 ml). The organic layers were 

combined, dried over MgS0 4 , filtered under gravity and the solvent was removed on 

the rotary evaporator to yield pure 51a, (90%) as dark brown gum, Rf 0.43 [petroleum 

ether: EtOAc, 2:1 v/v], m.p. 136.0-136.8 °C. IR (v ) 3035 (aromatic C-H stretch), 

2926 and 2878 (aliphatic C-H stretch), 1625 (conjugated >C=0 stretch), 1596 and 

1488 (aromatic C=C stretch), 1472 and 1280 (aliphatic NO2 stretch), 1455 (CH2  

bending absorption), 1244 (asymmetric C-O-C stretch), 1049 (symmetric C-O-C 

stretch), 753 cm' 1 (ortho di-substituted out of plane C-H stretch); ]H NMR 8  1.99 -  

2.04 (8 H, m, -CH2-CH2-), 4.10 (4H, t, J = 5.4 Hz, -0-CH2-), 4.58 (4H, t, J = 5.9 Hz, - 

CH2-ONO2), 5.83 (1H, s, enolic -CH), 6.74 (2H, d, J = 16.0 Hz, Ar-CH=CH-CO-), 

6.91 (2H, d, J = 8.0 Hz, Ar H-3), 6.99 (2H, t, J = 8.0 Hz, Ar H-5), 7.34 (2H, td, J =

8.0 and J = 1.7 Hz, Ar H-4), 7.58 (2H, dd, J = 8.0 and J = 1.7 Hz, Ar H-6 ), 7.97 (2H, 

d, J = 16.0 Hz, -CO-CH=CH-Ar); 13Carbon NMR 8  24.2 (-0N 0 2-CH2-CH2-), 25.9 (-

0-CH2 -CH2-), 67.8 (-0-CH2-), 73.1 (-CH2-0N 02), 102.1 (enolic methine C), 112.4



(Ar C-3), 121.3 (a-olefinic C adjacent to enol), 124.6 (Ar C-5), 125.2 (Ar C-l), 129.0 

(Ar C-4), 131.5 (P-olefinic C adjacent to enol), 135.8 (Ar C-6 ), 157.7 (Ar C-2), 183.9 

(enolic C); ESMS m/z 543 [M + H]+', 332 [CnHisOeN]*; Accurate mass found: m/z 

543.1964, calculated for C27H31N2O1 0 : 543.1973.

(1E,6E)-1,7-bis(3-(4-butoxy-nitrate)hepta-l,6-diene-3,5-dione, 51b, (58%) as a dark 

brown solid, R f  0.46 [petroleum ether : EtOAc, 2:1 v/v], m.p. 133.9-134.9 °C. IR (v) 

3414 (OH stretch), 3020 (aromatic C-H stretch), 2929 and 2875 (aliphatic C-H 

stretch), 1638 (conjugated >C=0 stretch), 1596 and 1489 (aromatic C=C stretch), 

1473 and 1279 (aliphatic NO2 stretch), 1458 (CH2 bending absorption), 1247 

(asymmetric C-O-C stretch), 1041 cm' 1 (symmetric C-O-C stretch); ’HNMR 8  1.95 

(8 H, t, J = 2.8 Hz, -CH2-CH2-), 4.04 (4H, t, J = 5.1 Hz, -0-CH2-), 4.56 (4H, t, J = 5.9 

Hz, -CH2-ONO2), 5.85 (1H, s, enolic -CH), 6.61 (2H, d, J = 15.5 Hz, Ar-CH=CH- 

CO-), 6.91 (2H, dd, J = 7.7 and 1.7 Hz, Ar H-4), 7.06 (2H, s, ArH-2), 7.16 (2H, d, J 

= 7.7 Hz, Ar H-6 ), 7.31 (2H, t, J = 7.7 Hz, Ar H-5), 7.62 (2H, d, J = 15.5 Hz, -CO- 

CH=CH-Ar); 13Carbon NMR 5 24.2 (-0N 0 2-CH2-CH2-), 25.9 (-0-CH2-CH2-), 67.3 

(-O-CH2-), 73.1 (-CH2-ONO2), 1 0 2 . 1  (enolic methine C), 113.9 (Ar C-2 ), 116.6 (Ar 

C-4), 121.3 (a-olefinic C adjacent to enol), 124.7 (Ar C-6 ), 130.3 (Ar C-5), 136.7 (Ar 

C-l), 140.7 (p-olefinic C adjacent to enol), 159.4 (Ar C-3), 183.5 (enolic C); ESMS 

m/z 543 [M + H]+', 565 [M + Na]+; Accurate mass found: m/z 543.1985, calculated 

for C27H31N2 O10 :543.1973.

(1E,6E)-1,7-bis(4-(4-butoxy-nitrate)hepta-l,6-diene-3,5-dione, 51c, (95%) golden 

yellow solid, Rf 0.35 [petroleum ether : EtOAc, 2:1 v/v], m.p. 112.6-113 °C. IR (v) 

3412 (OH stretch), 3040 (aromatic C-H stretch), 2936 (aliphatic C-H stretch), 1620



(conjugated >C=0 stretch), 1603 and 1511 (aromatic C=C stretch), 1472 and 1287 

(aliphatic NO2 stretch), 1256 (asymmetric C-O-C stretch), 1056 (symmetric C-O-C 

stretch), 837 cm' 1 {para di-substituted out of plane C-H stretch); lH NMR 5 1.95 (8 H, 

m, -CH2-CH2 -), 4.06 (4H, t, J = 5.6 Hz, -0-CH2-), 4.56 (4H, t, J = 5.3 Hz, -CH2- 

0 N 02), 5.79 (1H, s, enolic -CH), 6.51 (2H, d, J = 15.5 Hz, Ar-CH=CH-CO-), 6.90 

(4H, d, J = 8 . 8  Hz, Ar H-3 and H-3’), 7.51 (4H, d, J = 8 . 8  Hz, Ar H-2 and H-2'), 7.63 

(2H, d, J = 15.5 Hz, -CO-CH=CH-Ar); 13Carbon NMR 5 24.1 (-0N 0 2 -CH2 -CH2-),

25.8 (-O-CH2-CH2 -), 67.4 (-O-CH2-), 73.1 (-CH2-0N 02), 1 0 1 . 6  (enolic methine C),

115.1 (Ar C-3, C-5), 122.1 (a-olefinic C adjacent to enol), 128.3 (Ar C-l), 130.0 (Ar 

C-2, C-6 ), 140.3 (P-olefinic C adjacent to enol), 160.7 (Ar C-4), 183.6 (enolic C); 

EIMS m/z 543 [M + H]+’, (42%); Accurate mass found: m/z 542.1938, calculated for 

C27H30N2O10 : 542.1900.

(1E,6E)-1,7-bis(4-(4-butoxy-nitrate)-3-methoxyphenyl)hepta-l ,6-diene-3,5-dione, 

51d, (92%) as an orange solid, Rf 0.43 [petroleum ether : EtOAc, 1:3 v/v], m.p.

101.6-102.6 °C. IR (v) 3436 (OH stretch), 2954 (aromatic C-H stretch), 2931 and 

2873 (aliphatic C-H stretch), 1621 (conjugated >C=0 stretch), 1458 (CH2 bending 

absorption), 1512 (aromatic C=C stretch), 1257 (asymmetric C-O-C stretch), 1027 

(symmetric C-O-C stretch). ’HNMR 8  1.98 (8 H, m, -CH2-CH2-), 3.91 (6 H, s, -O- 

CH3), 4.10 (4H, t, J = 5.1 Hz, -0-CH2-), 4.58 (4H, t, J = 5.9 Hz, -CH2-0N 02), 5.83 

(1H, s, enolic -CH), 6.50 (2H, d, J = 15.5 Hz, Ar-CH=CH-CO-), 6.87 (2H, d, J = 8.2 

Hz, Ar H-5), 7.09 (2H, s, Ar H-2), 7.13 (2H, d, J = 8.2 Hz, Ar H-6 ), 7.61 (2H, d, J =

15.5 H z,, -CO-CH=CH-Ar); 13CarbonNMR 5 24.2 (-0N 0 2-CH2-CH2-), 25.7 (-0- 

CH2-CH2-), 56.2 (-OCH3), 68.5 (-O-CH2-), 73.2 (-CH2-0N 02), 101.5 (enolic
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methine C), 110.6 (Ar C-2), 113.1 (Ar C-5) 122.5 (a-olefinic C adjacent to enol),

122.9 (Ar C-6 ), 128.7 (Ar C-l), 140.6 (P-olefinic C adjacent to enol), 150.0 (Ar C-3),

150.5 (Ar C-4), 183.5 (enolic C); EIMS m/z 603 [M]+‘ (38%), 604 [M + H]+', (12%); 

Accurate mass found: m/z 603.2162, calculated for C29H35N2 O10 : 603.2184.

2.1. 6  Synthesis of aromatic ethers 53a-c and thioether 53d155

(i) Na OEt/EtOH

(ii) 2,3-dichloro-l-propene
(iii) Reflux, 14 h

R A R A
5 2 a : -H -O- 53a : -H -O-
52b : -OCH3 -O- 53b : -OCH3 -O-
5 2 c: -Cl -O- 53c: -Cl -O-
52d : -H -S- 53d: -H -S-

Scheme 2.5

General procedure

A typical procedure for making aromatic ethers and thioether shown in scheme 2.5 is 

illustrated by the formation of 2 (-chi oroallyloxy) benzene, 53a. To a dried 3-neck 

round bottom flask, fitted with double surface condenser, dropping funnel and a 

calcium chloride drying tube, dry EtOH (100 ml) was added. Freshly cut sodium 

metal (4.6 gm; 0.2 mol), pre-washed in toluene was added slowly to dry EtOH with 

gentle stirring under reflux, until all the sodium had reacted. The phenol 52a (18.82
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gm, 0.2 mol) was added and the reaction mixture was heated to 80 °C for 30 minutes. 

2,3-Dichloropropene (23.96 gm; 0.2 mol) was added dropwise to the reaction mixture 

through the dropping funnel over a period of 35 minutes. The reaction mixture was 

refluxed for 14 h, after which it was allowed to settle and then filtered by suction 

filtration using a Buchner flask. The filtrate was concentrated on the rotary evaporator 

by removal of the excess EtOH. Water (100 ml) was added to the filtrate and 

extracted with EtOAc (2 x 90 ml). The combined organic extract was washed with 

NaOH solution (2M, 50 ml) and water. After drying over MgS0 4 , the solution was 

filtered and the solven wast evaporated on the rotary evaporator to yield pure 53 a, 

(57%, lit. 6 8 % ) . 155 IR (v) 3039 (aromatic C-H stretch), 2925 and 2866 (aliphatic C-H 

stretch), 1642 and 1455 (aromatic C=C stretch), 1239 (asymmetric C-O-C stretch), 

1050 (symmetric C-O-C stretch), 690 and 754 cm' 1 (mono substituted ring); *H NMR 

8  4.60 (2H, t, J =1.2 Hz, allylic protons), 5.45 (1H, q, J = 1.5 Hz, olefinic proton 

trans to -Cl), 5.57 (1H, q, J= 2.0 Hz, olefinic proton cis to -Cl), 6.91 - 7.03 (3H, m,

Ar H-5 and H-6 ), 7.26 - 7.35 (2H, m, Ar H-4); EIMS m/z 168 [M 35Cl]+‘ (1%), 133 

[M - 35C1]+ ( 6  %).

l-(2-Chloroallyloxy)-4-methoxybenzene, 53b, (63%, lit. 98%).155 IR (v) 3000-3045 

(aromatic C-H stretch), 2933 and 2833 (aliphatic C-H stretch), 1639 (aromatic C=C 

stretch) 1620 (>C=C<), 824 cm' 1 (para disubstituted ring). *H NMR 8  3.78 (3H, s, - 

OCH3), 4.53 (2H, s, allylic protons), 5.41 (1H, s, olefinic proton trans to -Cl), 5.55 

(1H, s, olefinic proton cis to -Cl), 6.80 -  6.90 (4H, dd, AB system , Ar-H); EIMS m/z 

198 [M 35C1]+' , 200 [M 3 7C1]+.
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l-Chloro-4-(2-chloroallyloxy)benzene, 53c, (57%, lit. 67%).155 IR (v) 3041 (aromatic 

C-H stretch), 2925 and 2868 (aliphatic C-H stretch), 1642 and 1454 (aromatic C=C 

stretch), 1241 (asymmetric C-O-C stretch), 1045 (symmetric C-O-C stretch),

824 cm' 1 (para disubstituted ring). !H NMR 8  4.56 (2H, t, J = 1.2 Hz, allylic protons), 

5.45 (1H, q, J= 1.5 Hz, olefinic proton trans to -Cl), 5.54 (1H, q, J=  1.5 Hz, olefinic 

proton cis to -Cl), 6 . 8 6  (2H, d, J = 9.3 Hz, Ar H ortho to oxygen), 7.25 (2H, d, J = 8.7 

Hz, Ar H ortho to Cl); EIMS m/z 206 [M 37C1]+' (7%), 204 [M35C1 + 2]+ (38%), 202 

[M 35Cl]+‘ (63%), 167 [M - 37C1]+ (6 6 %), 141 [C7H60  35C1]+ (9%) 127 [C6H4 O 35C1]+ 

(91%), 75 [C3H435C1]+ (93%), 63 [C2H2 3 7C1]+ (47%).

l-(2-Chlorothioallyloxy)benzene, 53d, (76%, lit. 84%).155 IR (v) 2918 (aliphatic C-H 

stretch), 1627 (aromatic C=C stretch); *H NMR 8  3.70 (2H, s, -CH2 S), 5.23 (1H, s, 

olefinic proton trans to -Cl), 5.28 (1H, s, olefinic proton cis to -Cl), 7.28-7.40 (5H, m, 

Ar-H) ; EIMS m/z 184 [M 3 5C1]+ (78%), 186 [M 37C1]+ (45%).
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2.1.7 Synthesis of 2-(2-chloroallyl)phenols 54a-c and 2-methylbenzo[b]thiophene 

55d155

L  ci

R A  

5 3 a : -H  -0 -  
5 3 b : -OCH3 - 0 -

-----------

Claisen
Rearrangement

Ar,A'-diethylaniline
R eflux, 72 h

---------- ►

5 3 c : -Cl 
5 3 d : -H

- 0-

-S-

AH

Schem e 2 .7

R

R A  

5 4 a : -H  - 0 -  
5 4 b : -OCH3 - 0 -  
5 4 c : -Cl -O-

a ^ c h 3

C P

R A  

55d : -H -S-

A . CH,

m

R A

5 5 a : -H - 0 -  
5 5 b : -0 C H 3 -O- 
5 5 c : -Cl - 0 -

Scheme 2.6

General procedure

A typical procedure for the preparation of phenols 54a-c and benzo[6 ]thiophene 55d 

shown in scheme 2.6 is illustrated by the formation of 2-(2-chloroallyl)phenol 54a. 

In a round bottom flask, 2-chloroallyloxy)benzene 53a (0.08 mol) was weighed and 

A^A-diethylaniline (0.4 mol) was added to it. A condenser was attached to the flask 

and the reaction mixture was refluxed under nitrogen for 72 h. The reaction mixture 

was then cooled and diluted with ether (300 ml). The phenol 54a was extracted from 

the organic mixture, with aqueous 25% potassium hydroxide (3 x 100 ml). The 

aqueous phase was washed with ether (3 x 100 ml), neutralized with 10%
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hydrochloric acid and extracted with ether (3 x 100 ml). The combined organic layer 

was dried over MgSCU, concentrated in vacuo to afford pure 54a, (6 6 %, lit. 77% ) . 155 

IR (v) 3433 (OH-stretch), 3038 (aromatic C-H stretch), 2978 and 2912 (aliphatic C-H 

stretch), 1633 and 1455 (aromatic C=C stretch), 750 cm' 1 (ortho disubstituted ring); 

*HNMR 6  3.69 (2H, s, allylic protons), 5.07 (lH,br. s, -OH), 5.14 (1H, d, J= 1.5 Hz, 

olefinic proton trans to -Cl), 5.29 (1H, s, olefinic proton cis to -Cl), 6.80 - 7.27 (4H, 

m, Ar H-5 to 8 ); EIMS m/z 168 [M 35C1]+ (18%), 133 [M - 35Cl]+(95%), 105 

[C7H50]+ (100%).

2-(2-Chloroallyl)-4-methoxyphenol, 54b, (34%, lit. 84%).155 IR (v) 3398 (OH- 

stretch), 2998,2940,2834 (aliphatic C-H stretch), 1705, 1635 cm' 1 (>C=C<);

750 cm' 1 {ortho disubstituted ring). !HNMR 8  3.76 (2H, s, -S-CH2-X 4.64 (1H, s, 

OH), 5.13 (1H, s, olefinic proton trans to -Cl), 5.28 (1H, s, olefinic proton cis to -Cl), 

6.70-6.80 (3H, m, Ar-H); EIMS m/z 198 [M 35Cl]+‘ and 200 [M 37C1]+.

4-Chloro-2-(2-chloroallyl)phenol, 54c was isolated from the ethereal reaction mixture 

after removal of N, /V-diethylaniline with hydrochloric acid (2M, 2 x 200 ml). The 

ethereal solution was dried over MgS0 4 , concentrated in vacuo and subjected to flash 

column chromatography using [petroleum ether : EtOAc, 15:1 v/v] as eluent, to 

afford pure 10c, (6 6 %, lit. 90%).155 IR (v) 3540-3397 (OH-stretch), 3397 (aromatic 

C-H stretch, overlapped with OH-stretch), 2925 (aliphatic C-H stretch), 1634 and 

1421 cm' 1 (aromatic C=C stretch). ]H NMR 8  3.64 (2H, s, allylic protons), 5.18 (1H, 

d, J= 1.5 Hz, olefinic proton trans to -Cl), 5.31 (2H, s, olefinic proton cis to -Cl and - 

OH), 6.74 (1H, d, J=  8.2 Hz, Ar H-6 ), 7.12 (1H, dd, J=  8.2 Hz and 2.5 Hz, Ar H-5),
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7.18 (1H, d, J=  2.5 Hz, Ar H-4); EIMS m/z 202 [M 3 5C1]+ (28%), 204 [M 35C1 + i f  

(17%), 167 [M - 35C1]+(100%) 165 [M - 37C1]+ (28%), 141 [C7H60 35C1]+ (27%), 132 

[M - 35C12]+ (27%), 63 [C2H2 37C1]+ (21%).

2-Methylbenzo[b]thiophene, 55d, (43%, lit. 75% ) 155 R; 0.42 [petroleum ether].. *H 

NMR 5 2.34 (3H, s, -CH3), 7.0-7.5 (5H, m, Ar-H); EIMS m/z 148 [M]+' (25%).

2.1.8 Synthesis of 2 -methylbenzofiiran 55a-c

A H

Cone. HC1

Heat,
12 h

A . CH3

R A
54a: -H -O- 
54b : -OCH3 -0- 
5 4 c: -Cl -O-

R A

55a : -H -0- 
55b : -OCH3 -O- 
55c: -Cl -O-

Scheme 2.7

General procedure

A typical procedure for the preparation of 55a and 55c is illustrated by the formation 

of 55a. A mixture of 2-(2-chloroallyl)phenol 54a (0.029 mol) in concentrated 

hydrochloric acid (26 ml) was stirred for 1 2  h using an oil bath maintained at 8 8 - 

89 °C. After that, the cooled two phase reaction mixture was diluted with water (85 

ml), neutralized with 5% potassium hydroxide and extracted with ether (2 x 100 ml).
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The combined ethereal solutions were dried over MgS0 4  and concentrated in vacuo 

to give a residue which was subjected to flash column chromatography using 

petroleum ether as eluent to yield 2-methylbenzofuran, 55a, (41%, lit. 56%).155 IR (v) 

3034 and 3056 (aromatic C-H stretch), 2952 (aliphatic C-H stretch), 1610 and 1439 

cm' 1 (aromatic C=C stretch); ‘H NMR 8  2.48 (3H, s, -CH3), 6.38 (1H, d, J = 1.0 Hz, 

ArH-1), 7.39-7.51 (4H, m, Ar H-2 to 5); EIMS m/z 131 [M-H]+ (100%), 132 [M]+' 

(79%).

5-Methoxy-2-methylbenzofuran, 55b. In a round bottom flask, 2-(2-chloroallyl)-4- 

methoxyphenol 54b (0.029 mol) was stirred at room temperature for 24 h in 

triflouroacetic acid (26 ml) and then diluted with ether (150 ml). The ethereal solution 

was washed with 5% aqueous potassium hydroxide (4 x 400 ml) and then with water 

(2 x 200 ml). After drying over MgSCU, it was filtered and concentrated on the rotary 

evaporator. The residue was subjected to flash column chromatography using 

petroleum ether as eluent, to afford 55b (42%, lit. 29%).155 *H NMR 8  2.42 (3H, s, - 

CH3), 3.82 (3H, s, -OCH3), 6.30 ( 1H, s, H-3), 6.82 (1H, s, H-6 ), 6.93 ( 1H, s, H-4),

7.25 (1H, s, H-7); EIMS m/z 162 [M]+,163 [M+l] (100%). 

5-Chloro-2-methylbenzofuran, 55c was purified by flash column chromatography 

using petroleum ether] as eluent, (63%, lit. 51%).155 IR (v) 3114 (aromatic C-H 

stretch), 2921 and 2955 (aliphatic C-H stretch), 1600 and 1446 cm-1 (aromatic C=C 

stretch); *H NMR 5 2.46 (3H, d, J= 1.0 Hz, -CH3), 6.33 (1H, t, J = 1.0 Hz, Ar H-l), 

7.15 (1H, dd,, J = 8.7 and 2.0 Hz, H-3), 7.31 (1H, d, J = 8.7 Hz, Ar H-4), 7.43 (1H, d,
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J = 2.0 Hz, H-2); EIMS m/z 166 [M]+ (100%), 165 [M-H]+(77%), 131 [M - 3 5C1]+ 

(32%).

2.1.9 Synthesis of benzo [&]furan-2-carbaldehydes 56a-c and benzo[6]thiophene-2- 

carbaldehyde 56d156

R A
55a: -H -O- 
55b : -OCH3 -O- 
55 c: -Cl -O-
55d : -H -S-

(o|
Dioxane 
Se02, 
reflux 72 h

xaA .  CHO

R A
56 a : -H -O-
56b : -OCH3 -O- 
5 6 c: -Cl -O- 
56d:-H -S-

Scheme 2.8

A typical procedure for the preparation of benzo [Z>]furan-2-carbaldehydes 56a-c and 

benzo[6]thiophene-2-carbaldehyde 56d shown in scheme 2.8 is illustrated by the 

formation of aldehyde 56a. To a three-neck round bottom flask fitted with a reflux 

condenser and a thermometer, dioxane (15 ml), selenium dioxide (1.11 gm, 0.01 mol) 

and water (0.5 ml) were placed and the reaction mixture was heated to 100 °C with 

constant stirring until all the solid had dissolved. A solution of compound 55a (0.01 

mol) in dioxane ( 1  ml) was added and the reaction was heated under reflux with 

stirring for 24 h. The hot solution was decanted from the black precipitate of 

elemental selenium using a fluted filter-paper and the dioxane was removed by 

distillation at atmospheric pressure. The crude product was dissolved in
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dichloromethane (50 ml) and washed with water (2 x 25 ml). The combined 

dichloromethane layer was dried over MgSC>4 and concentrated in vacuo to afford 

56a157 (89%). ’H NMR 5 7.23 (1H, td, J = 7.2 Hz, J = 1.0 Hz, Ar H-5), 7.41 (1H, td,

J = 7.2 Hz, J=  1.0 Hz, ArH-6 ), 7.41 (1H, s, Ar H-3), 7.49 (1H, d, J = 7.2 Hz, ArH- 

7), 7.65 (1H, d, J = 7.2 Hz, Ar H-4), 9.76 (1H, s, -CHO); EIMS m/z 146 [M]+

(100%), 145 [M-H]+ (83%), 118 [M-CO]+ (12%).

5-Methoxybenzofuran-2-carbaldehyde, 56b (25%). IR (v) 2835 (-CHO), 1680, 1636 

cm' 1 (>C=0); ‘H NMR 8  3.88 (3H, s, OCH3), 7.13 (1H, s, H-3), 7.17 (1H, s, H-4), 

7.45-7.53 (2H, m, H-5 and H-6 ), 9.85 (1H, s, -CHO); Accurate mass found: m/z 

176.0456, calculated for Ci0H8O3 : 176.0473.

5-Chlorobenzofuran~2-carbaldehyde, 56c (78%). IR (v) 2845 (-CHO), 1685, 1634 

cm’ 1 (>C=0); *H NMR 5 7.46 - 7.58 (3H, m, Ar H-2 to 4), 7.75 (1H, d, J = 2.0 Hz, Ar 

H-l), 9.89 (1H, s, -CHO); EIMS m/z 180 [M]+‘ (100%), 179 [M-H]+‘ (61%).

Benzo[b]thiophene-2-carbaldehyde 56d158 (20%). IR (v) 1693, 1650 cm"1 (>C=0);

!H NMR 6  12-1.1 (5H, m, Ar), 9.85 (1H, m, -CHO); Accurate mass found: m/z 

146.0211, calculated for C9H6SO : 146.0190.
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2.1.10 Synthesis of benzo [Z>]furan curcuminoid 57b and attempted synthesis of 57c 

and benzo[&]thiophene curcuminoid 57d144

A . CHO

(ii) tn-sec-butyl borate
(iii) n-BuNH2, 30 min.

57b

(iv) EtOAc, 60 °C
(v) HC1 (0 .4  M )

5 6 a * : -H -O- 
5 6 b : -OCH3 -O- 
5 6 c : -Cl 
5 6 d : -H

- O -

-S-
5 7 c : -Cl -O-
5 7 d : -H -S-

Scheme 2.9

* Synthesis of curcuminoid from 56a was not performed.

(1E,6E)-1,7-bis(5-methoxybenzofuran-2-yl)hepta-l,6-diene-S,5-dione, 57b, (30%) 

was prepared by the method described in section 2.1.4, method A, and was obtained 

as a yellow-orange solid. IR (v) 3348 (OH stretch), 1667 cm' 1 (>C=0); ]H NMR 

6  3.85 (6 H, s, -OCH3), 5.70 (1H, s, enolic -CH), 6.58 (2H, d, J = 15.5 Hz, Ar- 

CH=CH- CO-), 6.94 (2H, dd, J = 3.2 and 7.8 Hz, Ar H-6 ’), 6.98 (2H, s, Ar H-3’),

7.02 (2H d, J = 3.2 Hz, Ar H-4’), 7.3 (2H, d, J = 7.8 Hz, Ar H-7’), 7.50 (2H, d, J =

15.5 Hz, -CO-CH=CH-Ar), 15.80 (1H, broad s, OH); EIMS m/z 416 [M+] (4%), 239 

[M-OH] (8.5%), 121 (100%), [M-2friranyl rings]; Accurate mass found: m/z 

416.1332, calculated for C25H2 0O6 : 416.1259.
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(IE, 6E)-1,7-bis(5-chlorobenzofuran-2-yl)hepta-l, 6-diene-3,5-dione, 57c.

The TLC results did not show any formation of the desired curcumin and the reaction 

was abandoned after prolonged stirring.

(IE, 6E)-1,7-bis(benzo[b]thiophen-2-yl)hepta-l, 6-diene-3,5-dione, 57d.

The bright yellow stain characteristic of curcumin formation was not observed on the 

TLC and this reaction was also discontinued after prolonged stirring under the usual 

reaction conditions.

^ J l A AX Synthesis of 4-(2-bromoallyloxy)benzaldehyde 59 ZJ

Us

1. K2C0 3 (anhydrous) 
2 . 2,3-dibromopropene
3. Dry acetone
4. R eflux 15h

C H OC H O

Br

HO'

59

Scheme 2.10

To a 3-neck round bottom flask, fitted with double surface condenser, dropping 

funnel and a calcium chloride drying tube was added 4-hydroxybenzaldehyde 58 

(24.43 gm, 0.2 mol) and dried acetone (150 ml). The reaction mixture was allowed to 

stir for 30 minutes till all the aldehyde dissolved. Potassium carbonate (33.16 gm, 

0.23 mol) was then added and the reaction mixture was stirred for 30 minutes. 2,3- 

Dibromobutane (36 gm, 0.18 mol) was added slowly (over a period of 35 minutes) 

from a dropping funnel and the reaction mixture was refluxed for 15 h. After this 

period, the reaction mixture was allowed to settle and then filtered. To the mother
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liquor was added water (100 ml) and the mixture was extracted with EtOAc (3 x 80 

ml). The organic layers were combined, dried over MgSC>4 and concentrated on the 

rotary evaporator to give the crude product which was purified by flash column 

chromatography, using [petroleum ether : EtOAc, 5:1 v/v] as eluent, to afford 59, 

(79%) as colourless oil which acquired magenta colouration upon keeping, Rf 0.42 

[petroleum ether : EtOAc, 1:5 v/v]. IR (v) 3468 (OH-stretch), 3105 and 3073 

(aromatic C-H), 2925 (aliphatic C-H stretch), 2739 (aldehyde C-H stretch), 1600 and 

1425 cm' 1 (aromatic C=C stretch); lH NMR 8  4.72 (2H, t, J= 1.0 Hz, allylic protons), 

5.71 (1H, q, J= 1.0 Hz, olefinic proton trans to -Br), 5.99 (1H, q, J = 1.0 Hz, olefinic 

proton cis to -Br), 7.02 (2H, d, J= 8 . 8  Hz, Ar H-3 and H-3’), 7.84 (2H, d, J=  8 . 8  Hz, 

Ar H-2 and 2’), 9.89 (1H, s, -CHO); 13C NMR 8  71.9 (allylic -CH2), 115.0 (Ar C-3, 

C-5), 118.3 (vinylic - CH2), 126.3 (vinylic C), 130.9 (Ar C-l), 132.4 (Ar C-2, C-6 ),

162.9 (Ar C-4), 190.9 (-CHO); ESMS m/z 241 [M + H]+ for Br79, 242 [M + 2H]+, 

243 [M + H]+ for Br81.

2.1.12 Synthesis of bromoallyloxy curcumin 6 0 144

CH O (i) B 20 3/Acetylacetone
(ii) tri--.sec-(BuO)3B
(iii) n-BuNH2> 30 min.

Scheme 2.11
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(lE,6E)-l,7-bis(4-(2-bromoallyloxyphenyl)hepta-l,6-diene-3,5-dione, 60, (22%) was 

prepared by the method described in section 2.1.4, method A, and was obtained after 

the work-up as bright yellow precipitates, Rf 0.40 [petroleum ether: EtOAc, 5:1 v/v], 

m.p. 131.7-132.7 °C. IR (v) 3440 (OH stretch), 3000 (aromatic C-H stretch), 1622 (H- 

bonded>C=0), 1600 and 1571 (>C=C< stretch), 1249 cm'1 (C-O-C asymmetric 

stretch); JH NMR 5 4.69 (4H, s, allylic proton), 5.71 (2H, d, J = 1.5 Hz, olefinic 

proton trans to Br), 5.80 (1H, s, enolic -CH), 6.00 (2H, s, olefinic proton cis to Br),

6.52 (2H, d, J = 16.0 Hz, Ar-CH=CH- CO-), 6.94 (4H, d, J = 8.2 Hz, Ar H-2, H-2’),

7.52 (4H, d, J = 8.2 Hz, Ar H-3, H-3’AB system), 7.62 (2H, d, J = 16.0 Hz, -CO- 

CH=CH-Ar); 13C NMR 5 71.9 (allyloxy-CH2-), 101.7 (enolic methine C), 115.6 (Ar 

C-3, C-5), 118.3 (a-olefinic C adjacent to enol), 122.7 (vinylic -CH2), 126.8 (Ar C- 

1), 129.0 (vinylic C), 130.0 (Ar C-2, C-6), 140.1 (p-olefinic C adjacent to enol),

183.5 (enolic C); Accurate mass found: m/z 544.9947, calculated for C2sH23 0 4 Br2 : 

544.9963.

2.1.13 Synthesis of 2-methylbenzofuran-5-ylcurcumin 61159

C y cliza tio n

CH-D C B , S i 0 2 

H eat, 180°C  

24h

Scheme 2.12
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In a round bottom flask, fitted with a condenser, the solution of 60 (67.5 mg, 0.12 

mmol) in 1,2-dichlorobenzene (DCB) (4mL) was heated for 20 minutes in a pre­

heated (180 °C) oil-bath. Silica (30 mg) was also added to the reaction mixture and 

the reaction was refluxed under nitrogen for 24 h. The following day, the reaction 

mixture was filtered and the DCB was removed under reduced pressure (boiling point 

149-150 °C/10mmHg) and the crude product was further purified by flash column 

chromatography using [petroleum ether : EtOAc, 8:1 v/v] as eluent, to afford 61,

(9%) as an orange gum. ’H NMR 8 1.56 (6H, s, -CH3), 5.70 (1H, s, enolic -CH), 6.00 

(2H, s, Ar H-3), 6.52 (2H, d, J = 15.5 Hz, Ar-CH=CH-CO-), 6.94 (2H, d, J = 8.5 Hz, 

Ar H-7), 7.26 (overlapped with CDC13, 2H, s, Ar H-4), 7.52 (2H, d, J = 8.8 Hz,

Ar H-6), 7.62 (2H, d, J = 15.5 Hz, -CO-CH=CH-Ar).

2.1.14 Attempted synthesis of pyridine curcuminoids 63 and 65

(i)B 20 3
(ii) tri-sec~(BuO)3B 

q H 0  (iii)n-BuNH2^

(iv) EtOAc/0.4MHC1

( v ) N a H C 0 3 a q  

PH 7

(i)B 20 3
(ii) tri-sec-(BuO)3B
(iii) n-BuNH2

(iv) EtOAc/0.4MHC1
( v )  N a H C 0 3 a q

65

Scheme 2.13
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The attempted syntheses for making the curcuminoids 63 and 65 were carried out in 

the same manner via method A (section 2.1.4) as previously described for the 

aromatic curcumins except that at the end a solution of saturated sodium bicarbonate 

was added until the solution was neutral. The bicarbonate was necessary because the 

hydrochloric acid added in the work-up protonated the basic pyridine nitrogen 

making the curcuminoids soluble in water. The lH NMR did not show the formation 

of the desired products 63 and 65.

2.1.15 Synthesis of 7-chloro-4-methylquinoline 67

1, MeMgBr/ ether

CH

Scheme 2.14

To a solution of 4,7-dichloroquinoline 66 (20.0g, 101 mmol) in dry THF (50 ml) was 

added at room temperature a solution of methylmagnesium bromide (3.0M, 35 ml, 

102 mmol) using a syringe and the reaction mixture under nitrogen was then refluxed 

under magnetic stirring for 2 h. The solvent was evaporated on the rotary evaporator 

and to the residue was added 10% NH4CI solution (150 ml). The mixture was 

extracted with EtOAc (2 x 100 ml) and the organic layer after drying over anhydrous 

MgS0 4  was filtered and evaporated to yield a bluish coloured residue which
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eventually turned reddish. The crude product was purified by flash chromatography, 

to yield the desired product 67160 (64%) as a white solid, m.p. 57.3-58.4, Rf 0.3 

[petroleum ether: EtOAc, 3:lv/v]. ’HNMR 8 2.77 (3H, s, -CH3), 7.35-7.45 (2H, m, 

H-3 and H-6), 7.68 (1H, d, J = 10.5 Hz, H-5), 8.07 (1H, d, J = 4 Hz, H-8), 8.75 (1H, 

d, J = 5.3 Hz, H-2); 13CarbonNMR 5 18.8 (-CH3), 122.3 (Ar C-3), 125.2 (Ar C-5),

125.7 (Ar C-9), 127.4 (Ar C-6), 129.1 (Ar C-8), 135.2 (Ar C-7), 144.6 (Ar C-4),

148.7 (Ar C-10), 151.4 (Ar C-2); EIMS m/z 177 [M35C1 ]+ (59%) and 179 [M37C1]+- 

(25%); Accurate mass found: m/z 177.0381, calculated for CioHgNCl: 177.0345.

2.1.16 Oxidation of 7-chloro-4-methylquinoline 67 with selenium dioxide156

CH

dioxane/ A

CHO

Scheme 2.15

Selenium dioxide (6.6 g, 59.4 mmol) was added to a stirred hot solution of compound 

67 (lO.Og, 56.3 mmol) in dioxane (55 ml) at 90 °C followed by water (2.5 ml) and the 

mixture was heated under reflux at 100-110 °C for 10 h. The cooled reaction mixture 

was filtered on a Buchner funnel to remove elemental selenium and after removing 

the solvent on the rotary evaporator the residue was chromatographed [petroleum 

ether : EtOAc, l:lv/v] to yield pure 7-chloroquinoline-4-carbaldehyde, 68, (58%) as 

a light brown solid m.p.100-103 °C. IR (v) 2864, 2772 (H-CO) 1699 cm'1 (C=0); ]H
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NMR 8 7.68 (1H, dd, J = 3.0 and 10.8 Hz, H-6), 7.77 (1H, d, J = 4.5 Hz, H-3), 8.20 

(1H, d, J = 3 Hz, H-8), 8.98 (1H, d, J =10.8 Hz, H-5), 9.20 (1H, d, J = 4.5 Hz, H-2), 

10.46 (1H, s, -CHO); EIMS m/z 191 (35C1) and 193 (37C1); Found: C, 62.48; H, 3.00; 

N, 7.15%. Calculated for Ci0H6C1NO: C, 62.68; H, 3.16; N, 7.31%.

2.1.17 Attempted synthesis of quinoline curcuminoid 69

(i) B20 3 y
CHO (ii) tri-sec-(BuO)3B f\]

(iii) n-BuNH2 '
 X ► A
(iv) EtOAc/ 0.4M HC1 (\

( v ) N a H C 0 3 a q

PH7 /

Scheme 2.16

The attempted synthesis for making curcuminoid 69 was carried out in the same 

manner via method A (section 2.1.4) as previously described for the aromatic 

curcumins except that at the end a solution of saturated sodium bicarbonate was 

added until the solution was neutral. The bicarbonate was necessary because the 

hydrochloric acid added in the work-up protonated the basic pyridine nitrogen 

making the curcuminoids soluble in water. The *H NMR did not show the formation 

of the desired products 69.
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2.1.18 Synthesis of (E)-4-(phenylbut)-3-en-2-one 71a and 71b156

70a

Benzaldehyde Acetone

70b

Furfural Acetone

O

NaOH

NaOH

Scheme 2.17

To a stirred solution of pure benzaldehyde 70a (8.50g, 0.08 mol) and pure distilled 

acetone (16 ml, 0.08 mol) in a 250 ml round bottomed flask was slowly added a 

solution of sodium hydroxide (10%, 10 ml) over a period of 10 minutes after which 

the reaction mixture was allowed to stir for 2 h. The mixture was acidified with 2M 

HC1 producing two layers. The upper organic layer was removed, the lower aqueous 

layer was extracted with toluene (20 ml) and the combined organic layers were 

washed with water (20 ml) and then dried with anhydrous MgSC>4 . After filtration the 

toluene was evaporated on the rotary evaporator and the residue was distilled under 

reduced pressure (88-90 °C/0.3mmHg) to give benzylideneacetone 71a, (36%) as 

colourless liquid which solidified (m.p. 42 °C) on keeping. IR (v) 1680 cm'1 (C=0); 

*H NMR 8 2.40 (3H, s, CH3), 6.58 (2H, d, J = 16.0 Hz, Ar-CH=CH-CO-), 7.30 -
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7.50 (5H, m, Ph), 7.60 (2H, d, J = 16.0 Hz, -CO-CH=CH-Ar); E1MS m/z 146 (42%, 

M4), 130 (86%), 103 (100%, Ph-CH=CH).

The compound (E)-4-(furan-2-yl)but-3-en-2-one, 71b was similarly synthesised from 

furan-2-carbaldehyde and acetone (58% yield), b.p. (120-122 °C/7 mmHg). IR (v) 

1680 cm'1 (C=0); ‘H NMR 8 2.32 (3H, s, CH3), 6.49 (1H, dd, J = 3.6 and J = 1.6 Hz, 

H-3), 6.61 (1H, d, J = 16.0 Hz, Ar-CH=CH-CO-), 6.67 (1H, d, J = 3.6 Hz, H-4), 7.28 

(1H, d, J = 16.0 Hz, -CO-CH=CH-Ar), 7.50 (1H, d, J = 1.6 Hz, H-5); EIMS m/z 136 

(46%, M4).

2.1.19 Condensation reaction of (E)-4-(phenylbut)-3-en-2-one, 71a with ethyl 

cinnamate 72

Hexane

Scheme 2.18

To a stirred and refluxing suspension of sodium hydride (60% in oil, 1.20g, 30 mmol) 

in dry cyclohexane (35 ml) was added dropwise a solution of benzylideneacetone 71a 

(4g, 27.4 mmol) and ethyl cinnamate 72 (9.65g, 54.8 mmol) in dry cyclohexane (10 

ml) over 15 minutes. After the exothermic reaction was over the reaction mixture was 

refluxed for further 15 minutes. After cooling to room temperature the mixture was 

slowly acidified with aqueous acetic acid (20% v/v solution, 20 ml) and ice water (20
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ml) added. The organic phase was evaporated and the aqueous layer was extracted 

with ether (2 x 30 ml). The combined organic extracts were washed with water (30 

ml) and the organic phase after drying over dry MgSC>4 was evaporated on the rotary 

evaporator to yield a yellowish oil which eventually crystallize on scratching in 

petroleum ether to yield (56%) a cream coloured solid; TLC [petroleum ether : 

EtOAc, 5:1 v/v] showed streak. IR (v) 3348 (broad, OH), 3059, 3027,2925, 1710 

(C=0), 1601 cm'1 (>C=C<); 'H NMR 5 6.0 -  8.0 (m, complex); EIMS m/z 313 (5%), 

149 (13%), 148 (68%), 147 (100%), 103 (57%).

2.1.20 Condensation reaction of (E)-4-(furan-2-yl)but-3-en-2-one 71b with ethyl 

cinnamate 72

Hexane

Scheme 2.19

The reaction was carried out in an identical manner to that described above for 

benzylideneacetone 71a to yield a yellowish-orange coloured oil which on trituration 

in petroleum ether yielded (58%) a yellowish coloured solid, TLC [petroleum ether : 

EtOAc, 4:1 v/v] showed streak. IR (v) 3439 (weak, OH), 3117, 2993, 2950, 1716 

(C=0), 1671, 1637 cm'1; *H NMR 6 6-8 (complex mixture); EIMS m/z 760 (5%), 

720 (5%), 643 (14%), 625 (14%), 525 (23%), 507 (31%), 464 (23%), 396 (10%), 389
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(45%), 346 (47%), 279 (42%), 266 (30%), 254 (58%), 211 (48%), 173 (77%), 147 

(100%).

2.1.21 Synthesis of hydroxylpropyl-y-cyclodextrin (HP-y-CD) complexes of 

thiophene curcuminoids 47a-d/HP-y-CD.161

The HP-y-CD inclusion complexes of thiophene curcuminoids were prepared via 

slightly modified method of Tang et al.161 Respective curcuminoid (34 mmol) was 

dissolved in a minimum amount of MeOH at 60 °C and then added drop wise into the 

aqueous solution of HP-y-CD at 60 °C, with vigorous stirring. The mixture was 

refluxed with vigorous stirring at 70 °C for 4 h. Refluxing was stopped and the 

reaction mixture was heated at 70 °C to remove MeOH. After this, stirring was 

continued for 8 h, at room temperature and then the reaction mixture was stored at 

4 °C to facilitate crystallization. However, no crystallization was observed therefore 

the aqueous solution was frozen to -80 °C and then freeze-dried.
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2.2 Materials

2.2.1 Chemicals

The parent drug curcumin 1 and all its analogues 47a-d and 51a-d tested for the 

purpose of pharmacological studies, undertaken in this thesis, were synthesised as 

described in part A of this chapter. Cell culture media, RPMI-1640 (with NaHCC>3, 

without L-glutamine), minimum essential medium eagle (MEM) (with Earle's salts 

and NaHC0 3 5 without L-glutamine), MEM non-essential amino acid solution (lOOx, 

cell culture tested), trypan blue solution (0.4%, cell culture tested), dimethylsulfoxide 

(DMSO, cell culture tested) were purchased from Sigma-Aldrich (Irvine, Aryshire, 

UK). Lipopolysaccharide (LPS) Escherichia coli 0127:B8 (cell culture tested), 

albumin bovine serum fraction V, approx. 99%, protease-free and essentially y- 

globulin free, L-methionine sulfoximine (MS), tween 20, tris-buffered saline were 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco's phosphate buffer 

saline (DPBS, lOx, without CaCfe and MgCL), foetal bovine serum (FBS), L- 

glutamine 200 mM (lOOx), 0.5% trypsin-EDTA (lx), penicillin-streptomycin were 

purchased from Gibco-Invitrogen (Paisley, UK). Sodium azide was obtained from 

Fisher-Scientific (Leicestershire, UK). CellTiter 96 A Q que0us one solution cell 

proliferation assay and Griess reagent were obtained from Promega corporation 

(Madison,US A). DuoSet ELISA kits for antibodies against human IL-1 p/IL-1F2 

(catalogue number DY201), human TNF-a/TNFSFl A  (catalogue number DY210),
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human CXCL-8/IL-8 (catalogue number DY208), substrate solution (catalogue 

number DY999) were purchased from R&D Systems Europe Ltd. (Abingdon, UK).

2.2.2 Cell lines

Human monocytic leukemia (THP-1) cell line and human Caucasian colon 

adenocarcinoma (CACO-2) cell lines were obtained as frozen cells from European 

collection of cell cultures (ECACC) (Salisbury, Wiltshire, UK).

2.3 Methods

2.3.1 Preparation of drug treatments

For all cytotoxicity (MTS) assays, nitric oxide (Griess reagent) assay and enzyme- 

linked immunosorbent (ELISA) assays, the stock solutions (33 mM) of all the drugs 

were prepared in DMSO (100%). A dilution of 10, 50 and 100 pM was then 

performed in appropriate media. The final concentration of vehicle or solvent 

(DMSO) in test solution of the drugs was 0.3% (v/v). Stimulant, lipopolysaccharide, 

LPS (10 pg/ml) was prepared from the stock solution of 1 mg/ml in test media. 4 mM 

solution of L-methionine sulfoximine (MS) was prepared in the test media with or 

without LPS.

For the determination of cytotoxic effects of drugs 47a-d complexed with 

hydroxypropyl-y-cyclodextrin (HP-y-CD), a 100 mM stock solution was prepared 

using DMSO (100%). The drug/ HP-y-CD complex (1:2 molar ratio) was diluted to 

10, 50 and 100 pM (relative to the drug concentration).162
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2.3.2 Cell culture (general procedures)

All cell culture techniques i.e. thawing, passaging, plating as well as respective drug 

treatments applied to the cells and cytotoxicity (MTS) assays were performed under 

sterile conditions using a laminar flow cabinet (Heraeus). For all experiments, 

samples were prepared in test media, i.e. for THP-1 cells (serum-free RPMI) and for 

CACO-2 cells (serum-free MEM, section 2.3.9.1.).163 Supplemented media and test 

media was pre-warmed to 37 °C before adding to the cells. All incubations (unless 

otherwise stated in the protocol) were carried out in a humidified incubator 

maintained at 37 °C with 5% (v/v) CO2 and 95% air. Experiments were performed in 

duplicate wells of the 96-well plates and were repeated at least four times unless 

otherwise stated in the figure legend.

2.3.3 THP-1 cell culture

Frozen THP-1 cells were grown in suspension. Briefly, the frozen ampoule was left at 

room temperature for 1 minute and then immediately immersed into a water-bath 

maintained at 37 °C for 1-2 minutes until fully thawed. Contents of the ampoule were 

transferred to a 15 ml centrifuge tube. Pre-warmed RPMI media (4 ml) supplemented 

with L-glutamine (2 mM), penicillin (100 U/ml), streptomycin (100 pg/ml) and heat- 

inactivated FBS (10%) (allowed to thaw at room temperature and then incubated for 

30 minutes in a water-bath heated to 56 °C) was added slowly and cells were gently 

re-suspended and centrifuged at 208.5 x g at 20 °C for 5 minutes. Supernatant was 

removed and the cell pellet was re-suspended in pre-warmed fresh RPMI media (3 

ml) and cells were transferred to 75cm2 flasks (NUNC, Roskilde, Denmark) already
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containing pre-warmed supplemented RPMI media (15 ml). The cells were incubated 

until a confluency of 85-95% was achieved. Cells were routinely passaged every 

week.

2.3.4 Trypan-blue exclusion test

Trypan blue is a dye that is routinely used to determine the number of viable cells in 

cell suspension. The assay works on the principle that the cells having an intact cell 

membrane (viable cells) do not take up (or exclude) the dye whereas cells lacking the 

intact cell membrane (dead cells) take up the dye and are stained blue.164 

Cultured THP-1 cells were centrifuged (as above). Supernatant was removed and 

cells were re-suspended in pre-warmed test media (3 ml). 20 pL of this cell 

suspension was aseptically removed and transferred into a sterile plastic vial and 

20 pL of trypan blue solution (0.4%) was added to it and mixed gently. After 2 

minutes, 10 pL of trypan blue-cell mixture was introduced to the haemocytometer 

chamber164 (Neubauer, Marienfeld, Germany), and stained and unstained cells were 

counted. The calculated percentage of unstained (viable) cells was found to be 98- 

99% in all experiments.

2.3.5 Plating THP-1 cells

Once the cells reached the confluency of 85-90%, they were passaged, centrifuged 

and the supernatant was discarded. The cell pellet was re-suspended in test media 

(3 ml). Cell viability was assessed by performing trypan blue exclusion test and cell 

counting was performed using a hemocytometer. For all experiments, cells between
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passage number 10-30 were used and were plated in flat-bottom, 96-well plate 

(NUNC, Roskilde, Denmark) at a density of 5 x 10 4 cells/200 pL of media/well.

2.3.6 Application of drug treatments to THP-1 cells and collection of 

supernatants

2.3.6.1 For the measurement o f MTS assay, Griess reagent assay and ELISAs (IL- 

Ip and TNF-a)

Immediately after plating, treatments were applied to THP-1 cells. Control wells of 

the 96-well plates were treated either with media alone or with vehicle and/or the 

stimulant, LPS. Subsequent treatment with curcumin 1 and drugs 47a-d or 51a-d at 

10, 50 and 100 pM with or without LPS was applied to the sample wells in separate 

experiments. For MTS assays, an additional triplicate set of control wells (without 

cells) containing the same volumes of the test media and CellTiter 96 A Q ue0us one 

solution reagent, as used in the sample wells, was also prepared to correct the non­

specific background absorbance at 490 nm. Plates were incubated for 24 h.

After 24 h incubation of cells with the respective treatments, supernatants were 

collected for the measurement of nitric oxide by Griess reagent or for the analysis of 

secreted cytokines by ELISA. The supernatants were transferred to Eppendorf tubes 

(1 ml) and centrifuged at 15,700 x g for 15 minutes. After centrifugation, 

supernatants were carefully transferred (without disturbing the pellet) to clean 

Eppendorf tubes (1 ml) and were stored at -80 °C until assayed.
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For the measurement of MTS using the drugs 47a-d complexed with hydroxypropyl- 

y-cyclodextrin, the procedure described above was followed except, the cells were 

exposed to HP-y-CD alone or drug/ HP-y-CD complex along with the appropriate 

controls i.e. cells with or without DMSO. At the end of the incubation, MTS assay 

following the procedure described in (section 2.4.3) was performed.

2.3.7 CACO-2 cell culture

CACO-2 cells were thawed and grown as a monolayer as described in (section 2.3.3) 

except that the cell culture media used was MEM, supplemented with non essential 

amino acid solution (NEAA) (1%), L-glutamine (2 mM), heat-inactivated FBS 

(10%). Media was changed every third day. Cells were passaged (as described below) 

every tenth day when they reached the confluency of 85-95%. Cells between passage 

number 25-40 were used.

2.3.8 Passaging and plating CACO-2 cells

Media was removed and the cell monolayer was washed twice with DPBS (5 ml). 

Trypsin/EDTA solution (5 ml) was added to the cells and the flask was incubated for 

5 minutes (until all the cells detached). Pre-warmed supplemented media (8 ml) was 

quickly added to the trypsinized cells and the cells were suspended and centrifuged 

for 8 minutes. Supernatant was removed and the cell pellet was re-suspended in 

supplemented media (3 ml) and the cell count was performed using a 

haemocytometer. Cells at a density of 5 x 10 4 cells/200 pL of media/well were 

seeded in a flat-bottom, 96-well plate (NUNC, Roskilde, Denmark) and the plate was
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incubated for 48 h. After 48 h incubation, cells were found to be 80-90% confluent, 

and were washed with PBS and the respective treatments were applied as described 

below.

2.3.9 Application of treatments to CACO-2 cells

2.3.9.1 Measurement o f cell viability using MTS assay

CACO-2 cells were treated with the respective treatments according to the method 

adapted from Huang et al163 Briefly, all the control and experimental wells were 

treated with un-supplemented MEM (MEM without FBS, glutamine and non- 

essential amino acid) (100 pL/well), except for the control wells containing test 

media with L-methionine sulfoximine (MS) (4 mM) and incubated for 24 h. At the 

end of the first incubation control and experimental wells were treated with un­

supplemented MEM ± LPS or drugs 1, 47a-d at 10, 50 and 100 pM (100 pL/well) 

and incubated for additional 24 h. Control wells of MS (4 mM) were also treated with 

additional 4 mM MS (100 pL/well). At the end of incubation cells were subjected to 

the MTS assay (section 2.4.3).

2.3.9.2 ELISA for CXCL-8

For the determination of CXCL-8 in cell supernatants using ELISA, cells were 

treated with un-supplemented media (100 pL/well) with or without L- 

methioninesulfoximine (MS, 4 mM) and were incubated for 24 h. After 24 h 

incubation, cells were exposed to drugs 1, 47a-d at three concentrations i.e. 10, 50 

and 100 pM with or without LPS and MS (4 mM) and were incubated for further
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24 h. At the end of incubation supernatants were collected following the method 

described in (section 2.3.6.1).

2.4 Cytotoxicity assay

2.4.1 MTS assay

In these experiments, the CellTiter 96 A Q ue0us one solution cell proliferation assay, a 

colorimetric assay which is also a well established substitute for the previously used 

MTT assay165 for the determination of the cell viability in vitro, was used, to examine 

the effects of the synthesised curcumin and curcuminoids on cell viability.

2.4.2 Principle of the assay

The CellTiter 96 A Q ue0us one solution reagent consists of Owen's reagent i.e. 

tetrazolium, inner salt, MTS 74 (figure 2.1)166 and an electron coupling reagent 

(phenazine ethosulfate; PES). The MTS tetrazolium compound 74 is bio-reduced by 

metabolically active cells into a coloured and soluble formazan product 75 (figure 

2.1)166, by the reduction of NADPH or NADH167 produced by the dehydrogenase 

enzymes. The quantity of the formazan 75 thus produced is directly proportional to 

the number of viable cells in the culture and can be measured as absorbance at 

490 nm.166
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N = N

CH.
M T S

Mitochondrial
dehydrogenase

CH;N = N

CH.Formazan

Figure 2.1: Structures of MTS tetrazolium salt 74 and its formazan product 75. 166

The MTS tetrazolium salt 74 is reduced to a coloured formazan 75 product that can 
be read at 492 nm. The reduction takes place by the action of the mitochondrial 
dehydrogenase enzyme.168
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2.4.3 Assay protocol

After 24 h incubation with the respective treatments, the CellTiter 96 AQ ue0us one 

solution reagent was added to the experimental plates following the manufacture's 

protocol. Briefly, the CellTiter 96 A Q ue0us one solution reagent was thawed (in a 

water-bath maintained at 37 °C) and 40 pL was added quickly into each well of the 

96-well plates containing the controls as well as samples in 200 pL of the test media. 

Plates were incubated for 4 h. At the end of the incubation a change in the colour of 

the media was observed from light yellow to dark brown, indicative of the presence 

of viable cells. Absorbance was recorded at 490 nm using a 96-well plate reader.

2.5 Nitric oxide production assay

2.5.1 The Griess reagent assay

Since the inorganic free radical gaseous molecule nitric oxide (NO) has been 

reported to be involved in various physiological as well pathological conditions, the 

detection of its level using reliable, reproducible and sensitive analytical techniques is 

essential.169 The measurement of nitrite in biological samples by Griess reagent is a 

simple spectrophotometric method that indirectly quantifies NO levels by estimating 

its stable end product (nitrite anion) which is formed as a result of nitric oxide 

oxidation.170

2.5.2 Principle o f the assay

The use of colorimetric detection with Griess reagent entails the formation of a 

chromophore 78 (diazonium product) from the diazotization of sulphanilamide 76 

(SAA) by acidic nitrite followed by coupling with bicyclic amines such as N-l- 

(naphthyl)ethylenediamine 77 (NED) as shown in figure 2.2:



NH- .NH-N^= NNH- NH NH

SOoNH-

SAA Diazonium
intermediate

NED

Diazonium product

Figure 2.2 : Chemical reaction involved in the measurement of nitrite (NO2’) using
the Griess reagent system.169

In acidic media, nitrite reacts with the diazotizing reagent sulphanilamide 76 (SAA, 
an arylamine) to form the diazonium intermediate, which reacts with a coupling 
reagent tV-1 -(naphthyl)ethylenediamine 77 (NED) to form the corresponding azo dye 
78.
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2.5.3 Assay protocol

2.5.3.1 Preparation o f nitrite standard curve

For each experiment, a separate nitrite standard reference curve was prepared using 

the same matrix as used for the experimental samples. Briefly, a 100 pM of nitrite 

solution (1 ml) was prepared by diluting the provided 0.1 M sodium nitrite standard 

in the matrix. Immediately 6 serial two fold dilutions (100, 50, 25, 12.5, 6.25, 3.13, 

1.56 and 0 pM) were performed and 50 pL/well was added in triplicate wells of 96- 

well plate to generate the nitrite standard curve.

2.5.3.2 Griess reaction

The assay was run according to the manufacturer's (Promega) protocol.

Frozen samples were thawed and allowed to equilibrate at room temperature along 

with sulphanilamide 76 (SAA) and A-l -(naphthyl)ethylenediamine 77 (NED) 

solutions for 15-30 minutes, prior to use. Experimental samples (50 pL/well) were 

added to duplicate wells of a 96-well plate. Using a multi-channel pipettor, SAA 76 

solution (50 pL) was dispensed to all experimental samples and to the wells 

containing the dilution series for the nitrite standard reference curve. The plate was 

incubated for 5-10 minutes at room temperature protected from light. Using a multi­

channel pipettor, NED 77 solution (50 pL) was subsequently added to all wells. 

Incubation was performed for further 5-10 minutes at room temperature protected 

from light. A magenta colour started to appear immediately. Absorbance was 

measured at 570 nm using a plate reader (Wallac Victor 2 multi-label plate reader).
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2.6 Enzyme-linked immunosorbant assay (ELISA)

Immunoassays using antibodies or their derivatives are commonly used as a powerful 

tool both in the fields of diagnosis and research.172 The capacity of an antibody to 

recognize its corresponding antigen173 (in biological samples), makes these 

immunoassays highly selective as well as sensitive.173 Among different 

immunoassays, ELISAs in general, have become a standard method for analyzing 

large numbers of serum samples for cytokines and other proteins, and sandwich 

ELISAs in particular, are a widely used method for the quantitative detection of 

specific proteins.174 Various advantages including, selective antibody-antigen 

reactions, the use of excess capture antibody and enzyme-antibody conjugate and the 

chemical amplification with enzyme-conjugates that allows the detection of very low 

concentrations of analytes, all contribute towards the superiority of sandwich ELISA 

carried out in polystyrene microtitre plates in terms of sensitivity, specificity and 

kinetics, over other types of heterogeneous solid-phase immunoassays.175

2.6.1 Sandwich ELISA, principle of the assay

The traditional sandwich-type or two-site antigen capture ELISA utilises the 

formation of complexes or sandwiches consisting of an antigen and two monoclonal 

antibodies (mAbs) i.e. capture and detector antibodies directed against different 

epitopes of an antigenic molecule, hence recognizing two separate epitopes of the 

same antigen. The capture antibody is coupled to a solid phase (polystyrene microtitre 

plates) while the detection antibody is coupled to an enzyme.176 Substrate is added 

which reacts with the enzyme producing a colour change, the intensity of which is



directly proportional to the concentration of antigen in incubation mixture176 allowing 

its spectrophotometric detection and quantification (figure 2.3). Standard proteins of 

known concentrations are incorporated into the assay to allow quantification of 

specific proteins to be determined.

2.6.2 Assay protocol

All capture, detection antibodies and cytokine standards provided for IL-ip, TNF-a 

and CXCL-8 were reconstituted according to the manufacturer's (R&D Systems) 

protocol and stored at -80°C until used.

2.6.2.1 ELISA plate preparation for the detection o flL -lp  or TNF-a in cell 

supernatants o f THP-1 cells

ELISA flat-bottom 96-well plates (catalogue number DY990) and ELISA plate 

sealers (catalogue number DY992) were purchased from R&D Systems, (Abingdon, 

UK). Separate plates were prepared according to the manufacturer's protocol for the 

detection of IL-ip and TNF-a. Briefly, capture antibodies, mouse anti-human IL-ip 

or mouse anti-human TNF-a were diluted to a working concentration of 4.0 pg/ml in 

PBS (without carrier proteins). An ELISA flat-bottom 96-well plate was immediately 

coated with 100 pL/well of the diluted capture antibody, sealed and incubated 

overnight at room temperature. Next day, each well of the 96-well micro plate was 

aspirated and washed six times with wash buffer (WB) (0.05% Tween 20 in PBS). 

After the last wash, the plate was dried by blotting against clean paper towel, blocked 

by adding 300 pL/well of reagent diluent (RD) (1% bovine serum albumin in PBS) 

and incubated at room temperature for lh. The plate was aspirated, washed and dried 

as described above.
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Figure 2.3 : Diagram showing different stages involved in sandwich ELISA.177

A 96-well microtitre plate is coated with capture antibody (1st antibody) and the target 
protein or antigen is added. Detection antibody (2nd antibody) is added followed by 
the addition o f enzyme, horseradish peroxidase (HRP)-linked antibody. Substrate 
solution containing colorimetric substrate, 3,3',5,5'-tetramethylbenzidine (TMB) and 
hydrogen peroxide (FLCE) is added. TMB reacts with FLCL in the presence o f HRP 
enzyme to produce a water-soluble, blue coloured by-product the intensity o f which is 
proportional to the amount o f HRP activity, which in turn is related to the levels o f 
target analyte in the experimental sample. Upon acidification with sulphuric-acid 
(stop solution) the colour changes from blue to yellow, enabling accurate 
measurement o f the intensity at 450nm using a plate-reader.178
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2.6.2.2 Preparation o f standard curve

For all experiments a separate standard curve was obtained. Briefly, the reconstituted 

standards 100 ng/ml of recombinant human IL-ip or 290 ng/ml of recombinant 

human TNF-a were thawed. For IL-1 p a seven point standard curve using a highest 

standard of 250 pg/ml with 2-fold serial dilutions (250, 125, 62.5, 31.2, 15.6, 7.8 and 

0 pg/ml) in RD, and for TNF-a a seven point standard curve using a highest standard 

of 1000 pg/ml with 2-fold serial dilutions (1000, 500,250, 125, 62.5, 31.25, 0 pg/ml) 

in RD was prepared. All triplicate readings at 570 nm for each standard were 

subtracted from the triplicate readings at 450 nm. The corrected absorbance values 

were averaged and the average zero standard optical density was subtracted.

2.6.2.3 Assay procedure

100 pL of cell supernatant samples or standards in RD was added per well and the 

plate was sealed and incubated at room temperature for 2 h. After 2 h incubation, the 

plate was washed (as above). Detection antibody (biotinylated goat anti-human IL-1 p 

or biotinylated goat anti-human TNF-a) was diluted to the working concentrations of 

300 ng/ml and 250 ng/ml respectively, in RD and 100 pL/well was added to the plate. 

The plate was sealed and incubated for 2 h at room temperature. The aspiration/wash 

step was repeated, followed by the addition of 100 pL/well of streptavidin-horse 

radish peroxidase (HRP), diluted to the working concentration of 1:200 in RD and the 

plate was incubated for 20 minutes at room temperature, protected from light. The 

plate was washed. Substrate solution (1:1 mixture of colour reagent A (H2 O2 ) and 

colour reagent B (tetramethylbenzidine, TMB) was added 100 pL/well, and the plate
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was incubated for 20 minutes at room temperature, protected from light. 50 pL/well 

of the stop solution (2 N H2SO4) was added with gentle tapping. The optical density. 

of the plate was read at 450 and 570 nm using a micro plate reader (Wallac Victor 2 

multi-label plate reader).

2.6.2.4 ELISA plate preparation for the detection o f CXCL-8 in CACO-2 cell 

supernatants

Capture antibody, mouse anti-human IL-8 was diluted to a working concentration of

4.0 pg/ml in PBS (without carrier proteins). A 96-well micro plate was immediately 

coated with 100 pL/well of the diluted capture antibody, sealed and incubated 

overnight at room temperature. Next day, each well of the 96-well micro plate was 

aspirated and washed six times with wash buffer (WB) (0.05% Tween® 20 in PBS). 

After the last wash the plate was dried by blotting against clean paper towel, blocked 

by adding 300 pL/well of block buffer (BB) (1% bovine serum albumin in PBS with 

0.05% NaNs) and incubated at room temperature for lh. Plate was aspirated, washed 

and dried (as described previously).

2.6.2.5 Preparation o f standard curve

For all experiments a separate standard curve was obtained. Briefly, the reconstituted 

standard 140 ng/ml of recombinant human IL-8 was thawed. A seven point standard 

curve using a highest standard of 2000 pg/ml with 2-fold serial dilutions (2000, 1000, 

500,250, 125, 62.5, 0 pg/ml) in RD was prepared. All triplicate readings at 570 nm 

for each standard were subtracted from the triplicate readings at 450 nm. The

136



corrected absorbance values were averaged and the average zero standard optical 

density was subtracted.

2.6.2.6 Assay procedure

The assay procedure followed was the same as described in section 2.6.2.3. except 

that the RD was consisted of 0.1% BSA, 0.05% Tween® 20 in tris-buffered saline (20 

mM Trizma base, 150 mMNaCl, pH 7.2) and the detection antibody (biotinylated 

goat anti-human IL-8) was diluted to the working concentrations of 20 ng/ml in RD.

2.7 Data manipulation and statistical analysis

For all individual MTS experiments, the mean 490 nm absorbance from the "no cell" 

control wells was subtracted from all other absorbance values to yield corrected 

absorbance values. All corrected absorbance values from separate experiments were 

averaged and data was plotted as mean ± S.E.M. (standard error of the mean). In 

Griess reagent assays the mean absorbance values of each experimental sample were 

used to determine the concentrations (pM) using the standard curves. All 

concentrations (pM) from three separate experiments were averaged and plotted as 

mean ± S.E.M. For all ELISA assays, the 570 nm absorbance values for the control 

and sample wells were subtracted from the corresponding 490 nm absorbance values 

to get the corrected absorbance. The corrected duplicate readings for each control and 

sample wells were averaged and the average zero standard optical density was 

subtracted from it. Concentrations (pg/100 ml) were obtained using the standard 

reference curves.
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Shapiro-Wilk W test for non-normality followed by Kruskal-Wallis : Conover-Inman 

post-hoc test was used to determine significance. P value < 0.05 was considered as 

significant.
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CHAPTER 3 

RESULTS AND DISCUSSION
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Part A

Chemistry Section

3.1 Results and discussion

3.1.1 Synthesis of nitric oxide donating curcuminoids 51a-d and curcumin 1

Aim : Based on the considerable number of studies, it is generally accepted that 

nitric oxide donating-derivatives of non-steroidal anti-inflammatory drugs (NO- 

NSAIDs) have enhanced anti-inflammatory activity and possess lesser side-effects 

over that of the parent NSAIDs.179,180 However a major limitation of the current 

array of NO-NSAIDs is that the NO is rapidly released and relatively small 

quantities are produced in the systemic circulation. Thus it is possible to postulate 

that the nitric oxide donating curcuminoids 51a-d could represent an advance in 

the application of NO derivatization by enabling prolonged production of NO to 

be achieved in vivo.

It is important to note that the nitric oxide donating curcuminoids 51a-d 

synthesised in this thesis are phenolic ethers of NO as compared with the 

carboxylate esters of conventional NO-NSAIDs.

The overall strategy for the synthesis of nitric oxide donating curcuminoids 51a-d 

is shown in figure 3.1 .\This syntheses consisted o fthree steps of which the first 

step involved the formation of bromobutoxybenzaldehydes 45a^dj[scheme 2.L 

chapter 2). The starting materialsior-the^ynthesis of these compounds were 2-1 /  ■ L ■*’ ■ ,,,, nm----- ----- ------------  - 1 • ^

hydroxybenzaldehyde 44a, 3-hydroxybenzaldehyde 44b, 4-hydroxybenzaldehyde 

44c and vanillin 44d respectively,^which were chosen because these were 

cqmmerciallwayailable.and cheap^ __
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Step 1: Synthesis of bromobutoxybenzaldehydes 45a - d
CHO

Ri
(i) Na OEt/EtOH

reflux, 12 h

4 4 a :R 1 = -OH,R2 = R3 = -H 
44b : R, = R3 = -H, R2 = -OH 
44c : Rj = R2 = -H ,R 3 = -OH 
44d : Rj = -H, R2 = -OCH3, R3 = -OH

45a : R! = -0-(CH2)4-Br, R2 = R3 = -H 
45b : Ri = R3 = -H, R2 = -0-(CH2)4-Br 
4 5 c : Rj = R2 = -H, R3 = -0-(CH2)4-Br 
45d : R! = -H, R2 = -OCH3, R3 = -0-(CH2)4-Br

Step 2 : Synthesis o f curcumin 1 and bromobutoxy curcuminoids 46a - d

H,C

O O
A A , CH,

(iii) Vanalline ^
(i) B20 3/Acetylacetone
(ii) tri-iec-butylborate 
(iv) n-BuNH2, 30 min.

(v) EtOAc, 60 °C
(vi) HC1 ( 0.4 M )

R-
(iii) 45a, 45b, 

45c, 45d

R,

O O

Curcumin 1

o o

OCH,

R,

46a : Ri = -0-(CH2)4-Br, R2 = R3 = -H 
46b : R] = R3 = -H, R2 = -0-(CH2)4-Br 
46c : R[ = R 2= -H, R3 = -0-(CH2)4-Br 
46d : R, = -H, R2 = -OCH3, R3 = -0-(CH2)4-Br

Step 3 : Synthesis o f  butoxynitratc curcuminoids 51a - d

Ri • O O

R,

46a : R, = -0-(CH2)4-Br, R2 = R3 = -H 
46b : R, = R3 = -H, R2 = -0-(CH2)4-Br 
46c : R, = R2 = -H, R3 = -0-(CH2)4-Br 
46d : R, = -H, R2 = -OCH3, R3 = -0-(CH2)4-Br

reflux 5 h

r  ii u i * o o
AgNQ3/CH3CN r 2 r

R,

" Y '
r3

51a : Rj = -0-(CH2)4-0 N 0 2, R2 = R3 = -H 
51b : Ri = R3 = -H, R2 = -0-(CH2)4-0 N 0 2 
51c : R, = R2 = -H, R3 = -0-(CH2)4-0 N 0 2 
51d : Rj = -H, R2 = -OCH3) R3 = -0-(CH2)4-0 N 0 2

Figure 3.1: Synthesis of nitricoxide donating curcuminoids 51a-d and curcumin 1.
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The bromobutoxybenzaldehydes 45a-d were prepared iiyJho^^ham sfm ^her_

synthesis, reaction of which involved the sodium salts of hydroxybenzaldehyde,

44a-d, with 3 molar equivalents of l,4zdibromobutane in ethanol. The structures 

of  bromobutoxybenzaldehydes 45a-d were determined on the basis of their 

spectrometric analysis using 1H NM3BLM.S and IR spectroscopies.

The chara^risticTeatures j n  the ^H NMR spectra of the compound 45a-d were 

the resonances of the two. methylene group in the alkyl chain adjacent to oxygen

and b ro m in e jh e methylene adjacent tojDxygen^resonated at 5 4^4^^ripletand 

the methylene attached to the bromine appeared as a triplet at-&3.5. The

characteristic peak for the aldehyde proton w asjdso^^rved^asj^singlet at about 

5 j^O.5 J h e JEIMS spectrum gave the correct molecular ion peaks at m/z 256 and 

2j8^corresponding to thepresence of two isotope^^ and 81Br.

The infrared spectra of compounds 45a-d showed a characteristic aldehyde 

hydrogen stretch (-CHO) at about 2759cm'1.̂ Afrkough the aldehyde group in the 

aromaticring reduces the nucleophilicities of corresponding phenolic groups in 

their saltjfomi, the yields of the products 45b and 45cwere quite high (79% and 

81% respectively). The 2-hydroxybenzaldehyde 44a gave product 45a in only 

58% yield whilst vanillin 44d reacted poorly to give 45d in 50% yield, j  

"The resonance stabilized canonical forms of the phenoxides of 44a-c are shown

in figure 3.2. The negativejdmrge on the oxygen in the phenoxides of 44a and 44c
\

is quite adequately delocalised on the aromatic.ring_and4he-aldehyde-group and 

possibly accounts for the relatively low yield of the alkylated product 45a. The 

alkylation of 44c to give 45c in high yield (81%) is surprising because one expects 

the similar mesomeric effects operating in the phenoxide anion derived from 44c.
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In the mefa-hydroxybenzaldehyde 44b, the mesomeric effects are only confined to 

the aromatic ring and relatively high yield of 79% obtained for the alkylated 

product 45b is less surprising.

H'c*°
OH + NaOEt Co

c o C
O O

44a

H'c*° H'c*°
+  -

+ NaOEt

OH

Ĥ °

-<—

H-c"°

- < —

O O
44b

> V 0 H'c*° Ĥ °

+ NaOEt

OH

44c

—>-

o)

n .cCo

o

Hv yQ C

O O

Figure 3.2 : Resonance stabilised canonical forms of phenoxides of 2- 
hydroxybenzaldehyde 44a, 3-hydroxybenzaldehyde 44b and 4- 

hydroxybenzaldehyde 44c.
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j>The synthesis of curcuminoids shown in schemes 2.2 and 2.3 (chapter 2) was 

/carried out via two reported pathways, that differ only in technique, however the
1 1 o

reaction mechanism is the same in both methods. In method A, (section 2.1.4, 

chapter 2) the acetylacetone-boron oxide complex 31 was prepared separately in 

order to avoid the moisture that is produced during the course of the 

acetylacetone-boron oxide complex 31 formation. However, in various 

curcuminoid syntheses reported in the literature the acetylacetone-boron oxide 

complex 31 is prepared in situ153 (method B, section 2.1.4, chapter 2) and we have 

also used this strategy to get better yields. The trialkylborate is also believed to 

facilitate the formation of curcuminoids. Although, Pabon’s144 method of 

curcumin synthesis has the benefits of simple and easy handling, moderate 

temperature conditions, its major draw back is the low yields of the products 

obtained. During the course of this study both methods for the preparations of 

some curcuminoids were tried including, 46a-c and 47a and 47d, and our results 

have shown that in all of the cases method A resulted in better yields in 

comparison with method B with the exception of 47a which resulted in a better

yield using method B. ^ __ _

^ Describing the structure of curcumin 1 m solution form, using the NMR 

) techniques including DEPT, HMQC, HMBC and COSY, Payton et al181 have 

I shown that curcumin 1 in solvents like CDCI3 , DMSO or mixtures of DMSO- ^ 6  in 

water and in buffers (pH 3 to 9), exists in keto-enol tautomers as shown in figure 

3.3b and all of our *H NMR results also confirm this with the enolic H found at



OH O

OHHO' HO' OH
C urcum in 1

Beta-diketone tautomer

•OCH-

C urcum in 1
Keto-enol tautomer

HO' OH

Figure 3.3 : Equilibrating keto-enol tautomers of curcumin l . 181

Compound 46a, with method A (section 2.1.4) was obtained in 34% yield where 

as with method B (section 2.1.4) the yield was 21%. The !H NMR spectrum of 

46a showed three distinguishing features characteristic of curcumin structure; the 

peak at 8 5.8 that appears as a singlet for the enolic methine proton, the peak at 5

6.7 for the a-olefmic proton adjacent to the carbonyl group and the third peak due 

to the deshielded |3-olefmic proton at about 8 7.9. ̂ The a,P-unsaturated protons in 

all the curcuminoids appear as two doublets with a J value of  16.0 Hz. which 

suggests that the double bonds are of E  or trans configuration. The peak patterns 

shown by the aromatic protons H-3 (as doublet) and H-6 (as double doublet) 

confimiedJhe_OJlho substituted aromatic ring in compound 46a. The presence of 

bromobutoxy side chain was evident from the multiplet found in the region 8 1.9-

2.2 that corresponded to two central-CKh- groups of the butyl chain whilst the two 

triplets at 8 3.5 and 8 4.1 corresponded to the -CH 2Br and -OCH 2 respectively. 

The EIMS spectrum also confirmed the presence of the molecular ion peaks at 

m/z 576 and 580 suggesting the presence of 79Br and 81Br.
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Compounds 46b-d showed similar spectroscopic characteristics and were 

characterised likewise from their !H NMR and mass spectra.

The third step in the synthesis of target compounds, butoxynitrate curcuminoids 

51a-d (figure 3.1) involved nitration of bromobutoxy curcuminoids 46a-d. This 

was conveniently achieved by Sn2 reaction of the corresponding bromobutoxy 

curcuminoid 46a-d with silver nitrate in acetonitrile on heating and resulted in 

moderate to good yields of the desired nitric oxide donating curcuminoids 51a-d. 

The infrared spectra of all the butoxynitrates 51a-d showed characteristic 

absorption for the -NO 2 group at 1472 and 1280 cm’1. The salient features of the 

proton magnetic resonance spectra of 51a-d were the disappearance of the triplet 

at about 8 3.5 associated with the -CH 2 Br group and appearance of a new triplet 

integrating to two protons at 8 4.1 due to -CH 2 ONO2 group being relatively more 

deshielded than the ethereal methylene counterpart at the other end of the butyl 

chain. The remaining features of the 2HNMR spectra were similar to the NMR 

spectra of the precursors 46a-d. The ESMS produced molecular ions for which 

m/z 543 was accurately measured thus confirming the identity of the target 

molecules thus synthesised.

The synthesis of the lead compound, curcumin 1, figure 3.1, was carried out using 

method B (section 2.1.4, chapter 2). Curcumin 1 was obtained as an orange solid 

in 33% yield and its structure was confirmed spectroscopically. Thus the NMR 

spectrum of 1 showed the characteristic resonance of the enolic methine moiety at 

8^5.8, tjiejfcglefinic proton attached to the carbon bearing the carbonyl group at 8

6.4 and the P-olefinic proton attached to the carbon bearing the aromatic ring at 8 

7.5. The singlet peak for the protons of the two methoxy groups appeared at 8 3.9.
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In the EIMS spectrum the peak at m/z 368 corresponded to the molecular ion 

peak. The IR spectrum as a thin film showed an absorption at 3501-33870^ for 

the enolic-OH group and a strong absorption for the carbonyl group at 1627cm'1. 

The peaks at 1602 cm'1 corresponded to >C=C<.

3.1.2 Synthesis of aromatic heterocyclic curcuminoids 47a-d and 48a-c

Aim : After the successful synthesis of nitric oxide donating curcuminoids 51a-d, 

it was then decided to synthesise the heterocyclic curcuminoids in the hope of 

obtaining enhanced anti-inflammatory activities normally associated with the 

curcumin class of compounds and decided to investigate the synthesis of furan 

and thiophene derived curcuminoids figure 3.4.

For these classes of compounds many starting aldehydes were commercially 

available. The curcuminoids were prepared from the parent heterocyclic 

aldehydes such as thiophene-2-carbaldehyde or furan-2-carbaldehyde as 

illustrated in figure 3.4. The reactions, after the usual work-up, produced the 

expected curcuminoids 47a and 48a which were purified by flash chromatography 

and spectroscopically characterised.

147



Rs-
<iii) ”WR2 Ri

CHO R3-

o o (i) B 203/Acetylacetone 
ii || (ii) tri-sec-butylborate

H 3c ^ \ ^ \ c h 3 (iv) n~BuNH2, 30 min.

(v)EtO A c, 60 °C
(vi) HC1 (0.4 M)

(iii)

CHO

R3-
(iii) R2 Ri

,A

W H
R2

r3-

CHO

R
M

Ri R2

R3

47a : A  =  -S-, R , =, R2 =, R3 =  -H 
47b : A  =  -S-, Rj = -CH3, R2 =  R3 = -H  
47c : A  = -S-, Rj =  R2 =  -H, R 3 = -CH3

A
\  H

R2 Ri

A,
\\ //

■R3

Ri r2

48a : A  =  -0 - , Rj =  R 2 =  R3 =  -H 
48b : A  = -0 - ,  Rj =  -CH3, R2 = R3 =  -H  
48c : A  =  -0 - ,  Rj =  R2 =  -H, R3 =  -CH3

Figure 3.4 : Synthesis of thiophene curcuminoids 47a-d and furan curcuminoids
48a-c.

The thiophene curcuminoid 47a was obtained as orange precipitates using method 

B (section 2.1.4, chapter 2) in 62% yield, where as with method A (section 2.1.4, 

chapter 2) the yield was only 23%. The !H NMR spectrum of 47a also showed the 

typical signals of curcumin structure, at 8 5.7 as a singlet for the enolic methine 

proton, the peak at 8 6.4 for the a-olefinic proton attached to the carbon bearing 

the carbonyl moiety, where as the third peak was located in the further down field 

region of 8 7.7 for the p-olefmic proton. Both of these protons appear as a doublet 

with a J value of 15.5 Hz, which suggests that the double bonds are found in E  

configuration. The EIMS spectrum showed the presence of molecular ion peak at 

m/z 288. In the IR spectrum, the OH stretch was found at 3537-3412 cm’1, the 

aromatic C-H stretch appeared at 3103 cm’1 and the hydrogen bonded carbonyl
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showed a peak at 1626 cm'1. The peaks at 1569 cm'1 for conjugated >C=C< and 

1504 cm'1 for the enol were also present.

The furan curcuminoid 48a was obtained as a dark brown solid with method A 

(section 2.1.4, chapter 2) in 26% yield and showed similar spectroscopic 

characteristics.

Having achieved success with the thiophene and furan curcuminoids 47a and 48a 

it was then decided to use this strategy for making some analogues of these 

compounds and which are displayed in figure 3.4. All of the curcuminoids 47a-d 

and 48a-c were successfully made, albeit in low to moderate yields, and after 

purification by flash chromatography the products were characterized 

spectroscopically. Molecular ions were produced for all the analogues and the 

accurate masses were determined.

The main structural features found in the !H NMR spectra of 47b-d include the 

peak at 8 5.7 as a singlet for the enolic methine proton, the peak at 5 6.3 for the a- 

olefinic proton adjacent to the carbonyl group, where as the third peak located in 

the further down field region of 8 7.8 was due to the presence of deshielded 0- 

olefinic proton. Both of these protons appeared as a doublet with a J value of 15.5 

Hz, which suggests that the double bonds are found in E  configuration. The EIMS 

spectrum showed the presence of molecular ion peak at m/z 316. In the IR 

spectrum, as the OH stretch was found in the region of 3421 cm'1, the aromatic
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C-H stretch appeared at 3068 cm'1 and the hydrogen bonded carbonyl showed a 

peak at 1606 cm'1. The peak at 1499 cm'1 for the conjugated >C=C< was also 

present.

The compounds 48b-c were prepared by method A (section 2.1.4, chapter 2). The 

characteristic features of the NMR spectra were the presence of peak at 6 5.6 

as a singlet for the enolic methine proton, the peak at 8 6.9 for the a-olefinic 

proton attached to the carbon bearing the carbonyl group, where as the third peak 

at 5 7.5 indicated the presence of deshielded p-olefmic proton. Both of these 

protons appeared as a doublet with a J value of 15.5 which confirms that the 

double bonds are found in E configuration. The singlet peak at 8 2.3 for two 

methyl protons was also present. The EIMS spectrum showed the presence of 

molecular ion peak at 284. In the IR spectrum, the OH stretch appeared at 

3322cm'1, the aromatic C-H stretch hydrogen bonded carbonyl showed a peak at 

1620 cm'1.

3.1.3 Synthesis of fused-ring aromatic heterocyclic curcuminoids 57b-d and 

61

Aim : In medicinal chemistry it is a well recognized strategy to extend rings by 

ring fusion and in this context we decided to synthesise the benzo[Z>]furan and 

benzo[6]thiophene curcuminoids. The benzo[Z>]furan and benzo[b\thiophene ring

1 O'!
systems occur in natural products and would therefore make good candidates 

for anti-inflammatory studies. Benzothiophene derivatives have previously been 

recognised as potential anticancer agents.
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The strategy adopted for the synthesis of benzo[6]furan 57b and 57c and 

benzo[6]thiophene 57d curcuminoids is displayed in figure 3.5.

Step 1: Synthesis of aromatic ethers 53a-c and thioether 53d

(i) Na OEt/EtOH

(ii) 2,3-dichloro-l-propene
(iii) Reflux, 14 h

R A 
52a: -H -O- 
52b: -OCH3 -O- 
52c: -Cl -O-
52d: -H -S-

R A 
53a: -H -O- 
53b: -OCH3 -O- 
53c: -Cl -O-
53d: -H -S-

Step 2 : Synthesis of benzo[6]furan-2-carbaldchyde 56a-c or benzo[6 ]thiophene-2 -carbaldehyde 56d

A' T  ah"yc1
c i  JL J

^  - A .  C H , A CHOClaisen 
Rearrangement ConoHCI f Y f

N.JV-diethylaniline R lot. Dioxane
Reflux, 72 h 12 h Se02,

reflux 72 h

R A 
53a: -H -O- 
53b: -OCH3 -0-
53c: -Cl 
53d: -H

- O -
-S-

R A 
54a: -H -O- 
54b: -OCH3 -O- 
54c: -Cl -O-

R A 
55a: -H -O- 
55b: -OCH3 -0-
55c: -Cl 
55d: -H

- O -

-S-

R A 
56a:-HR -CA 
56b: -OCH3 -0- 
56c: -Cl -O-
56d : -H -S-

Step 3:Synthesis of benzo[6 ]furan curcuminoids 57b-c and benzo[£]thiophene curcuminoid 57d

0 o

X o
A .  CHO

(i) B203/Acetylacetone
(ii) tri-sec-butyl borate
(iii) n-BuNHj, 30 min.

(iv) EtOAc, 60 °C 
56a* :-H  -0- (v)HC1(0.4M )
56b: -OCH3 -O- 
56c: -Cl -O-
56d: -H -S-

H3CO OCH3

R A
57c: -Cl -0-
57d : -H -S-

Figure 3.5 : Synthesis of benzo[b]furan curcuminoids 57b-c or benzo[b]thiophene
curcuminoid 57d (1st strategy).

* Synthesis of curcuminoid from 56a not performed.
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The required aldehydes 56a-d were synthesised in four chemical steps from the 

corresponding 4-substituted phenols/thiophenols 52a-d. Alkylation of the 

phenols/thiophenols with 2,3-dichloropropene produced the corresponding 

ethers/thioethers 53a-d which were then rearranged by the Claisen rearrangement
i 04

reaction. The Claisen rearrangement is a highly stereoselective [3,3]- 

sigmatropic reaction of allyl vinyl ethers 79 or allyl aryl ethers 80 to yield y,8- 

unsaturated carbonyl compounds 81 or O-allyl substituted phenols 82, 

respectively as shown in figure 3.6.

X

10 V ;

X

2
79

O'

Aromatic transition 
state

jA,
iV-J

2
81

1
OH

*Y
80 3

82
X = NR2  or OSiR3  

Y = Cl, Br, SOPh

Figure 3.6 : Mechanism of Claisen rearrangement.

The reaction has enjoyed widespread use in organic synthesis for constructing 

new carbon-carbon bonds. When X = NR2, the reaction is referred to as the 

Eschenmoser-Claisen rearrangement. When X = OR, the reaction is referred to
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as the Johnson-Claisen rearrangement.186 When X = OSiR3 or OLi, the reaction is
1 O'?

referred to as the Ireland-Claisen rearrangement. A reaction in which Y = Cl 

has been reported to yield 2-methylbenzo[6]furans and 2- 

methylbenzo[fr]thiophenes.155

The phenolic ethers 53a-c underwent [3,3] sigmatropic rearrangement in refluxing 

N,N-dimethylaniline after 24-48 h to give the Claisen products 54a-c in 34-66% 

purified yields (lit. 77-90 % yields).155

On the other hand the thiophenol ether 53d on refluxing in N,N-dimethylaniline 

for 24 h yielded the benzo[&]thiophene 55d directly in 43% yield. Due to the 

increased nucleophilicity of the benzenethiol the presumed Claisen rearrangement 

product underwent cyclisation to yield the benzo [&]thiophene 55d without being 

isolated. The IR spectra of 54a-c showed a broad absorption at about 3433 to 

3540 cm'1 whilst their !H NMR spectra showed an upfield shift for the allylic 

protons from about 8 4.6 in the phenolic ethers 53a-c to about 8 3.6 in the alkenyl 

products 54a-c. Cyclisation of the phenolic compounds was achieved under acid 

catalysed conditions to give the corresponding benzo[6]furans 55a-c in 42-63% 

yield after purification by flash chromatography. Benzylic methylene groups and 

methyl groups on aromatic rings are reactive centres that can be oxidized under 

mild conditions using selenium dioxide to ketones and aldehydes respectively.156 

Thus the 2-methylbenzo [&] furans 55a-c underwent oxidation at the methyl group 

with a mixture of selenium dioxide and water in refluxing dioxane to produce the 

aldehydes 56a-c in 25-89% yields after purification by flash chromatography. The 

aldehydes were characterized from their Rf which were lower (0.2) compared with
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the corresponding methyl precursors 55a-c ( R f  0.7) in the same solvent system 

[petroleum.ether : EtOAc, 5:1 v/v] and IR spectra which showed a characteristic 

-CHO stretch at about 2835 cm'1 and carbonyl absorption at about 1680 cm'1. The 

2H NMR spectra for the aldehydes displayed a low field signal for the aldehyde 

proton at about 5 9.7 and a deshielding effect for the H-3 proton from about 5 6.3 

in the 2-methyl benzo[6]furans 55a-c to 8 7.2. The mass spectra of the aldehydes 

56a-c produced molecular ions of correct value and high intensity. The 2- 

methylbenzo [6]thiophene 55d was oxidized in a similar way to yield the aldehyde 

product 56d which was fully characterized.

The next task was to convert the aldehydes 56b-d into the curcuminoids 57b-d. In 

making the curcumins the usual protocol of method A(section 2.1.4, chapter 2) 

was followed but the reaction did not produce the usual intense colouration nor a 

stain upon examination by TLC. Examination of the isolated products of these 

reactions by !H NMR spectroscopy showed the absence of any curcuminoid 57c 

and 57d formation. However, the reaction of aldehyde 56b produced curcumin 

57b in low yield (30%) after purification by flash chromatography. The IR. 

spectrum showed the typical enolic OH group absorption at around 3348 cm'1 and 

a >C=0 absorption at 1667 cm'1 whilst its [H NMR spectrum showed the 

characteristic enone a  and f> protons at 8 6.5 and 8 7.5 respectively. A correct 

molecular ion of m/z 416 was also found in the mass spectrum of 57b. Although 

one curcumin was obtained namely from the methoxyaldehyde 56b, the results on 

the whole from these set of experiments were very disappointing since we had 

shown that the furan and thiophene derived curcuminoids were possible and this
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failure of the reactions to produce the expected curcuminoids 57c and 57d could 

not be understood.

We next decided to synthesise the alternate benzo[6]furan curcuminoid 61 as 

shown in figure 3.7. In this strategy the starting aldehyde 58 was alkylated with 

2 ,3 - d ib r o m o  propene in dry acetone using anhydrous potassium carbonate as base 

to give the expected bromoallyloxy benzaldehyde 59 in 79% yield. The IR 

spectrum of 59 showed the absence of OH absorption at around 3468 cm'1 and the 

mass spectrum gave molecular ion peak at m/z 241 (Br79). The !H NMR 

spectrum showed an AB system for the aromatic ring as two doublets at 8 7.0 and 

8 7.8 and a singlet for the allylic protons at 8 4.7. The aldehyde 59 reacted with 

acetylacetone-boric acid complex 31 under the usual conditions (method A 

section 2.1.4) to yield the desired curcumin 60 in 22% yield after purification by 

flash chromatography.
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Step 1 : Synthesis of bromoallyloxy benzaldehyde 59 

,CHO

jTy
1. K2C0 3 (anhydrous)
2. 2,3-dibromopropene
3. Dry acetone
4. Reflux 15h 
------------

58

Step 2 : Synthesis of bromoallyloxy curcumin 60

59

(i) B 20 3/Acetylacetone
(ii) tr i-iec-(B u O )3B

(iii) n-BuNH2, 30 min. 
----------------

(iv)E tO A c, 60 °C
(v) HCI (0.4 M )

* Y ^ 0X J

59

Step 3 : Synthesis of 2-methylbenzofuran curcumin 61

60 Cyclization

 ►-
D C B, S i0 2 

Heat, 180°C  
24h

H3C

Figure 3.7 : Synthesis of benzo[6]furan curcuminoid 61 
(2nd strategy).

The formation of the curcumin 60 was confirmed by TLC analysis which showed 

it as a yellowish stain, Rf 0.3 [petroleum ether : EtOAc, 4:1 v/v] and by 

spectroscopic analysis. For example the mass spectrum of 60 showed two 

molecular ions at m/z 544 (Br79) and m/z 548 (Br81) and the NMR spectrum 

showed the typical trans protons of the enone system as two doublets (J = 16.0 

Hz) resonating at 8 6.5 and 8 7.62. When compound 60 was heated under reflux in 

1,2-dichlorobenzene with a catalytic amount of silica for 24 h, it underwent [3,3] 

sigmatropic rearrangement reaction to produce curcumin 61 in a low yield (9%).
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The compound was spectroscopically characterised. Its :H NMR spectrum 

showed well defined peaks. Noticeable features in the proton magnetic spectrum 

of 61 were the resonances of the H-4 proton of the enolic system at 8 5.7 as a 

singlet, the benzofuran H-3’ proton as singlet at 8 6.0, the two a  and (3 protons of 

the enone system at 8 6.5 and 8 7.6 as doublets (J = 15.8 Hz) indicative of trans 

configuration of the double bonds.

3.1.4 Attempted synthesis of pyridine and quinoline curcuminoids 63, 65 and 

69

Aim : It was next decided to synthesise some nitrogen containing heterocyclic 

curcuminoids and we chose to make pyridine and quinoline derivatives for two 

reasons. Firstly, pyridine and the related quinoline ring systems occur widely in 

natural products such as for example nicotine and quinine the anti-malarial 

compounds. Secondly, for curcumin synthesis by the so-called Pabon’s method144 

the basic starting material required is an aldehyde and the three aldehydes of 

pyridine namely pyridine-2-carboxaldehyde, pyridine-3-carboxaldehyde and 

pyridine-4-carboxaldehyde are all commercially available. Literature search had

1 6Qrevealed that some pyridine curcuminoids had previously been synthesised.

Hence it was decided to make the curcuminoids 63, 65 and 69 shown below in 

figure 3.8.
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O'
CHO

62

( i )B 20 3
(ii) tri-j,ec--(BuO )3B
(iii) n-BuNH2 
 X ►-
(iv) E tO A c/ 0 .4M  HC1

(v)NaHC03 aq 
PH ? O OH

.NL .C H O

O
64

(i) B20 3
(ii) tri-sec-(BuO )3B
(iii) n-BuNH2 
 X ►-
(iv) EtO A c/ 0.4M H C1

(v) NaHC03 aq 
PH 7 O OH

(i) B20 3 
CHO (ii) tri-sec-(BuO )3B

(iii) n-BuNH2 
 X— ►
(iv) EtO A c/ 0.4M  HC1
(v) NaHC03 aq 

PH ?

Figure 3.8 : Attempted synthesis of pyridine curcuminoids 63 and 65 and
quinoline curcuminoid 69.

Surprisingly, the slightly brown coloured solid product that was isolated showed 

none of the characteristic doublets of the curcumin enone system in the aromatic 

region 6.5-8.0 ppm. Normally, the curcumin compounds have an intense colour of 

some description and that was also absent in compounds 63 and 65. It was next 

decided to synthesise the curcumin 69 from the starting aldehyde 68 which was 

made from 4,7-dichloroquinoline by nucleophilic substitution reaction with 

methyl magnesium bromide to give the alkylated product 67 and subsequent 

oxidation of 67 with selenium dioxide to yield 68 as shown in figure 3.9.
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1. MeMgBr/ ether

2.NH4C1 aq p dioxane/ A

CH.

Cl Cl
66

Figure 3.9 : Synthesis of 7-chloroquinoline-4-carboxyaldehyde 68.

The colour of the starting aldehyde was light brown and the product from the 

reaction of 68 with boric acid/borate complex after work up was intense dark 

brown which was a healthy sign. However, inspection of the !H NMR spectrum of 

the dark brown solid revealed once again that it was not the anticipated 

curcuminoid 69 due to the lack of the characteristic enone doublets.

It was envisaged that perhaps the nitrogen atom of the pyridine ring was 

complexing with the electron deficient boron atom of the tri-sec-butyl borate and 

boric acid complex and the synthesis of the curcuminoids 63 and 65 were repeated 

using a molar excess of the boric acid/borate complex. The experiments had the 

same outcome and hence the compounds 63 and 65 could not be obtained. These 

results were perplexing and it appeared that the synthesis of the nitrogen derived
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1 CQcurcummoids 63, 65 and 69 could not be established despite literature report 

suggesting otherwise for pyridine curcuminoid.

3.1.5 Attempted syntheses in search of new synthetic protocol for curcumin 

formation

"Aim : In the light of failures of some of the reactions and ^ei^owyields^for the 

obtainable product curcuminoids it was decided to search for new methods for 

making curcumins. Retrosynthetically, it was envisaged that by employing the 

I Claisen condensation reaction it should be possible to construct curcumins as

( shshown in figure\3J0a^

The retrosynthetic rationale suggests that the Claisen-Schmidt condensation1̂  

reaction can be used to construct the curcumin skeleton. Thus, benzylideneacetone 

71a or furfurylidene 71b obtainable by the Claisen-Schmidt condensation of 

acetone with benzaldehyde can be reacted with ethyl cinnamate 72 in the presence 

of a strong base such as sodium hydride or potassium t-butoxide in a suitable non- 

protic solvent to give the curcumin 73a (figure 3.10b). The mechanism involved 

in this reaction is shown in figure 3.10c. The biggest advantage of this method 

would be that its success would enable non-symmetrical curcuminoids to be 

synthesised. To test the validity of this new synthetic strategy benzylideneacetone 

71a190 and furfurylidene-acetone191 71b were first synthesised by established 

procedures in the literature using the Claisen-Schmidt reaction156 as shown in 

scheme 2.17 (chapter 2).



o o
Curcumin 73a

o

CHO Vo
70a

O synthon

X = Leaving group 
e.g. OMe, OEt, Cl

Figure 3.10a : Retrosyntheic analysis of curcumin.

Hexane

Figure 3.10b : New synthesis of curcumin based on retrosynthetic analysis.
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NaH

71a ® hexane

0 0© ©
Na

©
H,0

s>
ethyl cinnamate

0 0

0  OH

Figure 3.10c : Mechanism involved in the new synthetic pathway of curcumin
formation.
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1 09The Claisen condensation (acetoacetic ester condensation) is a base-catalyzed 

condensation of an ester containing an a-hydrogen atom with a molecule of the 

same ester or a different one to give p-keto esters as shown in figure 3.11.

The synthetic procedure for the Claisen condensation of the arylidene-acetones 

71a and 71b with ethyl cinnamate 72 was adopted from the similar procedure 

reported for the formation of dibenzoylmethane from acetophenone and ethyl

1Q9benzoate in hexane using sodium hydride as the base. Thus when a solution of 

71b with a molar excess of ethyl cinnamate 72 in dry hexane was slowly added to 

a refluxing stirred suspension of sodium hydride (50% excess) in dry hexane a 

yellowish brown solid started to precipitate. After acidification and aqueous work­

up the mixture yielded a yellowish-brown solid as the reaction product which was 

spectroscopically analysed. The TLC [petroleum ether : EtOAc, 9:lv/v] showed 

the product had different R f  to the R f  of the starting furfurylidene-acetone 71b but 

the product appeared as a streak indicating impurities. The IR spectrum of 73b 

showed a very strong absorption at 1716 cm'1 and minor peaks at 1671 and 1637 

cm*1. The NMR spectrum of product 73b showed some minor evidence for 

curcuminoid formation as the typical doublets associated with the a,p-unsaturated 

enone protons was present amongst many complicated peaks in the aromatic 

region. The electron impact mass spectrum of the product showed one peak 

corresponding to m/z 265 (28%, M-l). However, there were many other peaks of 

which two interesting peaks were m/z 396 (10%) and m/z 525 (24%, M -l) 

possibly corresponding to the structures 83 and 84 shown in (figure 3.12).
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E‘0  © H
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©
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O
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0' Et.
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©
Na

i
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NaO O
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©
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0 O
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OH O
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O 0

.Et
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Figure 3.11: The mechanism of acetoacetic ester condensation reaction.
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The reaction of benzylidene-acetone 71a with ethyl cinnamate 72 under similar 

conditions produced creamy coloured solid which on TLC was a mixture of 

products and inspection by lH NMR spectroscopy showed a complicated picture 

with some evidence for the curcuminoid 73a as the typical doublets associated 

with the a, |3-unsaturated enone protons were slightly evident. This was supported 

by the El mass spectrum of crude product 73a which showed many peaks of 

which one peak corresponded to the required molecular structure 73a of m/z 275 

(19%, M-l).

o o
O OH

m/z 266

73b

m/z 396

83

84

Figure 3.12 : Postulated structures of the compounds found in EIMS spectrum of 
Claisen condensation reaction of furfurylidene-acetone and ethyl cinnamate.

There was some evidence for the formation of curcuminoids by the Claisen 

condensation reaction. In future, it may be possible to investigate newer reaction 

r  conditions and may be other reagent such as TiCLt194 that could be used to bring 

] about the success of this Aldol type reaction in a better and more cleaner way as

Vshown in figure 3.13.

\ 0 &
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85 OSiM e3

Figure 3.13 : Postulated use of TiCU in Aldol type reaction for curcumin
synthesis.
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P a r t B

Pharmacology Section

3.2 Results

3.2.1 Effects of drugs on cell viability (The MTS assay)

Along with all the drug samples at 10, 50 and 100 pM concentrations, each 

experimental design was consisted o f four controls i.e. cells alone or untreated 

cells, the solvent DMSO and the stimulants LPS and or MS to validate the results. 

In all experiments two comparisons were made. In the first comparison (shown 

by*) all drugs were compared to the DMSO (0.3% v/v) control, and in the second 

comparison, the drugs were compared to the curcumin 1 control (shown by *).

3.2.1.1 Effects o f curcumin 1, and nitric oxide donating curcuminoids 51a-d 

on the viability o f THP-1 cells

Using the MTS reduction method, the cytotoxic effects o f curcumin 1 and its 

nitroxybutyl derivatives 51a-d were studied (figure 3.14). THP-1 cells were 

treated as described in section 2.3.6.1. Compared to the cells alone control, the 

DMSO (0.3% v/v) did not show any cytotoxic effects whereas LPS also did not 

significantly affect the cell viability. Except curcumin 1 (which was cytotoxic at 

50 and 100 pM), all drugs increased the cell proliferation in concentration 

dependent manner compared to the DMSO control (shown by *). At the 

concentration o f 10 pM, all drugs including curcumin 1, non-significantly 

increased the cell proliferation. At 50 pM  and 100 pM  all drugs significantly 

increased the cell viability, except 51c where the effect appeared to be non­

significant at 50 pM, however was significant at 100 pM.
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When compared with curcumin 1, (shown by all drugs at 10 pM were as non­

toxic as curcumin 1, whereas at 50 and 100 pM the synthetic nitric oxide donating 

analogues 51a-d were significantly non-toxic to the cells compared to the 

curcumin 1 control.

168



O O £>
t -  L f l  r -
□ □ O

* * 1
*• #

-------------------------
----------------------

-------

J------------------

—

o
— i—

C D o O o oo a a O o —
in o in o in o
CN (N V- T~ o o

%'Q

\

uiu osfr '<& a^UBqjosqv ueapj

b o  <d  P

bjj Qi

3P o

O CD
O

P
<Dco
33

PCD
>

co C/3
cd >
£ CO

t o
bD
P

<D-i->
S-4

P
o (D
o P

. P 4—>
i4-»co

P
O

O
P h P

o
p CO
cd£ • cCdP
p P<CJM p1J-H O
0) o
>
o
P

CD
P4—>o CO
<D4->
o

U

co p 3<D 5-H
1 3 P 4—>P

* o
o

1 3 4-3Cp 3 pCO o • fH
p

£
jr t i
’ p pQ
M 5-4

’co
CO

p
P o
P cd CO
CD >
£
o

p iCD5-4
CO
bfl

CD PH
c S 3’ co

5-4
P

•I T
CD

O
O

P4-<
C4-I1 3 CO O

o
cd
£ P

OCOp mi
p o c 3
o o P h
p
5-4 V a0

, o CD 0
p -l J 3 CD
4—*on 3s .

P4-J
CD CO4-> P h <D 4—>

£ CD
O
P

CD CD
P P
cd „

&
o

3■
O ’ p ' o5-45̂—( 

" o
_ b D 4-4»

P

169



3.2.1.2 Effects o f curcumin 1 and thiophene curcuminoids 47a-d on the viability 

o f THP-1 cells

Figure 3.15 shows the effects o f curcumin 1 and its thiophene analogues 47a-d on 

the viability o f THP-1 cells using the MTS assay. Treatment was applied to the 

cells as described in section 2.3.6.1. The controls DMSO and LPS did not have 

any cytotoxic effects at the concentrations used and showed the same viability as 

the cells alone control. Compared with DMSO control (shown by *), the parent 

drug curcumin 1, thiophene curcuminoids 47b and 47c significantly decreased 

the cellular viability in concentration dependent manner. Drug 47a was non- 

cytotoxic at all the three concentrations studied i.e. (10, 50 and lOOpM), whereas, 

47d was cytotoxic at lOOpM only. All drugs including curcumin 1 were non-toxic 

at lOpM.

In comparison with parent drug curcumin 1 (shown by *), drugs 47a and 47d 

were as non-cytotoxic as curcumin at lOpM, whereas 47b and 47c, were more 

cytotoxic than curcumin. At 50 and lOOpM all drugs were significantly non- 

cytotoxic than curcumin 1 except 47c at lOOpM.
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3.2.1.3 Effects o f drugs curcumin 1 and thiophene curcuminoids 47a-d on the 

viability o f CACO-2 cells

Cytotoxic effects o f the synthesised curcumin land  its thiophene analogues 47a-d 

were studied in CACO-2 cells using the MTS assay. CACO-2 cells were treated 

as described in section 2.3.9.1. As shown in figure 3.16 the DMSO and the LPS 

controls did not show any cytotoxic effects compared to the cell alone control, 

however, L-methionine sulfoximine (MS) significantly reduced the cell viability. 

In comparison to the DMSO control (shown by *), curcumin 1, drugs 47c and 42d 

decreased the cell viability in concentration dependent manner. At the 

concentration o f lOpM all drugs did not show any cytotoxic effects. At 50pM , no 

cytotoxic effects were observed with 47b and 47d, however, curcumin 1, 47a and 

47c showed a significant decrease in cell viability. At lOOpM, curcumin 1 and 47c 

significantly reduced the cell viability.

When compared to the curcumin 1 control (shown by *), at 10 pM  concentration 

all drugs appeared to be as non-toxic to CACO-2 cells as curcumin 1 itself, 

however, at 50 pM all drugs showed non-significant cytotoxic effects similar to 

curcumin 1. All drugs were less cytotoxic than curcumin 1 at lOOpM except 47c 

where the effect was non-significant.
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3.2.1.4 Effects o f hydroxypropyl-y-cyclodextrin (HP-y-CD) and 47a-d/ HP-y- 

CD on the viability o f THP-1 cells

Figure 3.17 shows the viability o f THP-1 cells treated with free hydroxypropyl- 

y-cyclodextrin (HP-y-CD) and the drug/HP-y-CD (section 2.3.6.1.). The viability 

was assessed using the MTS assay. All o f the drugs/HP-y-CD complexes were 

less cytotoxic than the free HP-y-CD, and increased the cell viability in 

concentration dependent manner.
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3.2.2 The nitric oxide (NO) production assay (Griess reagent system)

3.2.2.1 Standard curve fo r  nitric oxide (NO)

Standard curves for the estimation o f nitrite (NO2") was obtained by diluting the 

sodium nitrite standard in sample matrix to the concentration range o f 0 to 100 

pM according to the procedure described in section 2.5.3.1.

y=0.0057x+0.0544 
R2= 0.9997

.700

.600

.500

.400

.300

.200

.100

.000
20 40 100 120

[Nitrite] uM

Figure 3.18: A typical nitrite standard curve using nitrite standard.

Nitrite standard curves were generated by plotting the mean absorbance value o f 
each concentration o f the sodium nitrite standard as a function o f Y-axis with 
nitrite concentration as a function o f X-axis. The equation shown on the graph 
was used to calculate the unknown concentrations o f NO in experimental samples 
or the controls.
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3.2.2.2 Measurement o f nitrite concentration in the cell supernatants o f THP-1 

cells treated with curcumin 1 and nitric oxide donating curcuminoids 51a-d

Cell supernatants collected from the THP-1 cells treated according to the method 

described in section 2.3.6.1 were used. Figure 3.19a, shows a non-significant 

decrease in nitrite production with the DMSO control (0.3% v/v) compared to the 

cells alone control. Compared to the DMSO control (shown by *) a concentration 

dependent increase in the production o f nitrite was observed with drugs 51a and 

51d at all the three concentrations i.e. 10, 50 and 100 pM, however the effect was 

significant at 50 and 100 pM. Curcumin 1, and drug 51c at 10, 50 and 100 pM 

concentration non-significantly affect the nitrite production. A significant increase 

in the nitrite production was observed with drug 51b at 10 and 100 pM 

concentrations, however, at 50 pM a non-significant effect on nitrite production 

was observed.

In comparison with curcumin 1 (shown by *), at 10 pM, only drug 51b at 10 pM 

showed a significant increase in nitrite production.
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3.2.2.3 Measurement o f nitrite concentration in the cell supernatants o f THP-1 

cells treated with curcumin 1 and nitric oxide donating curcuminoids 51a-d 

stimulated with LPS

Figure 3.19b shows the effects o f the synthesised curcumin 1 and its nitric oxide 

donating derivatives 51a-d on nitric oxide (NO) production in the presence of 

LPS. THP-1 cells were stimulated according to the method described in section

2.3.6.1 and the cell supernatants were tested. In comparison to the cells alone 

control, DMSO + LPS control significantly reduced the nitrite production, 

whereas a non-significant effect in nitrite production was observed with the LPS 

control. When compared with the DMSO + LPS control (shown 

by *) a concentration dependent increase in nitrite production was observed with 

51a, at 50 and 100 pM however with 51b the effect was equally significant at all 

the three concentrations studied. On the other hand, with 51c the effect was only 

found to be significant at 100 pM and with 51d a significant increase in nitrite 

production was observed at 50 and 100 pM.

In comparison with curcumin 1 control (shown by *), only drug 51b showed a 

significant effect at 10 pM.

179



m
CL

(ft
Q.

tfi
CL

=LO OLf)□

=L
oo

#

f —

$

ifP

f l

(̂ P

AV

A

V
A

£

•<fe

a , ° >

\
Ĉ>
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3.2.3 Enzyme-linked immunosorbent assay (ELISA)

3.2.3.1 Standard curve fo r  IL -lp

A typical standard curve, figure 3.20 for the estimation o f IL -ip  in the cell 

supernatants o f THP-1 cells, using the standard recombinant human IL -ip  was 

obtained according to the procedure described in section 2.6.2.2. The IL -lp  

concentration limit was 0-250 pg/mL, however, all experimental samples (except 

LPS stimulated control) all showed concentration below 62.5 pg/mL and fall 

within the linear limit o f 80 pg/mL the standard curve shown below has been 

plotted at the limit o f 80 pg/mL. The points at 125 and 250 pg/mL have not been 

shown as at these points the saturation with the capture antibody was observed.

y  =  0 . 0 1 5 x  +  0 . 0 1 0 9  

R 2  =  0 . 9 9 8 8

0 . 7  -  

0.6 -  

0 . 5  -  

0 . 4  -

0.2  -

20 4 0

[ H u m a n  IL-1] p g / m L

6 0 8 0

Figure 3.20 : A typical standard curve used for the quantification o f IL-1 p. 
in cell supernatants o f THP-1 cells.

Standard curves were generated by plotting the corrected average optical density
of each concentration o f the IL -lp  standard as a function o f Y-axis with IL -lp
concentration as a function of X-axis.
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3.2.3.2 Effects o f curumin 1 and thiophene curcuminoids 47a-d on the 

production o f IL -lp  in cell supernatants o f THP-1 cells

As shown in figure 3.21, the controls i.e. cells alone and the DMSO (0.3% v/v), as 

well as all experimental samples i.e. the drugs (alone) did not have any detectable 

IL -lp  in cell supernatants. A significant increase in the production o f IL -lp  was 

observed with the LPS control compared to the cells alone control and DMSO did 

not affect this IL -lp  production as shown by DMSO + LPS control.

In LPS stimulated cells, compared with DMSO + LPS control, curcumin 1 

significantly reduced the production o f IL -lp  at its non-cytotoxic concentration of 

10 pM, however no detectable IL -lp  production was obtained at 50 and 100 pM, 

which could be due to the cytotoxic effects o f 1 at these concentrations. On the 

other hand drugs 47a at all the three concentrations studied i.e. 10, 50 and 100 pM 

reduced the IL-1 P production in concentration dependent manner however the 

effect was significant at 50 and 100 pM. Drug 47d, was effective in reducing the 

IL -lp  production in concentration dependent manner, at its non-cytotoxic 

concentrations o f 10 and 50 pM, whereas, at 100 pM the effect could be due to the 

reduced cell viability. Drugs 47b and 47c at their non-cytotoxic concentration o f 

10 pM also reduced the IL -lp  production.

In comparison with curcumin 1 control at, 10 pM  all drugs at 10 pM  were as 

effective as curcumin 1, however the effect was non-significant.
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3.23.3 Standard curve fo r  TNF-a

A typical standard curve for the estimation o f TNF-a in the cell supernatants o f 

THP-1 cells, using the standard recombinant human TNF-a is shown in figure 

3.22. The standard curves were obtained according to the procedure described in 

section 2.6.2.2. The TNF-a concentration limit was 0-1000 pg/mL, however, all 

experimental samples (except LPS stimulated control) showed concentration 

below 250 pg/mL and fall within the linear limit o f 300 pg/mL. The standard 

curves were plotted at the limit o f 300 pg/mL. The points at 500 and 1000 pg/mL 

have not been shown as at these points the saturation with the capture antibody 

was observed.

1.200  - | y = 0 .0 0 4 2 x  + 0 .0 3 2 4  
R2 = 0 .9 9 5 41.000 -

0 .8 0 0  -

0 .6 0 0

0 .4 0 0  -

0 .2 0 0  -

0.000
100 200 

[TNF-alpha] pg/mL
3 0 0

Figure 3.22 : A typical standard curves used for the quantification o f TN F-a in
cell supernatants o f THP-1 cells.

Standard curves were generated by plotting the corrected average optical density
o f each concentration o f the TNF-a standard as a function o f Y-axis with TN F-a
concentration as a function o f X-axis.
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3.2.3.4 Effects o f curumin 1 and thiophene curcuminoids 47a-d on the production 

o f TNF-a in cell supernatants o f THP-1 cells

Figure 3.23 shows the effects o f the drugs curcumin 1 and thiophene curcuminoids 

47a-d on the production of TNF-a in THP-1 treated as described in section 2.3.6.1. 

The controls i.e. cells alone and the DMSO (0.3% v/v), as well as all experimental 

samples i.e. the drugs (alone) did not produce any detectable TNF-a. A significant 

(5000 pg/ml) increase in the production o f TNF-a was observed with the DMSO + 

LPS control compared to the cells alone control. All experimental samples i.e. drugs 

in the presence of LPS did not significantly reduce the production o f TNF-a 

compared with the DMSO + LPS control (shown by *), except 47c which at 100 pM 

concentration significantly reduced the TNF-a production, however this effect was 

due to the reduced cell viability and not due to the drug's own effect.

When compared with the curcumin 1 control, at lOpM, all drugs increased the TNF-a 

production, however the effect was non-significant.
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3.2.3.5 Standard curve for CXCL-8

A typical standard curve, figure 3.24 for the estimation of CXCL-8 in cell 

supernatants o f CACO-2 cells using the standard recombinant human IL-8 or CXCL- 

8 was obtained according to the procedure described in section 2.6.2.5.

The full concentration range o f the standard curve for CXCL-8 estimation was 0- 

2000 pg/mL, however at the range o f 500 to 2000 pg/mL the saturation with the 

capture antibody was observed. Since all experimental samples as well as controls 

showed concentration below 2000 pg/mL, and fall within the linear limit of 150 

pg/mL the standard curve (figure 3.24) has been plotted at the limit o f 250 pg/mL 

and been used for the determination of the concentrations in the experimental 

samples.

y  =  0 .0 0 4 2 X  +  0 .0 4 3 6  
R 2 =  0 .9 9 1

0.6
0.4

0.2

100 150
[ C X C L - 8 ]  p g / m L

200 2 5 0 300

Figure 3.24: Typical standard curves used for the quantification o f CXCL-8 in cell
supernatants o f CACO-2 cells.

Standard curves were generated by plotting the corrected average optical density of
each concentration of the CXCL-8 standard as a function o f Y-axis with CXCL-8
concentration as a function o f X-axis.
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3.2.3.6 Effects o f drugs curcumin 1 and thiophene curcuminoids 47a-d on the 

production o f CXCL-8 in cell supernatants o f CACO-2 cells

The effects o f the parent drug, curcumin 1, and its thiophene curcuminoids 47a-d on 

the production o f CXCL-8 in the cell supernatants o f CACO-2 cells are shown in 

figure 3.25. CACO-2 cells were treated as described in section 2.3.9.2. The controls 

i.e. cells alone and the DMSO (0.3% v/v) as well as the experimental samples i.e. 

drugs alone did not show detectable CXCL-8 in cell supemants. A significant 

increase in the production o f CXCL-8 was observed with DMSO+LPS+MS control 

compared to the LPS control.

In drug+MS+LPS stimulated cells, compared to the DMSO+LPS+MS (shown by *), 

curcumin 1 at its non-cytotoxic concentration o f 10 pM did not inhibit the production 

of CXCL-8 and the thiophene curucminoids 47a-d (10 pM) also did not significantly 

affect the CXCL-8 production. At 50 pM, drugs 47b and 47d significantly reduced 

the CXCL-8 production whereas at 100 pM drugs 47a, 47b and 47d significantly 

reduced the CXCL-8 production. The reduction in CXCL-8 production by curcumin 1 

and 47c at 50 and 100 pM could be the result o f the reduced cell viability.

In comparison to curcumin 1 (shown by *) at its non-cytotoxic concentration o f 10 

pM, only drug 47c (10 pM) significantly reduced the CXCL-8 production.
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3.3 Discussion

Overall strategy

In the present study, two different cancer cell lines, the human monocytic leukaemia, 

THP-1 cells and the human Caucasian colon adenocarcinoma-2, CACO-2 cells were 

used to evaluate :

® The cytotoxicity o f synthesised curcumin l,its thiophene derivatives 

47a-d and nitric oxide donating derivatives 51a-d .

• Their effects on the production o f nitric oxide and pro-inflammatory

cytokines (IL-1(3, TNF-a and CXCL-8), to assess whether these compounds 

possess anti-inflammatory properties.

® The cytotoxic effects of thiophene derivatives 47a-d complexed with HP-y- 

CD were also assessed using the THP-1 cells.

THP-1 monocytic cell line (figure 3.26a) was selected as an in vitro model which has 

been previously reported to be responsible for the production of pro-inflammatory 

cytokines (IL-1, TN F-a)193 and nitric oxide N O 196, whereas CACO-2 cells (figure 

3.26b) were used as a model cell-line, previously reported to be responsible for the 

production of pro-inflammatory cytokine CXCL-8.141 Also, CACO-2 cells is a well-

• • + 1 0 7established model to study the absorption and related mechanisms of the drugs 

allowing oral administration. Since commercially available curcumin consists o f a 

mixture of naturally occurring curcuminoids198 with curcumin 1 as a main 

constituent; pure curcumin 1 was synthesised from vaniline.
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Figure 3.26a : The human monocytic leukaemia, THP-1 cells.

Figure 3.26b : The human Caucasian colon adenocarcinoma-2, CACO-2 cells.
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3.3.1 Cytotoxic effects

The aims of the cytotoxicity or viability (MTS) assays were:

® To determine cytotoxic effects of curcumin 1, its nitric oxide donating 

derivatives 51a-d, thiophene derivatives 47a-d and HP-y-CD complexed 

thiophene derivatives 47a-d in order to ensure that the pharmacological 

effects exhibited by these drugs on the production of the reactive oxygen 

species, nitric oxide NO, pro-inflammatory cytokines (IL-ip, TNF-a), 

chemokine (CXCL-8) were not due to reduced cell viability.

• To determine, whether the synthesised curcuminoids are more cytotoxic than 

the lead compound, curcumin 1 or not.

3.3.2 The Griess reagent assay or the ELISA

After evaluating the cytotoxic effects of the drugs, the reactive oxygen species nitric 

oxide NO released by the nitric oxide donating curcuminoids 51a-d was measured 

using the Griess reagent assay. ELISA assays were undertaken to evaluate the effects 

of the synthesised thiophene curcuminoids 47a-d on the production of pro- 

inflammatory cytokines, IL-ip, TNF-a and CXCL-8. All experiments were aimed to 

evaluate:

• The effects of the drugs alone (without the stimulant LPS) on the production 

of nitric oxide NO or the respective cytokine (IL-1 p, TNF-a and CXCL-8) to
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ensure that the drugs do not produce the NO or the cytokines being 

investigated.

© The effects of the drugs in cells stimulated with LPS. Cells were stimulated 

with LPS to mimic an inflammatory situation.

3.3.2.1 Cytotoxic and nitric oxide donating effects o f curcumin 1 and nitric oxide 

donating curcuminoids 51a-d in THP-1 cells

The nitric oxide donating curcuminoids 51a-d were synthesised by adding a 

nitroxybutyl moiety, which is covalently attached to the lead compound curcumin 1. 

At first, cytotoxic effects of curcumin 1 and the nitric oxide donating curcuminoids 

alone were assessed compared with the DMSO control (as shown by *), and our 

findings shown in figure 3.14 clearly demonstrated that all the nitric oxide donating 

curcuminoids 51a-d increased the cell viability or resulted in cell proliferation in 

concentration-dependent manner, and are non-toxic to THP-1 cells. Based on these 

findings the nitric oxide donating curcuminoids were next compared with curcumin 1 

(shown by *) and it appeared from this comparison that at 1 OpM, all drugs were as 

non-toxic as curcumin 1 whereas at 50 and lOOpM, the nitric oxide donating drugs 

were significantly more non-toxic than curcurmin 1.

From the structure-activity relationships, it appears that the replacement of both the 

phenolic hydrogens o f curcumin 1 with the nitroxybutyl ether moiety, is in fact 

responsible for the enhanced non-cytotoxic property o f these drugs. On the other 

hand, the presence o f the methoxy group (-OCH3) at the meta positions o f the phenyl
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rings (as in found in drug 1 and 51d does not seem to be crucial, regarding the 

cytotoxic effects as it is evident that drugs 51a-c (which do not possess any -OCH3 

groups) were as non-cytotoxic as 51d even at 50 and lOOpM. Furthermore, change in 

the position of the nitroxybutyl moiety (as shown in the structures of the drugs 51a-c) 

also did not have any effect on cell viability.

In summary, our results show that all of the nitroxybutyl curcuminoids are non-toxic 

to THP-1 cells and are less cytotoxic than curcumin 1 at 10, 50 and lOOpM 

concentrations and therefore can serve as potential nitric oxide donating NS AIDs in 

future.

Curcumin 1 possesses anti-proliferative activities against various tumor cells in vitro 

and has been reported to be a potent inhibitor of tumor initiation in vivo}99 Curcumin 

1 exerts its chemopreventive effects and inhibit tumor promotion via suppressing a 

number of key elements in cellular signal transduction pathways, predominantly, 

phosphorylation catalyzed by protein kinases, c-Jun/AP-1 activation and 

prostaglandin biosynthesis at a concentration range of 10 to lOOpM.199 In vitro, the 

main mechanism by which curcumin 1 blocks or suppresses the proliferation of a 

wide variety of cancer cells including leukaemia, colon carcinoma, breast carcinoma 

and other tumor cell types, is through the induction of apoptosis.130 When compared 

with the DMSO control (shown as *), our findings are in complete agreement with 

the previous studies200,201,202 showing that the treatment of THP-1 cells for 24 h with 

curcumin 1 decreases the cell viability in concentration dependent manner. Figure
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3.27 shows the effects of curcumin 1 on signal transduction pathways involved in 

apoptosis and cellular proliferation.

Describing the mechanism and signalling pathways involved in curcumin 1 induced 

cytotoxicity in THP-1 cells, Cheng et al202 have recently shown that, in THP-1 cells, 

the curcumin 1 induced cytotoxic effects are mediated through apoptosis 

(programmed cell death) in a concentration and time dependent manner. Using flow 

cytometry (FCM) and mouse anti-human fluorescein isothiocyanate (FITC)- 

conjugated CD95 monoclonal antibody, the authors of the study have detected a 3- 

fold increase in the levels of cell surface protein Fas. Western blot analysis indicated 

that active caspase-8 and caspase-9 expression of myelocytic leukaemia cell lines 

increased after treatment with 25 pM curcumin 1 for 24 h. These results indicated that 

curcumin 1 induced Fas expression in myelocytic leukaemia cells followed by 

intracellular Fas-associated death domain (FADD) clustering and its structure change, 

which linked with death effect domain (DED) of caspase-8 and initiated the caspase-9 

cascade reaction, thereby confirming the role of the death receptor and mitochondria 

in curcumin induced apoptosis in myelocytic leukaemia cell line or THP-1 cells. 

Generally, in vitro in leukaemia cells, e.g. T-cell leukaemia cell lines, curcumin 1 has 

been shown to suppress the growth in a dose-dependent manner via various signalling 

mechanisms. Studying the mechanism of inhibition of cell proliferation by curcumin 

1, Hussain et al200 investigated the effect of curcumin 1 on the activation of apoptotic 

pathway at the concentration range of 10,20, 40 and 80pM for 24 h using four T-cell 

acute lymphoblastic leukaemia (T-ALL) malignant cells including CEM, HSB2,
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Jurkat and Molt-4. The anti-proliferative effects of curcumin 1 were determined using 

the MTT assay, whereas, the TUNEL assay and assay for cytochrome c release were 

performed to measure apoptosis. The authors of the study have demonstrated that 

curcumin 1 causes a concentration dependent suppression of cell proliferation via 

suppressing the constitutively activated targets of P13'-kinase proteins (AKT, FOXO 

and GSK3) through de-phosphorylation or inactivation. Curcumin inhibits 1 the AKT 

phosphorylation at Ser473 and Thr308 amino acids, accompanied with the release of 

cytochrome c from mitochondria into the cytoplasm, suggesting a link between 

mitochondria and curcumin 1 induced cell growth inhibition of T cells. Curcumin 1 

induced release of cytochrome c leads to the activation of the downstream caspases-9 

and caspases-3 and the down-regulation of survival proteins including caspase- 

inhibitor of apoptosis protein (cIAPl), X-linked inhibitor of apoptosis protein (XIAP) 

and survivin that result in the cell death. Another mechanism involved in curcumin 1 

induced cell growth has been proposed by Rajasingh et al201, who have demonstrated 

that treatment with curcumin 1 induced a dose dependent decrease in the Janus family 

of kinase (JAK) and signal transducer and activator of transcription (STAT) 

phophorylation, resulting in the induction of growth-arrest and apoptosis in T- cell 

leukaemias. Using the MTT assay, the authors of the study have shown that in human 

T cell lymphotropic/leukaemia virus type 1 (HTLV-1) transformed leukaemia cell 

lines MT-2, Hut-102 and SLB-1, curcumin 1 at the concentration range of 0, 1,5 and 

10 pg/mL inhibits the growth in a concentration dependent manner. In order to 

confirm that curcumin 1 mediated cytotoxicity occurs through apoptosis, Rajasingh et 

al201, have demonstrated that in agarose gel electrophoresis and in TUNEL assay, a
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dose-dependent increase in DNA fragmentation following treatment with curcumin 1 

for 48 h occurs. Using the immunoprecipitation method they have further shown that 

curcumin 1 blocks the constitutive phosphorylation of JAK3, TYK2, STAT3 and 

STAT5A growth signaling proteins within 30 minutes in a dose dependent manner. In 

MT-2 and HuT-102 cell lines, curcumin 1 at lOpg/mL significantly reduced the 

phosphorylation of STAT5A protein, which was completely inhibited after treatment 

with 25pg/mL. In contrast to this, in SLB-1 cells a partial inhibition of STAT5A was 

observed. Treatment with curcumin 1 also resulted in a dose-dependent decrease in 

the consititutive phosphorylation of STAT3 in MT-2 and SLB-1 cells. While at 5 and 

lOpg/mL curcumin 1 resulted in partial inhibition, treatment with 2 5 pg/mL curcumin 

1 completely inhibited STAT3 phosphorylation. Similarly, in the case of TYK2 

proteins, a partial inhibition was observed at lOpg/mL curcumin 1 which completely 

disappeared after treatment with 25pg/mL, however, with JAK3 proteins; curcumin 1 

induced partial inhibition of the phosphorylation at lOpg/mL, which completely 

disappeared after treatment with 25pg/mL for 30 minutes in MT-2 and SLB-1 cells, 

whereas, the HuT-102 cells expressed no detectable level of JAK3 phosphoproteins. 

These data suggest the role of JAK-STAT pathway as an effective target in the 

treatment of T cell leukaemia.
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Figure 3.27: Signal transduction pathways affected by curcumin 1 treatment leading 
(a) to controlled cell death or (b) to cellular proliferation and survival.20-5
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Nitric oxide NO exhibits a dual effect on cell viability; as various studies have shown 

that it can be cytotoxic as well as cytoprotective.204 Based on our findings, the 

cytoprotective effects of NO are the main focus of this discussion.

NO-donating aspirin (9, figure 1.8A) is chosen as an example to help understand the 

possible mechanism that could be involved in the cytoprotective effects of these 

nitroxy butyl curcuminoids 51a-d. The intracellular donation of NO followed by the 

regulation of respiratory chain, coupled with an inhibition of the activation on pro- 

apoptotic caspases205 and the prevention of the opening of the permeation transition
oo

pore of the cell membrane to inhibit cytochrome c release are the various events that 

have been reported to explain the cytoprotective effects of 9. Using a mitochondria- 

dependent model of apostosis in human umbilical endothelial cells (HUVEC), 

Fiorucci et al88 have demonstrated that 9 modulates cell respiration and mitochondrial 

function and protects cells against death caused by staurosporine 25 (an apoptotic 

agent, figure 1.12) by modulating intracellular mediators associated in the apoptotic 

cascade (figure 3.29). They first confirmed that 9 generates NO and results in 

hyperpolarization of the mitochondrial membrane potential (A\)/m). A time and 

concentration-dependent intracellular formation of NO was recorded in cells treated 

with 9 at l-500pM or 10-100pM using the confocal microscope and DAF-DA 87 

(figure 3.28). The highest concentrations of NO generated were observed in specific 

sub-cellular compartments localized near the plasma membrane. These results were 

further validated by the findings that no significant increase in DAF-DA 87 related 

fluorescence was observed in cells exposed to aspirin. Flow cytometry was used to
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measure the hyperpolarization of the mitochondrial membrane potential (Av|/m). In 

the absence of apoptogenic stimuli, a concentration-dependent hyperpolarization was 

observed, however, exposure of the HUVEC cells to staurosporine 25 resulted in time 

and concentration-dependent decrease in cell viability which was due to the 

mitochondrial damaged and resulted in the early collapse of the A\)/m whereas, 

addition of 9 protected the mitochondrial depolarization caused by staurosporine 25, 

as significant hyperpolarization was observed when staurosporine 25 treated cells 

were exposed to 9 (500pM). The hyperpolarization caused by 9 was due to the NO- 

releasing moiety of the molecule, as no hyperpolarization was observed with aspirin 

at 500pM. The translocation of cytochrome c from the mitochondrial inner space to 

the cytosol (the intrinsic pathway of apoptotic progression) with staurosporine 25, 

was also inhibited by 9 and not by aspirin. Exposure of staurosporine 25 treated cells 

to 9 (l-500pM) for up to 8 h also inhibited the caspase-8 and 9 activity in 

concentration-dependent manner. Collectively these findings suggest that 9 penetrates 

into the endothelial cell membrane, releases NO and dynamically regulates 

mitochondrial function that result in protection against cell injury.88
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Figure 3.28 : Chemical structure of DAF-DA 87 (diamino difluorescein diacetate).218
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Figure 3.29 : Anti-apoptotic effects o f NO-aspirin 9.86

NO-aspirin 9 inhibits death-factor-induced apoptosis (intrinsic pathway), and 
apoptosis caused by agents (staurosporine, chemotherapeutics) that directly damage 
the mitochondrion (extrinsic pathways). NO-aspirin 9 inhibits apoptosis by acting at 
different points in the apoptotic pathway, (a) NO-aspirin 9 increases the 
mitochondrial membrane potential ( i m ) .  (b,c) NO-aspirin 9 directly inhibits 
caspase activity by causing S-nitrosylation o f cysteine residues in the catalytic core of 
these enzymes. Crosslinking of cell-surface death receptors by FAS ligand (FASL) or 
TNF-x activates caspase-8. NO-aspirin 9 inhibits caspase-8 (through S'-nitrosylation), 
thereby preventing the cleavage o f pro-BID. BID is a pro-apoptotic member o f the 
BCL2 family that, once activated, causes mitochondrial membrane depolarization.
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After the evaluation of the cytotoxic effects of the drugs 51a-d, the measurement of 

their nitrite production was assessed. For this purpose, firstly, the effects of the drugs 

alone were evaluated in the cell supernatants of THP-1 cells not stimulated with LPS. 

Results presented in figure 3.19a, show that all of the nitric oxide donating 

derivatives of curcumin enhanced the nitric oxide production except drug 51c. 51a 

and 51d enhanced the production of NO in concentration dependant manner whereas 

51b showed a significant effect at 10 and 100 pM. These results were consistent with 

the cytotoxicity results and the effects exhibited by the drugs, were solely their own 

effects and were not due to the cell viability. In comparison with curcumin 1 at its 

non-cytotoxic concentration of 10 pM, only drug 51b showed a significant increase in 

nitrite production.

The release of the nitric oxide from these nitric oxide donating drugs 51a-d was 

further confirmed in the cells stimulated with LPS. Here also, the effects were similar 

as the effects of the drugs 51a and 51d in non-stimulated cells, however drug 51 b 

equally produced NO at 10, 50 and 100 pM and 51c was effective at 100 pM only.

From the structure activity relationship studies, it is appropriate to conclude that the 

replacement of the phenolic hydrogen of the curcumin 1 with nitroxybutyl ether 

moiety, significantly lowers the cytotoxic effects and results in an enhanced nitric 

oxide releasing activity.

33.2.2 Effects o f  curcumin 1 and the thiophene curcuminoids 47a-d on the 

viability and IL-1 fi production in THP-1 cells
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Using the MTS assay, the cytotoxic effects o f the synthesised curcumin 1 and its 

thiophene analogues 47a-d were studied (figure 3.15). The thiophene analogues of 

curcumin 47a-d were synthesised by replacing both the phenyl rings o f the lead 

compound 1 with aromatic sulphur containing heterocycles, the thiophene or 

substituted thiophene rings. The cytotoxicity studies reveal that curcumin 1 was non­

toxic to THP-1 cells only at lOpM concentration, however, drug 47a was non-toxic to 

the cells at all the three concentrations studied i.e. 10, 50 and lOOpM, similarly, drug 

47d was non-toxic at 10 and 50pM. On the other hand, drugs 47b and 47c were 

appeared to be non-toxic at 1 OpM only.

Regarding the structure-activity relationships, very important conclusions can be 

drawn from these studies. As shown in figure 3.15 it can be concluded that the 

replacement of both o f the phenyl rings of the curcumin 1 with that o f thiophene rings 

resulted in lesser cytotoxic effects. Among all the four thiophene curcuminoids, 

however drugs 47b and 47c which are the methyl substituted derivatives of 47a at 3 

or 5 positions respectively, show significant (P < 0.05) cytotoxic effects in 

concentration-dependent manner, rendering the methyl group being responsible for 

the cytotoxic effects. On the other hand, 47d, which is a positional isomer o f 47a, 

also appeared to be less cytotoxic than 47b and 47c, which further confirms that there 

is a possibility of methyl group to be involved in the induction of cytotoxic effects 

associated with these derivatives. In comparison with the curcumin 1 shown by *, 

only thiophene curcuminoids 47a and 47d at lOpM, were as non-cytotoxic as 

curcumin 1. On the other hand, the methyl substituted thiophenes curcuminoids 47b
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and 47c at lOpM appeared more cytotoxic than curcumin 1 therefore their role as 

anti-inflammatory drugs needs further evaluation using non-cancerous cell lines.

Since 47b and 47c at their lowest concentration (IOjjM) are more toxic than curcumin 

1, these can serve as potential anticancer drugs.

Thus although the mechanism of cell death was not investigated in this study, in the 

view of the findings described above, we can hypothesize that apoptosis could be the 

main mechanism involved in the thiophene induced cytoxic effects in THP-1 cells.

After the confirmation of the cytotoxic effects of the drugs, their effects on the 

production of pro-inflammatory cytokine IL-lp were evaluated using the ELISA 

assay.

IL-ip, a pro-inflammatory cytokine, is one of the cytokines involved in various 

inflammatory processes, and has been reported to exhibit its inflammatory effects 

through its ability to induce the expression of genes associated with inflammatory and 

autoimmune diseases, and, elevated IL-lp levels have been reported during intestinal 

inflammation in mammals, which suggest an important role of this cytokine in 

inflammatory diseases associated with the gastrointestinal tract.137 The beneficial role 

of curcumin 1 in prevention of inflammatory bowel disease (IBD) is well documented 

and various studies have shown that it attenuates experimental colitis in rats and 

murine207 models of IBD. Furthermore, curcumin 1 has also been reported to reduce 

the LPS stimulated production of IL-1 in human peripheral blood monocytes and 

alveolar macrohages in concentration and time dependent manner.100 Based on these
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findings, we investigated the role of synthesised curcumin 1 and its thiophene 

analogues 47a-d on IL-1 p production in THP-1 cells. The results presented in figure 

3.21 provide evidence that curcumin 1 at lOpM, 47a and 47d significantly decreased 

the IL-1 p production in concentration dependent manner in THP-1 cells stimulated 

with LPS. On the other hand in the case of drugs 47b and 47c the decreased effect of 

IL-1 p production exhibited at lOpM was also significant. In comparison with 

curcumin, at lOpM all drugs were as potent as curcumin 1.

In summary, these results were in complete accord with the cytotoxicity results, and 

hence it can be concluded that these effects are not due to the reduced cell viability.

The thiophene curcuminoids 47a from 10 to lOOpM and 47d at 10 to 50pM range 

appeared to be potential candidates with enhanced activity and low cytotoxicity for 

future anti-inflammatory drugs that inhibit IL-1 p production in THP-1 leukaemia 

cells.

Recently, Hsu et al208 have demonstrated that curcumin 1 mediated down regulation 

of LPS-induced IL-1 and IL-6 expression in THP-1 monocytic cells occurs through a 

mechanism that involves the induction of heme-oxygenase-1 enzyme (HO-1). 

Studying the mechanism of suppressive effect of curcumin 1 on LPS-induced IL-1, 

IL-6 and TNF-a in THP-1 monocytes, Hsu et al208 have shown that stimulation of 

THP-1 cells with LPS for 24 h resulted in a significant increase in IL-1, IL-6 and 

TNF production. They then confirmed that pre-incubation of human THP-1 

monocytes with curcumin 1 (IOjiM) inhibited LPS-induced IL-1, IL-6 and TNF
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production suggesting that curcumin 1 inhibits the production of these pro- 

inflammatory cytokines in THP-1 cells. The authors of the study have further 

assessed the potential role of HO-1 involved in the inhibition of LPS-induced 

cytokine production, using an inhibitor of HO-1, the tin protoporphyrin (SnPP), as 

well as an inducer of HO-1 enzyme, the cobalt protoporphyrin (CoPP). Pre­

incubation of THP-1 cells with SnPP reversed the inhibitory effects of curcumin 1 on 

IL-1 and IL-6 production only and not on TNF. Similarly, pre-incubation of cells 

with CoPP could not reverse the inhibitory effect of curcumin 1 on IL-1 and IL-6 

secretion suggesting that HO-1 is involved in curcumin 1 mediated down regulation 

of IL-1 and IL-6 production within THP-1 monocytes. In order to confirm the role of 

HO-1 in curcumin 1 mediated suppression of LPS stimulated IL-1 and IL-6 in THP-1 

cells, Hsu et al208 have also studied the gene expression of HO-1, using small 

interfering RNA (siRNA) and pcDNA3.1 vector. The curcumin 1 induced HO-1 

expression was reduced by transfection of cells with siRNA specifically targeting 

HO-1, however the HO-1 expression in curcumin 1 stimulated cells was not reduced 

by transfecting the cells with negative control of siRNA. Transfection of cells with 

HO-1 siRNA and not the negative control of siRNA reversed the inhibition of 

curcumin 1 on cytokine secretion from LPS stimulated cells. The over-expression of 

HO-1 within THP-1 cells resulted in a decrease in LPS-induced secretion compared 

to the case for pcDNA3.1. The involvement of various signalling pathways that are 

responsible for the regulation of curcumin 1 induced HO-1 expression, i.e. pa, P 13- 

Kinase, PKCa, PKC8/ERKI/2 and H2 O2 has been proposed in figure 3.30.
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Figure 3.30 : Proposed signalling pathway related to curcumin 1 induced HO-1 gene 
expression within THP-1 monocytes.208
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3.3.2.3 Effects o f  curcumin 1 and the thiophene curcuminoids 47a-d on the 

viability and production o f TNF-a in THP-1 cells

The cytotoxic effects o f curcumin 1 and drugs 47a-d, using the MTS assay, are 

shown in figure 3.15. Thus, after the evaluation o f the cytotoxic effects o f the drugs, 

their effects on the production of pro-inflammatory cytokine TNF-a were studied 

using the ELISA assay.

Tumour necrosis factor-a (TNF-a) is a potent pro-inflammatory cytokine that is 

primarily produced by monocytes and macrophages and is implicated in a variety of 

chronic inflammatory diseases such as rheumatoid arthritis (RA), inflammatory 

bowel disease, psoriasis and Crohn’s disease.209 The reports on the effects o f 

curcumin 1 induced TNF-a inhibition in THP-1 cells are scarce.

TNF-a exhibits its inflammatory effects via the major transcription factor, nuclear 

factor-KB (NF-kB). Binding o f TNF-a to its receptors leads to the activation of 

nuclear factor-xB (NF-kB).210 Activation o f NF-kB by pro-inflammatory stimuli or 

cytokines such as TNF-a, leads to the expression of genes that induce and maintain 

inflammation211, and due to the fact that increased nuclear translocation o f NF-kB 

has been reported in a wide range o f disease states including endotoxin-induced 

sepsis, malignancy and chronic inflammatory disorders such as rheumatoid arthritis, 

asthma, ulcerative colitis212 the search for pharmacological inhibitors that block NF- 

kB induced transcription is ongoing. Under normal conditions, NF-kB resides in its 

inactive form in the cytoplasm as a heterotrimer consisting o f p50, p65 and IxBa
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subunits, however upon activation, IxBa subunit undergoes phosphorylation and 

ubiquitination-dependent degradation by the 26S proteosome, thus exposing nuclear 

localization signals on the p50-p65 heterodimer, resulting in nuclear translocation and 

binding to a specific consensus sequence in the DNA which in turn activates gene 

expression and ultimately results in gene transcription.213 Curcumin 1 has been 

reported to inhibit LPS-induced production of TNF-a in human monocytic 

macrophage cell line Mono Mac 6 214

As shown in figure 3.23, during the course of these experiments, in order to evaluate 

the effects of the drugs alone, the cells were treated with the drugs only in the absence 

of LPS. Thiophene curcuminoids 47a-d as well as curcumin 1 alone did not produce 

any TNF-a at all the three concentration studies i.e. 10, 50 and lOOpM. However, 

treatment of LPS stimulated cells with curcumin 1 for 24 h showed a concentration- 

dependent decrease in TNF-a production, however the effects appeared to be 

significant only at 50 and lOOpM which might be due to the cytotoxic effects of 

curcumin 1 at these concentrations (figure 3.15). Furthermore, the thiophene 

curcuminoids 47a-d at their non-cytototoxic concentrations (figure 3.15) did not 

inhibit TNF-a production in LPS stimulated cells.

In conclusion, our results demonstrate that substitution of both the phenyl rings of the 

lead compound curcumin 1, either with thiophene rings as in the case of 47a and 47d 

or with the methyl-substituted thiophenes 47b and 47c did not result in inhibition of 

LPS induced TNF-a production in THP-1 leukaemia cell lines, however their effects 

as anti-inflammatory drugs needs further investigation using non-cancerous cell lines.
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3.3.2.4 Effects o f  curcumin 1 and the thiophene curcuminoids 47a-d on the 

viability and production o f  CXCL-8 in CAC0-2 cells

The aim of the present study, was to evaluate the cytotoxic effects and to study the 

effects of the drugs 47a-d and the parent drug curcumin 1 on the production of pro- 

inflammatory cytokine CXCL-8 using the human colon adenocarcinoma cell line 

CACO-2 cells. As mentioned earlier, CACO-2 cells were chosen because of their 

well established role as an in vitro model used to determine the transport 

characteristics and cytotoxic effects of drugs, and to design formulation strategies for

91 Smembrane permeability enhancement. The advantage associated with the use of 

CACO-2 cells over other gastrointestinal cell lines, is that these cells show a 

spontaneous differentiation pathway in long term culture conditions and express 

several morphological and biochemical characteristics of small intestinal 

enterocytes.216The pro-inflammatory cytokine CXCL-8, has been reported to play 

crucial roles in various pathological conditions such as chronic inflammation and 

cancer as well as acts as a key mediator in neutrophil mediated acute inflammation 

due to its potent action on neutrophils.140 The low incidence of colon cancer in Asian 

countries could be related to low meat intake, but may also be attributed to the regular 

use of turmeric in the diet of these regions.217

In evaluating the cytotoxic effects of the drugs alone, using MTS assay, our results 

shown in (figure 3.16), have revealed that curcumin 1 and the thiophene derivative 

47c reduced the cell viability in concentration dependent manner. Curcumin 1 and all 

its synthesised thiophene derivatives 47a-d appeared to be non-cytotoxic at 10pM
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concentration. At 50pM concentration, drugs 47b and 47d were non-toxic. On the 

other hand, at lOOpM, curcumin 1 and 47c were cytotoxic. In comparison to 

curcumin 1 at lOpM, all of the synthesised derivatives were as non-toxic as curcumin 

1, however, at 50pM all drugs showed non-significant cytotoxic effects similar to 

curcumin 1. At lOOpM, concentration, a significant increase in cell viability was 

observed with drugs 47a, 47b and 47d.

After determining the cytotoxic effects of the drugs, their effects on the production of 

CXCL-8 were evaluated. L-methionine sulfoximine (MS) in conjunction with LPS,

1 A3was used based on the findings of Huang et al al who have demonstrated that in 

CACO-2 cells the largest amount of CXCL-8 was secreted by cells in the presence of 

MS with no glutamine in the medium. As shown in figure (3.25), a 9 fold increase in 

the production of CXCL-8 was observed in the cells treated with MS along with LPS 

compared with the cells treated with LPS alone, thus confirming the findings of 

Huang et al.163

Curcumin 1 at its non-cytotoxic concentration of lOpM, did not inhibit the production 

of CXCL-8, however, 47a at 100 pM and 47b and 47d at 50 and 100 pM showed 

significant decrease in CXCL-8 production. In comparison to curcumin 1 at 10 pM 

only drug 47c significantly reduced CXCL-8 production.

Since curcumin 1 was cytotoxic to cells at 50 and lOOpM concentration, the non- 

detectable levels of CXCL-8 at these concentration of curcumin 1 are due to the 

reduced cell viability. Based on these cytotoxic effects of curcumin 1, it was not
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appropriate to further compare the effects of thiophene derivatives 47a-d at 50 and 

lOOpM with curcumin 1.

From the structure-activity relationship, these studies show that the replacement of 

both of the phenyl rings of curcumin 1 with (un)substituted thiophene rings reduces 

the cytotoxic effects of curcumin 1, however, the effect of this finding on the 

production of CXCL-8 needs further evaluation.
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CHAPTER 4 

CONCLUSION



Various inflammatory diseases like rheumatoid arthritis provide drug discoverers 

with a tremendous challenge as these diseases are currently being treated with 

relatively old drugs such as non-steroidal anti-inflammatory drugs (NSAIDs), 

corticosteroids and methotrexate which have limited efficacy and / or inadequate 

safety profile.219 Also, the long-term use of NSAIDs, is associated with serious 

gastrointestinal complications. Based on the previous findings describing the 

beneficial role of curcumin 1 in inflammation as well as its protective effects on 

gastrointestinal tract, the overall aim of the project presented in this thesis was to 

develop new curcuminoids that would have better efficacy and lower side effects than 

the conventional NSAIDs. The overall strategy of the project was to synthesise and 

characterise the following three types of curcumin derivatives (chosen based on their 

well established protective effects on gastrointestinal tract or as an anti-inflammatory 

agent), and to test the effects of these curcuminoids on the production of nitric oxide, 

pro-inflammatory cytokines IL-lp, TNF-a and CXCL-8 using two cancer cell lines 

i.e. THP-1 cells and CACO-2 cells.

The curcuminoids of interest were:

• Nitric oxide donating curcuminoids

• Thiophene and furan derived curcuminoids

• Benzofuran and benzothiophene curcuminoids

In total we have successfully synthesised 15 curcuminoids as well as the lead 

compound curcumin 1 and spectroscopically characterised them, however the yields 

obtained were not very brilliant.
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The nitric oxide donating curcuminoids 51a-d were synthesised in three steps. In the 

first step bromobutoxybenzaldehydes 45a-d were prepared by the Williamson ether 

synthesis and were next subjected to curcumin synthesis using Pabon’s method to 

obtain bromobutoxy curcuminoids 46a-d. In the third step, the nitration of 

compounds 46a-d was performed to yield the desired nitric oxide curcuminoids 

51a-d. Using the MTS assay the cytotoxic effects of the synthesised nitric oxide 

curcuminoids were determined and two comparisons were made. First the drugs were 

compared with the vehicle (DMSO 0.3 v/v) control and then with the lead compound 

curcumin. Our results show that nitroxybutyl curcuminoids are non-toxic to THP-1 

cells and are less cytotoxic than curcumin at 10, 50 and 100 pM concentrations and 

all of them except 51c (in unstimulated THP-1 cells) enhanced the production of 

nitric oxide in LPS stimulated or unstimulated cells therefore can serve as potential 

nitric oxide donating NSAIDs in future.

Synthesis of aromatic heterocyclic curcuminoids 47a-d and 48a-c was also performed 

and reaction resulted in moderate yield. The cytotoxic effects of the thiophene 

curcuminoids 47a-d were determined using the MTS assay and then their effects on 

the production of IL-1, TNF-a and CXCL-8 were evaluated using human leukaemia 

cell line THP-1 cells and human colon cancer cells respectively.

The thiophene curcuminoids 47a was non-cytotoxic to THP-1 cells at 10, 50 and 

100 pM and 47d appeared to be non-cytotoxic at 10 and 50 pM, whereas, 47b and 

47c were non-cytotoxic at 10 pM only.When compared with curcumin 1, at 10 pM, 

47a and 47d were as non-cytotoxic as curcumin, however, 47b and 47c were more
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toxic than curcumin. In CACO-2 cells, 47b and 47d appeared to be non-toxic at 10 to 

100 pM, whereas, 47a was non-toxic at 10 and 100 pM and 47c was non-cytotoxic at 

10 pM only.

These results clearly indicate that the introduction of a nitroxybutyl moiety to 

curcumin and the replacement of both of the phenyl rings of the curcumin with 

unsubstituted thiophenes reduces the cytotoxic effect of the parent curcumin 1, 

whereas, methyl substituted thiophene increase the cytotoxic effects. In THP-1 cells, 

drugs 47a-d significantly decreased the IL-l-p production at their non-cytotoxic 

concentrations, whereas, did not decrease the TNF-a production. For the effects on 

CXCL-8 in CACO-2 cells, 47a at 100 pM and 47b and 47d at 50 and 100 pM 

showed significant decrease in CXCL-8 production. In comparison to curcumin 1 at 

10 pM only drug 47c significantly reduced CXCL-8 production.

The synthesis of fused-ring aromatic heterocyclic curcuminoids 57b and 61 was 

carried out via two different routes however both the methods resulted in poor yields. 

On the other hand in case of nitrogen derived curcuminoids 63,65 and 69 no product 

was obtained at all. New method for the synthesis of curcuminoids using Claisen 

condensation reaction was tried but complete evidence of curcumin formation was 

not achieved, hence a new strategy for the formation of curcumin based on Claisen 

and Heck type reaction is being proposed.
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CHAPTER 5 

FUTURE WORK
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Part A : Chemistry

As evident from our results as well as those reported by others, that, the major 

drawback of Pabon’s method144 of curcumin synthesis is that it often results in low 

yields. Therefore, in future it would be worthwhile finding a new method for 

curcumin synthesis that can give better yields.

Thus, the following two synthetic strategies depicted in schemes 5.1 and 5.2 could be 

used in search of better synthetic method for curcumin preparation.

The proposed synthesis of curcumin formation outlined in scheme 5.1 involves two 

known reactions i.e. the Claisen condensation reaction and the Heck-type reaction.221 

However, the success of this strategy relies on the formation of the key precursor 90 

for the double Heck type reaction to occur to give curcumin derivative 92.

Claisen condensation o f  ethyl acrylate 88 with 2-butenone 89 should give 90

88 89 90

The Heck type reaction o f  90 with substituted bromobenzenes 91 using Pd(II) or Pd(0) 
should generate curcumins 92

Scheme 5.1 : New proposed strategy for curcumin synthesis using Heck-type
reaction.
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In scheme 5.2 the product 93 obtained by the reaction of benzylideneacetone 71a 

could be reacted with a variety of aldehydes to synthesise unsymmetrical curcumin 

derivatives 94. Also, it would be interesting to try the same strategy in conjunction 

with Pabon’s method too, for the synthesis of unsymmetrical curcumins.

NaH

OEt
hexane71a excess O O

TiCl4

+

R

Scheme 5.2 : New proposed strategy for curcumin synthesis
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Part B : Pharmacology

Nitric oxide donating curcuminoids 51a-d :

• Based on the findings generated from this study that nitric oxide donating 

curcuminoids 51a-d possess non-cytotoxic effects as well as are non- 

cytotoxic in comparison with the parent compound curcumin 1, in human 

leukaemia monocytic cell line THP-1 cells at the concentration range of 10 

to 100 pM, it would be interesting to evaluate their cytotoxic effects in non- 

cancerous cells lines.

o We have shown that these nitric oxide donating curcuminoids enhance the 

nitric oxide production in THP-1 cells in the presence of LPS (an inducer of 

NO), this could be further confirmed using various inhibitors of nitric oxide.

• It would also be worth while, looking at the effects of nitric oxide donating 

curcuminoids 51a-d on the production of pro-inflammatory cytokines in 

THP-1/CACO-2 cells as it can be postulated that the NO derivatives could 

be more potent inhibitors of cytokine production, especially IL-ip and TNF- 

a, since it is known that these cytokines are negatively regulated by NO.

Thiophene derived curcuminoids 47a-d

o The thiophene derived curcuminoids 47a and 47d appeared to be the 

potential candidates as future non-steroidal anti-inflammatory drugs, as 

these are non-cytotoxic to THP-1 cells as well as to CACO-2 cells, therefore, 

it can be postulated to evaluate their effects in non-cancerous cells lines.
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• The pharmacological studies conducted in this thesis have also revealed that 

thiophene curcuminoids 47a and 47d inhibit the production of pro- 

inflammatory cytokine IL-ip and CXCL-8 in concentration dependent 

manner, therefore, it is suggested to further evaluate their effects on the 

production of IL-1 p using chondrocytes as a model of arthritic diseases.
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