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Abstract
The overall aim of this thesis was to evaluate the importance of pulmonary oxygen 
uptake (V 0 2) kinetics, in the moderate-domain, in the assessment of endurance-trained 
runners. Accordingly, there were five objectives: 1) to quantify the reproducibility of 
measures of V 02 kinetics; 2) to characterise and compare V 02 kinetics during the on- 
and off-transients in middle-distance (MD) and long-distance (LD) runners; 3) to assess 
the relationship between V 02 kinetics and maximal V 02 (V 0 2 max), ventilatory 
threshold (Vr) and running economy (RE); 4) to determine the relationship between 
V 02 kinetics and running performance and 5) to assess whether V 02 kinetics is a 
determinant of running performance.

Twelve participants performed two assessments of V 02 kinetics on separate days to 
determine the reproducibility. Paired /-tests showed that parameters from test 1 and test 
2 did not differ (P > 0.05). Furthermore, narrow 95%  limits of agreement (LOA), low 
measurement and method error suggested that the on- and off-transient time-constants 
(Ton and T0ff), mean response times (MRTon and MRT0fr) and amplitudes (Aon and A0ff) 
were reproducible and could be used for the assessment of runners. Subsequently, V 02 
kinetics were compared in 10 MD and 10 LD runners. There was a tendency for Ton 
(12.5  ± 2.3 s vs. 14.2 ± 3.1 s, P = 0.178) and Toff (24.1 ± 2.3 s vs. 27.1 ± 3.0  s, P = 
0 .023) to be shorter in LD than MD runners respectively, despite similar V 02 max (MD = 
60.0  ± 4 .9  ml-kg'^min'1; LD = 59.0 ± 6.3 ml-kg^-min'1, P = 0 .689). Differences in V02 
kinetics between MD and LD runners were attributed to approaches to training since the 
volume of training was greater in LD (64 .0  ± 15.7 km-wk'1) than MD (47.5  ± 15.7  
km-wk'1) runners (P = 0.047). To detail the relationships between V 02 kinetics and 
other measures of aerobic function (V 0 2 max, V t and RE), 16 MD and 16 LD runners 
were assessed. Relationships existed between Ton and V 02 max (r = -0 .72 , P = 0.002), Vt 
(r = -0 .66 , P = 0 .006) and RE (r = -0 .59 , P = 0.016) in LD runners, but not in MD 
runners (P >0.05). In addition, Ton was related to the volume of training in MD (r = 
-0 .63 , P =  0 .009) and LD runners (r = -0 .65 , P = 0.006).

The importance of V02 kinetics for 5 km running performance was investigated in 36 
endurance trained runners. Runners were categorised as high («=10), low («=10) and 
combined [MD + LD («=36)] performers according to running ability after performing a 
self-paced 5 km time-trial. Mean (±SD) speed for the 5 km time-trial was 5.2 ±1.0 
m-s' (high), 4.5 ± 0.2 m-s'1 (low) and 4.9 ± 0.3 m-s'1 (combined). Measures of on- and 
off-transient V 02 kinetics, V02 max, Vt and RE were also determined. Data were 
explored using bi-variate correlations, ANCOVA and multiple regression techniques. 
In high and low performers, V 02 kinetic parameters were not related to running 
performance. In combined runners, Ton, T0ff, MRTon and MRT0ff were related (r = -0.54, 
P = 0.001; r = -0.36, P = 0.030; r = -0.50, P = 0.002; r = -0.63, P = 0.003) to running 
performance. Stepwise multiple regression models were used to identify the primary 
determinant(s) of 5 km running performance for each group. In high performers, 
V02Tnax and RE were included in the model (r = 0.92, I?  = 0.85, SEE = 0.08 m-s'1; 
SEE% = 1.5). In low performers, F 0 2max was included in the model (r = 0.76, R2 =
0.57, SEE = 0.15 m-s'1, SEE% = 3.3). In combined runners, E 02max, RE and MRT0fr 
were included in the model (r = 0.87, R2 = 0.75, SEE = 0.17 m-s'1, SEE% = 3.5).

Collectively, the results suggest that: 1) V02 kinetics can be reproducibly determined 
using a single visit protocol; 2) measures of V 02 kinetics are sensitive enough to 
differentiate MD and LD runners; 3) relationships between V 02 kinetics and other 
measures of aerobic function exist in LD runners, but not in MD runners; 4) V 02 
kinetics differ between high and low performers, but do not relate to running 
performance and 5) V02 kinetics discriminate between high and low performers but 
only contribute minimally to the prediction of running performance in a multiple 
regression model for combined MD and LD runners.
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CHAPTER 1 

Introduction

1.1 Introduction

Developments in the physiology of exercise have made significant contributions to 

improvements in sporting performance, in particular to running performance. A major 

factor in this improvement has been advances in the physiological assessment of 

runners. Specifically, physiological assessments under controlled environmental 

laboratory conditions provide an opportunity to assess: 1) current physiological status; 

2) adaptations to training and 3) performance capabilities. Importantly, physiological 

assessments also assist in the design and development of training methods that are 

specific to the physiological demands of the event (Kindermann et al., 1979; Billat, 

2001a, b). Indeed, the continuous improvement in performance in running events can 

be partially attributed to the scientific approach to training in order to maximise 

physiological adaptation.

Exercise testing with appropriate pulmonary gas-exchange measurements offers the 

possibility of simultaneous study of cellular, cardiovascular and ventilatory responses 

under conditions of precisely controlled metabolic stress (Wasserman et al., 1994). 

According to Whipp et al (1981), four gas-exchange measurements make up the 

'aerobic' profile of a performer: 1) maximal oxygen uptake (V 0 2 max); 2) anaerobic 

threshold (AT); 3) work efficiency (oxygen cost of exercise) and 4) oxygen uptake 

(V 0 2) kinetics. Any attempt to discriminate between performers or to predict 

performance capability should consider these four measures of aerobic function (Whipp 

et al., 1981). However, physiological assessments of endurance-trained runners have 

primarily involved the measurement of only three of the four proposed aerobic 

variables, with minimal consideration of measures of V 02 kinetics.
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Measures of pulmonary V02 kinetics reflect the temporal profile of muscle O2 

consumption (QO2 ) at the onset of exercise or to a sudden change in the intensity of 

exercise (Barstow et al., 1987; Grassi et al., 1996). Therefore, in healthy humans, 

measures of V 02 kinetics provide valuable information about the oxidative potential of 

muscle, rather than the integrated functioning of the cardiovascular, pulmonary and 

muscular systems (Poole and Richardson, 1997), that is reflected in the measurement of 

whole-body V 02 max. Potentially, this could be a useful tool with which to assess the 

oxidative qualities of muscle in athletes. Evidence to support the use of measures of 

V 02 kinetics in athletes is provided in several studies that have shown that pulmonary 

V02 kinetics during the on- (Hagberg et al., 1980; Berry and Moritani, 1985) and off- 

transient (Hagberg et al., 1980; Phillips et al., 1995) are sensitive to training stimuli. 

Furthermore, measures of V 02 kinetics appear to be more sensitive to training than 

both V 02 max and the ventilatory threshold (V t) (Fukuoka et al., 1995; Phillips et al.,

1995). Therefore, it appears that V02 kinetics might reflect physiological adaptation(s) 

in the muscle more precisely than other measures such as V 02 max and Vt (or lactate 

threshold, LT) and could be used to compare athletes with different training 

backgrounds.

The endurance training studies above considered measures of V 02 kinetics in the 

moderate-domain. Since the majority of studies, but not all (Carter et al., 2002), have 

demonstrated that the time constant (x) of the phase II V02 response is invariant with 

increasing exercise intensity (Barstow et al., 1993; Ozyener et a l, 2001; Wells et al., 

2003), it would be appropriate to use moderate-intensity exercise to establish V 02 

kinetics in endurance-trained runners. However, in acknowledgment of potential 

differences in x above and below V t, support for using moderate-intensity exercise is 

gained from information about the recruitment of muscle fibres during exercise below 

Vt- It is likely that only Type I fibres are recruited during moderate-intensity exercise 

(Vollestad and Blom, 1985) and that these fibres predominate (>70%) in the muscles of 

endurance-trained athletes (Saltin and Gollnick, 1983). Therefore, measures of V 02



kinetics in the moderate-domain are likely to reflect, non-invasively, the oxidative 

potential of these important muscle fibres. Information about the oxidative function of 

exercising muscle is likely to be obscured during assessments of V 02 kinetics in the 

heavy-intensity domain since x is influenced, at least in part, by muscle O2 delivery 

(Tschakovsky and Hughson, 1999). This would make it difficult to exclusively attribute 

potential differences between athletes to muscle oxidative function. Rather, measures 

of VO 2 kinetics in the heavy-intensity domain would provide an 'overall' reflection of 

the body's potential to both transport and utilise oxygen. Potentially, this might provide 

similar information already gained from measures of V 02 max.

Because endurance-trained runners are likely to differ in their approach to training, 

depending on their preferred discipline, this might be reflected in their V 02 kinetic 

response during moderate-intensity exercise. It is well established that different 

frequencies, durations and intensities of training influence peripheral adaptations in 

muscle (Henriksson and Reitman, 1976; Harms and Hickson, 1983). Given that a 

greater volume of training is usually performed by long-distance (LD) runners (Costill 

et al., 1976b), this might influence V 02 kinetics compared to middle-distance (MD) 

runners who perform high-intensity and low volumes of training. Accordingly, it could 

be hypothesised that a greater volume of aerobic training would improve the efficiency 

of oxidative metabolic regulation which would ultimately result in faster V 02 kinetics. 

This possibility warrants the separation of endurance-trained runners into MD and LD 

runners. If differences were apparent, this would support further work to explore 

relationships between training, physiological and biochemical adaptations and V 02 

kinetics in more detail. If this revealed that physiological adaptation(s) in muscle 

caused by differing approaches to training (volume and intensity) could be quantified 

using measures of V02 kinetics, this might offer an alternative approach to assess 

athletes.
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The majority of V 02 kinetic related studies, including those involving runners, have 

used cycle ergometry (deVries et al., 1982; Powers et al., 1985). In consideration of the 

principle of specificity, it is more appropriate to measure V 02 kinetics in athletes 

according to their predominant mode of exercise. Acknowledgement of the effect(s) of 

different modes of exercise is important, especially because active and non-active 

muscle fibre compartments might display blood flow (Grassi et al., 1996) and QO2 

heterogeneity (Whipp et al., 2002), which might influence the underlying kinetic 

response measured at the mouth. Recently, however, treadmill ergometry has been 

successfully used to characterise both the on- (Williams et al., 2001; Carter et al., 

2002a) and off-transient (Carter et al., 2000a) V 02 kinetics in the moderate-domain in 

untrained individuals. This mode of exercise would be more appropriate for the 

assessment of V 02 kinetics in runners and would provide a more appropriate 

characterisation of V 02 kinetic responses than cycle ergometry.

The consideration of both on- and off-transient V 02 kinetics would permit an 

assessment of the symmetry and relationship between transients. The magnitude of 

symmetry between transitions has direct implications on whether mechanism(s) 

determining respiratory control are operating as a first-order linear system. Since most 

assessments of the symmetry between transients have been considered in un-trained 

individuals (e.g. Ozyener et al., 2001), it has yet to be established whether physiological 

adaptations in muscle (e.g. increased number of mitochondria, enhanced oxidative 

enzyme activity and increased capillarity; Saltin and Gollnick, 1983), caused by 

habitual training, distorts the symmetry between transients. If so, the proposed first- 

order linear model of respiratory control in skeletal muscle (Meyer, 1988; Meyer and 

Foley, 1994) would be refuted. Additionally, a lack of relationship between on- and 

off-transient V 02 kinetics would suggest that different physiological mechanisms are 

being reflected by each transient. Consequently, the on- and off-transient V 02 kinetics 

would need to be considered as two separate measures that provide different 

information about the physiological status of the muscle. This has not been considered



in any previous study of V 02 kinetics. Measurement of the off-transient V 02 kinetics 

might also provide useful information about how recovery mechanisms [primarily 

phosphocreatine (PCr) re-synthesis and the replenishment of O2 and myoglobin stores; 

Gaesser and Brooks, 1984] operate in athletes who differ in their approach to training, 

and in particular whether off-transient V 02 kinetics are sensitive enough to differentiate 

between runners of different running disciplines.

There are three measures of aerobic function that are commonly used to physiologically 

assess (Londeree, 1986) and determine running performance (Joyner, 1991) in runners: 

1) F 0 2 maxj 2) Vj/LT and 3) running economy (RE). The physiological determinants 

and underpinning mechanism(s) of each are well-documented (Brooks, 1991; Wagner,

1996). However, it is relatively unclear whether measures of V 02 kinetics provide 

similar, or additional, information about the muscle as these other measures. For 

example, whole-body V 02 max is determined by both central (O2 delivery) and 

peripheral (O2 utilisation) mechanisms. It is unclear whether fast V 02 kinetics (i.e. 

shorter xon) are synonymous with a high V 02 max. A relationship between these 

measures might suggest that both V 02 max and V02 kinetics are influenced by similar 

determining factors. However, considering that V 02 kinetics has been shown to be 

more sensitive to training than V 02ma\ and Vt (Fukuoka et al., 1995; Phillips et al., 

1995), then relationships might not be apparent. This also applies to RE which is 

frequently used to physiologically assess runners. Therefore, exploring potential 

relationships between V02 kinetics and these measures, and considering the 

mechanism(s) underpinning them, could provide a useful insight into the independency 

of aerobic measures and adaptations, in particular those concerning V 02 kinetics.

Most importantly, however, is whether measures of V 02 kinetics are related to running 

performance. Several studies have investigated physiological measures which could 

potentially determine running performance. However, no study has considered 

measures of on- or off-transient V 02 kinetics as potential determinants of running
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performance. This is surprising since V 02 kinetics in the moderate-domain reflects the 

ability of muscle to utilise oxygen and is sensitive to training. In support of the use of 

VO 2 kinetics as a determinant of performance, a previous study has shown that changes 

in VO 2 kinetics are more reflective of improvements in cycling performance than 

VO2 max and Vt (Norris and Peterson, 1998). However, no investigation has attempted 

to quantify relationships between V 02 kinetics and running performance. If significant 

relationships were identified, this would justify the inclusion of a measurement of V 02 

kinetics to evaluate the physiological status of runners. This has the potential to replace 

other tests which might be invasive, less sensitive and/or disruptive to training, lack 

reproducibility and have a weaker correlation with running performance.

Measurement of V 02 kinetics is time-consuming because the attainment of accurate 

kinetic parameter estimations requires several visits to the laboratory. This is primarily 

due to inherent variability of breath-by-breath data that can significantly influence 

kinetic parameter estimations (Lamarra et al., 1987). To attenuate this variability, 

participants have to complete several bouts of exercise usually over several days. 

However, this is impractical for endurance-trained runners and would be disruptive to 

training. Therefore the development of a protocol to measure V 02 kinetics in one visit 

to the laboratory would be beneficial. This would require an assessment of its 

reproducibility which would provide some indication of the day-to-day variability of 

VO2 kinetics. Reproducible measures of V 02 kinetics is essential if 1) athletes are to 

be accurately compared; 2) relationships between V 02 kinetics and other physiological 

measures are to be meaningfully explored and 3) V 02 kinetics is to be considered a 

determinant of running performance.
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1.2 Aim and objectives

The overall aim of this work is to evaluate the importance and relevance of V02 

kinetics in the assessment of aerobic performance in endurance-trained runners. 

Accordingly, there are five specific objectives:

1. To establish and quantify the reproducibility of a protocol for the assessment of 

VO2 kinetics during treadmill running in MD and LD runners.

2. To characterise and compare V 02 kinetics during the on- and off-transients in MD 

and LD runners.

3. To assess the relationship between V02 kinetics and V 02 max, VT and RE.

4. To assess the relationship between V02 kinetics and 5 km running performance.

5. To determine the primary aerobic factors (V 0 2 max, Vt, RE and V 02 kinetics) 

contributing to successful 5 km running performance.
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CHAPTER 2 

Review of literature

2.1 Historical background

Competitive MD and LD running has its origins in ancient times and is primarily 

associated with the ancient Olympic Games (Swaddling, 1999). These Games were 

first held in 776 BC as a religious, sporting and cultural festival in honour of Zeus, the 

father of the gods. Initially, the ancient Olympic Games involved only a short race 

(stade) that involved running the length of the stadium, which was approximately 192 

m. However, the program of competitive events in the Games evolved over time and in 

724 BC, the two-stade race (<diaulos, 384 m) was introduced. By 720 BC, longer races 

[7 and 27 stades (dolichos)] were also held over distances between 1344 to 4608 m. 

There is also evidence of a four-stade race (768 m) which would be equivalent to the 

800 m, although athletes were required to wear body armour. The ancient Olympic 

Games are known to have existed for 12 centuries until their demise in 394 A.D, which 

was attributable to the disintegration of the nationalistic and religious unity of the 

Greeks (Swaddling, 1999).

The symbolic power of the ancient Olympic Games was revived as the modem Olympic 

Games which first took place in Athens in 1896 and encompassed a greater range of 

distance races [100 m to the marathon (42.2 km)]. The standardisation of these 

distances from 1896 to present time, in addition to accurate measurements of 

performance times has permitted a longitudinal analyses of running performance via the 

progression of world-best times.

Parallel with the internationalisation of athletics has been the development of the 

physiology of exercise. Since the early part of the 20th century, scientists have 

developed growing interest in the body’s responses and adaptations to exercise. Many 

concepts concerning these responses to exercise were first established by the pioneering



work of A.V. Hill, British Professor of Physiology, in a series of studies on exercise, 

lactic acid and the supply and utilisation of oxygen (Hill and Lupton, 1923). These 

early experiments clearly elucidated the concepts of maximal oxygen uptake (V 0 2 max), 

steady-state exercise and oxygen debt. Other studies performed by Hill and his 

collaborators focused on the physiological responses during exercise, especially in MD 

and LD runners (Hill, 1965)

2.2 Characterisation of MD and LD running

Insights into the physiological requirements of MD and LD running can be obtained by 

considering: 1) the primary energy pathways that are utilized and 2) the intensity 

domains of exercise. The following will explain both of these considerations in more 

detail.

2.2.1 Energy production during running

The function of muscle is to exert force. The immediate source of energy for muscle 

during running and other forms of exercise is provided by the synthesis of the high- 

energy phosphate compound, adenosine tri-phosphate (ATP) in the reaction:

A T P q c p

ATP — ADP + Pi + energy (1)

However, only a small quantity of ATP is stored in the cell; hence, it must be re­

synthesised at the rate it is used to allow muscular activity to continue. This scenario 

provides a sensitive mechanism for regulating energy metabolism in the cell. There are 

three main energy producing pathways which interact to maintain the supply of ATP for 

muscular contraction: 1) ATP-PCr; 2) anaerobic glycolysis and 3) aerobic glycolysis (or 

oxidative phosphorylation) (Figure 2.1).
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Figure 2.1 Schematic illustrating the three major pathways for ATP re-synthesis in 

skeletal muscle (Meyer and Foley, 1996).

The re-synthesis of ATP can be achieved by combining adenosine di-phosphate (ADP) 

and inorganic phosphate (Pj) via the creatine kinase (CK) reaction in the cytoplasm of 

the cell:

ADP + PCr + H+ c creatlneklnase > AXP + Cr (2)

This pathway provides immediate energy for muscular contraction at the onset of 

exercise and during short-term, high-intensity exercise. However, because the storage 

of PCr in muscle is limited and can only be maintained in the short-term, a greater 

contribution from other simultaneously operating metabolic pathways (aerobic and 

anaerobic glycolysis) is required to regenerate ATP.

The activation of anaerobic glycolysis occurs almost instantaneously at the onset of 

exercise and involves the re-synthesis of ATP via the degradation of glucose (or 

glycogen) to pyruvate in the cytoplasm of the cell. However, when glycolytic flux
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exceeds mitochondrial activity, as observed at the onset of exercise or during heavy- 

intensity exercise, pyruvate is subsequently converted to lactate, where:

glucose + 2 ADP + 2 Pj 2 lactate + 2 H+ + 2 ATP (3)

Importantly, the net formation of lactate or pyruvate depends on relative glycolytic and 

mitochondrial activities and not on the presence of oxygen (Brooks et al., 2000).

The third pathway for regenerating ATP is aerobic glycolysis which starts in a similar 

manner to that of anaerobic glycolysis. That is, glucose or glycogen are converted to 

pyruvate. However, because glycolytic flux does not exceed mitochondrial activity, 

lactate is not formed and allows oxidative phosphorylation to take place in the 

mitochondria. The final reaction of oxidative phosphorylation is:

There are two major metabolic pathways involved in oxidative phosphorylation: 1) the 

tricarboxylic acid cycle (TCA), which breaks down acetyl units derived from fuel 

molecules and generates the reduced coenzymes nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH2) as well as CO2 and 2) the electron 

transport chain (ETC) where free energy, released when electrons are transferred from 

NADH and FADH2 to O2, gets channelled into the phosphorylation of ADP to make 

ATP, that is, it drives the reaction:

NADH + '/2O2  + H+ + 3 ADP + 3 Pi -» 3 ATP + NAD+ + H20 (4)

ADP + Pi ATP + H20 (5)

During electron transfer from NADH and FADH2 to O2, the free energy released is 

employed to pump protons (H+) from the matrix side of the inner membrane of the 

mitochondria to the outer side or cytosolic side thus creating an electrochemical



gradient. When protons return down the gradient, the free energy released is used to re- 

synthesise ATP from ADP and Pj.

It is important to emphasise the interaction of anaerobic and aerobic metabolic pathways 

in the re-synthesis of ATP during exercise. During running, the contribution of each 

pathway differs according to the intensity and duration of the event. For example, as 

the distance of the event increases, the contribution of aerobic energy producing 

pathways (i.e. oxidative phosphorylation) increases. Consequently, there is less reliance 

on anaerobic pathways (i.e. anaerobic glycolysis). With respect to running, the 

contribution of anaerobic pathways is greatest (-90%) in short-distance events such as 

the 100 m (Astrand and Rodahl, 1986). Conversely, aerobic pathways predominate 

(-94%) in LD events such as the marathon (Wood, 1999). Perhaps surprisingly, aerobic 

pathways have also been found to contribute significantly to MD events such as the 800 

m (67%) and 1500 m (83%) (Hill, 1999). Although the anaerobic contribution to the 

overall performance in LD events appears to be negligible, its contribution is still 

important at the start and end of competitive races.

2.2.2 Intensity domains of exercise

The terms sub-maximal and supra-maximal are often used to represent the intensity of 

exercise below and above V 02max respectively. However, by considering pulmonary 

gas-exchange responses and blood acid-base status, it is more specific to classify the 

intensities of exercise as moderate (below Vt), heavy (between Vt and V 02 max) and 

severe (above V 02 max) (Whipp and Mahler, 1980; Whipp and Ward, 1982). 

Subsequently, running events can be categorised with respect to the intensity domain of 

exercise (Table 2.1).
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Table 2.1 Categorisation of MD and LD events with respect to intensity of exercise in 

relation to V 02 max.

Distance Category Intensity Intensity Domain

800- 1500 m MD Supra-maximal Severe

3000 m MD/LD

Sub-maximal Heavy5000- 10000 m

LDHalf-marathon Heavy-moderate

Marathon Moderate

Knowledge of the intensity, duration and energy requirements of an event can help 

identify the primary physiological mechanisms that are most likely to influence running 

performance. As a result, the physiological status of MD and LD runners has been 

assessed to determine such physiological characteristics.

2.3 Physiological assessments of MD and LD runners

Regardless of ability, MD and LD runners have the same aim: to improve their personal 

running performance through regular training. Their goal is underpinned by the 

challenge of maximising their own potential by developing specific physiological 

mechanisms that contribute to improved running performance. To identify 

physiological attributes that contribute to successful running performance, MD and LD 

runners have been subject to various laboratory-based assessments (Londeree, 1986). 

Primarily, these have involved the measurement of V 02 max (Astrand, 1955; Saltin and 

Astrand, 1967), blood lactate and ventilatory responses (Hollman, 1966; Farrell et al., 

1979; Powers et al., 1983) and RE (Margaria et al., 1963; Costill et al., 1973; Daniels et 

al., 1978). Collectively, these measures have been assessed with respect to their 

contribution towards the multiple regression modelling of optimal running performance 

and prediction of future world records in MD (Peronnet and Thibault, 1989) and LD 

events (Peronnet and Thibault, 1989; Joyner, 1991). However, in many instances 

running performance has not been fully accounted for by these measures. This suggests



that other physiological measures could have some contribution and which have yet to 

be considered with respect to running performance.

One such physiological characteristic that might be related to running performance is 

V 02 kinetics. This is the temporal profile of V 02 at the onset (or offset) of exercise. 

Compared to traditional measures, there have been few studies that have assessed V 02 

kinetics in MD and LD runners and related them to running performance. According to 

Whipp et al. (1981), there are four gas-exchange measurements that make up the 

'aerobic' profile of a performer: 1) V 02 max; 2) AT; 3) work efficiency (or oxygen cost of 

exercise) and 4) V 02 kinetics. Any attempt to discriminate between performers or to 

predict performance capability should consider these four measures of aerobic function 

(Whipp et al., 1981). In the following sections, each of these measures will be defined 

and examined with respect to underpinning mechanisms as well as methods of 

measurement. Importantly, the extent to which each relate to running performance will 

be considered.

2.4 Maximal oxygen uptake

Maximal oxygen uptake (V 02 max) is defined as the maximum rate at which an 

individual can take up, transport and utilise oxygen at sea level (Astrand and Rodahl, 

1986). The V 02 is dependent on both cardiac output (Q ) and the arterial-venous O2 

content difference (C(a-v)0 2 ) and thus V 02 max represents maximum Q and C(a-v) 0 2  as 

expressed in a rearrangement of the Fick equation (McArdle et al., 2001):

VO 2 max — Qmax * C(a-v)02 max (6 )

Hill and Lupton (1923) first defined L 02max and postulated that: 1) there is an upper 

limit to V 02; 2) there are inter-individual differences in V 02 max and 3) a high V 02 max 

is a pre-requisite for success in MD and LD running. With respect to the latter, it has 

been known for some time that V02 max values in elite runners are exceptionally high
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(Robinson et al., 1937; Astrand, 1955; Saltin and Astrand, 1967; Billat et al., 2 0 0 1 ) 

with documented values of up to 82.0 ml-kg'^min' 1 (Saltin and Astrand, 1967). Typical 

V 02 max values previously reported for elite male MD and LD runners are presented in 

Table 2.2. These data suggest that entry into the elite category for MD and LD 

performances is dependent upon having a V02 max between 70 - 80 ml-kg'^min"1 or, 

using allometric modelling, in excess of 300 ml-kg'°'67-min"1 (Nevill et al., 2003).

Table 2.2 The VO2 max values for elite male MD and LD runners.

VO2 max

Reference Distance n (1-min"1) (ml-kg^-min’1)

Saltin and Astrand (1967) 1500 m - 1 0  0 0 0  m 5 5.03 77.5

Boileau et al. (1982) 3000 m - 1 0  0 0 0  m 32 4.96 76.9

Svedenhag and Sjodin (1984) 800 m - 1500 m 5 4.87 71.9

1500 m - 5000 m 6 4.94 75.3

5000 m - 1 0  0 0 0  m 5 4.92 78.6

1 0  0 0 0  m - marathon 5 4.86 73.9

Daniels and Daniels (1992) 800 m - 1500 m 13 5.00 72.5

3000 m - 1 0  0 0 0  m 23 4.91 77.4

Marathon 9 4.86 74.4

Morgan and Daniels (1994) 1 0  0 0 0  m 2 2 4.86 75.8

Billat et al. (2001) Marathon 1 0 4.79 79.6

Nevill et al. (2003) 800- 1500 m 11 5.10 75.8

5000 m - marathon 1 0 4.82 77.4

2.4.1 Mechanisms determining V 02 max

It is well accepted that there is a physiological limit to V 02 max. However, the 

determining mechanism(s) involved are less well agreed (Rowell, 1986; Wagner, 1996; 

Bassett and Howley, 1997; 2000; Noakes, 1998). Potential limiting factors can be 

attributed to central or peripheral mechanisms (Figure 2.2). Central mechanisms
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involve cardiac and pulmonary function and hence the transport and supply of O2 to 

exercising muscle. Peripheral mechanisms relate to the utilisation of O2 in the muscle 

and includes factors such as capillary density, fibre type composition, oxidative enzyme 

activity and mitochondrial content and function.

1. RESPIRATION _
a  O2 diffusion'"'-^
b. Ventilation
c  Alveolar ventilation: 

perfusion ratio
d. Hb-Og affinity

3. PERIPHERAL CIRCULATION . /
a  Flow to non-exercising-/ 

regions
b. Muscle blood flow
c. Muscle capillary density
d. Og diffusion \

\

e. Muscle vascular
conductance

f. Og extraction
g. Hb-O^ affinity

,2. CENTRAL CIRCULATION
a  Cardiac output

(heart rate, stroke volume)
b. Arterial blood pressure
c. Hb concentration

4. MUSCLE METABOLISM
a  Enzymes and oxidative 

potential
h. Energy stores
c  Myoglobin
d. Mitochondria-

size and number
e. Muscle mass and

fiber type
f. Substrate delivery

Figure 2.2 Potential physiological factors limiting V 02 max (Rowell, 1986).

Several approaches have been used to identify determining mechanism(s) of V 02 max- 

Many studies have suggested that V 02 max is limited by the transport of O2 to the 

exercising muscle (Reybrouck et al., 1975; Knight et ah, 1993; Richardson et al., 1995; 

1999). Early evidence to support this was derived from studies combining arm and leg 

work (Reybrouck et al., 1975; Secher et al., 1977). Since arm exercise typically elicits 

only 65-75% of V 02 max determined by leg exercise alone, combined arm and leg 

exercise would be expected to result in a V 02 max higher than that seen in maximal leg 

exercise. However, V 02 max for combined arm and leg exercise has been shown to be
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similar to leg exercise alone (Reybrouck et al., 1975; Secher et al., 1977). The 

imposition of arm work, whilst maintaining power output in the legs results in a 

decrease in leg blood flow and leg V02 without a change in mean arterial pressure 

suggesting that blood flow to the exercising muscle is limited by vasoconstriction i.e. Q 

is unable to supply the demands of combined arm and leg exercise and still maintain 

blood pressure. The failure of combined arm and leg exercise to elicit further increases 

in VO 2 max clearly suggests a limitation in the central cardiovascular system responsible 

for the delivery of O2 .

More detailed and direct evidence, obtained by blood gas and blood flow measurements 

during cycling (Knight et al., 1993) and isolated knee extension exercise in cyclists 

(Richardson et al., 1995; 1999), also, suggests that O2 supply is limiting V 02 max. In 

these studies hyperoxia (1 .0  inspired O2 fraction [FIO2]) has been shown to increase leg 

V 02 max (derived from measurements of femoral venous blood flow and arterial and 

femoral venous blood O2 concentrations) whereas hypoxia decreased leg V 02 max 

without changing leg blood flow. That leg V 02 max is limited by O2 supply is clear, 

since when provided with more O2, skeletal muscle utilised more O2 .

Alternatively, limitations to V 02 max might reside within the muscle and involve 

mechanisms that are not related to the supply of O2 to the exercising muscle. One 

potentially limiting factor is muscle mitochondria (Weibel, 1987; Taylor, 1987). This 

would suggest that the mitochondria have to respire maximally to elicit V 02 max, if 

VO 2 max is not limited by O2 delivery. Experimental evidence to support this is provided 

in single limb training studies where by greater increases in V 02 max have been observed 

in the trained (23%) compared to the untrained limb (7%) (Saltin et al., 1976). This 

difference (16%) was attributed to peripheral adaptations within the muscle, mainly 

oxidative enzyme activity [succinate dehydrogenase (SDH)], which is a pre-requisite for 

elevating V 02tnax.
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The mitochondria provide the final step for O2 and therefore an increase in 

mitochondrial content or mitochondrial enzyme activity should result in a concomitant 

increase in the number of sites available for O2 utilisation in the muscle. This should 

also result in a concomitant increase in V02 max- In support, Saltin et al. (1977) found 

that a two-fold increase in mitochondrial enzymes was associated with a change in 

V 02 max ranging from 20-40%. This suggests that metabolic changes in skeletal muscle 

permits a greater extraction of O2 from the blood by exercising muscle, thus 

contributing to an increased V 02 max.

Peripheral limitations to V 02 max are not unequivocally supported. Some evidence is 

based on the disassociation between V 02 max and muscle related enzyme activity after 

training. Henriksson and Reitman (1977) showed that at the end of their 8  week 

endurance training study, F 0 2max had increased by 19% and SDH and cytochrome c 

oxidase (CO) activity in the quadriceps had increased by 32 and 35% respectively. 

However, after 6  weeks of detraining, V 02 max remained unchanged but SDH and CO 

had returned to pre-training levels. This demonstrates that V 02 max can remain elevated 

without an accompanying elevation of oxidative enzymes. Furthermore, individuals 

with similar V 02 max values have been found to have a two-fold range in mitochondrial 

enzyme concentration (Holloszy, 1973; Holloszy and Coyle, 1984). This also suggests 

that mitochondrial enzyme activity does not limit V 02 max.

Based on a variety of experimental approaches that have involved isolated muscle and 

whole-body exercise in humans, our understanding of the limitations to V 02 max has 

gradually evolved to appreciate the complex interplay of O2 delivery, O2 diffusion and 

muscle metabolic factors. It can be concluded that V 02 max is predominantly limited by 

O2 delivery processes to exercising muscle, for it is obvious a muscle can use no more 

O2 than it receives. It has been suggested that factors determining O2 supply and O2 

diffusion from the blood to skeletal muscle play a key role in determining F0 2max 

(Richardson et al., 1999). This implies that V 02 max is not limited by just one



component of the O2 transport pathway, rather V 02 max is set by the quantitative 

interaction of mechanisms that are involved in the delivery of O2 as a system (Honig, 

1992; Wagner, 1996). However, peripheral mechanisms such as those influencing 

mitochondrial oxidative capacity and thus the utilisation of O2, also appear to have an 

important role and might in some instances interact to determine V02 max. 

Consequently, until experimental models involving simultaneous manipulation of O2 

delivery, O2 diffusion and O2 utilisation are applied in exercising humans, the precise 

identification of the limiting mechanism(s) will continue to be debated.

2.4.2 Measurement of V02 max in MD and LD runners

The measurement of V 02max in runners involves incremental (step-wise or ramp) 

treadmill tests to volitional exhaustion, during which pulmonary gas-exchange is 

measured. The intensity of exercise is progressively increased either by increasing the 

speed (Noakes et al., 1990; Scott and Houmard, 1994) or gradient of the treadmill 

(Costill et al., 1973; Farrell et al., 1979). However, V 02 max has been found to be ~4% 

lower at the end of a speed protocol compared to a gradient protocol (Draper et al., 

1998). This might be attributable to the increasing contribution of the upper extremity 

during uphill running and to the additional recruitment of less efficient Type II (fast 

twitch) fibres. Furthermore, the protocol (speed or gradient) used to establish V 02 max 

might have implications for predicting performances that are achieved on flat courses 

(Billat et al., 2001). This is because higher V 02 max values attained during gradient 

protocols might not be achievable during flat running and this will influence the fraction 

of VO 2 max (% V02 max) that can be sustained. The advantage of using a speed protocol, 

however, is that peak treadmill speed (PTS) achieved during the test can be used as an 

additional measure with which to assess training status. The PTS has been shown to be 

highly related to running performance in LD events (Noakes et al. 1990; Scott and 

Houmard, 1994).
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2.4.3 Relationship of V 02 max with running performance

The VO 2 max is the most widely reported physiological measure of human athletic 

performance and has long been used as a determinant of performance in MD and LD 

events (Saltin and Astrand, 1967). Relationships between V 02 max and running 

performance have been investigated over a range of MD and LD events including 800 m 

(Brandon and Boileau, 1987; Weyand et al., 1994), 1500 m (Tanaka et al., 1983; Abe et 

al., 1998) 3000 m (Zacharogiannis and Farrally 1993; Grant et al., 1997), 5000 m 

(Kumagai et al, 1982; Scott and Houmard, 1994), 10 000 m (Powers et al., 1983; 

Brandon and Boileau, 1987) and the marathon (Takeshima and Tanaka, 1995; Billat et 

al., 2001). In addition, V02 max has been shown to differentiate elite and good LD 

runners (Pollock et al., 1980; Billat et al., 2001).

The relationship between V 02 max and running performance has been shown to increase 

concomitantly with the distance of the event (Brandon and Boileau, 1987; Weyand et 

al., 1994). For example, V 02max correlated more strongly with 5 km (r = -0.93) than 

1500 m (r = -0.79) and 800 m (r = -0.55) performance in runners who were 

heterogeneous with respect to V02 max and performance (Weyand et al., 1994). This 

finding is likely to reflect the increased aerobic contribution to energy production as the 

distance of the race increases. In LD events, the relationship between VO2 max and 

performance has been consistently high (Farrell et al., 1979; Fay et al., 1989) reflecting 

the high aerobic contribution to running distances beyond 3000 m (Wood, 1999).

However, many studies have demonstrated that V 02 max is not strongly associated with 

running performance (Costill et al., 1976a; Conley and Krahenbuhl, 1980; Powers et al., 

1983; Housh et al., 1988). The primary reason why V 02 max and performance are 

correlated only in some studies appears to be related to the range of V 02 max and ability 

of the athletes under investigation. For example, in groups of athletes who are 

heterogeneous with respect to running ability, VO 2 max appears to be a good predictor of 

running performance (Foster, 1983; Grant et al., 1997). Whereas in groups of athletes
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who are homogeneous with respect to running ability, V 02 max is a poor predictor of 

performance (Conley and Krahenbuhl, 1980; Powers et al., 1983; Morgan et al., 1989).

Inconsistencies in the relationship between V02 max and running performance might be 

attributable to the protocol used to determine V 02 max. For instance, Billat et al. (2001) 

reported that in elite marathon runners (n=9), V 02 max measured on a flat surface was 

lower than that measured on a treadmill using a gradient protocol (71.7 ± 11.0 vs. 78.7 ± 

7.0 ml-kg^-min'1, P = 0.03). This 8.9% difference might have a direct effect on the 

relationship between V 02 max and running performances achieved on flat surface and 

V02 max measured using a gradient protocol in the laboratory.

Several studies have demonstrated that an increase (Daniels et al., 1978; Jones, 1998) 

and decrease (Houston et al., 1979) in running performance can occur without 

reciprocal changes in F 0 2max. Thus, F 0 2max is not a sensitive indicator of training 

adaptation and performance. It is possible that physiological adaptations within the 

muscle, such as mitochondrial function and oxidative enzyme activity, resulted in a 

reduced blood lactate concentration [HLa] for a given running speed and contributed 

towards improved performance without influencing V 02 max. In support, reductions in 

the oxidative capacity (SDH activity) of the muscle of a magnitude similar to the 

reduction in performance has been observed (Houston et al., 1979). Therefore, V 02 max 

might only be of limited interest for predicting running performance and monitoring 

physiological adaptations resulting from training or de-training in the competitive 

runner. Alternatively, non-physiological changes such as different pacing strategies and 

motivation amongst individuals might have contributed to changes in running 

performance and distorted the true physiological relationship.

In summary, although a high V 02 max is a pre-requisite for entry into the elite category 

of MD and LD runners, research to date appears equivocal in its findings with respect to 

the contribution and importance of V 02 max to successful endurance running
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performance. The predictive qualities of V 02 max appear to be influenced by the 

distance of the event and the range of abilities of athletes investigated (homogeneous or 

heterogeneous). Furthermore, changes in performance can be achieved without changes 

in V 02 max signifying that this measure is not the limiting determinant of successful 

running performance. It is likely that other physiological adaptations that are related to 

the oxidative capacity of the muscle influence running performance.

2.5 The anaerobic threshold

The "anaerobic threshold" (AT) was first proposed by Wasserman and Mcllroy (1964) 

who elaborated on the concept that measures of pulmonary gas-exchange at the mouth 

could be used to detect the onset of metabolic (lactic) acidosis in muscle. However, the 

term "anaerobic threshold" has resulted in much controversy as to its existence, 

definition and validity (Yeh et al., 1983; Brooks, 1985; Hughson et al., 1987). 

Subsequently, several alternative terms and approaches have been developed to provide 

a less mechanistic descriptor. The terms "lactate threshold" (LT, Coyle et al., 1983), 

"ventilatory threshold" (V t, Powers et al., 1983), "onset of plasma lactate 

accumulation" (OPLA, Farrell et al., 1979) and "aerobic threshold" (Skinner and 

McLellan, 1980; Aunola and Rusko, 1986) are used interchangeably in the literature. 

However, according to Wasserman et al. (1994), making the distinction only 

distinguishes the method of measurement and does not dispute the underlying 

mechanism.

2.5.1 Mechanisms of the anaerobic/ventilatory/lactate threshold

During moderate-intensity exercise, most of the hydrogen ions stripped from the 

substrate and carried by NADH are oxidised within the mitochondria and passed to 

oxygen via the ETC to form water. In these conditions, a biochemical steady state is 

achieved with minimal lactate accumulation since the rate of lactate appearance (Ra) is 

equal to the rate of disappearance (Rd). However, as the intensity of exercise increases 

beyond the moderate domain, the supplemented energy production from anaerobic
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glycolysis and recruitment of less efficient Type II fibres causes an increase in the 

lactate-pyruvate ratio. Indeed, the close correlation between the percentage of Type I 

fibres in the muscle and the LT (Ivy et al., 1980) suggests that the LT might coincide 

with an increased recruitment of Type II fibres as the intensity of exercise increase. 

Consequently, pyruvate reacts with NADH + H+ and is reduced to lactate, via the 

enzyme lactate dehydrogenase (LDH), while regenerating NAD+ and allowing 

anaerobic glycolysis to continue. This process is summarised as: -

Pyruvate + NADH + H+ Lactate + NAD+ (7)

The increased lactate is then immediately buffered intra-cellularly, predominantly by 

HCO3', which generates additional CO2 . The HCO3' exchanges for lactate across the 

muscle cell membrane causing arterial blood HCO3' to decrease.

The traditional explanation proposed by Wasserman et al. (1994) was formulated 

around the insufficient availability of O2, suggesting that lactate accumulation occurs 

because the "critical" capillary partial pressure of O2 (PO2) (defined as the lowest 

capillary PO2 that allows mitochondria to receive and consume O2 during exercise) is 

reached before the end of the capillary. The mitochondrial membrane proton shuttle 

then loses pace with the rate of NADH + H+ production in the cytosol, resulting in a 

reduction in the cytosolic redox potential (NADH/NAD+). However, several studies 

refute this and demonstrate that: 1) lactate is produced and removed under fully aerobic 

conditions in humans (Brooks, 1986 and 1991; Bergman et al., 1999) and; 2) lactate is 

released at power outputs (PO) equivalent to 50% V 02 max despite no signs of O2 lack (as 

evidenced by PO2 remaining above the critical mitochondrial PO2) (Richardson et al., 

1998). Clearly, this dissociates lactate production from anaerobiosis and lends support 

to the 'lactate-shuttle' hypothesis proposed by Brooks (1986). The existence of a 

lactate-shuttle permits the transportation of lactate between muscle fibres and allows 

oxidation and gluconeogenesis during rest and exercise so that although lactate is being
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produced it is cleared at a commensurate rate. This opposes suggestions that lactate is a 

metabolic dead-end product that can only be removed during recovery and therefore, it 

is the ability to clear lactate upon production that determines lactate accumulation and 

thus the LT/Vt-

2.5.2 Measurement of anaerobic/ventilatory/lactate threshold

There are two approaches that can be used to identify the AT. The original, proposed 

by Wassermann and Mcllroy (1964), involves measuring pulmonary gas-exchange 

responses during progressive increases in the intensity of exercise. Alternatively, [HLa] 

during an incremental exercise task can be measured.

2.5.2.1 Ventilatory threshold

The Vt is identified using non-invasive, pulmonary gas-exchange measures obtained 

during a progressive maximal exercise test (e.g. 15 W-min-1, Whipp et al., 1981; Beaver 

et al., 1986) that results in volitional exhaustion (Wasserman and Mcllroy, 1964; 

Wasserman et al., 1973; Whipp et al., 1981). During the transition from low- to 

moderate-intensity exercise, V02 ? the rate of carbon dioxide production (VC02) and 

minute ventilation (KE) increase linearly with increases in the intensity of exercise up

to the V t. Above the V t, VC02 increases more rapidly than V 02 because CO2 ,

generated by the bicarbonate buffering of lactic acid, is added to the metabolic CO2 

production (Wasserman et al., 1994). Since VC02 retains a constant relationship with 

VE during the period of isocapnic buffering, VE!VC02 remains constant (or may drop 

slightly) whilst at the same time VE!VQ2 systematically rises. Distinguishing the point 

at which VEIV02 rises but VEIVC02 remains constant also identifies the V t (Caiozzo 

et al., 1982). Alternative criteria have been proposed by Beaver et al. (1986) that are 

independent of respiratory chemoreceptor sensitivity and VE. This method involves 

identifying the disproportionate increase in VC02 with V 02 and is known as the V- 

slope method. This reflects additional CO2 production as a result of the bicarbonate 

buffering of lactic acid.
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2.5.2.2 Lactate threshold

The LT is identified during an incremental protocol that requires [HLa] measurements 

to be taken at the end of each incremental stage, which are typically 4 min long. The 

graphical representation of [HLa] to the gradually increasing intensity results in a two 

component response, one having a shallow, or zero slope, followed by a steeper 

component (Beaver et al., 1985). The zero slope, below the LT, results from a 

successful balance between the production and removal of lactate, primarily through 

oxidation (Brooks, 1985). At this point [HLa] is usually below 2 mmolT1 or might 

increase above the resting level by less than 1 mmolT1. The intersection of the two 

lines is the LT. The LT can be identified and expressed as a V 02 and subsequently as a 

fraction of the individuals V 02 max (Farrell et al., 1979). In highly-trained runners the 

LT occurs at intensities greater than 70% of V 02 max (Costill et al., 1973; Tanaka and 

Matsuura, 1984). Some investigators have argued that increases in [HLa] follow a 

continuous exponential model (Hughson et al., 1987). In runners, Farrell et al. (1979) 

observed both exponential and threshold responses suggesting that the lactate response 

does not conform to one specific model.

2.5.3 Relationship of Vt and LT with running performance

While the concept of the AT has been debated in the past (Brooks, 1985; Davis, 1985), 

support for this concept has come from studies showing strong correlations between 

running performance and the LT (Farrell et al., 1979; Sjodin and Jacobs, 1981; Grant et 

al., 1997; Roecker et al., 1998) and Vt (Powers et al., 1983; Rhodes and McKenzie, 

1984; Peronnet et al., 1987; Zacharogiannis and Farrally, 1993) over a range of 

distances, suggesting that direct measures of [HLa] and pulmonary gas-exchange are 

equally good methods to determine potential relationships with performance. In some 

studies, the V 02 at the LT and Vt have been shown to be rriOre highly correlated with 

running performance than V02 max (Farrell et al., 1979; Kumagai et al., 1982; Yoshida 

et al., 1987).
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The above findings are not representative of all studies that have assessed the 

relationship between LT/Vt and running performance. For instance, it has been 

reported that the LT/Vt is not related to 5000 and 10000 m (Iwaoka et al., 1988) and 

marathon (Tanaka and Matsuura, 1984; Florence and Weir, 1997) running performance. 

A common characteristic of these studies is that athletes were homogeneous with 

respect to their performance. Similarly, in samples of trained runners who were 

heterogeneous with respect to V 02 max and performance, the correlation between 

running performance and the Vj was low (Brandon and Boileau, 1992). These findings 

could be partially explained by the shorter distances i.e. 800 and 1500 m used to 

characterise running performance, suggesting that the Vt has an increasing contribution 

to performance as the distance of the event increases. To account for such findings, it is 

probable that anaerobic pathways are contributing to performance during MD events 

and that this is not reflected in the measure of the LT or VT. This would mean that two 

athletes with similar LT/Vt could be differentiated with respect to running performance 

on the basis of their anaerobic qualities.

In summary, the use of [HLa] and pulmonary gas-exchange criteria to determine the LT 

and Vt respectively, have both been shown to be closely related to running 

performance. In some instances the observed relationships have exceeded those found 

between V 02 max and performance suggesting that LT and V t are closer determinants of 

performance. However, to a lesser extent than that found for V 02 max, the LT and Vt 

can also be influenced by the characteristics of the sample (e.g. homogeneity) as well as 

the distance of the event. This suggests that although the Vt and LT are more closely 

related to performance than V02 max, they are not the exclusive determinants of running 

performance.

2.6 Running economy: oxygen cost of exercise

The term running economy (RE) is predominantly used to describe the O2 cost of sub- 

maximal running. The RE is defined as the steady-state O2 consumption for a given
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running speed, expressed relative to body mass (BM) as a ratio standard, i.e. 

ml-kg'^min' 1 (Conley and Krahenbuhl, 1980; Cavanagh and Williams, 1982). Using 

this expression, the RE of a range of MD and LD runners has been established (Conley 

and Krahenbuhl, 1980; Svedenhag and Jacobs, 1984; Jones, 2002). Alternatively, the 

energy or O2 cost of running (Cr) has been determined by dividing the V02, minus 

resting V 02, corresponding to a sub-maximal speed by that speed (Margaria et al., 

1963; di Prampero et al., 1986). The Cr is therefore expressed in ml 0 2 -kg'1-km' 1 and 

has been shown to be independent of running speed (Cavagna et al., 1964; di Prampero 

et al., 1986).

2.6.1 Measurement of RE

With respect to RE, the speeds over which MD and LD runners are assessed plays an 

important part in determining which runners are the most economical. It has been 

recommended that RE data are collected up to speeds that elicit an intensity equivalent 

to 90% VO2 max (Daniels and Daniels, 1992). This recommendation was derived from a 

study of elite runners where MD runners (800 and 1500 m) were found to be more 

economical than LD runners (marathon) at speeds faster than marathon race pace, but 

not at slower speeds (Daniels and Daniels, 1992). This suggests that RE is event 

specific. However, caution is required when measuring V 02 at running speeds when 

there are significant increases in [HLa]. This is because an additional slow component 

of V 02 is likely to develop during heavy-intensity exercise which is above the LT/Vt 

(Barstow, 1994; Whipp, 1994). This makes establishing the true O2 cost of exercise 

difficult as a true steady-state is not achieved. This could result in a misleading 

representation of an individuals RE or Cr. For this reason, it would be preferable to 

determine measures of RE and Cr during bouts of moderate-intensity running that do not 

exceed the individuals LT/Vt .
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2.6.2 Mechanisms determining or influencing RE

Mechanism(s) determining RE are attributed either to physiological or mechanical 

characteristics of the individual. Williams and Cavanagh (1987) have shown that 

physiological variables (e.g. percentage of Type I muscle fibres and EOjmax) and 

biomechanical variables (e.g. ground reaction forces and leg kinematics) interact to 

influence RE. Therefore, it is possible that changing a specific aspect of a runner's 

technique could lead to an improvement in RE. However, changing one aspect could 

influence other variables and the effect on RE could be unpredictable.

To quantify the sensitivity of RE, several physiological aspects of RE have been 

manipulated by various experimental approaches. Ultimately, these have been 

conducted to assist in developing a better understanding of the mechanism(s) underlying 

or influencing RE. However, there is no consensus regarding the influence of variables 

such as body temperature (Gaesser and Brook, 1984), heart rate (HR) and VE (Pate et 

al:, 1992), muscle fibre type (Williams and Cavanagh, 1987), gender (Bransford and 

Howley, 1977; Daniels and Daniels, 1992) and environmental conditions (Leger and 

Mercier, 1984) on the RE of trained individuals. It appears that no single variable, or 

small subset of variables, can explain differences in RE between individuals. Thus, the 

likelihood that RE is related to a weighted sum of the influences of many physiological 

and biomechanical variables seems the most probable explanation for differences in RE 

amongst MD and LD runners.

2.6.3 The relationship between RE and performance

Hill and Lupton, as early as 1923, recognised RE as a factor that would affect running 

performance: "A man may fail to be a good runner by reason of a low oxygen uptake, a 

low maximum oxygen debt, or a high oxygen requirement; clumsy and uneconomical 

movements may lead to exhaustion just as well as may an imperfect supply of oxygen". 

Subsequently, the assessment of RE and Cr has become a widely accepted means of 

evaluating endurance running performance and has been considered as the physiological
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criterion for efficient performance (Cavanagh and Kram, 1985). Several studies have 

identified a strong relationship between RE and running performance (Conley and 

Krahenbuhl, 1980; LaFontaine et al., 1981). Conley and Krahenbuhl (1980) reported 

that RE measured at 3 sub-maximal running speeds (14.5, 16.1 and 17.7 km-h'1) 

correlated strongly with 10 km performance (r = 0.83, 0.82 and 0.79 respectively, P 

<0.01), whereas V02 max did not (r = 0.12, P >0.05). Measures of RE explained 64.5% 

of the variability in 10 km performance. Thus the ability a runner has to minimise 

energy expenditure at a given speed is a performance-determining variable.

In MD and LD runners, RE can also be considered a poor predictor of running 

performance, since poor correlations between RE and performance for a range of 

distances including 3 km (Grant et al., 1997), 10 km (Williams and Cavanagh, 1987), 

10 mile (Costill et al., 1973) and marathon (Noakes et al., 1990; Billat et al., 2001) 

races, have been reported. In the majority of these studies, runners displayed 

heterogeneous characteristics with respect both to V 02max and performance, with 

V 02 max accounting for variations in performance. However, in the study of Powers et 

al. (1983) a poor correlation was observed despite the homogeneous characteristics of 

both V 02 max and 10 km performance in the participants studied. It is not completely 

clear why these data differ from the work of Conley and Krahenbuhl (1980); however, it 

can be speculated that the poor correlation between performance and RE resulted from 

homogeneity of RE in the athletes studied. This suggests that in some populations the 

individual differences in RE are not great, and that RE may be of limited value in 

differentiating distance running performance in homogeneous and heterogeneous 

groups.

The importance of RE is apparent when small numbers of athletes with similar V 02 max 

values are compared. For example, Costill and Winrow (1970) identified two athletes 

with similar V 02 max but with different running abilities and found that the superior RE 

accounted for the faster runner’s better performance. This is further supported by
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Morgan and Daniels (1994) who found a positive relationship between V 02 max and sub- 

maximal V 02 revealing that runners exhibiting higher aerobic demands of running (i.e. 

poorer RE) tended to have higher V 02 max values. These results suggest that trained 

runners who display similar metabolic and performance values show counter-balancing 

profiles of VO 2 max and RE. Thus it appears that V 02 max and RE interact to determine 

the level of performance e.g. it is possible for an athlete with superior RE to compensate 

for an inferior V 02 max yet obtain a similar level of performance (Daniels, 1974). To 

account for this interaction, dividing the RE of a runner by their V 02 max results in the 

fractional utilisation of V 02 max (% V02 max) for that running speed (Costill et al., 1973). 

The % V02max whilst running at a common sub-maximal speed (e.g. 16 km-h'1) might 

be a better way to express RE as it takes into consideration an individuals V 02 max and 

has been found to correlate highly with running performance in several studies that had 

previously found no relationship between RE when expressed in ml-kg'^min' 1 (Costill 

et al., 1973; Conley et al., 1981; Noakes et al., 1990; Grant et al., 1997).

Runners with various running abilities have been shown to have similar Cr [range: 174 

to 188 ml-kg'^km' 1 (di Prampero et al., 1986; Brisswalter and Legros, 1994)] 

suggesting that Cr is independent of performance. In support, Billat et al. (2001) 

reported a poor correlation between Cr and marathon performance for elite marathon 

runners.

In summary, the relationship between running performance and O2 cost of exercise 

during sub-maximal running, regardless of how it is expressed (RE or Cr), is not 

consistent and appears to be influenced by the homogeneity of the sample with respect 

to running ability and/or V 02max. The interaction between RE and V 02max suggests 

that both of these measures should be considered when assessing or predicting running 

performance in MD and LD runners. Accordingly, it can be concluded that RE is not 

the exclusive determinant of MD and LD running performance, especially when 

considered separate to measures of V02 max.
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2.6.4 Body size and V02

Conventionally, V 02 during sub-maximal and maximal exercise is expressed in ratio 

with BM (i.e. ml-kg'^min"1). This attempts to remove the influence of BM on the 

physiological variable in question. However, according to principles of allometry, V 02 

does not increase linearly with BM (Schmidt-Nielson, 1984). It has been identified that 

VO2 does not increase proportionally to BM during sub-maximal (Bergh et al., 1991) 

and maximal (Bergh et al., 1991; Welsman et al., 1996; Heil, 1997) running. This 

suggests that indiscriminate use of the ratio standard to account for differences in BM in 

runners could be misleading. Potentially, this could have implications for the 

evaluation of athletes and might be the reason why in many studies no or weak 

correlations between V 02 measures (sub-maximal and maximal) and running 

performance have been found (see previous sections). This raises the question of how 

differences in BM should be accounted for during running.

The most appropriate BM exponent to describe measures such as V 02 max, RE (or Cr) 

has been the subject of debate. According to the theory of geometric similarities and 

surface laws, V 02 max should be proportional to BM0 67 (Astrand and Rodahl, 1986). 

Alternatively, a BM exponent of 0.75 has been proposed which is based on elastic 

similarity (Kleiber, 1947; McMahon, 1973). More recently, however, allometric 

cascade models have produced BM exponents of 0.86 and 0.75 for maximal exercise 

and rest respectively (Darveau et al., 2002). This suggests that different exponents 

might be required for maximal and sub-maximal measures of VO 2 during running.

Different BM exponents have been applied when expressing V 02 in runners (Helgurud, 

1994; Svedenhag and Sjodin, 1994; Morgan et al., 1995). In some instances this 

approach has had a significant effect on the results. For example, Svedenhag and 

Sjodin (1994) were able to differentiate between elite MD and LD runners when RE (at 

18 km-h'1) was expressed in ml-kg^'^-min' 1 but not when expressed in ml-kg’̂ min"1.
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This emphasises the need to consider the most appropriate exponent which can 

effectively partition the effects of differences in BM.

To maximise potential relationships between physiological measures and running 

performance, a further step would be to identify the individual exponent for a given 

sample. Using this approach, Nevill et al. (1992) identified that the most appropriate 

exponent when expressing V 02 max and relating it to 5 km running performance was 1.0; 

identical to the ratio standard which is typically used to express measures of V 02. 

Furthermore, by using this exponent, Nevill et al. (1992) were more able to divide 

participants according to their performance than the 0.67 power function ratio when 

performance was expressed as mean speed (m-s'1). This supports the conventional 

expression of V 02 in ml-kg^-min' 1 for weight-bearing activities, which are highly 

dependent on BM. However, for a different sample the exponent might differ from 1.0 

due to a different range of BM and V02 measures and therefore, would require the 

sample-specific exponent to be identified.

2.7 Pulmonary V02 kinetics

Pulmonary V 02 kinetics is a measure of the rate at which V02 increases at the onset of 

exercise, or to an abrupt change in the intensity of exercise. In healthy individuals, 

measures of V 02 at the mouth provide an excellent representation of the rate of muscle 

O2 consumption (QO2 ) during exercise (Grassi et al., 1996). Therefore, measures of 

V02 kinetics provide a valuable insight into oxidative muscle metabolism during 

exercise.

Interpretation of pulmonary gas-exchange dynamics can be confusing and possibly 

misleading if they are not considered in the context of the intensity of exercise (Whipp 

and Ward, 1990). The dominant, first-order kinetic characteristics are changed to 

complex, multi-compartment behaviour as the intensity of exercise exceeds the Vt. The 

following description concerns primarily the dynamic V 02 response profile at the onset
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of moderate-intensity exercise (i.e. below the V t) although the dynamics of V 02 in 

response to heavy- and severe-intensity exercise will also be briefly discussed.

2.7.1 The V 02 response at the onset of moderate-intensity exercise

Since the pioneering work of Hill and Lupton (1923), it has been recognised that 

pulmonary V 02 rises exponentially at the onset of constant-load exercise. In the 

moderate-intensity domain, three separate and distinct time-related phases have been 

identified and quantified (Whipp et al., 1982). These phases result from neural, 

mechanical and metabolic events in the body. The three phases are illustrated from 

experimental data in Figure 2.3.
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Figure 2.3 The V 02 response at the onset (time = 0) of moderate-intensity exercise. 

Phases (I - III) are highlighted and described in the text (adapted from Sietsema et al., 

1989).

The measurement of pulmonary V 02 by Krogh and Lindhard (1913) first identified the 

initial rapid increase in V 02 at the onset of exercise. This is caused predominantly by 

an increase in pulmonary blood flow and is attributed to an increased Q (Linnarsson, 

1974; Whipp et al., 1982; Hamar, 1991). This has been termed the "cardiodynamic" 

phase I (Whipp et al., 1982) and is approximately 15 to 20 s in duration. Since it has
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been shown that there is minimal extraction of O2 at the muscle during this initial phase 

(Grassi et al., 1996), it can be confirmed that phase I V 02 kinetics do not reflect 

metabolic events in the muscle.

Immediately following phase I, V02 starts to increase mono-exponentially (Hill and 

Lupton, 1923; Henry and De Moor, 1956; Whipp, 1971). Traditionally, this increase 

has been termed phase II (Whipp et al., 1982). During this phase, venous blood from 

the exercising muscle arrives at the lungs. This blood has a lower O2 content than the 

blood arriving at the lungs during phase I and reflects the influence of muscle metabolic 

change on pulmonary V02 measured at the mouth. The modelling of pulmonary V 02 

and muscle V 02 kinetics during exercise transients (Barstow and Mole, 1987; Grassi et 

al., 1996), as well as the observed equivalence between intra-muscular [PCr] and V 02 

kinetics during phase II (Rossiter et al., 1999), suggest that this second phase closely 

represents the behaviour of QO2 . Finally, phase III refers to the point at which a 

steady-state V 02 has been achieved. This demarcates the point at which V 02 is 

precisely coupled with cellular metabolism within the exercising muscle (Wasserman et 

al., 1994), i.e. V 02 supply is equal to V 02 demand. The time taken for V 02 to reach 

phase III is usually 2-3 min, although this is dependent on both the health and 

physiological status of the individual.

During exercise above the Vt the V 02 response becomes more complex; displaying 

time and amplitude non-linearities (Barstow and Mole, 1991). In most circumstances, 

the phase III steady state V 02 is not achieved (Figure 2.4) and a further, but delayed, 

supplemental rise in V02 termed the 'slow-component' (Whipp and Wasserman, 1972) 

occurs.

34



0.5*

0.0 -

•0.5 *i  ........i .................. i..................»--------------1------------- .i —....
•60 0 eo 120 100 240 300 360

Time (s)

Figure 2.4 The V02 response at the onset of heavy-intensity exercise illustrating the 

'slow-component' (A2  ) (adapted from Burnley et al., 2000).

Uncertainty surrounds the precise physiological mechanism(s) responsible for the 

development of the VO 2 slow-component, which is often associated with an increase in 

[HLa] (Casaburi et al., 1987). However, the tight association between the temporal 

profile of [HLa] and the V02 slow-component might be the consequence of several 

putative mediators including the progressive recruitment of less efficient Type II fibres 

(Barstow et al., 1996), increased body temperature (Q10 effect), decreased muscle pH 

and/or increased respiratory and cardiac work (Aaron et al., 1992; Stringer et al., 1997).

2.7.2 Characterisation of V02 kinetics as a function of the intensity of exercise

Within a given intensity domain, different temporal components of the V02 response to 

constant-load exercise can be identified (Whipp et al., 1982). One specific issue within 

studies of V02 kinetics is whether the phase II x is influenced by the intensity of 

exercise. Several studies to investigate this have clearly shown that x is invariant for 

exercise intensities below and above Vt/LT during cycling in trained (Barstow and 

Mole, 1991; Barstow et al., 1993) and un-trained individuals (Barstow et al., 1993; 

Ozyener et al., 2001). For example, Barstow et al. (1993) demonstrated that for 

intensities between 30 and 100% V02 max, phase II x was invariant (Barstow et al.,
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1993). Similarly, Ozyener et al. (2001) reported no differences between x for V02 at 

the onset of moderate (33 ± 16 s), heavy (32 ±17 s), very heavy (34 ± 11 s) and severe 

(34 ± 7 s) intensity exercise. Collectively, these findings suggest that the primary V02 

response, even at higher power outputs, reflects a linear system. Consequently, 

transitions to moderate- and heavy-intensity exercise provide similar information about 

the oxidative potential of the muscle and supports the use of transitions to moderate- 

intensity exercise as a non-invasive estimate of QO2 (Barstow and Mole, 1987).

There is, however, some evidence to suggest that x might vary according to the intensity 

of exercise. Paterson and Whipp (1991) reported that the phase II x was slowed (i.e. x 

was longer) during heavy-intensity compared to moderate-intensity exercise (40.2 ± 2.7 

s and 31.3 ± 3.3 s respectively). This conflicting finding could be attributable to 

inconsistent and/or inappropriate modelling techniques, as highlighted by Bell et al. 

(2001). For example, Paterson and Whipp (1991) modelled transitions to heavy- 

intensity exercise using a mono-exponential model which considered phase II V 02 and 

the V 02 slow component as one kinetic parameter. It is probable that inclusion of the 

slow-component of V 02 in the modelling of phase II artificially slowed the underlying 

x during phase II for heavy-intensity exercise (Barstow, 1994). This would clearly 

influence the interpretation of the results. Therefore, a two-component model is more 

appropriate to partition the phase II and slow component V 02 responses during 

transitions to heavy-intensity exercise so that the influence of increasing exercise 

intensity on phase II x can be explored more meaningfully.

In agreement with Barstow et al. (1993) and Ozyener et al. (2001), most other studies 

using alternative modes of ergometry, including treadmill running, have reported no 

significant differences in phase II x at the onset of moderate- and heavy-intensity 

exercise (Carter et al., 2000a, b; Williams et al., 2001). Recently, however, a study 

examining V 02 kinetics during treadmill running across moderate, heavy and severe 

intensity domains [(i.e. speeds equivalent to 80% and 100% of the V 02 at LT and 20%,
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40%, 60%, 80% and 100% of the difference between (A) the V 02 at LT and V 02 max] 

was conducted by Carter et al. (2002). This study revealed that the phase II x was 

shorter for moderate- (80%LT) than heavy-intensity (40%A) exercise (12.7 ± 1.4 s and 

19.1 ± 0.8 s respectively; P = 0.035), but that x was invariant at intensities above 

100%LT. The difference in x between moderate- and heavy-intensity exercise was 

primarily attributed to changing patterns of muscle fibre recruitment that occur as the 

intensity of exercise increases. Specifically, the increased recruitment of glycolytic 

Type II fibres, with presumably slower O2 utilisation kinetics as the intensity of exercise 

increased, was suggested as the reason why x was longer during heavy-intensity 

exercise. However, it remains unclear as to why similar findings were not observed in 

the study of Barstow et al. (1993), especially since similar modelling procedures were 

used to establish x. Potentially, the inconsistent findings could be caused by differences 

in the mode of exercise (cycling vs. running). However, recent work from our 

laboratory (Wells et al., 2003) using treadmill ergometry has revealed no difference in x 

for participants with relatively similar V 02 max (54.6 ± 3.2 ml-kg'^min'1) exercising at 

moderate (80% V t; x  = 23.2 ± 5.5 s) and heavy intensities (50%A; x = 23.7 ± 4.0 s), thus 

refuting the findings of Carter et al. (2002) and discounting the effect of exercise 

modality on x.

In conclusion, uncertainty remains regarding the influence of exercise intensity on the 

time course of V 02 adjustments during phase II at the onset of exercise. This is clearly 

an area for future research to clarify, especially in regards to different modes of 

exercise. Perhaps most importantly is whether the physiological mechanism(s) 

determining phase II x during moderate- and heavy-intensity exercise are similar. For 

example, if future studies continue to confirm that phase II x above and below Vt is 

invariant then it would be acceptable to use moderate-intensity exercise to characterise 

phase II VO2 kinetics. However, if the phase II x for heavy versus moderate-intensity 

exercise is found to be slowed, and the mechanistic basis for this slowing is attributed to 

the progressive recruitment of Type II muscle fibres (as suggested by Carter et al.,
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2 0 0 2 ), then this information should be considered when determining protocols for 

studies involving V 02 kinetics. For example, if information about peripheral 

adaptation(s) relating to muscle oxidative function in a proportion of muscle fibres 

(predominantly Type I fibres) is required, then the use of moderate-intensity exercise to 

characterise V 02 kinetics would be warranted. A useful application of this measure in 

the moderate-domain would be in endurance-trained runners, where the composition of 

Type I fibres in muscle can be greater than 70% (Saltin and Gollnick, 1983) and are 

likely to reflect training adaptation and/or determine performance in predominantly 

aerobic events. Clearly, further information clarifying the uncertainties of x above and 

below Vt would be beneficial to future studies involving V 02 kinetics.

2.7.3 The V02 response during recovery from moderate-intensity exercise

At the cessation of moderate-intensity exercise, the dynamics of V 02 during the off- 

transient exhibit a characteristic three-phase response equivalent to that observed during 

the on-transient (Figure 2.5), provided there was no significant increase in [HLa]. In 

summary, phase I involves a sudden decrease in V 02 resulting from a decrease in blood 

flow as a consequence of a reduced Q ; Phase II involves an exponential decrease in 

V02 reflecting [PCr] and O2 store replenishment. This phase has been termed the fast 

component of recovery (Margaria et al., 1933; Henry, 1951; Gaesser and Brooks, 1984). 

Phase III involves the return of V 02 to pre-exercise levels.
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Figure 2.5 The V 02 response at the cessation (time = 0) of moderate-intensity exercise 

(from Scheuermann et al., 1998).

2.7.4 Measurement of V 02 kinetics

Assessments of V 02 kinetics have predominantly used a square-wave (or step) 

transition(s) in the intensity of exercise which involves an abrupt change from rest (or 

low-intensity exercise) to moderate-intensity exercise. To ensure the intensity of 

exercise is moderate for all participants, the PO or speed is prescribed based on a 

percentage of the participant's Vt (Paterson and Whipp, 1991; Rossiter et al., 1999) or 

LT (Carter et al., 2000a; Williams et al., 2001).

Breath-by-breath variability or 'noise' is an inherent characteristic of pulmonary gas- 

exchange measurements (Lamarra et al., 1987). To minimise its effect, participants 

complete several square-wave transitions (Linnarsson, 1974; Whipp et al., 1982; 

Lamarra et al., 1987) either consecutively with appropriate rest periods, or on separate 

occasions. The data from each transition are interpolated and ensemble averaged to 

produce a single data set which is representative of the typical V 02 response. The 

kinetic response parameters are then obtained using exponential modelling techniques.
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2.7.5 Modelling V 02 kinetics at the onset and cessation of exercise

Exponential modelling techniques, using least-squares non-linear regression, are used to 

determine the kinetic parameters that describe the temporal profile of V 02 at the onset 

and cessation of moderate-intensity exercise. It is generally acknowledged that the on- 

and off-transient V 02 response to a moderate-intensity, square-wave transition can be 

characterised adequately by a first-order exponential model incorporating a time-delay, 

constrained to start at the beginning of the phase II response (~20 s post onset of 

exercise) (Whipp et al., 1982). This is to minimise distortion by early cardio-dynamic 

influences and therefore provides an accurate temporal representation of the exponential 

response during phase II. This model is widely used to characterise phase II V02 

kinetics during both the on- (Chilibeck et al., 1998; Rossiter et al., 1999) and off- 

transient (Paterson and Whipp, 1991; Ozyener et al., 2001). The output from this 

analysis consists of three kinetic parameters, described in terms of the on-transient 

kinetics these are: 1) time delay (8), referring to the point after the onset of moderate- 

intensity exercise when V 02 starts to increase mono-exponentially (i.e. it is 

representative of the start of phase II); 2) t, reflecting the rate at which V 02 is 

increasing and represents the time taken to reach 63% of the increase in VO 2 from low- 

intensity (baseline) to moderate-intensity exercise and 3) amplitude term (A), 

representing the magnitude of the V 02 change from baseline conditions to the 

asymptotic steady-state V02 achieved during moderate-intensity exercise. The x is the 

most commonly referred to kinetic parameter, although earlier studies used the rate 

constant [k (Whipp and Casaburi, 1982; Weltman et al., 1978)] or V 02 half-time 

[V02ty2 (Diamond et al., 1977; DeVries et al., 1982; Powers et al., 1985)] to describe 

VO2 kinetic responses.

Alternatively, some investigators have chosen to model their data using higher-order, 

double-exponential models (Barstow and Mole, 1991; Carter et al., 2000a; Williams et 

al., 2001). This approach models the phase I and phase II responses as separate 

components, each with independent 8, x and A terms respectively. However, concerns
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regarding the use of an exponential for phase I have been raised (Bell et al., 2001), since 

experimental evidence supporting a physiological exponential increase during phase I 

has yet to be established.

Several additional physiological measures can be obtained from the kinetic parameter 

estimations obtained from mono-exponential modelling of the V 02 response. The 

mean response time (MRT) describes the overall rate of adjustment of V 02 and can be 

calculated from the sum of 5 and t  (Linnarsson, 1974). This kinetic parameter has been 

previously used to describe the overall rate of response (Linnarsson, 1974). Most 

importantly, MRT has been shown to be more reproducible than t  (Kilding et al., 2001). 

Furthermore, the MRT for the on- and off transient can be used to calculate the O2 

deficit and O2 debt respectively (Linnarsson, 1974; Whipp et al., 1982).

2.7.6 Symmetries between on- and off-transient kinetics

Berg (1947), Henry (1951) and Henry and De Moor (1956) were among the first to 

provide quantitative descriptions of the V 02 response and observed that the time course 

of change was generally similar between the adaptation to and the recovery from 

exercise. However, recent studies have demonstrated conflicting findings with respect 

to such symmetry between transients. In some studies, the V 02 kinetic response during 

the on- and off-transients have been found to be symmetrical (Paterson and Whipp, 

1991; Yoshida and Whipp, 1994; Ozyener et al., 2001). Conversely, others have clearly 

demonstrated an asymmetry between the on- and off-transient responses (Hughson et 

al., 1988; Carter et al., 2000a).

Most investigations that have explored possible symmetry between the on- and off- 

transients at the onset and recovery from moderate-intensity exercise have involved 

cycle ergometry (Hughson et al., 1988; Paterson and Whipp, 1991; Ozyener et al., 

2001). However, fewer studies have assessed V 02 transient symmetries during 

treadmill exercise (Carter et al., 2000a). This particular study measured V 02 kinetics
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during cycle and treadmill exercise and demonstrated the on-transient kinetics 

(treadmill: 15.0 ± 2.0 s; cycle: 18.0 ± 4.0s) were shorter than the off-transient (treadmill:

39.3 ± 3.0 s; cycle: 35.9 ± 4.2 s, P <0.05) for both modes of exercise, suggesting that 

symmetry is independent of the mode of exercise. Disparity between this and previous 

findings could be attributable to different modelling techniques as well as the fitness of 

the participants.

2.7.7 Oxidative phosphorylation at exercise onset

At the onset of exercise, or when there is a sudden change in the intensity of exercise 

the rate of oxidative phosphorylation increases. This results from a decrease in the 

phosphorylation potential that stimulates the entry of ADP and Pj into the 

mitochondrion. The magnitude of the decrease in phosphorylation potential will be 

inversely related to the increase in the intensity of exercise. Simultaneously, the 

mitochondrial redox potential increases allowing electron transport from NADH to 

oxygen. The increase in redox potential will parallel increases in the intensity of 

exercise and occur when the rate of electron transfer from NADH to oxygen is not 

matched by the rate of formation of NADH through dehydrogenase enzymes. As 

NADH is oxidised to NAD+, the inhibitory effect of NADH on the three irreversible 

TCA enzymes (pyruvate, isocitrate and a-ketoglutarate dehydrogenases) is reduced and 

the TCA cycle will speed up. Because of the initial mismatch between O2 utilisation by 

the CO complex and O2 delivery from the air to the fibre, the O2 tension within the fibre 

will decline.
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Figure 2.6 Schematic illustrating general mechanisms of oxidative phosphorylation, 

and local factors that might interact to determine muscle V 02 kinetics: 1) calcium 

levels in the mitochondrial matrix which activate dehydrogenases [i.e. lactate 

dehydrogenase (LDH)] and ATP synthase; 2) mitochondrial phosphorylation and redox 

potentials and 3) mitochondrial PO2 (Pmito02) (Tschakovsky and Hughson, 1999).

The rate of oxidative phosphorylation can be increased by a combination of a decrease 

in phosphorylation potential, an increase in mitochondrial redox potential and a gradual 

increase in 0 2 transport to the muscle mitochondria. Essentially, adjustments in 

phosphorylation potential and mitochondrial redox potential maintain oxidative 

phosphorylation in the face of declining 0 2 availability to the respiratory chain (i.e. 

Pmito02). Any mismatch between ATP demand and ATP supplied at the onset of 

exercise, or to a change in the intensity of exercise, must be provided by PCr and 

anaerobic glycolysis. During transitions from low to moderate intensities, the former 

will predominate.
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2.7.8 Mechanisms controlling V 02 at the onset of exercise

During the last 50 years, several models have been proposed to explain potential 

mechanism(s) of control. Primarily, these have involved kinetic and thermodynamic 

models of respiratory control.

2.7.8.1 Classic enzyme kinetic models of respiratory control

The classical kinetic (or acceptor) control model, proposed by Chance and Williams 

(1956), suggests that oxidative phosphorylation is controlled by ADP availability and 

thus there is a Michaelis-Menton type dependence of respiratory rate on cytoplasmic 

[ADP]. Inorganic phosphate (Pi) is generally assumed to play no role in kinetic control 

models because the Michaelis constant (Km) of the mitochondrial Pj transport 

mechanism is several fold lower than the lowest [Pi] in resting muscle and thus must 

always be saturated (Meyer and Foley, 1994). However, the kinetic model has been 

questioned because increases in [ADP] at the mitochondria can be caused by changes in 

creatine ([Cr]) and [PCr] via mitochondrial isoenzymes of creatine phospho-kinase 

(CPK) (Whipp and Mahler, 1980).

Alternatively, the creatine-shuttle (Saks et al., 1978; Bessman and Fonyo, 1981) 

hypothesis has been proposed as the most likely regulator of the dynamic response of 

VO2 (Whipp and Mahler, 1980). Conceptually, this model is similar to the classic ADP 

kinetic model but with ADP supply limited at the mitochondrial inner membrane by 

diffusion of Cr to the mitochondrial isozyme of creatine kinase (CK), rather than by 

cytoplasmic [ADP] per se (Meyer and Foley, 1996) (Figure 2.7). The creatine-shuttle 

hypothesis is plausible given the observed similarity between kinetics of V 02 and intra­

muscular [PCr] in exercising humans (McCreary et al., 1996; Rossiter et al., 1999; 

2002).
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Figure 2.7 Simplified schematic diagram of the reaction by which oxygen consumption 

is coupled to extra-mitochondrial ATP hydrolysis in muscle via the creatine-shuttle 

[dashed lines indicate diffusion (Mahler, 1985)].

2.7.8.2 Thermodynamic models of respiratory control

Classic enzyme models based on Michaelis-Menton kinetics have not always been 

applicable in vivo. Tschakovsky and Hughson (1999) highlighted the limitation of the 

Michaelis-Menten kinetic control model of oxidative phosphorylation in their review of 

factors determining V 02 at the onset of exercise. Primarily, it has been identified that 

kinetic models are unable to account for the large changes in ATP synthesis at the onset 

of exercise. As an alternative to kinetic control models, they proposed that cellular 

metabolic state (phosphorylation and redox potential), latent mitochondrial enzyme 

activation and PmitoCb are likely to be the most important determinants of the rate of 

mitochondrial respiration (Figure 2.6). However, given the' strong evidence
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demonstrating that O2 availability is not limiting V 02 kinetics in normal conditions, 

then mechanism(s) of respiratory control within the muscle are likely to be the 

predominant determinants.

Thermodynamic models of respiratory control predict that mitochondrial redox potential 

(NADH/NAD+), reflecting the degree of cytochrome c reduction, and phosphorylation 

potential ([ATP]/[ADP]x[Pj]) determine respiratory rate such that it is not the absolute 

concentrations of substrates but rather the ratio of substrate to product which is the 

determining factor (Tschakovsky and Hughson, 1999). Compared with kinetic control 

models, thermodynamic models lead to two clear, testable predictions: 1) respiration 

rate should depend on cytoplasmic free energy of ATP hydrolysis, or phosphorylation 

potential, and hence should be sensitive to changes in cytoplasmic [Pi] as well as to 

nucleotide levels and 2 ) the relationship between cytoplasmic phosphates and O2 

consumption should not be fixed by kinetic proprieties of mitochondrial enzymes but, in 

particular, should depend on the intra-mitochondrial NADH/NAD+ ratio (Meyer and 

Foley, 1996).

To clarify such predictions, a series of experiments were conducted to investigate 

whether the relationship between respiration rate and phosphate metabolites (PCr, ATP 

and Pj) in intact muscle correspond to the predictions of kinetic or thermodynamic 

control models (Meyer et al., 1985; Meyer, 1988). Collectively, these studies showed 

that the relationship between [PCr] and respiration rate is linear which favours 

thermodynamic regulation of O2 consumption by cytoplasmic phosphorylation 

potential, rather than kinetic regulation by ADP (Chance and Williams, 1956).

In keeping with the thermodynamic control model of oxidative phosphorylation, Meyer 

(1988) proposed a simple electrical analog for first-order linear respiratory control 

(Figure 2.8).
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Icy - cytosolic ATPase rate
Vo - cytosolic free energy of ATP

hydrolysis
Vb - free energy potential available in 

the mitochondria which depends on 
the mitochondrial redox potential 

C - PCr is the stored charge in the 
capacitor

Rm - mitochondrial resistance due to the 
number and properties of the 
mitochondria 

lrm - rate of oxidative phosphorylation

Figure 2.8 Electrical analog model for linear first-order respiratory control of Meyer 

(1988) (cf. Tschakovsky and Hughson, 1999).

This model predicts that: 1) the response of QO2 and PCr to a step-change in ATP 

demand is mono-exponential; 2 ) x is a product of mitochondrial "resistance" (a function 

of the number and properties of the mitochondria) and the capacitance of the phosphate 

energy pool (total Cr); 3) the steady-state [PCr] is linearly related to QO2 and the slope 

of this relationship depends on mitochondria resistance and 4) if mitochondrial redox 

state is relatively more reduced, the QO2 vs. PCr slope will be unchanged, but the y- 

intercept will increase.

2.7.9 Mechanisms controlling V02 at the onset of exercise

Investigations into mechanism(s) that control V 02 kinetics, and hence QO2 , at the 

onset of exercise have provided two opposing explanations. Namely, the rate of 

increase in oxidative phosphorylation is limited by the adaptation of O2 utilisation 

(Whipp and Mahler, 1980; Barstow et al., 1994) or O2 transport (Hughson, 1990) 

mechanisms. An O2 utilisation limitation reflects a metabolic inertia, meaning that the 

rate of oxidative phosphorylation at the onset of exercise is determined by levels of 

cellular metabolic controllers (Barstow et al., 1994) and/or mitochondrial enzyme 

activation (Timmons et al., 1996). An O2 transport limitation reflects the inertia of O2 

delivery to the mitochondria. This implies that some of the oxidative metabolic
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machinery is capable of increasing its rate of O2 utilisation if more O2 is made available 

(Hughson, 1990).

According to Walsh (1992), three methods can be used to identify the mechanism(s) 

controlling V 02 kinetics at the onset of exercise: 1) identifying the physiological 

compartment(s) with the same response characteristics as V 02; 2) modifying a process 

involved in the body's regulation of O2 utilisation and/or O2 transport and 3) 

implementing chronic interventions (i.e. exercise) and observing their effect on V 02 

kinetics.

2.7.9.1 Similar compartment characteristics

One way to determine mechanism(s) that control V 02 is to characterise the kinetics of 

other physiological measures and assess whether or not they are temporally similar to 

those of V 02 kinetics. To date, this has included determining the kinetics of HR 

(Davies et al. 1972; Linnarsson, 1974), Q (Cerretelli et al., 1966), blood flow (Grassi et 

al., 1996) and [PCr] (Rossiter et al., 1999; 2002).

If the rate of O2 transport to the exercising muscle is a limiting factor in determining 

V 02 kinetics, as suggested by Hughson and Morrissey (1982), then the kinetics of 

VO 2, HR, Q (and presumably blood flow) at the onset of exercise should be similar. 

However, several studies have demonstrated that HR (Davies et al. 1972; Linnarsson, 

1974), Q (Cerretelli et al., 1966) and blood flow kinetics (Grassi et al., 1996) are faster 

than VO 2 kinetics at the onset of exercise. This suggests that O2 transport is not 

limiting V 02 kinetics. However, there is some evidence that shows similarities 

between V 02 and Q kinetics (Yoshida et al., 1993) and, V 02 and HR kinetics 

(Hughson and Morrissey, 1983). These inconsistent findings could be attributed to 

contrasting modes of ergometry and/or different protocols used to measure V 02 

kinetics.
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The kinetics of [PCr] degradation at the onset of exercise might play a role in the 

control of mitochondrial respiration and thus V 02 kinetics. PCr kinetics are thought to 

reflect the kinetics of QO2 (Whipp and Mahler, 1980) that are expressed at the lungs, 

following a transport delay, as pulmonary V 02 kinetics (Barstow et al., 1990; Grassi et 

al., 1996; Rossiter et al., 1999). Both nuclear magnetic resonance (NMR) spectroscopy 

and 31-phosphorus magnetic resonance spectroscopy (31P-MRS) have been used in 

several studies investigating the temporal behaviour of [PCr] at the onset (Barstow et 

al., 1994; McCreary et al., 1996; Rossiter et al, 1999; 2002) and during recovery 

(McCreary et al., 1996; Rossiter et al., 2002) from moderate-intensity exercise. These 

studies have demonstrated a direct proportionality between [PCr] kinetics and 

pulmonary V 02 kinetics in exercising humans (Figure 2.9) suggesting that the phase II 

x for VO 2, measured at the mouth, provides a good estimate of the x for [PCr] and by 

implication the x of QO2 .
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Figure 2.9 Temporal response of V 02 (•) and [PCr] (o) to a step change in exercise 

intensity of moderate-intensity for a representative participant (Rossiter et al., 1999).

2.1.9.2 Manipulations of O2 transport

Evidence to support the hypothesis that V 02 kinetics is limited by an O2 transport 

mechanism has been derived from experimental models that have reduced O2
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availability. For example, in conditions of hypoxia, obtained by reducing arterial partial 

O2 pressure, a slowing of V 02 kinetics has been observed (Linnarsson, 1974; Murphy 

et al., 1989). Alternatively, but with similar physiological consequences (reduced O2 

delivery), the prescription of p-adrenergic receptor blockade drugs to reduce Q in 

healthy participants has also been shown to slow V 02 kinetics (Hughson and 

Kowalchuk, 1991).

Body position, through its effect on blood flow, has also been shown to influence V 02 

kinetics (MacDonald et al., 1998). In the supine position, MRT for knee-extension 

exercise was slower than when similar exercise was completed in the upright position. 

The slower V02 kinetics could be due to a reduced supply of O2 since leg blood flow 

( Q leg) kinetics were also slowed in the supine position (27.6 ± 3.9 vs. 17.3 ± 4.0 s, P 

<0.05). This demonstrates that when O2 transport is temporarily impaired, a 

concomitant slower rate of oxidative phosphorylation occurs.

To clarify the role of blood flow on V 02 kinetics, Williamson et al. (1996) used lower 

body positive pressure to reduce skeletal muscle blood flow during leg exercise and 

observed its effect on V 02 kinetics. However, in contrast to the slowed V 02 and Qieg 

kinetics observed by MacDonald et al. (1998), impaired blood flow (and presumably O2 

transport) did not slow V02 kinetics during moderate-intensity exercise. This finding 

suggests that V 02 kinetics are independent of blood flow and that there is normally an 

excess of blood flow, and thus O2 availability, to the exercising muscle. These 

contrasting findings could be attributable to different modes of exercise (knee extension 

vs. cycling) and subtle differences in body position (upright vs. semi-upright), both of 

which could influence muscle recruitment patterns and cause the distribution of 

oxygenated blood to differ.

If O2 transport mechanisms limit V02 kinetics at the onset of exercise, then in addition 

to slowing VO 2 kinetics in conditions of O2 transport impairment, enhancing the rate of
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O2 transport to exercising muscle should result in a speeding of V 02 kinetics. 

Experimental approaches to demonstrate this have increased O2 transport to exercising 

muscles via circulatory occlusion of the legs prior to the onset of supine arm exercise 

(Hughson and Inman, 1986b), performing rhythmic hand-grip exercise below (vs. 

above) heart level (Hughson et al., 1996) and exercising in conditions of hyperoxia 

(Linnarsson, 1974). All of which have been found to speed V 02 kinetics.

With respect to the speeding of V 02 kinetics in conditions of hyperoxia, MacDonald et 

al. (1997) demonstrated partially conflicting findings. Hyperoxia did not speed V02 

kinetics for exercise below the Vt compared with normoxia, but accelerated the on- and 

off-transient MRT as well as reducing the V 02 slow component for exercise above the 

V t . This suggests that different muscle fibre types are affected by manipulations in O2 

delivery in different ways. It would appear that Type II fibres benefit from additional 

O2 delivery during heavy-intensity exercise. Other investigations have also found that 

hyperoxia speeds V 02 kinetics for heavy but not moderate-intensity exercise (Hughson 

and Kowalchuk, 1995). This suggests that O2 transport is not the rate limiting 

mechanism determining the rate of V02 with respect to moderate-intensity exercise 

below the V t, but might be more important for exercise above the V t .

More direct evidence to support an O2 utilisation mechanism is provided by unchanged 

VO 2 kinetics in the presence of faster Q kinetics in heart-transplant recipients (Grassi 

et al., 1997). Faster Q kinetics was obtained by a "priming" exercise, the purpose of 

which was to establish more favourable conditions with regard to the adjustment of O2 

delivery to the increased metabolic demand. While effective in speeding up the 

adjustment of convective O2 flow to muscle fibres, increased O2 delivery did not affect 

VO2 on-transient kinetics suggesting that slow V 02 kinetics were attributable to 

peripheral (muscular) factors and not deficiencies in O2 transport.
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The disagreement between findings in most studies could be attributed to differences in 

the characteristics and number of participants, number of transitions performed and the 

mode of exercise. Some studies have used small muscle groups (Hughson et al., 1996) 

to permit the non-invasive measurement of blood flow during exercise. However, the 

reduced amplitude of V 02 which inevitably results during small muscle group exercise 

would be more sensitive to the effects of breath-by-breath noise and therefore could 

affect kinetic parameter estimations. Extrapolation of the above findings to larger 

muscle groups should be done with caution as the physiological stress associated with 

the recruitment of a larger muscle mass will differ. Clarity with respect to the intensity 

of exercise is important in studies measuring V 02 kinetics since exercise above and 

below the Vt results in differing physiological responses that can influence V 02 

kinetics (MacDonald et al., 1997).

Clear evidence suggesting that O2 supply does not limit O2 utilisation during moderate- 

intensity exercise has been demonstrated by Grassi et al. (1998a). Using isolated in situ 

canine gastrocnemius muscle, it was demonstrated that increased O2 delivery, by pump 

perfusing the muscle with elevated blood flow from the last seconds of rest thus 

eliminating any delay in O2 delivery, did not accelerate muscle V 02 kinetics in the 

initial phase of electrically induced muscle activity. In response to this finding, a 

further study by the same research group investigated the effects of enhanced peripheral 

O2 diffusion on V 02 kinetics (Grassi et al., 1998b). It was hypothesised that if 

peripheral O2 diffusion were indeed limiting V 02 kinetics, then the increase in the 

driving pressure for O2 from capillaries to mitochondria would determine, in the 

presence of constant convective O2 transport, a faster V 02 kinetic response. Although 

peripheral O2 diffusion was enhanced by increasing the driving pressure for O2 from 

muscle capillaries to the mitochondria, muscle V 02 kinetics were unchanged. 

Collectively, the results of these two studies suggest that convective and diffusive O2 

delivery to exercising muscle does not influence V 02 kinetics at the onset of exercise. 

Unfortunately, the findings of Grassi et al. (1996; 1998a) do not permit a definitive

52



discrimination between the possible intra-muscular mal-distribution of blood flow and 

the inertia of the intra-cellular oxidative machinery as limiting mechanisms. This is due 

to the spatial and temporal heterogeneity of blood flow within active muscle (Piiper et 

al., 1985), a factor that Grassi et al (1996; 1998a) recognise.

Extrapolation of the above findings to exercising humans should be made with caution 

since there are several technical limitations to consider. First, the above studies were 

performed using isolated in situ canine gastrocnemius muscle. The fibre type 

composition of this muscle (predominantly Type I fibres) is considered to be different to 

that of human muscle, but less so when endurance athletes are considered (Grassi et al, 

1998a). Second, muscle activity was obtained by electrical stimulation that produced 

synchronous tetanic actions of all fibres within the muscle. Simultaneous activity of all 

fibres could be considered un-physiological compared to asynchronous, heterogeneous 

fibre activation in voluntary contracting muscle during cycling and running exercise in 

humans. This type of muscle stimulation might have produced intra-muscular blood 

pooling (Grassi et a l, 1998a). However, this pooling was expected to be minimal since 

the action of the muscle was every 2  s thus allowing extrusion of the blood from the 

muscle between active phases. Third, the transient was from rest to an intensity of 60- 

70%  of peak V 02 ( F 0 2peak) and therefore might only to apply to exercise performed 

under these conditions. Square-wave transitions from a low-intensity to moderate- or 

heavy-intensity might result in a different muscle V 02 kinetic response.

Although there is some evidence to suggest that enhancing and impairing O2 transport 

mechanisms influences the V 02 kinetic response under some experimental conditions, 

confidence in some early finings might be reduced because of weaknesses in 

experimental design (e.g. sample size and number of transitions). This is probably the 

primary reason for the conflicting results. However, recent in situ and in vivo 

experiments (Grassi et al, 1998a and 1998b) have provided strong evidence to suggest 

that neither O2 delivery or O2 diffusion mechanisms determine the rate of oxidative
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phosphorylation at the onset of moderate-intensity exercise. Further work to replicate 

these findings in humans is necessary to confirm this conclusion.

2.7.9.3 O2 utilisation

Evidence to suggest that the rate-limiting factor for V 02 kinetics resides in the 

utilisation of O2 within the exercising muscle initially comes from studies that 

manipulated O2 delivery mechanisms and found that V 02 kinetics were not affected 

(e.g. Grassi et al., 1997). This suggests that factors within muscle are determining V 02 

kinetics. However, the pathways of oxidative phosphorylation are complex and the 

exact location of the limiting step(s) is difficult to ascertain. To date, several O2 

utilisation-related limiting steps have been hypothesised.

Recent studies have proposed the activity of pyruvate dehydrogenase (PDH) as the 

limiting factor for QO2 (Timmons et al., 1998a and 1998b; Howlett et al., 1999). The 

enzyme PDH catalyses the de-carboxylation of pyruvate, forming acetyl-CoA, which 

can be subsequently used in the TCA cycle. To enhance the activity of PDH, these 

studies have employed the pharmacological agent dichloroacetate (DCA), which 

activates the PDH enzyme complex, resulting in an increased oxidation of glucose and 

lactate and an amelioration of lactic acidosis (Stacpoole et al., 1998). The 

administration of DCA has been found to increase the active fraction of PDH in skeletal 

muscle at rest (Timmons et al., 1998a; 1998b; Gibala and Saltin, 1999) and attenuate 

substrate level phosphorylation during rest-to-work transitions in animals (Timmons et 

al., 1996; 1997) and humans (Timmons et al., 1998a; 1998b). Specifically in humans, 

pre-treatment with DCA resulted in a reduction in PCr utilisation and muscle lactate 

concentration [MLa] during sub-maximal knee-extension (Timmons et al., 1998a) and 

cycle exercise (Howlett et al., 1999). Collectively, these findings suggest that the 

provision of oxidative substrate is one factor limits oxidative phosphorylation early in 

exercise and that increasing the availability for substrate early in exercise allows for 

increased oxidative phosphorylation and decreased reliance on substrate
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phosphorylation. The attenuation of anaerobic energy provision could be attributed to a 

faster adjustment of oxidative phosphorylation as a consequence of reducing the 

proposed inertia in substrate supply to the TCA cycle (Timmons et al., 1996, 1997, 

1998a and 1998b; Howlett et al., 1999).

Until recently, there was no experimental evidence to support an acceleration in V 02 

kinetics after DCA administration. However, Grassi et al. (2002) simultaneously 

measured muscle V 02 on-kinetics, [PCr] degradation and [MLa] in dog gastrocnemius 

in situ following activation of PDH by DCA administration. The DCA administration 

resulted in a significant activation of PDH as evidenced by a marked stockpiling of 

acetyl-camitine at rest. However, conversely to the hypothesised speeding of muscle 

V02 on-kinetics after DCA administration, V 02 kinetics were slower (control t  = 15.6 

± 0.7 s; DCA t  = 19.5 ± 1.7 s, P <0.05). Furthermore, the amplitude of V 02, [PCr] 

degradation and [MLa] between control and DCA conditions did not differ (P >0.05) 

suggesting that the stockpiling of acetyl groups at rest did not affect 'anaerobic' energy 

provision. This is contradictory to previous studies whereby DCA resulted in a 

significant reduction in [PCr] degradation (Timmons et al., 1996, 1997, 1998a, b; 

Howlett et al., 1999a). The findings of Grassi et al. (2002) suggest that PDH activation 

status is not responsible for the metabolic inertia in the adjustment of oxidative 

phosphorylation to sudden increases in the demand for ATP re-synthesis. These 

conflicting findings might be due to the experimental model used, especially with 

respect to the muscle preparation (in situ canine gastrocnemius) and the method of 

contraction (electrical isometric tetanic stimulation).

2.7.10 Application of measures of V02 kinetics

Owing to the non-invasive and sub-maximal nature of measuring V 02 kinetics, there 

has been a wide and varied application of this approach. This has included medical 

applications involving patients with heart failure (Hepple et al., 1999), heart transplants 

(Grassi et al., 1997), peripheral arterial disease (Bauer et al., 1999) and diabetes
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(Brandenburg et al., 1999). Whereas other investigations have focused on the effects of 

chronic interventions on V02 kinetics such as de-conditioning bed rest (EBfeld et al., 

1984) and exercise (Hagberg et al., 1980; Phillips et al., 1995). Collectively, these 

have been conducted to identify the physiological process(s) or mechanism(s) that 

regulates V 02 kinetics by observing and comparing possible couplings with other 

related physiological processes.

2.7.10.1 The effects of endurance training on V 02 kinetics

Several investigations have quantified the effects of endurance training on V 02 kinetics 

during the on- (Cerretelli et al., 1979; Hagberg et al., 1980; Phillips et al., 1995; Norris 

and Peterson, 1998; Carter et al., 2000b) and off-transient (Hagberg et al., 1980; 

Phillips et al., 1995). Generally, physiological adaptations induced by endurance 

training interact to accelerate V02 at the onset (Cerretelli et al., 1979; Berry and 

Moritani, 1985; Babcock et al, 1994) and offset (Hagberg et al., 1980; Phillips et al., 

1995) of moderate-intensity exercise. Several factors including an improved capacity 

for mitochondrial respiration in muscle, increased availability of blood and/or muscle 

O2 stores, elevation of HR and Q thus causing increased muscle blood flow, could 

contribute to the speeding of V02 kinetics after training.

Comparisons of the time course and magnitude of change in V 02 kinetics due to 

training should be viewed in consideration of the intensity and duration of time spent 

training. Changes in V 02 kinetics appear relatively consistent and demonstrate 

changes after approximately 8  hours of endurance training (Yoshida et al., 1992; 

Phillips et al., 1995). Faster V02 kinetics during the on-transient have been observed 

with as little as 4 days of endurance training with further changes being significantly 

correlated with training days i.e. V 02 kinetics become progressively faster as training 

progressed (Yoshida et al., 1992; Phillips et al., 1995).
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Different intensities of exercise have been shown to influence changes in V 02 kinetics. 

(Berry and Moritani, 1985). In their study, heavy-intensity interval training consisting 

of short distance sprints at 85-95% of maximum heart rate reserve (HRres) with jogging 

recovery had a greater influence on the speeding of V 02 kinetics than continuous 

steady-state training (60-70% of HRres), although the total distance covered by each 

group was equal. Exercising at 85-95% of HRres can be considered a heavy-intensity 

aerobic session, whereas 60-70% is a moderate-intensity session.

Despite increasing VO 2 max, it has been reported that supra-maximal training (sprinting) 

does not change the amplitude or phase shift responses of V 02 to a sinusoidal WR 

forcing function (Fukuoka et al., 1997). This might suggest that the physiological. 

mechanism(s) determining V 02 kinetics are different to those determining V 02 max. In 

support, Carter et al. (2000b) reported no change in the V 02 kinetics after 6  weeks of 

endurance training, despite significant increases in V 02 max and LT. The lack of change 

in this study however, could be attributed to the moderate-high fitness of participants 

prior to training and also to the number of square-wave transitions that were performed 

(n=3) by participants, which might not have been sufficient to identify any small but 

significant changes in V02 kinetics.

The apparent sensitivity of V 02 kinetics to different training strategies warrants further 

consideration of the exact nature of training with respect to the intensity and duration as 

this might influence changes in V02 kinetics. Also, the disassociation between changes 

in V 02 kinetics and V 02 max in some studies (Fukuoka et al., 1997; Carter et al., 2000b) 

as well as the effects on other aerobic measures such as Vj/LT requires further 

attention.

2.7.10.2 Mechanisms of training-induced adaptations in V 02 kinetics

There are several mechanisms that could explain the accelerated V 02 kinetics after 

endurance training. The fact that V02 kinetics are considerably faster in only the
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trained muscles, suggests that mechanisms within the muscle are primarily involved in 

the training response (Cerretelli et al., 1979). After prolonged endurance training, an 

increase in the oxidative potential of the active muscles is likely (Holloszy and Coyle, 

1984). Aerobic training is known to increase the mitochondrial content of skeletal 

muscle (Saltin and Gollnick, 1983) which might contribute to the speeding of V 02 

kinetics. Several studies have reported that an increased rate of O2 utilisation is brought 

about by improved mitochondrial function that attenuates [HLa] (Hagberg et al., 1980; 

Yoshida et al., 1992). This would be in accordance with Meyer's (1988) first-order 

model of respiratory control (Figure 2.8) which suggests that t  is a product of 

mitochondrial "resistance" (a function of the number and properties of the 

mitochondria). A high percentage of Type I muscle fibres that are better equipped to 

use O2 than Type II fibres has also been suggested to result in the speeding of V 02 

kinetics (Weltman and Katch, 1976; Powers et al., 1985).

Exercise-induced adaptations of V 02 kinetics are not always attributed to enhanced O2 

utilisation mechanisms. Phillips et al. (1995) reported that although V 02 kinetics were 

speeded after 4 days of endurance training, no concomitant increases in muscle 

oxidative potential [citrate synthase (CS) and SDH activity] or V 02 max were observed. 

This suggests that the early adaptation of V 02 kinetics to endurance training is not 

caused by changes in muscle. Several other characteristic training adaptations including 

lower [HLa], reduced [PCr] and glycogen depletion were also observed, but occurred 

before increases in mitochondrial potential. After 30 days training, further adaptations 

in muscle metabolism and muscle phosphorylation potential occurred as well as an 

increase in muscle mitochondrial capacity. The initial speeding of V 02 kinetics in the 

early stages of training was attributed to an increase in femoral artery blood flow 

leading to accelerated O2 transport to the exercising muscle. Other work, demonstrating 

that short-term endurance training results in an increase in Q, femoral artery mean 

blood and vascular conductance support this (Shoemaker et al., 1996), assuming that the 

increased blood flow was directed to the active muscle fibres. Although, changes in
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oxidative enzymes were not observed in the early stages of training, this can not exclude 

an O2 utilisation mechanism as the reason for the speeding of V 02 kinetics. It is 

possible that other enzymes involved in oxidative phosphorylation, such as PDH, which 

were not measured could contribute to the speeding of the V 02 kinetic response. 

Future studies should consider and measure the responses of several enzymes involved 

in different metabolic pathways to ensure that important adaptations are not overlooked.

It is possible that endurance training could result in a reduction in the diffusion distance 

of O2 . In support, it has been shown that the size of the capillary-to-fibre interface is 

matched to mitochondrial volume/fibre length with adaptation to training (Poole and 

Mathieu-Costello, 1996). This would provide favourable conditions for O2 to diffuse 

from the circulating blood and into the mitochondria at a faster rate and contribute to a 

speeding of V02 kinetics.

Adaptations in the delivery and utilisation of O2, induced by endurance training appear 

to interact to accelerate oxidative phosphorylation at the onset of moderate-intensity 

exercise. However, after the early stages of exercise, it appears that O2 utilisation 

mechanisms predominate in the training responses. Identifying the time course, 

magnitude and relative contribution of O2 delivery and O2 utilisation related 

mechanisms to the speeding of V 02 kinetics would be useful to identify and could be 

focus for future work.

2.7.11 The characterisation of V 02 kinetics in MD and LD runners

Despite the potential relevance of V02 kinetics as a physiological measure in athletes, 

as demonstrated by its sensitivity to training stimuli, only a few studies have 

characterised the on- (Cerretelli et al., 1979; deVries et al., 1982; Powers et al., 1985; 

Lake et al., 1986) and off-transient (Cerretelli et al., 1979) V 02 kinetics in MD and LD 

runners during moderate-intensity exercise. The majority of these studies have been 

conducted using cycle ergometry which involves a non-sport specific exercise. Other
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studies involving runners and measures of V 02 kinetics during running have been 

conducted using heavy-intensity exercise and involved few transitions (Demarle et al., 

2001; Billat et al. 2001). To date, no study has simultaneously reported on- and off- 

transient VO2 kinetics during treadmill running in MD and LD runners.

2.7.12 The application of V 02 kinetics to performance

Few studies have considered the effects of training on V 02 kinetics and performance. 

In previously trained competitive cyclists, Norris and Peterson (1998) reported that t  

and 40 km cycling performance time significantly decreased during 8  weeks of 

endurance training. In the early stages of training (week 4), t  was reduced with 

concomitant increases in V 02 max, V 02 at the Vt and the PO at the Vt. However, at the 

post-training assessment (week 8 ), further reductions in t  and 40 km performance time 

were observed, but with no further increases in V 02 max or VT. This suggests that V 02 

kinetics is more sensitive to changes in physiological status than V 02 max and Vt and 

that changes in V 02 kinetics are more closely associated with improvements in cycling 

performance. Despite the findings of Norris and Peterson (1998), the association 

between V 02 kinetics and performance in other sports, i.e. running, has not been 

investigated. The only evidence of V 02 kinetics being considered with respect to 

running performance was speculation that: 1) the rate at which V 02 increases at the 

start of the race is more important in determining performance in MD events than it is in 

LD events and 2) there seems little purpose in training to increase V 02 kinetics in the 

MD-LD events, as the 1500 and 3000 m are already run at approximately 100% V 02 max 

(Wood, 1999). It would appear that these authors are suggesting that a relationship 

exists between V 02 kinetics and running performance in MD events, presumably on the 

basis of a reduced oxygen deficit in the faster performers. Indeed, one advantage of 

faster V 02 kinetics is that the O2 deficit will be smaller, which inevitably reduces the 

intra-cellular perturbation at a given intensity (Poole and Richardson, 1997). A reduced 

O2 deficit and faster V02 kinetics will enhance intra-cellular energetics, reduce 

anaerobic glycolysis and promote fat utilisation, which will help conserve intra­



muscular glycogen reserves (Poole and Richardson, 1997). Therefore, the relevance of 

VO 2 kinetics to running events of moderate- to heavy-intensity for prolonged periods, 

i.e. 5000 m - marathon, appears justified.

It is likely that fluctuations in running speed occur during a competitive race. 

Potentially, an individual with fast V 02 kinetics would be able 'physiologically' to 

respond rapidly to changes in the intensity of exercise during a race which would help 

attenuate PCr degradation, [HLa] and require less assistance from substrate 

phosphorylation. During LD events, especially the marathon, this might serve to 

maintain performance levels as a result of a glycogen sparing effect. It has been 

proposed that faster V 02 kinetics would result in an increase in endurance at all sub- 

maximal intensities (Poole and Richardson, 1997). Such possibilities warrant the 

investigation of the importance of V 02 kinetics in MD and LD runners and its 

contribution to predicting running performance.
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CHAPTER 3 

Methods

The following methods are applicable to the individual studies completed as part of this 

thesis. This chapter includes a detailed description of: 1) the equipment used and its 

calibration; 2) exercise tests and protocols; 3) data preparation and analysis techniques 

and 4) methods of statistical analysis.

3.1 Equipment and calibration

The equipment used throughout each investigation is described in four separate 

sections. These are: 1) treadmill ergometry; 2) mass spectrometry (including 

calculations of alveolar gas exchange); 3) HR monitoring and 4) [HLa] analysis.

3.1.1 Treadmill ergometry

For the assessment of sub-maximal and maximal physiological responses, a treadmill 

(Saturn 250-75R, HP Cosmos, Germany) was used with a running surface length of 250 

cm and width of 75 cm. Speed ranged between 0 and 40 km-h' 1 (0 - 11.11 m-s'1) with 7 

acceleration/deceleration possibilities (from 0 to 40.0 km-h’ 1 in 3 to 131 s). Elevation of 

the treadmill belt operated between 0 and 25% (0 - 14°) with adjustable electronic 

resolution (0.1%). Verification data for treadmill speed and gradient are provided in 

Appendix 2.

3.1.2 Mass spectrometry

Measurements of inspired and expired respiratory gas concentrations were made using a 

respiratory mass spectrometer (MGA-1100, Marquette Electronics Inc., Milwaukee, WI, 

USA). This particular mass spectrometer has been found to measure V 02 values that 

were not significantly different from Douglas bag methods (Babineau et al., 1999). 

Breath-by-breath inspiratory and expiratory gas flows were measured using a bi­

directional flow turbine (VMM 110, Interface Associates, Laguna Niguel, CA, USA). 

The ventilatory volume is determined indirectly as the integral of flow against time.
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Ventilation and gas concentration values were digitally sampled at a frequency of 

200 Hz. Four of the primary analogue signals generated by the mass spectrometer and 

ventilation system in response to several breathing cycles are shown in Figure 3.1.

Start of expiration

Expiration

Inspiration

LflfliCarbon dioxide

Oxygen

Figure 3.1 Analogue signals (CO2 and O2) generated by the mass spectrometer in 

relation to the ventilation signal generated by the flow turbine.

The signals from the mass spectrometer and flow measurement system were interfaced 

with a PC-compatible desktop computer (Ti’ko PS 325C, Ti’ko Computer Corporation, 

Broxburn, UK) via an analogue-to-digital converter. The signals were integrated on­

line using custom-built software (First Breath Software v2.0, First Breath Inc., St 

Agatha, Ontario, Canada, 1992). This software provides estimates of alveolar gas- 

exchange based on the algorithm of Beaver et al. (1981).

3.1.2.1 Correction of gas volumes

When making comparisons between tests carried out under different atmospheric 

conditions it was necessary to apply a correction factor to account for the effects of 

differences in ambient temperature, pressure and water vapour on measured volumes. 

Standard temperature and pressure dry (STPD) was used for all metabolic calculations 

and is calculated as a dry gas at a temperature of 273 K and a pressure of 760 mmHg. 

When referring to a physiological measure such as VE, body temperature and pressure
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saturated (BTPS) was used [temperature of 310 K, ambient pressure and saturated with 

water vapour (Anderson et al., 1971; Fox et al., 1993)].

3.1.2.2 Calibration of the mass spectrometer

The mass spectrometer (MGA 1100, Marquette Electronics Inc., Milwaukee, USA) was 

calibrated immediately before and then verified after each exercise test. The calibration 

process involved three systematic stages: 1) gas calibration; 2 ) volume calibration and 

3) analyser lag-time calibration.

3.1.2.2.1 Gas calibration

Calibration of the mass spectrometer was undertaken with two high tolerance (± 0.03%) 

calibration and reference gases (Medgraphics, US) of known composition (12% O2, 5% 

CO2, Bal N2 and 2 1 % O2, 0% CO2, Bal N2). A two-point calibration was performed, 

1 2 % and 2 1 % for O2 and 0  and 5% for CO2. A continuous sample of calibration gas 

was delivered down the sample line of the mass spectrometer at a rate representative of 

a normal physiologic breath. A successful calibration resulted in measurement of this 

reference gas ± 0.03%. To verify the calibration procedure, a 'pre-test' check was 

completed using the reference gases.

3.1.2.2.2 Volume calibration

A 3-litre syringe (Hans Rudolf Inc., Kansas City, MO, USA) was used to calibrate the 

low-dead-space (90 ml), low resistance (<1.5 cnfiUO at 3 1-s*1 ) volume turbine sensor 

(VMM 110, Alpha Technologies, Laguna Niguel, CA, USA) before each exercise test. 

Inspiration and expiration flow rate was similar to that of human ventilation during 

exercise (2 1-s'1). Three practice inspirations and expirations were performed prior to 

five recorded inspirations and expirations that were used for the calibration. Following 

this, the volume turbine sensor was re-checked by repeatedly pumping the syringe 

through the volume turbine at the desired flow rate with a required tolerance of ± 1 % 

(Murphy et al., 1989).

64



3.1.2.2.3 Analyser lag time

According to MacFarlane (2001), one of the greatest problems in modem gas-analysis 

systems is the temporal alignment of gas volumes and gas compositions. Calibration of 

the lag time was performed to ensure correct alignment between the ventilation signal 

and the measurement of gas compositions prior to performing the integrations necessary 

to determine V 02 and VC02. The volume turbine sensor measures ventilation and 

produces a signal almost instantaneously. However, the signal from the mass 

spectrometer is delayed by the time required to transport the gas to the analysers and the 

response time of the individual analysers. The time-delay between the two signals is 

known as the 'lag-time'. The lag time measured during the lag time calibration is used 

to align gas volume and composition on a breath-by-breath basis. Incorrect alignment 

of the signals can result in significant errors (30%) in the determination of V 02 

(Proctor and Beck, 1996).

An algorithm (First Breath software v2.0, First Breath Inc., St Agatha, Ontario, Canada, 

1992) to determine t  for the exponential rise in measured CO2 concentration, was used 

to calculate: 1) the lag-time between the signal change at the start of inspiration, 

detected by the turbine flow meter and 2 ) the rise time in the concentration in the CO2 

signal measured by the mass spectrometer. The systems lag-time was determined by 

exhaling through the assembled mouthpiece at a constant rate and then inhaling 

maximally. The actual lag-time is system specific i.e. it is dependent on the length and 

bore of the sample line and time taken to process the electronic signal (Arieli and Van 

Liew, 1981). Throughout the present investigations the lag time was stable at -300 ms.

3.T.2.3 Estimation of alveolar gas exchange

The mass spectrometer, volume turbine and the First Breath v2.0 software were used to 

derive a breath-by-breath estimation of alveolar gas-exchange based on the algorithm of 

Beaver et al. (1981). This method requires an estimate to be made of effective lung 

volume (ELV). The initial estimate for the ELV was made using a volume equal to half 

the estimated functional residual capacity (FRC) obtained from normal tables which
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take into account the stature, gender and age of the individual. The algorithm of Beaver 

et al. (1981) accounts for changes in pulmonary gas stores on a breath-by-breath basis 

and has been shown to have a flow meter error sensitivity of less than one (Swanson et 

al., 1981). The sensitivity to expiratory error can be large in traditional methods that do 

not correct for changes in pulmonary gas stores. Therefore this approach is the method 

of choice for studies of transient gas-exchange analysis during exercise.

3.1.2.4 Reduction of breath-by-breath variability

An inherent characteristic of breath-by-breath measures of V 02 is random variability. 

This is commonly referred to as breath-by-breath 'noise' (Lamarra et al., 1987). To 

minimise the effects of noise, breaths that are not considered to be reflective of the 

underlying response are discounted. Therefore, unusual, non-physiologic breaths 

caused by swallowing, coughing and sighing etc., were identified and omitted prior to 

subsequent data analysis and mathematical modelling. The First Breath v2.0 software 

filter was used to identify anomalous breaths from the data set.

3.1.3 Heart rate

The HR of participants was measured and recorded at 5 s intervals throughout all 

exercise tests using short-range telemetry (Accurex Plus, Polar Electro Oy, Kempele, 

Finland). Data were downloaded via an interface unit, which was linked to a PC 

computer with appropriate software (Polar Electro Oy, Kempele, Finland). Short-range 

telemetric HR monitors have been shown to be valid and reliable measures of HR 

(Leger and Thivierge, 1988).

3.1.4 Blood lactate analysis

Measures of [HLa] were performed using an automated lactate analyser (YSI 1500 

Sport, YSI Inc., Yellow Springs, OH, USA) which uses immobilised enzyme electrode 

technology. A thin film of lactate enzyme is immobilised within a membrane. 

Hydrogen peroxide is produced when the lactate in the injected blood sample diffuses 

through the membrane. The hydrogen peroxide, measured at a platinum anode, is

6 6



proportional to the lactate in the sample. According to the manufacturers, the 

measurement range of the YSI 1500 Sport is 0 to 30 mmoM' 1 with a precision of ± 2% 

of the reading or 0.1 mmolT1, whichever is larger. The recommended calibration point 

by the manufacturer is 5.0 mmolT1.

3.1.4.1 Calibration of the lactate analyser

Prior to each exercise test, the lactate analyser was calibrated with a lactate standard (5 

mmolT1) supplied by the manufacturer (YSI 2327). Furthermore, the analyser was 

regularly checked for system linearity with a 2.5 mmolT1 self-made lactate standard (5 

mmolT1 diluted with an equal amount of purified water) at regular intervals throughout 

the duration of the test. If an acceptable level of precision was not observed at any stage 

(lactate reading greater than ± 5%) then re-calibration of the analyser with the 5 mmolT 

1 lactate standard was performed. Reproducibility data for the lactate analyser is 

provided in Appendix 3.

3.1.5 Anthropometry

3.1.5.1 Stature

The stature of participants was measured and recorded to the nearest 0.1 cm using a 

stadiometer (Holtain Ltd, Crymych, Dyfed). Participants stood in bare feet with feet 

together against the backboard of the stadiometer. The measuring board was lowered 

onto the participants head and with the Frankfort plane in a horizontal position the 

participant took a deep inspiration whilst light traction was applied under the 

participant's mandible.

3.1.5.2 Body mass

The BM of each participant was measured in kg to the nearest 0.05 kg using a beam 

scale (Weylux, England). Participants were without footwear and wore shorts.
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3.2 Exercise testing protocols

3.2.1 Ethics approval

Prior to each study, ethics approval was sought and granted by the School of Sport and 

Leisure Management Research Ethics Committee, Sheffield Hallam University, in 

accordance with the Declaration of Helsinki.

3.2.2 Informed consent

Prior to each individual investigation, participants were given clear and precise written 

documentation explaining the purpose, procedures and requirements of the study. This 

information was also communicated verbally to each participant on an individual basis. 

Information for participants and informed consent forms are included in Appendices 4 

and 5 respectively.

3.2.3 Pre-exercise screening

All participants completed a pre-exercise medical questionnaire (Appendix 6 ) to screen 

for previous and current medical illnesses or conditions as well as any musculo-skeletal 

injuries.

3.2.4 Pre-test instructions/requirements

Prior to the completion of any exercise test, participants were requested to: 1) attend the 

laboratory in a 3-4 hour post-absorptive state; 2) maintain their normal dietary intake; 3) 

abstain from strenuous exercise in the 48 hours preceding an exercise test and 4) wear 

suitable clothing for physical activity.

3.2.5 Incremental treadmill protocol

Each participant performed a continuous incremental treadmill protocol to maximum 

volitional exhaustion to assess, via pulmonary gas-exchange, two parameters of aerobic 

function - V 02max and Vt. Prior to the test, each participant was fully accustomed to 

running on a motorised treadmill ergometer, the pulmonary gas-exchange and HR 

apparatus. The aim of the protocol was to elicit V 02 max in approximately 8-15 min.
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For all treadmill running tests, a gradient of 1% was used to simulate the energy cost of 

outdoor running (Jones and Doust, 1996). The incremental treadmill protocol for the 

determination of the Vt and V 02 max began with 3 min of running at 10 km-h’1 after 

which running speed was increased by 1 km-h' 1 every minute until volitional exhaustion 

(Figure 3.2). Protocols with a similar size and duration of increments have been 

previously used to determine V 02 max in endurance trained runners (Noakes et al., 1990; 

Scott and Houmard, 1994). Strong verbal encouragement was used to motivate the 

participants during the latter stages of the test. The test ended when the participant was 

unable to maintain the running speed. After completion of the test each participant 

completed at least 5 min of low-intensity exercise to cool down.

22 -| 
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Figure 3.2 Schematic of the incremental protocol to volitional exhaustion for 

determination of Vt and V 02 max.

3.2.5.1 Determination of V 02 max

Breath-by-breath data measured throughout the incremental test was averaged on a 30 s 

basis. The highest V 02 attained at the end of the incremental exercise was accepted as 

V 02 max if a plateau in the V 02 - exercise intensity relationship was observed or, in 

accordance with the British Association of Sport and Exercise Sciences (BASES, 1997), 

an increase in V 02 <2 ml-kg'^min' 1 (3%) with a further increase in exercise intensity
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was observed. If participants did not reach a plateau in V 02 then secondary criteria 

(BASES, 1997) were used. These were:

• the attainment of volitional exhaustion within 8-15 min

• at the end of the test, the participant must show and report intense effort

• a final respiratory exchange ratio (RER) of 1.15 or above

• a final HR within 1 0  b-min' 1 of the maximum heart rate (HRmax) predicted from

age (where age predicted HRmax is calculated as 2 2 0  b-min' 1 minus age in years)

• a post-exercise [HLa] of 8  mmolT1 or greater.

If participants did not meet three of the secondary criteria the test was repeated.

3.2.5.2 Determination of Vt

The Vt was determined from the breath-by-breath gas exchange data collected during 

the incremental exercise test to exhaustion. Before any interpretation, breath-by-breath 

data were minimally smoothed using a three breath moving average to reduce the 

breath-by-breath fluctuations whilst at the same time retaining the underlying response 

to incremental increases in exercise intensity. The Vt was identified using the F-slope 

method (Beaver et al., 1986) which involves an analysis of the behaviour of FC02 as a 

function of V 02. Incremental exercise tests gradually exceed the LT and this is 

accompanied by the buffering of lactic acid by [HCO3'] with a consequent increase in 

CO2 . By constructing a graph of the relationship between VC02 and V 02 during 

incremental exercise (Figure 3.3), the transition in the relationship or 'breakpoint' 

between VC02 and V 02 can be visually and mathematically identified. When the 

breakpoint was difficult to discern, additional gas exchange variables (ventilatory 

equivalent method, Whipp et al., 1981) were considered to aid in the identification of 

the Vt. This involved the construction of individual graphs F E /F 0 2, FE /FC 02, end- 

tidal PO2 (PETO2) and end-tidal PCO2 (PETCO2) against V 02 from which the nadir of 

F E /F 0 2 and PETO2 was identified on VE!VC02 and PETCO2 relationships. Using 

these measures, the Vt represented the point at which VE increased out of proportion to



the increases in V 02 (hyperventilation with respect to O2). Hyperventilation with 

respect to 02, without concomitant hyperventilation for CO2, only occurs during 

buffering of a metabolic acid by HC0 3 *. Other forms of hyperventilation should cause 

PETO2 to increase and PETCO2 to decrease while V E/V02 and VE/VC02 increase 

together.
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3.2.6 Protocol for the determination of running economy

Participants completed 5-7, four-min bouts of running at speeds between 10 and 20 

km-h-1. The most appropriate starting speed for a given individual was chosen 

according to their running ability and current level of fitness. Each stage was faster than 

the previously completed stage by 1 km-h-1. The treadmill was set at a 1% gradient to 

simulate the energetic requirement of outdoor running (Jones and Doust, 1996). 

Throughout the duration of each 4 min stage, V 02 was measured on a breath-by-breath 

basis. At the end of each stage, the participant supported their weight and stood astride 

of the moving treadmill belt whilst a small blood sample (-25 pi) was taken for the 

immediate analysis of [HLa]. The time taken for the blood sampling procedure was 

approximately 15 s after which the participant resumed running at the next increased 

running speed. When [HLa] reached or exceeded 4 mmolT1 at the end of a stage, the 

test was ended. The mean HR over the last 30 s of each stage was recorded.

Given the expected disparity in performance capabilities of the athletes under study, 

attainable running speeds to assess RE varied considerably. Therefore, based on 

previous research, V 02 at 16 km-h-1 (Conley and Krahenbuhl, 1980; Daniels and 

Daniels, 1992; Morgan and Daniels, 1994; Jones, 2002) was used to quantify RE.

3.2.6.1 Allometric scaling for differences in body mass.

In consideration of evidence suggesting that V 02 does not increase in proportion to BM 

during running (Bergh et al., 1991), V 02 was also expressed using several 

power-function ratios that have been suggested in the literature (Schmidt-Nielson, 

1984). The sample-specific exponent was also calculated using log-log transformations 

and analysis of covariance (ANCOVA).

3.2.7 Protocol for the measurement of on- and off-transient V 02 kinetics

For assessment of the on- and off-transient V 02 kinetics, participants completed a 

multiple square-wave transition protocol (adapted from Wasserman and Whipp, 1993). 

This began with 2 min of standing (feet astride the treadmill belt) for the measurement
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of resting V 02 after which the participants walked for a farther four min at 4 km-h'1. 

At the end of this first 6  min, the treadmill speed was abruptly increased to a speed 

which would elicit 80% of the individual's V 02 at their Vt (80%  V t), and was held for 

a further 6  min. The speed at 80% Vt was calculated from the linear relationship 

between running speed and V 02 below Vt during the assessment of RE (see Chapter 3, 

Section 3.2.6). For safety purposes, participants were instructed to be prepared for 

speed increases and balance themselves using the handrails of the treadmill until their 

stride rate matched the treadmill belt speed. Once this was achieved participants let go 

of the handrails and began un-aided running. All individuals were able to respond to 

the abrupt change in treadmill speed without or with minimal assistance from the 

handrails. The time taken for the abrupt transition was ~2 s. Similar procedures were 

adopted by participants at the end of the 6  min running interval when treadmill speed 

abruptly returned to 4 km-h"1 for a further 6  min. This walk-run transition was 

performed consecutively three times after which participants were given 15 min seated 

rest before repeating the protocol (Figure 3.4). In total, all participants completed six 

square-wave transitions of which the total time spent running at 80% V t was 36 min.

15 min rest, 
then repeat

n ---------------1--------------- 1-------------- 1--------------- 1-------------- 1--------------- 1

6  12 18 24 30 36 42
Time (min)

Figure 3.4 Schematic representation of the intermittent square-wave transition protocol 

for determination of on- and off-transient V 02 kinetics.
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3.2.7.1 Data analysis of V02 kinetics

Breath-by-breath V 02 data were linearly interpolated to yield V 02 values for every 

second during the test. The data from each of the six transitions were then split, time 

aligned and ensemble averaged to produce a single data set that was representative of 

the participant's underlying V02 response. To characterise the on-transient V 02 

kinetics, data were modelled from 20 s post-onset of exercise, thereby excluding the 

cardiodynamic phase, until end-exercise by non-linear least squares regression to a 

mono-exponential model incorporating a time delay. The on-transient exponential 

model was of the form:

V02 (/) = V 02 (b) + Aon (1 - exp (8)

where t is time, V 02 (b) is baseline V02, Aon is the amplitude of V 02 above the baseline 

value, 5on is the on-transient time delay and xon is the on-transient time constant. The 

mean response time (MRTon) was calculated as:

MRTon = 6on + Ton (9)

To characterise the off-transient V02 kinetics, the following mono-exponential model 

(Ozyener et al., 2001) was used:

VO 2(/)= F O ^  + z U te x p - '^ )  (10)

where V 02 (m) is moderate-intensity (80% V t) exercise V 02. Other parameters have 

been previously described in Equation 8. The off-transient mean response time (MRT0ff) 

was calculated as:

MRT off = 80ff + T0ff (11)
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3.2.7.2 Calculation of 95% confidence intervals

Estimations of kinetic parameters using exponential modelling techniques can be 

affected by inherent breath-by-breath variability. For the estimation of Ton, Lamarra et 

al. (1987) proposed two equations to determine the 95% confidence intervals (95%CI) 

for an individual's V 02 kinetic response. The accuracy of the non-linear least squares 

estimation of Ton is directly proportional to the SD of the noise (So). This allows an a- 

priori determination to be made of the number of transitions required to achieve a 

desired 95%CI in the estimated parameter for a given participant. The 95%CI for Ton 

was calculated as follows:

K, = L —  (12)
AK.

where Kj is the Cl, So is the SD of the noise, AYss is the amplitude of V 02 above 

baseline and L is a constant, as described in Lamarra et al. (1987). For the 

superposition of n independent transitions, the effective noise variance is reduced by a 

factor of n if the noise is assumed to be Gaussian and un-correlated between transitions. 

Hence, the confidence interval (Kn) is reduced by the factor of 4n . The number of 

transitions (n) required for a desired 95%CI (K„) is given by:

n = L-So 
Kn • A Yss

(13)

3.2.8 Running performance time-trial

To establish a single measure of running performance a 5 km time-trial was performed 

on a treadmill under controlled laboratory conditions (-20 °C). A self-selected warm­

up preceded each time-trial. Following this warm-up, treadmill speed was increased to 

the participant's requested starting speed and timing initiated. Thereafter, the participant 

was permitted to verbally request an increase or decrease in treadmill speed throughout 

the remainder of the trial (Ramsbottom et al., 1992; Scott and Houmard, 1994). 

Throughout the trial participants received feedback on distance run, running speed and
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time elapsed from the treadmill control panel. In addition, split times for each 

individual km completed and the total distance remaining were verbally communicated 

to the participant.

Throughout the 5 km time-trial, HR was measured continuously. The HR at the end of 

each km, mean HR and HRmax were recorded. With knowledge of the relationship 

between V 02 and running speed, which was previously obtained for each participant 

during the RE assessment, it was possible to estimate the % V 02 max sustained during the 

5 km time-trial.

3.3 Statistical analyses

Various statistical tests have been employed within this thesis to determine the 

reproducibility of measures, identify differences and relationships between 

physiological measures and performances and predict running performance. These are 

outlined in detail below. All statistical analyses were performed using commercially 

available statistical software (SPSS for Windows vl 1.0; SPSS Inc., Chicago, IL, USA).

3.3.1 Limits of agreement

For an appropriate assessment of test-retest reproducibility, Atkinson and Nevill (1998) 

have provided evidence for and against a variety of statistical tests commonly used to 

quantify measurement error (reliability). As a result, it has become apparent that the 

95% limits of agreement (LOA) first described by Bland and Altman (1986) are a useful 

method in which to assess reproducibility. Bland and Altman (1986) proposed an 

approach using simple calculations and graphical techniques using the differences 

between two measurements (measurement errors). The assumption that underpins the 

correct use of LOA is that the differences (error) are homoscedastic. That is, the 

differences are of the same magnitude regardless of the magnitude of the measure. To 

check for homoscedasticity, Bland and Altman (1986) recommend a scatter diagram 

(Bland and Altman plot) of the differences between two tests against the grand mean of 

two tests. If a relationship is visually detected it can be confirmed by calculating the
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correlation coefficient between the absolute differences between the two tests and the 

grand mean. If a significant relationship exists i.e. the errors are heteroscedastic (larger 

error associated with larger measurement means), it is recommended that the logarithms 

of each measurement be taken and then the LOA calculations can be performed (Bland 

and Altman, 1986; Atkinson and Nevill, 1998). There has been strong evidence 

demonstrating that heteroscedastic errors are the norm in measurements recorded on a 

ratio scale, such as those typically seen in sports medicine and sport science (Nevill and 

Atkinson, 1997). However, provided that the previously stated assumption has. been 

checked and the differences are homoscedatisc, the LOA can be calculated, without the 

need for logarithmic transformations, as:

± 95% LOA = 1.96 x SDdiff (14)

where SDdiff is the SD of the differences between test 1 and test 2. In addition, the LOA 

in proportion to the grand mean of test 1 and 2 (measurement error) is calculated as:

Measurement error (%) = ^1.96 x SDdiffA 
grand mean

x 100 (15)

where grand mean is (mean of test 1 + mean of test 2)12. The systematic bias between 

measures taken on two separate occasions is calculated as: -

Systematic bias (%) = f  Xdiff  ̂
grand mean

x 100 (16)

where X difr is the mean of the differences between test 1 and test 2.

Provided that it was not necessary to take logarithms of the measurements, the 

calculated values are in the original units of measurement. Therefore, interpretation of 

the agreement between two repeated measures relies upon a subjective assessment of
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the LOA. The LOA can also be expressed in proportion to the grand mean of test 1 and 

2. This is termed the measurement error (%).

3.3.2 Coefficient of variation

A more traditional method of establishing reproducibility between repeated measured, 

commonly adopted in biochemistry measures, was also undertaken to permit a direct 

comparison with previous studies. The CV (%) was calculated as follows:

SDCV% = ̂ z-x 100 (17)
x

where SD is the standard deviation and X is the mean.

3.3.3 Method error

The calculation of the CV requires the measurement of many repeated trials within the 

same day, or over several days. This might not be appropriate for some physiological 

tests that require maximal effort. Such measures could result in an order effect that 

might result in an improvement or decrement in physiological performance brought 

about by a training effect or the effect of fatigue respectively. In such instances, the use 

of the CV to assess reproducibility is not suitable. However, the use of the 'method 

error' (ME) to express the reproducibility of two repeated measurements can be used. 

Dahlberg (1940) demonstrated that the differences between two series of measures 

would have a mean of zero and that the SDdiff would be equal to the SD of an individual 

(SDindiv) divided by the square root of two (Gore, 2000). In acknowledgement that 

infinite measures or infinite subjects is impossible, Dahlberg (1940) proposed the use of 

duplicate measures on a group of subjects to approximate the standard error of a single 

determination (cf. Gore 2000). This has been termed 'method error' (Thorstensson, 

1976) and is calculated as:

S D
Method error (ME) = (18)

V2
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Similarly to LOA, ME can be expressed in the units of measurement, or as a test-retest 

CV as calculated below.

Test-retest CV (%) = ---- — ----  x 100 (19)
grand mean

3.3.4 /-tests

To determine whether two samples means differ from each other /-tests were used. 

More specifically, when there were two experimental conditions and different 

participants an independent samples /-test was used. When there were two experimental 

conditions and the same participant took part in both conditions a paired samples /-test 

was used. Prior to the calculation of each /-test the appropriate assumptions 

underpinning their use were checked. According to Vincent, (1995), the /-test is based 

on the following assumptions: 1) participants are randomly sampled; 2) data are 

normally distributed and parametric and 3) there is homogeneity of variance (i.e. 

variances between groups are equal). The latter can be assessed using Levene's Test for 

Equality of Variances. Providing the test is non-significant (P >0.05), the variances can 

be assumed to be homogeneous.

3.3.5 Bi-variate correlations

Correlation is defined as a numerical coefficient that indicates the extent to which two 

variables are related or associated (Vincent, 1995). This can range from a non (zero) to 

perfect (1.0) relationship in either a positive or negative direction. To assess the 

possible relationships and associations between measures in the studies as part of this 

thesis, the Pearson's product moment correlation coefficient (r) was used. Prior to 

running this statistical test, a qualitative analysis was undertaken, via construction of a 

scatter plot of the data, to assess whether there appears to be a relationship between the 

variables. Furthermore, the assumptions underpinning this test (parametric and 

normally distributed data) were checked.
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3.3.6 Analysis of co-variance

Analysis of co-variance (ANCOVA) is used in sport and exercise science as a method 

of statistically equating groups on other factors (covariates) that might influence the 

dependent variable. ANCOVA is based on the assumption that the covariate is related 

to the dependent variable, and thus they co-vary together (Vincent, 1994). In this study, 

ANCOVA was used to explore whether runners of different disciplines (MD and LD 

runners) could be considered as separate groups. Where necessary new groups were 

devised and adjusted means, based on the slopes and elevations of the linear 

relationships, were calculated. The assumptions underpinning ANCOVA are: 1) 

normality of data; 2) a linear relationship between the covariate and the dependent 

variable and 3) homogeneity of the regression coefficients (the slopes of the linear 

correlations) between the covariate and the dependent variable.

3.3.7 Multiple regression

Multiple regression is often used in the sport and exercise sciences to demonstrate 

associations and relationships between variables believed to be related. For example, 

recognising that success in distance running is most likely multi-factorial, multiple 

regression analysis has been successfully used to identify physiological measures that 

are closely related to distance running performance (Powers et al., 1983; Bulbulian et 

al., 1986).

Multiple regression is underpinned by assumptions that should be met if a valid 

interpretation of the results is required. These assumptions include 1) a normal 

distribution of data; 2) linearity; 3) multi-collinearity and singularity and 4) 

homoscedasticity of errors (Vincent, 1995; Tabachnik and Fidell, 1996). Failure to 

meet these assumptions could result in a regression model that is not representative of 

the data.
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The multiple regression analyses were carried out using the ’stepwise’ method as 

advocated by Tabachnik and Fidell (1996) after the assumptions underpinning its use 

were verified. Stepwise multiple regression was performed using the equation of the 

general form:

Yp = b iX i+b2X2+ + bkXk + C±(SE) (20)

where bi, b2, ..., bk are coefficients that give weight to the independent variables (Xi, 

X2 Xk) according to their relevant contributions to the prediction of Y (running 

performance). The number of independent variables is represented by k, C is the 

constant (intercept) and SE is the standard error.

3.3.7.1 Outliers and influential cases

The main purpose of examining residuals in linear or multiple regression analyses is to 

1) isolate points for which the regression model fits poorly and 2) isolate points that 

exert an undue influence on the regression model. To assess the former, the studentized 

residual, standard residual and deviance statistics are used. To assess the influence of 

individual cases, statistics such as Cook’s and Mahalanobis distances were calculated 

and considered.
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CHAPTER 4

The reproducibility of pulmonary oxygen uptake kinetics 

in middle- and long-distance runners

4.1 Introduction

Traditionally, physiological assessments of MD and LD runners have involved the 

measurement of three gas-exchange indices: 1) V 02 max; 2) Vt and 3) O2 cost of running 

(i.e. RE). The V 02 kinetic response at the onset of moderate-intensity exercise (i.e. 

below the V t) however, is also an important index of aerobic function (Whipp et al., 

1981) and reflects the integrative performance of the systems involved in O2 transport 

from the atmosphere to the cell (Wasserman et al., 1994).

The reproducibility of V 02 max (Weltman et al., 1990), LT and Vt (Aunola and Rusko, 

1984; Weltman et al., 1990; McLellan and Jacobs, 1993) and RE (Armstrong and 

Costill, 1985, Morgan et al., 1991; Pereira and Freedson, 1997) in endurance runners 

has previously been established. The reproducibility of V 02 kinetic parameters is less 

well documented in the literature and has not been established in endurance-trained 

runners. Establishing and quantifying the level of reproducibility for any physiological 

measure used to assess endurance runners is of paramount importance, since 

reproducibility will influence the interpretation of the results and worthiness of the 

findings.

4.1.1 Reproducibility of V02 kinetic parameters

Considering the extensive research into V 02 kinetics in athletic and non-athletic 

populations, it is surprising that relatively few studies have quantified the 

reproducibility of V 02 kinetic parameter estimations at the onset (Berry and Moritani, 

1985; Kilding et al., 2001; Ozyener et al., 2001; Puente-Maestu et al., 2001) and 

recovery (Berg, 1947; Ozyener et al., 2001) from moderate-intensity exercise. 

Furthermore, few studies have approached the assessment of reproducibility using a 

test-retest research design. This would involve measuring V 02 kinetics twice on
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separate days. This approach would permit the determination of the test-retest 

reproducibility and might also establish biological day-to-day variability.

With respect to on-transient V 02 kinetics, Berry and Moritani (1985) reported the test- 

retest reproducibility of their measures of the time course of V 02 during a single 

square-wave transition from rest to exercise (cycle ergometry) at 150 W. These 

measures of V 02 kinetics were made two weeks apart, prior to an investigation into the 

effects of different training intensities on V 02 kinetics. A correlation coefficient of 

0.87 (P <0.01) and a mean difference of 0.73 s between repeated tests suggested that the 

level of reproducibility was satisfactory. More recently, the test-retest reproducibility of 

measures of V 02 kinetics was also investigated using cycle ergometry (Kilding et al., 

2001). Repeat tests were completed seven days apart and at the same time of day to 

minimise circadian and other similar influences. Each test consisted of three transitions 

to 80%Vt to ensure that exercise was below the Vt. Although paired /-tests revealed no 

significant differences for each kinetic parameter (8, t , MRT and A) between tests 1 and 

2, wide 95% LOA and large measurement errors suggested substantial intra-participant 

variability between repeated tests. These findings would suggest that either three 

transitions are inadequate to reduce the effect of noise and so allow a reproducible 

determination of V 02 kinetic parameter estimations, or that biological day-to-day 

variability in V 02 kinetics is large. Of the time-related kinetic parameters, the MRT 

was the most reproducible and might be more appropriate to use when the amplitude of 

VO 2 is low or there is a substantial amount of breath-by-breath noise.

The reproducibility of on-transient V 02 kinetic responses has also been established in 

individuals diagnosed with chronic obstructive pulmonary disease (COPD, Puente- 

Maestu et al., 2001). In this study, patients completed two square-wave transitions, 

separated by 2 hours, from rest to 80% of the estimated LT or 50% of V 02 peak if LT 

was insufficiently differentiable. There was no systematic variation between repeated 

measures as identified by paired /-tests (P >0.05). Agreement between tests was further 

evaluated by intra-class correlation coefficients. The correlation coefficients were
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consistently higher than 0.97, reflecting that individual differences were small and that 

reproducible estimates of x and amplitude of V 02 (A) can be obtained in COPD patients 

providing that the data set provides a sufficiently large A and there is low breath-by- 

breath variability.

Using a single-subject design, Demarle et al. (2001) determined the reproducibility of 

repeated kinetic parameter estimations, established from three single transitions at the 

speed of the LT. The CV for 5, x and amplitude were 6.8, 5.5, and 0.8% respectively, 

indicating very good reproducibility. However, these findings are difficult to interpret, 

since no indication of time between repeated tests was provided in their manuscript.

An early investigation by Berg (1947) was the first to report the reproducibility of V 02 

kinetic parameter estimations. However, as opposed to the aforementioned studies, 

these were focussed exclusively on the off-transient recovery V 02 kinetics after 

moderate -intensity exercise. Repeated tests were carried out at the same time of day on 

consecutive days. The test-retest correlation r was 0.55 and the standard error of the 

measurement was ± 4.5 s (± 15% of the mean).

More recently, Ozyener et al. (2001) investigated the reproducibility of on- and off- 

transient VO2 kinetics. The approach used by these authors assessed the variability 

between three estimations of x established from single transitions. The findings 

suggested that the degree of reproducibility of x during the on- and off-transient was not 

influenced by the intensity of exercise since there were no significant differences 

between the variations in x over a range of exercise intensities (moderate, heavy, very 

heavy and severe). Subsequently, values for x from each individual transition at each 

exercise intensity were grouped together and treated as one large population (n = 72). 

The individual values for x for each of the three different determinations typically 

varied by up to 10%. The SD of the amplitude of V 02 and x was 90 ml-min-1 and 6.2 s 

for the on-transient and 60 ml-min-1 and 4.0 s for the off-transient respectively. It was 

acknowledged that 'noise' associated within a single transition could readily account for
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the 10% variation in the individual estimates of x, although the possibility of ’real’ 

variation on different occasions could not be excluded.

4.1.2 Effects of noise on kinetic parameter estimation and reproducibility

The accuracy with which V02 kinetic parameters can be reproducibly determined is 

important, since kinetic parameter estimations are highly influenced by the effects of 

inherent breath-by-breath variability (Lamarra et al., 1987). Methods, such as repeated 

transitions, to attenuate the effects of noise have been used to improve estimations of 

kinetic parameters (Linnarsson, 1974; Lamarra et al., 1987). According to Lamarra et 

al. (1987), the effects of noise on kinetic parameter estimations can be reduced by the 

square root of the number of transitions performed. The effects of noise are highly 

dependent on the amplitude of V 02 above the baseline value and the SD of the breath- 

by-breath variability (SDnoise), both of which vary amongst individuals. Therefore, the 

number of transitions (ri) required for an accurate determination of x is specific to an 

individual and cannot be generalised to the entire population. Lamarra et al. (1987) 

proposed two equations that could be used to 1) calculate the number of transitions 

required for a given individual and 2) determine the 95%CI when n transitions have 

been performed by all participants in a study. The latter post-hoc approach is most 

commonly used (Rossiter et al., 1999; Bearden and Moffatt, 2001) and gives an 

indication of the accuracy with which x has been determined.

4.1.3 Participant characteristics and reproducibility

The majority of studies that have considered the reproducibility of V 02 kinetic 

parameters have been conducted on healthy untrained individuals (Whipp et al., 1981; 

Berry and Moritani, 1985; Hughson and Inman, 1986; Edwards et al., 2001; Kilding et 

al., 2001; Ozyener et al., 2001). Recently, the reproducibility of V 02 kinetic 

parameters obtained from patients with COPD (Puente-Maestu et al., 2001) and a single 

endurance trained runner (Demarle et al., 2001) has also been documented. However, 

no study has reported the reproducibility of V 02 kinetic measures in a group of
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endurance trained individuals. Furthermore, it is not known whether endurance training 

affects the day-to-day variability of V 02 kinetics.

4.1.4 Mode of ergometry and reproducibility

The use of cycle ergometry has been the primary method to assess V 02 kinetics during 

the on- (Berry and Moritani, 1985; Kilding et al., 2001; Ozyener et al., 2001; Puente- 

Maestu et al., 2001) and off-transients (Ozyener et al., 2001) using square-wave or step 

transitions in exercise intensity. To date no study has determined the reproducibility of 

kinetic parameters using treadmill ergometry, although the reproducibility of kinetic 

parameters for a single endurance runner whilst track running has been quantified 

(Demarle et al., 2001). Ideally, the mode of ergometry used to assess the physiological 

status of athletes should closely simulate the sport in which they regular participate. 

This is commonly referred to as the 'principle of specificity'. Despite that previous 

research has found no significant differences in t  between moderate-intensity cycle and 

treadmill exercise (Chilibeck et al., 1996; Carter et al., 2000a), it might be considered 

inappropriate to assess V 02 kinetics in athletes using a mode of ergometry to which 

they are unaccustomed.

4.1.5 Statistical approaches to assess the reproducibility of V 02 kinetics

There are many ways in which reproducibility can be expressed in sport and exercise 

science and attempts to standardise its reporting remains controversial (Atkinson and 

Nevill, 1998; Hopkins, 2000). Specifically, various methods have been used to assess 

the reproducibility of kinetic parameter estimations. This has included paired f-tests 

(Kilding et al., 2001), correlation coefficients (Berg, 1947; Whipp et al., 1981; Berry 

and Moritani, 1985; Puente-Maestu et al., 2001), CV (Hughson and Inman, 1986; 

Demarle et al., 2001) and 95% LOA (Edwards et al., 2001; Kilding et al., 2001). Each 

of these methods have been examined with respect to their appropriateness for the 

assessment of test-retest reliability or measurement error (Atkinson and Nevill, 1998). 

As a result, it has been recommended that researchers should cite and interpret a number
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of statistical methods for assessing reliability and furthermore, the inclusion of the 95% 

LOA method is particularly encouraged (Atkinson and Nevill, 1998).

4.1.6 Aim of study

The aim of this study was to establish and quantify the reproducibility of V02 kinetics 

during the on- and off-transient, at the onset and recovery from moderate-intensity 

treadmill exercise.



4.2 Participants and methods

4.2.1 Participants

Twelve male MD and LD runners provided informed consent and took part in this 

study. Participants' anthropometric and physiological characteristics are presented in 

Table 4.1. Ethics approval was obtained from the School of Sport and Leisure 

Management Research Ethics Committee, Sheffield Hallam University. Prior to 

participation in the study, each athlete completed a medical screening questionnaire 

(Appendix 6).

Table 4.1 Participants anthropometric and physiological characteristics (n=12). Values 

are mean ± SD.

Age Stature B M VO 2 max V 02 max V 02 max V 02 at VT

(years) (cm) (kg) (ml-min'1) (ml’kg'^min'1) (ml-kg‘0,67«mm1) (mkmin'1)

2 5 . 2 1 7 9 . 5 7 0 . 1 4 1 3 8 5 9 . 2 2 4 0 3 4 2 9

± 4 . 7 ± 7 . 5 ± 9 . 7 ± 6 2 5 ± 5 . 5 ± 2 3 ± 3 8 9

4.2.2 Experimental design

Participants visited the laboratory for physiological testing on three occasions within a 

seven-day period. Each test was separated by at least 48 hours and was performed at 

approximately the same time of day. The first visit to the laboratory involved an 

incremental exercise test to volitional exhaustion for the determination of V t and 

V 02 max- The second and third visits (tests 2 and 3) involved a square-wave protocol to 

determine V 02 kinetics at the onset and recovery from moderate-intensity exercise. 

Throughout the duration of the testing period, participants were requested to maintain 

their usual dietary intake, abstain from participating in heavy training between each test 

and consuming alcohol and caffeine in the 24 hours preceding each test.
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4.2.3 Experimental protocols

All tests were performed on a motor driven treadmill (Saturn 250-75R, HP Cosmos, 

Germany). Each participant completed an incremental exercise test to exhaustion for 

the determination of the Vj and V 02 max (see Chapter 3, Section 3.2.5). To assess the 

reproducibility of V 02 kinetics, participants completed a square-wave protocol (see 

Chapter 3, Section 3.2.7) on two occasions. Briefly, this consisted of six transitions 

from walking at 4 km-h'1 to running at speed requiring 80% of the V 02 at V t (80% V t). 

Pulmonary gas-exchange was measured breath-by-breath and HR was measured 

continuously. The [HLa] measures were taken before the start of the square-wave 

protocol and immediately after the final bout of running at 80% V t .

4.2.4 Data analysis

Breath-by-breath data obtained during the incremental exercise test to exhaustion and 

the square-wave protocol were analysed in accordance with procedures outlined in 

Chapter 3, Sections 3.2.5.1 and 3.2.7.1 respectively.

4.2.5 Statistical analyses

Descriptive statistics (mean ± SD) were calculated for each measure during tests 1 and 

2. To establish differences between repeated measures, a paired t-test was used. To 

assess the test-retest reproducibility, the 95% LOA and method error techniques were 

used (see Chapter 3, Section 3.3.1 and 3.3.3). Prior to these analyses, appropriate 

checks were made to ensure that the assumptions underpinning each test were met. To 

allow comparisons with previous research, the traditional CV was calculated for each 

repeated kinetic parameter.
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4.3 Results

The mean (± SD) V 02 max was 59.2 ± 5.5 ml-kg'l-min'1, or expressed as 0.67 power- 

function ratio of BM was 240 ± 23 ml-kg'^-min'1. The occurrence of the Vt as a 

percentage of V 02Tnax (% V02 max) was 83.3 ± 4.7%. The appropriate speed to elicit 

80% V t during tests 1 and 2 was determined a-priori from the V 02 - running speed 

relationship below the Vt. This speed was 11.7 ± 0.8 km-h'1. As determined from the 

mono-exponential model fit, this running speed resulted in a V 02 of 2741 ±318 and 

2722 ± 260 ml-min'1 during tests 1 and 2 respectively. This was equivalent to 80.1 ± 

3.1% VT (66.8 ± 4.7%R02max) during test 1 and 79.6 ± 3.7%VT (66.3 ± 5.1%F02max) 

during test 2. This confirms the accuracy of the methods used. This moderate-intensity 

exercise incurred no significant increase in [HLa] above the resting level (Table 4.2). 

The physiological measures and the V 02 kinetic parameters obtained during the on- 

transient from tests 1 and 2 are presented in Table 4.2.

Table 4.2 On-transient V 02 kinetic parameters during moderate-intensity exercise for 

tests 1 and 2. Values are mean ± SD.

Measure Test 1 Test 2

Running speed (km-h'1) 11.7 ±0.8 11.7 ±0.8

VO2 (b) (ml-min'1) 925 ± 98 928 ± 86

Aon (ml-min'1) 1822 ±228 1794 ±186

V 02 (ra) (ml-min'1) 2747 ±318 2722 ± 260

Son (S) 14.7 ± 1.4 14.7 ±1.6

%n (s) 12.4 ± 1.9 12.3 ±2.3

MRTon (s) 27.1 ±1.8 26.9 ± 1.9

Gain (ml-kg^-km'1) 204 ±9 201 ± 14

HR(b) (b-min'1) 74 ±9 73 ±10

HR(m) (b-min'1) 137 ±9 136 ±9

A[HLa] (mmolT1) 0.0 ± 0.2 0.0 ±0.1
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The calculated 95% Cl, using the equations of Lamarra et al. (1987), for the estimation 

of Ton were 0.9 ± 0.2 s (test 1) and 1.0 ± 0.3 s (test 2). In proportion to the mean x for 

tests 1 and 2, this equated to 7.3 and 8.1% respectively. This suggests that the 

magnitude of the effects of noise on kinetic parameter estimations were similar during 

both tests. Furthermore, the SDnoise as a proportion of Aon was similar during tests 1 (6.2 

±1.4%) and 2 (6.7 ±1.8%).

4.3.1 On-transient kinetics

A typical on-transient V02 response for a representative participant (subject 5) during 

tests 1 and 2 can be seen in Figure 4.1. All participants displayed the expected 

characteristic three-phase response during the transition to moderate-intensity exercise. 

The VO 2 during the on-transient was consistently found to be well-modelled with a 

first-order mono-exponential model with time-delay.

The assumption of normality was met for each parameter as identified by a non­

significant (P >0.05) Shapiro-Wilks value (Appendix 7). Mean (±SD) values for the 

estimates of on-transient V02 kinetic parameters obtained from the mono-exponential 

modelling are presented in Table 4.2. Mean values for Aon, §on, xon, and MRTon obtained 

during test 1 did not differ from those obtained in test 2 (Appendix 7).
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Figure 4.1 A representative participants (subject 11) on-transient V 02 response during 

test 1 (Aon = 2055  ml-min-1; 6on =  14.1 s; Ton =  13.2 s; MRTon =  27.3  s) and test 2 (^ 0n =  

2036  ml-min'1; 6on = 13.5 s; Ton = 13.3 s; MRTon = 26.8  s).

The assumptions underpinning the correct use of the 95%  LOA (see Chapter 3, Section 

3.3.1) were met. More specifically, the observed differences between tests 1 and 2 for 

both the on- and off-transients were normally distributed (Appendix 7). A qualitative 

assessment of the graphical representations (Bland-Altman plots) of the test 1-test 2  

differences vs. the grand mean of test 1 and 2 (Figures 4.2  to 4 .5 ) was made to assess 

whether the dispersion of the test 1-test 2 differences was influenced by the magnitude 

of each kinetic parameter (Aon, 5on, xon and MRTon) during the on-transient. These plots 

suggest that the differences between test 1 and 2 are homoscedastic (i.e. there is no 

relationship between the differences between test 1 and 2 and the grand mean for test 1 

and 2). This was quantitatively confirmed by a non-significant correlation between the 

absolute test 1-test 2 differences and the grand mean of test 1 and 2 for each on-transient 

kinetic parameter (Appendix 7).

The SDdifr in proportion to the grand mean of test 1 and 2 resulted in a measurement 

error of 15.1%  for Ton. The measurement error for MRTon (4.3% ) was considerably 

lower than that of the other kinetic parameters (Table 4.2 ). In addition, there was a
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small but non-significant negative systematic bias for Aon, Ton and MRTon (Table 4.3) 

indicating that kinetic parameter estimations were less in test 2 than those for test 1. 

Specifically, the 8, t  and MRT all displayed low method errors, ranging from 0.4 to 0.7 

s. Expressed as a test-retest CV, the calculated method error ranged from 1.6 to 5.5%. 

Of all parameters, the MRTon had the lowest method error. Similar findings were also 

observed for the CV of repeated measures (Table 4.3).
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Figure 4.2 The differences (errors) between the estimated Aon from tests 1 and 2, plotted 

against the participants' mean Aon (combined mean of test 1 and 2 for each participant). 

The bias line (solid) and 95% LOA (dashed) are also presented.
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Figure 4.3 The differences (errors) between the estimated 50n from tests 1 and 2, plotted 

against the participants' mean 8on (combined mean of test 1 and 2 for each participant). 

The bias line (solid) and 95% LOA (dashed) are also presented.
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Figure 4.4 The differences (errors) between the estimated Ton from tests 1 and 2, plotted 

against the participants' mean xon (combined mean of test 1 and 2 for each participant). 

The bias line (solid) and 95% LOA (dashed) are also presented.
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Figure 4.5 The differences (errors) between the estimated MRTon from tests 1 and 2, 

plotted against the participants' mean MRTon (combined mean of test 1 and 2 for each 

participant). The bias line (solid) and 95% LOA (dashed) are also presented.



4.3.2 Off-transient kinetics

A typical participants off-transient V 02 kinetic response during tests 1 and 2 is 

illustrated in Figure 4.6. Similarly to the observed V 02 response during the on- 

transient, data was equally well-modelled during the off-transient using a first-order 

mono-exponential model with time-delay. I t . was consistently observed that 

participants' V 02 returned to its baseline during recovery. To check that this actually 

occurred, transitions 1 -3  and 4 - 6  were split and analysed individually. Specifically, 

this analysis consisted of determining the actual mean V 02 in the 2 min preceding each 

bout of moderate-intensity exercise. The CV for this V 02 was 0.85%. A one-way, 

repeated measures ANOVA (Appendix 7.10) showed that there was no difference 

between V 02 before transition one (pre-exercise) and any other transition (P = 0.454). 

This suggests that V02 had returned to its pre-exercise baseline condition after each 

bout of moderate-intensity exercise. This would also suggest that the asymptotic value 

reflected the steady-state V 02 and was attained within 6 min. Furthermore, the mean 

Aon and A0ff were not significantly different (P = 0.605). Collectively, this suggests that 

6 min was sufficient to permit full recovery between each bout of moderate-intensity 

exercise and that each transition was initiated from similar baseline conditions.

The mean (± SD) values for tests 1 and 2 are presented in Table 4.4. Paired J-tests 

revealed no differences between test 1 and 2 for any off-transient kinetic parameters (P 

>0.05, see Appendix 7).
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Figure 4.6 A representative participants (subject 10) off-transient V 02 response during 

test 1 04off= 1661 ml-min'1; 60fr= 5.2 s; x0ff = 26.0 s; MRT0fr= 31.2 s) and test 2 04Off = 

1664 ml-min'1; 60ff= 5.8 s; x0ff = 25.9 s; MRT0fr= 31.7 s).

Table 4.4 Off-transient V 02 kinetic parameters at the cessation of moderate-intensity 

exercise during tests 1 and 2. Values are means ± SD.

Measure Test 1 Test 2

V 02 (m) (ml-min'1) 2742 ±316 2720 ± 262

A0ff (ml-min'1) 1816 ±222 1794 ±181

V 02 (b) (ml-min'1) 926 ±102 926 ± 93

Soff (s) 8.9 ±3.0 9.2 ± 2.4

Toff(s) 24.5 ± 2.3 24.1 ±2.4

MRT0fr (s) 33.4 ±2.2 33.4 ±2.6

In proportion to the grand mean of test 1 and 2, the measurement error for x0fr was 9.6% 

and was identical to that of MRT0ff. A small negative systematic bias for A0̂  and x0ff 

(Table 4.5) was evident indicating that kinetic parameter estimations had a tendency to 

be lower in test 2. This difference was not significant.
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Figure 4.7 The differences (errors) between the estimated A0fr from tests 1 and 2, plotted 

against the participants' mean A0ff (combined mean of test 1 and 2 for each participant). 

The bias line (solid) and 95% LOA (dashed) are also presented.
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Figure 4.8 The differences (errors) between the estimated 80fr from tests 1 and 2, plotted 

against the participants' mean 80ff (combined mean of test 1 and 2 for each participant). 

The bias line (solid) and 95% LOA (dashed) are also presented:

101



4

<g 2  1  

.B i
<D OG
;-i yj a a a
&
a 0 0>■M

Q -1

-2

-3 
-4

18 20 22 24 26 28

Mean x0ff (s)

Figure 4.9 The differences (errors) between the estimated x0ff from tests 1 and 2, plotted 

against the participants' mean x0fr (combined mean of test 1 and 2 for each participant). 

The bias line (solid) and 95% LOA (dashed) are also presented.
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Figure 4.10 The differences (errors) between the estimated M R T0fr from tests 1 and 2, 

plotted against the participants' mean M R T0fr (combined mean of test 1 and 2 for each 

participant). The bias line (solid) and 95% LOA (dashed) are also presented.
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The method error was lower for x0ff than the xon. However, both the 80fr and MRT0ff 

displayed lower reproducibility (Table 4.5). The least reproducible kinetic parameter 

was 80fr which displayed a method error of 1.1 s, which when expressed as test-retest 

percentage was 11.1%. A CV of 13.4% confirmed this poor reproducibility. 

Conversely, V 02 (m), A0ff and F 0 2(b> all displayed similar reproducibility as suggested 

by a lower method error % (range 2.5 to 4.0%, Table 4.5).
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4.4 Discussion

The aim of this study was to assess the reproducibility of measures of V 02 kinetic 

parameters during the on- and off-transients using treadmill ergometry.

4.4.1 Comparisons with previous literature

Since there is a paucity of research reporting the V 02 kinetic responses of MD and LD 

runners during treadmill running, comparisons between studies is difficult. However, a 

limited number of studies have reported the V 02 kinetics during treadmill running in 

young healthy untrained (Chilibeck et al., 1996) and recreationally active individuals 

(Carter et al., 2000a, b; Williams et al., 2001). The V 02 kinetics during the on- 

transient from these studies compare relatively well with those of the present study 

values for treadmill running. The mean (±SD) Ton for endurance trained runners in the 

present study was 12.4 ±1.9 and 12.3 ± 2.3 s for test 1 and 2 respectively, compared to

15.0 ± 2.0 (Carter et al., 2000a) and 14.7 ± 2.8 s (Williams et al., 2001) for 

recreationally active participants. Similarly, Carter et al. (2000b) reported a slightly 

faster Ton of 13.9 ± 1.4 s in recreationally active participants after six weeks of 

endurance training.

With respect to the off-transient V02 kinetics during recovery from moderate-intensity 

treadmill running, the T0fr in the present study was 24.5 ± 2.3 and 24.1 ± 2.4 s for tests 1 

and 2 respectively. These values are much shorter than those reported by Carter et al. 

(2000a) where the mean T0fr was 39.3 ± 3.0 s. Overall, the values for both Ton and T0ff 

were lower than those previously reported and are indicative of faster kinetics at the 

onset of and recovery from moderate-intensity exercise. This was expected and is 

primarily due to the higher aerobic fitness levels of participants in the present study.

4.4.2 Reproducibility of on-transient V 0 2 kinetics

In the present study, the reproducibly of on-transient V 02 kinetic parameters have been 

established using treadmill ergometry. These can be compared to previous
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investigations that have assessed reproducibility between repeated measures of V 02 

kinetics using alternative modes of exercise including cycle ergometry (Berry and 

Moritani, 1985; Ozyener et al., 2001; Puente-Maestu et al., 2001) and track running 

(Demarle et al., 2001).

In this study, the intra-participant variability for kinetic parameters in terms of the 95% 

LOA (Table 4.2) were relatively narrow. These 95% LOA were an improvement 

compared to the 95% LOA previously reported (Kilding et al., 2001). Puente-Maestu et 

al. (2001) adopted a similar approach to the present study with respect to the way they 

quantitatively assessed the reproducibility of kinetic parameters. However, despite 

presenting the Xdiff and SDdifr, the authors chose not to calculate the 95% LOA for 

kinetic parameter estimations. To permit a comparison of the level of reproducibility 

attained, it was possible to calculate the 95% LOA using their data (Table 3, pp 438). 

The 95% LOA for x were ± 10.4 s (pre-training) and 8.0 s (post-training) and are 

considerably wider than those of the present study (± 1.9 s). Using the 95% LOA of the 

present study (Table 4.3), interpretation of the 95% LOA suggests that if a participants 

xon was 12.3 s in test 1 (grand mean of test 1 and 2 in this study), it is possible (worst 

case scenario) that the same participant could obtain an estimate for xon as low as 10.3 s, 

or as high as 14.1 s in test 2. To demonstrate the magnitude of reproducibility obtained 

in the study of Puente-Maestu et al. (2001), the 95% LOA suggest that a repeated 

estimation of x (using their pre-training mean x of 85 s), could be as low as 75.3 s and as 

high as 96.1 s. Similarly (using their post-training mean x of 78 s), a repeated 

estimation of x could be as low as 71.3 s and as high as 87.3 s. Obviously, these 95% 

LOA for x are considered to be very wide and are substantially wider than those of the 

present study, but narrower than others (Kilding et al., 2001). However, with 

consideration of the magnitude of the underlying mean x of the populations studied the 

95% LOA can be interpreted as being equivocal between studies. Finally, based on a 

high intra-class correlation between repeated kinetic parameter estimations, the authors
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interpreted their results as being satisfactorily reproducible for the determination of x in 

patients with COPD.

The direct comparison of results between the present study and that of Puente-Maestu et 

al. (2001) should be done with caution as the experimental approach differed with 

respect to the time interval between repeated tests and the participants used. The 

present study assessed day-to-day reproducibility in MD and LD runners whereas 

Puente-Maestu et al. (2001) assessed within-day reproducibility in patients with COPD. 

These participants represent two distinct ends of the fitness continuum.

In agreement with Puente-Maestu et al. (2001), the findings of the present study also 

show that the dispersion of the test 1-test 2 differences is not influenced by the 

magnitude of the value for either 8on, xon, MRTon or Aon within the population studied 

(Figure 4.2 - 4.5). This suggests that there was no relationship between the magnitude 

of the value and its reproducibility. This was confirmed by the non-significant 

correlation between the absolute test 1-test 2 differences and the mean values for tests 1 

and 2.

With respect to the measurement error in the present study, the most reproducible 

kinetic parameter during the on-transient was MRTon (4.3%). The MRT was also found 

to be the most reproducible parameter in a previous study (Kilding et al., 2001). 

Conversely, the least reproducible parameter for the on-transient was xon which 

displayed 15.1% measurement error. This is greater (Puente-Maestu et al., 2001) and 

less than (Kilding et al., 2001) previously reported values. In the present study, the 

measurement error for 8on (13.0%) and xon (15.1%) were similar.

Although Berry and Moritani, (1985) reported good reproducibility, their chosen 

method of analysing test-retest data (correlation) might have resulted in an incorrect 

conclusion about their intra-participant variability. This is because the use of test-retest
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correlation's is not appropriate for the assessment of agreement between two repeated 

measures because r measures the strength of a relationship between variables, not the 

agreement between them (Bland and Altman, 1986; Atkinson and Nevill, 1998). Berry 

and Moritani (1985) reported a correlation coefficient of 0.87 and mean difference of 

0.73 s between repeated tests. At first, this would appear to indicate an acceptable level 

of reproducibility. In comparison, the mean difference in the present study was -0.1 s 

for Ton and 0.2 s for MRTon. However, positive and negative differences between 

individuals test values can interact and potentially balance each other out. In such 

circumstances, the mean difference between tests would appear acceptable. However, it 

gives limited information about the intra-participant variability between tests. The 

SDdiff would more appropriately quantify the intra-participant variability between two 

repeated measures. The 95% LOA and method error techniques are determined from 

the SDdiff and are interpreted with respect to the mean of tests 1 and 2. The low method 

error for on-transient kinetic parameters also suggests that the measures were 

reproducible.

In the study of Ozyener et al. (2001), the values for Ton and Aon that were estimated from 

a single transition were found to differ from the values obtained from the ensemble- 

average of three transitions. These differences were well characterised by a normal 

distribution. To gain an approximate quantification of their reproducibility for Ton, the 

results from their Table 3 (pp 896) were used to calculate the CV between individual 

transitions. Based on a mean and SD of 33 and 6.2 s respectively for Ton, the CV 

between the single transitions was 19%. This is substantially greater than the CV for xon 

in the present study (4.8%). The CV is likely to be lower in the present study since 

repeated transitions were used to reduce the effects of noise, prior to exponential 

modelling of the data. This also reduced the variability between transitions. This was 

supported when considering the magnitude of the calculated method error for each 

kinetic parameter.
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4.4.3 Reproducibility of off-transient V 02 kinetics

Despite the marginally wider 95% LOA for T0ff than those for Ton, the parameter 

estimates of V 02 kinetics during the off-transient were equally reproducible. The 95% 

LOA suggest that the x0ff can be determined with an accuracy of ± 2.3 s (Table 4.5). 

For example, if a participants x0ff was 24.3 s (grand mean of test 1 and 2 in this study) in 

test 1, it is possible (worst case scenario) that the same participant could obtain an 

estimate for T0ff as low as 22.0 s, or as high as 26.6 s in test 2.

The magnitude of the measurement error for x0ff, in contrast, is much lower than that of 

xon. This is because the mean x0ff is longer than that of Ton. This is supported by a lower 

method error. In support, Ozyener et al. (2001) reported improved reproducibility for 

off-transient kinetic parameters compared to the on-transient. Based on the mean and 

the SD of T0ff (35 s and 4.0 s, respectively), their CV was 11%, which is considerably 

lower than the CV for Ton (19%). This level of variability is not surprising since 

parameters were estimated from single transitions. In contrast, the CV for T0ff in the 

present study was considerably lower (2.9%) and is primarily attributable to the 

increased number of transitions used in this study.

In contrast to the smaller measurement error observed for T0ff than Ton, measurement 

error and method error for MRT0fr was greater than that observed for MRTon (Tables 4.3 

and 4.5 respectively). Since MRT0ff is the sum of 50fr and T0ff, the measurement error 

and method error for MRT0ff are influenced by the measurement error and/or method 

error observed for 80ff. Results confirmed this and showed that measurement error for 

80ff (33%) was much larger than that for 8on (13%).

With respect to the reproducibility of the off-transient amplitudes, measurement error 

for A0ff (11%) was similar to that for Aon (11.3%). This would suggest that the 

differences in reproducibility for Ton and T0fr is independent of the reproducibility
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observed for Aon and A0ff. Similarities between the magnitude of error for Aon and A0ff 

have also been reported by Ozyener et al. (2001).

4.4.4 Effects of noise on parameter estimation and reproducibility

The mean (± SD) 95% Cl for kinetic parameter estimations of Ton for tests 1 (0.9 ± 0.2 

s) and 2 (1.0 ± 0.3 s) suggest that Ton can be estimated accurately. This indicates that 

the ensemble average of six transitions minimises breath-by-breath variability, therefore 

permitting an accurate and reproducible estimation of t  during the on- and off-transient.

To improve the confidence in kinetic parameter estimations, alternative methods to 

repeated transitions have been used to reduce the SDnoise- Primarily, these have 

involved applying a data averaging technique to the interpolated breath-by-breath data 

from a single transition prior to exponential modelling (Berry and Moritani, 1985; 

Demarle et al., 2001; Ozyener et al., 2001; Puente-Maestu et al., 2001). Based on the 

level of reproducibility reported from studies using this approach, it appears that data 

averaging techniques are not as effective in reducing the SDnoise as repeated transitions.

The SDnoise was not appreciably different between this study and that of Kilding et al. 

(2001). However, in this study, MD and LD runners displayed larger amplitudes of 

V 02 as a result of their increased range of exercise intensities within the moderate- 

intensity domain. Therefore, the SDnoise - amplitude ratio (%) was appreciably lower. 

This allowed a clearer distinction between the underlying physiological response and 

the noise (Lamarra et al., 1987). This was reflected by a much improved 95% Cl which 

contributed to the reproducible determination of on- and off-transient V 02 kinetic 

parameter estimations in the present study. It has been acknowledged that 'noise' 

associated with a single transition could readily account for the variation seen in 

estimates of t , although the possibility of real variation cannot be excluded (Ozyener et 

al., 2001). The identification of real variation, i.e. biological variability, can only be 

distinguished if the SDnoise is sufficiently minimised and discounted as a possible source
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of variability. With consideration of the results of the present study, this can only be 

achieved using several repeated transitions, probably six.

Despite the potentially confounding effects of a reduced amplitude of V 02 resulting 

from a restricted tolerance of exercise intensities within the moderate domain, parameter 

estimations of V 02 kinetics were found to be satisfactorily reproducible (Puente- 

Maestu et al., 2001). However, the participants of this study were COPD patients and 

displayed a mean t  of -80 s which is more than six times longer than Ton in the present 

study. This increased amount of data which was available for exponential modelling 

throughout the transient has been shown to influence the 95% Cl associated with kinetic 

parameter estimations (Lamarra et al., 1987). Therefore, the reduced amplitude of V02 

in COPD patients was compensated for by a substantially longer Ton.

4.4.5 Methodological influences on reproducibility

It is possible that differences in results between studies assessing reproducibility of 

kinetic parameter estimations can be attributable to differences in experimental design 

such as the time between repeated tests, number of transitions performed, mode of 

ergometry and the physiological characteristics (i.e. level of aerobic fitness) of the 

participants involved. It has yet to be established to what extent different protocols 

influence the reproducibility of V 02 kinetic parameters and which is the optimal. This 

study differed from previous studies (Berry and Moritani, 1985; Demarle et al., 2001; 

Ozyener et al., 2001; Puente-Maestu et al., 2001) in that the reproducibility between 

parameter estimations was obtained from two data sets, each comprising six transitions. 

Furthermore, because this approach measured the V 02 kinetics during the on- and off- 

transients in one visit to the laboratory, on two separate days, it also permitted the 

quantification of biological day-to-day variability in V 02 kinetics. Previous 

approaches used to assess the reproducibility of V 02 kinetics have involved single 

transitions that are repeatedly performed on separate days (Berry and Moritani, 1985; 

Ozyener et al, 2001) or within the same day (Puente-Maestu et al., 2001). These
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approaches prevent assessments of day-to-day variability. In addition, the poorer 

reproducibility observed (Ozyener et al., 2001; Puente-Maestu et al., 2001) would 

suggest that the single transition approach is unsuitable to allow reproducible 

determinations of V 02 kinetic parameters since the effects of noise have not been 

minimised.

The protocol used in the present study was continuous. As a result, the second and third 

transitions of each set were inevitably preceded by one and two bouts of moderate- 

intensity exercise respectively. This could be perceived as a 'warm-up1. It has been 

shown in most studies that prior moderate- or heavy-intensity exercise does not 

influence t  during the transition to moderate-intensity exercise (Gerbino et al., 1996; 

Burnley et al., 2000). It is assumed that the on-transient V 02 kinetic response, during 

the square-wave transitions that were preceded by moderate-intensity exercise, was not 

influenced by prior bouts of moderate-intensity exercise.

Every effort was made to minimise both the technical error and the effects of noise on 

V 02 kinetic parameter estimations. It is realistic to conclude that the minimal amount 

of test-retest variability observed was not due to the protocol used.

4.4.6 Application of reproducibility to changes in kinetic parameters

To put the magnitude of variability observed between repeated tests into perspective, it 

is important to consider the changes in t  (or MRT) that might result from the 

prescription of a specific exercise training intervention. Puente-Maestu et al. (2001) 

calculated the magnitude of the change in Ton that would be required to reach statistical 

significance using a one- and two-tailed paired-comparison test. This calculation was 

based on the SDdiff between repeated tests (prior to a training intervention study in 

patients with COPD - Puente-Maestu et al., 2000), the number of participants (n=35) 

and the alpha level (P = 0.05). The required change in Ton was 9 and 10.8 s for a one- 

and two-tailed paired-comparison respectively. Changes in Ton of this magnitude have
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been reported when exercise programs have been prescribed for the previously 

untrained (Yoshida et al., 1992; Babcock et al., 1994; Phillips et al., 1995). For 

example, a mean decrease (i.e. faster V 02 kinetics) of 21.4 s (Ton), 10.4 s (MRTon), 6.3 s 

(T0ff) and 7.4 s (MRT0fr) has been reported (Phillips et al., 1995). This equates to an 

improvement of 57.5, 27.3, 20.1 and 19.5% respectively, compared to pre-training 

values. Similarly, a mean increase (i.e. slowing of V 02 kinetics) of 16.6 s (Ton) and

13.4 s (MRTon) was caused by the effects of ageing in older humans (Bell et al., 1999). 

This equates to a 56.3 and 43.9% change when compared to the initial determination Ton 

and MRTon respectively. Changes in V02 kinetics of this magnitude are easily 

detectable and in most instances will exceed the test-retest variability in parameter 

estimations (Kilding et al., 2001; Ozyener et al., 2001; Puente-Maestu et al., 2001). 

The problem resides, however, in studies where smaller, but significant changes in x and 

MRT are expected and are meaningful. It is unlikely that changes in x (or MRT) of this 

magnitude would be evident whilst monitoring endurance trained athletes. Therefore, 

the reproducibility previously reported for untrained individuals (Kilding et al., 2001) 

and patients with COPD (Puente-Maestu et al., 2001) would be unacceptable. In 

competitive athletes, significantly smaller changes in xon [pre = 29.2 s; mid = 24.4 s 

(16.4% decrease); post = 21.9 s (25% decrease)] during and after 8 weeks of endurance 

training have been reported (Norris and Peterson, 1998). Given the improved level of 

reproducibility established in the present study, it would be possible to identify smaller 

changes in x. Using the approach of Puente-Maestu et al. (2001), a change of 1.7 and

2.1 s in Ton would be required to reach statistical significance (P <0.05) using a one- and 

two-tailed paired-comparison respectively.

4.4.7 Reproducibility of other physiological measures

The reproducibility of V 02 kinetic parameters found in this study compare well with 

the reproducibility of other measures that have been used to asses and monitor the 

physiological status of endurance trained athletes. These include V 02 max (Weltman et 

al., 1990), LT/Vt (Aunola and Rusko, 1984; Weltman et al., 1990; McLellan and

112



Jacobs, 1993) and RE (Armstrong and Costill, 1985, Morgan et al., 1991; Pereira and 

Freedson, 1997). The CV of V02 max has been reported as being 3.7 to 7.3% during 8- 

20 successive treadmill tests in five subjects (Katch et al., 1982). This degree of 

variability is similar to the CV for each kinetic parameter measured in the present study, 

which ranges from 1.3 to 4.8% and 2.2 to 13.4% for the on- and off-transients 

respectively.

Weltman et al. (1990) conducted an extensive study examining the reliability and 

validity of a treadmill protocol for the determination of physiological measures (LT, 

fixed blood lactate concentrations of 2.0, 2.5 and 4.0 mmolT1 and V 02 max) pertinent to 

the assessment of distance runners. Strong correlation's between repeated tests (range r 

= 0.70 - 0.95) were identified for each physiological measure. Similarly, the variability 

observed for RE has been reported (Armstrong and Costill, 1985) and is comparable to 

that of kinetic parameters observed in the present study. Armstrong and Costill (1985) 

found that the CV for sub-maximal V 02 in trained runners was 3.8%. In comparison, 

the CV for V 02 (m) and Aon (equivalent measures of steady-state V 02) in the present 

study was 2.7 and 3.4% respectively.

4.5 Conclusion

The main finding of this study suggests that a six-transition protocol allows a 

reproducible estimation of V 02 kinetic parameters during both the on- and off- 

transients. The narrow 95% LOA, small measurement and method error demonstrate 

this. This also suggests that the day-to-day biological variability in V 02 kinetics is 

small. However, biological variability can only be accurately discerned if the effects of 

noise on kinetic parameter estimations are sufficiently minimised. This was achieved in 

the present study by having participants perform several repeated transitions. The 

reproducibility established for V 02 kinetic parameters is superior to that previously 

reported and compares well to the reproducibility of alternative physiological measures 

commonly used to assess and monitor MD and LD runners. Collectively, these findings
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exemplify the importance of establishing and quantifying the reproducibility of V02 

kinetics, since what is considered acceptable reproducibility in some populations might 

not be acceptable for others. The reproducibility established in this study is acceptable 

for further assessments of MD and LD runners.
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CHAPTER 5

On- and off-transient pulmonary oxygen uptake kinetics in 

middle- and long-distance runners

5.1 Introduction

It has been demonstrated in several studies that Ton is reduced after short-term endurance 

training in previously untrained (Hickson et al., 1978; Hagberg et al., 1980; Yoshida et 

al., 1992; Phillips et al., 1995) and trained individuals (Norris and Peterson, 1998). In 

addition, several studies have characterised on-transient V 02 kinetics in long-term, 

habitually trained individuals including sprinters (Edwards et al., 1999), American 

footballers (Fukuoka et al., 1995), swimmers (Cerretelli et al., 1979) and distance 

runners (deVries et al., 1982; Powers et al., 1985; Lake et al., 1986; Taylor et al., 

1999). Collectively, these studies have been conducted in an attempt to improve our 

understanding of the physiological effects of different training regimes in athletes and to 

identify the mechanism(s) determining V 02 kinetics at the onset of exercise.

5.1.1 On-transient V02 kinetics

The V 02 kinetics in endurance-trained runners have been investigated in several studies 

using square-wave transitions in the intensity of exercise (deVries et al., 1982; Powers 

et al., 1985; Lake et al., 1986). Predominantly, the V 02 ty2 (defined as the time to reach 

one-half of the steady-state V 02) has been used to characterise the rate of response. 

deVries et al. (1982) reported that the V 02 kinetics of young and old endurance-trained 

runners were similar (27.4 and 30.0 s respectively) despite large differences in V 02 max. 

This suggests that V 02 kinetics, unlike V 02 max, is independent of ageing in endurance- 

trained runners. In LD runners («=10) who had similar training regimes but differed 

with respect to V 02 max, Powers et al. (1985) reported the V 02 ty2 to range from 21.6 to

36.0 s and were faster in runners who had a higher V 02 max. Lake et al. (1986) reported 

a mean V 02 ty2 of 33.4 ± 5.2 s when V02 was plotted at the endpoint (EP) of a 20 s time 

interval but 26.7 ± 5.2 s when V 02 was plotted at the midpoint (MP) of a 20 s time
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interval. Clearly, this highlights the sensitivity of different modelling techniques on 

VO2 kinetics. However, with respect to V 02 ty2, there appears to be some consistency 

between the mean values reported for endurance trained runners, despite differences in 

VO2 max. In spite of this observation, the use of V 02 ty2 to characterise V 02 kinetics is 

inappropriate because the initial response of V 02, i.e. the 'cardiodynamic' phase 

(Whipp et al., 1982), is included in the modelling. Exponential models, incorporating a 

delay-term, that exclude the phase I response should preferably be used. Using this 

approach, Lake et al. (1986) reported the xon of runners (n=8) which was 25.3 ± 8.7 s 

and 30.8 ± 7.3 s for EP and MP respectively. Conversion of the V 02 ty2 reported by 

Powers et al. (1985) corresponds to a xon ranging between -31.2 and 51.9 s; longer than 

those reported by Lake et al. (1986). This reflects the higher V 02 max of the runners in 

the study of Lake et al. (1986).

5.1.2 Off-transient V 02 kinetics

The majority of research to date has characterised the kinetics of V 02 and/or assessed 

the effects of training on V 02 kinetics during the on-transient. However, early studies 

on the time course of V 02 focussed primarily on the recovery period (Margaria et al., 

1933; Berg, 1947). Berg (1947) was the first to measure V 02 both during the onset of 

exercise and during recovery but chose only to analyse the recovery responses of V 02. 

Today, few studies have investigated the effects of training (short- or long-term) on 

VO2 kinetics during both on- and off-transients (Hagberg et al., 1980; Phillips et al., 

1995). After 9 weeks training, Hagberg et al. (1980) reported a shortening in both the 

on-transient V 02ty2 and the off-transient VO2tVl. Similarly, Phillips et al. (1995) 

reported faster off-transient V 02 kinetics after 30 days of endurance training with 

reductions in x0ff and MRT0ff of -20 %. Both studies highlight the sensitivity of off- 

transient VO 2 kinetics to endurance training

The study of Carter et al. (2000a) is the only study that has characterised on- and off- 

transient VO 2 kinetics for both treadmill and cycle exercise over a range of exercise
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intensities in recreationally active individuals. Specifically, during recovery from 

moderate-intensity treadmill and cycle exercise, T0fr was 39.3 ± 3.0 s and 35.9 ± 4.2 s 

respectively. However, these values for x0ff are longer than the pre-training x0ff (31.3 ±

1.3 s) reported by Phillips et al. (1995), despite participants in both studies having a 

similar V 02 max. This difference could be caused by the different methods of recovery 

between the studies. The study of Carter et al. (2000a) prescribed complete rest, 

whereas Phillips et al. (1995) used active recovery involving pedalling at 25 watts (W).

5.1.3 Symmetry between on- and off-transient kinetics

Partly as a consequence of the limited research into off-transient V 02 kinetics before 

and after training in runners, there are few comparisons concerning the symmetry 

between the on- and off-transients in this population, especially during treadmill 

running. There is disagreement about whether or not there are symmetries between on- 

and off-transients for exercise below the Vt in untrained individuals. For example, 

several studies have demonstrated symmetry between transients (Paterson and Whipp, 

1991; Scheuermann et al., 1998; Brittain et al., 2001; Ozyener et al., 2001). Symmetry 

has also been observed before and after endurance training (Hagberg et al., 1980). 

However, such symmetry is not always the case. Distinct asymmetries between xon and 

x0ff have been observed in untrained (Linnarsson, 1974; Hughson et al., 1988; Carter et 

al., 2000a) and trained individuals (Cerretelli et al., 1979; Phillips et al., 1995). These 

studies show that on-transient V 02 kinetics are faster than off-transient V 02 kinetics 

for cycle (Linnarsson, 1974; Hughson et al, 1988; Carter et al., 2000a) and treadmill 

(Carter et al., 2000a) exercise. It has yet to be established whether there are symmetries 

(or asymmetries) between on- and off-transient V 02 kinetic responses in MD and LD 

runners using treadmill ergometry.

5.1.4 Methodological limitations to previous studies

There are limitations common to several of the aforementioned studies. First, most 

have used cycle ergometry in their determinations of phase II V 02 kinetics in MD and
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LD runners (deVries et al., 1982; Powers et al., 1985). For an appropriate and specific 

determination of V 02 kinetics in runners, a mode of ergometry to which the athlete is 

accustomed would be preferable. Recently, the use of treadmill ergometry to 

characterise the on- (Carter et al., 2000a, b; Williams et al., 2001) and off-transient 

(Carter et al., 2000a) V02 kinetics in untrained individuals has been reported. 

However, no study has specifically assessed V02 kinetics during both the on- and off- 

transients in MD and LD runners using treadmill ergometry. Second, the sampling 

intervals of V 02 in some studies have been unacceptably large. For example, V02 

kinetics have been measured using 10 (deVries et al., 1982), 15 (Powers et al., 1985) 

and 20 s (Lake et al., 1986) time intervals respectively. Potentially, this might result in 

the inclusion of only two or three data points during the transient which could influence 

kinetic parameter estimations. Presently, most studies measure V 02 on a breath-by- 

breath basis, which improves the time resolution of data and most importantly, allows 

different phases of the V 02 response (Whipp et al., 1982) to be quantified during both 

transients, providing there are enough transitions.

5.1.5 Aim of study

The aim of this study was two-fold. First, to characterise and compare V 02 kinetics 

during the on- and off-transients in MD and LD runners and second, to assess the 

symmetries (or asymmetries) and relationships between on- and off-transient V 02 

kinetics at the onset and during recovery from moderate-intensity treadmill running.
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5.2 Participants and methods

5.2.1 Participants

Ten male MD (800/1500 m) and 10 male LD (5000/10000 m) runners provided written 

informed consent and participated. Participants were recruited from athletic clubs in the 

North of England. Participants' age, anthropometric and physiological characteristics 

are presented in Table 5.1. Ethics approval was obtained from the Research Ethics 

Committee, Sheffield Hallam University. Prior to participation in the study each athlete 

completed a medical screening questionnaire (Appendix 6).

Table 5.1 Participants age, anthropometric and physiological characteristics. Values are 

mean ± SD.

Measure MD

(#i=10)

LD

(«=10)

Combined

(72=20)

Age (years) 22.0 ± 6.8 25.8 ± 5.0 23.9 ±6.1

Stature (cm) 176.6 ±5.8 180.0 ±8.1 178.3 ±7.0

BM (kg) 65.3 ± 5.0 71.4 ±9.8 68.4 ± 8.2

Volume of training (km-wk'1) 47.5 + 18.8 64.0 ± 15.7* 55.7 ±18.8

V 02 max (ml-min'1) 3912 ±341 4202 ± 702 4057 ± 557

V 02 max (ml-kg'^min'1) 60.0 ±4.9 59.0 ± 6.3 59.5 ±5.5

V 02 max (ml-kg'0J9-min'I)s 144 ±11 144 ± 16 144 ±13

V 02 max (ml-kg'°‘67*min'1) 238 ± 18 241 ± 27 239 ± 22

V 02 at Vt (ml-min'1) 3248 ± 286 3437 ±447 3343 ± 378

VO2 at Vt (ml-kg'^min'1) 49.9 ±4.8 48.4 ± 4.4 49.1 ±4.6

V 02 at Vt (ml-kg'^-min'1)5 224 ± 19 224 ± 19 224 ± 19

V 02 at Vt (ml-kg'°‘67-min'1) 198 ±17 197 ±16 198 ±16
O'
Empirically derived BM exponent from present data; * Significantly different from MD 

runners, P <0.05;
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5.2.2 Experimental design

Participants visited the laboratory for physiological testing on two occasions within a 

seven-day period. Each test was separated by at least 48 hours and was performed at 

approximately the same time of day. In the first visit, participants performed an 

incremental exercise test to volitional exhaustion to allow the determination of Vt and 

V 02 max. In the second visit, participants performed a square-wave exercise protocol to 

determine on- and off-transient V 02 kinetics during the onset and recovery from 

moderate-intensity exercise respectively. Throughout the testing period, participants 

were requested to maintain their usual dietary intake and to abstain from heavy training 

and consumption of alcohol and/or caffeine in the 48 hours preceding each test.

5.2.3 Experimental protocols

All running tests were performed on a motor-driven treadmill (Saturn 250-75R, HP 

Cosmos, Germany). Each participant completed an incremental exercise test to 

volitional exhaustion for the determination of Vt and V 02 max (see Chapter 3, Section 

3.2.5). To assess V 02 kinetics, participants completed a square-wave protocol (see 

Chapter 3, Section 3.2.7) consisting of alternating 6 min bouts of walking (4 km-h'1) and 

running (speed requiring 80% Vt). Pulmonary gas-exchange (breath-by-breath) and HR 

were measured during all exercise tests. The [HLa] was measured before and after the 

square-wave protocol.

5.2.4 Data analysis

Breath-by-breath data obtained during the incremental exercise test and the square-wave 

protocol were analysed in accordance with procedures outlined in Chapter 3, Section

3.2.5.1 and 3.2.7.1 respectively.

5.2.5 Statistical analyses

Descriptive statistics (mean ± SD) were calculated for each physiological measure 

during each test. For the most appropriate expression of V 02 max and Vt with respect to
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BM, log-log transformations and ANCOVA were used to identify the common b 

exponents for MD and LD runners respectively. Independent /-tests were used to 

compare V 02 kinetics of MD and LD runners. Dependent /-tests were used to compare 

on- and off-transient V 02 kinetics. Relationships between V 02 kinetic parameters 

were determined using Pearson's product moment correlation coefficient. Statistical 

significance for all tests was set at P <0.05. Prior to conducting these analyses, 

appropriate checks were made to ensure that the assumptions underpinning these 

statistical approaches were met (see Chapter 3, Section 3.3).
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5.3 Results

5.3.1 Incremental test

The VO2 max and Vt in MD and LD runners are presented in Table 5.1. Measures are 

presented in absolute terms (ml-min1), proportional to BM (ml-kg'^min'1) and as a 0.67 

power-function ratio of BM. Log-log transformations and ANCOVA showed that a 

common b exponent could be used for MD and LD runners since the slope and 

estimated marginal means were not significantly different. The b exponents for V 02 max 

and Vt were 0.79 ± 0.20 and 0.64 ±0.19 respectively; mean + SE. Consideration of the 

leverage statistics (Mahalanobis and Cooks' distances) suggested that no outlying data 

were influencing the regression models. There were no differences between MD and 

LD runners for either V 02 max or Vt regardless of how they were expressed (P >0.05). 

The actual V 02 at the pre-determined speeds (V 0 2 (m), Table 5.2) was equivalent to

81.4 ± 3.4 and 80.5 ± 4.0%Vr for MD and LD runners respectively. This demonstrates 

that the protocol used to identify the appropriate running speed for a given intensity of 

exercise ensured that each runner exercised at the same relative intensity (i.e. ~80% V t). 

The volume of training (km-wk"1) completed by LD runners was greater than that of 

MD runners (P = 0.047).

5.3.2 On-transient VO2 kinetics

Typical breath-by-breath V02 responses for the transition from walking at 4 km-h'1 to 

running at a moderate-intensity (80% V t) are presented in Figure 5.1a and b for both a 

MD and LD runner respectively. The characteristic three-phase response of V 02 at the 

onset of exercise was clearly apparent and a steady-state V 02 was attained within 2-3 

min. Qualitatively, modelling the on-transient response with a mono-exponential 

model, with time-delay, resulted in a good fit of the data whereby residuals throughout 

the fitting window were seen to fluctuate randomly around zero error (Figure 5.1a, b).
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Figure 5.1 a, b The typical V 02 response for a square-wave transition from walking to 

moderate-intensity running for a MD runner (a) (where Aon = 1937 ml-min'1; 60n = 13.8 

s; Ton = 17.1 s; MRTon = 30.9 s) and (b) LD runner (where Aon = 1729 ml-min'1; 8on =

11.9 s; Ton = 12.6 s; MRTon = 27.1 s). The vertical dashed line denotes the onset of 

moderate-intensity exercise.
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All kinetic parameters from the modelled V 02 responses at the onset of moderate- 

intensity exercise are presented in Table 5.2. The HR and [HLa] responses are also 

presented. There were no differences (P >0.05) between MD and LD runners for any 

kinetic parameter. Using the equations of Lamarra et al. (1987), the 95% Cl associated 

with kinetic parameter estimations during the on-transient were 1.1 ±0.3 and 0.9 ± 0.3 s 

for MD and LD runners respectively. Pre- and post-test [HLa] did not differ (P = 

0.532) and are presented in Table 5.2 as delta (A) values (the difference between resting 

and end-exercise values). Both HR(b) (73 ± 9 vs. 88 ± 13 b-min'1; P  = 0.004) and 

HR(m) (135 ± 9 vs. 147 ± 9 b-min'1; P = 0.005) were lower in LD runners than in MD 

runners respectively.
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Table 5.2 Measures associated with the V 02, HR and [HLa] responses during 

moderate-intensity exercise in runners. Values are mean ± SD.

Measure MD

(71=10)

LD

(«=10)

Combined

(n=20)

Running speed (km-h'1) 11.7 ±  0.8 11.6 ± 0 . 7 11.7 ±  0.8

Resting V 02 (ml-min'1) 397 ±  25 396 ±  46 397  ±  36

VO2 (b) (ml-min'1) 901 ± 3 9 908 ± 1 1 2 905 ±  82

Aon (ml-min'1) 1739 ± 1 7 0 1855 ± 2 5 7 1797 ± 2 2 0

V 02 (m) (ml-min1) 2 6 4 1 ± 196 27 6 4  ±  348 27 0 2  ±  282

Son (S) 14.4 ±  1.3 14.6 ±  1.5 14.5 ±  1.3

Ton (S) 14.2 ± 3 .1 12.5 ± 2 . 3 13.3 ± 2 . 8

MRTon (s) 28.6  ± 2 . 5 27.1 ± 2 . 2 27 .8  ±  2 .4

Gain (ml-kg^-km'1) 177.1 ± 9 . 5 171.7 ± 9 . 4 174.4 ± 9 . 6

HR(b) (b-min'1) 88 ± 1 3 72 ±  9** 80 ± 1 4

HR(m) (b-min'1) 147 ± 9 135 ± 9 * * 141 ±  10

A[HLa] (mmol-1'1) -0.03 ±  0.08 0.01 ± 0 .1 1 -0.01 ± 0 . 1 0

Gain, V 02 (m) minus resting V02, relative to BM and running speed at 80% V t- * Lower 

in LD runners, P <0.05; **Lower in LD runners, P <0.01.

5.3.3 Off-transient V02 kinetics

The V 02 response of a MD and LD runner at the cessation of moderate-intensity 

exercise is illustrated in Figure 5.2 a and b respectively. The residuals from the mono­

exponential modelling are also presented and, as observed during the on-transient, 

demonstrate a random distribution around zero error.

In contrast with on-transient V02 kinetic parameters, both x0ff (27.1 ± 3.0 s vs. 24.1 ±

2.3 s ;P  = 0.023) and MRT0ff (36.0 ± 3.1 s vs. 32.4 ± 2.4 s; P = 0.011) were faster in LD 

runners than in MD runners. The MD and LD runners did not differ in their 80ff (P = 

0.660) or Aoff(P = 0.219).
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T able 5.3 M easures o f  the V02 kinetic response during recovery from  moderate-

intensity exercise in runners. Values are means ± SD.

Measure MD

(«=10)

LD

(«=10)

Combined

(«=20)

VO2 (m) (ml-min'1) 2463 ± 194 2761 ± 347 2702 ± 280

A 0ff (ml-min'1) 1731 ±173 1857 ±261 1794 ±225

V 02 (b) (ml-min'1) 912 ±38 904 ± 120 908 ± 86

50fr (s) 8.9 ± 2.3## 8.3 ± 3.3## 8.6 ± 2.8*#

Toff(s) 27.1 ± 3.0## 24.1 ±2.3 *## 25.6 ± 3.0**

MRTo{if (s) 36.0 ± 3.1## 32.4 ± 2.4*## 34.2 ± 3.3*"

* Lower in LD runners, P <0.05; ##Different from on-transient, P <0.01.
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Figure 5.2 a, b. The typical V02 response for a square-wave transition from moderate- 

intensity running to walking for a MD runner (a) (where A0ff = 1729 ml-min'1; 50fr = 7.7 

s; T0ff = 31.1 s; MRT0ff = 38.9 s) and (b) LD runner (where A0ff= 1717 ml-min'1; 50ff = 

8.7 s; T0ff = 25.1 s; MRT0ff = 33.8 s). The vertical dashed line denotes the end of 

moderate-intensity exercise.



5.3.4 On- vs. Off-transient V02 kinetics

Comparisons between on- and off-transients revealed some differences (Tables 5.2 and 

5.3). For example, 6on (14.4 ± 1.3 s and 14.6 ± 1.5 s) was longer than 50ff (8.9 ± 2.3 s 

and 8.3 ± 3.3 s) both in MD and LD runners respectively (P <0.001). Conversely, Ton 

(14.2 ± 3.1 s and 12.5 ± 2.3 s) and MRTon (28.6 ± 2.5 s and 27.1 ± 2.2  s) were shorter 

than T0ff (27.1 ± 3.0 s and 24.1 ± 2.3 s) and MRT0ff (36.0  ± 3.1 s and 32 .4  ± 2.4  s) in 

both MD and LD runners respectively (P <0.001). However, there were no differences 

between Aon (MD = 1739 ± 1 7 0  ml-min'1; LD = 1855 ± 257  ml-min*1) and A0ff (MD = 

1731 ± 173 ml-min*1; LD = 1857 ± 2 6 1  ml-min'1) in both MD and LD runners 

respectively (P = 0.605).

5.3.5 Correlations between V02 kinetic parameters

Correlation coefficients between the on- and off-transient V 02 kinetic parameters are 

illustrated in Figure 5.3 (a-d). In MD and LD runners, 6on and 50ff were not related (r = 

0.13; P = 0.575). Conversely, there was a relationship between Ton and T0ff for MD (r = 

0.81, P = 0.004) runners but not for LD runners (r = 0.42, P = 0.224). Similarly, MRTon 

and MRToff were highly related in MD (r = 0.86, P = 0.001), but not for LD runners (r = 

0.14, P = 0.706). These findings suggest that a shorter xon (or MRTon) is associated with 

a short T0ff (or MRT0ff) only in MD runners. In MD and LD runners, there was a 

relationship between Aon and A0ff (r = 0.98 and 0.99 respectively; P <0.001).
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5.4 Discussion

5.4.1 On-transient TO 2 kinetics

The on-transient V 02 kinetics for MD, LD and combined runners are presented in 

Table 5.2. Specifically, Ton is similar to previously reported values for moderate- 

intensity treadmill running (15.0 ± 2.0 s, Carter et al., 2000a; 14.7 ± 2.8 s, Williams et 

al., 2001). This was unexpected given the training status of the athletes used in this 

study. In an attempt to understand why there was such a similarity for on-transient 

VO 2 kinetics, further investigations into other physiological characteristics of the 

participants were undertaken. This revealed that participants had a V 02 max of 50.7 ± 

13.0 ml-kg'^min'1 (Carter et al., 2000a) and 56.6 ±3.0 ml-kg'^min'1 (Williams et al., 

2001) which are lower than the V 02 max of MD and LD runners reported here (Table 

5.1). This suggests that phase II V 02 kinetics during moderate-intensity treadmill 

running is independent of V 02 max. Collectively, these findings oppose the high 

correlation between V 02 kinetics and V 02 max found in previous studies involving 

untrained individuals (Chilibeck et al., 1996; Fawkner et al., 2002).

In support of the values obtained for MD and LD runners in this study, Carter et al. 

(2002) reported a mean Ton of 12.7 ±  1.4 s for recreational active men and women with a 

V 02 max of 59.3 ± 10.0 ml-kg'^min'1. This is almost identical to Ton (12.5 ±  2.3 s) in this 

study for LD runners with similar V 02 max (Table 5.2). Clearly, further work to 

establish the relationship between V02 kinetics and V 02 max is warranted on the basis 

of these inconsistent findings.

Differences between the methods used here and in previous studies might account for 

the seemingly fast V 02 kinetics observed for recreationally active (Carter et al., 2000a) 

and untrained individuals (Williams et al., 2001). First, the transition to moderate- 

intensity exercise reported here was initiated from walking, whereas in other studies 

transitions were initiated from resting conditions (Carter et al., 2000a; Williams et al., 

2001). Second, in this study, a mono-exponential model with time delay was used
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(Whipp et al., 1982), whereas Carter et al. (2000a) and Williams et al. (2001) used a 

higher order, two-component exponential model. Third, the daily use of the muscle 

groups might be a physiological explanation as to why V 02 kinetics are similar in 

recreationally active individuals and MD and LD runners. Chilibeck et al. (1997) 

reported that differences between V02 kinetics in old and young individuals were not 

as pronounced when measured during plantar flexion exercise compared to treadmill 

exercise. This was attributed to the fact that both age groups use the plantar flexors in 

every day activities (i.e. walking). To some extent, a similar explanation might also 

apply to treadmill-based assessments of V 02 kinetics in younger, more active 

individuals since the muscles of the lower extremity are recruited during walking, 

jogging and running and play a significant part in most young individual's recreationally 

active lifestyles. Therefore, it might not be surprising that Ton (and MRTon) do not differ 

substantially between recreationally active individuals and MD and LD runners for 

treadmill exercise. Finally, a physiologic or genetic 'upper limit' (or ceiling) to the V 02 

kinetic response at the onset of exercise cannot be ruled out. This would imply that no 

further speeding in Ton is possible regardless of further training stimuli. Further research 

is required to investigate this possibility.. Alternatively, the results of this study might 

differ from previous studies because of different protocols used during recovery from 

moderate-intensity exercise i.e. walking or standing. Clearly, further work is necessary 

to clarify the effect of different protocols on off-transient V 02 kinetics.

The results here differ from previous studies involving runners (deVries et al., 1982; 

Powers et al., 1985; Lake et al., 1986). The most relevant study is that of Lake et al. 

(1986) who reported Ton for runners during treadmill running. Most other studies 

involving runners have used cycle ergometry (deVries et al., 1982; Powers et al., 1985). 

However, Lake et al. (1986) reported a much longer Ton [25.3 ± 8.7 s (EP) and 30.8 ±

7.3 s (MP)] than the present study. This was apparent despite their runners having a 

higher V 02 max (67.1 ± 5.6 ml-kg'^min'1). In the study of Powers et al. (1985), runners 

had a similar V 02 max to the MD and LD runners in the present study (~59
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ml-kg^-min"1). However, Powers et al. (1985) reported a V 0 2 ty2 that ranged from 21.6 

to 36.0 s. This is equivalent to a xon of = 31.2 to 52 s which is considerably slower than 

those of the present study. Similarly, deVries et al. (1982) reported a mean V 0 2 ty2 of

27.4 s corresponding to a xon of = 39.5 s for young endurance runners with similar 

V 02max- Collectively, these findings suggest that xon is independent of V 0 2 max in 

trained runners. This counters previous findings that V 0 2 kinetics ( V 0 2 ty2) is 

proportional to V 0 2 max in runners (Powers et al., 1985).

In early studies (deVries et al., 1982; Powers et al., 1985; Lake et al., 1986) the time 

resolution of V 0 2 measures (every 10, 15 and 20 s respectively) might have prevented 

the true measurement of V 0 2 kinetics. Furthermore, kinetic parameters were estimated 

from a single transition. Potentially, the distorting effects of breath-by-breath noise 

might not have been sufficiently reduced and could have influenced parameter 

estimations (Lamarra et al., 1987). To avoid this possibility and attenuate the effects of 

noise in the present study, a protocol was used that provided enough transitions (n=6) to 

allow reproducible estimations of the underlying V 0 2 response characteristics using 

exponential modelling techniques. Subsequently, the 95%CI for estimations of xon was

1.1 ±0.3 s (MD) and 0.9 ± 0.3 s (LD) which is more sensitive than previously reported 

in other studies (Chilibeck et al., 1998; Rossiter et al., 1999). Such a high degree of 

confidence in kinetic parameter estimations is essential if a true and meaningful insight 

into the effects of training or comparisons between populations is to occur.

In this study, there was a tendency for xon and MRTon to be shorter in LD runners than 

in MD runners, although these differences were not significant. At the outset, given that 

both MD and LD runners demonstrated similar V 0 2 max and V t, this finding is 

acceptable. However, the lack of difference between MD and LD runners could 

potentially be attributed to the inter-subject variability which resulted in an inflated SD 

of the mean response (i.e. xon range for MD = 9.8 to 19.2 s; LD = 9.0 to 16.4 s). Closer 

inspection of the data revealed that one MD runner (subject 4) had a xon of 9.8 s which
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was considerably shorter than that of all other MD runners and most LD runners. Given 

the narrow 95%CI for kinetic parameter estimations, this particular Ton is likely to be 

truly representative of this individual underlying V 0 2 response. To ensure that this Ton 

did not adversely influence the results, a re-analysis of the data was performed with the 

participants data removed. However, re-analysis confirmed the similarity between MD 

and LD runners with respect to Ton (P >0.05).

There are several possible explanations for the faster V 0 2 kinetics in endurance-trained 

runners compared to recreationally active individuals (Carter et al., 2000a) and LD 

runners compared to MD runners. One relates to differences in muscle fibre type. Type 

I fibres (slow twitch) are known to be rich in mitochondria (Saltin et al., 1977) which 

might result in faster V 0 2 kinetics. This supports the linear first-order model of 

respiratory control which suggests that mitochondrial resistance - a function of the 

number and properties of mitochondria - has an important role in determining the rate of 

oxidative phosphorylation (Meyer, 1988). Therefore, if endurance training causes an 

increase in the number and function of the mitochondria, then Ton should be shorter.

Adjustments in muscle [PCr] and QO2 are faster for isolated muscles with 

predominantly Type I fibres, compared to muscles with Type II fibres (Crow and 

Kushmerick, 1982; Kushmerick et al., 1992). In athletes with a predominance of Type I 

fibres, presumably LD runners (Costill et al., 1976b; Saltin and Gollnick, 1983), there 

could be a tendency for Ton to be shorter than that observed in MD runners. Opposing 

this hypothesis, it has been demonstrated that there is no relationship between the 

percentage of Type I fibres and V 0 2 kinetics at the onset of heavy-intensity exercise 

(Barstow et al., 1996). However, correlations between the fibre type percentage of an 

individual muscle (e.g. gastrocnemius) and measures of V 0 2 kinetics during cycling 

could be misleading because cycling requires the recruitment of several different 

muscles. These might display heterogeneity with respect to their individual V 0 2 

kinetics which could prevent the relationship between muscle fibre type and V 0 2
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kinetics from being identified. Potentially, a relationship could exist between Ton and 

the percentage of Type I fibres for moderate-intensity exercise in an individual muscle, 

although research to date has not been conducted to investigate this possibility.

It has been proposed that V 02 kinetics are determined by intrinsic metabolic factors 

governing the utilisation of O2 in exercising muscle (Mahler, 1980; Whipp and Mahler, 

1980; Grassi et al., 1996). In consideration of possible determining mechanisms, V 02 

kinetics at the onset of moderate-intensity exercise in MD and LD runners could be 

limited by mitochondrial enzyme activation and/or substrate provision within the 

muscle. In such circumstances, there would be a tendency for biochemical reactions 

that govern mitochondrial O2 utilisation to be speeded in the trained compared to the 

untrained. Evidence to support a peripheral mechanism within the muscle has been 

demonstrated in a study of specific muscle training where V 02 kinetics in trained 

muscles were significantly faster than the V 02 kinetics in untrained muscle (Cerretelli 

et al., 1979). However, an enhanced and more uniform blood flow in trained muscles, 

with decreased diffusion distance for O2 , could also result in a faster delivery of O2 and 

might be responsible for faster V 02 kinetics in runners compared to the untrained. In 

young subjects, skeletal muscle capillarity, capillary-to-fibre ratio and capillary density 

have all been shown to increase after endurance training (Ingjer, 1979). Similarly, 

faster V 02 kinetics in the early stages of endurance training (after 4 days) have been 

attributed to increased blood flow and not mitochondrial potential, since oxidative 

enzyme activity was unchanged (Phillips et al., 1995). However, further acceleration of 

V02 kinetics after 30 days of training was accompanied by an increase CS activity. 

This suggests that in the early stages of endurance training increased blood flow, and 

hence increased O2 delivery, might be the primary mechanism that results in faster V 02 

kinetics. However, once this early adaptation takes place, mechanism(s) within the 

exercising muscle predominate and determine V 02 kinetics.
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The gain term (ml-kg'1-km'1) used in this and previous V 02 kinetic studies (Williams et 

al., 2001; Carter et al., 2002) is analogous to Cr as described by Margaria et al. (1963). 

The Cr has been found to be ~180 ml O2 -kg'1-km’1 in MD (Lacour et al., 1990) and LD 

runners (di Prampero et al., 1986). In the present study, the mean gain for MD runners 

(177.1 ± 9.5 ml-kg^-min'1) was consistent with this. The gain for LD runners (171.7 ±

9.4 ml-kg'^min'1) was lower and is indicative of superior RE. In addition, H R  

responses during walking at 4 km-h*1 (HR(b), P = 0.004) and running at 80% Vt (HR(m), 

P = 0.005) were also lower in LD runners than in MD runners. This finding can not be 

attributed to differences in running speeds between the groups because the mean speed 

during walking (4 km-h*1) and running (80% V t) was almost identical (Table 5.2). 

Furthermore, even when expressed as a percentage of H R max achieved during the 

incremental test to volitional exhaustion, H R  was still lower in the LD runners (HR(b) = 

45 ± 7 vs. 38 ± 4%; HR(m) = 75 ± 4 vs. 71 ± 4%, Table 5.2).

5.4.2 Off-transient V 02 kinetics

Although Ton for M D and LD runners was only marginally faster than that previously 

reported (Carter et al., 2000a, b; Williams et al., 2001), in contrast, the off-transient 

V 02 kinetics (x0fr and M R T0fr) were considerably faster. The mean (± SD) x0ff in this 

study was 27.1 ± 3.0 s (M D) and 24.1 ± 2.3 s (LD) which was substantially less than 

that previously reported for untrained individuals during treadmill running (39.9 ± 3.0 s; 

Carter et al., 2000a) and cycling (36.8 ± 1.9 s; Paterson and Whipp, 1991). After 

endurance training, Phillips et al. (1995) reported a mean (±SD) x0fr and M R T 0fr of 25.0 

±1.8 s and 30.6 ± 0.9 s respectively for cycle exercise, which are closer to the present 

values for treadmill running (Table 5.3). The larger difference between off-transient 

V 02 kinetics in M D and LD runners compared to untrained individuals reflects the 

difference in training status and hence, the physiological status of the muscle. These 

findings suggest that the recovery process, primarily involving the re-synthesis of [PCr], 

is faster in M D and LD runners, probably as a result of regular training.
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In support for the use of off-transient V 02 kinetics as a measure of physiological status, 

Chilibeck et al. (1997) reported a much stronger relationship between capillarisation 

per-fibre-area and off-transient V 02 kinetics than that observed for on-transient V 02 

kinetics. The suggested mechanism to explain this relationship was that O2 delivery 

might have a greater influence on V 02 adjustment during recovery than V02 

adjustment at the onset of exercise as a result of a shorter diffusion distance. This is 

supported by Idstrom et al (1985) who found that the rate of [PCr] re-synthesis after 

contractions of perfused rat hind-limb was related to O2 supply through the perfusate, 

although the rate of [PCr] degradation at the start the onset of exercise was not. The 

findings of Idstrom et al. (1985) require the assumption that [PCr] kinetics reflect the 

kinetics of QO2 . Strong evidence supporting this assumption in humans has been 

reported (Barstow et al., 1994; Rossiter et al., 1999).

In the present study, MD and LD runners could be statistically differentiated on the 

basis of their off-transient V 02 kinetics. Both T0fr and M R T0fr were shorter (i.e. faster 

V 02 kinetics) in LD runners (Table 5.3). This suggests that not only is the recovery 

process accelerated in trained individuals when compared to untrained individuals 

(Hagberg et al., 1980; Phillips et al., 1995), but that the recovery process is also 

accelerated within groups of trained runners (i.e. MD vs. LD). Differentiation between 

untrained and LD runners (Yoshida and Watari, 1993) and between MD and LD runners 

(McCully et al., 1992) have been shown with respect to [PCr] recovery kinetics. The 

rate constant for [PCr] recovery has been directly interpreted as an index of muscle 

oxidative capacity (McCully et al., 1992; Paganini et al., 1997). This would suggest a 

greater muscle oxidative capacity in LD runners.

Differences between the V 02 and [PCr] kinetics in MD and LD runners might be 

attributable to different approaches to training with respect to volume, frequency and 

intensity. In support, the volume of training was greater for LD runners than MD
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runners. Approaches to training in running are likely to be largely influenced by the 

aerobic and anaerobic energy contributions to the overall performance.

Similar to the on-transient, differences in off-transient V 02 kinetics might also reflect 

an increased percentage of Type I fibres within the muscle and/or enhanced 

mitochondrial enzyme activity in LD runners. In support of the latter, a linear 

relationship between [PCr] recovery and CS activity has been demonstrated (McCully et 

al., 1993; Paganini et al., 1997). Oxidative enzyme concentrations are likely to be 

heavily influenced by the volume and/or intensity of training. It is expected that MD 

runners complete more anaerobic and speed-orientated training than a typical LD runner 

and thus there is a greater reliance on less efficient fast twitch (Type Ha and IIx) muscle 

fibres. As a result of these differences, the percentage of slow twitch (Type I) fibres and 

oxidative enzymes is lower in MD runners when compared to LD runners (Costill et al., 

1976b; Saltin and Gollnick, 1983) and could be responsible for slower V 02 off- 

transient kinetics in MD runners. To date, no research has considered the relationship 

between off-transient V02 kinetics and fibre type distribution in trained individuals.

5.4.3 Symmetry between on- and off-transients

Comparisons between the on- and off-transients revealed a distinct asymmetry showing 

that Ton (MD = 14.2 ±3.1 s; LD = 12.5 ± 2.3 s) was faster than T0fr (MD = 27.1 ± 3.0 s; 

LD = 24.1 ± 2.3 s). In most instances T0fr was two-fold greater than the value observed 

for Ton. Likewise, M R Ton and M R T0fr also differed in both MD and LD runners (P 

<0.001; Tables 5.2 and 5.3 respectively). Asymmetry between transients is a significant 

finding because it implies that V02 during treadmill running below the Vt does not 

conform to a dynamically linear system. Dynamic linearity is a characteristic of a first- 

order system and as such, Ton (or T0ff) should be independent of any prior conditions, the 

intensity of exercise and hence the amplitude of response (Lamarra, 1990). This finding 

of asymmetry is in agreement with previous studies conducted in the moderate-intensity 

domain using treadmill (Carter et al., 2000a), cycle (Linnarsson, 1974; Hughson et al.,
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1988; Scheuermann et al., 1998; Carter et al., 2000a; Rossiter et al., 2002) and knee- 

extension (Rossiter et al., 2002) exercise.

One explanation for the asymmetry between transients for V 02 kinetics can be implied 

from a quantitative analysis of the time course of [PCr] degradation and recovery 

kinetics. Kushmerick (1998) has shown, via computer modelling, that the full 

expression of creatine kinase (forward and reverse flux) and differing processes during 

the imposed increased ATPase activity in the breakdown and recovery phases, results in 

asymmetry between [PCr] on- and off-transients. Given the kinetic similarities between 

[PCr] and V 02 (Rossiter et al., 1999; 2002), this is anticipated to cause an asymmetry 

between V 02 on- and off-transients as was observed in the present study. However, the 

suggestions of Kushmerick (1998) still need to be explored and demonstrated 

experimentally in humans.

Although symmetry between on- and off-transient V 02 responses was not observed in 

M D and LD runners, there was a relationship between kinetic parameters during the on- 

and off-transients, especially Aon and A0fr (Figure 5.3d). With respect to both Ton and T0fr 

and M R Tori and M R T0ff, there was also a high correlation for M D runners (Figure 5.3b), 

but not for LD runners. However, when M D and LD runners were combined [to 

represent a larger sample (n=20) of endurance-trained runners], a relationship was 

observed between Ton and T0ff (r = 0.71, P <0.001). A correlation was also found 

between M RTon and M R T0fr for combined runners (r = 0.62, P = 0.004) suggesting that 

overall, runners with fast on-transient V02 kinetics also display fast off-transient 

kinetics. This finding supports previous studies reporting a high correlation between 

on- and off-transient V 02 kinetics (Hagberg et al., 1980; Yoshida and Whipp, 1994). 

However, no correlation's between i on and T0fr or M R Ton and M R T0ff were observed in 

LD runners in this study (Figures 5.3 b and c). This might be attributable to the 

homogeneity (narrower range) of values for LD runners compared to M D runners.



5.5 Conclusion

This study has characterised V 02 kinetics during the on- and off-transients in MD and 

LD runners using treadmill ergometry. The on-transient V 02 kinetics in MD and LD 

runners were faster than those previously reported for recreationally active individuals 

using this form of exercise. This was attributed to the higher fitness and endurance- 

trained state of the participants of the present study. However, despite the differences in 

the physiological characteristics of the participants (i.e. V 02 max and Vt) and especially 

their training histories, the magnitude of the differences with respect to V 02 on- 

transient kinetics was surprisingly small. Conversely, the magnitude of differences in 

the off-transient V 02 kinetics was larger. This suggests that off-transient V 02 kinetics 

give an improved indication of an individual's overall aerobic physiological condition 

and/or training status. The on- and off-transient V 02 kinetics are not symmetrical in 

MD and LD runners; the off-transient V 02 kinetics (T0ff and MRT0fr) being consistently 

slower than the on-transient. However, the on- and off-transients are related.
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CHAPTER 6 

Inter-relationships among aerobic parameters in 

middle- and long-distance runners

6.1 Introduction

Endurance training results in several physiological adaptations at a cellular level such as 

an increased number of mitochondria and increased oxidative enzyme activity (Gollnick 

et al., 1972; Costill et al., 1976a; Saltin and Gollnick, 1983). Collectively, these are 

likely to speed V 02 kinetics at the onset of moderate-intensity exercise. However, the 

influence of cellular changes on V 02 max, Vr and RE might be less pronounced which 

could potentially dissociate these measures. The temporal dissociation between changes 

in mitochondrial enzyme activity and V02 max after endurance training (Henriksson and 

Reitman, 1977) suggests that there might be poor correlation between measures of 

peripheral (i.e. V 02 kinetics) and central (i.e. V 02 max) physiological status.

Studies that have investigated the relationship between V 02 kinetics and V 02 max in 

untrained individuals have yielded conflicting results (Chilibeck et al., 1996; Bell et al., 

1999; Whipp et al., 2001; Fawkner et al., 2002). For example, it has been demonstrated 

that individuals with a high V 02 max display fast V 02 kinetics (Weltman and Katch, 

1976; Weltman et al., 1978; Chilibeck et al., 1996). The highest correlation (r = -0.85, 

P <0.001) reported between V 02 kinetics and V 02 max was in young adults (Chilibeck 

et al., 1996). Other studies, however, reported no correlation (Bell et al., 1999; Barstow 

et al., 2000) suggesting that mechanisms determining each measure are independent.

In endurance-trained runners, studies of the relationship between V 02 kinetics and 

F 0 2 max are less well documented and have also produced inconsistent findings (Powers 

et al., 1985; Lake et al., 1986). Powers et al. (1985) reported a negative correlation 

between V 02ty2 and V02 max (r = -0.80, P <0.05) in LD runners, whereas Lake et al. 

(1986) reported no correlation between xon and F 0 2max (r = 0.19, P >0.05). These
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contrasting findings could be attributable to differences in: 1) mode of exercise (cycle 

vs. treadmill); 2) methods of expressing V 0 2 kinetics ( V O 2ty2 vs. xon) and 3) mean ± 

SD V 0 2 max [67.1 ± 5.6 ml-kg'^min'1, Lake et al. (1986); 58.0 ± 2.6 ml-kg'^min’1, 

Powers et al. (1985)]. With respect to the latter, a heterogeneous sample, such as that of 

Lake et al. (1986), might display a stronger correlation due to a greater spread of data. 

However, the stronger relationship was observed in the more homogeneous data (as 

indicated by a lower SD) of Powers et al. (1985). Unfortunately, the relationship 

between V 0 2 max and off-transient V 0 2 kinetics from moderate-intensity exercise was 

not considered in any of these studies and has received minimal consideration 

elsewhere. This is clearly an area for further investigation.

The VO 2 at Vt has also been shown to be associated with on-transient V 0 2 kinetics 

(Weltman et al., 1978; Chilibeck et al, 1996; Whipp et al., 2001). Specifically, 

Chilibeck et al. (1996) identified a relationship between xon and V t (r = -0.62, P  <0.02) 

in untrained participants (n=16), although this relationship was less than that observed 

for V 0 2 max (r = -0.85, P  <0.001). With regards to the relationship between off-transient 

VO 2 kinetics and V t, although no correlation analysis was performed, Weltman et al. 

(1978) reported that the off-transient V 0 2ty2 (34.6 s vs. 40.3 s) was shorter in 

individuals with a high Vt. To date, no other study has assessed the relationship 

between off-transient V 0 2 kinetics and Vt.

Most studies that have assessed the relationship between V 0 2 kinetics, V 0 2 max and Vt 

have expressed V 0 2 relative to BM as a ratio standard, i.e. ml-kg'^min’1. However, 

according to principles of allometry, V 0 2 does not increase linearly with BM (Schmidt- 

Nielson, 1984). Specifically, it has been shown that sub-maximal V 0 2 and L 02max do 

not increase linearly with BM in runners (Bergh et al., 1991), thus confirming the need 

to adjust for differences in BM in this population by ways other than the ratio standard. 

Therefore, if V 0 2 is inappropriately expressed in MD and LD runners for treadmill 

running, this might distort and prevent a meaningful assessment of the relationship
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between pulmonary gas-exchange measures. The way in which V 02 is expressed could 

affect apparent relationships between V 02 kinetics and V 02 max and account for a lack 

of observed association in previous studies involving runners (e.g. Lake et al., 1986).

Fawkner et al. (2002) recently assessed the relationship between V 02 kinetics and 

allometrically scaled V 02 max in men and women (n=25) during moderate-intensity 

cycling. It was found that there was a relationship between V 02 peak and xon (r = -0.62, 

-0.81 and -0.82, P <0.05) for the men when F 0 2max was expressed in absolute terms 

(1-min'1), as a ratio standard (mFkg^-min’1) or as a power-function ratio 

(ml-kg^ ̂ -min'1) respectively. However, expressing V 02 as a power-function ratio of 

BM did not substantially improve the relationship between xon and V 02 max compared to 

the ratio standard. Thus, accounting for differences in BM did not affect the 

relationship between V 02 max and V02 kinetics in this population, probably because the 

identified exponent (mean ± SE; 0.89 ±0.17) was close to the ratio standard, especially 

when the SE was considered. Regardless of the method for expressing V 02, there was 

no relationship between xon and V 02 max for the women. Although an explanation for 

such gender differences is difficult to ascertain, this finding highlighted the need to 

investigate individual groups based on gender rather than on adults alone. However, 

these findings could be specific to the mode of exercise (cycle ergometry which is non 

weight-bearing) and the fitness of participants under investigation.

To date, the relationship between V 02 kinetics and RE has not been reported. The RE 

is a measure often used to assess MD and LD runners (Svedenhag and Sjodin, 1984; 

Pate et al., 1992) and has been shown to be related to running performance (Conley and 

Krahenbuhl, 1980). However, if a relationship exists between F 0 2max and V 02 

kinetics in runners, as shown previously (Powers et al., 1985), then it might be expected 

that there is an opposite relationship between RE and V 02 kinetics. This is because a 

negative relationship exists between V 02 max and RE (Pate et al., 1992; Morgan and 

Daniels, 1994) which implies that a runner with a high V 02 max is likely to have poor
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RE compared to a runner with a low V02 max who has good RE. If these relationships 

hold true for the present data then a runner who has good RE (i.e. low V 02 for a given 

sub-maximal running speed) should have slower V 02 kinetics compared to a runner 

with poor RE (i.e. high V 02 for a given sub-maximal running speed).

6.1.1 Relationships between measures: Correlation analysis

Correlation analysis is widely used in sport and exercise science research to explore 

relationships between measures of physiological function (e.g. Fawkner et al., 2002) or 

between physiologic function and sports performance (e.g. Grant et al., 1997). This 

approach might facilitate the identification of a common factor(s) that influences or 

determines two physiological measures. However, it is important to understand what 

factors determine and/or influence correlation analyses to aid interpretation.

Specifically, correlation analysis is a statistical technique used to determine whether two 

variables are interdependent, or co-vary, that is vary together (Sokal and Rohlf, 1995). 

When the data are parametric, the Pearson product-moment correlation coefficient (r) is 

commonly used. This method assesses the extent to which the direction and size of the 

deviations from the mean in one variable are related to the direction and size of 

deviations from the mean in another variable (Vincent, 1995). With respect to the 

interpretation of r, if the value is positive (i.e. 0>r<l), the variables are said to be 

positively correlated such that as one variable increases the other increases at a linearly 

proportional rate; if it is negative (-l>r<0), they are negatively correlated such that as 

one variable increases the other decreases at a linearly proportional rate. The 

interpretation of the magnitude of r has been considered by Cohen and Holliday (1982) 

to be: 1) very low (0.00 to 0.19); 2) low (0.20 to 0.39); 3) modest (0.40 to 0.69); 4) high 

(0.70 to 0.89) and 5) very high (>0.90). However, the magnitude of r is influenced by 

the ranges of the two variables under consideration. Large ranges (heterogeneity) in one 

or both measures can produce high r values, where as small ranges (homogeneity) can 

depress r. This scenario has been highlighted by Sale (1991) who demonstrated how

144



the precision of the relationship between measures can be misrepresented when the 

range of values is manipulated. In addition to the variability in the measures, the value 

and significance of r can be influenced by the size of the sample (ri). The number of 

pairs of scores influences the degrees of freedom (df) which represents the number of 

values that are free to vary when the sum of the variables is set (Vincent, 1995). When 

n is small (e.g. 5 pairs of scores), it is possible that spuriously high r values can be 

obtained by chance (Vincent, 1995). Furthermore, when n is small r must be high to be 

significant (Vincent, 1995). A larger n provides the researcher with more confidence 

that r is real and does not occur by chance. However, a large n can result in a small r 

being significant.

The correlation coefficient r can also be influenced by anomalous data that is not truly 

representative of the sample. Such data can exert considerable leverage and yield less 

meaningful high and low r values. For this reason it is important to qualitatively inspect 

the data and consider excluding extreme outliers. Since an assumption of correlation 

analyses is that the variables are linearly proportional to each other, a pre-analysis 

scatter plot can be used to identify any possible outliers. These can then be removed, 

objectively, on the basis of statistical criteria using Mahalanobis and Cook's distance 

statistics (Tabachnik and Fidell, 1996).

Prior knowledge of the reproducibility and day-to-day variability of the measures in 

question is advantageous to rule out this variability, which could have a substantial 

influence on r and its significance. In any instance it is important to realise that a 

significant relationship between two measures does not prove causation; it only shows 

that a non-chance relationship exists. However, reasoned logic and findings from 

previous research may point to a possible reason(s) for the magnitude, direction and 

significance of relationships identified.
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6.1.2 Aim of study

The purpose of this study was to investigate the relationship between measures of on- 

and off-transient V 02 kinetics and V 02 max, Vt and RE in MD and LD runners.

146



6.2 Participants and methods

6.2.1 Participants

Sixteen male MD (800/1500 m) and 16 male LD (5000/10000 m) runners provided 

written informed consent and participated. Participants were recruited from athletic 

clubs in the North of England. Participants' age, anthropometric and training 

characteristics are presented in Table 6.1. Prior to participation in the study each athlete 

completed a medical screening questionnaire (Appendix 6).

Table 6.1 Age, anthropometric and training characteristics of participants. Values are 

mean ± SD.

Measure MD

(tz=16)

LD

(72=16)

Combined

(72=32)

Age (years) 21.3 ±5.5 25.0 ±4.2 23.2 ±5.1

Stature (cm) 176.8 ±6.8 180.3 ±7.0 178.6 ±7.0

BM (kg) 66.6 ±5.8 69.9 ± 8.4 68.2 ± 7.3

Volume of training (km-wk*1) 43.5 ±15.6 66.6 ± 14.4 55.1 ± 18.9

6.2.2 Experimental Design

Participants visited the laboratory for physiological testing on two occasions within a 

seven-day period. Each test was separated by at least 48 hours and was performed at 

approximately the same time of day. Physiological testing during the first visit to the 

laboratory involved the measurement of RE, Vt and V 02 max- Visit 2 involved a square- 

wave exercise protocol to determine on- and off-transient V 02 kinetics. Throughout 

the duration of the testing period, participants were requested to maintain their usual 

dietary intake and to abstain from participating in heavy training and consuming alcohol 

and/or caffeine in the 48 hours preceding each test.
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6.2.3 Experimental protocols

Each participant completed: 1) a series of 4-6 four-min bouts of running with speed 

increasing by 1 km-h'1 every stage for the determination of RE (see Chapter 3, Section 

3.2.6); 2) an incremental exercise test to volitional exhaustion for the determination of 

VT and V 02 max (see Chapter 3, Section 3.2.5) and 3) a square-wave protocol consisting 

of alternating six-min bouts of walking (4 km-h'1) and running (speed requiring 80% V t) 

to determine on- and off-transient V02 kinetics (see Chapter 3, Section 3.2.7). 

Throughout each test, pulmonary gas-exchange was measured breath-by-breath.

6.2.4 Data analysis

Breath-by-breath measures of V 02 obtained during the assessment of RE, V t, V 02 max 

and VO 2 kinetics were analysed in accordance with procedures outlined in Chapter 3, 

Sections 3.2.5.1 to 3.2.7.1.

6.2.5 Statistical analyses

Descriptive statistics (mean ± SD) were calculated for each physiological measure 

during each test. The V 02 max, Vt and RE were expressed in absolute terms, relative to 

BM in standard ratio terms (ml-kg'^min'1) and as three separate power-function ratios 

of BM (ml-kg^-min'1; where b = 0.67, 0.75 and 0.86) derived from previous research. 

Furthermore, the individual b exponent for MD and LD runners representing the 

gradient of the log-log relationship between V 02 max, V t, RE and BM was determined 

empirically using log-linear ANCOVA. Relationships between measures were 

determined using Pearson's product moment correlation coefficient and were performed 

on MD (h=16), LD («= 16) and combined MD and LD runners (n=32). Assumptions 

about the normality of distributions of data were checked by means of the Shapiro-Wilk 

and Kolmogorov-Smimov statistics. Statistical significance was set at P <0.05.
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6.3 Results

The participants' F 0 2max, Vt and RE are presented in Table 6.2. Log-log 

transformations and ANCOVA showed that a common b exponent could be used for 

MD and LD runners since the slope and estimated marginal means were not different (P 

>0.05). The b exponents for V 02 max, Vt and RE were 0.68 ±0.15, 0.54 ± 0.14 and 0.74 

±0.10 respectively; mean ± SE. Consideration of the leverage statistics (Mahalanobis 

and Cooks' distances) suggested that no outlying data were influencing the regression 

models and that the b exponent for BM when expressing V 02 max, Vt and RE were truly 

representative of the data. In Table 6.2, all measures of V 02 have been expressed using 

the four BM exponents. However, Figures illustrating the relationship between V 02 max, 

Vt and RE with V 02 kinetics (Figures 6.1 - 6.3), express V02 measures using the b 

exponent for BM determined empirically using data from the current sample.
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Table 6.2 Physiological characteristics of MD, LD and combined runners.

Measure MD

(n=16)

LD

(n=16)

Combined

(72=32)

L 0 2m ax (ml-min'1) 3968 ± 300 4193 ±583 4069 ± 477

V 02 max (ml-kg'^min'1) 59.8 + 4.7 60.2 ± 5.8 60.0 ± 5.2

V 02 max (ml-kg^^-min'1) 239 ±16 244 ±6 241 ±4

V 02 max (ml-kg'°-75-mm !) 171 ± 12 174 ±4 172 ± 14

V 02 max (ml-kg*°'86-mm !) 107 ±8 109 ± 10 108 ±9

V 02 max (ml-kg*°-68-mm !)$ 229 ±15 234 ± 23 231 ±19

Vt (ml-min'1) 3261 ±241 3435 ± 387 3349 ± 329

Vt (ml-kg'^min'1) 49.2 ± 4.6 49.4 ± 4.4 49.3 ± 4.4

V T (ml-kg'°'67-min'1) 196 ± 15 200 ± 16 198 ±15

Vt (ml-kg'^^-min'1) 140 ±11 142 ±11 141 ±11

V T (ml-kg'^-min'1)5 340 ±25 349 ± 28 344 ± 27

V T %  L O  2 max 82.3 ±3.5 82.3 ± 4.4 82.3 ±3.9

RE at 16 km-h'1 (ml-min'1) 3568 ±270 3605 ± 404 3587 ±341

RE at 16 km-h'1 (ml-kg'^min'1) 53.9 ±3.8 51.7 ±2.9 52.8 ±3.5

RE at 16 km-h'1 (ml-kg'^-min'1) 215 ± 13 210 ± 12 212 ±12

RE at 16 km-h'1 (ml-kg'^-min'1) 154 ±9 149 ±8 151 ±9

RE at 16 km-h'1 (ml-kg'^-min'1)5 162 ± 10 158 ±9 160 ±9

Values are mean ± SD; Empirically derived from present data.

Parameter estimations of the on- and off-transient V 02 kinetics are presented in Tables

6.3 and 6.4 respectively. The 95% Cl associated with determinations of Ton (Lamarra et 

al., 1987) from six square-wave transitions was 1.0 ± 0.3 s.
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Table 6.3 Measures of the V 02 kinetic response at the onset of moderate-intensity 

exercise in MD, LD and combined runners. Values are mean ± SD.

Measure MD

(n=16)

LD

(n=16)

Combined

(n=32)

Running speed (km-h'1) 11.4 ±0.9 12.0 ±0.8 11.7 ±0.9

Resting V 02 (ml-min'1) 395 ±33 389 ± 40 392 ± 36

VO2 (b) (ml-min'1) 903 ±71 904 ± 98 904 ± 84

Aon (ml-min'1) 1746± 194 1832 ±281 1789 ±241

V 02 (m) (ml-min'1) 2649 ± 244 2736 ±355 2692 ± 303

5 on (S ) 13.1 ±2.5 15.4 ± 1.8 14.3 ±2.4

Ton (S ) 16.4 ±4.1 12.3 ±2.2 14.4 ±3.8

M R T o n  (s) 29.5 ±3.0 27.8 ± 2.4 28.6 ±2.8

Table 6.4 Measures of the V 02 response during recovery from moderate-intensity

exercise in MD, LD and combined runners. Values are mean ± SD.

Measure MD

{n=16)

LD

(n=16)

Combined

(n=32)

V 02 (m) (ml-min'1) 2658 ± 254 2732 ± 357 2695 ± 307

A0ff (ml-min'1) 1697 ±298 1831 ±284 1788 ±244

V 02 (b) (ml-min'1) 912 ±72 901± 106 907 ± 90

S0ff (s) 9.1 ±2.0 8.6 ± 2.7 8.9 ±2.3

Tofr(s) 26.9 ± 3.2 24.3 ± 2.5 25.7 ±3.0

MRToff(s) 36.0 ±3.5 33.1 ±2.4 34.6 ±3.3

6.3.2 Relationships with V02 max

When MD and LD runners were considered together (n=32), a relationship (r = -0.40, P 

= 0.05) was identified between t on and V 02 max regardless of the method of expressing 

V 02 max* Similar relationships [r = -0.37 (P = 0.038) to r = -0.42 (P = 0.017)] existed 

between MRTon and V 02 max. There were no correlations between T0fr and V 02 max (P
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>0.05). However, MRT0ff correlated with V02 max when expressed relative to BM (r = 

-0.35, P = 0.049). For MD runners («=16), there were no relationships between V 02 max 

and on-transient kinetic parameters. However, for LD runners {n=\6), relationships (r = 

-0.70 to -0.72, P <0.01) were consistently identified between Ton and V 02max 

irrespective of BM exponents. There was also a relationship (r = -0.55, P = 0.029) 

between x0ff and V 02 max (ml-kg'^min'1) for LD runners, but not MD runners (r = 0.03; 

P = 0.900). There were no relationships between V 02 max and MRTon or MRT0ff (see 

Appendix 9.5 and 9.6 for MD and LD runners respectively).
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6.3.3 Relationships with Vt

The relationships between on- and off-transient V 02 kinetics and Vt, expressed using 

the sample-specific BM exponent (-0.54), are illustrated in Figure 6.2. The



relationships between V 02 kinetics and Vt using alternative BM exponents are 

presented in Appendices 9.7 to 9.9.

For LD runners, Ton was related to Vt (r = -0.65, P = 0.006; Figure 6.2a). However, 

there was no relationship between x0ff and V t , regardless of the BM exponent used to 

express Vt. In MD runners, there were no relationships between any on- or off- 

transient V 02 kinetics parameter and Vt (Figure 6.2a, b). When MD and LD runners 

were considered collectively, t on and Vt were related when Vt was expressed as a 0.67 

and 0.54 power-function ratio of BM (r = -0.35, P = 0.047 and r = -0.36, P = 0.044 

respectively; see Appendix 9.7).
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6.3.4 Relationships with RE

For the runners as a whole (n=32), there were no relationships between RE and any on- 

or off-transient V 02 kinetic parameter. For MD runners only, RE expressed in absolute 

terms (l-min'1) was related to Ton and MRTon (r = 0.59, P = 0 . 0 2 0  and r = 0.58, P =
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0.022 respectively; see Appendix 9.10), but not to x0ff or MRT0ff. For LD runners, RE 

was related to xon (r = -0.55 to -0.59, P <0.05) and x0ff (r = -0.56 to -0.65, P <0.05) 

regardless of the BM exponent. The MRTon was related with RE only when expressed 

as a ratio standard of BM (see Appendix 9.10). In any group, there were no 

relationships between MRT0ff and RE (P >0.05).
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In acknowledgment that some MD and LD runners were exercising above Vt at 16 

km-h'1, the V 02 (ml-kg'^-min'1) at 16 km-h' 1 was adjusted to account for a potentially 

developing slow component of V 02. This could distort the relationship between V 02 

kinetic parameters and RE. The magnitude of the slow component for each runner was 

determined by calculating how much the individual was exercising above Vt during the 

assessment of RE. This was done by calculating the difference in V 02 between Vt and 

RE and expressing this difference as a percentage of the difference between Vt and 

VO2 max (A%). Using the data (A, 8 and x for the slow component) of Carter et al. 

(2 0 0 2 ), who's participants were of a similar level of fitness, the contracted slow 

component of V 02 was estimated for each runner. This additional V 02 was deducted 

from the measure of RE at 16 km-h' 1 (i.e. the mean V 02 during the last 30 s of a 4 min 

bout of running at 16 km-h'1). Subsequently, correlation analyses were performed on 

the new 'adjusted' values. For combined, MD and LD runners, the minor adjustments of 

VO 2 did not substantially effect the size and significance of the correlation coefficients 

for relationships between RE and V 02 kinetic parameters (Appendices 9.13-9.15) and 

therefore did not influence the interpretation of these relationships.
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6.4 Discussion

Based on previous studies that have identified relationships between xon and V 02 max in 

only some groups (Fawkner et al., 2002), it was considered appropriate to assess the 

relationships between measures in individual groups of MD and LD runners as well as a 

combined group in this study. However, it is acknowledged that a smaller sample size 

is more likely to be influenced by anomalous data which could significantly affect 

apparent relationships. However, assessment of leverage statistics when determining 

the b exponent for BM for each V02 measure (Mahalanobis and Cook's distances) 

confirmed that no outliers or other adversely influential points were present. The actual 

b exponents for maximal (L 0 2max; 0.68 ± 0.15) and sub-maximal (RE; 0.74 ± 0.10) 

running derived from the current data were similar to those previously reported during 

treadmill running (Bergh et al., 1991) and support the need for different BM exponents 

for different intensities of exercise (Darveau et al., 2002). Furthermore, the SE for 

empirically derived exponents resulted in the b exponent encompassing alternative 

theoretical exponents which are based on surface-law (Astrand and Rodahl, 1986), 

elasticity (Kleiber, 1947; McMahon, 1973) and allometric cascade models (Darveau et 

al., 2002), but not the ratio standard. This demonstrates that there is a clear need for 

allometric adjustment of differences in BM in MD and LD runners.

6.4.1 Relationships between V 02 kinetics and V 02 max

When MD and LD runners were considered together, the relationship between xon and 

V 02 max was poor irrespective of how V 02 max was expressed. This was also apparent 

for MRT0n which reflects the entire V 02 response from the onset of exercise (i.e. 

including phase I). The poor relationship between these measures is consistent with a 

previous study involving endurance-trained runners (Lake et al., 1986). However, when 

relationships were assessed in groups of runners according to their preferred distance,

the relationship between V02 max and xon for LD runners was considerably higher than

that of MD runners (Figure 6.1). This relationship between xon and V 02 max is in 

agreement with several previous studies (Powers et al., 1985; Chilibeck et al., 1996;
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Fawkner et al., 2002) and runs counter to suggestions that V 02 kinetics do not provide 

a useful predictive index for maximum aerobic performance (Whipp et al., 2001).

For a direct comparison, the study of Powers et al. (1985) is most relevant because they 

reported a strong relationship between V 02ty2 and V 02 max in LD runners who were 

similar to the runners in the present study with respect to V 02 max (mean ± SEM: 58 ± 

2.6 ml-kg'^min"1). Furthermore, runners were heterogeneous with respect to both 

VO2 max (range = ~50 to 70 ml-kg'^min'1) and VO2ty2 (range = 21.6 to 36 s). The 

heterogeneity observed for the present sample for V 02max ranged from 49.0 to 70.1 

ml-kg^-min-1 and Ton ranged from 9.0 to 24.7 s, suggesting that the samples were 

similar. However, the studies differ with respect to the adopted mode of exercise. 

Powers et al. (1985) used cycle ergometry compared to treadmill ergometry in the 

present study. This suggests that the relationship between Ton and V 02 max is 

independent of the mode of exercise in LD runners, although the use of treadmill 

ergometry for the assessment of V 02 kinetics in MD and LD runners is more specific 

than cycle ergometry.

Despite the above, no relationships were observed between xon and L 02max in MD 

runners, suggesting that the magnitude of V 02 max does not dictate the dynamic response 

of VO 2 at the onset of moderate-intensity exercise. This observation could be 

attributable to the greater variability observed for each measure. As illustrated in Figure 

6.1a, there was considerable individual variability in xon for MD runners despite runners 

having a similar V 02 max. For example, MD runners with a V 02 max of ~59 

ml-kg'^min’ 1 manifested a Ton that ranged from - 1 2  to 20 s. Consequently, this 'overlap' 

resulted in a poor relationship between Ton and V 02 kinetics in this group. A similar 

degree of variability has been reported elsewhere in untrained and trained individuals of 

varying fitness (Whipp et al., 2001). This suggests a dissociation between xon and 

VO 2 max in MD runners which might be caused by variations in training duration and/or 

intensity compared to LD runners. A greater volume of training (km-wk'1) was evident
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in LD runners compared to MD runners (Table 6.1) - a characteristic of training regimes 

previously observed in elite MD and LD runners (Costill et al., 1976b). Potentially, the 

volume of training could be a stimulus for faster V 02 kinetics which would account for 

the difference in V 02 kinetics between MD and LD runners. In support of this 

suggestion, training volume has been shown to influence the magnitude of response of 

mitochondrial oxidative enzymes (Fitts et al., 1975; Hickson, 1981) which is also likely 

to influence V 02 kinetics. To investigate this possibility, the relationship between the 

volume of training and V02 kinetics was assessed. This revealed a relationship 

between xon and km-wk' 1 for MD (r = -0.63, P = 0.009), LD (r = -0.65, P <0.001) and 

combined runners (r = -0.72, P <0.001) suggesting that characteristics of training in MD 

and LD runners, which potentially influence adaptations at the cellular level, are 

reflected in a runner’s V 02 kinetics.

Different training regimes between MD and LD runners could influence V 02 kinetics. 

Owing to the greater anaerobic energy contributions to performance in MD and LD 

events, the training for MD events usually consists of short-duration, high-intensity 

running. However, high-intensity training can enhance the oxidative capacity of Type 

Ha fibres (Saltin et al., 1976; 1977) which would contribute to the attainment of 

V 02 max- Therefore, in MD runners, this could result in a V 02 max that is similar to LD 

runners, despite inferior metabolic adaptations at the cellular level in Type I fibres. 

Consequently, this might result in a longer Ton than in LD runners and would affect the 

relationship between V02 max and Ton.

It has been suggested (Gollnick et al., 1972) that the oxidative capacity of muscle cells 

is unlikely to limit the capacity of the body to utilise oxygen during maximal exercise. 

Therefore, if measures of V 02 kinetics actually reflect the oxidative capacity or 

potential of the muscle, then a relationship with V 02 max might not be observed. In 

support, results from studies involving endurance training (Hurley et al., 1984) and de­
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conditioning (Henrikksson and Reitman, 1977) clearly show that an enhanced oxidative 

potential of skeletal muscle occurs independently of changes in V 02 max.

It could be that measures of V 02 kinetics during moderate-intensity exercise are not 

strongly related to V02 max. This is because only Type I fibres are likely to be recruited 

during moderate-intensity exercise (Vollestad and Blom, 1985) which was used to 

measure V 02 kinetics. During the incremental tests to determine V 02 max, it is probable 

that both Type Ha and Type IIx fibres are sequentially recruited. Therefore, measures 

of V 02 at the onset of heavy-intensity exercise, which presumably reflect the V 02 

kinetics of Type I and II fibres, could have stronger relationships with V 02 max than with 

V 02 kinetics measures obtained during moderate-intensity exercise. However, 

experimental evidence demonstrating that this might not be the case has been provided 

by Barstow et al. (1996) who showed that there was no relationship between V 02 max 

and phase II V 02 kinetics for heavy-intensity cycle exercise in individuals who varied 

in training status.

6.4.2 Relationship between V 02 kinetics and Vt

The respiratory capacity of the muscle is of primary importance in determining the 

intensity of exercise, i.e. speed or PO, at which lactate accumulates (Ivy et al., 1980). 

The slow twitch Type I fibres have been shown to have a high mitochondrial density 

and mitochondrial enzyme activity (Howald et al., 1985) which favour oxidative energy 

production. In this regard, Ton might be more related to a measure other than V 02 max 

that is predominantly determined by peripheral mechanisms e.g. Vt. For LD runners, 

however, a moderate relationship was identified between Ton and Vt (r = -0.65, P = 

0.006; Figure 6.2a) suggesting that peripheral mechanisms determining a high V t are 

concurrent with fast V 02 kinetics. This supports the findings of previous studies 

(Weltman et al., 1978; Chilibeck et al., 1996). However, the relationship between xon 

and Vt in LD runners was lower than that observed for V 02 max - a finding also 

observed by Chilibeck et al. (1996). The above findings are not apparent in MD or
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combined runners since no relationship between Vt and on-transient V 02 kinetic 

parameters were observed. Similar to the lack of relationship between V 02 kinetics 

and VO 2 max, it is likely that this is attributable to the intra-participant variability. 

Despite a wide range of values with respect to the off-transient V 02 kinetics, a clear 

dissociation between x0ff and Vt was observed. This was evident regardless of whether 

combined or individual groups of MD and LD runners were assessed.

6.4.3 Relationship between V02 kinetics and RE

Prior to this investigation, the relationship between V 02 kinetics and RE had not been 

established. When runners were considered as a combined group or as MD runners 

only, there was no relationship between any on- or off-transient V 02 kinetic parameter 

and RE. However, in LD runners, both Ton (r = -0.55, P = 0.027 to r = -0.59, P  = 0.016) 

and T0ff (r = -0.62, P = 0.010 to r = -0.65, P = 0.006) were negatively related with RE 

(Figure 6.3a, b), suggesting that runners with a low V 02 whilst running at 16 km-h-1 

have slow on- and off-transient V 02 kinetics. This finding is understandable given that 

there was a positive relationship between RE and V 02 max (r = 0.65, P <0.001) which 

supports previous studies (Pate et al., 1992; Morgan and Daniels, 1994).

Biomechanical factors, such as ground reaction forces and joint angles, also influence 

RE (Williams and Cavanagh, 1987) and could potentially prevent the true physiological 

relationship between RE, fibre type and V 02 kinetics from being identified. This could 

be why no relationship between V 02 kinetics and RE was observed in MD runners. 

However, a biomechanical assessment of running technique and its effect on RE and 

VO 2 kinetics was beyond the scope of this study.

There are contra-indications of using RE at a given speed or absolute intensity, 

especially when assessing the relationship between RE and V 02 kinetics. The relative 

intensity of running at 16 km-h-1 is likely to differ between runners. Inevitably, this 

might result in a greater recruitment of Type II muscle fibres in runners who are less
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well-trained. In the present study, the intensity of exercise for measuring V 02 kinetics 

was constrained to be 80% V t and this intensity of exercise, based on previous work 

(Vollestad and Blom, 1985), would be likely to require the recruitment of only Type I 

fibres. Therefore, correlations between Ton (predominantly Type I fibres) and RE 

(potentially different proportions of Type I and II fibres according to fitness) might be 

distorted because of the different recruitment of muscle fibres.

In this study, any potential influences of BM on V 02 max, Vt and RE were effectively 

partitioned out by allometric modelling. This permitted an appropriate assessment of 

the relationship between these aerobic measures. However, in most instances, 

expressing V 02 as a power-function ratio of BM (Table 6.2) did not result in a 

significant improvement in the relationships between these three measures and on- and 

off-transient V 02 kinetic parameters (see Appendices 9.4 - 9.15 for correlation 

matrices). This was also apparent in the study of Fawkner et al. (2002) who showed 

that V 02 max and Ton were similarly correlated when V 02 max was expressed as a ratio of 

BM and as a 0.89 power-fimction ratio of BM (r = -0.81 and -0.82 respectively, P 

<0.05).

6.5 Conclusion

The findings of this study show that there are relationships between on-transient V 02 

kinetics, V 02max, RE and Vt, primarily in LD runners. This suggests that on a 

functional level, the responses of the cardiovascular system and skeletal muscle to 

habitual endurance-training are closely linked. Relationships between V 02 kinetic and 

other measures of aerobic function in MD are less consistent which is probably due to 

the observed greater intra-participant variability of measures. With respect to off- 

transient V 02 kinetics, relationships were inconsistent and less well-defined compared 

to on-transient V 02 kinetics which suggests that the latter might be more appropriate 

for assessing physiological status. Furthermore, the volume of training also appears to 

influence on-transient V 02 kinetics in MD and LD runners. The importance of on- and

163



off-transient V 02 kinetics in MD and LD runners can not be ignored since it has not yet 

been established whether this measure accounts for variations in running performance.
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CHAPTER 7

An investigation of factors contributing to successful 

5 km running performance

7.1 Introduction

Laboratory tests have been used extensively to assess the physiological status of endurance- 

trained runners (Londeree, 1986). Accordingly, relationships between various 

physiological measures and running performance have been assessed for these types of 

runner (Costill, 1967; Farrell et al., 1979; Brandon and Boileau, 1992; Abe et al., 1998). 

Primarily, investigators have considered the contribution of three aerobic measures to 

predict running performance that can be determined using pulmonary gas-exchange 

responses during sub-maximal and maximal exercise: 1) V 02 maX; 2) Vy and 3) RE.

Traditionally, V02 max has been the standard measure for the assessment of runners' ability 

or potential in MD or LD events with a high V 02 max being considered a pre-requisite for 

endurance running success (Saltin and Astrand, 1967; Costill, 1967). This is because the 

O2 cost of running is directly proportional to running speed (Margaria et al., 1963). In 

several studies it has been shown that V 02 max is highly correlated with running 

performance (Costill et al., 1972; Foster, 1983). However, the majority of these studies 

were conducted using samples of runners that were heterogeneous (i.e. displayed a wide 

range both of V02 max and performance values). In homogeneous groups of runners, 

VO 2 max appears to be a poor predictor of performance (Conley and Rrahenbuhl, 1980; 

Morgan et al., 1989) which suggests that other measures contribute to and/or determine 

running performance.

Other measures such as RE (Conley and Krahenbuhl, 1980) and Vt (Powers et al., 1983) 

have been found to correlate with running performance, especially when groups of runners 

are homogeneous in terms of running ability. In some instances, the V 02 at the V t/L T  has

165



been shown to correlate more with running performance than V 02 max per se (Farrell et al., 

1979). In terms of RE, the lower the V 02 at a sub-maximal speed the better the RE. In 

elite-distance runners, with a narrow range of F 0 2max, RE at different speeds is highly 

related to 10 km running performance (Conley and Krahenbuhl, 1980). Collectively, these 

findings demonstrate the importance of considering several maximal and sub-maximal 

measures to predict running performance.

It has been suggested that V02 max is largely determined by cardiovascular function (Saltin, 

1990), whereas sub-maximal measures of V 02, i.e. Vt and RE, are associated with 

peripheral factors such as the fibre composition and respiratory capacity (i.e. intra-muscular 

concentration of oxidative enzymes) of muscle (Ivy et al., 1980; Rusko et al., 1980). 

Collectively, this suggests that peripheral mechanisms that determine the utilisation of O2 

in muscle have a greater influence on running performance than V 02 max. In support, 

Costill et al. (1976a, b) has suggested that muscle oxidative enzyme activity and muscle 

fibre composition might have an improved relationship with distance running performance.

One other measure that could be related to running performance is that of V 02 kinetics. It 

is likely that such kinetics, especially in the moderate-domain, are determined by intrinsic 

mechanisms involved in the utilisation of O2 in muscle (Whipp and Mahler, 1980). It has 

been shown that V 02 kinetics are sensitive to endurance training and become faster as 

training progresses both in previously untrained (Phillips et al., 1995) and trained 

individuals (Norris and Peterson, 1998). Recognising the importance of V 02 kinetics, 

Whipp et al. (1981) suggested that they are one of four measures of aerobic function 

(including V 02 max, O2 cost of exercise and AT) that make up the 'aerobic' profile of a 

performer and any attempt to differentiate performers or to predict performance capability 

should consider all four. However, only a limited number of studies have considered the 

relationship between V 02 kinetics and performance. For example, Norris and Peterson 

(1998) showed that changes in Ton were more closely related to changes in cycling
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performance than V 02 max. In runners, Demarle et al. (2001) showed that a reduction in the 

O2 deficit after endurance training, primarily resulting from faster V 02 kinetics, was 

correlated with improvements in running performance. Collectively, both studies suggest 

that: 1) measures of V02 kinetics reflect physiological training adaptations and 2) 

measures of V 02 kinetics might be useful when predicting performance in competitive 

athletes.

7.1.1 Quantifying running performance

Running performance in competitive runners is most often quantified using race times. 

However, there are disadvantages to using such times in the assessment of relationships 

between performance and physiological measures. For example, when the race is not in 

close proximity to the start of a study and the race conditions (weather, level of competition 

and tactics) are not identical for all athletes, race times might not reflect an athlete's true 

physiological performance capabilities. Consequently, relationships with physiological 

measures, could be confounded. Similarly, outdoor time-trials can be influenced by 

inconsistent environmental conditions which might disadvantage some runners. 

Alternatively, indoor treadmill-based time-trials could be used which possess several 

advantages: 1) laboratory time-trials allow a valid measure of an athlete's running 

performance that can be obtained in close proximity to when physiological measures are 

collected; 2 ) time-trial performance tests allow an assessment of running performance 

under controlled laboratory conditions; 3) reproducibility has been previously reported as 

good (Ramsbottom et al., 1992) and 4) treadmill 5 km time-trials are highly correlated with 

outdoor running performance (R = 0.97, P <0.001) which suggests that laboratory 

performance is indicative of actual race performance (Scott and Houmard, 1994). In 

support of this, Scott and Houmard (1994) found that their physiological measures 

(PO 2 peak, time to exhaustion and peak running velocity) correlated more strongly with a 

treadmill time-trial than a recent best 5 km race time.
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7.1.2 Predicting running performance

Success in MD and LD running is multi-factorial and therefore influenced by several 

physiological, mechanical and psychological factors that interact. Using multiple 

regression techniques, several studies have attempted to model MD (Powers et al., 1983; 

Bulbulian et al., 1986; Housh et al., 1988; Brandon and Boileau, 1992; Grant et a l, 1997) 

and LD running performance (Kumagai et al., 1982; Roecker et al., 1998) to determine the 

most important physiological measure(s). In most studies, traditional aerobic measures 

such as VO 2 max, V t/LT and RE have been considered and collectively, have been shown to 

contribute (Powers et al., 1983; Weyand et al., 1994; Roecker et al., 1998). However, in 

most studies, some of the variability in performance remains unaccounted for which 

suggests that other physiological measures, not yet considered, might contribute to the 

prediction of running performance. To date, no study has considered measures of on- and 

off-transient V 02 kinetics as potential determinants of running performance in endurance- 

trained runners.

7.1.3 Aim of study

The original aim of this study was two-fold: 1) to assess the relationships between V 02 

kinetic parameters and 5 km running performance in MD and LD runners and 2) to 

determine the primary aerobic factor(s) (V 0 2max, Vt, RE and V 02 kinetics) determining 5 

km running performance.
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7.2 Participants and methods

7.2.1 Participants

Eighteen male MD (800/1500m) and 18 male LD (5000/10000m) runners, accustomed to 

the procedures of physiological testing, provided written informed consent and participated. 

Participants were moderately well-trained competitive MD and LD runners recruited from 

athletic clubs in the North of England. The age, anthropometric and training characteristics 

of participants are presented in Table 7.1. Ethics approval was obtained from the Research 

Ethics Committee, Sheffield Hallam University. Prior to participation in the study each 

athlete completed a medical screening questionnaire (Appendix 6 ).

Table 7.1 Age, anthropometry and training volume of participants. Values are mean ± SD.

Measure MD

(w=18)

LD

(w=18)

Combined

(ti=36)

Age (years) 21.7 ±5.4 25.3 ±4.3* 23.5 ±5.1

Stature (cm) 177.8 ±7.4 180.1 ± 6 . 6 179.0 ±7.0

BM (kg) 67.2 ±5.9 69.6 ± 8.2 68.4 ± 7.2

Volume of training (km-wk'1) 43.6. ±15.2 68.2 ±15.3** 55.9 ± 19.5

*Greater than MD runners, P = 0.033, **P <0.001.

7.2.2 Experimental design

Participants visited the laboratory for physiological testing on three occasions within a 

seven-day period. Each test was separated by at least 48 hours and was performed at 

approximately the same time of day. Physiological testing during the first visit to the 

laboratory involved the measurement of RE at 16 km-h' 1 and an incremental exercise test to 

volitional exhaustion to allow the determination of Vt and V 02 max. Visit 2 involved a 

square-wave exercise protocol to determine on- and off-transient V 02 kinetics. Visit 3 

involved a 5 km treadmill-based time-trial. Throughout the testing period, participants 

were requested to maintain their usual dietary intake and to abstain from participation in
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heavy training and consumption of alcohol and/or caffeine in the 48 hours preceding each 

test.

7.2.3 Experimental protocols

Each participant completed: 1) a series of 4-6 four-min bouts of sub-maximal exercise with 

running speed increasing by 1 km-h' 1 every stage for the determination of RE at 16 km-h'1; 

2 ) an incremental exercise test to volitional exhaustion for the determination of Vt and 

V 02 max; 3) a square-wave protocol consisting of alternating 6  min bouts of walking (4 

km-h'1) and running (speed requiring 80%V t )  to determine V 02 kinetics and 4) a 

treadmill-based 5 km time-trial to determine running performance (see Chapter 3, Section 

3.2.8).

Pulmonary gas-exchange was measured breath-by-breath during all exercise tests 

(excluding the 5 km time-trial). The HR and [HLa] were also measured during all tests (see 

Chapter 3, Section 3.1.3 and 3.1.4).

7.2.4 Data analysis

Breath-by-breath data obtained during the assessment of RE, Vt, V 02 max and V 02 kinetics 

were analysed in accordance with procedures outlined in Chapter 3, Sections 3.2.5.1 to 

3.2.7.1.

7.2.5 Statistical analyses

Prior to regression analysis, ANCOVA was performed to determine the appropriateness of 

treating MD and LD runners as separate groups. The ANCOVA highlighted that neither 

the variances about regression, slopes or elevation for MD and LD runners differed 

sufficiently for them to be considered as two groups for all physiological measures (for 

ANCOVA summary see Appendix 10.3a). Therefore, collapsing the groups into one 

combined sample (n=36) and selecting the ten fastest runners (high performers, rank 1 -1 0 )
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and the slowest ten runners (low performers, rank 27-36) was justified as a way to 

discriminate between performers and identify primary determinant(s) of performance. This 

approach avoided the effects that influential 'overlapping' data might have on the 

relationships and regression models. The original combined sample of MD and LD runners 

(n=36) was also used in further analysis and was considered as a sample of 'endurance- 

trained' runners.

Descriptive statistics (mean ± SD) were calculated for each physiological and performance 

measure for each group. The physiological and running performance data was assessed in 

three ways: 1) relationships between physiological measures and 5 km running 

performance were explored for each group using Pearson's product moment correlation 

coefficient; 2) ANCOVA was performed to determine whether the variances, slopes and 

elevation of data were different between high and low performers (where P <0.05, adjusted 

means were calculated) and 3) multiple regression was used to formulate an equation to 

identify the primary physiological determinant(s) of 5 km running performance for each 

group. Specifically, stepwise regression was used to obtain: 1) the lowest SEE; 2) the 

highest r and 3) accomplish this with the fewest IV's. Prior to conducting any statistical 

analyses, appropriate checks were made to ensure that the assumptions underpinning bi- 

variate correlation, ANCOVA and multiple regression techniques were adequately met (see 

Chapter 3, Section 3.3.7).
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7.3 Results

The mean ± SD for anthropometric/performance data and physiological data for each group 

of runner are displayed in Tables 7.2 and 7.3 respectively. As anticipated, the high 

performing group consisted predominantly of LD runners (MD, n=2; LD, n - 8 ) and the low 

performing group consisted predominantly of MD runners (MD, n—l\  LD, 72=3).

Table 7.2 Age, anthropometric and performance data of participants. Values are mean ±

SD.

Measure High

(72=10)

Low

(22= 1 0 )

Combined

(22=36)

Age (years) 23.0 + 2.8 24.9 ± 7.3 23.5 ±5.1

Stature (cm) 179.5 ±4.8 174.3 ±5.7 179.0 ± 7.0

BM (kg) 64.0 ± 3.6 68.3 ±7.3 68.4 ± 7.2

Volume of training (km-wk'1) 76.9 ±13.7 41.9 ±15.9** 55.9 ± 19.5

5 km time (minis) 15:56 ±0:26 18:38 ±0:58** 17:10 ± 1:12

5 km speed (m-s'1) 5.2 ± 0.2 4.5 ±0.2** 4.9 ± 0.3

% VO 2 max sustained 94.5 ±3.1 95.0 ±3.0 94.8 ±3.0

% LO 2 max sustained during the 5 km time-trial is estimated from the V 02 - running speed 

relationship and V 02 max for each runner. **Different from high performers, P <0.001.
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Table 7.3 P h ysiological characteristics o f  participants. V alues are m ean ±  SD .

Measure High Low Combined

(«=1 0 ) («=1 0 ) (n=36)

V 02 max (ml-min'1) 4168 ±368 3957 ±317 4122 ±471

V 02 max (ml-kg^-min*1) 65.1 ±3.9 58.3 ±5.6** 60.5 ± 5.2

V t  (ml-min*1) 3458 ± 284 3230 ± 300 3370 ± 327

V t  (ml-kg'^min*1) 54.1 ±3.8 47.5 ±4.3** 49.5 ±4.4

RE at 16 km-h*1 (ml-min*1) 3430 ± 290 3691 ±319 3613 ±355

R E  at 16 km-h' 1 (ml-kg'^min*1) 53.6 ±2.3 54.3 ± 4.3 53.0 ±3.5

ton (s) 11.4 ± 1.8 16.7 ±3.8** 14.5 ±3.9

MRTon (s) 26.3 ±2.0 29.9 ±2.6** 28.6 ±3.0

toff(s) 24.7 ± 1.7 26.5 ± 3.4* 25.6 ±3.0

MRToff (s) 32.4 ± 2.0 35.7 ±3.8* 34.5 ± 3.4

*Different than high performers, P <0.05, **P <0.01.

The participants' physiological characteristics for all measures are presented in Table 7.3. 

Measures of V 02 (V 0 2max, V t  and RE) are expressed in absolute terms (ml-min*1) and 

relative to BM (ml-kg^-min*1). In addition, V02 measures expressed as theoretically 

derived power-function ratios of BM were also considered (Appendix 10.1 and 10.2).

The results from the ANCOVA on high and low performers show that all physiological 

measures, including V 02 kinetics, could be used to discriminate between performers of 

different running ability (P <0.001). The adjusted mean for each physiological measure, 

based on the ANCOVA analysis, is presented in Table 7.4. A summary of the variance 

about regression, slopes and elevation is presented in Appendix 10.3b.
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Table 7 .4  A djusted m eans for the h igh and lo w  performers. V alues are m ean ±  SEE.

Measure High Low P

(72=10) («=10)

E 02max (ml-kg'^mm1) 65.1 ±0.1 58.3 ±0.2 <0 . 0 0 1

Vt (ml-kg'^min'1) 54.1 ±0.0 47.5 ± 0.2 <0 .0 0 1

R E  at 16 km-h'1 (ml-kg’^min'1) 53.5 ±0.1 54.3 ± 0.2 <0 .0 0 1

Ton (s) 11.4 ±0.1 16.7 ±0.2 <0 .0 0 1

M R T o n  (s) 26.3 ±0.1 29.8 ± 0.2 <0 . 0 0 1

T0ff (s) 24.7 ±0.1 26.5 ± 0.2 <0 . 0 0 1

M R T 0ff (s) 32.4 ±0.1 35.7 ± 0.2 <0 . 0 0 1

7.3.1 Physiological relationships with performance

Correlations between 5 km running performance and physiological measures expressed 

using several BM exponents were investigated in high and low performers and combined 

runners. Correlation matrices are presented in Appendices 10.6 to 10.17 which highlight 

the relationships between all physiological measures and 5 km running performance.

7.3.1.1 V 02 kinetics and 5 km running performance

The relationships between on-transient V02 kinetic parameters (Ton and MRTon) and 5 km 

performance in high and low performers are illustrated in Figures 7.1 and 7.2 respectively. 

There were no relationships between Ton, MRTon and performance in separate high and low 

performing groups of runner (P >0.05). However, for combined runners, relationships 

between 5 km performance and Ton (r = -0.54, P = 0 .0 0 1 ) and MRTon (r = -0.50, P = 0 .0 0 2 ) 

were observed (see Appendix 10.17).
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Figure 7.1 The relationship between xon and 5 km running performance in high («=10) and 

low performers (n=1 0 ).
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Figure 7.2 The relationship between MRTon and 5 km running performance in high («=1 0 ) 

and low performers («=1 0 ).
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Similar to the on-transient, no off-transient V 02 kinetic parameter (x0ff and MRT0fr) was 

related to running performance in high or low performers (Figures 7.3 and 7.4). However, 

for combined runners, a relationship was observed for x0fr (r = -0.36, P = 0.030) and MRT0fr 

and performance (r = -0.63, P = 0.003; see Appendix 10.17).
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o  Low r = -0.28, P = 0.431
(5 km speed = 4.96 - 0.02 x xoff;
SEE = 0.22 m.s'1; SEE% = 4.9)
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Figure 7.3 The relationship between x0ff and 5 km running performance in high (72=10) and 

low performers (72=10).

176



6 .0  n

5.5-

'c/a
&  5.0
T 3  0)<u.
& 4.5 H

m

<u
4.0-1

3.5

0

•   High r = -0.33, P = 0.356
(5 km speed = 5.78 - 0.02 x MRToff; 
SEE = 0.10 m.s'1; SEE% = 1.9)

o Low r = -0.56, P = 0.091

..............  o oO .......... ..

(5 km speed = 5.62 - 0.03 x MRToff; 
SEE = 0.19 m-s'1; SEE% = 4.2)

~/k ' 1 1 1
28 30 32

- 1— >— i— >— i— 1— i— >— i— 1— i

34 36 38 40 42 44

MRTofr(s)

Figure 7.4 The relationship between M RT0fr and 5 km running performance in high («=10) 

and low performers (>2= 1 0 ).

7.3.1.2 VO2 max? Vt and RE and 5 km running performance

The relationships between 5 km running performance and V 02 max, V t, RE are presented in 

Figures 7.5 - 7.7. For consistency, V 02 measures are expressed in ml-kg'^min'1. This is 

because in most instances V 02 measures expressed in ml-kg'^min'1 were more highly 

related to performance than other BM exponents.

A relationship between V 02 max and performance was observed in both groups of runners, 

but was higher in high and low performers (r = 0.76, P = 0.010 and r = 0.76, P = 0.011 

respectively) than in combined runners (r = 0.66, P <0.001; see Appendix 10.8). The 

method of expressing V 02 max with respect to the BM exponent had minimal influence on 

the magnitude of the relationships.
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Figure 7.5 The relationship between V 02 max and 5 km running performance in high («=10) 

and low performers (n=10).

The Vt was not related with running performance in either high or low performers (Figure 

7.6). However, a relationship was observed in combined runners (r = 0.62, P <0.001; see 

Appendix 10.11). The BM exponent had no influence on the relationship between Vt and 

performance.

There were no relationships between RE and running performance in any group of runners 

regardless of the BM exponent used to express RE measures (Figure 7.7 and Appendix 

10.14).
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7.3.2 Predicting 5 km running performance

Several stepwise multiple regression analyses were performed to identify the most 

influential physiological measure(s) that contributed to the prediction of 5 km running 

performance in high, low and combined runners. This approach was used to investigate 

whether physiological determinants of running performance differed according to the 

standard of performer.

7.3.2.1 Regression models for high, low and combined runners

The relationships between 5 km running performance and V 02max, Vt and RE were 

explored using different BM exponents. However, in most instances, the different 

exponents had minimal influence over the magnitude of the correlation coefficients. 

Therefore, V 02 expressed as a ratio standard of BM was entered into the regression 

models. Consequently, six independent variables [VO 2 max (ml-kg'^min'1), V t ,

(ml-kg'^min'1), RE (ml-kg'^min'1), Ton, T0ff, MRTon and MRT0ff] were entered into each 

regression analysis. The regression models for predicting performance from physiological 

measures in high, low and combined performers are presented in Table 7.5. The model for 

high performers included V02 max and RE which accounted for 86% of the variability in 

performance. The SEE and SEE% were 0.04 m-s'1 and 0.8% respectively. For low 

performers, only V 02 max was included in the final model which accounted for 57% of the 

variability in performance (SEE = 0.15 m-s'1; SEE% = 3.3%). In combined runners, the 

model included V 02 max, RE and MRT0ff which accounted for 75% of the variability in 

performance (SEE = 0.17 m-s'1; SEE% = 3.5%). The standardised ^-coefficient, 

representing each measure's contribution to the regression equation, is also presented in 

Table 7.5.

Finally, the self-reported volume of training (km-wk'1) was entered into each regression 

analyses to explore whether this measure was influential. However, self-reported volume 

of training did not contribute to any regression model.
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7.4 Discussion

The purpose of this study was: 1) to explore the relationships between on- and off-transient 

VO 2 kinetics and 5 km running performance and 2) to assess whether V 02 kinetics is a 

determinant of 5 km running performance. The main finding of this study was that 

moderate relationships (bi-variate) exist between V 02 kinetics and running performance 

and that parameters of V 02 kinetics contributed minimally to the prediction of running 

performance in endurance-trained runners.

Since some 'overlap' in running performance was evident between MD and LD runners (as 

highlighted by ANCOVA), a distorted regression model might have been produced for 

these groups. Potentially, this could cause a misleading interpretation of the results. To 

avoid this possibility, two groups of runners positioned at opposite ends of the performance 

continuum (i.e. high and low performers) were selected. This improved identification of 

physiological measures that determine running performance and/or discriminate between 

performers of high and low ability. Further ANCOVA on high and low performers 

confirmed the differences between these new groups (Table 7.4). The following 

interpretations of the results were made accordingly.

7.4.1 VO2 kinetics and running performance

The relationships between on- and off-transient V 02 kinetics and running performance 

were inconsistent and differed in magnitude between high, low and combined runners. 

Several V 02 kinetic parameters were found to correlate with running performance when 

combined runners (n=36) were assessed which suggests that runners with faster V 02 

kinetics performed better during the 5 km time-trial. However, despite high performers 

having a significantly shorter xon, T0ff, MRTon and MRT0ff (Table 7.3 and 7.4) than low 

performers, correlations between V 02 kinetic parameters and running performance were 

not apparent within these groups. This suggests that physiological measures other than 

VO 2 kinetics might be more important for success in running. Such inconsistencies in
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relationships between these three groups could be attributable to various influences on 

correlation coefficients, such as the spread of the data (greater heterogeneity in combined 

runners) and different sample sizes (w=10 vs. n=36).

Despite these observations, there is some evidence to suggest that faster V 0 2 kinetics are 

related to improved running performance. Physiologically, a faster adjustment of V 0 2 at 

the onset of exercise - or to a sudden change in the intensity of exercise - after endurance 

training is likely to result in a decreased transient lactate production (Casaburi et al., 1989), 

attenuation of PCr degradation (Phillips et al., 1995) and consequently, less reliance on 

substrate phosphorylation. Collectively, these adaptations should result in the potential for 

improved running performance. In agreement, Poole and Richardson, (1997) have 

suggested that a reduction in O2 deficit might lead to an increase in the time to exhaustion. 

A reduction in O2 deficit is achieved by having faster V 0 2 kinetics and/or a decreased A on 

for a given intensity of exercise. In support, Demarle et al. (2001) recently demonstrated 

that a reduction in the O2 deficit (-34%), resulting from a shorter xon (~45%) and reduced 

Aon (-8%), was correlated with an increased time to exhaustion after training in MD and 

LD runners. This shows that faster V 0 2 kinetics after endurance training is linked to an 

improvement in running performance. This suggests that an individual's V 0 2 kinetics 

might be closely indicative of their performance capabilities over time.

7.4.2 V O 2 max, Vt, RE and running performance

The actual V 0 2 max, Vt and RE values of runners (Table 7.3) compare favourably with 

previous studies of trained MD (Deason et al., 1991) and LD runners (Powers et al., 1985; 

Brandon and Boileau, 1992). In combined runners, F 0 2max ranged from 49.0 to 70.1 

ml-kg^-min'1 which indicates a heterogeneous sample similar to that of previous studies 

involving runners (Costill et al., 1973; Farrell et al., 1979; Tanaka et al., 1984; Conley and 

Rrahenbuhl, 1980). The high and low performers were less heterogeneous than combined 

runners since the V 0 2max ranged from 58.5 to 70.1 ml-kg'^min'1 and 49.0 to 66.4
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ml-kg'^min'1 respectively. The F 0 2max and Vt were greater in high performers than low 

performers (P = 0.005 and 0.002 respectively), which clearly suggests the groups were 

physiologically different. Given that the group of high performers consisted predominantly 

of LD runners (n=8), it is perhaps not surprising that they had a greater V 02 max and Vt 

than the group of low performers which consisted primarily of MD (>2=7) runners. Several 

previous studies have shown that LD runners (runners that compete at events of 5000 m or 

longer) typically have higher V 02 max values, use O2 more effectively and havfe lower 

lactate accumulation than MD runners (runners that compete at distances of 800 to 3000 m) 

(Costill et al., 1976a; Conley and Krahenbuhl, 1980; Boileau et al., 1982).

There was a relationship between V 02 max and 5 km running performance both in high and 

low performers (Figure 7.5). The magnitude of these relationships were similar in high (r = 

0.76, P = 0.010) and in low performers (r = 0.76, P = 0.011). Both were higher than for 

combined runners (r = 0.66, P <0.001). This is surprising since the combination of all 

runners (n=36) represents a more heterogeneous sample than when the groups are treated 

separately and the correlation coefficient might be expected to be higher. However, in 

Figure 7.5, it can be seen that both groups are heterogeneous. Therefore, these correlations 

support previous studies where V 02 max has been identified as an important variable in 

running performance in similarly heterogeneous groups of runners (Costill et al., 1973; 

Farrell et al., 1979; Scott and Houmard, 1994). The moderate-to-high correlation between 

5 km running performance and V 02 max both in high and low performers consolidates the 

importance of a high V 02 max, especially since it has been shown that a high V 02 max is a 

pre-requisite for entry into the 'elite' category both for MD and LD runners (Pollock et al.,

1980).

A relationship between Vt and running performance was not observed for high or low 

performers but was observed when combined runners were considered (r = 0.62, P  <0.001). 

The explanation for the lower correlation with running performance in high and low
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runners, compared to combined runners, could be attributed to less heterogeneity in 

individual groups. In support, previous studies reporting poor correlations between Vt and 

running performance have tended to involve homogeneous groups of runners (Conley and 

Krahenbuhl, 1980).

The RE at a given sub-maximal running speed has been found to vary among trained 

runners and correlations with running performance range from r = 0.08 (Bulbulian et al., 

1986) to 0.83 (Conley and Krahenbuhl, 1980). In this study, RE was poorly related to 5 km 

performance in high, low and combined performers, regardless of the method of 

expression. In previous studies, poor correlations between RE and running performance 

have been primarily attributed to the heterogeneity of V 02 max, which predominantly 

accounted for the differences in performance (Powers et al., 1983; Bulbulian et al., 1986). 

Similarly, it can be seen in Figure 7.5 that the V 02 max data, especially for low performers, 

is moderately heterogeneous and therefore it is perhaps not surprising that no relationship 

between RE and performance was observed in these runners.

7.4.3 Predicting performance in high and low performers

Several previous studies have investigated physiological variables that contribute to 

running performance, in particular 5 km running performance (Kumagai et al., 1982; 

Tanaka et al., 1984; Ramsbottom et al., 1992). To date, no study has considered on- and 

off-transient V02 kinetics as potential determinants of running performance and produced 

separate regression models for high and low performers.

Prior to multiple regression analyses, the original data for MD («=18) and LD (n=18) 

runners were explored using ANCOVA. This revealed that MD and LD were not 

consistently different for each physiological measures and could be collapsed into one 

combined group («=36). To remove any distorting influences of'overlapping' data, runners 

were ranked and re-classified as high (rank 1-10) or low (rank 27-36) performers. Further
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ANCOVA on high and low performers revealed that groups could be differentiated 

between using all physiological measures, including on- and off-transient V 02 kinetic 

parameters (P <0.001, Table 7.4). Subsequently, physiological and performance measures 

were entered into the stepwise multiple regression analysis. This revealed that the final 

models for high, low and combined performers were different. Specifically, for high 

performers, the regression model showed that V 02 max (ml-kg^-min'1) and RE 

(ml-kg’̂ min"1) were the primary contributors to the prediction of 5 km running 

performance, accounting for 85% of the variability in performance (Table 7.4). The 

standardised /-coefficients suggested that V 02 max was the strongest contributor to the 

model. The inclusion of RE was surprising since the bi-variate relationship between RE 

and performance in high performers was poor (Figure 7.7). The inclusion both of V 02 max 

and RE in high performers suggests that once a high V 02 max is attained, another measure 

(RE) is required to differentiate performers. The non-inclusion of other variables, in 

particular V 02 kinetic parameters, and Vt supports the lack of correlation between these 

measures and running performance in high performers (Figures 7.1 - 7.4 and 7.6 

respectively).

The model for low performers only incorporated V 02 max (Table 7.4) which accounted for a 

modest 57% of the variability in performance. On the basis of the SEE% (3.3), this is a less 

accurate model for predicting 5 km running performance than that for high performers 

(SEE% = 0.8). Owing to the moderate-to-high correlation between V 02 max and running 

performance in low performers, the inclusion of this measure only in the final regression 

models was anticipated. This model would seem acceptable as low performers would still 

have the potential to increase V 02 max which would probably result in an improvement in 

performance.

When the original sample of MD and LD runners (n=36) were considered as a sample of 

’endurance-trained' runners, the regression model (Table 7.4) differed and included a
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parameter of V 02 kinetics (MRT0ff) in addition to both V 02 max and RE. This clearly 

suggests that Vt is not an important predictor of running performance in a heterogeneous 

group of trained runners in this study. That V 02 max and RE were the primary contributors 

in all models, based on the size of the standardised /-coefficients, predicting running 

performance supports previous studies (Fay et al., 1989; Weyand et al., 1994) but is in 

contrast to the findings of Powers et al. (1983) who reported that the Vt accounted for 88% 

of variability of performance, whilst V 02 max and RE did not contribute to the improvement 

in R2. It should be acknowledged that differences between the relationships and regression 

models in this study could be attributable to different sample sizes when comparing 

individual («=T0) and combined groups {n=36).

It is difficult to compare the models produced in this study with previous studies because of 

different combinations (Fay et al., 1989; Weyand et al., 1994) and expressions 

(Paavolainen et al., 1999) of the physiological variables measured. However, the SEE% 

can be used to compare the accuracy of different models. In the present study, the SEE% 

were 0.8, 3.3 and 3.5 for high, low and combined runners respectively. As such, the model 

for high performers can be considered the most accurate model with which to predict 5 km 

running performance. In comparison, all models produced in this study are more sensitive 

than previous studies predicting running performance (5.7%, Housh et al., 1988; 6.2%, 

Brandon and Boileau, 1992; 5.1%, Weyand et al., 1994).

A likely explanation as to why measures of on-transient V 02 kinetics did not contribute to 

the final regression model could be attributed to some 'shared variance' with other aerobic 

physiological measures. This is plausible given the relationship between V 02 max and xon in 

LD runners (see Chapter 6). It is probable that there is some shared variance between these 

measures and that on-transient V02 kinetics did not offer any additional information to the 

regression model. It is perhaps not surprising that MRT0ff was the only V 02 kinetic 

measure included in the model to predict performance in combined runners since the
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relationship with V 02 max in combined runners was poor i.e. no shared variance with 

VO 2 max. However, the inclusion of MRT0ff should be interpreted with some caution since 

the size of the standardised ̂ -coefficient indicates that the contribution of MRT0ff to the 

final regression model, although significant, was smaller than both V 02 max and RE. 

Despite this, however, both r and R were improved from 0.85 to 0.87 and 0.71 to 0.75 

respectively when MRT0ff was added to the model. Thus, MRT0fr appears to be a useful 

addition to the model which offers information relating to the oxidative potential of muscle.

Running performance in low performers (predominantly MD runners) might have been 

achieved with substantial energy contributions from non-oxidative pathways which might 

have resulted in measures of aerobic function, especially V 02 kinetics and Vt, having 

minimal contribution to the prediction of performance. The variability in performance not 

accounted for by these aerobic parameters in low performers runners (43% un-accounted), 

might therefore be attributable to physiological characteristics of the performer which were 

not measured. In support, anaerobic (Bulbulian et al., 1986; Houmard et al., 1991), 

neuromuscular (Paavolainen et al., 1999) and anthropometric (Housh et al., 1986) 

characteristics have been found to differentiate runners according to their performance. It 

is possible that the addition of these measures to the multiple regression model for low 

performers could have improved predictive power (i.e. increased r and R2).

Several studies have demonstrated that the volume (Sjodin and Jacobs, 1981; Roecker et 

al., 1998) and intensity of training (Hagan et al., 1981; Foster, 1983) contribute to the 

prediction of running performance. To assess this possibility, the relationship between self- 

reported training volume (km-wk'1) and 5 km performance was investigated. In this study 

however, models did not differ from the original models for high, low and combined 

performers.
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7.4.4 Application of results

In a practical application, the overall findings suggest that moderately-trained competitive 

runners should adopt a training approach to improve their V 02 max and RE if their aim is to 

be successful at 5 km running. The benefit of increasing V 02 max has been demonstrated by 

di Prampero et al. (2000) who showed that a 5% increase can potentially result in a 3.9% 

improvement in 5 km running performance time. Furthermore, V 02 max and RE interact to 

determine the speed at which F 0 2max is attained, i.e. vV 0 2max (Daniels, 1985) or a 

percentage of V 02 max, and thus determine the performance time that can be achieved. As a 

consequence of this interaction, vV 0 2 max is highly related to running performance (Morgan 

et al., 1989).

A brief analysis of the influence of different training regimes in high and low performers 

suggests that the volume of training is not a contributing variable to the prediction of 

running performance. This is probably because the overall training stimuli (interaction of 

volume and intensity of training) are sufficient to promote the development of V 02 max. 

The greater volume of training might also be reflected in a better RE (i.e. more economical 

technique and/or more efficient Type I fibres resulting in a lower V 02 for a given running 

speed). However, it should be acknowledged that information about the quantification of 

training in runners in this study was obtained from self-reported training diaries. Therefore, 

interpretation of findings on training volume should be viewed with caution.

7.5 Conclusion

The main findings of this study were two-fold. First, on- and off-transient V 02 kinetic 

parameters are moderately related to running performance in a heterogeneous group (n=36) 

of competitive endurance-trained runners (combined MD and LD runners). However, in 

less heterogeneous groups of high and low performing runners, relationships between V 02 

kinetic parameters and running performance were not apparent. Second, multiple 

regression analyses demonstrated that variability in 5 km running performance is largely
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accounted for by measures of aerobic function. Despite the ability of measures of V 02 

kinetics to differentiate between groups of high and low performers, V 02 kinetic measures 

were not included in the regression models for differentiating performance within groups of 

high and low performers. However, V 02 kinetics contributed minimally to the model of 

running performance for combined runners. Specifically, V 02 max (high, low and combined 

performers) and RE (high and combined performers) were considered the primary 

determinants of performance, based on their contributions to the regression models. This 

finding suggests that V 02 kinetics cannot be considered an important determinant of 

running performance since they do not differentiate between a cross-sectional assessment 

of high and low performers. However, measures of V 02 kinetics might still be useful for 

longitudinal assessments of physiological adaptation(s) to training, and consequent changes 

in running performance, in individual athletes over time.
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CHAPTER 8 

Overall discussion

8.1 Discussion

The on- and off-transient V02 kinetics during moderate-intensity treadmill running in 

MD and LD runners has received minimal consideration in the literature, especially in 

relation to running performance. Therefore, the overall aim of this thesis was to 

establish the importance of on- and off-transient V 02 kinetics for running performance.

First, and most importantly, the reproducibility of measures of on- and off-transient 

V 02 kinetics in MD and LD runners was determined. The reproducibility of measures 

has implications for the interpretation and meaningfulness for studies that aim to 

compare and quantify relationships between physiological and performance measures. 

This is especially important for measures of V 02 kinetics as inherent breath-by-breath 

variability can influence parameter estimations (Lamarra et al., 1987). The results of 

the reproducibility study revealed that measures of on- and off-transient V 02 kinetics 

were satisfactorily reproducible, which suggested that a multiple-transition (n=6) 

protocol was appropriate for the assessment of V02 kinetics in MD and LD runners. In 

comparison, previous studies reported poor reproducibility of their measures of on- 

(Kilding et al., 2001; Ozyener et al., 2001; Puente-Maestu et al., 2001) and off-transient 

V02 kinetics (Ozyener et al., 2001). The reproducible measures of V 02 kinetics in this 

study meant that comparisons between MD and LD runners and relationships between 

physiological and performance measures could be quantified accurately and 

meaningfully interpreted.

The second study of this thesis characterised and compared V 02 kinetics in MD and 

LD runners during treadmill running. This study demonstrated faster on- and off- 

transient V 02 kinetics in LD runners. This was apparent despite similar V 02 max. The 

primary explanation for this difference is attributed to different approaches to training 

adopted by MD and LD runners. Because physiological and biochemical adaptations

191



to training are specific to the training load1 (Fox et al., 1973; Harms and Hickson, 

1983), different training regimes are also likely to be reflected in measures of V 02 

kinetics.

Information relating to the training of MD and LD runners was collected which revealed
9 1that the volume of training (km-wk' ) was greater in LD runners. Continuous training 

regimes are predominantly used by LD runners where total distance covered per session 

or per week is an important aspect of training overload. It has been reported that LD 

runners train more frequently at moderate-intensities (<85% V 02 max), close to LT 

(Lacour et al., 1990; Daniels and Daniels, 1992) whilst MD runners train and compete 

at high running speeds (>95% V 02 max). Differences in the volume and intensity of 

training will determine the magnitude of physiological and biochemical adaptations 

which are likely to influence measures of aerobic (and anaerobic) function and running 

performance.

8.1.1 Adaptations to endurance training

Endurance training results in central (Fox et al., 1975; Giada et al., 1998) and peripheral 

(Hickson et al., 1976; Harms and Hickson, 1983) adaptations which improve the 

delivery and diffusion and utilisation of O2 to the exercising muscle. Specifically, 

central adaptations result from an improvement in the heart's ability to pump blood, 

mainly by increasing the stroke volume which occurs because of an increase in end- 

diastolic volume and an increase in left ventricular mass (Brooks et al., 2000). These 

changes are induced by the increased volume load placed on the heart during endurance 

exercise. Subsequently, these adaptations result in an increased Q max, which, according 

to the Fick equation, will increase V02m&x. The V 02max has been described as an 

important characteristic of endurance athletes (Saltin and Astrand, 1967) and its 

increase with training is well documented (Fox et al., 1973; Hickson et al., 1978). 

However, it is apparent that appropriate peripheral adaptations are also necessary for

1 Training load refers to the frequency, duration and intensity of training.
2 Volume of training is a composite measure of the frequency and duration of training
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improved performance (Saltin et al., 1976). The importance of peripheral mechanisms 

for improving running performance is emphasised when considering the similarity of 

recently reported V 02 max values of elite MD and LD runners (Billat et al., 2001) 

compared to those reported in earlier studies (Saltin and Astrand, 1967), despite 

substantial performance differences. Furthermore, in already well-trained runners, 

L 02 max has been found to be a relatively stable feature of an athlete's physiological 

profile (Daniels, 1974), despite further improvements in running performance. This 

suggests that central adaptations to endurance training are not exclusively limiting 

running performance. Consistently, throughout this thesis, V 02 max was similar between 

MD and LD runners, despite different performance levels, suggesting that their 

peripheral adaptation to training differed. This is supported by faster on- and off- 

transient V 02 kinetics in LD runners. These findings suggest that: 1) O2 delivery (or 

central) mechanisms do not determine the rate of V 02 kinetics at the onset of moderate- 

intensity exercise (Grassi et al., 1998a, b) and 2) performance differences between MD 

and LD runners are due to peripheral mechanisms within the muscle. It is therefore 

necessary to consider specifically, the peripheral adaptations to training.

8.1.1.1 Peripheral adaptations to training

It is well established that endurance training results in major adaptations in skeletal 

muscle. Such changes include: 1) increased myoglobin (Hickson, 1981); 2) increased 

mitochondrial size and number (Kiessling et al., 1971); 3) increased oxidative enzyme 

activity (Gollnick et al., 1973); 4) altered muscle fibre composition (Henriksson and 

Reitman, 1977) and 5) preferential use of FFA as an energy substrate (Holloszy, 1973; 

Holloszy and Coyle, 1984). These peripheral adaptations may be of limited importance 

for whole-body V 02 max, since maximum oxidative power (defined as the maximum rate 

of oxidative phosphorylation in muscle) is in excess of what is required during two- 

legged exercise (Anderson and Saltin, 1985). However, it is likely that an increase in 

muscle aerobic potential plays a major role in the increased endurance and the reduced 

metabolic perturbation observed after aerobic training (Saltin and Gollnick, 1983).
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The adaptation of skeletal muscle metabolism in response to aerobic training results in 

tighter coupling between ATP supply and demand (Dudley et al., 1987) and is 

characterised by a lesser increase in free ADP, AMP, IMP, Cr and Pi by a lesser 

decrease in PCr. Consequently, there is a smaller perturbation of the cytosolic 

phosphorylation potential in response to a change in the intensity of exercise. In 

addition, tighter integration of ATP supply and demand is associated with less 

stimulation of glycolysis, resulting in a decrease in lactate production and glucose 

utilisation, a lower cytosolic redox state, and an improved coupling between pyruvate 

oxidation and glycolytic flux (Holloszy and Coyle, 1984). One of the main mechanisms 

thought to be involved in the tighter coupling of ATP supply and demand is the 

improvement of muscle oxidative capacity which is brought about by an increase in 

mitochondrial volume density and in the activity of several enzymes of oxidative 

metabolism. Specifically, it is these improvements that are likely to influence V 02 

kinetics and account for differences between MD and LD runners. Also, since the 

distribution of Type I fibres has been shown to be superior in LD runners, compared to 

MD runners (Saltin and Gollnick, 1983), this will influence the potential magnitude of 

the increase in mitochondrial density and oxidative enzyme activity in the muscle. As a 

consequence, it could be anticipated that faster V 02 kinetics would be observed in LD 

runners. However, this would only be apparent if the magnitude of the training load 

was sufficient.

8.1.2 Endurance training: frequency, duration and intensity

The magnitude of cardiovascular (Wenger and Bell, 1986) and biochemical (Hickson,

1981) adaptations to endurance training is influenced by the frequency (Hickson, 1981), 

duration (Fox et al., 1975; Hickson et al., 1976) and intensity of training (Hickson et al., 

1976; Harms and Hickson, 1983). Thus, differences between the V 02 kinetics of MD 

and LD runners might be a reflection of differential changes in the metabolic 

characteristics of the different fibre types induced by various approaches to training. 

Indeed, longitudinal studies have shown that the increased oxidative potential of a 

muscle, by augmentation of mitochondrial enzyme activity, capillary density and
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enhancement of FFA oxidation, is localised in the fibres most active in the training 

programme and occurs in both Type I and Type II fibres (Henriksson and Reitman, 

1977).

One noticeable difference between the training of MD and LD runners was that the 

volume of training (self-reported) was greater in LD runners. In addition, the volume of 

training was related to xon in both MD and LD runners. This suggests that an increased 

volume of training is a stimulus for faster V 02 kinetics. To support this possibility, 

oxidative adaptations to training in muscle fibres have been shown to be proportional to 

the volume of training (Sjodin et al., 1976; Terjung, 1976). Specifically, increased 

mitochondrial content has been shown to be related to the frequency and duration of 

endurance training (Fitts et al., 1975; Hickson, 1981). It is therefore anticipated that the 

potentially greater mitochondrial content in LD runners as a result of a greater volume 

of training would influence V 02 kinetics. However, muscle biopsies would be 

necessary to confirm this possibility.

As an alternative to considering the physiological effects of manipulating the volume of 

training, Henriksson and Reitman (1976) found that high-intensity interval training 

carried out at maximal intensity resulted in a 20-30% increase in SDH activity. 

Analysis of single fibres, however, showed that high-intensity training increased SDH 

activity in Type II fibres by -50% with no increase in SDH activity in Type I fibres. 

Conversely, sub-maximal continuous training resulted in a 30% increase in SDH 

activity of Type I fibres, with no change in SDH activity of Type II fibres. This 

confirms that training-induced adaptations in muscle fibres are intensity specific and 

that this could explain why V02 kinetics of MD and LD runners differ. Only one study 

has considered the effects of different training intensities on V 02 kinetics during the 

on-transient (Berry and Moritani, 1985). Unfortunately, this study only investigated 

training intensities that would be representative of a LD runner's training and did not 

consider high-intensity training. However, the differentiation of V 02 kinetics between
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elite distance runners and elite sprinters (Edwards et al., 1999) suggests that the volume 

and intensity of training are important determinants of V 02 kinetics.

Whether adaptations induced by anaerobic training have a positive or negative effect on 

V 02 kinetics is not yet known. Several studies have reported that sprint training has a 

positive effect (Saltin et al., 1976; MacDougall et al., 1998) on mitochondrial enzyme 

activity, but less than that induced by endurance training (MacDougall et al., 1998). 

Consequently, the time spent training at high-intensities by MD runners will reduce the 

opportunity for aerobic adaptations to take place. Ultimately, this will result in less 

speeding of V 02 kinetics. In addition, high-intensity training could result in 

adaptations that are antagonistic to those promoting oxidative phosphorylation in 

muscle. One such mechanism involves potential increases in [PCr] and [Cr] observed 

with high-intensity training (Parra et al., 2000) and/or oral Cr supplementation 

(Greenhaff et al., 1994). Experimental findings in rats demonstrated that CS activity 

increased after a reduction in [Cr] (Sweeney, 1994) and that PCr re-synthesis is speeded 

by [Cr] depletion (Fitch et al., 1979). Sweeney (1994) suggested that a greater [Cr] 

would result in a slower mitochondrial turn on. In support, Meyer and Foley (1994) 

have demonstrated that the rate of oxidative phosphorylation is linearly dependent on 

total Cr ([PCr]+[Cr]). Collectively, these findings suggest that V 02 kinetics might be 

slowed in MD runners as a result of increases in [PCr] or [Cr], in response to regular 

high-intensity training and/or oral supplementation.

8.1.3 Endurance training: mitochondrial number and function

Endurance training results in an increase in the mitochondrial content of the cell 

(Holloszy and Coyle, 1984; Dudley et al., 1987) and this alters the mitochondrial 

sensitivity to the regulators of respiration (Dudley et al., 1987). The mitochondrial 

content itself has been shown to play a important role in controlling oxidative 

phosphorylation (Dudley et al., 1987; Burelle and Hochachka, 2002). Accordingly, a 

greater increase in mitochondrial number and function in LD runners compared to MD 

runners, brought about by different training stimuli, could be responsible for the
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differentiation of V 02 kinetics between MD and LD runners. Corroborating this 

suggestion, muscle mitochondrial content has been considered as an important 

determinant of V 02 kinetics (Whipp and Mahler, 1980) and also plays an important 

role in Meyer's (1988) linear model of respiratory control. Overall, the findings of 

faster V 02 kinetics in LD runners would support the importance of mitochondria for 

oxidative phosphorylation.

In this study, there was clear asymmetry between on- and off-transient V 02 kinetics in 

MD and LD runners. However, on- and off-transient V 02 kinetics were related 

suggesting that each transient was representative of training status. This is useful 

information because the rate of PCr re-synthesis during the immediate post-exercise 

period has been considered a valid in vivo measure of muscle oxidative power in MD 

(McCully et al., 1992) and LD runners (McCully et al., 1992; Yoshida and Watari, 

1993). Because dynamic symmetry exists between PCr and V 02 kinetics during the 

off-transient (Rossiter et al., 2002), measures of off-transient V 02 kinetics could 

provide a useful representation of the oxidative capacity of the exercising muscle(s). 

Evidence to suggest that faster off-transient V 02 kinetics in LD runners is attributable 

to greater muscle oxidative capacity is clearly provided by the findings of Paganini et 

al. (1997) who demonstrated a linear dependence of muscle PCr kinetics on oxidative 

capacity in rats. These authors also reported a strong relationship (r = 0.84, P <0.01) 

between PCr kinetics during recovery and CS activity after training. Furthermore, PCr 

kinetics were subsequently slowed by reducing the mitochondrial content by chemical 

thyroidectomy. These findings support the potential usefulness of off-transient V 02 

kinetics as a measure of muscle oxidative capacity in humans, especially athletes. 

However, similar to the on-transient, a further study is necessary to clarify the influence 

of various training regimes on off-transient V 02 kinetics.

8.1.4 Muscle fibre type composition

The degree of mitochondrial adaptation to training together with the associated increase 

in oxidative enzyme activity, will be largely determined by the composition and
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characteristics of the muscle fibres. In humans, skeletal muscle is not homogeneous; its 

fibre types differ according to their morphological and biochemical properties. 

According to their myosin heavy-chain gene expressions, three different fibres - Type I, 

Type Ha and Type IIx - have been identified in human skeletal muscle (Ennion et al., 

1995).

In previously untrained humans, the mitochondrial content of Type I fibres has been 

reported to be 50% greater than that in Type Ha fibres and three times greater than that 

in Type IIx fibres after endurance training (Howald et al., 1985). Therefore, a runner 

with a greater percentage of trained Type I fibres and subsequently a higher 

mitochondrial content, would be anticipated to display faster V02 kinetics. In support, 

Kushmerick et al. (1992) reported NMR data on working isolated Type I and Type II 

muscle fibres and demonstrated that the energy phosphate kinetics of Type I fibres are 

approximately twice as rapid as Type II fibres. Because there is a tendency for LD 

runners to have a greater percentage of Type I fibres (Costill et al., 1976), the potential 

for faster V 02 kinetics, assuming appropriate physical training has been completed, is 

greater in runners with a genetic predisposition to a high percentage of Type I fibres. 

This supports the findings of Barstow et al. (1996) who clearly demonstrated the effect 

of muscle fibre Type I percentage on V 02 kinetics (Figure 8.1). However, runners with 

predisposition to a higher percentage of Type I fibres might not necessarily be those 

classified as LD runners in this study. This could explain the greater variability and 

short Ton and T0ff in some MD runners as well as the inconsistent relationships between 

V 02 kinetics and other physiological measures in MD runners, compared to LD 

runners. Future studies should consider the actual differences between the athletes as an 

influencing factor and one that could affect the interpretation of results. To ensure that 

MD and LD were two very distinct groups, comparisons between MD and LD runners 

would probably be confined to those performing at national and international level.
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Figure 8.1 The influence of muscle fibre type percentage on V 02 kinetics during 

heavy-intensity exercise in two participants (from Barstow et al., 1996).

Heavy-intensity endurance training increases the mitochondrial content in all fibres 

types, but is greatest in Type Ha fibres (Howald et al., 1985). Potentially, a greater 

oxidative capacity of Type Ha fibres in MD compared to LD runners could account for 

the slower V 02 kinetics but similar V 02 max values between MD and LD runners. For 

example, a MD runner with a moderate percentage of Type I fibres but a high 

percentage of oxidative Type Ha fibres could have a similar V 02 max but slower V 02 

kinetics compared to a LD runners with a higher percentage of Type I fibres but a lower 

percentage of Type Ila fibres. The enhanced oxidative capacity of Type Ha fibres might 

also explain the poor relationship between V 02 max and V 02 kinetics in this group. This 

is because the recruitment of Type Ila fibres would contribute substantially to measures 

of V 02 max but minimally to measures of V 02 kinetics in the moderate domain. It is 

also possible that the oxidative capacity of some Type Ila fibres is not too dissimilar to 

some of the Type I fibres.

Differences in muscle fibre type might explain the faster off-transient V 0 2 kinetics 

observed in LD runners. Tesch et al. (1989), described that [PCr] 60 s after exercise 

was greater in Type I fibres than Type II fibres which suggests that the rate of PCr re­

synthesis (and presumably x0ff; Rossiter et al., 2002) was faster in the Type I fibres. 

However, the importance of Type Ila fibres for endurance running performance should
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not be ignored. Weston et al. (1999) suggested that rather than being detrimental to 

endurance performance, Type Ila fibres could serve as important power generators at 

high running speeds. Although Type Ila fibres are generally less efficient at using 

oxygen than Type I fibres (Kushmerick et al., 1992), it is possible that Type Ila fibres 

exhibit considerable variability in their oxidative capacity and that a continuum of 

oxidative potential of fibres from Type I to Type IIx probably exists. To some extent, 

the composition of muscle fibres will be determined by characteristics of the training 

load.

One explanation as to why V 02 kinetics did not consistently correlate with V 02 max, Vt 

or RE in MD runners might be attributed to the potential heterogeneity of muscle 

compartments. This possibility has led some authors to consider not what the apparent 

kinetic xon reveals, but what it might conceal (Whipp et al., 2002). For example, two 

individuals could display the same overall xon despite having different compartment 

profiles. That is, one individual could display a homogeneous profile whereby xon 

differs very little among compartments, whereas the other could have a large 

distribution of xon values amongst compartments, but the overall xon could be similar. In 

the latter, metabolic stress would be greater in those compartments displaying slower 

kinetics and this would, therefore, lead to an increased demand for supplemental 

regional energy transfer from lactate yielding mechanisms, resulting in different 

regional V t , despite the same average xon (Whipp et al., 2002). If such heterogeneity 

does exist, then this could explain: 1) the "overlap" in xon (and MRTon) in MD and LD 

runners and 2) the weak correlations between on- and off-transient V 02 kinetics and 

V 02 max, Vt and RE in MD runners.

8.2 The importance of V 02 kinetics to running performance

In the present study, the relationship between V 02 kinetics and 5 km running 

performance and the contribution of V 02 kinetics to the prediction of running 

performance was small compared to other measures of aerobic function, particularly 

V02 max- However, if phase II V02 kinetics are slower above Vt (Carter et al., 2002), it
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is possible that the contribution of t  to the regression model might vary depending on 

the intensity of exercise used to measure V 02 kinetics. This might have some 

implications for the findings of the present study and should be considered.

In the present study, measures of V 02 kinetics were obtained during moderate-intensity 

exercise only. In this intensity domain, it would appear that V02 kinetics provide non- 

invasive, peripheral information reflecting the oxidative function of Type I muscle 

fibres which predominate in endurance-trained runners (Costill et al., 1976b; Saltin and 

Gollnick, 1983). If however, as suggested by Carter et al. (2002), V 02 kinetics in the 

heavy-intensity domain involves the progressive recruitment of less O2 efficient Type II 

fibres, resulting in a longer x, then information about the oxidative function of a greater 

proportion of fibres (including Type II fibres) would be gained. In addition, because O2 

transport mechanisms have been suggested to influence x during heavy-intensity 

exercise (Tschakovsky and Hughson, 1999), the body's ability to deliver O2 to 

exercising muscle could also be reflected. Collectively, these factors might increase the 

contribution of x to predict running performance in heavy-intensity exercise compared 

to moderate-intensity exercise. However, one clear disadvantage of using heavy- 

intensity exercise is that it would be impossible to partition peripheral and central 

factors to determine their contribution to the performance model. Therefore, if future 

studies clearly identify differences in x above and below V t , then further studies 

applying measures of V 02 kinetics to performance should consider measuring x both 

above (reflecting Type I and II fibres and O2 delivery) and below (reflecting Type I 

fibres) Vt to obtain a separate description of the oxidative function of muscle and the 

body's ability to deliver O2 during exercise of different intensities. However, if x is 

invariant across intensity-domains (Barstow et al., 1993; Ozyener et al., 2001; Wells et 

al., 2003), measures of x in the moderate-domain are justified to reflect changes in 

overall physiological status since no additional information would be obtained from 

determining x during heavy-intensity exercise.
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Whilst acknowledging the comparatively small contribution of V 02 kinetics to the 

prediction of performance in combined MD and LD runners (n=36), faster V 02 kinetics 

in any runner, regardless of the intensity in which they are measured, will have specific 

advantageous functional and metabolic consequences. For example, faster V02 

kinetics resulting from increased mitochondrial content will improve respiratory control 

which will reduce non-oxidative ATP supply (substrate-level phosphorylation) and 

increase oxidative phosphorylation at the onset of exercise. Consequently, this will 

result in some muscle glycogen sparing. However, during the actual transient, the 

amount of energy conserved by faster V 02 kinetics would be small. For example, 

using physiological data from two athletes, one with fast (xon = 9.0 s; MRTon = 23.4 s; 

Aon = 1869 ml-min'1) and the other with slow (Ton = 20.7 s; MRTon = 34.7 s; Aon = 2167 

ml-min'1) V 02 kinetics [participants 5 (MD) and 2 (LD), pp254], the calculated O2 

deficit (MRTon x Aon) was 845 and 1081 ml respectively. As an approximation (RER = 

0.96), the energy equivalent of O2 amounts to 20.9 kJT1 (di Prampero, 1986). 

Therefore the amount of energy from anaerobic sources during the transient would be 

equal to 17.7 and 22.6 kJ. The difference amounting to 4.9 kJ. This conservation of 

energy would be of negligible benefit to running performance.

It would appear that it is not the conservation of energy (i.e. reducing the O2 deficit) 

resulting from faster V 02 kinetics that is important for running performance. The 

status of several physiological factors, such as mitochondrial density and oxidative 

enzyme activity, which operate continuously throughout exercise of any intensity are 

likely to be the most important peripheral factors influencing running performance, and 

it is these factors which determine V 02 kinetics in the moderate-domain (Whipp and 

Mahler, 1980). The faster V02 kinetics observed after endurance training, primarily 

resulting from an increased number and function of mitochondria and increased 

oxidative enzyme activity, occurs concomitantly with a reduction of intra-muscular 

lactate accumulation (Yoshida et al., 1992; Phillips et al., 1995). Collectively, these 

peripheral adaptations will allow higher intensities of exercise to be attained with lower

202



[HLa]. Ultimately, this will have positive influence on moving the V-p/LT to a higher 

running speed, which would be of great advantage in MD and LD running events.

The importance of measuring V02 kinetics was more apparent in combined runners, 

than in high and low performers separately as there was consistently stronger 

relationships between Ton and running performance. Furthermore, MRT0ff, which can 

also be considered a measure of muscle oxidative capacity (McCully et al., 1992), was a 

contributor to 5 km running performance. Based on these findings, schematics 

summarising the relationships between physiological adaptations to training and the 

principal measures determining 5 km running performance in high (Figure 8.2), low 

(Figure 8.2) and combined runners (Figure 8.3) were produced.
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Figure 8.2 Models illustrating the physiological and biochemical factors influencing 

V 02 kinetics in the moderate-intensity domain and the contribution of measures of 

aerobic function to the prediction of 5 km running performance in high and low 

performing runners3.

3 At the upper level o f each model, the thickness o f the line denotes the contribution to the prediction o f  
running performance (see Table 7.5 for actual values).
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Figure 8.3 Model illustrating the physiological and biochemical factors influencing 

V 02 kinetics in the moderate-intensity domain and the contribution of measures of 

aerobic function to the prediction of 5 km running performance in combined MD and 

LD runners (n=36).

8.3 Limitations

The inherent difficulty in classifying runners as exclusively MD or LD specialists could 

confound comparisons between groups of runners. In the present study, runners were 

classified according to their self-selected discipline, although in some instances there 

was a tendency for this standard of runner to compete in a range of running events that 

were shorter and longer than their specialist event. For this reason, some runners might 

not have been physiologically too dissimilar and attempts to differentiate them on the 

basis of their physiological measures, especially V 02 kinetics, might have been 

confounded. To attenuate any potential effects when assessing performance measures, 

ANCOVA was used to compare groups and where appropriate MD and LD were 

collapsed and re-assigned as high and low performers (see Chapter 7 for details). 

Further ANCOVA was performed on the new groups to explore which measure(s) 

differentiated between high and low performers.
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To account for the differences between MD and LD runners, characteristics of their 

training were considered. Unfortunately, only self-reported, quantitative information 

relating to the volume of training was collected. A more detailed and comprehensive 

analysis of the frequency, intensity and duration of training completed by MD and LD 

runners in this study (e.g. specific nature of intervals sessions and intensity of 

continuous runs) would have been beneficial to the interpretation of the findings. 

Specifically, this would allow further conclusions to be made about the physiological 

and biochemical adaptations to different intensities of training in MD and LD runners 

and its subsequent effect on V 02 kinetics and performance (see section 8.4 for future 

directions).

The differences between MD and LD runners and the inconsistent relationships between 

physiological measures have been attributed to mitochondrial number and function, 

oxidative enzyme activity and muscle fibre type compositions. However, no direct 

measures of these important characteristics were completed to consolidate and/or 

confirm the findings of the present studies. Furthermore, the addition of these measures 

might have been strongly related to running performance and contributed to the multiple 

regression analysis, thus resulting in a more accurate regression model.

8.4 Future directions

The findings and methodological limitations of this thesis have revealed some 

potentially useful areas for future research to explore. Further studies would be useful 

to gain a clearer understanding of the sensitivity of V 02 kinetics to different training 

regimes and the usefulness of V 02 kinetics in physiological assessments of runners and 

related performance.

The recent findings of Carter et al. (2002), showing that xon is slowed for heavy 

compared to moderate-intensity exercise, should be considered before further research 

involving measures of V02 kinetics exclusively in the moderate-domain is conducted.

206



If Ton is not invariant for treadmill exercise across intensity domains below and above 

V t, then it might be necessary to measure V 02 kinetics over a range of moderate, heavy 

and severe exercise intensities, especially if an overall measure of O2 delivery and 

utilisation is required. This 'profiling' of V 02 kinetics in athletes would then span the 

actual intensities experienced in different MD and LD running events. This wider 

ranging approach might also provide further information about the physiological and 

biochemical adaptation(s) occurring in Type II muscle fibres, as these would be 

progressively recruited, according to Carter et al. (2002), during exercise in the heavy- 

and severe-domains. This might increase the potential usefulness of V 02 kinetics as a 

measure of physiological status in MD and LD runners during training and elucidate 

whether meaningful relationships exist between V 02 kinetics and running performance. 

However, O2 delivery mechanisms would also need to be considered for exercise above 

V T.

The first proposed future study would be to assess directly the sensitivity of V 02 

kinetics to training stimuli via a controlled training intervention study lasting 

approximately 6-8 weeks. Specifically, the aim of this study would be to test the 

hypothesis that V 02 kinetics are faster after volume-orientated training compared to 

high-intensity training. Initially, this study would involve non-runners as this might 

highlight more clearly the effects of different training loads (intensity and volume) on 

VO2 kinetics. This type of study would require three separate groups: 1) a high volume 

- low intensity group; 2) a high intensity - low volume group; 3) a control/sedentary/un­

trained group. The actual number of individuals in each group could be determined 

based on a calculation to determine statistical power, usually 80% (Vincent, 1995). The 

calculation considers 1) the effect size (1.25 s, obtained from pre- and post-training 

differences from two previous studies; Norris and Peterson, 1998; Carter et al., 2000b); 

2) the reliability of the measure (r = 0.92, obtained from the test-retest correlation in 

study one of this thesis) and 3) the number of repeated measures (w=3) (Park and Shultz, 

1999). Using the above data, each group would consist of 13 participants. Initially, it 

would be necessary to establish baseline (pre-training, week 0) data for each
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physiological and performance measure. Using this approach, the volume and intensity 

of training can be accurately prescribed for each participant. The training for the high 

volume - low intensity group would consist of frequent, continuous bouts of sub- 

maximal running at a relative intensity according to pre-training measures of Vt and 

V 02 max - characteristic of training by LD runners. Conversely, the high intensity - low 

volume group would primarily perform shorter, supra-maximal bouts of exercise 

indicative of a MD runners training. To ensure an adequate and continuous overload, 

the training volume and intensity would be re-assessed and progressively increased, if 

appropriate, at a mid-training physiological and performance assessment (week 3-4). 

Finally, post-training measures would be taken to establish the overall effect of 6-8 

weeks of volume or intensity orientated training. Statistical analysis for three repeated 

measures (pre-, mid- and post-training) in three different groups (volume, intensity and 

control) would require a mixed factorial ANOVA design. Any differences could be 

identified during a post-hoc analysis of the data.

A training intervention study of this design would consolidate findings of this thesis by 

determining whether 1) a greater volume of training speeds V 02 kinetics more than 

high-intensity training. A greater volume (km-wk'1) of training in LD runners compared 

to MD runners was consistently observed throughout this thesis. However, it is 

acknowledged that this information was obtained from self-reported training diaries; 2) 

high-intensity training disassociates V 02 kinetics from V 02 max and Vt. More 

specifically, does high-intensity training influence the relationships between V 02 

kinetics and other measures of aerobic function (especially since no relationships were 

observed in MD runners in this thesis)?; 3) differing physiological and biochemical 

adaptations in response to aerobic vs. anaerobic training have potential antagonistic 

effects on V 02 kinetics. This possibility might account for differences in V 02 kinetics 

between MD and LD runners observed throughout this thesis and 4) an inverse 

relationship exists between V 02 kinetics and anaerobic capacity in muscle.
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In this thesis, measures of V02 kinetics were only moderately-related to running 

performance in combined runners (Ton: r = -0.54, P = 0.001; MRTon: r = -0.50, P =

0.002; Toff: r = -0.36, P = 0.030; MRT0ff: r = -0.63, P = 0.003). However, the potential 

of VO 2 kinetics to reflect the physiological status of an individual athlete over time 

might be more relevant and meaningful to explain variations in running performance. 

Similar conclusions about peripheral adaptation to training were drawn by Foster et al. 

(1978) who suggested that skeletal muscle metabolism apparently contributes little to 

cross-sectional differences in performance, but might be of greater importance to 

individual variations in performance. Indeed, small improvements in physiological 

measures over time might potentially translate into significant improvements in running 

performance. To test the hypothesis that on- and off-transient V 02 kinetics are 

sensitive to varying training loads and reflect performance in MD and LD runners, a 

longitudinal study of runners would be required. This would assess the sensitivity of 

VO 2 kinetics, and other physiological and biochemical adaptations, to different training 

loads during a typical training and competitive year. For example, the preparatory 

phase of training, when the emphasis of training is to establish an aerobic base, is 

characterised by an increased volume of training (Martin and Coe, 1991). After this 

period of training a runner might be expected to display faster V 02 kinetics than those 

seen towards the end of the competitive season when the volume of training is lower but 

the intensity is higher. Thus, a longitudinal approach that monitors MD and LD runners 

several times throughout a typical training and competitive year (-44 weeks) might 

elucidate more clearly the precise effects of different training loads on V 02 kinetics. 

This study would require physiological measures before and after each training and 

competitive phase. To quantify the volume (frequency and duration) and intensity of 

training for each training phase, detailed training diaries from each athlete would be 

required. Since the magnitude of change in V 02 kinetics has not been established for 

already trained runners, determination of the sample size for this study is difficult to 

ascertain. However, since potential changes are likely to be smaller, the sample size 

required for optimal statistical power is likely to be greater than that observed for
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previously untrained individuals. Some pilot work to estimate the expected change in 

Ton with different types of training would be required to estimate an appropriate sample.

In this thesis, MD and LD runners could be differentiated on the basis of their on- and 

off-transient V 02 kinetics, despite some overlap. Primarily, differences were attributed 

to varying mitochondrial function, oxidative enzyme activities and muscle fibre 

characteristics induced by different approaches to training. However, these muscle fibre 

characteristics were not measured and therefore no direct evidence to support this 

suggestion was available. Clearly, there is a need to investigate these measures so that 

differences between MD and LD runners can be more accurately explained. A suitable 

hypothesis for this study would be that differences in V 02 kinetics between MD and 

LD runners are attributable to fibre type and biochemical differences in muscle. The 

additional biochemical measures might also aid interpretation and clarify the 

inconsistent inter-relationships between V 02 kinetics and other measures of aerobic 

function ( V 02max and V t) that were apparent in MD runners in study three of this 

thesis. This proposed study would involve the measurement of V 02 kinetics, V 02 max, 

V t and R E  as well as a muscle biopsy in MD («=8) and LD («=8) runners [where n is 

calculated from an effect size of 1.3 (determined form the differences and SD between 

Ton in MD and LD runners in study three of this thesis) and statistical power of 0.80 

using the equation of Lenth, 2001)]. It would be important that these measures were 

taken in close proximity to each other. However, the duration of this study would be 

largely dependent on athlete availability. From the muscle biopsy, fibre type 

composition, mitochondrial content and oxidative and glycolytic enzyme activity could 

be established. This would permit the relationships between V 02 kinetics and 

physiological and biochemical characteristics of muscle to be explored more 

meaningfully. Particularly, this would clarify whether a relationship exists between 

muscle fibre composition and V 02 kinetics in MD and LD runners. More important, 

however, is whether the proportion and composition of Type Ha and IIx, as influenced 

by high-intensity training, can account for the distorted relationship between V 02 

kinetics and V 02 max and Vt observed in MD runners (study three). Collectively, this
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would ensure that the proposed physiological and biochemical explanations for the 

findings of the present studies are acceptable and would support the separation of 

endurance-trained runners into their preferred distance. This cross-sectional study could 

also be expanded into an intervention study as previously described for untrained 

individuals. This would involve the pre- and post-training measures of V 02 kinetics 

and muscle biopsies. However, the time course of adaptation in muscle fibre 

composition would require further consideration. Based on several previous studies, 

highlighted by Saltin and Gollnick (1983), 6 - 8 weeks of training would probably be 

sufficient to observe changes in muscle.
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8.5 Conclusion

To summarise, the findings of this thesis have established that: -

1. Pulmonary on- and off-transient V 02 kinetics in the moderate-domain can be 

reproducibly determined using a multiple-transition protocol.

2. MD and LD runners differ in their on- and off-transient V 02 kinetic responses in 

the moderate-intensity domain.

3. On- and off-transient V 02 kinetics in the moderate-intensity domain are related to 

other aerobic measures ( V 02 max, Vt and RE), primarily in LD runners.

4. Pulmonary V02 kinetics, in the moderate-intensity domain, are faster in high 

performers than low performers but are not related to 5 km running performance.

5. Off-transient pulmonary V 02 kinetics in the moderate-intensity domain contribute 

minimally to a multiple regression model predicting running performance in 

combined runners when V 02 max, Vt and RE are also considered. However, 

pulmonary V 02 kinetics do not contribute to successful running performance 

within groups of high and low performers.

This thesis has revealed several novel findings which contribute to the body of 

knowledge with respect to 1) relationships between measures of aerobic performance 

and 2) methodological aspects of measuring V 02 kinetics. This is the first study to 

quantify the reproducibility and day-to-day variability of both on- and off-transient 

V 02 kinetic parameters during treadmill running, using a single visit protocol. The 

reproducibility and minimal day-to-day variability of V 02 kinetics parameters from a 

single visit protocol means that V 02 kinetics can be measured in a short period of time. 

This has advantages over other protocols that usually require multiple visits to the 

laboratory which are inappropriate for competitive athletes. Importantly, it identified 

that both on- and off-transient V 02 kinetic parameters could confidently be used to 

characterise and compare athletes.
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This is the first study to characterise and differentiate the on and off-transient V 02 

kinetics, in the moderate-domain, in MD and LD runners. This contributes to the 

limited database of values for treadmill based measures of on- and off-transient V 02 

kinetics which could then be used to compare future studies involving trained subjects 

and/or intervention strategies. Specifically, it has been shown that V 02 kinetics are 

faster in LD runners than in MD runners. Primarily, this was attributable to a greater 

volume of training performed by LD runners and the relationship between training 

volume and Ton. The greater volume of training performed by LD runners is likely to 

have increased mitochondrial density and oxidative enzyme activity. However, it 

should be acknowledged that information about training volume in MD and LD runners 

was obtained from self-reported diaries and that the effect(s) of different types of 

training (volume and intensity) on V 02 kinetics, and other physiological and 

biochemical measures, was not measured in this study. Further research to investigate 

the effect(s) of training with precisely controlled volume and intensity of training is 

required to consolidate the findings of the present study. In addition, it is also 

acknowledged that assessments of V 02 kinetics in the moderate-domain are not truly 

reflective of intensities experienced during competitive MD and LD running events. 

However, the use of moderate-domain V 02 kinetics to reflect muscle oxidative 

potential is still worthy of consideration regardless of the intensity of MD and LD 

events. The measurement of V 02 kinetics in the moderate-domain allows a partitioning 

of the peripheral adaptation(s), relating to O2 utilisation in muscle, from central 

adaptations relating to O2 transport and delivery. However, at present there is 

uncertainty about the invariance of x above and below Vt. Clearly, further research 

above and below Vt would help establish the usefulness of V 02 kinetics in the 

moderate- and heavy-intensity domain to further assess endurance-trained runners.

This thesis clearly revealed relationships between V 02 kinetics and other measures of 

aerobic function (V 0 2max, Vt and RE). That these relationships were only observed in 

LD runners is also a novel and valuable finding. Based on previous literature that 

highlighted underpinning mechanisms of these measures, the inconsistent relationships,
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especially with respect to the independency of VO2 max and V 02 kinetics in MD 

runners, suggests that factors determining these two measures differ. This also provides 

support for further investigation into the effect(s) of different training regimes on V 02 

kinetics and whether adaptation(s) are concomitant with changes in other measures of 

aerobic function.

Physiological and biochemical adaptations to training would probably influence V 02 

kinetics which might have functional implications for a runner. Primarily, this thesis 

explored whether V 02 kinetics could be considered a potential determinant of 5 km 

running performance, since this had not been previously considered. Prior to analysis, 

after appropriately categorising runners as high and low performers, it was clear that 

high performers had much faster V 02 kinetics than low performers. The bi-variate 

correlations between V 02 kinetic parameters and 5 km running performance revealed 

no relationships for high or low performers. However, when groups were combined, a 

moderate to high relationship was observed between Ton, MRTon, x0ff and MRT0fr and 5 

km running performance. It is probable that the increased size and greater heterogeneity 

of the sample when runners were combined influenced the relationship which 

collectively resulted in a increased r.

When other measures of aerobic function were considered in addition to V 02 kinetics, 

in a multiple regression model, it was revealed that V 02 kinetics did not contribute to 

the regression models when high and low performers were considered separately. In 

these models, other measures of aerobic function (predominantly V 02 max and RE) 

explained most of the variation in running performance. For these groups of runner, it 

is probable that measures of V 02 kinetics offered no 'additional' information to the 

models that was not already accounted for by V 02 max. However, MRT0fr did offer 

some additional information to the model when combined high and low performers 

were considered. This suggests some potential use of V 02 kinetics, in the moderate- 

domain, to determine running performance but perhaps only in a cross-sectional 

assessment of heterogeneous runners. As such, the usefulness of V 02 kinetics to
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determine 5 km running performance in cross-sectional studies, compared to V02 max, is 

questionable. Instead, the application of V 02 kinetic measures for longitudinal 

assessments of runners might be more useful and is worthy of consideration for future 

research.

Overall, these findings demonstrate the potential usefulness of V02 kinetics as a 

measure to reflect adaptation(s) in muscle in MD and LD runners. However, specific 

intervention studies are required to elucidate the metabolic consequences of different 

training regimes in MD and LD runners and whether these are reflected in 1) measures 

of on- and off-transient V 02 kinetics; 2) the relationship between V 02 kinetics and 

other measures of aerobic function and 3) running performance.
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Appendix 1 Conference communications
1.1 ECSS 2001 Abstract

TEST-RETEST REPRODUCIBILITY OF MEASURES OF OXYGEN UPTAKE 

KINETICS
A.E. Kilding1. M. Fysh1, E. Winter1, N. Challis2

'The Centre fo r  Sport and Exercise Science, Sheffield Hallam University, UK;
2School o f  Science and Mathematics, Sheffield Hallam University, UK.

Oxygen uptake ( L 02) kinetics during moderate intensity exercise are reflective of an individual's 
aerobic fitness. However, inherent breath-by-breath variability in V0 2 means that several transitions are 
required to minimise the effect of noise on estimates of kinetic parameters. This results in a prolonged 
test that might detract from physiological assessments of athletes. As few as 3 transitions have been used 
in the assessment of V02 kinetics in competitive cyclists (Norris & Peterson 1998). Since the 
reproducibility of physiological measurements should be established before they are applied to sports 
performance, the purpose of this study was to establish the test-retest reproducibility of P 0 2 kinetics 
using 3 repeat step transitions.

Nine men (mean ± SD: age 20.5 ± 2.1 years; body mass 71.0 ± 7.3 kg; stature 178.8 ± 8.5 cm) 
provided written informed consent and completed an incremental ramp cycle test to establish maximal 
oxygen uptake ( V 0 2 max) and ventilatory threshold (VT). Mean (± SD) P 0 2 max and VT were 3538 ± 403 
ml'min'1 and 1968 ± 230 ml'min'1 respectively. Participants then completed two step tests 7 days apart. 
Each test consisted of 3 consecutive transitions of cycling at 30 W for 6 min, followed by 6 min at a 
moderate intensity (80% VT). Breath-by-breath F 0 2 data were interpolated at 1 s intervals, time aligned 
and ensemble averaged to produce a single data set. Time delay (8), time constant (t) and mean response 
time (MRT) were identified from a mono-exponential model of the V02- time relationship. Paired t-tests 
compared means of repeat tests. The 95% limits of agreement (LOA), measurement error and systematic 
bias for 8, t  and MRT were calculated to assess reproducibility. Statistical significance was set at P < 
0.05.

Kinetic parameters did not differ between tests, but 95% LOA indicated test-retest variability (Table 
1) with MRT the least variable kinetic parameter.

Table 1. Limits of agreement of kinetic parameters from tests 1 and 2 (n = 9)
8 T MRT

Mean of test 1 and test 2 (s) 11.5 ±4.3 22.3 ± 4.9 33.8 ±4.4
Mean difference (s) 1.0 ±5.4 -0.3 ± 6.7 0.7 ±3.8
95% LOA (s) -9.5 to 11.5 -13.4 to 12.8 -6.7 to 8.1
Measurement error (%) 92 59 22
Systematic bias (%) 10 -1 2
(MRT = 8 + t)

These findings show that a test session of only 3 transitions does not provide reproducible measures of 
V02 kinetics. The test-retest reproducibility is determined by a combination o f the effect of biological 
variability and noise on kinetic parameter estimation. The finding of higher variability in 8 and t  than in 
MRT could be attributable to the effect o f noise on the model fitting procedure since for any individual, a 
test-retest difference in 8 tended to be offset by a change in t. Methods proposed by Lamarra et al. 
(1987) could be used to quantify the effect of noise and thereby determine the underlying biological 
variability. If this variability is large, the test would be unsuitable for the assessment of athletes.
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1.2 BASES 2002 Abstract

RUNNING ECONOMY IN MIDDLE- AND LONG-DISTANCE 
RUNNERS

Andrew Kilding; Neil Challis1; Edward Winter and Mary Fysh
The Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, United Kingdom 
School of Science and Mathematics, Sheffield Hallam University, Sheffield, United Kingdom

In the assessment of running economy (RE), oxygen uptake ( V 0 2) for a given running speed (e.g. 16 
km-h'1) relative to body mass (BM) is commonly expressed as a ratio standard, i.e. ml-kg'1-min'1. 
However, according to principles of allometry, V 0 2 does not increase linearly with BM (Schmidt- 
Nielson, 1984). Using these principles, Svedenhag and Sjodin (1994) were able to differentiate between 
elite middle-distance (MD) and long-distance (LD) runners when V 0 2 was expressed in ml-kg'^-min'1. 
There are few studies that have compared the outcomes of different scaling techniques in runners. The 
purpose of this study was to make such comparisons on apparent RE in MD and LD runners.
With institutional ethics approval, ten male MD (M ± SD: age 20.8 ± 2.7 years; stature 180.5 ± 8.3 cm; 
BM 67.2 ± 7.3 kg) and ten LD (M ± SD: age 24.1 ± 5.6 years; stature 179.7 ± 7.8 cm; 70.0 ± 8.7 kg) 
runners provided written informed consent and participated. All runners were accustomed to treadmill 
running. Participants completed 6-8 four min bouts of exercise with running speed increases of 1 km-h'1 
for each bout. After a 15 min recovery period, an incremental test to volitional exhaustion was performed 
to determine maximal oxygen uptake ( V 0 2 max). During all tests, pulmonary gas-exchange was 
measured breath-by-breath using a mass spectrometer (MGA 1100, Marquette Electronics, MW, USA) 
that was calibrated before and verified after each test. The V 0 2 max and V 0 2 at 16 km-h'1 were 
expressed as ratio standards and power function ratios, with exponents for BM of 0.67 and 0.75. Groups 
were compared using independent Mests. Significance was set at P <0.05.
The results are illustrated in Table 1.

Table 1. The V 0 2 max and RE at 16 km-h'1 in MD (»=10) and LD (»=10) runners (Values are M ± SD).x r v  2 max

VOf  v-/  2 max VOr 2 max VOr v-/ 2 max R E R E R E

ml-kĝ -min"1 ml-kg^-min1 ml-kg'^̂ -min"1 ml-kg-’-min'1 ml-kg^-min'1 ml-kg'0'75-min''
MD 6 2 .0  ±  4 .0 2 4 8  ±  17 1 7 7  ±  12 5 3 .7  ± 3 . 1 1 5 4  ±  1 0 2 1 5  ±  14

LD 6 0 .1  ± 7 . 1 2 4 4  +  31 1 7 4  +  2 2 5 1 .5  ±  3 .1 1 4 9  ± 8 2 0 9  ±  12

P value 0 .4 6 3 0 .6 9 8 0 .6 3 5 0 .1 3 5 0 .3 1 4 0 .2 4 5

Irrespective of the way in which V 0 2 max and V 0 2 at 16 km-h'1 were scaled for differences in BM, no 
differences were identified between MD and LD runners (P >0.05, Table 1). These findings are in 
contrast to those of Svedenhag and Sjodin (1994) although in their study runners were elite. The standard 
of runner might influence the ability to differentiate between groups. The lack of difference between 
groups observed here could be attributable to similarities in training regimes. The results suggest that 
non-elite MD and LD runners do not differ in RE at 16 km-h'1 regardless of how V 0 2 is expressed.

Schmidt-Nielson, K. (1984). Scaling: Why is animal size so important? Cambridge University Press, 
Cambridge.

Svedenhag, J., and Sjodin, B. (1994). Body-mass-modified running economy and step length in elite 

male middle- and long-distance runners. International Journal of Sports Medicine, 15, 305-310.
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1.3 ECSS 2002 Abstract

PULMONARY OXYGEN UPTAKE KINETICS IN MIDDLE- AND 
LONG-DISTANCE RUNNERS

A.E. Kilding1, M. Fysh1, E. Winter1, N. Challis2

'The Centre fo r  Sport and Exercise Science, Sheffield Hallam University, UK;
2School o f  Science and Mathematics, Sheffield Hallam University, UK.

Pulmonary oxygen uptake {V 02) kinetics at the onset of moderate-intensity exercise are sensitive to 
training stimuli and are faster in the trained individual (Hagberg et al 1980). Accordingly, the 
measurement of V02 kinetics in the physiological assessment of athletes seems justified. Assessments of 
F 0 2 kinetics have tended to use cycle ergometry, which might not be appropriate for the assessment of 
middle-distance (MD) and long-distance (LD) runners. Therefore, the purpose of this study was to 
compare the V02 kinetics of MD and LD runners obtained during moderate-intensity treadmill running.

With institutional ethics approval, 10 male MD (mean ± SD: age: 22.0 ± 6.8 years; stature: 176.6 ±
5.8 cm; BM: 65.3 ± 5.0 kg) and 10 LD (mean ± SD: age: 25.8 ± 5.0 years; stature: 180.0 ±8.1 cm; BM: 
71.4 ± 9.8 kg) runners participated. Each completed an incremental test to volitional exhaustion to 
determine ventilatory threshold (VT, MD: 49.9 ± 4.8; LD: 48.4 ± 4.4 ml.kg'Vmin'1) and maximal oxygen 
uptake (MD: 60.0 ± 4.9; LD: 59.0 ± 6.3 ml.kg'1.min*1). On a separate occasion participants completed six 
square-wave transitions from walking at 4 km.h'1 for 6 min to running for 6 min at a moderate intensity 
(80% VT), before returning to walking at 4 km.h'1 for a further 6 min. Pulmonary gas-exchange was 
measured breath-by-breath using a mass spectrometer (MGA 1100, Marquette Electronics, MW, USA) 
that was calibrated before and verified after each test. Breath-by-breath V02 data were interpolated at 1 
s intervals, time aligned and ensemble averaged to produce a single data set. The kinetic parameters of 
amplitude (A), time delay (8), time constant (x) and mean response time (MRT) were identified from a 
mono exponential model of the P02 - time relationship during both on- and off-transients. Independent t- 
tests compared means between MD and LD runners and paired t-tests compared means between on- and 
off-transients. Statistical significance was set at P <0.05.

Table 1. On-transient kinetic parameter estimations for MD (n=10) and LD (n=10) runners.
________ A (mintin'1) 8 (s)________x(s) MRT (s)
MD 1739 ±170 14.4 ± 1.3# 14.2 ± 3.1# 28.6±2.5#
LD 1855 ±257 14.6±1.5# 12.5 ± 2.3# 27.1±2.2#

Table 2. Off-transient kinetic parameter estimations for MD (n=10) and LD (n=10) runners.
________ A (mintin'1) 8 (s)________ x (s) MRT (s)
MD 1653 ±329 8.9 ±2 .3  27.1 ± 3 .0  36.0 ±3.1
LD 1857 ±261 8.3 ±3 .3  24.1 ±2.3* 32.4 ±2.4*
* Significantly lower in LD runners, P <0.05; #Significantly different from off-transient, P <0.01.

The results are illustrated in Tables 1 and 2. Kinetic parameters during the on-transient did not differ 
between MD and LD runners (P >0.05). During the off-transient, LD runners had a shorter x and MRT (P 
<0.05, Table 2). On- and off-transient responses were different in MD and LD runners (Tables 1 and 2).

The findings show that recovery from a bout o f moderate-intensity exercise is quicker in LD runners. 
This could be due to several physiological adaptations that can be influenced by training. In MD and LD 
runners, there was asymmetry between on- and off-transient V 0 2 responses, with the off-transient being 
considerably longer. This is in contrast to the observed symmetry between transients for cycling 
(Paterson and Whipp 1991). The results suggest that mode o f exercise influences the symmetry between 
on- and off-transients for moderate-intensity exercise.

REFERENCES
Hagberg et al (1980). JApplPhysiol 48: 218-224 
Paterson and Whipp (1991). J  Physiol 443: 575-586
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Relationships between oxygen uptake kinetics and other measures of 
aerobic function in MD and LD runners.
Kilding Andrew E1, Fysh Mary1, Winter Edward M1
1The Centre for Sport and Exercise S cien ce , Sheffield Hallam University, United Kingdom 

Introduction
Endurance training results in several physiological adaptations at a cellular level such  a s  an increased  
number of mitochondria and increased oxidative enzym e activity (Saltin and Gollnick, 1983). Collectively, 
th ese  are likely to sp eed  oxygen uptake ( VO2 ) kinetics at the on set of moderate-intensity exercise. 
However, the influence of endurance training on other m easures of aerobic function, such  a s  maximal 
VO2 (V02max), ventilatory threshold (Vt) and O2 cost of running (Cr), might be le s s  pronounced which 
could d issociate th ese  m easures. The temporal dissociation betw een ch an ges in mitochondrial enzym e  
activity and VO2 max after endurance training (Henriksson and Reitman, 1977) su g g es ts  that there might be 
poor correlation betw een m easures of peripheral (i.e. VO2  kinetics) and central (i.e. VO2  max) physiological 
status, a s  found by Bell et al (1999). The characteristics of endurance training (intensity and volum e) might 
influence relationships betw een m easures of aerobic function. S ince m iddle-distance (MD) and long­
distance (LD) runners differ in terms of the intensity and volum e of their training, the purpose of this study 
w as to explore the relationships betw een VO2 kinetics and other m easu res of aerobic function.

M ethods
With ethics approval, 16 male MD (m ean ± SD: age: 21 .3  ± 5 .5  years; stature: 176.8  ± 6 .8 cm; BM: 66 .6  ±
5 .8 kg) and 16 m ale LD (m ean ± SD: age: 25 .0  ±  4 .2  years; stature: 180.3 ± 7 .0  cm; BM: 69 .9  ±  8 .4  kg) 
runners participated. Each com pleted an incremental test to volitional exhaustion to determ ine V t  (MD: 
49 .2  ± 4.6; LD: 49 .4  ± 4 .4  ml.kg*1.min'1) and VO2 max (MD: 59 .8  ± 4.7; LD: 60 .2  ± 5 .8 ml.kg'1.min'1). On two 
separate occasion s, participants com pleted 1) a series of 4 min bouts of sub-maximal running to determine 
Cr (ml.kg'1.km'1) and 2) six square-w ave transitions to and from moderate-intensity exercise  (80% V t ) to 
establish on- and off-transient VO2 kinetics (Ton and T0ff respectively). R elationships betw een m easures 
w ere explored using Pearson's product mom ent correlation coefficient. Significance w as se t at P <0.05.

R esults
The V 02 maxi V j and Cr did not differ betw een MD and LD runners (P >0.05). However, both Ton (MD: 16.4  
± 4.1 s; LD: 12.3 ± 2 .2  s; P <0.01) and x0ff (MD: 26 .9  ± 3 .2 s; LD: 24 .5  ± 2 .5  s; P <0.05) w ere significantly 
shorter in LD runners. The correlation coefficients betw een VO2 kinetics and other m easures in MD and 
LD runners are presented in Table 1. Significant relationships w ere observed betw een Ton and VO2 max and 
Ton and Vt in LD runners. The Cr w as not related to either Ton or T0ff in LD runners. There w ere no 
relationships betw een VO2 kinetics and any other m easure in MD runners. The T0ff w as not related to any  
m easure in either MD or LD runners.

T able 1: Correlation coefficients (r) betw een m easures of aerobic function in MD and LD runners.

MD LD
Measure Ton Toff VO2 max VT Cr Ton Toff VO2 max VT Cr

Ton 1.00 0.47 -0.24 -0.26 0.35 1.00 0.59* -0.70** -0.57* -0 .42
Toff 1.00 -0.09 -0 .02 0.15 1.00 -0 .40 -0 .07 -0 .35

**P <0.01; *P <0.05.

D iscu ss io n /C o n c lu s io n
The results of this study show  that on-transient V O 2 kinetics ( t 0r )  and other m easures of aerobic function 
( VO2 max and V t)  are inter-related (Table 1). The significant relationship betw een Ton and VC>2max in LD 
runners supports previous findings (Pow ers et al 1985) and su g g es ts  that th ese  m easu res are reflective of 
each  other. However, the above is not apparent in MD runners, despite similarities in VO2  max and V t .  This 
could be attributed to the greater em phasis on anaerobic training in MD runners which might d issociate  the 
adaptations in VO2  kinetics and VO2 max. Future research should explore the effects of different intensities 
and volum es of training on VO2 kinetics and identify whether adaptations in VO2 kinetics are concomitant 
with adaptations in other aerobic m easures.

References
Bell C et al (1999). Exp Physiol 84, 747-759.
Henriksson J, Reitman J (1977). Acta Physiol Scand 99, 91-97.
Saltin B, Gollnick P  (1983). Am Physiol Soc:Handbook of Physiology 10, 555-631.
Powers S  et al (1985). E u rJ  Appl Physiol 54, 306-308.
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Appendix 2 Verification of treadmill speed and gradient
2.1 Treadmill speed

Prior to each exercise testing session, the treadmill speed was verified over a range of 

speeds and gradients that were pertinent to those used in each investigation. Such 

speeds ranged between 4 and 20 km-h'1 (1.1 to 5.6 m-s'1). Verification procedures were 

performed in two conditions. First with an 'unloaded' treadmill belt and second with a 

'loaded' treadmill belt. In the loaded condition, an individual of approximately 70 kg 

BM ran on the treadmill at each of the speeds that was to be verified.

The length of the treadmill belt was measured to the nearest 0.01 m. The distance 

travelled by the treadmill belt in 20 full revolutions at each of the pre-defined speeds 

was calculated: -

Treadmill belt length = 5.58 m

Distance travelled = 5.58x20

111.6m

A marker was placed on the treadmill belt to allow identification of one full revolution 

of the treadmill belt. Time taken for 20 revolutions of the belt at each of the five pre­

defined speeds was recorded with a stopwatch (C200sport, Casio, UK) recording to 0.1 

s. This procedure was repeated twice and the mean time taken for each speed was 

calculated to within 0.1 s. The actual speed of the treadmill belt for the five displayed 

speeds in both unloaded and loaded conditions was then calculated using the formula:

_k Distance (m)Speed (m-s ) = ----------- —
Time (s)
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Table Al. Verification of treadmill speed: displayed speed vs. actual speed.
Displayed speed Time for 20 revolutions (s) Actual Speed (m-s'1)

km-h’1 m-s'1 Unloaded Loaded Unloaded Loaded

0 0 0 0 0 0

4 1.1 101.1 100.7 1.1 1.1

8 2.2 50.5 50.1 2.2 2.2

12 3.3 33.8 33.7 3.3 3.3

16 4.4 25.2 25.2 4.4 4.4

20 5.6 20.2 20.1 5.5 5.6

The relationship between calculated 'actual' speeds and 'indicated' speeds displayed on 

the treadmill control panel are illustrated for unloaded and loaded conditions in Figures 

Al and A2 respectively. The linear modelling technique used was least squares (x on y) 

regression.

6

5

0
4 61 2 3 50

Displayed speed (ms"1)

Figure Al Verification of treadmill belt speed in the un-loaded condition. Dashed line 

represents line of identity.
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6

5 y = 0.9949x- 0.0021 

R2 =  l

0
0 1 2 3 4 65

Displayed speed (m.s‘1)

Figure A2 Verification of treadmill belt speed in the loaded (70 kg) condition. Dashed 

line represents line of identity.

2.2 Verification of Treadmill gradient

The gradient of the treadmill bed from 0% to 20% was verified. The method used 

expresses gradient as the sine of the angle, in which sine equals the vertical rise over the 

hypotenuse. Therefore: -

viseTreadmill elevation (sine) = --------------
hypotenuse

For treadmills with both moveable rear and front axles, such as the one used throughout 

the investigations, the vertical rise was equal to the sum of the rise in the front axle and 

the drop of the rear axle. When divided by the axle-axle length, the grade is expressed 

as a fraction. The axle-to-axle length of the treadmill was 254.5 cm.

Table A2. Verification of treadmill gradient: displayed gradient vs. actual gradient.
Display Distance from ground (cm) Height Actual Difference

(%) Front axle Rear axle change (cm) gradient (%) (%)
0.0 46.0 46.0 0.0 0.0 0.0
1.0 48.7 46.0 2.7 1.1 0.1
5.0 57.5 46.0 11.5 4.5 -0.5
10.0 68.8 45.7 22.8 9.0 -1.0
15.0 79.8 45.5 34.1 13.4 -1.6
20.0 90.5 45.2 45.0 17.7 -2.3
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Linear regression equations were generated to determine the relationship between 

displayed gradient and actual gradient (Figure A3).

20 i
y = 0.8822x+ 0.1045 

R2 = 0.9999

•a

10 15 200 5
Displayed gradient (%)

Figure A3 Verification of displayed treadmill gradient vs. actual treadmill gradient. 

Dashed line represents line of identity.

The calibration check for gradient over a range of elevations between 0 and 20% 

(displayed values) shows minimal differences between 0 and 5%. However, at 

elevations greater than 5% there is a tendency for the displayed gradient to under-read 

the actual gradient (range -0.5 to -2.3%). During the investigations undertaken as part 

of this thesis, gradients above 1% were not required and therefore no correction for 

differences between displayed and actual gradient was applied.
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Appendix 3 Lactate analyser reproducibility

To assess the reproducibility of the lactate analyser, the CV was established. Five 25 pi 

samples of lactate standard (5 mmolT1) were analysed. Between each injection of 

lactate standard, identical procedures (injection technique, timing and automatic wash­

out) were followed to minimise possible sources of variability which might affect the 

reproducibility.

Table A3. Data from the calculation of the CV for [HLa] measures.
5 mmolT1 sample Reading

1 5.01

2 5.10

3 5.02

4 4.98

5 4.96

Mean 5.06

SD 0.05

CV% 1.1

244



Appendix 4 Details of study and testing procedures for participants

Study Details and Informed Consent

The assessment of V 02 kinetics and endurance running performance in 
Andrew Kilding

Purpose of study

The purpose of this study is to assess V 02 kinetics and endurance running performance in 
endurance trained runners. It will involve you completing 4 running tests during 3 visits to the 
laboratory. Each visit and the tests to be completed are explained below.

Description of exercise tests and procedures

Laboratory visit 1 - Assessment of Running Economy and V 02 max
You will be required to run for a series (4-6) of 4 minute stages at gradually increasing speeds 
(e.g. 12, 13, 14 and 15 km-h*1). During each 4 minute run, your oxygen consumption and heart 
rate will be measured. At the end of each stage a small blood sample will be taken for lactate 
analysis. After 10 minutes rest you will be required to perform a maximal exercise test. You will 
start the test at a running speed of 10 km-h*1. The speed will be increased by 1 km/h every 
minute. You are required to run whilst the intensity gets progressively harder, until you can no 
longer maintain it. The duration of the test will be approximately 8-12 minutes, followed by a 5 
minute cool down. You will feel discomfort towards the end of the test due to fatigue. These 
feelings will last for a few minutes and are similar to those experienced at the end of a hard 
training session or race. The risk of injury or cardiovascular complications during the test is very 
low. Throughout the test oxygen consumption and heart rate will be measured. After the test a 
small sample of blood will be taken for lactate analysis.

Laboratory visit 2 - Assessment of V 02 kinetics and 5Km time trial
Approximately 2-3 days after the maximal exercise test you will be required to complete a V 02 
kinetics test. This involves walking at 4 km/h for 6 minutes followed by an increase to running, 
at a pre-determined faster speed, for a further 6 minutes. The intensity of this faster running 
speed is of moderate intensity and is prescribed in relation to your performance during the 
previous V 02 max test. This walk-run transition will be repeated 3 times, after which you will be 
given a 15 minute rest before the same is repeated again (total of 6 walk-run transitions). 
Oxygen consumption and heart rate will be measured and a small sample of blood will be taken 
for lactate analysis before and after the test.

Laboratory visit 3 - 5km performance trial
You are required to complete a 5km time trial. This involves running this distance in the 
quickest time possible on a treadmill. Prior to the test you will be advised to warm-up Q'og, 
stretch etc) using your own pre-race routine. Throughout the test you will be able to increase or 
decrease the running speed as you require. During the time-trial, your heart rate will be 
monitored.

Project Title: 
Investigator:
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Appendix 5 Informed consent form

t Sheffield H allam  U niversity

School of Sport and Leisure Management 

Research Ethics Committee

INFORMED CONSENT FORM

TITLE OF PROJECT: The assessment of V02 kinetics and 
endurance running performance in middle- and long-distance runners.

The participant should complete the whole of this sheet 
himself/herself

Have you read the Participant Information Sheet? YES/NO

Have you had an opportunity to ask questions and discuss this 
study? YES/NO

Have you received satisfactory answers to all of your questions? YES/NO

Have you received enough information about the study? YES/NO

Who have you spoken to?

YES/NO

Do you understand that you are free to withdraw from the study:

• at any time

• without having to give a reason for withdrawing

• and without affecting your future medical care

Do you agree to take part in this study YES/NO

Signed..........................................................Date............................

(NAME IN BLOCK LETTERS)........................................................

Signature of Parent / Guardian in the case of a minor
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Appendix 6 Pre-test medical questionnaire

t  Sheffield Hallam University

PRE-TEST MEDICAL QUESTIONNAIRE

Surname:   First name/s:____________________
Date of Birth:___________________  Gender: Male □ Female □

Please answer the following questions by ticking the appropriate box, or filling in the 
blank.

1. How would you describe your present level of activity?

Sedentary □ Moderately active □ Active □ Highly active □

2. How would you describe you present level of fitness?

Unfit □ Moderately fit □ Trained □ Highly trained □

3. How would you consider your present body weight?

Underweight □ Ideal □ Slightly over □ Very overweight □

4. Smoking Habits: Are you currently a smoker? Yes □ No □
How many do you smoke .........per day
Are you a previous smoker? Yes □ No □
How long is it since you stopped? .........years
Were you an occasional smoker? Yes □ No □

 per day
Were you a regular smoker Yes □ No □

 per day

5. Do you drink alcohol? Yes □ No □
If you answered Yes, do you have?

An occasional drink □ A drink every day □ More than one drink a day □

6. Have you had to consult your doctor within the last six months? Yes □ No □
If you answered Yes, please give details.................................................

7. Are you presently taking any form of medication? Yes □ No □
If you answered Yes, please give details.................................................

8. As far as you are aware, do you suffer or have you ever suffered from:
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a Diabetes? Yes □ No □
c Epilepsy? Yes □ No □
e *Any form of heart complaint? Yes □ No □ 
g *Marfan’s Syndrome? Yes □ No □
I Aneamia Yes □ No □

b Asthma? Yes □ No □
d Bronchitis? Yes □ No □
f Raynaud’s Disease? Yes □ No □ 
h *Aneurysm/embolism?Yes □ NoD

9. *ls there a history of heart disease in your family? Yes □ No □

10. *Do you currently have any form of muscle or joint injury? Yes □ No □
If you answered Yes, please give details.............................................................

11. Have you had to suspend you normal training in the last two weeks?
Yes □ No □

If the answer is Yes please give details................................................................

12. Please read the following questions:

a) Are you suffering from any known serious infection? Yes □ No □
b) Have you had jaundice within the previous year? Yes □ No □
c) Have you ever had any form of hepatitis? Yes □ No □
d) Are you HIV antibody positive Yes □ No □
e) Have you had unprotected sexual intercourse with any

person from an HIV high-risk population? Yes □ No □
f) Have you ever been involved in intravenous drug use? Yes □ No □
g) Are you haemophiliac? Yes □ No □

13. As far as you are aware, is there anything that might prevent you from 
successfully completing the tests that have been outlined to you?

Yes □ No □

If the answer to any of the above is yes then: 

Discuss with the Centre for Sport and Exercise Science the nature of the 

problem. Questions indicated by ( * )  Allow your Doctor to fill out the 

'Doctors Consent Form' provided.

Signed: _______________________________________  Date:______________

Signature of guardian / parent (if under 1 8 )______________________________

Signature of tes te r:___________________________  Date:_
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7.3 Tests of normality: On-transient

Tests of normality for all physiological (and anthropometric) measures during the on- 

transient response for tests 1 and 2.

T ests o f Normality

Kolmogorov-Smirnov3 Shapiro-Wiik
Statistic df Sig. Statistic df Sig.

AGE .177 12 .200* .938 12 .467
STATURE .131 12 .200* .974 12 .911
B.MASS .195 12 .200* .870 12 .072
ABSV02MX .181 12 .200* .843 12 .034
RELV02MX .140 12 .200* .940 12 .483
V02SCALE .288 12 .007 .818 12 .016
ABSTVENT .248 12 .041 .937 12 .461
RELTVENT .256 12 .029 .891 12 .156
V02BASE1 .095 12 .200* .990 12 .990*
V02M 0D1 .164 12 .200* .983 12 .974
AMP1 .137 12 .200* .982 12 .967
TD1 .197 12 ;200* .918 12 .332
TAU1 .160 12 .200* .949 12 .583
MRT1 .126 12 .200* .954 12 .649
02DEF1 .155 12 .200* .967 12 .818
02ST0RE1 .180 12 .200* .937 12 .461
HRBASE1 .180 12 .200* .909 12 .276
HRMOD1 .151 12 .200* .938 12 .464
GAIN1 .150 12 .200* .955 12 .665
V02BASE2 .151 12 .200* .959 12 .713
V02M 0D2 .178 12 .200* .902 12 .223
AMP2 .217 12 .122 .875 12 .083
TD2 .120 12 .200* .981 12 .964
TAU2 .094 12 .200* .978 12 .945
MRT2 .140 12 .200* .955 12 .655
02DEF2 .110 12 .200* .953 12 .629
02ST 0R E 2 .225 12 .095 .897 12 .195
HRBASE2 .200 12 .198 .950 12 .600
HRMOD2 .170 12 .200* .932 12 .428
GAIN2 .183 12 .200* .949 12 .573

*• This is a lower bound of the true significance.

a. Lilliefors Significance Correction
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7.4 Tests of normality: Off-transient

The following output illustrates the tests of normality for all physiological variables 

considered during the off-transient response for tests 1 and 2.

Tests of Normality

Kolmogorov-Sm irnov3 Shapiro-W ilk

Statistic df Sig. Statistic df Sig.
V 02M 0F F 1 .153 12 .200* .987 12 .990*

V 0 2 B 0 F F 1 .119 12 .200* .979 12 .949

A M P 10F F .137 12 .200* .981 12 .964

T D 10F F .228 12 .086 .866 12 .066
T A U 10F F .187 12 .200* .868 12 .070

M R T10FF .180 12 .200* .889 12 .139

0 2 D E B 1 0 F .174 12 .200* .922 12 .363

V 0 2 M 0 F F 2 .185 12 .200* .903 12 .230

V 0 2 B 0 F F 2 .119 12 .200* .950 12 .597

A M P 20F F .214 12 .136 .874 12 .080

TDO FF2 .314 12 .002 .856 12 .047

TAUOFF2 .178 12 .200* .904 12 .237

MRTOFF2 .092 12 .200* .980 12 .958
0 2 D E B 2 0 F .180 12 .200* .934 12 .442

*• This is a lower bound o f the true significance, 

a. Lilliefors Significance Correction

7.5 Normal distribution of the differences

Tests of normality of the absolute differences between tests 1 and 2 for kinetic 

parameters during the on- and off-transients.

Tests of Normality

Kolmogorov-Sm irnov3 Shapiro-W ilk

Statistic df Sig. Statistic df Sig.
ABDIFTAU .122 12 .200* .965 12 .798

ABDIFAMP .154 12 .200* .914 12 .308

ABDIFMRT .185 12 .200* .887 12 .124

ABDIFTD .219 12 .118 .912 12 .293

OFFAMDIF .204 12 .179 .922 12 .361

OFFTDDIF .290 12 .006 .813 12 .013

OFTAUDIF .195 12 .200* .888 12 .132

OFMRTDIF .137 12 .200* .940 12 .480

*• This is a lower bound of the true significance, 

a- Lilliefors Significance Correction
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8.2 Tests of normality: Non-kinetic variables
Tests of Normality

DISTANCE

Kolm oqorov-Sm im ov Shapiro-W ilk

Statistic df Sig. Statistic df Sig.
AGE MD .315 10 .006 .644 10 .000

LD .140 10 .200* .963 10 .822

BM MD .155 10 .200* .938 10 .532

LD .242 10 .101 .855 10 .066

STATURE MD .299 10 .012 .797 10 .013

LD .178 10 .200* .961 10 .800

V 02M AX MD .171 10 .200* .943 10 .583

LD .154 10 .200* .888 10 .163

V02M L.KG MD .227 10 .154 .908 10 .265
LD .230 10 .142 .893 10 .186

V 02M L .67 MD .197 10 .200* .936 10 .511

LD .281 10 .024 .798 10 .014

VTL.MIN MD .161 10 .200* .953 10 .703

LD .177 10 .200* .934 10 .489

VTML.KG MD .160 10 .200* .952 10 .690
LD .312 10 .007 .791 10 .011

*• This is a lower bound of the true significance, 

a- Lilliefors Significance Correction
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8.3 Tests of normality: On-transient

Tests of Normality

DISTANCE

Kolmogorov-Sm irnov Shapiro-W ilk

Statistic df Sig. Statistic df Sig.
R E ST V 02 MD .177 10 .200* .931 10 .456

LD .154 10 .200* .918 10 .337

AO MD .127 10 .200* .969 10 .878

LD .210 10 .200* .939 10 .545

A1 MD .161 10 .200* .967 10 .866

LD .123 10 .200* .982 10 .977

AMP MD .222 10 .176 .960 10 .789

LD .130 10 .200* .961 10 .799

TD MD .233 10 .134 .895 10 .190

LD .167 10 .200* .960 10 .789

TAU MD .225 10 .162 .928 10 .429

LD .119 10 .200* .975 10 .934

MRT MD .209 10 .200* .903 10 .236

LD .203 10 .200* .944 10 .594

0 2 D E F MD .219 10 .190 .963 10 .823
LD .225 10 .164 .938 10 .530

R E L 02D EF MD .209 10 .200* .903 10 .236
LD .203 10 .200* .944 10 .594

0 2 S T 0 R E S MD .194 10 .200* .877 10 .120
LD .168 10 .200* .970 10 .888

HRBASE MD .173 10 .200* .959 10 .778
LD .182 10 .200* .944 10 .594

HRMOD MD .237 10 .118 .894 10 .186
LD .199 10 .200* .909 10 .272

PRELAC MD .294 10 .015 .675 10 .000
LD .139 10 .200* .955 10 .731

POSTLAC MD .276 10 .029 .736 10 .002

LD .232 10 .136 .903 10 .238
DELTALAC MD .232 10 .134 .736 10 .002

LD .200 10 .200* .942 10 .573

*• This is a lower bound of the true significance, 

a- Lilliefors Significance Correction
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8.4 Tests of normality: Off-transient

Tests of Normality

DISTANCE

Kolmogorov-Sm irnov Shapiro-W ilk

Statistic df Sig. Statistic df Sig.
AO_OFF MD .160 10 .200* .971 10 .896

LD .116 10 .200* .981 10 .970

A1 OFF MD .200 10 .200* .944 10 .601

LD .199 10 .200* .903 10 .236

AM P_OFF MD .203 10 .200* .958 10 .762

LD .138 10 .200* .957 10 .754

TD_OFF MD .178 10 .200* .953 10 .702

LD .250 10 .077 .932 10 .468

TAU_OFF MD .145 10 .200* .947 10 .639

LD .229 10 .147 .829 10 .033

MRT_OFF MD .185 10 .200* .955 10 .723

LD .143 10 .200* .961 10 .801

0 2 D E B 0 F F MD .133 10 .200* .960 10 .791

LD .214 10 .200* .893 10 .183

RELDEBT MD .185 10 .200* .955 10 .723

LD .143 10 .200* .961 10 .801

*• This is a lower bound of the true significance, 

a- Lilliefors Significance Correction
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8.6 Paired Mests between on- and off-transient V02 kinetic parameters

Paired S am p les S ta tistics

Mean N Std. Deviation
Std. Error 

M ean
Pair AMP 1797 .3000 20 2 2 0 .0 7 8 2 4 4 9 .2 1 0 9 9
1 AM P_OFF 1793 .6000 20 2 2 4 .9 9 3 1 9 50 .31001
Pair TD 14.4750 20 1 .34355 .30043
2 TD_O FF 8 .5750 20 2 .7 8 9 0 5 .62365

Pair TAU 13.3356 20 2 .7 6 1 4 3 .61747
3 TAU_OFF 2 5 .6 2 0 0 20 3 .0 0 0 9 8 .67104
Pair MRT 27 .8 2 5 0 20 2 .4 0 8 7 3 .53861
4 MRT_OFF 3 4 .2100 20 3 .2 7 5 7 3 .73248
Pair 0 2 D E F 8 3 1 .6 1 2 2 20 110 .36888 2 4 .6 7 9 2 3
5 0 2 D E B 0 F F 1019 .1210 20 132 .14525 2 9 .5 4 8 5 8
Pair R E L 02D EF 4 6 .3 7 5 0 20 4 .0 1 4 5 5 .89768
6 RELDEBT 5 7 .0167 20 5 .4 5 9 5 5 1 .22079

Paired S am p les C orrelations

N Correlation Sig.
Pair 1 AMP & AM P_OFF 20 .990 .000
Pair 2  TD & TD_OFF 20 .133 .575
Pair 3 TAU & TAU_OFF 20 .706 .000
Pair 4  MRT & MRTJDFF 20 .617 .004
Pair 5 0 2 D E F  & 02D E B O F F 20 .788 .000
Pair 6  R E L 02D EF & RELDEBT 20 .617 .004

Paired Sam ples Test

Paired Differences

t df >ig. (2-tailedMean ltd. Deviatior
Std. Error 

Mean

95% Confidence 
Interval of the 

Difference
Lower Upper

Pair 1 AMP - AMP_OFF 3.7000 31.48617 7.04052 11.0360 18.4360 .526 19 .605
Pair 2 TD - TD_OFF 5.9000 2.93006 .65518 4.5287 7.2713 9.005 19 .000
Pair 3 TAU - TAU_OFF 12.2844 2.21906 .49620 13.3230 11.2459 -24.757 19 .000
Pair 4  MRT - MRT_OFF -6.3850 2.60713 .58297 -7.6052 -5.1648 -10.952 19 .000
Pair 5 0 2 D E F -0 2 D E B 0 87.5088 81.63570 8.25430 25.7155 49.3021 -10.272 19 .000
Pair 6 REL02DEF - RELI 10.6417 4 .34522 .97162 12.6753 -8 .6080 -10.952 19 .000
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9.2 Tests of normality for on- and off-transient V02 kinetics
T ests  o f  Normality

Kolmoqorov-Smirnov3 Shapiro-W ilk

Statistic df Sig. Statistic df S ig .
AM P_ON .111 32 .200* .973 32 .580
GAIN .098 32 .200* .960 32 .271
TDON .177 32 .012 .933 32 .048
TAUON .132 32 .167 .943 32 .094
MRTON .160 32 .036 .970 32 .501
AM P_OFF .061 32 .200* .982 32 .852

TDOFF .111 32 .200* .944 32 .100
TAUOFF .113 32 .200* .967 32 .417
MRTOFF .135 32 .143 .960 32 .272

*• This is a lower bound of the true significance. 

a - Lilliefors Significance Correction

9.3 Example statistical analyses illustrating the empirical identification of
the most appropriate BM exponent for expressing V 02 max in MD and LD runners

V ariables Entered/RemovedP

Model
V ariables
Entered

V ariables
R em oved Method

1 DISTANC  
E, Ln BM, a 
DIS LNBM

Enter

a - All requested  variables entered, 

b. D ependent Variable: Ln V o2m ax

M odel Sum maiV3

Model R R Square
Adjusted  
R Square

Std. Error of 
the Estim ate

1 .6 9 1 a .478 .422 .08276

a - Predictors: (C onstant), DISTANCE, Ln BM, DIS_LNBM  

b. D ependent Variable: Ln V o2m ax
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Residuals Statistics1

Minimum Maximum M ean Std. Deviation N
Predicted Value 8 .2 1 1 3 8 .4897 8 .3 0 8 0 .07525 32

Std. Predicted Value -1 .285 2 .4 1 5 .000 1 .000 32

Standard Error of 
Predicted V alue

.02069 .04827 .02826 .00771 32

Adjusted Predicted Value 8 .2 0 8 3 8.5301 8 .3 0 8 4 .07578 32

R esidual -.1621 .1756 .0000 .07865 32

Std. Residual -1 .959 2 .1 2 2 .000 .950 32

Stud. R esidual -2 .060 2 .4 4 6 -.002 1 .027 32

D eleted  Residual -.1793 .2332 -.0 0 0 3 .09229 32

Stud. D eleted Residual -2 .196 2 .7 0 8 .005 1 .068 32

Mahal. D istance .969 9 .576 2 .9 0 6 2 .2 7 0 32

C ook's D istance .000 .490 .046 .094 32

C entered L everage Value .031 .309 .094 .073 32

a- D ependent Variable: Ln V o2m ax

ANOVAb

Model
Sum  of 

Squares df M ean Square F Siq.
1 R egression .176 3 .059 8 .5 4 5 .0 0 0 a

R esidual .192 28 .007

Total .367 31

a- Predictors: (Constant), DISTANCE, Ln BM, DIS_LNBM

b. D ependent Variable: Ln V o2m ax

Coefficients?

Model

Unstandardized
C oefficients

Standardized
C oefficients

t Siq.B Std. Error Beta
1 (Constant) 6 .353 1.031 6 .163 .000

DIS_LNBM .342 .306 6 .7 6 5 1. 116 .274

Ln BM .460 .246 .439 1 .873 .071

DISTANCE -1 .419 1 .290 -6 .623 -1 .1 0 0 .281

a. D ependent Variable: Ln V o2m ax
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Histogram 

Dependent Variable: Ln Vo2max
10t----------------------------------------

Std. Dev = .95 

Mean = 0.00 

N = 32.00

- 2.00  - 1.00 0.00 1.00 2.00 

-1.50 -.50 .50 1.50

Regression Standardized Residual

Normal P-P Plot of Regression Standa 

Dependent Variable: Ln Vo2max
1.00

.75

0.00
1.00.25 .50 .750.00

Observed Cum Prob

V ariables Entered/Rem oved3

Model
Variables
Entered

Variables
R em oved Method

1 DISTANg  
E, Ln BM

Enter

a - All requested  variables entered. 

£>■ D ependent Variable: Ln V o2m ax

2 8 0



M odel Sum maiV3

Model R R Square
Adjusted  
R Square

Std. Error of 
the Estim ate

1 .6 7 4 a .455 .417 .08310

a- Predictors: (C onstant), DISTANCE, Ln BM 

b. D ependent Variable: Ln V o2m ax

ANOVAb

Model
Sum  of 

S q uares df M ean Square F Sig.
1 R egression .167 2 .084 12 .092 .0 0 0 a

R esidual .200 29 .007
Total .367 31

a- Predictors: (C onstant), DISTANCE, Ln BM 

b. D ependent Variable: Ln V o2m ax

C oefficients?

Model

Unstandardized
C oefficients

Standardized
C oefficients

t S ig.B Std. Error Beta
1 (C onstant) 5 .430 .618 8 .784 .000

Ln BM .680 .147 .649 4 .6 1 9 .000
DISTANCE 1.957E -02 .030 .091 .650 .521

a. D epend en t Variable: Ln V o2m ax

R esiduals Statistics?

Minimum Maximum Mean Std. Deviation N
Predicted Value 8 .1770 8 .4659 8 .3080 .07340 32
Std. Predicted Value -1 .785 2.151 .000 1.000 32
Standard Error of 
Predicted Value .02078 .03552 .02503 .00466 32

Adjusted Predicted Value 8 .1839 8 .4877 8 .3080 .07334 32
Residual -.1756 .1993 .0000 .08038 32
Std. Residual -2 .113 2.398 .000 .967 32
Stud. Residual -2 .196 2 .650 .000 1.023 32
D eleted Residual -.1897 .2434 .0000 .09002 32
Stud. D eleted Residual -2 .363 2.992 .009 1.072 32
Mahal. D istance .969 4 .695 1.937 1.159 32
Cook's D istance .000 .518 .041 .093 32
Centered L everage Value .031 .151 .062 .037 32

a. D ependent Variable: Ln Vo2max
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Histogram

Dependent Variable: Ln Vo2max
10

8

6

4

Std. Dev = .97 

Mean = 0.00 

N = 32.00

2

0
- 1.00 0.00 1.00 2.00- 2.00

-1.50 -.50 .50 1.50 2.50

Regression Standardized Residual

Normal P-P Plot of Regression Standa 

Dependent Variable: Ln Vo2max
1.00

.75

u<u
p .
XW 0.00

.25 .50 .75 1.000.00

Observed Cum Prob

Univariate Analysis of Variance

B etw een -S u b jects Factors

V alue Label N
DISTANCE .00 MD 16

1.00 LD 16
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L evene's T est o f  Equality o f  Error Variance^

D ependent Variable: Ln V o2m ax

F df1 df2 S ig .
2 .5 6 8 1 30 .120

T ests  the null hypothesis that the error variance of 
the dep en d en t variable is equal a cro ss  groups.

a. D esign: Intercept+LOGBM ASS+DISTANCE

T ests o f  B etw een -S u b jects E ffects

D ependent Variable: Ln V o2m ax

Sou rce
Type III Sum  
of S q uares df M ean Square F Sig.

Corrected Model .16 7 a 2 8.351 E-02 12 .092 .000
Intercept .530 1 .530 7 6 .6 7 8 .000
LOGBMASS .147 1 .147 2 1 .3 3 2 .000
DISTANCE 2.922E -03 1 2 .922E -03 .423 .521
Error .200 29 6 .906E -03
Total 2209 .111 32

Corrected Total .367 31

a. R Squared = .455  (Adjusted R Squared = .417)

Estimated Marginal Means

DISTANCE

D ependent Variable: Ln V o2m ax

95% C onfidence Interval

DISTANCE Mean Std. Error Lower Bound Upper Bound
MD 8 .2 9 8 a .021 8 .2 5 5 8.341
LD 8 .3 1 8 a .021 8 .2 7 5 8.361

a- Evaluated at covariates appeared in the model: Ln BM = 
4 .2 1 7 8 .
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10.2 Tests of normality for age, physical and physiological characteristics of 
MD and LD runners

T ests o f Normality

Kolmogorov-Smirnov3 Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

AGE .148 36 .045 .886 36 .001
STATURE .066 36 .200* .989 36 .969
B.MASS .126 36 .159 .935 36 .037
TIME_MIN .094 36 .200* .957 36 .171
M_S_5K .120 36 .200* .975 36 .575
MAXSUST .117 36 .200* .860 36 .000

Tests of Normality

Kolmogorov-Smirnov3 Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

V02MXABS .144 36 .058 .919 36 .011
V02MXRAT .111 36 .200* .976 36 .595
V02MX.67 .148 36 .044 .965 36 .315
V02MX.75 .134 36 .100 .971 36 .445
Darveau .120 36 .200* .973 36 .498
V02MX.69 .135 36 .097 .967 36 .350
VT_ABS .130 36 .133 .965 36 .302
VT_RATIO .127 36 .149 .948 36 .090
VT_.67 .094 36 .200* .973 36 .516
Also Darveau .105 36 .200* .969 36 .387
VT_.54 .075 36 .200* .976 36 .626
VT_MAX .078 36 .200* .959 36 .207
RE_16ABS .112 36 .200* .956 36 .163
RE_16RAT .106 36 .200* .954 36 .137
RE_16.67 .078 36 .200* .967 36 .358
Also Darveau .091 36 .200* .967 36 .352
RE_16.79 .095 36 .200* .967 36 .352
RE_MAX .064 36 .200* .989 36 .977
TAU_ON .131 36 .125 .937 36 .042
MRT_ON .161 36 .019 .959 36 .193
TAU_OFF .104 36 .200* .967 36 .353
MRT_OFF .097 36 .200* .971 36 .461

*■ This is a lower bound of the true significance.

a - Lilliefors Significance Correction
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10.3 ANCOVA summary for (a) MD and LD runners and (b) high and low
performers

(a)*

Variances
dfB dfE f P

^02max 16 16 1.07 0.447
VT 16 16 1.17 0.379
RE16 16 16 1.45 0.233
ton 16 16 1.32 0.293
Ôff 16 16 2.17 0.066
MRTon 16 16 1.59 0.182
MRToff 16 16 1.76 0.134

Slopes
dfB dfE f P

1/ 0 2max 1 32 0.29 0.594
VT 1 32 2.03 0.164
RE16 1 32 0.28 0.600
ton 1 32 2.53 0.122
'toff 1 32 0.99 0.327
MRTon 1 32 0.32 0.576
MRToff 1 32 0.11 0.742

Elevations
dfB dfE f P

1/ 02max 1 33 7.91 0.008
VT 1 33 7.47 0.010
RE16 1 33 7.22 0.011
'ton 1 33 0.61 0.440
'toff 1 33 0.45 0.507
MRTon 1 33 3.03 0.091
MRToff 1 33 0.89 0.352

(b>*

Variances
dfB dfE f P

1/ 02max 8 8 4.44 0.025
VT 8 8 4.17 0.030
RE16 8 8 3.18 0.061
ôn 8 8 5.08 0.017

'toff 8 8 4.04 0.032
MRTon 8 8 4.60 0.022
MRToff 8 8 3.32 0.055

Slopes
dfB dfE f P

1/ 02max 1 16 0.53 0.477
VT 1 16 0.36 0.557
RE16 1 16 0.36 0.557
'ton 1 16 0.48 0.498
"toff 1 16 0.09 0.768
MRTon 1 16 0.00 1.000
MRToff 1 16 0.26 0.617

Elevations
dfB dfE f P

1/ 02max 1 17 76.42 0.000
VT 1 17 46.13 0.000
RE16 1 17 134.06 0.000
ton 1 17 47.22 0.000
Toff 1 17 78.62 0.000
MRTon 1 17 49.05 0.000
MRToff 1 17 70.76 0.000

*It is acknowledged that a small number of measures did not meet the assumption of 

normality and homogeneity of variance for ANCOVA. However, because the majority 

of data did meet the assumptions, any advantages of single log-transformations were 

considered minimal and/or inappropriate. Furthermore, it is probable that ANCOVA 

would be robust to minimal violation of normality/homogeneity, as observed for this 

data, which consequently would have minimal effect on the present results and 

interpretation.
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10.4 Descriptive statistics for high and low performers

Descriptive Statistics

N Minimum Maximum Mean Std.
Statistic Statistic Statistic Statistic Std. Error Statistic

AGE 20 18.00 40.00 23.9500 1.2279 5.49138
STATURE 20 167.60 185.90 176.8900 1.2878 5.75910
B.MASS 20 59.10 84.40 66.1400 1.3456 6.01790
V02MXRAT 20 49.00 70.10 61.7100 1.3053 5.83762
VT_RATIO 20 42.50 58.30 50.7950 1.1593 5.18444
REJ6RAT 20 48.40 61.50 53.9300 .7627 3.41099
TAU_ON 20 9.00 24.70 14.0800 .8955 4.00494'
MRT_ON 20 23.40 34.40 28.0800 .6470 2.89366
TAU_OFF 20 20.10 31.10 25.5950 .6193 2.76947
MRT_OFF 20 29.80 41.60 34.0300 .7557 3.37968
KM_WK 20 24.14 96.54 59.4123 5.1514 23.03778
TIME_MIN 20 15:20:09 20:58:00 17:16:59 0:20:44 1:32:46
M_S_5K 20 4.00 5.40 4.8500 .0925 .41359
MAXSUST 
Valid N (listwise)

20
20

85.80 98.40 94.7450 .6215 2.77934
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10.5 Independent t-tests between high and low performers

Independent Samples Test

Levene's Test for
Equality of Variances t-test for Equality of Means

95% Confidence
Interval of the

Mean Std. Error Difference
F Sig. t df Sip. (2-tailed) Difference Difference Lower Upper

AGE Equal variances 
assumed 9.902 .006 -.765 18 .454 -1.9000 2.48305 -7.11670 3.31670

Equal variances 
not assumed -.765 11.625 .459 -1.9000 2.48305 -7.32951 3.52951

STATURE Equal variances 
assumed .276 .606 2.174 18 .043 5.1200 2.35491 .17251 10.06749

Equal variances 
not assumed 2.174 17.484 .044 5.1200 2.35491 .16202 10.07798

B.MASS Equal variances 
assumed 2.852 .108 -1.654 18 .116 -4.2600 2.57628 -9.67256 1.15256

Equal variances 
not assumed -1.654 13.242 .122 -4.2600 2.57628 -9.81541 1.29541

V02MXRAT Equal variances 
assumed 1.036 .322 3.162 18 .005 6.8000 2.15065 2.28164 11.31836

Equal variances 
not assumed 3.162 16.074 .006 6.8000 2.15065 2.24252 11.35748

VT_RATIO Equal variances 
assumed .319 .579 3.592 18 .002 6.5300 1.81807 2.71037 10.34963

Equal variances 
not assumed 3.592 17.699 .002 6.5300 1.81807 2.70571 10.35429

RE_16RAT Equal variances 
assumed 5.020 .038 -.488 18 .631 -.7600 1.55697 -4.03107 2.51107

Equal variances 
not assumed -.488 13.868 .633 -.7600 1.55697 -4.10235 2.58235

TAU_ON Equal variances 
assumed 2.071 .167 -3.978 18 .001 -5.3400 1.34236 -8.16020 -2.51980

Equal variances 
not assumed -3.978 12.847 .002 -5.3400 1.34236 -8.24352 -2.43648

MRT_ON Equal variances 
assumed .861 .366 -3.420 18 .003 -3.5400 1.03513 -5.71472 -1.36528

Equal variances 
not assumed -3.420 16.704 .003 -3.5400 1.03513 -5.72688 -1.35312

TAU_OFF Equal variances 
assumed 2.961 .102 -1.567 18 .135 -1.8700 1.19371 -4.37789 .63789

Equal variances 
not assumed -1.567 13.289 .141 -1.8700 1.19371 -4.44316 .70316

MRT_OFF Equal variances 
assumed 2.217 .154 -2.436 18 .025 -3.2800 1.34672 -6.10936 -.45064

Equal variances 
not assumed -2.436 13.534 .029 -3.2800 1.34672 -6.17780 -.38220

KM_WK Equal variances 
assumed .094 .762 5.275 18 .000 34.9958 6.63370 21.05887 48.93263

Equal variances 
not assumed 5.275 17.640 .000 34.9958 6.63370 21.03844 48.95306

TIME_MIN Equal variances 
assumed 3.473 .079 -8.309 18 .000 -2:41:04 0:19:23 -3:21:48 -2:00:21

Equal variances 
not assumed -8.309 11.031 .000 -2:41:04 0:19:23 -3:23:44 -1:58:25

M_S_5K Equal variances 
assumed 1.978 .177 9.811 18 .000 .7400 .07542 .58154 .89846

Equal variances 
not assumed 9.811 12.944 .000 .7400 .07542 .57698 .90302

MAXSUST Equal variances 
assumed 2.900 .106 .433 18 .670 .5500 1.27042 -2.11905 3.21905

Equal variances 
not assumed .433 12.564 .672 .5500 1.27042 -2.20429 3.30429
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10.18 Multiple regression output for predicting 5 km performance in high
performers

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1

V02MXRA
T

Stepwise 
(Criteria: 
Probabilit 
y-of-F-to-e 
nter <= 
.050, 
Probabilit 
y-of-F-to-r 
em ove >= 
.100).

2

RE_16RAT

Stepwise 
(Criteria: 
Probabilit 
y-of-F-to-e 
nter <= 
.050, 
Probabilit 
y-of-F-to-r 
em ove >= 
.100).

a- D ependent Variable: M_S_5K

Model Summary

Model R R S quare
Adjusted 
R Square

Std. Error of 
the Estimate

1 .763a .582 .530 .07080
2 .929b .862 .823 .04347

a - Predictors: (Constant), V02MXRAT

b. Predictors: (Constant), V02MXRAT, R E J6 R A T

ANOVAc

Model
Sum of 

S quares df Mean S quare F Siq.
1 R egression .056 1 .056 11.149 .010a

Residual .040 8 .005
Total .096 9

2 Regression .083 2 .041 21.904 .001b
Residual .013 7 .002
Total .096 9

a - Predictors: (Constant), V02MXRAT

b. Predictors: (Constant), V02MXRAT, RE_16RAT

c. D ependent Variable: M_S_5K
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Excluded V ariable^

Model Beta In t Sig.
Partial

Correlation

Collinearity
Statistics
Tolerance

1 VT RATIO -.394a -1.126 .297 -.391 .413
RE_16RAT -.958a -3.772 .007 -.819 .305
TAU_ON .002a .006 .995 .002 .742
MRT_ON .024a .087 .933 .033 .798
TAU_OFF -.076a -.312 .764 -.117 .998
MRT_OFF -.283a -1.286 .239 -.437 .996

2 VT RATIO -.164b -.691 .515 -.272 .376
TAU ON -.068b -.389 .711 -.157 .733
MRT ON .186b 1.175 .285 .432 .747
TAU OFF -.073b -.489 .642 -.196 .998
MRT_OFF .091b .469 .656 .188 .594

a- Predictors in the Model: (Constant), V02MXRAT 

b- Predictors in the Model: (Constant), V02MXRAT, RE_16RAT 

c. D ependent Variable: M_S_5K
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10.19 Multiple regression output for predicting 5 km performance in low
performers

Variables Entered/Removed

Model
Variables
Entered

Variables
Removed Method

1

V02MXRA
T

Stepwise 
(Criteria: 
Probabilit 
y-of-F-to-e 
nter <= 
.050, 
Probabilit 
y-of-F-to-r 
emove >= 
.100).

a. D ependent Variable: M_S_5K

Model Summary

Model R R S quare
Adjusted 
R Square

Std. Error of 
the Estimate

1 .756a .572 .518 .14926

a. Predictors: (Constant), V02MXRAT

a n o v /£

Model
Sum of 

S quares df Mean Square F Siq.
1 R egression .238 1 .238 10.672 .011a

Residual .178 8 .022
Total .416 9

a - Predictors: (Constant), V02MXRAT 

b- D ependent Variable: M_S_5K

Coefficients*

Unstandardized
Coefficients

Standardized
Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) 2.781 .522 5.327 .001

V02MXRAT 2.913E-02 .009 .756 3.267 .011

a- D ependent Variable: M_S_5K
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Excluded Variables^

Model Beta In t Sig.
Partial

Correlation

Collinearity
Statistics
Tolerance

1 VT_RATIO l 00 o Q) -2.030 .082 -.609 .248
R E J6 R A T -.329a -.642 .541 -.236 .221
TAU_ON .027a .108 .917 .041 .999
MRT_ON .006a .022 .983 .008 .910
TAU_OFF -.197a -.830 .434 -.299 .987
MRT_OFF -.281a -1.099 .308 -.384 .802

a - Predictors in the Model: (Constant), V02MXRAT

t>- D ependent Variable: M_S_5K
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10.20 Multiple regression output for predicting 5 km performance in combined 
runners

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1

V02MXRA
T

Stepwise 
(Criteria: 
Probabilit 
y-of-F-to-e 
nter <= 
.050, 
Probabilit 
y-of-F-to-r 
em ove >= 
.100).

2

RE_16

Stepwise 
(Criteria: 
Probabilit 
y-of-F-to-e 
nter <= 
.050, 
Probabilit 
y-of-F-to-r 
em ove >= 
.100).

3

MRT_OFF

Stepwise 
(Criteria: 
Probabilit 
y-of-F-to-e 
nter <= 
.050, 
Probabilit 
y-of-F-to-r 
em ove >= 
.100).

a - D ependent Variable: M_S_5K

Model Summary

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estim ate

1 .659a .435 .418 .25258
2 .845b .714 .697 .18237
3 .865° .748 .725 .17371

a - Predictors: (Constant), V02MXRAT

b. Predictors: (Constant), V02MXRAT, RE_16

c - Predictors: (Constant), V02MXRAT, RE_16, MRT_OFF
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ANOVAd

Model
Sum of 

S quares df Mean Square F Sip.
1 Regression 1.667 1 1.667 26.135 .000a

Residual 2.169 34 .064
Total 3.836 35

2 Regression 2.739 2 1.369 41.175 .000b
Residual 1.098 33 .033
Total 3.836 35

3 Regression 2.871 3 .957 31.714 .000c
Residual .966 32 .030
Total 3.836 35

a - Predictors: (Constant), V02MXRAT 

b- Predictors: (Constant), V02MXRAT, RE_16

c. Predictors: (Constant), V02MXRAT, RE_16, MRT_OFF 

d- D ependent Variable: M_S_5K

Coefficients1

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sip.B Std. Error Beta
1 (Constant) 2.349 .495 4.747 .000

V02MXRAT 4.169E-02 .008 .659 5.112 .000
2 (Constant) 4.453 .515 8.650 .000

V02MXRAT 6.274E-02 .007 .992 9.016 .000
RE_16 -1.58E-02 .003 -.625 -5.676 .000

3 (Constant) 5.291 .633 8.355 .000
V02MXRAT 5.541 E-02 .007 .876 7.389 .000
RE_16 -1.43E-02 .003 -.566 -5.214 .000
MRT_OFF -2.07E-02 .010 -.210 -2.091 .045

a - D ependent Variable: M_S_5K
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Excluded Variable^1

Model Beta In t Sig.
Partial

Correlation

Collinearity
Statistics
Tolerance

1 VT_RATIO .210a .848 .403 .146 .272
TAU_ON l C

O cn Q) -2.800 .008 -.438 .881
MRT_ON -.280a -2.092 .044 -.342 .843
TAU_OFF -.202a -1.537 .134 -.258 .929
M RT_OFF. -.345a -2.661 .012 -.420 .837

RE_16 -,625a -5.676 .000 -.703 .716

2 VT RATIO .100b .552 .585 .097 .269
TAU ON -.107b -.945 .352 -.165 .681
MRT ON -.102b -.952 .348 -.166 .752
TAU OFF -.159b -1.684 .102 -.285 .924
MRT_OFF -.210b -2.091 .045 -.347 .781

3 VT_RATIO .139° .802 .429 .143 .266
TAU_ON .024° .187 .853 .034 .474
MRT_ON -.003° -.024 .981 -.004 .587
TAU_OFF -.046c -.352 .727 -.063 .469

a- Predictors in the Model: (Constant), V02MXRAT

b. Predictors in the Model: (Constant), V02MXRAT, RE_16

c- Predictors in the Model: (Constant), V02MXRAT, RE_16, MRT_OFF

d- D ependent Variable: M_S_5K

(
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