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Abstract

The vertical treadmill is a novel exercise mode designed for the physical 

conditioning of athletes. It requires a running action in a recumbent posture on a 

vertically hung, non-motorised treadmill whilst the limbs are supported with 

overhanging resistance cables. To the author’s knowledge, there has been no 

research on the vertical treadmill. Therefore, the aim of this thesis was to 

identify whether the vertical treadmill is an appropriate tool for physical 

conditioning. To achieve this aim there were four objectives: 1) identify the 

lower limb kinematics; 2) identify the neuromuscular recruitment patterns during 

vertical treadmill exercise in different postures and intensities; 3) identify the 

acute physiological responses to vertical treadmill exercise at varying intensities 

and 4) identify the adaptations to a training intervention on the vertical treadmill 

in a physically active population. The kinematic and neuromuscular recruitment 

patterns during vertical treadmill exercise revealed that irrespective of posture 

and intensity, the hamstrings and gastrocnemius muscles were active to draw 

the leg downwards against the resistance cables and the rectus femoris and 

tibialis anterior were active in the upward phase. The vastii muscles were not 

active. The 40° and 70° postures were similar and both differed from the supine 

posture. The physiological responses to submaximal and maximal vertical 

treadmill exercise in the 40° posture revealed a lower maximum heart rate and 

^ 0 2peak when compared with conventional treadmill running. The onset of blood 

lactate (2 mmol-L'1) during very light vertical treadmill exercise and a high 

maximal lactate identified the vertical treadmill as a predominantly anaerobic 

exercise. In light of this, the effect of a 6-week sprint interval training (SIT) (4-6, 

30 s all-out efforts with 4.5 min recovery, 3 times per week) on K02max., 

maximum anaerobic running power and responses to submaximal running on a 

conventional treadmill were compared with SIT performed over ground (20 m 

shuttle sprints) and control group. The key findings of this study were that over 

ground and vertical treadmill SIT increased the anaerobic running power by 4% 

each and that K02max., increased by 4% and 6%, respectively. No differences 

were found in submaximal running responses. This evidence indicates that 

vertical treadmill can be used as a low-impact conditioning tool without 

detriment to running performance. The physiological underpinnings for the 

improvement in running performance should be the focus of future research.
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Chapter 1: Introduction

1.1. Introduction

Exercise was eloquently described as the potential disruption of homeostasis 

brought about by exclusive, or combined, concentric, eccentric or isometric 

muscle activity (Winter and Fowler, 2009). The disruption of homeostasis by 

exercise alters the function, the physiologic responses and adaptations of body 

systems. The study of these changes in the body systems to acute and 

repeated bouts of exercise is ‘exercise physiology’. Exercise physiology can be 

traced back to the fifth century B.C. when the Greek physician and athlete; 

Herodicus advocated exercise to improve physical performance (Wilmore and 

Costill, 1999). Until recently (20th Century) physiologic measures during 

exercise have been limited by the technology of measurement equipment. If 

required, modern technologies and methods allow the physiologic analysis of 

performance to a cellular level. Exercise physiologists use the physiologic 

information to optimise training programmes and subsequently optimise human 

performance or health.

The optimisation of the training-induced adaptations is dependent on

many characteristics of the training programme including intensity, duration,

recovery, frequency and exercise mode (Jones and Carter, 2000). The novel

exercise mode of vertical treadmill exercise (Figure 1) has been developed with

the aim of aiding rehabilitation and training programmes. A key characteristic of

the vertical treadmill is that the user engages in "running like" exercise in a

recumbent posture. During vertical treadmill exercise, the mass of the torso is

supported by the bench, thus the loading forces on the joints and soft tissues of

the lower limbs are reduced. A pilot study indicated that the loading force during
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vertical treadmill exercise, as measured by tibial shock accelerometry, was 46% 

lower than conventional treadmill running. The low-impact nature of vertical 

treadmill exercise could enable individuals to exercise during injury 

rehabilitation without exacerbating injuries and also reduce the likelihood of 

overuse injuries associated with repeated impact loading during running over 

ground (Hreljac, 2004).

Pulley system

Resistance cables

Treadmill belt
Rubber bands

Figure 1. Vertical treadmill being used in the supine posture.

The vertical treadmill consists of a vertically hung non-motorised treadmill, an 

adjustable bench mechanism and overhanging resistance cables (Figure 1). 

The bench mechanism has an adjustable back rest that ranges from supine (0°) 

to 70° in 10° increments, a seat angle ranging from supine (0°) to 30° in 10° 

increments and a fore and aft setting that adjusts the distance of the user from 

the treadmill belt face. The fore and aft setting positions the seat 0.63 -  0.88 m 

from the treadmill surface at 0.025 m intervals. The treadmill belt is hinged at
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the top of the treadmill so the treadmill belt can be angled from vertical (0°) to 

30° in 10° increments. The treadmill belt was manufactured as a ‘frictionless’ 

treadmill mechanism so resistance to belt rotation is minimal. The overhanging 

resistance cables offer resistance to users as the leg progresses down the 

treadmill belt face. The resistance cables are attached to rubber bands that are 

anchored behind the treadmill belt through a pulley system. The resistance 

experienced by the vertical treadmill user was measured by the author at 20 N 

at the uptake of tension up to 70 N as the leg descends to the lowest portion of 

the treadmill. Therefore, the precise resistance and intensity of exercise is 

dependent on the leg length of the user and the range of motion exhibited 

during vertical treadmill exercise. The intensity of exercise on the vertical 

treadmill is also dependent on the speed of the treadmill belt which is a function 

of the step rate (cadence) and the distance the treadmill belt is rotated per step. 

Similar to normal exercise modes, exercise programmes can be constructed on 

the vertical treadmill by altering speed, stride frequency and the number and 

duration of repetitions and sets.

Another characteristic of the vertical treadmill is the ability to alter the 

posture of the user. It was reported that alterations in body position altered the 

relative geometry of body segments at rest and during exercise, thus 

compensatory movements brought about by changes in muscle recruitment 

could be demonstrated (Massion, 1992). Egana et al., (2010) also reported 

posture-related deviations in muscle recruitment, however, these were only 

evident during high intensity cycling rather than low intensity cycling (20 vs. 

80% peak power output). Therefore, the adjustment of the bench mechanism 

and the intensity of exercise might alter the angles of the hip, knee and ankle,
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which might alter the neuromuscular recruitment patterns and the physical 

demands of vertical treadmill exercise.

Anecdotally, the vertical treadmill has been shown to be a useful training 

mode to supplement strength and conditioning and rehabilitation programmes in 

many sports including football, middle distance running, boxing and triathlon. 

For example, an elite 800 m junior athlete (16 years of age) supplemented 

running training with vertical treadmill exercise 3 times per week for 6 months 

and his improved 800 m run time by 14.3s and a 32 year-old female elite 

triathlete improved her sprint triathlon time (same triathlon event) by 7 minutes 

following 6 months of vertical treadmill exercise only. Consequently, the vertical 

treadmill exercise might provide an appropriate form of cross training for a 

variety of sports. This anecdotal evidence originated from the VertiRun 

company and to the author’s knowledge, independent scientific investigations 

have not been performed to substantiate these purported improvements in 

performance. To inform the development of appropriate training programmes for 

strength and conditioning of individuals, the underpinning principles of vertical 

treadmill exercise need to be established.

1.2. Statement of the problem

The vertical treadmill was designed as a low-impact exercise mode to prevent 

the loss of physical fitness during the injury rehabilitation process and reduce 

the likelihood of overuse injuries resulting from high volumes of impact loading 

on joints and muscles during prolonged periods of over ground running 

(Hreljac, 2004). Anecdotal evidence suggests that the vertical treadmill could 

have a role in training programmes, however, the anecdotal evidence has not
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been substantiated with independent scientific research. To the author’s 

knowledge, the fundamentals of vertical treadmill exercise such as the muscles 

recruited, the movement patterns and the acute physiological responses during 

have not been identified and could be used to inform the development of 

appropriate training and rehabilitation programmes.

1.3. Research question

Can the vertical treadmill be used for physical conditioning?

1.4. Aim and objectives

This thesis aims to determine the efficacy of the vertical treadmill as an exercise 

mode for physical conditioning in a physically active population. To achieve this 

aim, four major objectives are proposed:

1. Identify the lower limb kinematics during vertical treadmill exercise in different 

postures and intensities in a physically active population.

2. Identify the muscle recruitment patterns during vertical treadmill exercise in 

different postures and intensities in a physically active population.

3. Identify the acute responses of the cardiorespiratory system and metabolic 

demands of vertical treadmill exercise during varying intensities in a physically 

active population.

4. Identify the chronic adaptations of the cardiorespiratory, muscular and 

neuromuscular systems to a training intervention on the vertical treadmill in 

physically active population.
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Chapter 2: Review of literature

2.1. Exercise modes

Exercise programmes incorporate aerobic and resistance components that aim 

to enhance cardiovascular fitness and musculoskeletal strength (Hass et 

al., 2001). The magnitude of cardiovascular and muscular benefits is dependent 

on, among others, exercise mode. Many exercise modes exist that require an 

individual to exercise in an erect posture such as running over ground or on a 

treadmill. Running provides impact loading of skeletal system and soft tissues 

due to gravity, maintains bone strength and encourages adaptations brought 

about by repeated eccentric and concentric muscle contractions (Watenpaugh 

et al., 2000), both of which would benefit human performance. Repeated or 

prolonged loading of the lower limbs has been implicated in the occurrence of 

overuse injuries sustained during training for sport (Hreljac, 2004). Nielsen and 

Yde, (1989), reported that of 123 soccer players of varying levels of 

competition, lower limb overuse injuries accounted for 34% of all injuries and 

half of these were observed in the national division competition. Similar results 

were found in Swedish national division female soccer players over a season. 

Fifty players were injured and 38% were reported to be as a result of overuse 

(Soderman et al., 2001). In addition, Billinger et al., (2008b) suggested that 

exercising in an erect posture is not always feasible for those with balance 

deficiencies, poor limb control and poor postural control as well as those who 

are injured or overweight in which impact loading of tissues is undesirable. 

Exercise in a recumbent position reduces the impact loading of the lower limbs 

by supporting the mass of the individual in a seat (Hass et al., 2001 and 

Billinger et al., 2008a,b).
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Research into the effects of the recumbent position during exercise has 

mostly been performed using cycling ergometers and recumbent steppers, 

probably due to their popularity for performance and clinical testing and 

exercise prescription. Recumbent ergometry often offers an easy method of 

modifying intensity (Saitoh et al., 2005) and in some cases such as the vertical 

treadmill, the degree of recumbency can be adjusted. For athletes who are 

already injured, recumbent exercise might enable the individual to continue 

exercising and prevent loss of physical fitness that is associated with disuse 

during rehabilitation (Perell et al., 2002). Hass et al., (2001) stated that there is 

a degree of transferability of physiological adaptations from recumbent exercise 

to performance in erect postures, thus recumbent exercise might provide an 

appropriate form of cross training for a variety of sports that involve running 

over ground. The physiological and biomechanical mechanisms for the 

purported improvements in erect posture performance from recumbent exercise 

are unclear. A reason for the uncertainty surrounding the effect of posture on 

exercise and training-induced adaptations is that the research articles are often 

difficult to compare due to differences in the methods used to gather data, the 

intensity of exercise, the exercise mode, participants with different pathologies, 

the athletic ability of participants and the varying degree of recumbency. All 

these variables make it difficult to determine the true effect of recumbent 

exercise for enhancing human athletic performance. To review the effect of 

posture on the physiology and biomechanics of exercise in an effective manner, 

the literature has been grouped into four postures: erect, upright, supine and 

recumbent. The ‘erect’ posture includes standing, running over ground or on a 

conventional treadmill. The ‘upright’ posture entails seated cycling (conventional 

cycle ergometer) where the torso is positioned upright and the legs are beneath
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the torso in both situations. The supine posture infers exercise while lying down 

with the legs positioned around the level the torso. The recumbent posture 

entails exercise in a seated posture while the legs are positioned around the 

level of the hip (such as recumbent bicycling and recumbent stepping).

2.2. Physiological effects of posture

Physiological differences between erect and recumbent postures have been 

reported at rest, during exercise and recovery from exercise (Smith and 

Mathias, 1995 and Jones et al., 2004). Coonan et al., (1983) suggested that 

alterations in posture will affect the gravitational gradient experienced by body 

systems, many of which depend on gravity to function.

2.2.1. Postural effects on cardiac function

The cardiovascular system is dependent on gravity for function. In the erect and

upright postures, the longitudinal axis is parallel to the gravitational pull so blood

is drawn from the upper body to the lower extremities (Coonan et al., 1983). In

the recumbent posture and more so in the supine posture, the hydrostatic

pressure across the body is more uniform than in the erect posture resulting in

an increased venous return (Coonan et al., 1983). The increase in venous

return associated with the recumbent and supine posture affects cardiac

function by the Frank-Starling law. The Frank-Starling law is the mechanism by

which an increased end-diastolic volume preloads the cardiac walls (Takahashi

et al., 2000). In response to a greater preload, the contractility of the cardiac

musculature increases (greater amplitude and velocity of contraction) resulting

in a reduction in the end-systolic volume and an increase in stroke volume

(Elstad et al., 2009). It was hypothesised that the heightened contractility might
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provide a sufficient stimulus for a conditioning of the heart (Mohrmen & Heller, 

1997), however there is no evidence to support this. Stroke volume was 

reported to be 21-40% higher in the supine posture than the upright seated 

posture at rest (Poliner et al., 1980 and Takahashi et al., 2000). In response to 

a greater stroke volume, cardiac output (the product of stroke volume and heart 

rate (HR)) was reported to be 21% greater in the supine posture compared with 

the standing posture (Takahashi et al., 2000). Bevegard et al., (1963) reported 

that at the onset of exercise (800 kpm-min"1) stroke volume increased by 9% in 

the supine posture, whereas stroke volume increased by 48% during upright 

cycling from resting. The greater proportional increase in stroke volume in 

upright cycling was due to a lower resting stroke volume. No further increases 

were observed as exercise intensity increased to 1600 kpm-min"1, however, the 

difference in stroke volume between the postures reduced to 9 ml compared 

with 43 ml at rest (Bevegard et al., 1963). This suggested that maximum stroke 

volume was achieved in both postures at low intensity exercise and that the 

maximum stroke volume was greater in the supine posture (Bevegard et 

al., 1963). The larger contribution of stroke volume to the cardiac output means 

that the cardiac output can be maintained by a lower HR at rest (Poliner et 

al., 1980).

McGregor et al., (1961) reported that during work-matched steady-state

exercise (500 kg-mmin'1), HR was 7% lower during supine cycling than upright

cycling (120.5 vs. 128.6 beats per minute (bpm)). In agreement, Poliner et

al., (1980) reported lower HR in the supine than upright while cycling at

300 kpm-min"1 (124 ± 5 vs. 152 ± 6 beats per minute (bpm) respectively), 600-

750 kpm-min'1 (165 ± 4 vs. 169 ± 8 bpm respectively) and peak intensity cycling

(1092 kpm-min"1 vs. 946 kpm-min"1, 182 ±2  vs. 206 ± 7 bpm respectively). In
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agreement, Billinger et al., (2008a) reported lower HR during recumbent 

stepping than upright cycling exercise at the same submaximal work rate in 

healthy individuals. During maximal aerobic exercise, Billinger et al., (2008a) 

observed a 4% lower maximum HR during recumbent stepping than during 

upright cycling. When compared with the maximal treadmill running (Bruce 

protocol), the recumbent stepper exhibited a lower HRmax. (188 ±13 and 

181 ±13 bpm respectively) (Billinger et al., 2008a). Billinger et al., (2008a) 

suggested that a lower HRmax. was a result of body weight being supported by 

the recumbent stepper thus the energy demand is reduced and the subsequent 

demand on the cardiovascular system to supply 0 2 and nutrient rich blood is 

reduced.

2.2.2. Postural effects on blood pressure

The effects of posture on systolic and diastolic blood pressure are also a result

of gravity-influenced blood redistribution. Buchheit et al., (2009) stated that in

the erect posture, blood from central venous system is shifted to the lower

extremities, hence on standing the blood pressure in the feet can rise by

90 mm Hg (Levitzky, 2007). In response, sympathetic vasomotor activity

increases to preserve blood pressure in the rest of the body and is co-triggered

by the activation of postural musculature (Buchheit et al., 2009). During

exercise the muscle pump also assists the return of blood from the lower

extremities to prevent blood pooling in the upright posture (Elstad et al., 2009).

While cycling in the supine posture, maximum systolic and diastolic blood

pressure (182 ± 27 mm Hg and 88 ± 14 mm Hg respectively) was reported to be

higher than in treadmill running (167 ±27 mm Hg and 82 ±10 mm Hg

respectively), probably due to increased central blood volume (Badruddin et
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al., 1999). Saitoh et al., (2005) found that systolic blood pressure was higher 

during low intensity cycling at 15-30W in the upright posture (~130mmHg, 

-140 mm Hg respectively) than in supine cycling (-120 mm Hg, -125 mm Hg 

respectively), but this was not the case during moderate intensity cycling 

(50-70 W). Saitoh et al., (2005) did not present actual mean or standard 

deviation data, hence, values were approximated from graphs. Buchheit et 

al., (2009) inferred that the increased venous return observed while supine 

activates the baroreceptors to increase parasympathetic activity and inhibit 

sympathetic activity. As a result, vasodilation of the arteries and veins limits the 

increase in blood pressure associated with the supine posture. The research by 

Buchheit etal., (2009) refers to posture-related changes in blood pressure while 

recovering from submaximal exercise. Inferring exercise-induced blood 

pressure changes from post-exercise measures is flawed as the blood pressure 

could reduce between exercise cessation and the time of measurement, 

however, movement artefact during exercise reduces accuracy of blood 

pressure measures (Billinger et al., 2008b). Therefore, the blood pressure 

during exercise in different postures is unclear, as are the alterations in blood 

pressure during exercise in erect and recumbent posture.

2.2.3. Postural effects on pulmonary function

The pulmonary system is affected by posture, once again due to the differences

in the gravitational gradient between postures. Gravity deforms the lung due to

its own weight and alters the mechanics of lung function (Prisk et al., 2007). In

the erect posture the diaphragm is assisted by gravity to draw air in to the lungs,

thus the lung volume is increased. In the supine posture gravity does not assist

the diaphragm. Instead, the abdominal contents impinge on the underside of the
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diaphragm, thus altering the length-tension relationship of the diaphragm and 

impairing its function (Jones et al., 2004). The impingement of the diaphragm 

also reduces lung volume, incurs airway closures and coupled with an increase 

in venous return and pressure in the thoracic cavity, the vital capacity in the 

supine posture was purported to be reduced (Coonan et al., 1983). Coonan et 

al., (1983) suggested that lung volume in the supine posture can be 800 ml less 

than in the erect posture. In response to a reduced lung volume the functional 

residual capacity of the lungs was reduced by approximately 25% (Gronkvist et 

al., 2002), the expiratory reserve volume decreases and the inspiratory reserve 

volume increases when assuming the supine posture from a standing posture 

(Levitzky, 2007). In addition to changes in lung volumes, gravity-induced 

alterations in the ventilation and pulmonary perfusion rates occur between the 

regions of the lungs. The dependent region of the lung is the lowest portion of 

the lung in relation to the gravitational pull and in the erect posture it is 

characterised by a 2.5 times greater ventilation, 5 times greater perfusion and 

alveolar compliancy than the upper apical portion of the lung (Armour et 

al., 1998). It is for these reasons that the absolute gas exchange is greatest in 

the dependent region (Armour et al., 1998). As the degree of recumbency nears 

the supine posture, the gravity-influenced dependent region is redistributed to 

the posterior portion of the lung and the apical portion is repositioned anteriorly 

(Levitzky, 2007). Perfusion across the lung is more uniform and is the result of 

increased blood flow to the thoracic cavity (Coonan et al., 1983). The ventilation 

is disrupted in the supine posture by the weight of the heart, lungs and blood 

compressing the dependent region and closing airways. As a consequence, the 

ventilation-perfusion ratio across the entire lung is reduced in the supine 

posture compared with the erect posture (Levitzky, 2007). Despite the reported
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changes in the dependent and apical regions between postures, Armour et 

al., (1998) reported that the ventilatory equivalent ratio (minute ventilation 

(VE) / volume of carbon dioxide (KCO2 )) and the rate of perceived 

breathlessness did not differ between postures during a maximum rate of 0 2 

consumption test (V02max. test). However, McGregor et al., (1961) reported that 

VE (a component of ventilatory equivalent ratio) during intensity-matched 

steady-state exercise was 6.29 L-min'1 greater during cycling in the upright 

posture than in the supine posture at 50 W and 80 W and this was attributed to 

a higher respiratory frequency (27 and 22% respectively). The stimulus for the 

higher respiratory frequency in the erect and upright posture was a higher 

partial pressure of C02 (PC02), brought about by a lower cardiac output while 

the rate of 0 2 consumption (K02) remained similar between postures. A 

possible reason for the disagreement between these studies is the exercise 

intensity. Saitoh et al., (2005) found that low intensity cycling (15W and 30W) in 

the upright posture exhibited a greater VE and l^C02 than in supine cycling 

whereas differences were not observed during moderate intensity cycling (50W 

and 70W). Therefore it could be postulated that the respiratory system is 

mechanically altered by posture, however the ability of the lungs to oxygenate 

the blood is mediated by exercise intensity.

2.2.4. Postural effects on oxygen uptake

The physiology of bodily systems responsible for the delivery of 0 2 tended to 

differ between postures, however, the effect on V02 between postures is 

unclear. At rest, Jones et al., (2004) found a reduced V02 in the supine posture 

compared with the upright seated posture. The reduced V02 in the supine
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posture was attributed to a reduced myocardial 0 2 demand since the rate 

pressure product was also reduced in the supine posture and the arterial 

saturation was indifferent between postures (Jones et al., 2004). With regards 

to exercise in different postures, the degree of recumbency appears to affect 

VO2 demand. Hughson et al., (1991) found that during work-matched 

submaximal cycling (<105 W), V02 during upright cycling was higher than in 

supine cycling. When compared with work-matched submaximal cycling (65% 

of the maximum oxygen uptake (K02max.)) in the recumbent posture, upright 

cycling demonstrated similar l^02 (Ferrone et al., 2001). Research comparing 

VO2 during recumbent exercise with supine exercise would be beneficial to 

provide a comprehensive understanding of the effect of a range of postures on 

V02 during exercise. Until such time it could be postulated that V02 is greater 

during recumbent exercise than in supine since the V02 during the upright and 

recumbent exercise are similar, and upright cycling V02 is greater than supine 

cycling. A possible reason for higher V02 during upright cycling and potentially 

recumbent cycling compared with supine cycling is that the myocardial 0 2 

demand is greater as observed during rest (Jones et al., 2004).

During high intensity exercise, the K02max. was reported to be higher 

during upright cycling than supine posture (Hughson et al., (1991). Billinger et 

a/., (2008a) reported a higher treadmill running ^ 0 2max. (3.67 ± 1.07 L-min‘1) 

than recumbent stepping K02max. (3.13 ± 0.80 L-min'1). The reduced K02max. 

during recumbent stepping was attributed to body weight being supported and a 

relatively reduced muscle mass being utilised. A reduced muscle mass and 

unaccustomed exercise were reported to lead to early localised fatigue as a 

result of an increased anaerobic metabolism to meet the demand of the
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exercise (Hass et al., 2001 and Billinger et al., 2008a). This might be reflected 

in a lower onset of anaerobic metabolism (anaerobic threshold) exhibited during 

supine cycling compared with upright cycling (Armour et al., 1998). The 

participants in the study by Armour et al., (1998) were symptomatic with heart 

failure and the effect of posture on anaerobic threshold in healthy participants is 

unknown.

2.3. Biomechanics and posture

It has been suggested that differences in the physiology of exercise in different

postures will influence the performance of the neuromuscular and

musculoskeletal systems (Jones etal., 2004), thus the biomechanical profile will

also be altered. The literature comparing the biomechanical profiles of exercise

in different postures is limited. Alterations in body position were reported to alter

the relative position of body segments, thus compensatory movements brought

about by changes in muscle recruitment are to be expected (Massion, 1992).

For example, the rectus femoris crosses the hip and knee joint, hence its length

varies with respect to position of hip and knee (Maffiuletti and Lepers, 2003).

During cycling in an upright posture, the rectus femoris length was shorter than

cycling in a supine posture (Maffiuletti and Lepers, 2003). Although mediated by

contraction type and contraction velocity, the consensus is that greater neural

activation has been reported when muscle length is shorter (Babault et al., 2003

and Maffiuletti and Lepers, 2003). It was hypothesised that motor neuron firing

rate of the quadriceps might be mediated by strain receptors in the knee

ligaments and joint capsule. In a shortened position (35° knee angle), the torque

around the knee joint is reduced and consequently strain is reduced, thus less

of an inhibition of motor neuron firing rates might be observed when compared
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with longer quadriceps muscle lengths (55° and 75° knee angle) and greater 

torque (Babault etal., 2003 and Maffiuletti and Lepers, 2003).

Altered neuromuscular recruitment and musculoskeletal performance 

resulting from postural differences will induce different training stimuli and 

adaptations to physiology. Egana et al., (2010) also reported posture-related 

deviations in muscle recruitment during cycling, however, these were only 

evident during high intensity cycling rather than low intensity cycling (20 vs. 

80% peak power output). Consequently, in addition to posture, neuromuscular 

recruitment is also influenced by exercise intensity during each posture.

Stoloff et al., (2007) investigated the neural activity and kinematics during 

recumbent stepping and walking (stance phase and swing phase of walking 

compared with extension and flexion during recumbent stepping). The 

amplitude of the neuromuscular activity in the upper extremities and knee 

extensors was higher during recumbent stepping than walking. The amplitude of 

tibialis anterior and medial gastrocnemius recruitment was lower during the 

stance/extension phase of recumbent stepping than in walking. The lateral 

gastrocnemius and soleus activity was greater in the swing/flexion phase. In 

addition, the kinematics exhibited during recumbent stepping compared with 

walking was found to differ. The range of motion of the hip, elbow and shoulder 

were greater in recumbent stepping than walking. These kinematic differences 

may have been expected due to the different natures of the exercise mode. 

Despite these kinematic differences, Stoloff et al., (2007), suggested that 

recumbent stepping utilises similar neuromuscular activation patterns to 

walking. An important characteristic of exercise and rehabilitation machines is to 

activate neuromuscular pathways similar to that of the task they are designed to
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replicate, consequently Stoloff et al., (2007) recommended the recumbent 

stepper for gait retraining.

2.4. Exercise programmes and posture

The literature reviewed thus far suggests that the acute responses on assuming 

a recumbent or supine posture will reduce oxygen uptake at the lungs and 

stress the cardiovascular system which may, or may not, provide a beneficial 

conditioning mechanism and alter the muscle recruitment when compared with 

the erect posture. There have been few reports on the long-term adaptations to 

recumbent exercise programme. Loy et al., (1994) compared the effects of 

9 weeks of work-matched high-intensity treadmill running and cycle ergometry 

on treadmill y 0 2max., cycling K02peak, 1-mile running time trial and submaximal 

K02, HR and blood lactate concentration ([BLa]) in healthy young men. Training 

intensity began at 75-80% maximum heart rate (HRmax.) for 4 days a week and 

from week 3-9 the intensity increased to 80-85% HRmax. with two additional 

sessions per week of interval training at 90-95% HRmax., totalling 40-45 minutes 

of exercise per session. Both groups improved 1-mile running time trial, K 02max. 

and cycling peak V02, however, greater improvements were observed in the 

treadmill K02max. and 1-mile time trial for the running group. Loy et al., (1994) 

concluded that cycle training might be a substitute for running with relatively 

similar increases in aerobic running and cycling power.

Hass et al., (2001) exercised sedentary participants for 12 weeks on a 

recumbent stepper, 3 times per week at 50% HR reserve (difference between 

HRmax. or the measured HR and resting HR) for 20 minutes, followed by 75% 

HR reserve for 40 minutes. The programme resulted in an increased lean mass
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(1.3 kg), a reduction in body fat (6.3%), an increase in K02max. (11%), an 

increased strength as measured by leg press, chest press seated row by 1 

repetition maximum (10.8, 3 and 5.2% respectively) and strength endurance as 

measured by repeated lifts to exhaustion at 60% of the baseline 1 repetition 

maximum (55.7, 30.1 and 38.8% respectively). The same protocol performed on 

a conventional treadmill resulted in similar anthropometric and performance 

improvements to that of recumbent stepping (Hass et al., 2001), thus supporting 

the claim that a recumbent exercise programme has the potential to improve 

conventional treadmill running performance and at least to a similar standard as 

conventional treadmill or over ground training.

2.5. Energy provision for exercise

During exercise, the catabolism of adenosine triphosphate (ATP) to adenosine 

diphosphate (ADP) and inorganic phosphate releases energy to form actin- 

myosin cross-bridges, thus contracting the muscle for movement (Gollnick and 

King, 1969, and Sahlin, 1992). The ATP-derived energy also drives the release 

and uptake of Ca2+ from the sarcoplasmic reticulum, thus facilitating 

cross-bridge formation (Hargreaves, 2000).

There is a limited concentration of intra-muscular ATP (5-6 mmol-kg'1 

wet mass) that can sustain maximal activity for a few seconds of maximal 

exercise (Hargreaves, 2000). If exercise is to continue beyond a few seconds, 

more ATP has to be resynthesised at a sufficient rate to meet the demand of 

the contracting muscles. There are 3 main metabolic pathways that provide the 

energy for the resynthesis of ATP: the phosphocreatine system (PCr), 

anaerobic glycolysis and aerobic glycolysis (Gastin, 2001). The contribution of
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each energy system to the energy demand is dependent on the intensity, 

duration of the exercise and the fitness of the exerciser (Gastin, 2001). Physical 

training can improve the rate of ATP resynthesis and contribution of each 

metabolic pathway.

2.5.1. Phosphocreatine

In the presence of the enzyme creatine kinase, anaerobic catabolism of PCr in 

the cytoplasm releases an inorganic phosphate and energy (Hargreaves, 2000). 

The energy released is used to resynthesise ATP by binding the inorganic 

phosphate with ADP. PCr is an immediate energy source and was reported to 

peak within the first 5 s of sprint exercise (Smith and Hill, 1991). The power of 

PCr to resynthesise ATP means that the potential muscular power output is 

high (Gastin, 2001), hence, PCr availability is a major determinant of sprint 

performance (Maughan and Gleeson, 2004). In a single 30 s cycle sprint, the 

PCr was reduced by 80.3(1.2)% from resting values and PCr accounted for 

25-30% of the total energy supply (Bogdanis et al., 1995). Similarly, Smith and 

Hill (1991) reported a 28% contribution of PCr to the total energy expenditure 

during a 30 s cycle sprint. During a 400 m sprint, PCr decreased by 47% at 

100 m and 89% at 400 m and running speed decreased as PCr began 

availability reduced (Hirvonen et al., 1992). When sprint efforts were repeated, a 

strong correlation (r=0.71-0.86, p<0.05) was found between the percentage PCr 

replenishment and the percentage restoration of the peak power output 

(Bogdanis et al., 1995), thus highlighting the importance of recovery between 

sprints to replenish PCr for subsequent sprints. PCr was reported to be 65% of 

replenished after 90 s, rising to 85% at 6 minutes (Bogdanis etal., 1995).
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In sprints of shorter duration (6 s), PCr reduced by 57% (Gaitanos et 

al., 1993) which was less of a reduction when compared with 30 s, indicating 

that exercise duration affected the degree of PCr degradation. When a single 

6 s cycle sprint was performed, the PCr was 55% recovered by 10 s, 69% by 

30 s and 90% of resting values after 3 minutes of recovery. When short sprints 

were repeated ( 5x 6  s), the PCr recovered 27%, 45% and 84% at 10 s, 30 s 

and 3 minutes respectively. Therefore, greater depletion of PCr is achieved by 

increasing repetitions or duration of the sprint bout and this prolongs the PCr 

recovery.

PCr is a finite resource and is an inefficient method to resynthesise ATP

because 1 mol. PCr only yields 1 mol. ATP, hence sprint type activity can only

be sustained for up to 10 s after which PCr rapidly declines (Sahlin et al., 1998).

When PCr stores are near depletion, the exercise intensity has to be reduced

as more efficient but timely methods of ATP resysnthesis are employed

(Hargreaves, 2000). In addition to the depletion of PCr, other mechanisms of

fatigue have been suggested. In a review by Westerblad et al., (2002) the

accumulation of creatine was reported to have little effect on muscle

contractility. There were, however, several mechanisms where the inorganic

phosphate might depress muscle contractility. These included a decrease in the

cross-bridge force production and myofibrillar Ca2+ sensitivity, inhibition of the

ATP-driven uptake of Ca2+ (potentially resulting in an inorganic phosphate-

induced loss of Ca2+ from the muscle cell) and inhibition of the release of Ca2+

from the sarcoplasmic reticulum. Fryer et al., (1995) inferred the inhibition of the

Ca2+ release by an accumulation of Ca2+ in the sarcoplasmic reticulum from

skinned muscle fibres of the rat. Furthermore, Kabarra and Allen, (2001)

reported that in skinned cane toad muscles the Ca2+ availability was reduced in
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fatigued states. To the author’s knowledge there is no empirical evidence to 

support the inhibition of muscle contractility and force in the human muscle due 

to an accumulation of inorganic phosphates.

2.5.2. Anaerobic glycolysis

Anaerobic glycolysis is the degradation of carbohydrate (glucose) stored in the 

muscle and liver (glycogen) to pyruvic acid via many enzymatic processes. In 

the absence of oxygen the pyruvic acid is converted to iactic acid which, in turn, 

dissociates H+ ions to form lactate (Hargreaves, 2000). The net energy yield 

from anaerobic glycolysis resynthesises 2 ATP from 1 mol. of glucose.

Anaerobic glycolysis was reported to be a key factor for fatigue during 

high-intensity exercise (Bishop, 2012). In response to sprint exercise, the 

anaerobic glycolysis begins immediately at the onset of exercise as evidenced 

by an immediate accumulation of lactate (Boobis, 1987). The rate of anaerobic 

glycolysis was reported to peak at 15 s in to a sprint (Smith and Hill, 1991), 

however anaerobic glycolysis can sustain a few minutes of high intensity 

exercise depending on an individual’s fitness. The accumulation of H+ reduces 

cellular pH resulting in metabolic acidosis. Acidosis has been implemented in 

the inhibition of enzyme activity which is essential for energy production and 

consequently limits human physical performance (Sahlin, 1969).

The majority of H+ is transported away from the muscle by haemoglobin 

in the blood. Extra cellular chemical buffering by bicarbonate (forming carbonic 

acid), phosphates and protein molecules accept the excess H+ in an attempt to 

normalise pH and maintain homeostasis. At the lung carbonic acid is broken 

down into C02 and H20  with the former being expelled by the lung by an
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increased ventilation or excreted by the kidney. In contrast, the review of 

mechanisms for muscular fatigue by Westerblad et al., (2002) concluded that 

metabolic acidosis had little effect on force production during isometric activity, 

maximum shortening velocity and the rate of glycolysis. This conclusion was 

based on the work by Pate et al., (1995) who found that in skinned rabbit psoas 

muscle fibre the muscle force during a state of metabolic acidosis (pH 6.2 -  7.0) 

was reduced at 10°C, but the effect of metabolic acidosis on force production at 

30°C was insignificant (p>0.05). Westerblad et al., (1997) compared states of 

metabolic acidosis (~pH 6.9) with non-acidic conditions (pH 7.4) and the 

shortening velocity of the intact mouse muscle fibres was reduced by -20% at 

12°C, however, there was no difference in shortening velocity at 32°C (p>0.05). 

Therefore, the inhibition of actin-myosin cross-bridges in mammalian muscle 

appeared to be affected by temperature rather than metabolic acidosis 

(Westerblad et al., 1997). Bangsbo et al., (1996) investigated the rate of 

anaerobic glycolysis in the vastus lateralis during exhaustive knee extensor 

exercise (61.4 ± 3.7 W at 60 revolutions per minute) with preceding arm 

ergometry consisting of 4 x 1 minute bouts at 137 ± 3 W separated by 30 s rest 

(arm ergometry group) and without preceding arm ergometry (control group). 

The arm ergometry group exhausted earlier than the control (3.46 ± 0.28 vs. 

4.67 ± 0.55 minutes respectively), however, at exhaustion the [BLa] was similar 

between groups (26.5 ± 2.7 vs. 25.4 ± 2.4 mmolL'1) indicating the same total 

amount of anaerobic glycolysis. The rate of glycolysis was indifferent between 

the arm ergometry group and control group (8.1 ±1.2 vs. 

8.2 ± 1.0 mmol-kg'1 (wet mass)min'1 respectively) despite a greater muscle 

acidity in the arm ergometry group (pH 6.65) than the control group (pH 6.82). 

An accumulation of potassium was also observed with fatigue and was greater
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in the arm ergometer group (7.0 ± 0.9 vs. 5.4 ±1.3 mmol L'1). The physiological 

rationale for the fatiguing effect of an accumulation of potassium was unclear. In 

conclusion, metabolic acidosis is not the only mechanism for fatigue during 

intense exercise. An accumulation of potassium and inorganic phosphate have 

been identified as likely mechanisms for fatigue in high intensity exercise 

(Bangsbo etal., 1996 and Westerblad etal., 2002).

The contribution of anaerobic glycolysis to the exercise is affected by the 

duration of high intensity exercise. Over 400 m sprint, Hirvonen et al., (1992) 

reported a considerable lactate accumulation in the vastus lateralis 

(17.3 ± 0.9 mmol-kg'1), indicating a high rate of anaerobic glycolysis. Hill, (1999) 

reported that the mean anaerobic energy contributions (inclusive of PCr) for 

females performing the 400 m, 800 m and 1500 m was 62%, 33% and 17%, 

respectively. In males, the mean anaerobic contribution was 63%, 39% and 

20% respectively, indicating a gender difference, an inhibition of anaerobic 

glycolysis over time due to H+ accumulation and the increased contribution from 

other energy systems (Hill, 1999).

In the first of 1 0 x 6 s  sprints, approximately 40% of the energy was 

supplied by anaerobic glycolysis (Gaitanos et al., 1993). By the tenth sprint, 

anaerobic glycolysis contribution fell to 16.1% of the total contribution and no 

further increases in [BLa] between pre and post-sprint suggested an inhibition of 

anaerobic glycolysis (Gaitanos et al., 1993). The mean power output of the final 

sprint only fell by 27%, therefore, it was concluded that PCr and aerobic 

metabolism compensated for the inhibition of anaerobic glycolysis to meet the 

ATP demand in the latter stages of repeated sprint exercise (Gaitanos et 

al., 1993). Following a sprint bout, lactate is oxidised further and H+ is buffered.
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The longer the recovery periods between sprints, the greater the reduction of 

acidosis and thus energy production is unhindered and power output in the 

subsequent exercise can be maintained (Bogdanis, 1995). Therefore the 

contribution of the anaerobic glycolysis is dependent on the intensity of 

exercise, the duration and recovery periods between exercise bouts. The 

resynthesis of ATP for exercise beyond a few minutes of intense exercise or 

repeated sprints with insufficient recovery requires a more efficient energy 

system.

2.5.3. Aerobic glycolysis

Aerobic glycolysis begins with anaerobic glycolysis however the presence of 

oxygen prevents the transformation of pyruvate to lactic acid. Instead, pyruvate 

is converted to acetyl-Coenzyme A and is subject to oxidative phosphorylation 

in the Kreb’s cycle and the electron transport chain within the mitochondria 

(Hargreaves, 2000). The net yield of ATP from 1 mol. glucose is 38 mol. ATP, 

thus aerobic glycolysis is a relatively efficient energy system, but the rate of 

ATP resynthesis is relatively poor.

Aerobic metabolism of lipids has a much greater ATP resynthesis 

potential. Lipolysis catabolises triglycerides to free-fatty acids and Beta 

oxidation of free-fatty acids in the mitochondria produce acetyl-Coenzyme A for 

oxidative phosphorylation. The net yield of ATP varies depending on the length 

of free-fatty acid chains. As an example, palitic acid (16-carbon chain) produces 

106 mol. ATP, however, more oxygen is required for lipid metabolism (23 mol. 

0 2 for 1 mol. palmitic acid compared with 6 mol. for 1 mol. glucose) which limits 

aerobic metabolism of lipids (Hargreaves, 2000).
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Energy production from aerobic metabolism takes approximately 

2-4 minutes with PCr and anaerobic glycolysis supplying the energy in the 

meantime (Hargreaves, 2000). In contrast, Gastin, (2001) reported that aerobic 

metabolism was able to match anaerobic contributions to maximal exercise in 

1-2 minutes, most probably in 75 s, which was significantly less time than 

previously thought. The delay in aerobic ATP resynthesis was due to a delay in

0 2 uptake at the lung, delivery to the working muscles by the cardiovascular 

system and a delay in the substrate supply and subsequent metabolism in the 

mitochondria (Hargreaves, 2000). Therefore, the aerobic system is the primary 

energy system for endurance events which are characterised by prolonged, 

submaximal exercise (Carter and Jones, 2000). During simulated races over 

200, 400, 800 and 1500 m, Spencer and Gastin, (2001) reported the 

contribution from aerobic metabolism to 29 (4), 43(1), 66(2), and 84 (1)% 

respectively. Therefore, as the duration of exercise increased, the contribution 

of aerobic glycolysis increased. This was a result of PCr depletion and inhibition 

of anaerobic glycolysis, thus the aerobic system was the predominant energy 

system by 15-30 s over the 400, 800 and 1500 m (Spencer and Gastin, 2001). 

During an intense cycling protocol designed to exhaust participants in

3 minutes, high aerobic contributions of 40% were reported at 30 s and it 

continued to increase to 50% at 1 minute and 65% at 2 minutes (Medbo and 

Tabata, 1989). In contrast, Kavanagh and Jacobs, (1988) and Smith and 

Hill, (1991) found that over a 30 s cycle sprint, the aerobic contribution was 

9-19% and 16% respectively, thus aerobic energy system is a contributor but 

not the main contributor to such exercise. Differences might be attributed to the 

method of estimating aerobic contribution in such intense exercise (Smith and 

Hill, 1991) or the trained status of the participant (Granier etal., 1995).
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Aerobic glycolysis also plays a large role in supplying energy for 

repeated sprints. Bogdanis et al., (1996) reported that in the second of 2 x 30 s 

aerobic glycolysis compensated for a 41% reduction in anaerobic glycolysis as 

indicated by an increased V02 (0.49 L-min'1). Aerobic metabolism was 

estimated to provide approximately 49% of the energy in the second sprint 

(Bogdanis et al., 1996). Glaister, (2005) reported a small contribution of aerobic 

metabolism in a 6 s sprint (<10%) and when repeated (10 x6  s) Gaitanos et 

al., (1993) inferred that the aerobic contribution increased to meet the energy 

requirement in the latter sprints. Therefore, the contribution of aerobic system to 

the total energy demand is greater in repeated sprints than in single short 

sprints. No aerobic contribution data was presented by Gaitanos et al., (1993), 

an increased aerobic contribution was concluded from significant reduction in 

anaerobic glycolysis (reduced to 16% of the first sprint) and only a small 

reduction in power output (27%).

Following a sprint bout, the aerobic system is essential to the restoration 

of muscle homeostasis by replenishing ATP and PCr in the initial stages as 

indicated by elevated oxygen consumption (Glaister, 2005). A review of 

literature by Tomlin and Wenger, (2001) found that an individual’s aerobic 

fitness the aerobic system to speedily resynthesise ATP and PCr in the 

recovery phase affects the repeated sprint performance, thus emphasising the 

importance and contribution of the aerobic system to repeated sprints. 

Therefore, the contribution of the aerobic system to sprint performance is 

dependent on the intensity of exercise, duration of sprints, the number of sprints 

and the length of recovery.
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2.6. Training programmes

Training is an organised programme of exercise bouts which aim to improve 

and optimise physiological state of an individual, with a view to improving 

athletic performance (Whyte, 2006). During training, the disruption of 

homeostasis brought about by exercise alters the function, the physiologic 

responses and the adaptations of body systems to minimise the disturbance in 

future training (Whyte, 2006). The type and magnitude of the adaptations is 

dependent on the intensity, duration, frequency of training sessions and the 

recovery periods (Jones and Carter, 2000). Other factors that influence the 

design of training programmes are the specificity of the training type and 

exercise mode. Different combinations of these exercise components induce 

specific acute responses, termed the ‘training stimulus’, and eventually specific 

chronic training-induced adaptations (Hawley, 2002). Therefore the selection of 

an appropriate training programme is essential to obtain the desired outcomes.

An appropriate training stimulus can improve the maximum aerobic 

power ( l ^ 0 2m ax.) which was described as the maximal 0 2 consumption per 

minute during severe exercise (Bassett and Howley, 2000) and aerobic capacity 

which is the time to exhaustion at submaximal workloads (Blomqvist and 

Saltin, 1983). An increase in K02max. is indicative of a greater ability to 

aerobically resynthesise ATP at a higher exercise intensity and has been shown 

to be an important aspect of fitness for a variety of sports (Tanaka et al., 1986 

and Helgerud et al., 2007). For example, Helgerud et al., (2001) reported that 

endurance training improved F 02max. (58.1 ± 4.5 to 64.3 ± 3.9 ml-kg'1-min'1) and 

reported soccer performance related parameters such as the distance covered, 

frequency of sprints and mean work intensity in first and second half and in a
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match. Tanaka et a/., (1986) reported that K 0 2max. was strongly correlated with 

10,000 m (r=-0.60 to -0.85) running performance along with V02 at anaerobic 

threshold (r=-0.69 to -0.92).

A higher oxidative potential will also increase anaerobic threshold which 

was described as the intensity of exercise (work rate or V02) at which anaerobic 

metabolism is occurs (Beaver et al., 1986), hence, anaerobic threshold is 

indicative of the level of exercise that can be maintained for prolonged periods 

of time without deleterious effects of metabolites from anaerobic glycolysis (H \ 

inorganic phosphate and potassium) (Kumagai et al., 1982). Anaerobic 

threshold can be identified by the exponential increase in lactate from anaerobic 

glycolysis (lactate threshold), changes in ventilatory parameters brought about 

by anaerobic metabolism (ventilatory threshold) or cellular pH and has a strong 

correlation with athletic performance (5 km time trial, r=-0.945) (Kumagai et 

al., 1982).

Many athletes undertake sprint type activity with periods of low intensity 

exercise, such as soccer and rugby players and therefore require a degree of 

anaerobic power to maintain a high power output during sprints in addition to 

aerobic power to recover between sprint exercise (Coutts et al., 2003 and 

Bangsbo et al., 2006). Anaerobic power can be described as the total amount of 

energy produced by the anaerobic energy systems hence anaerobic power is 

moderately correlated with sprint performance (r=0.53) (Tharp et al., 1985). 

Only a moderate correlation was observed, probably because anaerobic power 

is mediated by the ability of the neuromuscular system to recruit the 

musculature appropriately during high intensity exercise. In contrast, Cometti et 

al., (2001) described anaerobic power as the ability of the neuromuscular
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system to give the largest impulse in a given, thus the neuromuscular system is 

the main determinant of anaerobic power. It could be concluded that the 

neuromuscular and anaerobic energy systems are both influential in anaerobic 

power to recruit and supply the energy for recruitment. Sinnet et al., (2001) 

reported that in trained distance runners traditional anaerobic performance tests 

including vertical jump, 50 m, 300 m and plyometric leap distance were highly 

correlated with 10 km run time with the latter two variables accounting for 77.9% 

of the run time variance. Sinnet et al., (2001) concluded that endurance athletes 

also need to supplement aerobic training with anaerobic-based exercise to 

optimise endurance performance as well as those engaging in sprint type 

activity (Bravo et al., 2008).

2.6.1. Endurance training

Traditionally, endurance training is used to improve the aerobic performance

and is characterised by prolonged single bouts of exercise lasting

5-240 minutes at 65-100% KC>2max. and is performed a few times per week

(Jones and Carter, 2000). Adaptations to endurance training concern the

delivery and utilisation of O2 and include improvements in the cardiovascular,

pulmonary and metabolic systems. Examples of aerobic adaptations to

endurance training include cardiac hypertrophy and increased left ventricular

dimension resulting in increased stroke volume, thus indicating a systemic

adaptation to improve blood the blood supply (Landry et al., 1985). Daussin et

al., (2008) found a 40 (3)% increase in capillary density in the recruited muscle,

thus improving the localised delivery of 0 2 for aerobic metabolism. Saltin et

al., (1976) suggested that aerobic training increased the percentage of type I

muscle fibres and mitochondrial density within the working muscles, thus
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increasing oxidative potential. In addition, increases in the concentration and 

activity of key oxidative enzymes such as a 25% increase in citrate synthase 

have been reported (Gorostiaga et al., 1991). After 8 weeks of endurance 

training (cycling initially 20 min, increasing by 5 minutes per week at 61% of 

peak cycling power, 3 times per week), Daussin et al., (2008) reported a 9% 

increase in V02max.■ Burgomaster et al., (2008) also found a 9% increase in 

V 0 2max. in a 6-week endurance programme (cycling for 1 hr at 65% KC>2max. for 5 

days per week). The increased V 0 2max. in a shorter programme duration could 

be attributed to a larger training stimulus for aerobic adaptation brought about 

by increasing the duration of the exercise sessions and a higher session 

frequency per week. Gaesser and Rich, (1984) compared an 18-week low 

intensity endurance programme (50 minutes at 45% K02max., 3 times per week) 

with an 18-week high intensity endurance programme (25 minutes at 80-85% 

V 0 2max., 3 times per week) and found that the V 0 2max, increased significantly in 

both groups (8.5 ml-kg'1-min'1 in the high intensity group and 6.5 ml-kg-1-min'1 

in the low intensity group), however there was no difference between groups. 

Therefore, shorter bouts of higher intensity exercise can elicit similar aerobic 

performance enhancements without having to engage in prolonged bouts of 

exercise.

Tabata et al., ( 1 9 9 6 )  reported that stressing of the aerobic energy system 

in endurance training (1 hour a day, 5 days per week) improved only aerobic 

performance ( 9 %  increase in K 0 2max ). Anaerobic performance which is key to 

many sporting activities including endurance sports was not increased, thus 

endurance training has limited adaptations and should be supplemented with 

more intense training to elicit anaerobic adaptations. In agreement, Bravo et

30



al., (2008) concluded that training should target both aerobic fitness and 

anaerobic-based repeated to improve the performance of athletes engaging in 

repeated sprint-type sports such as soccer.

2.6.2. High intensity interval training

There is a growing body of evidence suggesting that similar aerobic

performance benefits to endurance training can be achieved by performing

relatively brief, intermittent periods of exercise at an intensity that is close to or

at V0 2max. and is termed high intensity interval training (HIIT) (Gibala, 2009 and

Buchheit and Laursen, 2013). HIIT has been used for decades, predominantly

for endurance athletes (Christensen et al., 1960; Wenger and Macnab, 1975

and Cunningham et al., 1979). In elite endurance performers, Hawley et

al., (2002) reported a ‘ceiling effect’ whereby further increases in training

volume do not incur further improvements in aerobic performance. HIIT

performed at or near V02max■ induces a large training stimulus to overload 0 2

transport and utilisation systems to further aerobic adaptations and improve

endurance performance (Laursen and Jenkins, 2002). Buchheit and

Laursen (2013) suggested that nine variables can be manipulated to tailor the

training stimulus and the aerobic and anaerobic adaptations. These were the

duration and intensity of exercise, duration and intensity of recovery periods,

exercise mode, number of repetitions and sets and the duration and intensity of

between-sets recovery periods. For example, Helgerud et al., (2007) compared

2, 8-week HIIT protocols in junior soccer players. The protocols consisted of

treadmill running (inclined 5.3%) at 95% of HRmax. for 4 x 4  minutes with

3 minutes of active recovery (-70% HRmax.) and 47 x 15 s of treadmill running

(inclined 5.3%) at 95% of HRmax. with 15 s of active recovery (-70% HRmax.) for
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3 times per week each. The K02max. increased by 7.2% in the 4 x 4  minute 

group and by 5.5% in the 15 x 15 s group. Stroke volume increased by 12.5% in 

the 4 x 4 minutes group and by 10% in the 15 x 15 s group. Therefore, similar 

central adaptations were observed in shorter duration HIIT and these were, in 

part, attributed to the increased aerobic power. Buchheit and Laursen, (2013) 

reported that longer exercise bouts tended to elicit greater central adaptations 

such as the cardiac hypertrophy and resultant increased stroke volume. 

Helgerud et al., (2007) contradicted this claim since there was no difference 

between stroke volume in between the 4 x 4 minute and 15 x 15 s groups. The 

15 x 15 s protocol maintained a high cardiovascular stress (93% HRmax.) due to 

insufficient recovery between bouts, resulting in cardiovascular adaptations to 

the 4 x 4 minutes protocol.

Bravo et al., (2008) also exercised academy soccer players for

4 x 4  minutes at 90-95% HRmax. interspersed with 3 minutes of recovery (-70%

HRmax ), twice a week for 7 weeks. This protocol was compared with 3 x 6, 40 m

all-out sprints interspersed with 20 s passive recovery between repetitions and

3 minutes between the 3 sets, twice a week for 7 weeks. Both groups improved

V0 2max- (5.9%) and anaerobic threshold (3.8%) following the interventions. The

increased aerobic power and anaerobic threshold were attributed to an

increased performance in a soccer-specific fitness test (YoYo Intermittent

Recovery Test) by 12.5% in the 4 x 4  group and by 28% in the 40 m sprint

group (Bravo et al., 2008). Anaerobic performance was also improved as

evidenced by a 2.1% improvement in repeated sprint ability in the 40 m sprint

group. Such anaerobic performance improvement was not observed in the 4 x 4

minutes group. The improvement in anaerobic performance would have

facilitated the performance in the YoYo Intermittent Recovery test as it requires
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a high anaerobic contribution (Krustrup et al., 2003). Therefore short bouts of 

maximal intensity exercise provided a sufficient training stimulus to improve 

aerobic performance and improved anaerobic performance when compared 

with submaximal HIIT.

2.6.3. Sprint interval training

Sprint interval training (SIT) is characterised by repeated sprints of ‘all-out’ effort 

interspersed with recovery periods (Bayati et ai., 2011). Repeated bouts of ‘all- 

out effort’ have been used by practitioners on the vertical treadmill with a variety 

of athletes such as footballers, boxers and triathletes (from personal contact) 

where aerobic and anaerobic performance are crucial to performance (Bangsbo 

et al., 2006; Smith, 2006 and Bernard et al., 2009). SIT is associated with 

peripheral metabolic and morphological adaptations in the muscle that have 

elicited similar performance benefits to endurance training, despite different 

training stimuli (Burgomaster et al., 2008). The stress and contribution of the 

aerobic system during repeated sprints to resynthesise ATP and PCr during the 

sprint and during the recovery was reported to be high (41% contribution to 30 s 

sprint (Bogdanis et al., 1996) and 65% contribution to repeated 20 s sprints 

inclusive of 140 s recovery periods (Zagatto et al., 2011)), hence aerobic energy 

improvements were observed following SIT (Buchheit and Laursen, 2013). In 

addition, the high anaerobic and neuromuscular demands during SIT incur 

adaptations in the anaerobic performance (Dawson et al., 1998; MacDougall et 

al. 1998 and 0rtenblad et al., 2000). There are numerous SIT protocols with 

varying exercise modes, duration of sprint bouts, intensity and duration of the 

recovery periods and frequency of training sessions.
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The repetition of short duration sprints (<10 s) interspersed with relatively 

short bouts of recovery of <60 s have been reported in the literature (Dawson et 

al., 1998; Bravo et al., 2008 and 0rtenblad et al., 2000). Short sprints of <10 s 

were demonstrated to stress the PCr and anaerobic glycolysis system, whereas 

the aerobic system was stressed in the latter stages of repeated 6 s sprints 

(Gaitanos et al., 1993). More common in the literature are longer duration 

sprints of 30 s all-out cycling interspersed with 4 minutes (Burgomaster et 

al., 2005; 2006; 2007; Gibala et al., 2006, Babraj et al., 2009 and Bayati et 

al., 2011) or 4.5 minutes of passive or very light active recovery (Burgomaster 

et al., 2008; Whyte et al., 2010). Repetitions of 30 s, all-out cycling was shown 

to nearly deplete PCr stores (19.7 ± 1.2% of resting value) and have a high 

glycolytic (69.9 ±1%) (Bogdanis, et al., 1995) and aerobic (41 ± 2%) 

contribution (Bogdanis, et al., 1996), thus providing a training stimulus for both 

aerobic and anaerobic adaptations. The selection of 4-4.5 minute rest has been 

used previously as it was reported by Hultman (1967) that the total restoration 

of PCr and ATP can take between 3 to 5 minutes following a 30 s sprint. This 

estimation is debatable since it was found that following an initial rapid 

restoration of PCr (65.0 ± 2.8% of the resting value at 1.5 minutes) (Bogdanis et 

al., 1995) the rate of PCr slowed to 78.7 ± 3.3% of the resting value at 

3.8 minutes (Bogdanis et al., 1996) and 85.5 ± 3.5% of the resting value at 

6 minutes (Bogdanis et al., 1995). Therefore, near-full restoration of PCr was 

achieved in the SIT literature employing 30 s sprints interceded with 

4-4.5 minutes of recovery.

The rest periods in previous research were passive or at a very low

cadence without resistance to assist the H+ buffering, prevent venous pooling

and the associated feelings of light-headedness and nausea (Burgomaster et
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al., 2008). In these studies the number of sprints per session was four, initially, 

and in accordance with the over load principle the number of repetitions rose to 

6 (Burgomaster et al., 2008; Gibala et al., 2006 and Babraj et al., 2009) and 7 

(Burgomater et al., 2005) over the duration of the SIT programme (2-7 weeks). 

Each training session was repeated 3 times per week thus allowing 1-2 days for 

the recovery of the energy systems and for repair and adaptation of the tissues.

2.6.3.1. Aerobic performance and SIT

Dawson et al., (1998) used <10 s SIT consisting of 20-40 x 30-80 m sprints

interspersed with <60 s recovery, 3 times per week for 6 weeks. K02max.

increased by 6% and this was despite a reduction in % type I fibres which are

high oxidative fibres and 36% reduction in citrate synthase activity. Citrate

synthase catalyses the oxidation of acetyl-Coenzyme A to citrate in the Kreb’s

cycle (Wiegand and Remington, 1986), thus it is a marker of oxidative potential.

It was concluded that the participant fitness prior to the SIT protocol and that

citrate synthase might not be a limiting factors of ^ 0 2max. might have been

responsible for these findings. The 30 s SIT programme (30 s : 4-4.5 minutes)

has also been shown to improve aerobic performance. Burgomaster et

al., (2008) reported a 6.8% increase in K02max. after 6 weeks. Bayati et

al., (2011) observed a greater increase in K02max. of 9.6% after just 4 weeks and

an increased power output at K02max. (12.8%). In contrast, Creer et al., (2004)

did not find any increase in K02max. in trained cyclists following 30 s SIT

concurrently with endurance training, however this was probably due to SIT

being performed twice a week therefore the training stimulus was reduced. In

response to 30 s SIT, Burgomaster et al., (2005) reported a 100% improvement

in aerobic capacity (cycling at 80% l^02max. to exhaustion) in 2 weeks and
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Bayati et al., (2011) reported a 48.4% increase in aerobic capacity (cycling at 

yC>2max.) after 4 weeks of 30 s SIT.

There are many other adaptations that are attributable to the improved 

aerobic performance that begin within a week of engaging in 30 s SIT. 

Burgomaster et al., (2007) monitored alterations in metabolite transport proteins 

over a 6-week 30 s SIT programme and 6 weeks post-SIT. After 1 week, the 

muscle content of glucose transporter 4 (GLUT 4), cytochrome c oxidase 

subunit 4 (COX4) and monocarboxylate transporter 4 (MCT4) increased above 

baseline by -20%, -35% and -45% respectively. GLUT4 facilitates glucose 

uptake hence resting muscle glycogen is increased (Burgomaster et al., 2007). 

COX4 catalyses the transfer of electrons from the electron transport chain to 

oxygen to form water and is a regulator of oxidative phosphorylation (Li et 

al., 2006) and MCT4 transports glycolytic-induced lactic acid out of the muscle 

cell to maintain homeostasis (Fox et al., 2000). Therefore, SIT increased the 

substrate stores, increased the capacity for oxidative phosphorylation and 

improved the regulation of [BLa] to delay metabolic acidosis and prolong high 

intensity exercise after 3 sessions.

After 2 weeks of 30 s SIT, Burgomaster et al., (2005) reported 100% 

increase in the cycle endurance capacity at -80% V 0 2ma*.- In contrast to the 

research by Dawson et al., (1998) in which shorter sprint bouts of <10 s were 

used, 30 s sprint SIT increased citrate synthase activity by 38%, indicating an 

increased oxidative potential and was attributed to the 100% increase in cycle 

endurance capacity (Burgomaster et al., 2005). Burgomaster et al., (2006) 

reported changes in glycogenolysis and lactate accumulation after 2 weeks of 

SIT and a greater availability of substrate for aerobic metabolism as evidenced
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by a 50% increase in muscle glycogen stores. Pyruvate dehydrogenase, which 

catalyses pyruvate to acetyl-Coenzyme A in preparation for oxidation in the 

Kreb’s cycle in the mitochondria, increased thus enhancing the capacity for 

aerobic metabolism (Burgomaster et al., 2006). This was reflected in the lower 

[BLa] during submaximal intensity cycling indicating a reduced contribution from 

anaerobic glycolysis following SIT (Burgomaster et al., 2006).

After 6 weeks of 30 s SIT, monocarboxylate transporter 1 (MCT1) was 

found to improve by -35% thus improving the regulation of lactic acid further 

(Burgomaster et al., 2007). Also, pyruvate dehydrogenase concentration was 

found to increase (Burgomaster et al., 2005). Therefore 30 s sprints elicited 

greater oxidative enzyme activity than shorter sprints, possibly due to a greater 

aerobic demand in longer sprint bouts (Bogdanis et al., 1996). Substrate 

utilisation was also reported to be altered as a result of 6 weeks of SIT. The 3- 

hydroxyacyl-Coenzyme A dehydrogenase, which catalyses the oxidation of fatty 

acids, increased following 6 weeks of SIT resulting in an increase lipid oxidation 

during exercise (Burgomaster et al., 2008). An increased lipid oxidation reduced 

the utilisation of glycogen and PCr as reported by Burgomaster et al., (2008) 

and if coupled with an increased resting muscle glycogen of 26-50% after 2 

weeks (Gibala et al., 2006 and Burgomaster et al., 2005) the capacity for 

aerobic metabolism and exercise is increased. MCT1 and MCT4 declined back 

to baseline measures after 6 weeks of detraining, whereas GLUT4 and COX4 

adaptations were maintained (Burgomaster etal., 2007), thus demonstrating the 

reversibility of such adaptations.

The aerobic power and capacity can be improved by <10 s and 30 s SIT, 

however greater improvements have been demonstrated in the 30 s and there
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is a greater volume of research regarding this protocol. The aerobic 

performance improvements were comparable to those of endurance training 

despite a significant reduction in training volume (Burgomaster et al., 2008). 

The aerobic adaptations to SIT appeared to be focused on muscle metabolism 

rather than central adaptations observed in the longer and less intense training 

programmes of HIIT and endurance training (Buchheit and Laursen, 2013).

2.6.3.2. Anaerobic performance and SIT

Under the specificity principle, adaptations and improvements in anaerobic 

performance measures might be expected given the high intensity exercise and 

very high/exhaustive demand on the anaerobic system. In response to <10 s 

SIT, Dawson et al., (1998) reported anaerobic performance improvements of a 

2% decrease in 40 m sprint time (5.50 ± 0.05 s to 5.37 ± 0.08 s) and 6 x 40 m 

repeated sprint performance (35.66 ± 0.65 s to 34.88 ± 0.49 s). The anaerobic 

performance improvement was attributed to 9.6% increase in type II muscle 

fibres which have a strong correlation with anaerobic power as measured by 10 

m (r=-0.93) and 40 m sprint (r=-0.82) which were strengthened post SIT (40 m 

r=-0.97) (Dawson et al., 1998). Intra-muscular ATP and PCr stores did not 

change, however, phosophorylase activity increased suggesting a greater 

supply of glucose for anaerobic glycolysis in the type II fibres (Dawson et 

al., 1998).

Neural adaptations to SIT were demonstrated following <10 s SIT by 

0rtenblad et al., (2000). A 5-week SIT programme of 20 x 10 s all-out efforts on 

a cycle ergometer, separated by 50 s of recovery, repeated 3 times per week 

elicited a 12% improvement in the mean power output during a repeated sprint
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ability test (1 0 x 8 s  sprints). This was attributed to an increase in the 

sarcoplasmic reticulum volume and peak Ca2+ release following SIT. The role of 

Ca2+ is to bind with tropomyosin complexes resulting in an opening of the actin 

binding sites for muscle contraction to occur. An increased Ca2+ availability 

reduces the likelihood of neural fatigue being a limiting factor on performance. 

0rtenblad et al., (2000) inferred that the increased Ca2+ activity could be due to 

an increased proportion of type II muscle fibres following SIT. Neural 

adaptations were also observed in the 30 s cycling SIT devised by Creer et 

al., (2004). The root mean square of the vastus lateralis neural activity 

increased by 28% indicating an improved motor unit activation following a 

4-week 30 s SIT programme.

Anaerobic performance improvements were also observed after 

30 s SIT. After 2 weeks, Burgomaster et al., (2006) and Whyte et al., (2010) 

reported increases in the peak power in a Wingate anaerobic cycle test of 5.4% 

and 8% respectively. Burgomaster et al., (2006) reported that after 2 weeks the 

muscle glycogen stores increased by 50% thus greater substrate availability for 

anaerobic glycolysis was evident. Such improvements in anaerobic 

performance parameters have not always observed. For example, Parra et 

al., (2000) found that there was no change in anaerobic capacity after 2 weeks 

of SIT. Burgomaster et al., (2005) suggested this might be due to programme- 

induced fatigue, which highlights the importance of a sufficient recovery 

between SIT sessions.

After 4 weeks of 30 s SIT performed 3 times a week, Bayati et al., (2011) 

reported a 10.3% increase in power output and a 17.1% increase in mean 

power output in a Wingate anaerobic cycle test. Creer et al., (2004) reported a
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6% increase in peak power output, mean power output and total work 

performed during an aerobic cycling test (4 Wingate anaerobic tests separated 

by 4 minutes of recovery) after 4 weeks of 30 s SIT performed twice a week in 

conjunction with endurance training. The increases in power and work coincided 

with a 15.5% increased [BLa] (15.5%, Bayati et al., 2011), indicating an 

increased contribution from in anaerobic glycolysis (Creer et al., 2004, Bayati et 

al. 2011). An increased [BLa] suggests that the associated H+ accumulation 

was being buffered, thus resisting the disruption to homeostasis and muscle 

function. Gibala et al., (2006) inferred from pH measurements that buffering 

capacity improved by 7.6% after 2 weeks of SIT (6 sessions) which reduced a 

50 and 750kJ time trial performance. A greater buffering capacity increases the 

intensity of exercise that can be sustained before the accumulation of H+ 

induces metabolic acidosis and fatigue. The exact reasons for increased 

buffering capacity, whether it was increased bicarbonate, phosphate and/or 

plasma protein concentration was not mentioned by Gibala et al., (2006). The 

improvement in buffering capacity of musculature following SIT was not 

observed following endurance training (Sharp et al., 1986).

Both <10 s and 30 s SIT have been shown to demonstrate some neural, 

metabolic and morphological adaptations that might facilitate anaerobic 

performance. Adaptations occurred in a relatively short time frame (within 4 

weeks of SIT) and such anaerobic performance measures have not been 

demonstrated in endurance training (Sharp etal., 1986 and Tabata et al., 1996).
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2.7. Measures of physiological function

The assessment of physiological function can be used to quantify the fitness of 

an individual and to demonstrate the efficacy of a training intervention. Also, 

physiological function could be used to describe the demands of a particular 

exercise and inform the prescription of training programmes (ACSM, 2000). 

There are many measures and tests of physiological function available.

2.7.1. Heart rate

As exercise intensity increases, the blood flow to the active muscles increases 

to deliver 0 2, nutrients and remove metabolites. The required blood flow 

(cardiac output) is dependent on the stroke volume and HR (Saltin et al., 1998). 

Therefore, HR is an indicator of the cardiovascular stress brought about by 

metabolic changes during exercise (Kilpatrick et al., 2009). HR is highly 

correlated with exercise intensity (Karvonen and Vuorimaa, 1988) and so it is 

often used to prescribe exercise intensity when expressed as a percentage of 

an individual’s maximum HR (HRmax.) (Tanaka et al., 2001). A strong linear 

relationship (r=0.99) was reported between HR and exercise intensity (VO2), 

however, linear relationship was only evident in submaximal exercise of 

120-170 bpm (Hale, 2008). A non-linear, asymptotic HR response was found at 

maximum exercise intensity (Kinfu et al., 2011) thus limiting the use of heart 

rate as a measure of intensity during maximum intensity exercise.

The age-predicted maximum (220-age) was first cited in 1970’s (Fox et 

al., 1971), however it was not based on original research but data from 

published and unpublished research therefore it is not and has been highly 

debated. Several prediction equation of HRmax. have been proposed for various
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age groups. For example, Tanaka et al., (2001) developed an age-predicted 

equation based on the mean HRmax. from 351 research articles of various 

populations (208 -  0.7 x age) and cross-validated the equation with laboratory- 

based HRmax. determined from 514 healthy participants (209 -  0.7 x age) and 

found a strong correlation between the HRmax. measures (r= -0.9). In contrast, a 

review of age-predicted HRmax. by Robergs and Landwehr (2002) concluded 

that the majority of age-predicted HRmax. equations exhibited large prediction 

errors (<10 bpm) and should be used cautiously.

HR can be measured by electrocardiogram (ECG) which is a noninvasive 

method that measures the neural impulses of cardiac muscle (Blackburn et 

al., 1960). Yu et al., (2006) reported that heart rate can be reliably determined 

from the waveforms of ECG using automatic detection algorithms (92% 

agreement) when compared with HR determined by expert ECG researchers. 

Telemetric HR monitors and corresponding watches can also be used to 

monitor HR out in the field. A review by Laukkanen and Virtanen, (1998) 

concluded looked at many commercially available HR monitors and concluded 

that HR monitors can correlate well with ECG (correlation coefficient of 0.97 - 

0.99) and therefore provide are an accurate and valid method of monitoring and 

recording HR in the field. Furthermore, time-domain variability of Polar heart 

rate monitors using a T31 was reported to be very good (ICC 0.74 -  0.98) (Guijt 

et al., 2007).

2.7.2. Lactate accumulation

As exercise intensity increases, the contribution from anaerobic glycolysis 

increases. Anaerobic glycolysis produces lactate and therefore the
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measurement of lactate is an indicator of the anaerobic stress at a given 

exercise intensity (Pyne et al., 2000). Lactate accumulation can be measured 

by muscle biopsy or by blood sample (Goodwin et al., 2007). Muscle biopsy 

technique is complex and requires a local anesthetic, the removal of muscle 

tissue by a suitably qualified person, the sample is frozen in liquid nitrogen and 

subject to chemical analysis (Sahlin, et al., 1976). It is important that this 

procedure is performed as quickly as possible because the lactate might be 

oxidised or converted to glucose between sampling and analysis. The validity of 

determining the anaerobic activity from the muscle biopsy technique is 

questionable because the active muscles during the exercise have to be 

identified it does not account for the lactate that has been released into the 

blood, thus underestimating the anaerobic activity.

Another method requires the sampling of blood (-25 pi) by finger pricking

at the end of each stage of exercise an incremental exercise test. The blood

can be subject to enzymatic spectrophotometer, lactate dehydrogenase or

lactate oxidase electrode analysis. All methods have been shown to provide

measures of [BLa] with very high instrument and intra-investigator reliability

(r = 0.99) (White et al., 2009). Although highly reliable measures have been

demonstrated the validity of [BLa] measures is questionable. After intense or

exhaustive exercise, lactate in the muscle was reported to be 2-3 times higher

than [BLa] (Sahlin, et al., 1976). This could be a result of a time-delay exists

between the production of lactic acid at the muscle and the detection of lactate

in the blood due to non-readily diffusible lactate across muscle fibre

membranes. The diffusion of lactate into surrounding tissues reached

equilibrium between 3-8 minutes post-exercise, thus the timing of sampling is

critical to the observed [BLa] (Goodwin et al., 2007). Goodwin et al., (2007) also
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reported that the oxidisation of lactate by other tissues with high oxidative 

potential such as the heart or the regeneration of the lactate to glycogen at the 

liver means that the [BLa] sampled is not necessarily that produced during the 

exercise. Therefore, [BLa] sampling is merely an estimate of anaerobic 

metabolism during incremental exercise.

Lactate accumulation has been used to monitor glycolytic activity, assess 

exercise performance (Gollnick et al., 1986 and Pyne et al., 2000) and identify 

lactate threshold which has strong correlation with athletic performance (Pyne 

et al., 2000). The mathematical or visual analysis of the [BLa]-intensity 

relationship during the steady-state incremental exercise test can be used to 

determine the inflection point whereby lactate increases exponentially, thus 

indicating lactate threshold. In exercisers who are free from metabolic disorders, 

lactate threshold coincides with anaerobic threshold (Wasserman, 1987). Visual 

examination of the [BLa]-intensity relationship is subjective and the inflection 

point indicating lactate threshold might not be obvious since some researchers 

suggested that the relationship is smooth monotonically increasing function 

(Hughson et al., 1987). An objective measure of lactate threshold is the use of 

Lactate-E software advocated by Newell et al., (2007) which uses linear splines 

and the ‘broken stick’ regression model to determine the intensity at which 

lactate threshold occurred.

Another method of assessing the glycolytic changes is the determination 

of the intensity of exercise at which the onset of blood lactate accumulation 

(OBLA) occurs. Tokmakidis et al., (1998) reported that consistent use of 

arbitrary points on the [BLa]-intensity relationship curve can be used as a 

performance index for glycolytic activity. Fixed arbitrary [BLa] values for OBLA
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of 2 and 4 mmol-L'1 are often used to standardise comparisons of [BLa] (Heck 

et al., 1985). Aunola and Rusko, (1984) reported that an OBLA of 2 mmol-L'1 

was indicative of an initial [BLa] elevation (lactate threshold). Heck et al., (1985) 

and Chicharro et al., (1999) reported that an OBLA of 4 mmol-L'1 is indicative of 

maximum lactate steady-state (MLSS). MLSS was described as the highest 

steady-state exercise where there were no further increases [BLa] i.e. lactate 

production and lactate elimination are in equilibrium (Beneke and Von 

Duvillard, 1996 and Dekerle et al., 2003), therefore, 4 mmol-L'1 is a good 

indicator of endurance performance (Chicharro et al., 1999). Visual inspection 

of the intensities at which the OBLA 2 and 4 mmol-L'1 occurred can be 

performed but objective measures can be achieved using the Lactate-E 

software that uses inverse predictions of [BLa] to calculate the work rate that 

corresponds to the specified fixed [BLa] (Newell et al., 2007).

2.7.3. Pulmonary gas exchange

The analysis of pulmonary gases and ventilatory changes in response to 

exercise is a non-invasive method of estimating aerobic and anaerobic 

parameters during exercise.

2.7.3.1. Measurement of aerobic power

Indirect estimates of aerobic power (K02max.) exist, many of which are used to 

estimate K02max. with simple equipment and can be performed out in the field 

rather than in a laboratory. Indirect measures apply generic equations to 

performance measures (Safrit and Wood, 1986) such as the extrapolation of 

submaximal heart rate to estimate K02max. in the Astrand-Rhyming test
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(Astrand, 2003). The accuracy of such measures is questionable because the 

equations or nomograms are based on general populations, not the individual 

and their response to submaximal exercise (Safrit and Wood, 1986). Hence, 

Sady et al., (1988) reported the Astrand overestimated K02max. by 9.0 (19.4%) 

whereas Gonzalez & Carrasco, (1989) reported a 20.3 (7.2)% underestimation

of V0 2max.-

A more accurate measure of K02max. is to analyse inspired and expired 

air for the 0 2 and C02 composition while exercise intensity is increased 

gradually until volitional fatigue (Poole et al., 2008). The Douglas bag method is 

the ‘gold standard’ in which expired air is collected for an allotted time and the 

V02 is calculated from the composition of gases in the sample (Archer and 

Coulson, 2009). The Douglas bag method has been used to assess the 

accuracy of modern online systems (Lucia et al., 2008 and McLaughlin et 

al., 2001). Online systems analyse V02, among other respiratory markers, on a 

continuous breath-by-breath basis and can provide valid and reliable measures 

when compared with the Douglas bag method (p<0.05) (McLaughlin et al., 2001 

and Lucia etal., 2008).

The advent of breath-by-breath online gas analysers has allowed K02max. 

to be determined from continuous incremental exercise protocols, rather than 

discontinuous series of constant work rate bouts that preceded them (Yoon et 

al., 2007 and Poole et al., 2008). Cooper et al., (2009) compared the reliability 

of 6 commercially available breath-by-breath online systems on a test-retest 

basis and reported unsatisfactory reliability (coefficient of variation of 4.8- 

10.9%). The poor reliability of the online systems contradicts the good reliability 

reported by McLaughlin et al., (2001) and Lucia et al., (2008) when compared
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with Douglas bag method and could be a result of considerable biological 

variance and specific to the research environment and facility.

Continuous incremental protocols typically increase the work rate as a 

function of time until volitional fatigue (Poole et al., 2008). Astorino et al., (2004) 

reported that optimal K02max. scores from continuous protocols were achieved 

when volitional fatigue was reached within 7-10 minutes and also reported that 

longer protocols >13 minutes significantly reduce K02max. and HRmax. measures. 

A review of K02max. measures by Millet et al., (2009) found that the direct 

V0 2max. measurement is specific to the exercise mode being used since runners 

tended to achieve higher F 0 2max. on a treadmill than on a cycle ergometer. It is 

recommended that the exercise mode in a K02max. test should allow rhythmic 

exercise and involve large muscle groups to increase the number of active 

mitochondria, thus maximising K02max.. The K02max. tests that do not utilise 

large muscle groups are subject to localised muscular fatigue and early 

cessation of exercise prior to maximal cardiorespiratory and oxidative stress 

(Billinger et al., 2008a).

Increments in exercise intensity of running can be achieved through 

increasing in the speed or gradient of a treadmill. St Clair-Gibson et al., (1999) 

did not demonstrate any difference in the K02peak between an incremental 

speed protocol (1 km h'1) and incremental inclination protocol (1°-min'1), 

however, HRmax. was lower in the inclination protocol indicating that the 

cardiovascular stress was not maximal in this protocol and therefore increments 

in speed are preferred.
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Midgley et al., (2007) reported considerable variation in the literature 

regarding the criteria for establishing for l /0 2max., many of which are not reported 

(62% from 4 prominent sport science and applied physiology between 2005 and 

2006), thus invalidating comparisons across research articles and highlighting 

the requirement for a standardised criteria for establishing true K02max.- The 

British Association of Sport and Exercise Sciences (BASES) published criteria 

for the establishment of K02max.- The BASES (1997) criteria include a plateau in 

the V02-intensity relationship, HR within lObpm of the age-predicted H R max. 

(220-age), a respiratory exchange ratio of 1.15 and volitional fatigue was 

achieved as indicated by an RPE of 19-20. It was stated previously that the 

previously stated, the appropriateness of HRmax. (220-age) was questionable 

and the potential errors associated with respiratory exchange ratio and rate of 

perceived exertion will be discussed later. The plateau has been defined as a 

reduced or no increase in the l/0 2-intensity relationship (BASES, 1997). A 

reduction in the K02-intensity relationship suggests that the rate of V02 has 

slowed, not necessarily that the maximum was reached (Midgley et al., 2007). 

Therefore the cessation of exercise might be related to volitional fatigue or effort 

from the participants. The achievement of a true K02-intensity relationship is 

seldom the case. St Clair-Gibson et al., (1999) reported that only 50% of the 

participants exhibited a true plateau. If a plateau is not observed, K02peak is 

established, however, the terms have been used as synonyms incorrectly 

(Midgley et al., 2007).

Midgley et al., (2007) advocated the employment of a verification bout in 

which participants undertake a supramaximal constant speed run to exhaustion 

performed after the incremental K02max. test. If the of V02 exhibited in the
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verification bout was within the tolerance of measurement error (-2%), of 

V 0 2max. was observed. Despite the concerns over aspects of the criteria for the 

determination of KC>2max. the criteria are still used in laboratories (although under 

reported in the literature) and until the criteria has been fully debated and a 

standardised criteria is established the BASES (1997) criteria will suffice.

2.7.3.2. Ventilatory threshold

Ventilatory threshold (TVent) can be indicative of anaerobic threshold in those 

free from metabolic disorders (Wasserman et al., 1973). TVent is indicated by 

an abrupt increase in pulmonary ventilation (KE) as metabolic acidosis from 

anaerobic metabolism stimulates the carotid che mo receptors and consequently 

the CO2 is ‘blown off’ (Powers et al., 1983 and Carey et al., 2005). Beaver et 

al., (1986) suggested that the VE increase might not be a result of metabolic 

acidosis. Other reasons for an increased VE include changes in posture 

(McGregor et al., 1961 and Saitoh et al., 2005) and biochemical activity such as 

changes in epinephrine and norepinephrine (Whelan and Young, 1953), 

therefore using VE alone to determine TVent is questionable. Also the reliability 

of the VE method was the lowest of available methods of determining TVent 

(r= 0.732) (Carey eta!., 2005).

More common methods of determining TVent include the excess VC02,

ventilatory equivalent and V-slope method. Excess VC02 method measures the

1/C02that is ‘blown off’. The exercise intensity at which VC02 continues to rise

above steady-state signifies TVent (Gaskill et al., 2001). The ventilatory

equivalents method of determining TVent requires the ventilatory equivalents for

oxygen (KE / V02) and carbon dioxide (KE / FC02) to be plotted against
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exercise intensity. The exercise intensity at which VE / V02 increases and is 

unparalleled by VE / VC02 represents anaerobic threshold (Gaskill et al., 2001). 

The V E / V 0 2 ratio increases as a result of the increased VE without any 

discernible increase in the V02 demand at that exercise intensity. The 

VE / VC02 ratio is unchanged at anaerobic threshold because both VE and 

VC02 are increasing simultaneously (Beaver et al., 1986). Although the 

ventilatory equivalents method also relies on metabolic acidosis being the 

driving force behind the increased VE (Beaver et al., 1986), it was reported to 

be reliable at estimating anaerobic threshold (r= 0.933) (Carey et al., 2005).

In contrast to Carey et al., (2005), Shimizu et al., (1991) advocated the 

V-slope method as the most was reliable method of identifying TVent. The 

V-slope method was developed as it identifies TVent without using VE. In the 

V-slope method, the l/C 02 is plotted against V02 and the exercise intensity a 

breakpoint in the relationship is observed denotes TVent. Beaver et al., (1986) 

devised a computerised regressional analysis algorithm which expresses the 

VCO2 as a fraction of V02 and detects a transition in the VC02/V02 relationship. 

The exercise intensity at which the transition occurs is indicative of the TVent 

(Beaver et al., 1986). At times, the identification of the TVent cannot be made 

solely based on one method due to erratic or unclear alterations in the 

respiratory data (Gaskill et al., 2001). In the majority of cases this can be 

resolved by combining the 3 methods to determine TVent. When the methods 

were combined, the reliability of identifying TVent was reported to have an ICC 

of 0.85 (Shimizu et al., 1991).
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2.7.3.3. Respiratory compensation point

Respiratory compensation point (RCP) is the second inflection point in the 

V E I V 0 2 relationship. Meyer et a/., (2004) reported that the physiological 

meaning of RCP was unclear, but it was associated with the exercise intensity 

above TVent at which the buffering systems become unable to buffer H+, as 

well as muscle sensory afferents. Increases in exercise intensity above TVent 

induce a steeper increase in the VE / V02 relationship. This results in a 

hyperventilation-induced reduction in the PC02 in the expired gases to limit the 

metabolic acidosis during high intensity exercise. Therefore, the V02 at which 

VE / V 02 increases and end tidal PC02 plateaus and then decreases is 

indicative of the respiratory compensation point (Takano, 2000). The plateau in 

PC02 observed between TVent and respiratory compensation point 

demonstrates isocapnic buffering. Therefore, RCP represents the highest 

exercise intensity in which the respiratory system can maintain a physiological 

steady-state (Wasserman et al., 1973).

2.7.3.4. Respiratory exchange ratio

Respiratory exchange ratio is the ratio of VC02l V02 and gives an indication of 

the whole body substrate utilisation during steady-state exercise 

(Ramos-Jimenez et al., 2008). The quantity of 0 2 required to metabolise 

substrates is proportional to the number of carbon-chains in the substrate. 

Glucose is a 6-carbon chain and therefore requires 6 mol. 0 2 to be fully 

metabolised, hence the RER value is 1.0. Free fatty acids have more carbon- 

chains than carbohydrate and therefore more 0 2 is required to metabolise 

lipids, consequently, the RER for lipid metabolism can be lowered to 0.7. An
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RER of above 1.0 is indicative of anaerobic metabolism as the VC02 from 

anaerobic metabolism increases. During submaximal exercise, there was large 

inter-individual variability in RER measures reported by Ramos-Jimenez et 

al., (2008) (RER 0.718-0.927). Many factors have been reported to affect the 

RER. Trained endurance athletes exhibited a lower RER (-10%) during 

exercise above lactate threshold, at lactate threshold and below lactate 

threshold than untrained males. The difference was attributed to a greater 

oxidative potential of the trained group (Ramos-Jimenez et al., 2008). The 

consumption of high fat foods or carbohydrate-rich foods affected the availability 

and metabolism of substrates, thus affecting the RER (Bergman and Brooks, 

1999). Goedecke et al., (2000) also reported that major determinants of RER 

were muscle glycogen content, proportion of type I muscle fibres and substrate 

availability (adjusted ^=0.59, P<0.001). It was also found that determinants of 

RER differed with respect to exercise intensity. At 25% peak cycling power, 

blood substrates were the major determinant of RER. At 50% peak power 

output, muscle substrate and glycolytic enzyme activities were the major 

determinant of RER and at 70% peak power lactate accumulation was the 

determining factor (Goedecke et al., (2000). Therefore the measurement of 

RER from pulmonary ventilatory data is useful but can be subject to large 

variability (Ramos-Jimenez et al., 2008).

2.7.4. Measurement of anaerobic power

An athlete’s anaerobic power is the total amount of energy produced by the

anaerobic energy systems. Anaerobic power is influenced by many factors

including metabolic pathways to resynthesise ATP, muscle fibre type, metabolic

pathways, buffering capacity and the ability of the neuromuscular system to

52



recruit musculature appropriately during such high intensity exercise (Rusko 

and Nummela, 1996). Measurement of an individual’s anaerobic power can be 

achieved directly and indirectly. The direct measure of anaerobic power 

requires a muscle biopsy to be taken pre and post high-intensity exercise. 

Changes in the concentration of ATP, PCr and lactate between the biopsies can 

be used to quantify anaerobic activity during the high intensity exercise 

(Goodwin et a/., 2007). Winter and McLaren, (2009) identified limitations of the 

muscle biopsy technique. Firstly, the removal of muscle tissue during a biopsy 

might leave the participants with bruising and pain. Also, speed is required 

when taking and freezing the biopsy in liquid nitrogen as the resynthesis of 

ATP, PCr and an elimination of lactate might occur in the meantime. The 

measure of anaerobic power via muscle biopsy is specific to the site of the 

biopsy and is not representative of anaerobic power of the working muscle 

group or body as a whole. Finally, the muscle biopsy technique only considers 

the concentration of lactate in the biopsy and does not account for the 

preceding release of lactate into the blood, thus the anaerobic power might be 

underestimated (Winter and McLaren, 2009).

Indirect measures offer estimations of anaerobic power exist that attempt 

to maximally stress all the determinants of anaerobic power. It is for this reason 

that a plethora of anaerobic tests exist such as Margaria stair sprint test, 

Wingate anaerobic test, vertical jump and long jump. None of these tests stress 

all the determinants of anaerobic power and lack specificity to athletes 

competing in sports where over ground running is the main mode of exercise.
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2.7.4.1. Maximal accumulated oxygen deficit (MAOD)

Anaerobic running power is commonly measured by Maximal Accumulated 

Oxygen Deficit (MAOD) (Bosquet et al., 2008). In the MAOD, the oxygen deficit 

of high-intensity exercise is predicted from the extrapolation of the linear 

V"02max-intensity relationship. The assumption that the ^02-intensity relationship 

is linear is debatable since the V02 consumption does not accurately reflect the 

oxygen demand of the exercise during high intensity exercise (Hill and Vingren, 

2011). Instead it was reported that the F 0 2-intensity relationship is curvilinear 

during running, therefore anaerobic power might be underestimated using the 

MAOD method (Hill and Vingren, 2011). In addition, Noordhof et a/., (2010) 

reported that the K02-intensity relationship appears to be dependent on the 

number, duration and intensity of the submaximal exercise bouts, thus the 

MAOD scores can varying depending on the selected submaximal exercise 

protocol. Despite these reservations the reliability of the MAOD in terms of CV% 

and ICC (6.8% and 0.91, respectively) deemed the MAOD as reliable, however 

large 95% limits of agreement (0±15.1 ml 0 2) indicated large variability and 

deemed the MAOD as unreliable (Doherty et al., 2000). Therefore the reliability 

of the MAOD is questionable and so the MAOD is not a fully defensible method 

to determine anaerobic power (Noordhof et al., 2010).

2.7.4.2. Maximal anaerobic running test (MART)

A maximal anaerobic running test (MART) has been devised which was 

purported to give a comprehensive description of the metabolic and 

neuromuscular demands of anaerobic power (Nummela et al., 1996). In 

essence, the MART consists of 20 s runs on a conventional treadmill (with an
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additional 3 s acceleration phase) with a 100 s passive recovery between runs. 

Maximum running power is determined by calculating the 0 2 equivalents. 

Similar to MAOD calculation, the MART also assumes a linear K02-intensity 

relationship, however, the MART was reported to correlate well with anaerobic 

performance measures such as the 400 m run time (r=0.90, p<0.001) (Rusko et 

al., 1993). Also Nummela et a/., (1996) reported that the reliability of the 

maximal running power during the MART was high (r=0.92, p<0.001).

As a measure of anaerobic running performance, the energy supply for 

the MART must be from the anaerobic energy systems if the test is to be a valid 

test. Nummela et al., (1996) reported that the anaerobic contribution was high 

with a mean anaerobic contribution of 68%, ranging from 64% to 72% during 

the 20 s exercise intervals. Zagatto et al., (2011) reported that during the 20 s 

exercise intervals the ATP-PCr energy system was the main energy system 

(73.5 ± 1.0%). During the entire MART (inclusive of the recovery periods) the 

aerobic glycolysis system, anaerobic glycolysis system and ATP-PCr system 

contributed 65.4 ±1.1%, 29.5 ±1.1% and 5.1 ±0.5%, respectively (Zagatto et 

al., 2011).

There are discrepancies in the MART protocols reported in the literature 

regarding the inclination of the treadmill and the running speeds. In the interest 

of specificity, a treadmill inclination of 1% should probably be used in athletes 

engaging in sport where over ground running is prominent as it most accurately 

represents the physiological demands of over ground running (Jones and 

Doust, 1996). However, treadmill running above 1° inclination, more specifically, 

4° and 7° has been shown to elicit a greater maximum running power as 

indicated by higher MART scores (Nummela et al., 1996). Also, Nummela et
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al., (1996) reported that [BLa] was higher in the MART at 4° and 7° inclination of 

the treadmill than 1° inclination which suggests that the lactic acid capacity was 

not stressed to its potential in the lower inclinations. The higher [BLa] and 

maximum running power indicate that the anaerobic metabolism is higher 

during 4° and 7° inclined running and probably accounts for the lower maximum 

velocities exhibited compared with running at 1° inclination. Lower maximum 

running velocities in the 4° and 7° present less of an injury risk and therefore 

MART protocols utilising inclined running above 1° are preferred.

The incline of the treadmill might also influence the prescribed initial 

running speed and the increments in speeds between each 20 s bout of a 

MART protocol. The initial running speed in the MART protocol described by 

Maxwell and Nimmo(1996) was 14.3 km-h'1 and increased by 1.2 km-h'1 per 

bout while the treadmill inclination was 10.5%. While developing a track version 

of the MART, Nummela et al., (2007) employed an initial running speed of 

17.1 km-h'1 for male athletes and 14.18 km-h'1 for female athletes on the 

treadmill. Regardless of gender, the treadmill inclination was 5.2% and the 

speed increments were 1.48 km-h'1. Sprint times on the track were slower in the 

females, possibly due to a lower trained status and this was reflected in the 

lower initial speed compared with the males (3.94 m s'1 vs. 4.75 m s'1). The 

faster running speeds and greater speed increments performed by male 

athletes in the Nummela et al., (2007) study might compensate for the lower 

treadmill inclination than Maxwell and Nimmo(1996), thus ensuring that the 

exercise intensity is great enough to predominantly stress the anaerobic 

systems. Therefore, the initial speed and increments in speed for a MART 

protocol must take into consideration the effect of the treadmill inclination and 

the trained status of the participants.
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Some MART protocols have employed counter-movement jumps 

between each 20 s run to assess the muscular force capacity and fatigue of the 

neuromuscular system between bouts. The inclusion of counter-movement 

jumps between bouts was reported to affect the development of fatigue and 

maximal running power (Nummela et al., 1996). Also, the retest correlation of 

the difference in counter-movement jump heights between each 20 s bout was 

reported to be poor (Rusko and Nummela, 1996). Rusko and Nummela (1996) 

suggested that the time taken to perform countermovement jumps after 

volitional fatigue (15-35 s) allows for substantial recovery of the neuromuscular 

system and thus does not provide an accurate measure of neuromuscular 

fatigue or muscular force capacity. Therefore it was suggested that the MART 

protocol may include countermovement jumps, however, they are of 

questionable reliability and should only be performed pre and post MART as a 

measure of the neuromuscular performance.

2.7.5. Rate of perceived exertion

The rate of perceived exertion (RPE) is a subjective estimate of exercise

intensity that integrates many of the signals of the body during exercise (Chen

et al., 2013). Exercisers are required to assign a number ranging from 6-20 on

the Borg RPE scale (Appendix 6) that represents the sensation of the amount of

work being undertaken (Morgan, 1973). It is widely accepted as a means of

assessing and regulating exercise intensity in different populations and

situations (Eston and Conolly, 1996). The subjective nature of the RPE scale

was suggested to be affected by psychological factors such as anxiety

(Morgan, 1973), however, RPE has been shown to be reliable and have a

strong correlation with other objective measures of exercise intensity. During
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submaximal cycling, a strong correlation between RPE (RPE 9, 13, 15, 17), 

heart rate, and work rate (r=0.96 - 0.99) was found (Eston and 

Thompson, 1997). During stationary running in water at different cadences, 

relationships between RPE and HR (r=0.65; p<0.001), %HRmax. (r=0.65; 

p<0.001), V02 (r=0.60; p=0.001), K C W  (r=0.71; p<0.001) and VE (r=0.77; 

p<0.001). No relationships were found between RPE and neuromuscular 

recruitment therefore it was concluded that RPE shared an association with 

cardiorespiratory responses (Alberton et al., 2011). Eston and Williams (1988) 

reported that the reliability of RPE measures is between exercise perceived as 

‘very light’ and ‘somewhat hard’ exercise (RPE 9 and 13 respectively) was good 

(r=0.83 and r=0.94 respectively) but higher reliability was exhibited during 

harder exercise (RPE 17) (r>0.92) indicating that participants need to be 

accustomed to using the RPE at lower intensity exercise.

2.8. Biomechanical measures

2.8.1. Measurement of kinematic variables

2.8.1.1. Videography

A common method of determining kinematic variables is the digitisation of

2-dimensional (2-D) video data. Digitisation is the conversion of individual 

images to digital data to identify coordinate (x and y) positions of anatomical 

landmarks and joint centres from which body segment position, velocity or

3-point joint angles can be determined (Wilson et al., 1999). In 2-D video 

digitisation, the accuracy of experienced researchers can be as low as ± 1° 

during frame-by-frame manual digitisation (Wilson et al., 1999), however it is
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time-consuming (Davis et al., 1991). Some digitisation software offer automatic 

marker tracking that can speed up the digitisation process but at the expense of 

accuracy. Accuracy is reduced when analysing rapid movements that are too 

quick for the hardware to capture effectively and when markers are obscured by 

limbs (Wilson et al., 1999). Common sources of error in videography include 

subjective identification of joint centres, movement of high contrast markers on 

the skin during exercise, perspective error (apparent change in the length of an 

object due to changes in the perpendicular distance of objects to the camera), 

parallax error (apparent shift in objects position due to a change in the angle of 

the observation) and misalignment of the superimposed crosshair with the 

markers during the digitisation process (Grimshaw et al., 2007). Multiple video 

cameras can be used to obtain 3-D kinematic data, however, the sources of 

error can be multiplied (Bartlett et al., 2006).

2.8.1.2. 3-D optical motion analysis

Three-dimensional optical motion analysis is another common method for

determining kinematic variables. 3-D optical motion analysis utilises multiple

infra-red cameras to track the 3-D coordinates (x, y and z) of passive

retro-reflective markers adhered to the performer at sample rates of <1000 Hz

(Davis et al., 1991). 3-D optical motion analysis does not suffer from some of

the sources of error associated with video digitisation since markers are

automatically tracked and the analysis is less labour intensive (Davis et

al., 1991). The current recommendation is to use 6-8 cameras (Davis et

al., 1991 and Ferber et al., 2002) to improve the tracking of the markers and to

enable more markers to be tracked, thus a more comprehensive kinematic

analysis can be achieved with less marker ‘drop-out’. Similar to video
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digitisation, anatomical marker placement is important for reliability. In 3-D 

analysis, small changes in the marker positions can introduce cross-talk across 

the planes of motion or offset shift in the data (Ferber et al., 2002). A met- 

analysis of 3-D optical motion analysis system performed by McGinley ef 

al., (2009) revealed moderate to good reliability in the sagittal and frontal plane 

kinematic variables during human locomotion. The majority of the articles 

reviewed expressed estimates of error of <5° in these planes (McGinley et 

al., 2009). In partial agreement Doma et al., (2012) reported moderate to high 

reliability for lower limb sagittal plane kinematics during running as measured by 

ICC (0.76 -  0.97), bias ratio */+ 95% ratio LOA (spread of 95% of observed 

ratios within the ratio LOA% of the mean bias, perfect agreement= 1) 

(1.03*/+ 1.09) and CV (2.0-6.0% ). Lower reliability was observed in frontal 

plane (ICC 0.33 - 0.92, LOA 1.07 */+ 1.39 and CV 5.3 -18.6%) and transverse 

plane (ICC 0.73-0.96, LOA 1.07*/+ 1.38 and CV 3.9-16.6%). Ferber et 

al., (2002) also found more reliable sagittal plane measures than other planes 

and also found more reliable within-day kinematics (ICC 0.92-0.98 for sagittal 

peak angles) when compared with between-day reliability (ICC 0.85-0.93 for 

sagittal peak angles). The within-day variability was attributed to skin-related 

movement, measurement error and physiological variability during human 

locomotion whereas between-day variability include these and marker 

reapplication (Ferber et al., 2002). Kadaba et al., (1990), and Hamill and 

Selbie, (2004) also reported that poor reliability and validity measures were 

evident in the rotation of body segments around the longitudinal axis.

2.8.1.2.1. 3-D optical motion analysis calibration

The 3-D optical motion analysis system requires calibration of the movement

volume. The calibration methods are specific to the manufacturer. Often, a
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reference frame with retroreflective markers positioned at a known distance is 

used to calibrate the system (x, y and z). More recent techniques in the 

calibration of 3-D optical motion analysis systems require a dynamic calibration 

in which a ‘wand’ with retroreflective markers positioned at a known distance to 

be moved through the entire movement volume and was suggested to reduce 

measurement error (McGinley et al., 2009). Kertis et al., (2010) found that the 

accuracy of dynamic calibration ranged from 94.82 - 99.77% and in absolute 

terms the range was 0.09 ± 0.26 to 0.61 ± 0.31 mm.

2.8.1.2.2. Marker configuration

There are several marker models available and the selection of the model is 

dependent on the application. The markers aim to define the segment (pelvis, 

thigh, shank and foot) length (proximal to distal distance) and width (medial to 

lateral distance). Markers can be adhered to the skin overlying joint centres 

during data collection trials, however, this configuration is subject to skin-related 

movement during data collection trials (Ferber et al., 2002 and Hamill and 

Selbie, 2004).

Some marker configurations utilise a ‘wand markers’ that protrude 

laterally aligned with the longitudinal axis of the segment in addition to the 

markers overlying the joint centres (Kadaba et al., 1990). The movement of the 

wand is used to calculate the rotation of the segment relative to the position of 

the wand in a standing position recorded prior to the data collection trials (static 

segment model). Wren et al., (2008) reported that wand markers were 

susceptible to oscillations, inertial effects as well as skin-related movements. 

These might account for the poor accuracy associated with measures of the hip 

rotation. Wren et al., (2008) also found that the wand markers positioned at the
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distal and proximal ends of the thigh underestimated hip rotation range of 

motion by 54% and 35% respectively when compared with actual hip rotation in 

static controlled tests of range of motion.

A commonly used marker configuration utilises markers overlying the 

joint centres relative to 4 markers mounted on rigid plates (cluster markers) that 

are bound to each body segment (Hamill and Selbie, 2004). The movement of 

the body segment is calculated relative to the position of the cluster markers in 

a static segment model in a standing position to be recorded prior to the data 

collection trials. The benefits of this method are that the body segments are 

tracked independently based on the rigid 4-marker cluster-plates and therefore 

during the data collection trials, only the cluster need remain on the participant. 

Therefore markers overlying joint centres and some anatomical landmarks can 

be removed so they do not pose limiting factor on the movement analysis. Also, 

the rigid plates are less susceptible to skin-related movement than skin 

mounted markers overlying joint centres (Hamill and Selbie, 2004).

2.8.1.2.3. Data processing

The raw data from each tracked marker has to be processed to remove 

erroneous data (noise) from sources such as system electrical interference and 

skin movement (Winter, 2005), especially if the data was to be used to calculate 

first and second derivatives (velocity and acceleration, respectively) as the error 

will be multiplied. Therefore, it is important to select an appropriate processing 

procedure to remove or minimise the noise while minimising the impact on the 

data.

Modern motion analysis software identifies markers automatically,

however, they have to be checked to ensure switching of actual markers or
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switching with ‘ghost’ markers has not occurred. In addition, portions where the 

data might be corrupted or missing can also be identified. Ideally, data 

collection trials with missing or corrupted portions of data should be performed 

again with the cameras in different positions and recalibrated accordingly. 

Alternatively and sometimes controversially, the data can be interpolated to 

predict the trajectory of the marker when the actual data is missing 

(Derrick, 2004 and Milner, 2008). Simple interpolation techniques such as a 

linear (straight trajectory between data points either side of missing data) and 

cosine (smooth trajectory between data points) are not appropriate for kinematic 

data given the nature of the movement in markers being complex, not linear or 

smooth. Splining is a popular method of interpolating in biomechanics in which 

a series of localised low-order polynomials are fitted to the data (Derrick, 2004). 

Therefore, the predicted trajectory of the marker is based on the trajectory in the

3-5 (cubic or quintic, respectively) frames preceding and following the missing 

data. Interpolation of data was deemed appropriate for a maximum of 5 frames 

by Milner, (2008) and providing the interpolation does not overlap with a critical 

point in the motion such as peak or minimum angles and change in direction 

(Milner, 2008).

Coordinate data can be filtered to distinguish the true data from noise.

The majority of noise in coordinate data (skin movement) is of low amplitude

and observed in the higher frequency domain (12+ Hz) and above the

frequency of interest (Kaiser and Reed, 1977; Winter, 2005; Milner, 2008). A

low-pass filter, such as a Butterworth filter, is a common processing technique

that attenuates the higher frequencies (Hamill and Selbie, 2004). The selection

of the cut-off frequency for the low-pass filter is important as if it is set too high,

the data will not be altered sufficiently to remove the noise and if it is set too
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high, the filtering process will alter the true data and ultimately alter the 

conclusions from the data (Winter 2005; Fellin et al., 2010). Winter (2005) 

suggested that the cut-off frequency should be based on the residual analysis of 

the difference between filtered and unfiltered over a range of cut-off frequencies 

(Winter, 2005). The 3-D coordinate data is normally filtered between 4-8 Hz and 

the exact cut-off is dependent on the signal frequency at which 90% of the raw 

signal is retained after the filtering process (Ferber et al., 2002). The rationale 

for 90% retention of the data after processing rather than more or less stringent 

criteria is unclear. Alternatively, the cut-off frequency can be determined by trial 

and error and visually inspecting the effect on the data (Milner, 2008). Winter 

(2005) and Milner (2008) suggested that an appropriate cut-off frequency for 

walking is approximately 6 Hz, however for running analysis higher cut-off 

frequencies of 8 to 12 Hz are often used (Ferber et al., 2003; Milner, 2008; 

Fellin et al., 2010; Ferber etal., 2010).

Processing techniques to smooth digital data are available. The Hanning

algorithm is a weighted moving average algorithm to smooth the data. The

averaging window of ‘n’ frames can be assigned and can be applied many times

over to further smooth the data. Hanning algorithm is an easy smoothing

technique but it is incapable of distinguishing signals from the noise and as

such it was described as inflexible (Grimshaw et al., 2007). A more ‘flexible’

method of smoothing data which can be used for more complex smoothing as

required by biomechanical data is a Butterworth second order algorithm

(Derrick 2004). Derrick (2004) suggested that the Butterworth algorithm

smoothed the data while maintaining the amplitudes of the frequencies in the

pass-band, thus it is a desirable smoothing technique. A side-effect of applying

the Butterworth algorithm is a forward time-shift in the data, which is detrimental
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to kinematic analysis where timing is essential, especially when synchronised 

with other biomechanical measures such as force plates and electromyography 

systems. It is for this reason that the Butterworth algorithm is applied twice 

(normal and then in reverse) to negate the time-shift and is termed a 

Butterworth fourth order algorithm (Grimshaw et al., 2007). Another popular 

smoothing technique is splining. The series of low-order polynomials that are 

applied to the data to interpolate the missing data can also be used as a 

smoothing technique to remove erroneous data. The localised polynomials 

means that splining can be used to effectively smooth in complex data as seen 

in biomechanics and is used in many motion analysis software (Milner, 2008).

2.8.2. Measurement of neuromuscular recruitment

A method of measuring the amplitude and the timing of muscle activity can be 

achieved through electromyography (EMG). EMG is the measurement of 

electrical potential brought about by the depolarisation of the muscle fibre 

membranes (Marshall and Elliot, 1992). The EMG signal is commonly derived 

from the difference in the voltage detected by a pair of bipolar electrodes 

positioned in or overlying muscles of interest (Hermens et al., 2000). 

Reservations toward EMG data were due to the erratic appearance and poor 

reproducibility of the signal (Hof, 1984). Also, the EMG signal was reported to 

be a poor indicator of muscle force and only had use as an indicator of timing of 

muscle activity (Hof, 1984). Regardless of these reservations EMG is still widely 

used in exercise biomechanics research (Wank et al., 1998), rehabilitation, and 

clinical settings (Reaz et al., 2006).
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The interpretation of the EMG signal in terms of muscle activity is 

straightforward, however, the interpretation of EMG amplitude has to be 

approached cautiously (Marshall and Elliot, 1992). The amplitude of an EMG 

signal is not a direct measure of muscular force because the amplitude and the 

frequency of EMG signal are influenced by many in vivo factors such as blood 

flow, surrounding tissue impedance, fibre arrangement, and fibre type, fibre 

diameter, parallel elastic component, conduction velocity, muscle contraction 

velocity and muscle fibre length (Marshall and Elliot, 1992; Kamen, 2004; 

Winter, 2005; Gleeson, 2008). The combination of these factors complicates 

the EMG signal and complicates the comparisons of the EMG amplitude within 

or between muscles.

2.8.2.1. Hardware configuration

The configuration of hardware and methods used to acquire the EMG signal 

varies in the literature and therefore requires review. Factors to improve the 

signal quality of the EMG data include the type of electrodes, electrode 

positioning, skin preparation, data processing, for example.

2.8.2.1.1. Fine wire electrodes

Electrodes detect the electrical impulses in the motor units in the vicinity of the 

electrode. Fine wire electrodes are sterile electrodes inserted deep into the 

muscle via a hypodermic needle. The benefit of these electrodes is the ability to 

record the EMG of deep-lying musculature or target small muscles involved in 

fine motor movements (Winter, 2005). The tips of the fine wires are the sensors 

for recording the EMG signal. Larger recording surface area can be achieved by 

stripping the wire insulation from the tip (<1 mm) to capture activity of more

66



motor units (Kamen, 2004). Komi and Buskirk (1970) reported reasonable test 

re-test reliability of fine wire electrodes (r=0.62). The invasive nature of the 

method means there is the potential for the participants to experience pain or 

discomfort from the hypodermic needle. A specialism is required by the 

researcher to insert the fine wires into the intended muscle and into an 

appropriate position within the muscle.

2.8.2.1.2. Surface electrodes

Surface electrodes are adhered to the skin of the individual and detect the EMG 

signal of the underlying muscles. Depending on the size of the surface EMG 

electrode (sEMG), the EMG of thousands of muscle fibres stimulated by many 

motor units can be assessed simultaneously (Marshall and Elliot, 1992). The 

mounting of the electrodes on the skin predisposes the EMG signal to sources 

of error. The tissues between the muscle of interest and the sEMG (for 

example, muscle sheath, subcutaneous fat and skin) can impede the EMG 

signal. Also many EMG hardware units are hardwired, therefore the signal can 

be subject to low frequency noise brought about by the movement in the wires 

during dynamic activity (Grimshaw et al., 2007). Active sEMG electrodes have 

an insulated power supply to each electrode to power preamplifiers which 

reduced the noise (Kamen, 2004) and the impedance between the skin and 

sEMG electrode when compared with passive sEMG (Gleeson, 2008). Active 

sEMG reduce the impedance to such an extent that skin preparation 

procedures are not required (Gleeson, 2008). Skin preparations for passive 

electrodes is required to reduce the noise in the signal (Kamen, 2004) and 

include shaving, cleansing with alcohol swab, light abrasion of the skin and 

conductivity gel, which can subject the individual to considerable discomfort 

(Burden, 2008).
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The reliability of sEMG has been reported to be high. Spector (1979) 

reported correlation coefficients of sEMG of 0.73 to 0.97 recorded from the 

paraspinal muscles. When compared with fine wire, greater within-day reliability 

was observed in sEMG (correlation coefficients of 0.62 vs. 0.88 respectively) 

(Komi and Buskirk, 1970). In addition to more reliable data, the relative ease of 

sEMG compared to the fine wire method makes it an attractive option for 

determining the neuromuscular recruitment of superficial musculature.

2.8.2.1.3. Electrode positioning

The positioning of sEMG electrodes is important to ensure that the acquired

signal is that of the muscle of interest and prevent cross-talk from active

muscles in close proximity. To this point, the ‘Surface EMG for Non-lnvasive

Assessment of Muscles’ (SENIAM) was a project to standardise the methods

for sEMG including the positioning. The results of the project were published by

Hermens et al., (2000). SENIAM recommended that the longitudinal position of

the sEMG should be midway between the most distal motor endplate and the

distal tendon (parallel with muscle fibre orientation) as erratic signals are

evident in these regions (Rainoldi et al., 2000; 2004). The transverse location

should be away from the muscle edge whilst maximising the distance from other

sEMG electrodes (Hermens et al., 2000). In accordance with SENIAM

recommendations, bipolar sEMG electrodes for the tibialis anterior should be

positioned at 33% on the line between the tip of the fibula and the medial

malleolus. The SENIAM recommendation for the gastrocnemius is to position

the sEMG electrodes over the ‘belly’ of the muscle, which could predispose the

gastrocnemius EMG measures to capturing over the motor endplate thus

introducing error in to the signal (Rainoldi et al., 2000; 2004). Sacco et

al., (2009) investigated the SENIAM recommendations on sEMG electrode
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positioning for the peroneus longus, vastus lateralis, tibialis anterior and 

gastrocnemius in terms of raw signal density, motor end point and the shift in 

innervations zone during dynamic contraction and linear envelopes. 

Comparisons were made with the EMG signals from those positioned 25 mm 

distally and proximally to the SENIAM recommended position. Sacco et 

al., (2009) agreed with the positioning of the vastus lateralis and peroneus 

longus, however, the optimal position for the tibialis was 47.5% and the 

gastrocnemius position was at 38% of its length (previously undetermined).

The inter-electrode distance between bipolar electrodes is also an 

important factor in EMG data collection. The computation of EMG (difference 

between pair of bipolar electrodes) will be altered if sampling from different 

portions of the muscle (Farina et al., 2002). Beck et al., (2005) investigated 

inter-electrode distances of 20 mm, 40 mm and 60 mm overlying the biceps 

brachii during isometric and isokinetic contractions. The inter-electrode distance 

between 20 mm and 60 mm did not affect the absolute EMG amplitude or the 

mean power frequency during the isometric or isokinetic contractions. The effect 

of inter-electrode distance was further reduced once the data had been 

normalised (discussed later in the chapter) (Beck et al., 2005). Farina et 

al., (2002) suggested that reducing the inter-electrode below 20 mm (5 mm up 

to 20 mm) led to a decrease in other EMG descriptors (average rectified EMG, 

root mean square and median power spectral frequency and EMG slope over 

time) in the trapezius muscle. Further increases in inter-electrode distance (up 

to 35 mm) did not reduce the EMG descriptors further (Farina et al., 2002). 

Therefore an inter-electrode distance of 20 mm was recommended for the 

trapezius and agrees with the inter-electrode distance for the whole body 

recommendation of 20 mm by Hermens etal., (2000).
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2.8.2.1.4. Amplification

The signal detected by the sEMG electrodes was suggested to be in the region 

of 5-9 mV which is too low for standard recording equipment to detect and 

therefore the signal requires amplification (Gleeson, 2008). Amplifiers increase 

the gain (ratio of the output to input voltage) of the signal by 100 to 10,000 times 

(Winter, 2005; Gleeson, 2008). There are a few factors that need to be 

considered in the amplification process.

Firstly, the amplifier must be able to amplify the signal linearly across the 

entire frequency spectrum so that the signal is not distorted. The frequency 

bandwidth that the amplifier can handle should be adequate to amplify the 

signal without attenuating the signal (Winter, 2005). For sEMG the amplifier 

bandwidth of 10 to 1000 Hz was deemed adequate since the expected 

frequency spectrum is between 20 and 1000 Hz for human locomotion 

(Winter, 2005).

At such low-voltage the signal can contain ambient noise from 

electrostatic and electromagnetic sources (electrical mains or radio signals), 

hence it is crucial that the ambient noise is minimised prior to amplification. To 

reduce the ambient noise, the amplification process must be performed as close 

as possible to the participant during the data collection so that the system is 

less exposed to sources of ambient noise prior to amplification (Gleeson, 2008), 

thus providing a rationale for active sEMG electrodes that have in-built pre

amplifiers and insulated wiring (Kamen, 2004). Differential amplifiers can be 

used to remove ambient noise by using a ‘reference’ electrode positioned on a 

bony landmark where only this ambient noise is detected. The ambient signal 

can then be subtracted from the EMG signal before amplification (Winter, 2005).
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The required amplification gain is dependent on the equipment and 

application (Winter, 2005). In many cases where passive electrodes were 

believed to have been used, an amplifier gain of 1000 was used (Rainoldi et 

al., 2000; Beck et al., 2005; Mathur et al., 2005). Lariviere et al., (2002) reported 

an amplification gain of 1000 while using active electrodes, however the 

pre-amplification at the sEMG electrode was undisclosed. Sacco et al., (2009) 

reported a 20 times pre-amplification of the EMG signal at the sEMG electrode 

with an overall differential amplified gain of 1000.

2.8.2.1.5. Signal processing

Once the signal is digitised it can be processed in numerous ways. 

Winter (2005) suggested that among others; signal rectification, root mean 

square and linear envelope were common processing techniques for EMG data. 

These techniques dominate the literature because of their appropriateness for 

the estimation of EMG amplitude (Clancy et al., 2002).

As previously discussed, low frequency noise can be introduced to a 

signal through movement in the system wires. Also, any cross-talk from distant 

musculature can introduce low frequency noise (Burden, 2008). In addition, 

amplifiers often process the signal prior to amplification by applying a 

band-pass filter (combination of low and high pass filters) to the incoming 

signal. Signal noise outside of this band-pass is attenuated, therefore the 

band-pass filter must suite the range of the EMG signal as not to distort the true 

signal. Grimshaw et al., (2007) suggested that an amplifier bandwidth of 

20 to 500 Hz is appropriate; however, Kamen (2004) reported a lower expected 

range of sEMG data of approximately 10 to 400 Hz. The SENIAM project 

incorporated both estimates and recommended a bandwidth of 10 to 500 Hz
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which has also been used by other sEMG studies (10-500 Hz (Farina et 

al., 2002); 16-500 Hz (Larsson et al., 2003), 10-20 Hz to 400 - 500 Hz 

(Clancy et al., 2002). Hof (1984) suggested a bandwidth of 100 - 300 Hz which 

might have suited their sEMG hardware configuration at the time of publication 

however the advancement of equipment to reduce noise and signal impedance 

since the mid-1980’s might mean more of the true signal present in the 

spectrum can be analysed.

Signal rectification either removes negative values of the EMG 

(half-wave rectification) or converts all of the negative values in the signal into 

positive integers (full-wave rectification) (Burden, 2008). Full-wave rectification 

is preferred as there is no loss of the signal power (Basmajian and De 

Luca, 1985). Although the analysis of the rectified EMG signal is limited to 

visual inspection of amplitude and timing, its main purpose is to prepare the 

signal for further processing (Winter, 2005).

There appears to be some debate over the use of average rectified 

value (ARV) and root mean square (RMS) as the next step in the processing 

procedure. Both processes apply an averaging window of ‘n’ number of 

successive data points. The ARV is the calculation of the integral of the EMG 

signal over the averaging window whereas RMS is the square root of the 

average power of the raw EMG signal (Burden, 2008). Although both are used 

and recommended by SENIAM, RMS is preferred as it was described to have a 

greater physical meaning (EMG signal power) and yields a greater amplitude 

than ARV (area under the curve) (Burden, 2008). In addition, it is more sensitive 

to changes in EMG and less variable than ARV (Merletti and Torino, 1999). 

Obviously the duration of the RMS window will affect the signal significantly and
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literature suggests that the window depends on the action being analysed. For 

slow or isometric contractions a larger RMS window of up to 1 s (Hof, 1984) or 

up to 2 s (Merletti and Torino, 1999) were regarded suitable since erroneous 

fluctuations in the signal will be attenuated. Faster more dynamic actions 

require smaller RMS windows so that the fluctuations in the EMG are not 

attenuated, hence RMS windows of 10 to 50 ms (Grimshaw et al., 2007), 

100 to 200 ms (Basmajian and De Luca, 1985) to 250 ms (Hof, 1984) have 

been recommended.

The linear envelope involves the application of a low-pass filter 

(preferably a zero-lag filter such as Butterworth fourth order) to a full-wave 

rectified signal thus smoothing the signal (Winter, 2005). The linear envelope is 

often implemented to aid the acquisition of area, slope, onset and shape 

characteristics of the muscle activity (Kamen and Gabriel, 2010). In addition, 

Inman et al., (1952) stated that linear envelope followed the rise and falls of 

muscle tension. An appropriate cut-off frequency is crucial since a very low 

cut-off frequency will over attenuate the signal thus the onset and amplitude of 

the EMG could be misrepresented and a high frequency cut-off will contain 

much of the same erratic data. Winter (1990) suggested that a cut-off frequency 

of 10 Hz was appropriate for EMG data. Similarly, Shiavi et al., (1998) reported 

a minimum cut-off frequency of approximately 9 Hz is necessary for EMG 

derived from 6 to 10 walking strides based on ensemble average rectified EMG 

and the associated measurement error. However, Winter and Yack (1987) used 

lower cut-off frequencies of 3 Hz since this was similar to the twitch response 

frequency and peak frequency reported by Milner-Brown et al., (1973) and 

Olney and Winter (1985) respectively. Higher frequencies of 50 Hz have been
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suggested (Kamen and Gabriel, 2010), however this was for computer- 

automated detection of EMG activity.

2.8.2.1.6. Normalising the EMG signal

To render EMG data as comparable, the EMG amplitude captured during a data

collection trial can be normalised (%) relative to the peak EMG amplitude

(100%) during an isometric maximum voluntary contraction (%MVC)

(Burden, 2008). The normalisation of EMG relative to %MVC also allows

comparisons of EMG across participants. Although %MVC normalisation of

EMG signals is the most widely used reference point for EMG data, the signal

has to be interpreted cautiously. Firstly, the %MVC method is dependent on the

exertion of the participant being truly maximal. Allen et al., (1995) reported that

most individuals are able to produce MVC during isometric contraction, however

the subjectivity of this approach might lead to a degree of error (Marras and

Davis, 2001). Also, a true maximal exertion is unlikely to be observed in

individuals who are untrained and therefore the %MVC is inappropriate for

these individuals. Secondly, there is an assumption that the EMG-muscular

force relationship is linear, an assumption that is highly debated. Inman et al.,

(1952) reported that EMG-muscular force relationship was linear during

isometric contractions and non-linear during isotonic contractions. Furthermore,

Woods and Bigland-Ritchie (1983) investigated the EMG-muscular force

relationship across a range of isometric forces. Linear relationships were found

in the muscles with homogenous fibre composition, whereas muscles with a

mixed fibre composition demonstrated non-linear relationship. During exercise

or sport, many muscles undertake isotonic activity for movement. If indeed the

EMG-muscular force relationship is non-linear as suggested by Inman et

al. (1952), comparisons of submaximal EMG amplitudes relative to %MVC
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would be questionable. Thirdly, supramaximal EMG signals have been 

observed in EMG studies using the %MVC method, especially in dynamic 

movements (Clarys, 2000). During the acceleration phase of an over arm 

baseball throw, peak EMG was 226% of the peak EMG achieved in the MVC 

(Jobe et al., 1984), hence the %MVC method is subject to poor reliability 

(Clarys, 2000). Lastly, the time taken for individuals to become accustomed to 

exercise for inducing their true peak EMG and also perform MVC trials for each 

muscle before the data collection is a lengthy process.

Other normalisation techniques such as submaximal MVC (for example 

50% of the average of 3 MVC), the peak EMG in the movement or the mean 

EMG during an ensemble of movements (numerous gait cycles) had been 

shown to be more reliable than %MVC method (Yang and Winter (1983); 

Kollmitzer et al., (1999); Clarys (2000)). For example, Dankaerts et al., (2004) 

reported excellent within-day reliability for MVC (resisted isometric sit-ups) and 

submaximal MVC (unresisted isometric leg raise) in healthy individuals and 

those with chronic lower back pain (Intra Class Correlation (ICC) mean 0.91; 

range 0.75 to 0.98; Standard Error Measurement (SEM%) mean 4%; range 

1 to 12%). The submaximal MVC for both healthy and chronic lower back pain 

sufferers between-days (1 week) were more reliable when compared with 

between-days MVC measures (ICC mean 0.88; range 0.78 to 0.97; SEM% 

mean 7%; range 3 to 11% vs. ICC mean 0.70; range 0.19 to 0.99; SEM% mean 

17%; range 4 to 36%, respectively). Consequently, Dankaerts et al., (2004) 

advocate the use of submaximal MVC for between-days measures.
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Chapter 3: Methods

In this chapter, the methods that relate to the individual studies of this thesis are 

presented. This chapter includes detailed descriptions of: 1) the vertical 

treadmill modification, maintenance and habituation; 2) the pre-exercise 

procedures; 3) the statistical procedures used; 4) equipment used and its 

calibration for biomechanical procedures; 5) the reliability of biomechanical 

procedures; 6) the equipment used and its calibration for physiological 

procedures and 7) reliability of physiological procedures.

3.1. Vertical treadmill modification and maintenance

The vertical treadmill (VertiRun, Sheffield, UK) required considerable 

modification and maintenance by the author to standardise the vertical treadmill 

before any research could be performed. General maintenance duties included 

cleaning each component, lubricating rotary components, adjusting the tension 

of the treadmill belt as the rotary components wore and repairing the back rest 

and seat after intense use.

3.1.1. Determination of the vertical treadmill speed

The vertical treadmill employs a non-motorised treadmill belt and therefore the 

treadmill belt speed is determined by participant. To gauge treadmill belt speed 

the circumference of treadmill belt was measured with an unbranded measuring 

tape. A magnet (Power Magnet, Sigma Sport, Neustadt, Germany) was 

adhered to the treadmill belt and a magnetic reed switch (Speed Sensor, Sigma 

Sport, Neustadt, Germany) was adhered to the frame of the vertical treadmill. A
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15V charge from an unbranded transformer was emitted to the reed switch. As 

participants rotated the treadmill belt the reed switch was triggered by the 

magnet and the circuit was temporarily complete (pulse). The time between 

each pulse was detected by a PowerLab 8.0 M data acquisition system 

(ADInstruments, Germany) and the complimentary software (LabChart 5, 

ADInstruments, Germany) calculated and recorded the treadmill belt speed and 

distance. For the first study (Chapter 4), the treadmill belt circumference was 

inputted into a cycle computer and was used to display the treadmill belt speed. 

The cycle computer (Sigma Sport BC906, Sigma Sport, Neustadt, Germany) 

displayed the treadmill belt speed in 0.5 km-h'1 increments which was deemed 

not sensitive enough for the retest protocol of the reliability of the physiological 

measures study (see 3.10.2.2.2.). Participants viewed treadmill belt speed on a 

computer screen positioned at eye-level and displayed treadmill belt speed in 

0.01 m increments.

3.1.2. Resistance cables

3.1.2.1. Determination and verification of the resistance

The resistance was determined by suspending a 10 N cradle from each 

resistance cable and the changes in displacement of the cradle were recorded 

as 10 N weights were added to the cradle (displacement: load relationship). 

The displacement of the cradle determined the force required to overcome the 

resistance of the bands (20 N) and draw the leg downwards to the lowest 

portion of the treadmill (<70 N). This was repeated on a daily basis during the 

testing periods to ensure the resistance was consistent (20 -  70 N). The rubber
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bands were tautened to increase the resistance and slackened to decrease the 

resistance.

3.1.2.2. Replacement of the resistance bands

When the bands could not match the original displacement: load relationship, 

the bands were replaced. The original resistance bands perished within 2 

months due to exposure to sunlight, more specifically ultra violet light and were 

replaced. After unsuccessfully trialing metal springs, rubber bands used for 

powerlifting (41”, ‘#3 small’ Iron Woody Bands, Iron Woody Fitness, Montana) 

were selected which were resistant to ultra violet light, the mechanical stress 

(maximum stretch) was within the tolerances of the bands and the 

displacement: load relationship was matched to the original rubber bands.

3.1.3. Ankle attachment

The original resistance cable-ankle attachment used a leather over-shoe which 

cradled the hind foot and had a sports trainer sole adhered to the underside to 

grip the treadmill belt. The over-shoe attached to the resistance cable via a 

metal D-ring and carabiner (Figure 2 (A)).
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A B

Figure 2. Original over-shoe design (A) and modified ankle cradle (B).

In pilot studies, the over-shoe did not grip the treadmill belt effectively and was 

replaced with a neoprene and VELCRO® ankle cuff with a metal D-ring 

(Figure 2 (B)). Bicycle toe-clip straps were looped through the metal D-ring of 

the ankle cuff and under the participant’s foot between the forefoot and hind foot 

thus creating a foot cradle (Figure 2 (B)) where the participants’ shoes could 

grip the vertical treadmill effectively and remove some of the shear stress off the 

Achilles tendon as the leg descended the treadmill belt. Participants 

plantarflexed maximally and the toe-clip was tightened as not to disrupt the 

motion of the ankle.

3.1.4. Fore and aft settings

The vertical treadmill was manufactured with fore and aft settings at 0.05 m 

intervals. The fore and aft setting positioned the user at distance whereby the 

knee was flexed by 20° when the foot was flat against the treadmill belt and 

vertically aligned with the hip. In pilot studies, the 20° knee angle could not be 

achieved by some participants with the original fore and aft settings and 

therefore the author drilled extra notches at 0.025 m intervals.
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3.2. Vertical treadmill habituation

For all studies, participants were habituated to vertical treadmill in 2 induction 

sessions lasting approximately 30 minutes each on separate days. During each 

session, a range of self-selected speeds and postures (supine (0°), 40° and 

70°) were sampled. It was the participants’ preference to begin the habituation 

process in the 70° posture so that the foot placement on the treadmill could be 

viewed and evaluated before exercising at 40° and supine where the treadmill is 

not visible and proprioception is relied upon. Participants were allowed to view 

their performance throughout by means of the speedometer (Sigma BC906, 

Sigma Sport, Germany).

3.3. Pre-exercise procedures

3.3.1. Ethics

Ethics approval was sought and granted by the Faculty of Health and Wellbeing 

Ethics committee in accordance with the World Medical Association declaration 

of Helsinki (2008).

3.3.2. Informed consent

All participants in each study were given a participant information sheet 

(Appendix 2.1., 2.2., 2.3.) detailing the rationale of each study, their involvement 

in the study and that they could withdraw from the study at any point. 

Participants were given the opportunity to ask questions regarding the study by 

email, telephone and face-to-face prior to commencing the tests. Once
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participants were content with their involvement in the study, institutional 

informed consent form was signed (Appendix 3).

3.3.3. Pre-exercise screening

All participants completed an institutional pre-exercise medical questionnaire to 

screen for previous and/or current medical conditions and musculoskeletal 

injuries (Appendix 4). Participants identified as having medical conditions and/or 

injuries that might predispose participants to harm during the studies or might 

contaminate the results of the studies did not proceed with test protocols.

3.4. Statistical procedures

This thesis has employed several statistical analyses to ascertain the reliability 

of measures, the strength of relationships between measures and sport 

performance and differences between postures and intensities during vertical 

treadmill exercise. Statistical analysis was performed using PASW statistics 

17.0.2. (SPSS Inc., Chicago, IL., USA) and Microsoft Excel 2007 (Microsoft 

Corporation, Redmond, WA., USA). Justification for the statistical analyses 

performed in this thesis are given in Appendix 5.

3.4.1. Comparison of group means

3.4.1.1. t-test

The t-test examined the differences between two groups (Foster et a i, 2006). 

The data was ‘scale’ level data (interval or ratio data), normally distributed as 

indicated by Shapiro-Wilks test (>0.05), the sphericity of the data was confirmed
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by Mauchley’s test (>0.05) and the homogeneity of variance between data sets 

was assumed as indicated by a Levene’s test (>0.05) (Field, 2005). The 

independent t-test was used when different participants were assigned to one of 

two conditions. A dependent t-test was used when participants were tested in 

both conditions (Field, 2005).

3.4.1.2. Analysis of variance

Analysis of Variance (ANOVA) examined the differences between the means of 

three or more groups and identified interactions between variables (De Sa 

Marques, 2007). The data was ‘scale’ level data (interval or ratio data), normally 

distributed as indicated by Shapiro-Wilks test (>0.05), the sphericity of the data 

was confirmed by Mauchley’s test (>0.05) (Greenhouse-Geisser if sphericity 

was not assumed) and the homogeneity of variance between data sets was 

assumed as indicated by a Levene’s test (>0.05) (Field, 2005). A within- 

subjects ANOVA test was used on data from the same participants under 

several conditions (repeated measures). A between-subjects ANOVA test was 

used on data from different participants assigned to one condition. A mixed 

design ANOVA test was used on data from a combination of within and 

between-subjects data (Field, 2005). If a difference is detected by ANOVA, 

Bonferroni post-hoc tests were employed in which multiple paired comparisons 

are made on all variables. When the assumptions of the ANOVA were not met 

the data was subject to Friedman test and post-hoc Wilcoxon signed ranks test.
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3.4.1.3. Effect size

To determine whether a statistical significance demonstrates a sizable and 

therefore a meaningful effect, effect size calculations were performed. Effect 

size was calculated using Cohen’s d:

S D 2 d j \  +  SD22d f 2

d f i  +  d f 2

Where <xi ’ is the mean of variable 1, ‘x 2’ is the mean of variable 2, ‘SDi’ is the 
standard deviation of variable 1 and ‘SD2’ is the standard deviation of variable 2 

‘d fi’ is the degrees of freedom of variable 1 (n-1) and ‘df2’ is the degrees of
freedom of variable 2 (n-1).

Cohen (1988) constructed guidelines on what constitutes as a large (0.8), 

medium (0.5) and small effect (0.2). Effect size was used to assess the 

meaningfulness of statistical significances between variables (Bakeman, 2005).

3.4.2. Reliability

Reliability refers to the consistency or repeatability of measurements when an 

individual is retested at random (Bruton et a!., 2000). Lachin (2004) advocated 

the publication of reliability of measurements as to allow the authors to better 

describe and readers to better understand the sources of error in the results. 

Several methods were used to estimate the reliability of measurement 

techniques as there does not appear to be one single acceptable measure of 

reliability.
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3.4.2.1. Coefficient of variation

The coefficient of variation (CV) was used to assess the degree of variation in 

the data set (Atkinson and Nevill, 1998). The CV is the ratio of the standard 

deviation to the mean was expressed as a percentage and was calculated as:

SD
CV =  —  x 100

x

Where ‘SD’ is the standard deviation of the data set and ‘* ’ is the mean of the
data set.

3.4.2.2. Technical error measurement

Technical Error Measurement (TEM) was used as an index of accuracy and is 

representative of the quality of the measurement and control dimension (Perini 

et al., 2005 and Geeta et al., 2009). To express this error in the data absolutely, 

the following TEM equation was used:

TEM =

Where ‘D’ is the difference between the measures and ‘n’ is the number in the
sample.

The TEM was expressed in relative terms as a percentage to enable 

comparisons across variables. The relative TEM is acquired by:

TEM
Relative TEM =  ——— ----------x 100

Global mean

Where ‘Global mean’ is the combined mean of measure 1 and measure 2.

2 D 2 

2 n
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3.4.2.3. Limits of agreement

The LOA indicates the range in which 95% of the differences lie within ± 1.96 

standard deviations of the mean difference (Bland and Altman, 1986). The 

homogeneity of variance between data sets was assumed as indicated by a 

Levene’s test (>0.05) (Field, 2005). If the variance was not homogenous then 

the data was log-transformed before the LOA was executed. The absolute LOA 

was calculated by:

±  95% LOA =  1.96 x SDd iff

Where ‘SDdiff’ is the standard deviation of the differences between measure 1

and measure 2.

The LOA was expressed relative to the combined mean of measure 1 and 

measure 2 as a percentage. The relative LOA was calculated by:

1.96 x SDd if f
re la t ive  LOA =  — — — 7------ — xlOO

Global mean

Where ‘SDdiff’ is the standard deviation of the differences between measure 1 
and measure 2, ‘Global mean’ is the combined mean of measure 1 and

measure 2.

3.4.2.4. Intra-class correlation coefficient

Intra-class Correlation Coefficient (ICC) was used to quantify the reliability by 

means of a ratio of variances on a test-retest basis. The total sum of squares 

and between-subjects sum of squares derived from an ANOVA was inputted in 

to the equation by Bland and Altman (1995):
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n SSB2 — SST
ICC =

(n  -  1 )SST

where ‘n’ is the number of trials per participant, ‘SST’ is the total sum of squares 
and ‘SSB’ is the between-subjects sum of squares.

An ICC of 0 indicated no reliability and 1 indicated perfect reliability 

(Weir, 2005).

3.4.2.5. Standard error of measurement

Standard Error of Measurement (SEM) was used as an absolute measure of 

reliability and indicated the precision of a score (Weir, 2005). SEM was 

calculated using the following equation:

SEM =  SD7(1  -  IC Q

Where ‘SD’ is the global standard deviation and ICC is the intra-class
correlation coefficient.

The inclusion of the standard deviation was reported to ‘cancel’ out the 

between-subjects variability that is evident in the calculation of ICC (Bland and 

Altman, 1990).

3.4.2.6. Confidence intervals

Confidence intervals (Cl) were used to represent the lower and upper 

boundaries of which 95% (2 standard deviations) of the sample population was 

distributed around the mean. The calculation of the 95% lower and upper Cl 

were calculated by the following equation by Weir, (2005):
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95% Cl Lower =  Test score — (1.96 x S )

95% Cl Upper = Test score +  (1.96 x SEM)

Where Cl is confidence interval and SEM is the standard error of measurement.

3.5. Biomechanical Procedures

3.5.1. 3-D optical motion analysis

Six ‘Eagle’ passive cameras (Motion Analysis Corporation, CA USA) were 

positioned 180° around the vertical treadmill as demonstrated in Figure 3. Pilot 

data identified this as the best configuration in the limited space and a wall 

prevented the 360° positioning of the cameras and was limited to unilateral 

analysis. The sample frequency during kinematic data capture was 200 Hz.

3.5.1.1. 3-D optical motion analysis calibration

The 3-D optical motion analysis system and the complimentary ‘Cortex’ 

software (Motion Analysis Corporation, CA, USA) were calibrated dynamically 

using an ‘L’ frame and ‘wand’ calibration technique. The L-frame defined the 

global coordinate system and the 500 mm T-shaped wand was used for a 

dynamic calibration of the volume for 1 minute. The system was considered to 

be calibrated if the error residual of each camera was <1 mm.
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Figure 3. Position of the six motion analysis cameras around the vertical 
treadmill and the height of the cameras.

3.5.1.2. Marker Configuration

Participants wore their own tight-fitting shorts, T-shirt and trainers. 

Retro reflective markers were adhered to the skin and clothing of the 

participants’ right leg overlying medial and lateral aspects of the metatarsals, 

malleolus, femoral epicondyle, greater trochanter, as well as the right and left 

anterior superior iliac spine, posterior superior iliac spine, iliac crests and the 

first and fifth metatarsals. Four-marker clusters were bound by 2” Fabrifoam 

SuperWrap ® (Applied Technology International Ltd., Pennsylvania, USA) to
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the lateral aspect of the right shank and right thigh. The marker configuration is 

demonstrated in Figure 4.

Figure 4. Unilateral marker configuration for 3-D motion analysis.

3.5.1.3. Determination of kinematic data

Raw coordinate data were imported into Visual 3D software (C-motion, 

Maryland USA) and filtered using a zero-lag fourth order low-pass Butterworth 

filter (8 Hz cut-off). The 2-D sagittal plane joint angles of the hip, knee and ankle 

were calculated relative to a static standing model. A 4-point angle (femoral 

epicondyle to lateral malleolus and calcaneus to fifth metatarsal) was used to 

calculate the ankle plantarflexion (-ve) and dorsiflexion (+ve) angles from the 

static standing model. Three-point angle were used to calculate the knee angle 

(greater trochanter to femoral epicondyle to lateral malleolus) and the hip (iliac 

crest to greater trochanter to femoral epicondyle). The knee flexion, and hip 

extension (-ve) and flexion (+ve) were calculated relative to that in the static 

standing model. For each participant, ten complete gait cycles were analysed.
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Foot contact was established using a kinematic technique modified from Fellin 

et al., (2010), which was deemed appropriate for vertical treadmill exercise. 

Foot strike was defined as the zero horizontal acceleration of the calcaneus or 

fifth metatarsal marker (whichever occurred first). This procedure allowed gait 

events to be determined in participants with different foot strike patterns. Toe-off 

was defined by the minimum horizontal velocity of the fifth metatarsal marker 

during the contact phase. Kinematic data were cropped and normalised to 

100% of the gait cycle. All variables of interest were calculated for each of the 

ten cycles and averaged within participants and averaged across participants.

3.5.2. EMG system

Surface EMG data for selected muscles were collected using a Delsys Bagnoli 

8-channel EMG system (Delsys Inc. MA, USA). The sampling frequency was 

1000 Flz and the signal was amplified 20 times at the electrode and an overall 

differential amplified gain of 1000.

3.5.2.1. EMG electrode configuration

The EMG surface electrodes (Delsys Inc. MA, USA) were active and therefore 

extensive site preparation was not required (De Luca and Knaflitz, 1992). The 

electrodes were adhered to the skin using 19 mm double sided tape (3M™, 

Minnesota, USA) overlying the vastus lateralis, vastus medialis, rectus femoris, 

biceps femoris, semitendinosus, tibialis anterior and medial gastrocnemius and 

lateral gastrocnemius in accordance with SENIAM guidelines on electrode 

preparation and positioning (Freriks et al., 1999). Electrodes were bound to the 

leg with Coban™ self-adherent wrap (3M™, Minnesota, USA) to improve the
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adherence of the electrodes to the skin and reduce movement artefact in the

wires.

3.5.2.2. Determination of EMG activity

Raw EMG data were subjected to both a 500 Hz low-pass and a 10 Hz high- 

pass filter, before being root-mean-squared (Hermens et al., 2000) over an 

11-frame moving window in Visual 3D software. The timing of muscle activation 

and periods of inactivity were of interest in this study. Muscle activation was 

established when the EMG signal rose 2 standard deviations above the mean 

resting signal and inactivity was established when the EMG signal fell below 

2 standard deviations of the resting signal (Ives and Wigglesworth, 2003). EMG 

data were cropped and normalised to 100% of the gait cycle. All variables of 

interest were calculated for each of the ten gait cycles and averaged within 

participants and averaged across participants.
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3.6. Reliability of kinematic data and neuromuscular recruitment

3.6.1. Introduction

Ferber et al., (2002) suggested that for motion analysis data to be of value it 

firstly needs to be reliable. The reliability of motion analysis from previous 

research has ranged from moderate to high (ICC <0.98, <5°) (Ferber et al., 

2002; McGinley et al., 2009 and Doma et al., 2012), however, the reliability is 

specific to the authors’ research facility and the methods of data collection. 

Similarly, the reliability of EMG data will be specific to the research facility and 

selected procedures, hence the reliability of both kinematic and EMG measures 

specifically for this thesis were warranted. The participants’ posture can be 

manipulated on the vertical treadmill and this could alter the reliability of 

biomechanical measures as posture alters the relative position of body 

segments and compensatory movements were observed in other exercise 

modes (Massion, 1992 and Doma et al., 2012). The exercise intensity can be 

altered by altering the treadmill speed and it was reported that during over 

ground running the reliability of lower limb kinematics varied with changes in 

velocity (Doma et al., 2012), however, the effect of increments in vertical 

treadmill exercise speed on the reliability of biomechanical measures are 

unknown. In addition, the ability of the participants to reproduce movements and 

muscular recruitment patterns during a novel and unfamiliar exercise mode 

might predispose the data to poor reliability. Therefore the aim of this study was 

to determine the kinematics and neuromuscular recruitment patterns during 

vertical treadmill exercise in selected postures and intensities.
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3.6.2. Methods

This study employed a test, re-test method to assess the reliability of the 3-D 

optical motion analysis and sEMG.

3.6.2.1. Participants

After institutional ethics approval, 21 male participants (age 24.8 ± 7.1 years, 

stature 1.79 ± 0.07 m, body mass 77.7 ± 8.8 kg) were recruited for the study. All 

participants were healthy, physically active individuals, who were free from 

musculoskeletal disease or injury at the time of testing.

3.6.2.2. Test protocol

Participants wore their own training shoes, tight fitting shorts and T-shirt to 

complete the protocol. Participants were prepared for kinematic and EMG data 

collection as described in 3.5.1.2. and 3.5.2.1. Participants stood on the base of 

the vertical treadmill facing the cameras with their feet shoulder width apart, 

standing up straight and with their arms crossed as not to obstruct markers on 

the pelvis. A static segment model of the participants was captured for 1 frame 

and to capture the posterior superior iliac spine markers, another static segment 

model was captured while facing the treadmill.

Participants were then positioned on the vertical treadmill and undertook

a very light (RPE 9) warm up for 5 minutes and 5 minutes of dynamic stretching

(hip flexion/extension leg swings, abduction/adduction leg swings, skips, high

knees, heel flicks, step-overs, hurdle walks). Following the warm up participants

exercised for 5 minutes at a speed that they perceived to replicate their over

ground walking speed (described to participants as though going for a casual
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walk for 1 hour), jogging speed (described to participants as the pace when 

going for a casual jog for 1 hour) and running speed (described to participants 

as the pace when going for a training run for 1 hour) for 5 minutes each in the 

supine, 40° and 70° postures. These postures were selected as they were the 

extremes (supine and 70° posture) and the intermediate posture (40° posture) 

available on the vertical treadmill. Each bout of exercise was separated by 

5 minutes of rest while the vertical treadmill was reconfigured. Simultaneous 

3-D motion capture and EMG data were recorded during each condition (see

3.5.1. and 3.5.2.). The treadmill belt speed was logged continuously (PowerLab

8.0 M, ADInstruments, Germany) and participants were not permitted view to 

the speedometer. The participants were asked to rate their perceived exertion 

for each condition using Borg’s RPE scale (Borg, 1998) (Appendix 6). The order 

of posture and the order of intensity in each posture were assigned randomly 

using the random function in Microsoft Excel 2007. The cadence exhibited in 

each condition was determined retrospectively from the cyclic motion of the fifth 

metatarsal. The speed and cadence exhibited in each condition were used as 

targets for the forthcoming retest protocol. Following a minimum of 24 hours but 

no longer than a week of rest, participants returned to complete the retest 

protocol.

3.6.2.3. Retest Protocol

The retest protocol required participants to undertake the same retro reflective

and sEMG electrode placement procedure and warm up as in the test protocol.

In a random order, the participants exercised at the treadmill speed

(±0.5km -h'1) and cadence that they exhibited in the test protocol using a

speedometer (Sigma BC906, Sigma Sport, Germany) and a metronome (Digital
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Metronome DM-11, Seiko S-Yard Co. Ltd. Tokyo, Japan) while simultaneous 

3-D motion capture and EMG data were recorded in each condition (see 3.5.1. 

and 3.5.2.).

3.6.2.4. Data analysis

The raw coordinate data and EMG data were imported and analysed in Visual 

3D software. The kinematic and EMG data were processed and the patterns 

were determined using the motion of the fifth metatarsal marker to determine 

initial contact and toe-off with the treadmill belt (modified from Fellin et al., 2010) 

(see 3.5.1.3. and 3.5.2.2.). The kinematic and EMG data were cropped and 

normalised to 100% of the gait cycle. All variables of interest were calculated for 

each of the ten gait cycles and averaged within participants and averaged 

across participants. Temporal variables of interest were treadmill belt speed, 

cadence and stride length. Kinematic variables of interest were the range of 

motion of the hip, knee and ankle during the gait cycle. EMG variables of 

interest were the activation and deactivation of the rectus femoris, vastus 

lateralis, vastus medialis, biceps femoris, semitendinosus lateral gastrocnemius, 

medial gastrocnemius and tibialis anterior.

3.6.2.5. Statistical Analysis

To satisfy the numerous aspects of reliability limits of agreement 

(first measure - second measure), intra-class correlation, standard error of 

measurement, technical error measurement and CV% were performed on the 

range of motion at each joint and the on and off timing (% gait cycle) of all 

muscles.
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3.8. Discussion

The primary aim of this study was to assess the reliability of the unilateral 

sagittal plane kinematic data (temporal-spatial parameters, lower-limb joint 

range of motion) and the neuromuscular activity during vertical treadmill 

exercise at different intensities and postures.

Low CV%, TEM% and SEM, coupled with high ICC and narrow LOA and 

95% Cl in the temporal-spatial parameters (speed, cadence and stride length) 

indicated that the measures to get participants to replicate their first trial were 

successful (metronome and speedometer). In addition, it showed that the 

calculation of stride length was consistent.

There appeared to be intermittent reliability issues in the variables 

without any discernible pattern. Generally, the reliability measures of the ROM 

at the hip, knee and ankle joint demonstrated satisfactory to moderate reliability 

across intensities and postures. The reliability was poor compared to the 

moderate to high reliability for lower limb sagittal plane kinematics reported in 

the literature. Doma et a/., (2012) reported a CV% ranging from 2.0-6.0% 

during incremental treadmill running (70, 90 and 110% of second ventilatory 

threshold). The variation in the data set in this study was larger in this study 

(CV% 6.9 -  7.9%). A greater range of ICC measures was also evident in this 

study (0.543 -  0.962) compared with the ICC range 0.76 -  0.97 reported by 

Doma et al., (2012). It is important to note that the vast majority (24/27) of the 

ICC values in this study were >0.7 and was similar to that of Doma et 

al., (2012). McGinleyef al., (2009) reported that many kinematic studies 

exhibited sagittal plane ICC of >0.8 and higher, however it is not clear whether
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this referred to peak and minimum angles, ROM or an amalgamation of the two. 

The poorest reliability tended to be at the knee joint. For example, in 

accordance with Vincent (2012) (ICC 0.7-0.8 indicated ‘questionable’ reliability, 

0.8-0.89 indicated moderate reliability and >0.9 indicated high reliability), the 

ICC of the knee ROM in Table 2 deemed the reliability as questionable. A 

potential reason could be the obstruction of the ASIS by the thigh as the hip 

flexed during the upward phase of the exercise. In the absence of the hip 

segment the thigh could not be constructed in Visual 3D, resulting in the loss of 

the knee angle and the hip at potentially critical times (peak flexion and 

extension), thus affecting the ROM measures. The ability of the investigator to 

accurately locate and adhere markers to anatomical landmarks on both 

occasions might also be another source of error. Ferber et al., (2002) reported 

good between-day reliability (ICC 0.85-0.93) however the investigators were 

highly experienced.

The reliability of the neuromuscular recruitment patterns tended to be

greater than the joint ROM data however there were some exceptions. The

TEM% frequently indicated a questionable reliability, thus raising concerns over

the quality of measurement (Geeta et al., 2009). In contrast, a tendency for low

CV% suggested a small variation within the data set and moderate ICC with low

SEM suggest a good level of consistency and precision between the measures.

Like this study, the reported reliability of EMG differs. For example Hof (1984)

suggested that EMG reliability was poor due to the erratic nature of the signal.

Conversely, the identification of muscle activation using the method described

by Ives and Wigglesworth, (2003) (when signal rose 2 standard deviations

above resting value) was shown to have high inter-rater correlation (0.98) and a

high between-day intra-rater (ICC 0.99). Generally, the timing of EMG in this
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study was not as reliable as amplitudes and frequency analysis that was 

previously reported. The most unreliable measures tended to be around the 

timing of hamstring deactivation as indicated questionable reliability. Possible 

reasons for the poorer reliability in the hamstring deactivation especially could 

be due to variance in the contact distance. The longer the leg is drawn down the 

treadmill the longer the hamstring activity is required, or it could be noise in the 

signal as a result of movement artefact masking the true time of deactivation. It 

could be argued that the unreliable measures were brought about by the 

participants being unaccustomed to vertical treadmill exercise, therefore they 

demonstrated an irregular kinematics and neuromuscular pattern. This could 

have been compounded by the very measures designed to ensure they 

exercised at the same speed and cadence between trials to aid the reliability of 

the study. Instead, exercising to a prescribed speed and cadence via a 

speedometer and metronome could have altered the kinematics and 

neuromuscular recruitment and impacted on reliability.

In conclusion, the reliability of temporal-spatial parameters was very 

good; however, the kinematic reliability could only be described as satisfactory 

since the measures varied greatly. The neuromuscular recruitment was more 

reliable than kinematic measures and could be considered as demonstrating 

good reliability. For the purpose of identifying the muscles recruited and the 

fundamental movement patterns during vertical treadmill, the reliability of 

kinematic and EMG data is sufficient, however, caution should be exercised 

when comparing the kinematic differences between postures and speeds.
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3.9. Physiological Procedures

3.9.1. Conventional motorised treadmills

A conventional motorised treadmill (Saturn, HP Cosmos, Nussdorf-Traunstein, 

Germany) was used to assess the K02max. and maximal anaerobic running 

power of the participants. The maximum speed of the treadmill was 40 km h'1 

and could be incremented by 0.01 km-h'1. The inclination of the treadmill could 

be adjusted from 0% to 25% (0 to 14°) in 0.1% increments.

3.9.2. Stadiometry

Stature was measured using an unbranded wall mounted stadiometer. 

Participants wore their socks to protect their feet and stood against the 

stadiometer backboard and the head in the Frankfort plane. Participants inhaled 

and stature was measured.

3.9.3. Body mass

Body mass was measured using a balance beam scales (Weylux, England). 

Participants wore socks, shorts and a T-shirt and stood still on the platform 

while the scales were adjusted.

3.9.4. Rate of perceived exertion

A psychophysical assessment of exercise bouts were achieved using the rate of 

perceived exertion 6-20 scale (RPE) (Borg, 1998). The participants were read 

the instructions from the creator of the RPE scale (Borg, 1998) prior to any
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exercise session and testing protocol in which the RPE was recorded. The 6-20 

RPE scale and instructions can be found in Appendix 6.

3.9.5. Heart rate

During exercise tests on the vertical treadmill, electrocardiograms (ECG) were 

recorded continuously using the 3-lead ECG bio-amp input on the PowerLab

8.0 M. The silver chloride ECG electrodes used were pre-gelled and self- 

adhesive (Comepa Solutions, Bagnolet, France). The positive and negative 

electrodes were positioned either side of the Sternum, at the level of the heart. 

The earth electrode was positioned on the Acroniom. Lab Chart 5 software 

recorded the raw ECG signal and HR was determined using the default ‘Human 

ECG’ detection algorithm with a minimum detection setting of 1 standard 

deviation.

Test protocols whereby the vertical treadmill was not the mode of 

exercise, HR was monitored by a telemetric Polar T31 coded chest strap (Polar 

Electro Oy, Kempele, Finland) and the complimentary Polar heart rate watch 

(Polar FS2C, Kempele, Finland).

3.9.6. Blood lactate analysis

Blood lactate samples were taken by finger prick method. The researcher wore 

non-latex gloves during blood lactate sampling. The participants’ fingertips were 

cleaned using an alcohol swab (Alcotip Swabs (70% isopropyl), Uhs, Enfield, 

England). Once dry, the fingertips were pricked using a single use lancet (Safe- 

T-Pro, ACCU-CHEK, Roche Diagnostics Limited, West Sussex, UK). The initial 

drop of blood was wiped away with an absorbent tissue. The researcher applied
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light pressure around the puncture and drew 25 pi of blood into a capillary tube. 

The lactate concentration in the blood samples were analysed immediately 

using YSI 1500 Sport Lactate Analysers (YSI Inc., Yellow Springs, Ohio, USA).

3.9.6.1. Blood lactate analyser calibration

The calibration procedure entailed priming the analyser with a buffer solution 

(YSI 2387 buffer concentrate dissolved in 475 ml ± 25 ml of laboratory quality, 

deionised water) to remove any contaminates from the membranes and enzyme 

electrodes. The lactate analyser was calibrated by decanting 5 mmol-L'1 lactate 

standard into a 25 pi capillary tube and using the capillary injector to inject the 

sample into the mixing chamber of the lactate analyser. Another 25 pi of the 

lactate standard calibration was injected into the lactate analyser to confirm the 

calibration. Calibration was assumed if the returned value was between 4.95 

and 5.05 mmol-L'1 (±2% of the 5 mmol-L'1 standard). Approximately every 

month the lactate analyser was checked for linearity measurement errors by 

injecting a 15 mmol.L"1 standard. If the lactate analyser returned a value of 

outside of 14.9-15.1 mmol-L"1, linearity was not assumed and the lactate 

analyser membranes were repaired or the whole unit replaced.

3.9.7. Pulmonary gaseous exchange analysis

Breath-by-breath analysis of the pulmonary gaseous exchange was performed

using zirconian 0 2 and infra-red C 02 analyser (CPX Ultima, MedGraphics

Corporation, St. Paul, Minnesota, USA) and the complimentary ‘BreezeSuite 3’

software (MedGraphics Corporation, St. Paul, Minnesota, USA). During gas

analysis, participants wore a nose clip and breathed through a rubber

mouthpiece into a bi-directional differential pressure PreVent™ pneumotach
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(39 ml dead space) (MedGraphics Corporation, St. Paul, Minnesota, USA). 

Prior to each gas analysis the CPX underwent volume calibration followed by 

simultaneous gas and lag-time calibration.

3.9.7.1. Volume calibration

Firstly, the capillary tubes of the sampling cord were inserted directly into the 

pneumatach. The gas analyser sampled a state of ‘zero flow’ during which all 

fans and air conditioning units were turned off. The flow of 3 L of air through the 

pneumotach was sampled using a syringe (3 L Calibration Syringe, 

MedGraphics Corporation, St. Paul, Minnesota, USA) to inject and withdraw the 

air at a rate of 0.5 to 6.0 L s'1. Volume calibration was assumed if the flow rate 

was within 1% of the 3 L. To account for the environmental effects on airflow 

and gaseous exchange, the room temperature, humidity (Oregon Scientific 

Model No.: ETHG 912, Portland, USA) and barometric pressure (Darton 

Mercury Barometer, London, UK) were inputted to the BreezeSuite software.

3.9.7.2. Gas sensor calibration

The capillary tubes of the CPX sampling cord were inserted into the CPX Ultima 

unit. A calibration gas (12% 0 2, 5% C02 and Bal N2) was passed through the 

CPX sampling cord followed by a reference gas (21% 0 2, 0% C02 and Bal N2), 

both at a pressure of 15 PSI. Gas sensor calibration was assumed when the 

reference gas measured within 0.03% of the stated gas concentrations.
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3.9.7.3. Lag-time verification

During the gas sensor calibration, the time taken for the CPX, in conjunction 

with the BreezeSuite software, to detect the near square-wave alterations in the 

0 2 and C 02 concentrations (lag-time) between the calibration and reference 

gases was measured. The lag-time was verified if the changes in the 0 2 and 

C 02 gas concentrations were within 0.1 to 0.6 s.

3.9.8. Measurement of K02max.

The measurement of F 0 2max. was achieved using an incremental test on a 

conventional motorised treadmill (see 3.9.1.). The treadmill remained inclined 

by 1° throughout the session.

The stature and mass of the participants was measured (see 3.9.2. and

3.9.3.), they were affixed a HR monitor (see 3.9.5.), gas analyser mouthpiece, 

nose clip and a harness fixed to the cut-off switch on the treadmill before resting 

in a standing position for 5 minutes. Resting pulmonary gas exchange was 

measured between minutes 4 and 5. At 5 minutes of rest, HR was recorded and 

was followed by a fingertip blood sample for lactate analysis. Participants 

undertook a light warm-up (RPE 9) on the treadmill (see 3.9.1.) at self-selected 

speed for 5 minutes and 5 minutes off the treadmill for self-selected preparation 

for the F 0 2max. test protocol. After warming up participants were re-harnessed 

and began the test protocol. Treadmill speed began at 9 km-h'1 and increased 

by 1 km-h"1 every minute until volitional fatigue. HR and RPE were recorded in 

the last 15 s of every minute and at volitional fatigue. Immediately after volitional 

fatigue, a fingertip blood lactate sample was taken. Participants undertook a 

self-selected cool down.
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3.9.8.1. Determination of K02max.

Determination of an individual’s F 02max. (ml-kg'1-min'1) was performed post

il 0 2max. test using the gas analysis data obtained during the F 0 2max. test. The 

V02 data was exported from BreezeSuite software and was averaged over 

30 sand was plotted against exercise intensity in Microsoft Excel 2007. If a 

plateau of the F 0 2-intensity relationship was observed, HR was within 10 bpm 

of the age-predicted HRmax. (220-age), a respiratory exchange ratio of 1.15 and 

volitional fatigue was achieved as indicated by an RPE of 19-20 (British 

Association of Sport Exercise Sciences (BASES), 1997), the highest interval 

indicated F 02max.. If a plateau or the other criteria were not observed then 

F 0 2peak was determined.

3.9.8.2. Determination of ventilatory threshold

The researcher/author and two experienced researchers who were blinded to 

the participant details determined TVent independently. Initially, the V-slope 

method was used to identify TVent. The TVent from the V-slope method was 

confirmed or adjusted by examining the ventilatory equivalents (FE /V C 0 2 and 

VE / V02), excessive VC02 and VE methods.

3.9.8.3. Determination of respiratory compensation point

The author and two experienced researchers who were blinded to the 

participant details determined the RCP independently. The second inflection 

point in V E / V 0 2 in the relationship was firstly identified. The RCP was 

confirmed or adjusted on examining the end tidal PC02 for decrease after a 

phase of plateauing and an increase in VE / V02 relationship.
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3.9.9. Measurement of maximal anaerobic running power (MART)

Participants undertook a light warm up (RPE 9) for 5 minutes on the treadmill 

with 1% gradient (see 3.9.1.). The MART involved several 20 s bouts of running 

on a treadmill with a gradient of 10.5% with 100 s recovery between each run 

until exhaustion. The first 20 s run was performed at 14.3 km-h'1 and increased 

every stage by 1.2 km-h'1 until volitional fatigue (Maxwell and Nimmo, 1996). 

The [BLa] is an index of anaerobic capacity and was taken within 1 minute of 

exhaustion. Anaerobic running power was expressed as 0 2 equivalents by the 

ACSM (2000) formula for treadmill running (Figure 5):

V02 = 3.5 + 12v+ 54gv (ACSM, 2000)

Figure 5. V02 equivalents for running. Where ‘v’ was the peak treadmill 
speed (m s'1) and ‘g’ was the treadmill gradient expressed as a fraction.

Maximal anaerobic power is calculated from the treadmill speed of the last 

completed 20 s bout and the time to exhaustion in the subsequent bout, if there 

was one. An incomplete bout will incur an additional 1 ml-kg'1-min'1 to the 

anaerobic power score if at least 10 s was completed and another 

1 ml-kg'1-min'1 for every 2s after (Rusko etal., 1993).
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3.10. Reliability of physiological measures

3.10.1. Introduction

This thesis intends to use several physiological measures including HR, gas 

analysis (V02 and K02max.), [BLa] and the MART as a performance measure. 

The reliability or knowledge of the degree of reliability of these measures is 

important if the data is to form the basis of a conclusion or future research.

As a performance measure, the V02peak achieved in the MART was 

reported to be reliable (r=0.92) (Nummela et al., 1996). Nummela et al., (1996) 

used a protocol with a lower inclination (8%) and faster initial running speed 

(14.6 km-h'1) when compared with the MART protocol devised by Maxwell and 

Nimmo, (1996) and selected for this thesis (10.5% and 14.3 km-h'1). The 

reliability of this protocol was unknown, thus the specific reliability of all of these 

measures is required.

The reliability of gas analysis machines was suggested to be dependent

on physiologic (e.g. exercise mode and intensity) and instrument factors (e.g.

brand of unit, configuration of the unit and software, unit calibration) (Cooper et

al., 2009) and therefore the reliability of measures is specific to each research

facility. Therefore the unacceptable reliability (10.9% CV) of the CPX Ultima gas

analyser (MedGraphics Corporation, St. Paul, Minnesota, USA) reported by

Cooper et al., (2009) might be improved to acceptable standards (< 3% CV as

suggested by Cooper et al., 2009) in our laboratory and experimental setup.

Likewise, the purported good reliability of HR (coefficient correlation 0.97 -

0.99) (Laukkanen and Virtenan, 1998) and [BLa] measures (r=0.99) (White et

al., 2009) might not be the case in our research laboratory. In addition, the
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reliability of such measures on the vertical treadmill exercise has not been

investigated previously. Therefore, the aim of this study was to determine the

reliability of the MART score as well as HR, V02 and [BLa] during the F 02max. 

test and during incremental vertical treadmill exercise.

3.10.2. Methods

This study employed a test, re-test method to assess the reliability of the MART 

score as well as HR, V02 and [BLa] during the F 0 2max. test and during 

incremental vertical treadmill exercise.

3.10.2.1. Participants

After institutional ethics approval, 8 male participants (age 25 ± 3 years, stature 

1.80 ± 0.04 m, body mass 77.5 ± 7.32 kg) volunteered for this study. All 

participants were healthy, physically active individuals, who were free from 

illness, musculoskeletal disease or injury at the time of testing. Four participants 

were experienced vertical treadmill exercisers and 4 underwent the habituation 

protocol described previously (see 3.2.).

3.10.2.2. Test protocols

Participants wore their own trainers and shorts and T-shirt to complete all the 

testing protocols. The selected testing protocols aimed to characterise the 

participants in terms of their maximum aerobic and anaerobic running power. 

The K02max. of the participants was determined using an incremental test on a 

conventional treadmill (see 3.9.8.). The HRmax. exhibited during the K 02max. test 

and the [BLa] immediately after volitional fatigue were recorded. The MART was
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performed as a measure of anaerobic running power (see 3.9.9.). The MART 

score (peak V02 equivalents) and the [BLa] immediately after volitional fatigue 

were recorded.

3.10.2.2.1. Incremental vertical treadmill exercise

The stature and mass of the participants was measured (see 3.9.2. and 3.9.3.), 

they were affixed ECG HR electrodes (see 3.9.5.) and gas analysis mouth piece 

with nose clip (see 3.9.7.), before being positioned on the vertical treadmill in 

the 40° posture and resting for 10 minutes. Only the 40° posture was sampled 

because the participants perceived the supine posture to be difficult for relative 

novices and the difficulty of remaining in the seat during exercise in the 70° 

posture (Discussed later in the thesis). Gas analysis, HR, cadence and treadmill 

speed were recorded throughout the protocol. Participants were asked to 

exercise at an RPE of 9 (very light exercise), RPE of 12 (fairly light to somewhat 

hard exercise), RPE of 15 (hard exercise) for 3 minutes each followed by an all- 

out sprint for 1 minute. Between each of the 3 minute stages and immediately 

after the 1 minute sprint, participants rested for 1 minute while a blood lactate 

sample was taken. The treadmill belt speed was logged continuously 

(PowerLab 8.0 M, ADInstruments, Germany) and cadence was determined with 

a metronome.

3.10.2.2.2. Retest protocol

The retest protocol required participants to repeat the K02max. and MART testing

protocol within a week. The participants also repeated the incremental vertical

treadmill protocol, however, the participants exercised at the treadmill speed

and cadence that they exhibited in previous incremental vertical treadmill

exercise protocol. Participants viewed treadmill belt speed on a computer
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screen (Toshiba Satellite 15.5", Toshiba, Japan) positioned at eye-level and 

displayed treadmill belt speed in 0.01 m increments (Lab Chart 5 software and 

PowerLab 8.0 M, ADInstruments, Germany) and exercised in time with a 

metronome (Digital Metronome DM-11, Seiko S-Yard Co. Ltd. Tokyo, Japan).

3.10.3. Data analysis

The highest V02 30 s interval during conventional treadmill test was taken as 

the participants’ F02max. (see 3.9.8.1.). The MART score was calculated using 

the ACSM (2000) V02 equivalents for running power (see 3.9.9., Figure 5). The 

cadence and treadmill speed were sampled every 60 s during each stage of 

incremental vertical treadmill exercise protocol to detect any changes over the 

3 minute period. The mean V02 exhibited in the final 30 s of each stage and HR 

in the final 15 s of the incremental vertical treadmill exercise was established for 

each participant in preparation for statistical analysis.

3.10.4. Statistical analysis

To satisfy the numerous aspects of reliability CV%, limits of agreement 

(first measure - second measure), technical error measurement, ICC and 95% 

confidence intervals were performed on key variables (V02, HR and [BLa]) 

during incremental vertical treadmill exercise, K02max. test and MART.
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6.2%, -2.0 -  1.5, 0.867 -  0.927, 4.2 -  6.3 respectively. The 95% Cl ranged from 

81 -  114 bpm, 98 -  135 bpm, 120 -  168 bpm and 135 -  182 bpm for RPE 9, 

12, 15 and all-out effort respectively. The reliability of [BLa] as measured by 

CV%, TEM%, LOA, ICC and SEM ranged from 8.3 -  23.3%, 8.7 -  22.3%, -8.6 -  

9.8, 0.520 -  0.955 and 0.2 -  0.3 respectively. The 95% Cl ranged from 0.68 -  

2.31 mmol-L'1, 1.03 -  3.04 mmol-L'1, 3.49 -  5.81 mmol-L'1 and 5 .2 6 - 

8.50 mmol-L'1 for RPE 9, 12, 15 and all-out effort respectively.

3.10.6. Discussion

The primary aim of this study was to assess the reliability of MART scores as 

well as HR, V02 and [BLa] measures during the K02max. test and during 

incremental vertical treadmill exercise. During the K02max. test, the K02max. 

demonstrated excellent reliability in terms of low CV%, narrow LOA and 

95% Cl, and high ICC values. The K02max. was more reliable in this study than 

previously reported in the literature. For example, the CV% of F 0 2max. measures 

in this study (2.1%) was lower than that found by Granja Filho et al., (2005) of 

5.5% and also met the criteria for acceptable reliability of <3% suggested by 

Cooper et al., (2009). The ICC for the F 02max. (0.966) was similar to that of 

Deakin et al., (2011) and the Granja Filho et al., (2005) (0.97). Lastly, the 

relative TEM indicated greater reliability in this study (2.2%) than that of Deakin 

et al., (2011) (4.35%), therefore the K02max> protocol used in this study 

produced highly reliable results.

The V02 observed during the incremental vertical treadmill might be 

considered as satisfactory generally (CV% 5.4-10.1 , ICC 0.690-0.912), 

however unacceptable reliability was evident in terms of the ICC (0.282) of
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vertical treadmill exercise at RPE 12. This could be a result of the intensity of 

submaximal exercise being more open to subjective interpretation, therefore the 

between-subjects variation could be greater thus influencing the resultant ICC.

The HRmax. during the K02max. test demonstrated excellent reliability (ICC 

0.959) and the lowest variation in the data set (CV% 1.5%) and small LOA and 

95% Cl. The HR exhibited during each stage of the incremental vertical 

treadmill exercise were also very reliable, with ICC ranging from 0.867 -  0.927 

and a satisfactory variation in the data as measured by CV% which was very 

similar between stages and ranged from 5.8 -  6.2%. The LOA for HR in each 

stage were small and demonstrated good agreement between the two 

measures. The 95% Cl indicated that 95% of the HR sample lay within 

approximately 20-25 bpm of the mean which could be considered as a large 

range around the mean. This could be explained by the differences in the 

interpretation of the intensity of exercise and increments in RPE.

The MART score (Peak V02 equivalent) presents an unclear reliability. 

Nummela et al., (1996) reported a favourable CV% of 2.7%, however in this 

study a CV% of 10.9% was found suggesting that there was a large variation in 

the data set that could jeopardise the reliability of the study. Despite a large 

CV%, an ICC of 0.843 and narrow LOA and 95% Cl suggests the MART in this 

study actually exhibited good reliability.

The [BLa] measures varied in terms of reliability. The post-MART [BLa]

exhibited a small variation (CV% = 2.5) and TEM (2.5%) and good reliability

(ICC = 0.812). The [BLa] following the all-out effort on the vertical treadmill also

produced favourable ICC value (0.913) and reasonable variation within the data

set of 8.3% (CV%). During submaximal vertical treadmill exercise, the [BLa]
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reliability was good across most increments in RPE in terms of ICC (0.829 -  

0.955). An anomaly was evident in the reliability of [BLa] during vertical 

treadmill exercise at an RPE 9, where ICC dropped to an unacceptable level of 

0.520. The same model of [BLa] analyser (YSI 1500 Sport Lactate Analysers, 

YSI Inc., Yellow Springs, Ohio, USA) as used in this study was previously 

reported have excellent instrument reliability in terms of pearson’s ‘r’ correlation 

coefficient (r = 0.99) and intra-investigator reliability (r = 0.99) (White et 

al., 2009). Therefore the poor reliability of [BLa] measures during vertical 

treadmill exercise could be due to differences in the interpretation of intensity 

and associated changes in physiology for each increment in RPE. Another 

possibility was that during lower intensity exercise the leg was exposed to the 

resistive forces of the overhanging resistance cables. It could be postulated that 

weaker participants will meet the demand mainly through anaerobic energy 

systems thus producing lactic acid. Stronger participants might meet the 

demand through a higher aerobic contribution, thus influencing the 

between-subjects variation and subsequently the ICC could be lowered. In 

addition, the novelty of the vertical treadmill and the inexperience of the 

participants could result in inconsistent responses from energy systems despite 

attempts at habituating participants to vertical treadmill exercise. Potentially, a 

longer period of habituation to vertical treadmill exercise could remedy the large 

variation.

In conclusion, the physiological measures taken in the current research

facility are reliable when maximal exercise was employed (K02max., HRmax.

during the K02max. test, MART score and [BLa]max. during the MART, and

[BLa]max. and HRmax. during all-out effort vertical treadmill exercise). This,

coupled with low TEM% suggests that the instruments ([BLa] analysers and
125



CPX Ultima) and methods (K02max. and MART) used in this study were reliable. 

During submaximal vertical treadmill exercise the reliability of measures tended 

to be lower than during maximal exercise. The intensity of submaximal exercise 

was susceptible to interpretation when compared with maximal exercise, thus 

variability and between-subjects variation is increased and a likely culprit for the 

reduced reliability. Therefore, it was important that habituation to vertical 

treadmill exercise was sufficient and should be greater than that used in this 

study of 2 x 30 minutes. Also, the current fitness of the participants to meet the 

demands of the exercise was an important factor in the observed physiological 

responses and will require consideration in future research.
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Chapter 4: The kinematics and neuromuscular recruitment patterns of vertical
treadmill exercise

4.1. Introduction

The novelty of the vertical treadmill means that currently there is not a body of 

knowledge regarding the fundamentals of vertical treadmill exercise regarding 

the muscles used and the associated movement patterns. Knowledge of such 

fundamental principles might identify populations or training programmes for 

which vertical treadmill exercise might be most suitable. A key characteristic of 

the vertical treadmill is the ability to adjust the posture of the user while 

remaining recumbent. The back rest is adjustable and ranges from supine (0°) 

to 70° in 10° increments. The adjustment of the seat angle (0° to 30° in 10° 

increments) allows the body weight of the user to be supported as the back rest 

angle changes. It was purported that small changes in posture, even when 

remaining recumbent, will influence the performance of the neuromuscular and 

musculoskeletal systems, thus the kinematic profile of an exercise mode could 

be altered (Egana et al., (2010) and Jones et al., (2004)). Egana et al., (2010) 

also reported posture-related deviations in muscle recruitment were only 

evident during high intensity cycling rather than low intensity cycling (20 vs. 

80% peak power output). Therefore differences in posture and the intensity of 

the exercise might target different musculature and different range of motion. 

Whether there are demonstrable differences in the neuromuscular recruitment 

and subsequent kinematic profiles during vertical treadmill exercise in different 

postures is not known, nor is it known whether differences might exist between 

intensities of exercise. Therefore, the aim of this study was to determine the 

neuromuscular recruitment and kinematic profile of vertical treadmill exercise in 

selected postures and intensities of exercise.
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4.2. Methods

4.2.1. Participants

After institutional ethics approval, 21 male participants (age 24.8 ± 7.1 years, 

stature 1.79 ± 0.07 m, body mass 77.7 ± 8.8 kg) were recruited for the study. All 

participants were healthy, physically active individuals, who were free from 

musculoskeletal disease or injury at the time of testing.

4.2.2. 3-D optical motion analysis and EMG system

Six ‘Eagle’ passive cameras (Motion Analysis Corporation, CA USA) were used 

to track retroreflective markers at 200 Hz that were adhered to anatomical 

landmarks, cluster markers and joints centres of the right leg (see 3.5.1. to

3.5.1.2.). A ‘Delsys Bagnoli’ 8-channel EMG system (Delsys Inc. MA, USA 

(1000 Hz) was used to capture the neuromuscular recruitment patterns of the 

rectus femoris, vastus medialis, vastus lateralis, semitendinosus, biceps 

femoris, lateral gastrocnemius, medial gastrocnemius and tibialis anterior (see

3.5.2. and 3.5.2.1.).

4.2.2.1. Test protocol

The test protocols used to measure the kinematics and neuromuscular 

recruitment of vertical treadmill exercise in the various postures and intensities 

has been described previously (see 3.6.2.2.). In brief, participants were 

prepared for lower limb kinematics and EMG data collection (see 3.5.1.2. and

3.5.2.1.). Participants undertook a warm up at a very light rate of perceived 

exertion (RPE 9) for 5 minutes with dynamic stretches. Participants exercised
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for 5 minutes at a speed that they perceived to replicate their over ground 

walking velocity (described to participants as though going for a casual walk for 

1 hour), jogging velocity (described to participants as the pace when going for a 

casual jog for 1 hour) and running velocity (described to participants as the 

pace when going for a training run for 1 hour) for 5 minutes in the selected 

postures of the supine, 40° and 70° postures. These postures were selected as 

they were the extremes (supine and 70° posture) and the intermediate posture 

(40° posture) available on the vertical treadmill. The order of postures and 

speeds was randomised using the ‘random’ function in Microsoft Excel 2007. 

Simultaneous 3-D motion (200 Hz) and EMG data (1000 Hz) were recorded 

during each condition. The treadmill belt speed was logged continuously 

(PowerLab 8.0 M, ADInstruments, Germany) and participants were not 

permitted view to the speedometer.

4.2.3. Data analysis

Raw kinematic and EMG data were processed as described in 3.5.1.3. and

3.5.2.2.. Foot strike and toe-off were identified for ten gait cycles (see 3.5.1.3.).

Kinematic variables of interest were the range of motion, peak flexion and peak

extension of the hip, knee and ankle during the contact phase and swing

phases of the gait cycle. The temporal variables of interest were treadmill belt

speed, cadence, stride time, stride length, percentage of the gait cycle in

contact and swing phases, and contact distance (vertical displacement of the

foot during the contact phase). EMG variables of interest were the timing of

muscle activation and deactivation. Muscle activation was established when the

EMG signal rose 2 standard deviations above the mean resting signal and

inactivity was established when the EMG signal fell below 2 standard deviations
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of the resting signal. All data were cropped and normalised to 100% of the gait 

cycle. All variables of interest were calculated for each of the ten gait cycles and 

averaged within participants and averaged across participants.

4.2.4. Statistical analysis

Parametric variables of interest were subject to a two-way repeated measures 

ANOVA with pairwise comparisons (Bonferroni) and Cohen’s ‘d’ effect sizes 

(ES). Non-parametric variables of interest (RPE) were subject to Friedman test 

and post-hoc Wilcoxon signed ranks test.

4.3. Results

4.3.1. Temporal-spatial parameters

The mean and standard deviation of the temporal-spatial parameters are 

presented in Appendix 7.1. Significance values, p values of main effects and 

pairwise comparisons and ES are also presented.
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4.3.1.1. Vertical treadmill speed
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Figure 6. Mean (SO) speed during incremental vertical treadmill exercise in the 
supine H ,  40° □  and 70° □  postures. * indicates main effect for posture, 
t  indicates main effect for speed (p<0.05). (n= 21).

Figure 6 shows that the vertical treadmill speed differed between postures 

(^(2,40)=10.338, p<0.001). Bonferroni pairwise comparisons suggested that the 

40° and 70° posture were similar (p=1.000, small ES), however, both postures 

exhibited greater speeds than the supine posture (p=0.007, medium ES and 

p=0.001, medium ES respectively). A posture x speed interaction (F(4i8o)=2.690, 

p=0.037) indicated that increments in vertical treadmill speed were greater in 

the 40° and 70° postures than supine. Differences were also observed between 

perceived speeds (perceived walking, jogging and running) (F(i.4)28.5)=25.219, 

p=<0.001). As the perceived speed increased, vertical treadmill speed also 

increased (p<0.001, large ES for all speed comparisons).
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4.3.1.2. Cadence
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Figure 7. Mean (SD) cadence during incremental vertical treadmill exercise in 
the supine H ,  40° □  and 70° □  postures. * indicates main effect for posture, 
t  indicates main effect for speed (p<0.05). (n= 21).

With regards to posture, the cadence also differed between postures 

(/r(2,40)=11-748, p<0.001) as shown in Figure 7. The 40° and 70° postures were 

similar (p=0.614, small ES), however, both postures exhibited higher cadences 

than the supine posture (p=0.003, medium ES and p=0.001, medium ES 

respectively). As the perceived speed increased, the cadence also increased 

(^(1.3,27.5)=195.472, p<0.001). Differences in cadence were also observed 

between perceived speeds (F(i.4i27.7)=25.219, p=<0.001). As the perceived 

speed increased, cadence also increased (p<0.001, large ES for all speed 

comparisons).
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4.3.1.3. Stride length
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Figure 8. Mean (SD) stride length during incremental vertical treadmill exercise 
in the supine H ,  40° □  and 70° □  postures. |  indicates main effect for 
speed (p<0.05). (n= 21).

As demonstrated in Figure 8, there were no differences between posture in 

stride length (F(2,40)=2.801, p<0.073), however differences in stride length were 

also observed between perceived speeds (F(2,40)=111.623, p<0.001). As the 

perceived speed increased, stride length increased (p<0.001, large ES for all 

speed comparisons).
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4.3.1.4. Gait cycle tim e
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Figure 9. Mean (SD) vertical treadmill speed during incremental vertical 
treadmill exercise in the supine H ,  40° □  and 70° Ell postures. * indicates 
main effect for posture, f  indicates main effect for speed (p<0.05). (n= 21).

In Figure 9, the gait cycle time differed between postures (F(2)4o)=8.703, 

p=0.001) and there was no difference indicated between the 40° and 70° 

postures (p=0.438, small ES), but both were faster than in the supine posture 

(p=0.035 and p=0.004 respectively). Differences in gait cycle time were also 

observed between perceived speeds (F(2,40)=116.508, p<0.001). As the 

perceived speed increased, gait cycle time decreased (p<0.001, large ES for all 

speed comparisons).
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4.3.1.5. Contact distance
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Figure 10. Mean (SD) contact distance during incremental vertical treadmill 
exercise in the supine H ,  40° □  and 70° d l  postures. (n= 21).

As demonstrated in Figure 10, there were no differences in the contact distance 

between the postures (F(2,40)=0.259, p=0.773) nor were there differences 

between perceived speeds (F(1.5,28.8)=0.416, p=0.608).

4.3.1.6. Percentage of the gait cycle in contact phase
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Figure 11. Mean (SD) percentage of gait cycle in contact phase during 
incremental vertical treadmill exercise in the supine H ,  40° □  and 70° □  
postures, t  indicates main effect for speed (p<0.05). (n= 21).
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Figure 11 demonstrates that the percentage of the gait cycle spent in contact 

with the treadmill did not differ between postures (F(2,40)=0.963, p=0.390), 

however differences were observed between perceived speeds 

(/=< 1. 5,29.7)=70.331, p<0.001). As the perceived speed increased, percentage of 

the gait cycle in contact phase decreased (p<0.001, large ES for all speed 

comparisons).

4.3.1.7. Rate of perceived exertion

The RPE differed between postures (x2(2,21)=1 1.606, p=0.003, x2(2,2i)=11 -534, 

p=0.003 and x2(2,2i)=17.072, p<0.001 for walking, jogging and running 

respectively). Wilcoxon tests indicated a higher RPE in the supine posture when 

compared with the 40° (Z=2.480, p=0.013, Z=2.170, p=0.030 and Z=3.351, 

p=0.001 for walking, jogging and running speed respectively) and 70° postures 

(Z=3.173, p=0.002, Z=2.801, p=0.005 and Z=3.113, p=0.002 for walking, 

jogging and running speed respectively). As the perceived speed increased the 

RPE also increased (x2(2,21)=37.075, p<0.003, x2(2,21)=37.544, p<0.001 and 

X2(2,2i)=39.098, p<0.001 for perceived walking, jogging and running).
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4.3.2. K inem atics

The mean and standard deviation of the ankle, knee and hip joint angles are 

presented in Appendix 7.2. Significance values, p values of main effects and 

pairwise comparisons and ES are also presented.

4.3.2.1 Ankle
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Figure 12. Mean ankle angle during 
incremental vertical treadmill 
exercise (perceived walking (A), 
jogging (B) and running (C)) in the
supine (— ), 40° (— ) and 70° (.....)
postures.* indicates main effect for 
posture (p<0.05), f  indicates main 
effect for speed (p<0.05). (n= 21).
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As demonstrated in Figure 12, the initial contact the ankle angle differed 

between postures (F(2,40)=18.561, p<0.001). In the 40° and 70° posture the 

ankle angle was similar (p=1.000, small ES) and both were more dorsiflexed 

than in the supine posture (p<0.001, large ES). Peak dorsiflexion in the contact 

phase differed between postures (F(2i40)=13.563, p<0.001) and perceived 

speeds (F(i.6,3i.3)=5.180, p=0.017), and a posture x speed interaction was 

observed (F(4,80)=3.538, p=0.010). In the 40° and 70° postures, the ankle was 

similarly dorsiflexed (p=0.629, small ES), however, both postures exhibited
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greater peak dorsiflexion than the supine posture (p=0.035, and p=0.004 

respectively, medium-large ES). Perceived running speed tended to exhibit less 

dorsiflexion than perceived walking speed. Peak plantarflexion differed between 

speeds (F(i.5,29.5)=16.076, p<0.001). During walking pace, the ankle was less 

plantarflexed than in jogging (p=0.002, small-medium ES) and running 

(p=0.001, medium-large ES). The range of motion differed between postures 

(F(2,40)=12.494, pO.001) and speeds (F(i.5,29.4)=6.984, p=0.007). The range of 

motion was similar between 40° and 70° postures (p=1.000, small ES) and both 

were greater than supine (p<0.001, medium ES and p=0.004 respectively). The 

range of motion was similar between jogging and running (p=1.000, no ES), and 

both were greater than walking (p=0.022, small ES and p=0.037, small-medium 

ES respectively).
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4.3.2.2. Knee
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Figure 13. Mean knee angle during 
incremental vertical treadmill 
exercise (perceived walking (A), £ S0 
jogging (B) and running (C)) in the V 0
supine (— ), 40° (— ) and 70° (.... ) f 30
postures.* indicates main effect for 
posture (p<0.05), t  indicates main 10 
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Figure 13 shows that at initial contact, knee flexion differed between postures 

(F(2,40)=14.207, p<0.001) and speeds (F(2i40)=28.923, p<0.001). The 40° and 70° 

were similar (p=0.702, small ES) and was more flexed than the supine posture 

(p<0.001 and p=0.002 respectively, large ES). Initial contact knee angle was 

similar in the jogging and running speeds (p=0.101, small ES) and was more 

flexed than the walking speed (p<0.001, medium-large ES). In swing phase, 

peak knee flexion was observed and differed between postures (F(2,4o)=5.718, 

p=0.007) and speeds (F(2i40)=55.849, p<0.001). Peak knee flexion was greater 

in the 40° posture than 70° posture (p<0.001, small-medium ES) and as the 

speed increased the knee flexion increased (p<0.001, small-medium ES for all 

speed comparisons). Peak knee extension in the swing phase differed between 

postures (F(2,4o)=22.952, p<0.001) and speeds (F(2,40)=19.265, p<0.001). In the 

supine posture, knee extension was less than the 40° (p<0.001, large ES) and 

70° postures (p<0.001, large ES). As speed increased, the knee extension
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reduced (p<0.001, small-large ES for all speed comparisons). The range of 

motion at the knee was similar between postures (F(2i40)=3.107, p=0.056) and 

speeds (F(2i4o)=2.896, p<0.067).

4.3.2.3. Hip
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Figure 14. Mean hip angle during 
incremental vertical treadmill

postures. * indicates main effect for 
posture (p<0.05), f  indicates main 
effect for speed (p<0.05). (n= 21).
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As demonstrated in Figure 14, at initial contact the hip flexion differed between

all postures (F(2i34)=334.738, p<0.001) with the greatest flexion exhibited in the

70° posture followed by 40° and then supine (p<0.001, large ES for all posture

comparisons). The minimum hip flexion differed between all postures

(F(2i38)=1 77.041, p<0.001) with the least hip flexion exhibited in the supine

posture, followed by 40° and 70° posture (p<0.001, large ES for all posture

comparisons). Peak hip flexion in swing differed between postures

(F(2i38)=396.046, p<0.001) and speed (F(2)38)=40.989, p<0.001). Peak hip flexion

in swing was greatest in the 70° followed by the 40° and the supine (p<0.001,

large ES for all posture comparisons). As speed increased the peak hip flexion
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in late swing increased (p<0.001, small effect). The range of motion at the hip 

differed between postures (F(i.5f 28.6)=33.165, p<0.001) with greater range of 

motion observed in the 40° (p<0.001, large ES) and 70° (p<0.001, large ES) 

when compared with supine.
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4.3.3. Neurom uscular recruitm ent

The mean and standard deviation of the muscle activity are presented in

Appendix 7.3. Significance values, p values of main effects and pairwise

comparisons and ES are also presented.

4.3.3.1. Rectus femoris
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Figure 15. Mean rectus femoris 
activity during incremental vertical 
treadmill exercise (perceived 
walking (A), jogging (B) and running
(C)) in the supine (----- ), 40° (— )
and 70° (.... ) postures. * indicates
main effect for posture (p<0.05), f  
indicates main effect for speed 
(p<0.05). (n= 21).

In general, the rectus femoris was active in the late contact phase to 

approximately mid-swing. The activity (on) and inactivity (off) differed between

postures (F(2,40)=11.110, p<0.001 and F(2,40)=4.063, p=0.025 respectively) and

speeds (F(i.3,25)=33.165, p<0.001 and F(i.4i28.4)=58.500, p<0.001 respectively). In 

the 40° and 70° posture the rectus femoris activation was similar (p=0.052, 

medium ES), however, they were both active earlier in the gait cycle when 

compared with the supine (p<0.001, small ES). The rectus femoris was active 

earlier in the gait cycle as speed increased (p<0.001, large ES for all speed
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comparisons) and ceased activity earlier in the gait cycle as speed increased 

(p<0.001, large ES for all speed comparisons).

4.3.3.2. Vastii

The mean vastus lateralis and vastus medialis did not show any discernible 

pattern during vertical treadmill exercise and therefore were not active during 

vertical treadmill exercise.

4.3.3.3. Semitendinosus
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Figure 16. Mean semitendinosus 
activity during incremental vertical 
treadmill exercise (perceived 
walking (A), jogging (B) and
running (C)) in the supine (----- ),
40° (— ) and 70° (.... ) postures.*
indicates main effect for posture 
(p<0.05), f  indicates main effect for 
speed (p<0.05). (n= 21).

Figure 16 indicates that the semitendinosus was active from the late swing

phase and ceased in late contact phase. The semitendinosus activation differed

with respect to speed (F(i.6j3.i)=73.068, p<0.001 respectively) and was active

earlier in the gait cycle as the speed increased (p<0.001, large ES for all speed

comparisons). The cessation of semitendinosus activity differed between

postures (F(2,40)=22.133, p<0.001 respectively) and speed (F(i.5!30.7)=89.896,
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p<0.001 respectively). In the supine posture, semitendinosus activity ceased 

later in the gait cycle than the 40° and 70° postures (p<0.001, medium-large 

ES) and ceased earlier as speed increased (p<0.001, large ES for all speed 

comparisons).

4.3.3.4. Biceps femoris
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Figure 17. Mean biceps femoris 
activity during incremental vertical 
treadmill exercise (perceived 
walking (A), jogging (B) and
running (C)) in the supine (------ ),
40° (— ) and 70° (.... ) postures.*
indicates main effect for posture 
(p<0.05), f  indicates main effect for 
speed (p<0.05). (n= 21).
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Figure 17 demonstrates that the biceps femoris were active from the late swing 

phase and ceased in late contact phase. The biceps femoris activation differed 

with respect to speed (F(2,40)=66.775, p<0.001) and was active earlier in the gait 

cycle as the speed increased (p<0.001, large ES for all speed comparisons). 

The cessation of biceps femoris activity differed between postures 

(F(2,40)=32.956, p<0.001) and speed (F(i.4,27.4)=85.966, p<0.001). In the supine 

posture the biceps femoris activity ceased later in the gait cycle than the 40° 

and 70° postures (p<0.001, medium-large ES) and ceased earlier as speed 

increased (p<0.001, large ES for all speed comparisons).
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4.3.3.5. Lateral gastrocnem ius
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Figure 18. Mean lateral 
gastrocnemius activity during 
incremental vertical treadmill 
exercise (perceived walking (A), 
jogging (B) and running (C)) in the
supine (— ), 40° (— ) and 70° (.....)
postures.* indicates main effect for 
posture (p<0.05), f  indicates main 
effect for speed (p<0.05). (n= 21).
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As demonstrated in Figure 18, the lateral gastrocnemius was active between 

the late swing phase and late contact phase. The activation of the lateral 

gastrocnemius differed with respect to speed (F ( 2 i4o) = 2 9 . 7 1 1 ,  p<0.001) and 

occurred earlier in the gait cycle as speed increased (p<0.001, large ES for all 

speed comparisons). The cessation of gastrocnemius muscles differed with 

speed (F(2,40)=50.338, p<0.001 and F(2,38)=40.687, p<0.001 respectively) and 

ceased earlier as the speed increased (p<0.001, small-large ES for all speed 

comparisons). A posture-related difference was found in the cessation of lateral 

gastrocnemius activity (F(2i38)=3.660, p=0.035) which indicated a later cessation 

of activity in the 70° posture compared with the supine posture (p<0.001, small- 

medium ES).
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4.3.3.6. Medial gastrocnem ius
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Figure 19. Mean medial 
gastrocnemius activity during 
incremental vertical treadmill 
exercise (perceived walking (A), 
jogging (B) and running (C)) in the
supine (— ), 40° (— ) and 70° (.....)
postures. * indicates main effect for 
posture (p<0.05), t  indicates main 
effect for speed (p<0.05). (n= 21).
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Figure 19 shows that the medial gastrocnemius was active between the late 

swing phase and late contact phase. The activation of the medial 

gastrocnemius differed with respect to speed (F(2i40)=39.721, p<0.001) and 

occurred earlier in the gait cycle as speed increased (p<0.001, large ES for all 

speed comparisons). The cessation of medial gastrocnemius differed with 

speed (F(2,40)=50.338, p<0.001) and ceased earlier as the speed increased 

(p<0.001, small-large ES for speed comparisons).
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4.3.4. T ibialis anterior
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Figure 20. Mean tibialis anterior 
activity during incremental vertical 
treadmill exercise (perceived 
walking (A), jogging (B) and
running (C)) in the supine (------ ),
40° (— ) and 70° (.... ) postures.
(n= 2 1 ).

As demonstrated in Figure 20, the tibialis anterior did not demonstrate any 

discernible period of inactivity during the gait cycle and was constantly active, 

however, the magnitude of activity appeared to be greater in the swing phase.
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4.4. D iscussion

The aim of this study was to identify the kinematics and neuromuscular 

recruitment during vertical treadmill exercise in different postures and speeds. 

The key findings of this study were that the posterior leg muscles were active to 

draw the leg down the treadmill belt in opposition to the resistance cables. 

During the swing phase, the rectus femoris was responsible for drawing the leg 

upwards against gravity. Generally, the kinematic and neuromuscular 

recruitment patterns were similar in the 40° and 70° postures with many 

comparisons exhibiting small ES. These inclined postures differed from the 

supine posture in many aspects and differences were supported with larger ES.

The vertical treadmill speed increased as the perceived speed increased. 

In terms of posture, the vertical treadmill speed exhibited in the 40° and 70° 

postures were similar and both faster than supine. Running speed is the product 

of cadence and stride length (Mann and Hagy, 1980). Both stride length and 

cadence increased with respect to the perceived speed, however, no difference 

in stride length was found across postures, thus cadence was the major 

contributing factor to increasing speed between postures. The increases in 

cadence were reflected in a reduced gait cycle time as posture and speeds 

increased. The contact distance did not differ between conditions, however, a 

reduction in the proportion of the gait cycle spent in contact with the treadmill 

suggested that during the higher perceived speeds the same contact distance 

was covered in less time, potentially accelerating the treadmill belt further per 

step.
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At initial contact, the ankle angle was seen to vary between postures and 

speeds. In the supine the ankle was less dorsiflexed than 40° and 70° posture, 

however, a large standard deviation (6.2 -  8.3°) suggested that a range of 

different strike patterns were used during vertical treadmill exercise. In all 

conditions, the participants demonstrated dorsiflexion of the ankle during the 

early contact phase. A rear-foot contact was improbable because, in horizontal 

ambulation, rear-foot contact is followed by plantarflexion into ‘flat foot’ phase of 

ambulation (Novacheck, 1998) which was not observed during vertical treadmill 

exercise. Instead, a forefoot or mid-foot contact was made with the treadmill belt 

and visual inspection of the exercise action supported this finding. A similar 

strategy was reported during horizontal running whereby a forefoot contact is 

made and dorsiflexion in the early contact was attributed to the absorption of 

body weight (Novacheck, 1998). At initial foot contact, a co-contraction of the 

tibialis anterior and gastrocnemius muscles occurred, this was possibly a 

strategy employed to stabilise the ankle joint at initial contact in a similar way to 

horizontal running (Mann and Hagy, 1980). In the mid-late contact phase of 

vertical treadmill exercise, the gastrocnemius muscles plantarflexed the foot to 

maintain foot contact with the treadmill belt and the tibialis anterior activity was 

increasing to control the plantarflexion. This is consistent with horizontal running 

where tibialis anterior activity eccentrically controls the plantarflexion of the foot 

brought about by gastrocnemius activity (Mann and Hagy, 1980).

In all conditions, the knee was flexed at initial foot contact, more so as

posture and speed increased. As the leg descended the treadmill belt in the

early contact phase, the knee gradually flexed in the supine posture whereas a

brief period of reduced flexion during jogging and running in the 40° and 70°

postures. The hamstrings were active in the contact phase to maintain stability
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of the knee joint whilst opposing the resistance cables. Subjective analysis of 

the hamstrings activity suggested that the hamstring activity was greater in the 

supine posture than the 40° and 70° postures. The primary function of the 

hamstrings is to flex the knee, therefore, the greater activation in the supine 

posture could have been responsible for the gradual flexion or the higher 

neuromuscular recruitment could have compensated for mechanical inefficiency 

around the hip joint since the hamstrings span both the knee and the hip joint.

The general motion of the hip was similar between conditions, only the

degree of hip angle differed. Large differences and large ES were to be

expected since the hip angle was measured as the relative angle between the

thigh and pelvis. As the posture increased, the position of the pelvis was tilted

toward the thigh in the inclined positions when compared with the supine, thus

the hip angle was reduced throughout the gait cycle. In all conditions the hip

flexion reduced throughout contact to draw the leg down the treadmill belt face.

The reduction in hip flexion was, in part, due to the hamstrings as they extend

the hip as well as flex the knee. The gluteals might have contributed to extend

the hip during late contact phase, as has been shown in horizontal running

(Mann and Hagy, 1980, and Luttgens and Hamilton, 1997). The gluteals were

not measured in this study because of movement artefact during vertical

treadmill exercise exacerbated by the body weight of the participants pressed

on the EMG cables thus increasing the noise to the signal. The minimum hip

flexion occurred just before toe-off in all conditions and the supine posture was

closest to achieving hip extension (0.3 ± 6 .8 °, 0.7 ±8.3° and 1.4 ±7.7° for

perceived walking, jogging and running pace). Hip extension is a major

contributor to over ground running speed (Novacheck, 1998), however, it was

limited by a few factors. The rectus femoris was active in the latter stages of the
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contact phase to control or limit the extension of the hip for the transition into 

the swing phase as observed during over ground running (Novacheck, 1998). In 

the 40° and 70° posture the hip extension might have been limited by the 

geometry of the seat and back rest, where hip extension would require the 

participant to lift the pelvis out of the seat. A large standard deviation in the 

minimum hip flexion in all conditions suggested that many participants achieved 

hip extension. Therefore, the achievement of hip extension might be dependent 

on an individual’s current hip extensor strength especially in the supine posture. 

In addition to muscular strength, hip extension might be facilitated by stretch- 

shortening cycle in the posterior hip musculature in the inclined postures. 

Gregor et a/., (2002) examined the kinetic differences between upright and 

recumbent cycling and reported that in the recumbent posture the hip was in a 

more flexed position thus the hamstrings and gluteals at the posterior of the leg 

were stretched around the hip joint. It was hypothesised that the stretch- 

shortening cycle might be employed in the recumbent posture thus facilitating 

the hip extension during vertical treadmill exercise in the inclined postures. 

When the hip is in a more extended position as observed in the supine posture 

the contribution of the stretch-shortening of hip musculature is reduced and the 

dependency on muscular force is increased. This was supported by Perell et 

a i, (2 0 0 2 ) who examined the kinetics of upright and recumbent cycling in 

healthy controls and diabetics. In the healthy individuals the hip extensor 

moment was found to be greater in the recumbent postures. If this were 

extrapolated it could inferred that a greater hip extensor moment would be 

required in the supine posture when compared with the 40° and 70°. This 

posture-related mechanical inefficiency might be attributed to the slower 

speeds, greater neuromuscular recruitment and subsequent higher RPE that
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was exhibited in the supine posture. This highlights the vertical treadmill as a 

potential conditioning tool for the hip extensors, which have been implemented 

in the improvement of sprint performance (Askling et at., 2003), with the 

potential to overload the hip musculature by reducing the posture from inclined 

postures toward the supine.

In early swing phase, peak plantarflexion was observed in all conditions 

and increased with posture and speed. This could be a result of an increased 

momentum of the foot from a speedier downward motion of the leg which was 

mediated by eccentric activity of the tibialis anterior. In all conditions, the ankle 

was dorsiflexed in the mid-swing phase by the increasing activity of tibialis 

anterior. The rectus femoris activity peaked in early swing phase to flex the hip 

and draw the leg upwards. Hip flexion advances the thigh upward and the lower 

leg lags behind, resulting in passive knee flexion. In horizontal running these 

actions of hip and knee flexion with dorsiflexion were associated with ensuring 

foot clearance (Novacheck, 1998) and appear to have also been employed 

during vertical treadmill exercise.

In late swing the hip flexion peaked as the rectus femoris activity reduced 

and the momentum transferred to the lower leg resulted in a passive knee 

extension. Passive knee extension was observed since the knee extensors, the 

vastii muscles, were not active during the vertical treadmill exercise and the 

resistance cables facilitate the extension. The onset of hamstrings activity at 

this time suggested that the hamstrings controlled the rapid knee extension as 

observed in over ground running (Mann and Hagy, 1980). The decrease in hip 

flexion was due to an increasing hamstring activity (and probably the gluteals) 

was indicative of the transition from upward motion of the leg to the downward
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motion of the leg just before initial contact. The ankle angle in the latter stages 

of the swing phase undertook a brief reduction in dorsiflexion, achieving 

plantarflexion in the perceived jogging and running speed in the supine posture 

and this coincided with the onset of gastrocnemius activity. The reason for this 

is unclear. Potentially, it could have been an attempt to ‘feel’ for the treadmill 

belt, especially in the supine posture where the position of the foot in relation to 

the treadmill belt was not visible. As the leg descended towards the treadmill 

belt, the foot began to dorsiflex under tibialis anterior activity in preparation for 

the initial contact. The co-contraction of the gastrocnemius and tibialis anterior 

acted to stabilise the ankle joint in preparation for initial contact.

Large kinematic variability was evident in all conditions and could be

attributed to questionable reliability which, in turn, could be attributed to

unfamiliarity with the exercise mode and inter-individual differences in

participant anthropometries. The resistance of the exercise increased from 20 N

at the uptake of tension up to 70 N as the leg descended the treadmill.

Therefore, the range of motion exhibited by the participant will determine the

resistance experienced and will have differing effects on the observed kinematic

and neuromuscular recruitment patterns between strides and/or participants.

This coupled with an unfamiliar exercise mode might account for the large

kinematic variability during vertical treadmill exercise. There were many

differences in the timing of neuromuscular recruitment, especially across

speeds. Differences in the timing of the neuromuscular recruitment could be

attributed to the normalisation of the EMG signal to 100% of the gait cycle. In

the walking speeds the contact phase accounted for 45 -  46% of the gait cycle

whereas running speed accounted for 33 -  35% of the gait cycle. Therefore

muscle activity associated with the contact phase (hamstrings and
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gastrocnemius) is prolonged and muscular activity of the swing phase (rectus 

femoris) is delayed. Therefore the neuromuscular recruitment patterns were 

similar between conditions, however, a time-shift was evident and differed in 

response to the proportion of gait spent in contact.

With regards to the perceived exertion in each condition, the supine 

posture was considered the most demanding of the postures as evidenced by 

the higher RPE scores across intensities and a medium ES. Anecdotally, 

participants reported that the supine posture incurred a greater postural 

demand. Perceived postural demand might be reflective of compensatory 

muscle recruitment to provide a more rigid body from which the posterior chain 

of the appending lower limbs can work from to overcome the resistance of the 

overhanging cables. In the 70° posture, participants reported a difficulty in 

remaining in the seat. As hip flexion reduced in the downward portion of the gait 

cycle the descending thigh tended to lift the participant out of the seat. Such 

difficulties were not made regarding the 40° posture. Therefore future models of 

the VertiRun might look at addressing this issue if indeed exercising at 70° 

posture provides any additional benefit than the 40° posture. The results of this 

study suggest that the differences between the 40° and 70° posture were 

minimal and therefore the value of 70° posture is questionable. For future 

research, the 40° posture was preferred given the demanding nature of the 

supine posture which might be too much for relative novices without the 

postural strength to sustain exercise and the difficulty of remaining in the seat 

during exercise in the 70° posture.

In conclusion, the vertical treadmill exercise recruited many of the major 

muscle groups and sizeable ranges of motion were demonstrated at each lower
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limb joint. A secondary finding was some similarities characteristics of exercise 

modes (running and cycling) were demonstrated in vertical treadmill exercise. 

Although many differences were exhibited between postures and speeds, 

principally, the hamstrings and gastrocnemius as the leg is drawn downwards 

against the resistance cables, the rectus femoris and tibialis anterior were 

predominantly active in the swing phase as the leg is drawn upwards assisted 

by the supporting cables and against gravity. The vastii were not recruited 

which might need to be addressed if the vertical treadmill is to offer full lower 

limb conditioning. The vertical treadmill primarily targets some of the muscles of 

the posterior chain (hamstrings and gastrocnemius). Exercise programmes that 

condition the posterior muscles have been shown to improve horizontal running 

performance and prevent injuries (Askling et a/., 2003). Therefore, early 

indications are that the vertical treadmill exercise might be used to supplement 

physical conditioning for sports or activities involving horizontal ambulation. 

Further research should focus on whether vertical treadmill exercise can elicit 

appropriate acute physiological responses and training adaptations.
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Chapter 5: Acute physiological responses to vertical treadmill exercise

5.1. Introduction

Exercise was reported to disrupt the homeostasis brought about by muscle 

activity which alters the function and the physiologic responses of body systems 

(Winter and Fowler, 2009). The physiological responses to exercise can be 

used to monitor the fitness of an individual and used to inform the prescription 

of exercise programmes (ACSM, 2000). The most common method of 

monitoring or assessing physiological responses to exercise is HR (Karvonen 

and Vuorimaa, 1988, and Laukkanen and Virtanen, 1998). The HR is an 

indicator of the cardiovascular stress brought about by metabolic changes 

during exercise and is highly correlated with exercise intensity (Karvonen and 

Vuorimaa, 1988). HR is also reflective of the aerobic activity as evidenced by a 

strong correlation between HR and V02 (Hale, 2008).

An indication of the anaerobic metabolism at a given exercise intensity 

can be achieved by measuring lactate from anaerobic glycolysis in the muscle 

(Goodwin et al., 2007). Lactate measurement has been used to monitor and 

assess exercise performance (Gollnick et al., 1986 and Pyne et al., 2000). The 

profiling of [BLa] through incremental test can be used to identify OBLA 

measures which have strong correlations with athletic performance (Pyne et 

al., 2 0 0 0 ).

During exercise, metabolic changes in the active muscles are also 

reflected in the changes in ventilatory parameters (Gaskill et al., 2001). 

Therefore, the analysis of pulmonary gases has been used extensively to 

determine multiple physiological responses to exercise. The V02 is indicative of

156



the aerobic metabolism at a given exercise intensity where as TVent and RCP 

can identify the responses of the anaerobic system and has been shown to be a 

good predictor anaerobic threshold (Davis et al., 1983). The determination of 

respiratory exchange ratio (VC02/ V02) can also be established which is 

indicative of the substrate utilisation in response to exercise. Davis et al., (1983) 

reported that the ventilatory responses were valid for steady-state exercise due 

to disturbance in homeostasis and ventilation at the onset of exercise or in the 

initial stages after an increase in exercise intensity.

To the author’s knowledge, the physiological responses of these 

parameters to vertical treadmill exercise are unknown. Physiological responses 

to other exercise modes have indicated that the intensity of exercise and current 

fitness might affect the physiological responses. For example, Morgan et 

al., ( 1 9 9 5 )  assessed V02 during submaximal and maximal ( K 0 2max.) running in 

trained and untrained runners. Submaximal V02 and HR were lower in the 

trained than untrained, however, during maximal running a greater V02max. was 

observed in the trained runners than untrained individuals. Therefore, the 

participant fitness could influence the observed physiological responses in 

submaximal and maximal exercise and so participant fitness should be defined 

and related to the physiological responses.

The previous study (Chapter 4) identified the 40° posture as the 

preferable posture for tests because the postural demand in the supine posture 

would suit more experienced vertical treadmill exercisers with the postural 

strength to sustain exercise and the difficulty of remaining in the seat during 

exercise in the 70° posture. Wasserman et al., (1987) reported that incremental 

exercise, at equal intervals from light to maximum exercise, can profile the
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changes in physiology. Therefore, the aim of this study was to determine the 

physiological responses to incremental vertical treadmill exercise in the 40° 

posture.

5.2. Methods

5.2.1. Participants

After institutional ethics approval, 13 male participants (age 24 ± 3 years, stature 

1.83 ± 0.06 m, body mass 77.0 ± 7.9 kg) volunteered for this study. All 

participants were healthy, physically active individuals, who were free from 

illness, musculoskeletal disease or injury at the time of testing. Seven 

participants were experienced vertical treadmill exercisers and 6  underwent the 

habituation protocol described previously (see 3.2.).

5.2.2. Test protocols

The aerobic power of the participants was measured by an incremental K0 2 max.

test (see 3.9.8.) on a conventional treadmill (3.9.1.). A minimum of 48 hours

later, the anaerobic power of the participants was measured by a MART (see

3.9.9.) followed by 48 hours of rest. The protocol for determining the acute

physiological responses to incremental vertical treadmill exercise was reported

previously (see 3.10.2.2.1). In brief, participants rested for 15 minutes on the

vertical treadmill undertook vertical treadmill exercise for 3 minutes at an

RPE 9, 12 and 15 and 1 minute of all-out effort. These RPE were based on the

RPE reported in Chapter 4 for perceived walking, jogging and running (RPE 9,

12 and 14 respectively), but were adjusted to ensure equal increments in

perceived exertion. The speed, cadence, HR (see 3.9.5.), [BLa] (see 3.9.6.) and
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V02 (see 3.9.7.), were recorded a rest and during exercise at each RPE (see 

3.10.2.2.1). An additional supramaximal verification bout in accordance with 

Scharhag-Rosenberger et al., (2011) was performed. The verification bout 

required participants to rest for 1 0  minutes after the all-out effort and then 

exercised on the vertical treadmill at 1 1 0 % of the mean speed exhibited in the 

all-out effort (target speed) while HR and V02 were recorded. The verification 

bout ended when the speed dropped below the target speed for 5 s and a [BLa] 

was taken within a minute of the test termination.

5.2.3. Data analysis

Data analysis was the same as that described previously (see 3.10.3.). The V02 

data was averaged over 30 s intervals. The highest V02 30 s interval during 

conventional treadmill test was taken as the participants’ V02max. (3.9.8.1.) and 

the TVent and RCP were determined for each participant (see 3.9.8 .2. and

3.9.8 .3.). The MART score was calculated using the ACSM (2000) V02 

equivalents for running power (3.9.9., Figure 5). The cadence and treadmill 

speed were recorded every 60 s during each stage of incremental vertical 

treadmill exercise protocol to detect any changes in effort over the 3 minute 

period. The mean l^02 exhibited in the final 30 s and HR in the final 15 s of rest 

and at each RPE during the incremental vertical treadmill exercise was 

established for each participant in preparation for statistical analysis. Lactate-E 

software (Newell et al., 2007) was used to determine the RPE at which 2 and 

4 mmolL ' 1 OBLA occurred during incremental vertical treadmill exercise.
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5.2.4. Statistical analysis

Parametric variables of interest were subject to one-way repeated measures 

ANOVA with pairwise comparisons (Bonferroni) and Cohen’s ‘d’ effect size 

(ES). Non-parametric variables of interest were subject to Friedman test and 

post hoc Wilcoxon signed ranks test.

5.3. Results

5.3.1. Participant characteristics

The aerobic running power of the participants, as measured by F 0 2max. was 

49.4 (4.4) ml-kg'1-min'1. The TVent and RCP was identified at 

29.3 (4.0) ml kg-1-m in1 (59% K C W ) and 40.8 (4.0) ml-kg'1-mirf1 (83% 

F0 2 m a x .)  respectively. The HRmax. during the F 0 2max. test was 184 (1 0 ) bpm and 

this was 12 bpm lower than the age-predicted HRmax. (196 bpm). The RER at 

^ 0 2max. (RERmax.) was 1.24 (0.08).

The anaerobic running power of the participants, as measured by MART 

in V02 equivalents was 106.7 (5) ml-kg'1-min'1, which was 215% of the F 0 2max.. 

The [BLa] within 1 minute after the MART was 10.21 (1.69) mmol-L'1.

5.3.2. Incremental vertical treadmill exercise

The responses to incremental vertical treadmill exercise are presented in

Table 8 . Participants maintained a constant speed and cadence throughout the

3 minutes at each RPE (F(i.2ii42)=3.609, p=0.073 and F(2i24)=2.930, p=0.073).

As the RPE increased, the mean treadmill speed increased (F(2i24)=1 46.668,

p< 0.001) 29% from RPE 9-12 (p< 0.001, ES=1.97), 23% from RPE 12-15
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(p< 0.001, ES=1.59) and 32% from the mean speed during RPE 15-all-out effort 

(t(i2)=-9.710, p<0.001, ES=2.39). There was no difference between the target 

speed and the verification speed (t(i2)=1.581, p=0.140). The mean cadence also 

increased (F ( i.4i16.6)=115.742, p<0.001) from RPE 9-12 (p<0.001, ES=1.15) and 

from RPE 12-15 (p<0.001, ES=1.03).

HR increased as exercise intensity increased (F(2.6,3o.6)=207.296, 

p<0.001) by 54% from resting-RPE 9 (p<0.001, ES=3.21), 18% from RPE 9-12 

(p<0.001, ES=1.18), 18% from RPE 12-15 (p<0.001, ES=1.41) and 10% from 

RPE 15-all-out (p=0.020, ES=0.90).

The V02 increased as exercise intensity increased (F(2.4i29 .2 )=  238.404, 

p<0.001) by 223% from rest-RPE 9 (p<0.001, ES=5.88), 31% from RPE 9-12 

(p<0.001, ES=1.74), 31% from RPE 12-15 (p<0.001, ES=2.11) and 21% from 

RPE 15-all-out effort (p=0.002, ES=1.47).

The [BLa] increased as exercise intensity increased (F(2.7i 31.9)=1 09.622, 

p<0.001) by 81% from rest-RPE 9 (p=0.042, ES=1.43), non-significant 7% 

increase from RPE 9-12 (p=0.051, ES=0.76), 7% from RPE 12-15 (p<0.001, 

ES=1.61) and 21% from RPE 15-all-out effort (p<0.001, ES=1.25). The 2 and 

4 mmol-L' 1 OBLA occurred at RPE 9 (1.1) and RPE 15 (1.2) respectively during 

incremental vertical treadmill exercise.

RER tended to increase as RPE increased (F(2.4i 29.2)=238.404, p<0.001), 

but only increased significantly above rest and peaked at RPE 15 (p=0.041, 

ES=1.12). RER was similar between RPE 15 and all-out and reduced in the 

verification back to resting RER (p<1.000, ES=0.63).
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Table 14. Mean (SD) speed, cadence, HR, V 0 2, respiratory exchange ratio (RER) and blood 
lactate concentration [BLa] during incremental vertical treadmill exercise. * indicates significant 
difference (p<0.05) from preceding RPE bout and t  indicates significant difference from resting 
(p<0.05). (n=13).

Variable Rest RPE 9 RPE 12 RPE 15 All-Out Verification
Speed (m s-1) 0.95 (0-18) 1.34* (0.22) 1.74* (0.27) 2.56* (0.41) 2.78 (0-45)

Cadence (strides min'1) 80.2 (18.2) 102.5* (20.3) 121.8* (17.1)

H R  (bpm) 67 (7) 103* (18) 122* (16) 144* (14) 158* (17) 158 (18)

1'02  (ml kg'1 min'1) 5.67 (1.11) 18.37* (3.19) 24.06* (3-35) 31.63* (3.8) 38.37* (5.23) 37.76 (6-01)

RER 1.01 (0.1) 1.04 (0.25) 1.11 (0.25) 1 .19+ (0.25) 1.19* (0.21) 1.07 (0.19)

[BLa] (mmol-L'1) 1.12 (0-25) 2.09* (0.67) 2.69* (0.87) 4.62* (1.46) 6.66* (1-78) 7.67 d-44)

5.4. Discussion

The primary aim of this study was to determine the acute physiological 

responses of vertical treadmill exercise. The key findings were that as the 

exercise intensity increased, large increases in both aerobic and anaerobic 

physiological markers were evident. The physiological responses (HR, V02, 

RER and [BLa]) in all-out effort were verified, thus peak values that were 

specific to vertical treadmill exercise were demonstrated.

The mean aerobic power of the participants in this study, as measured 

by V0 2 max.> were classified by Lawler et al., (1988) as ‘untrained’ individuals 

(33 -  49 ml kg'1-min'1), compared with ‘endurance trained’ athletes (5 6 -  

75 ml-kg'1-min'1). Normative data to classify MART scores is non-existent, 

possibly due to a relatively small quantity of research regarding the MART being 

available. Nummela et al., (1996) reported that participants, not too dissimilar to 

the participants in this study (physical education students, age 24 ± 3 years, 

stature 1.80 ± 0.05 m and mass 71.2 ± 5.8 kg), demonstrated MART scores of

119.5 (8.0) ml-kg'1 min'1 which was 12% higher than in this study. These results 

are not strictly comparable since the treadmill gradient was 0.5° greater than the
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gradient used in this study. Nummela etal., (1996) reported that the MART 

scores increased with the gradient of the treadmill, hence a difference was to be 

expected. Maxwell and Nimmo (1996) studied a similar cohort (male students 

with variety of sporting backgrounds) at the same gradient and speeds used in 

this study (10.5%, 14.3 km-h'1 increasing by 1.2 km-h'1 per bout) and reported a 

lower mean MART score of 112.2 (5.2) ml kg'1-min'1 than Nummela et 

al., (1996). Maxwell and Nimmo (1996) MART scores were 5% higher than the 

MART score exhibited in this study, indicating a less anaerobically fit population 

in this study than reported previously.

5.4.1. The HR response to incremental vertical treadmill exercise

The HR increased as RPE increased and peaked during all-out exercise at 

158 bpm. The HRmax. during the all-out effort did not differ from the HRmax. 

exhibited in the verification bout, suggesting that 158 bpm was the HRmax. 

specific to vertical treadmill exercise. The vertical treadmill HRmax. (158 bpm) 

was 81% of the age-predicted HRmax. (196 ± 3 bpm), and when compared with 

the HRmax. achieved during the treadmill running K02max. test, the vertical 

treadmill HRmax was 16% lower.

The vertical treadmill HRmax. was lower than the HRmax. achieved during 

other forms of recumbent exercise. Billinger et al., (2008a) reported HRmax. of 

181 (3) bpm during maximal exercise on a recumbent stepper (adapted 

incremental F 02max. test) which was 15% higher than the vertical treadmill 

HRmax- Possible reasons for the lower HRmax. during maximal vertical treadmill 

exercise that running and recumbent stepping is the reported increased venous 

return on resuming a recumbent posture, more so in a supine posture due to
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lower gravitational pull drawing the blood to the lower extremities and a 

relatively more uniform hydrostatic pressure (Coonan et al., 1983). In response 

to increased venous return the stroke volume increases in accordance with the 

Frank-Starling law, therefore the cardiac output required for the exercise 

intensity can be achieved by a lower HR (Poliner et al., 1980). In both vertical 

treadmill and recumbent stepper exercise the users were in a recumbent 

posture, however the degree of recumbency appeared to differ. Recumbent 

stepper adopted a more upright angle of the back rest was evident in the 

recumbent stepper when compared to the 40° posture used in this study. 

Therefore, one might expect the venous return to be greater in the 40° posture 

on the vertical treadmill configuration and HR to be lowered further under the 

Frank-staling law (Poliner et al., 1980).

Another reason for lower HR could be due to differences in the mass of

musculature being utilised in the exercises. The previous study identified that

large muscle groups, the vastii muscles, were not active during vertical

treadmill, hence the demand for oxygenated blood might have been reduced

when compared with over ground ambulation and recumbent stepping. In over

ground ambulation, the vastii undertake eccentric activity during early contact

phase to absorb impact forces and also extend the knee joint in the latter stages

of the contact phase to propel the limb into the swing phase. The nature of

recumbent stepping probably required extension of the knee (Billinger et

al., 2008 a and b) which probably required vastii muscle activity. The recumbent

stepper also utilises the arms as well as the legs thus the mass of muscle being

used and associated increase in the demand for oxygenated blood could be

greater than in vertical treadmill exercise, hence differences in HRmax. were

observed. It could be proposed that the major muscle group used in vertical
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treadmill exercise: the hamstrings were not conditioned for such activity and 

thus could opt for higher anaerobic ATP resynthesising energy systems (PCr 

and anaerobic glycolysis) rather than aerobic metabolism, hence the demand 

on the heart to deliver oxygen-rich blood to the working muscles would be 

reduced.

5.4.2. The V02 response to incremental vertical treadmill exercise

The V02 increased as the intensity increased and peaked during all-out effort at 

38.37 (5.23) ml-kg'1 min'1. Although this V02 was similar to that achieved in the 

verification it might not be appropriate to state that the vertical treadmill exercise 

^ 0 2max. was achieved. The determination of K02max. as defined by 

BASES, (1997) required a plateau in the 1/(^-intensity relationship to be 

established. Plateaus in V02 were normally achieved after 3-4 minutes as the 

aerobic metabolism attempts to match the demands of the exercise (possibly 

sooner depending on fitness of the participants) (Hargreaves, 2000). The all-out 

effort in this study lasted for 1 minute therefore it was unlikely that a 

steady-state was achieved and visual inspection of the V02 in the all-out effort 

confirmed this in all cases. Thus, a criterion for the determination of K02max. by 

BASES (1997) was violated and so in this study K02peak was achieved in all-out 

effort.

When compared with the F 0 2max. achieved during the conventional

treadmill running test, the vertical treadmill K02peak was 22% lower. Similarly,

Billinger et a/., (2008a) reported a 15% lower F 0 2max. during recumbent

stepping when compared with treadmill running F 02max.. Billinger et al., (2008a)

only reported absolute F 0 2max. data (3.13 L-min'1). A greater absolute K02peak. of
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3.8 L-min'1 was exhibited during vertical treadmill exercise than recumbent 

stepping. A greater K02peak. suggested a greater metabolic demand so one 

would expect HR to be greater than recumbent stepping. This was not the case, 

thus lending support to the Frank-starling mechanism being responsible for 

lower HR during vertical treadmill exercise rather than a reduced metabolic 

demand of a smaller muscle mass as previously hypothesised. The comparison 

of absolute V 0 2max. data should be made cautiously for a few reasons. The 

study of Billinger et al., (2008a) differed from this study in the gender of the 

cohort (mixed gender) and did not provide sufficient detail on the participant 

characteristics (unknown mass and stature). The cohort was partly female 

which typically demonstrated 15-30% lower ^ 0 2max. than males (Sharp et al., 

2002) so the mean absolute K02max. could have been lowered by their inclusion, 

thus rendering this comparison as flawed and therefore should be interpreted 

cautiously.

The lower K02peak of vertical treadmill exercise compared with treadmill 

running K02max. could be due to differences in muscular recruitment. Again the 

lack of vastii activity during vertical treadmill exercise was a prime example of 

reduced muscle activity and thus the reduced demand for oxygen when 

compared with treadmill running. In addition, it is possible that anaerobic energy 

systems were favoured over aerobic energy production due to a relatively 

smaller muscle mass undertaking a high physical and metabolic demand, thus 

oxygen demand and K02peak during vertical treadmill exercise was lower than 

treadmill running.
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5.4.3. The RER response to incremental vertical treadmill exercise

During very low intensity vertical treadmill exercise the RER did not increase

significantly above resting RER which coincidentally was high at

1.01 (0.10) mmol-L'1 compared to the previously reported resting mean RER of

between 0 .72-0 .93  (Goedecke et al., 2000). At rest the suggested RER

indicated a mix of fat and carbohydrate utilisation whereas an RER of 1 was

indicative of 100% carbohydrate utilisation. A large standard deviation (±0.10)

indicated that some participants were utilising a mixed substrate composition

and agrees with previous research suggesting large inter-individual variability

(Goedecke et al., 2000). A high RER at rest could be due to many factors

including muscle glycogen content, exercise volume, proportion of type I fibres

and dietary intake of fat and carbohydrate (Goedecke et al., 2000). At the onset

of ‘very light’ exercise (RPE 9) on the vertical treadmill, the RER did not rise

significantly above resting but was still >1. The perceived vertical treadmill

exercise intensity increased significantly from RPE 12 to all-out, the RER also

increased. The further increases in RER (>1) could be the result of an

increased VC02 purported to originate from lactic acid (H+) buffering system,

thus anaerobic glycolysis was evident at low intensity exercise and its

contribution increased as exercise intensity increased. The peak RER during

the all-out effort was verified despite a 0.12 lower RER in the verification bout.

Statistical insignificance was probably caused by large inter-individual variability

as shown by a large standard deviation (0.19), which could be explained by

some of the aforementioned reasons by Goedecke et al., (2000) for RER

variability at rest. At an intensity set at 110% of their mean speed during the all-

out effort one would expect a high anaerobic largely supplied by anaerobic

glycolysis given the mean duration of the verification bout being beyond the
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time frame for PCr system alone and too intense for aerobic energy system to 

supply. The availability of glycogen and the rate of glycogenolysis could have 

been affected by the exercise volume and intensity of the exercise performed 

during the incremental exercise and the individual ability to recover during the 

10 minute rest period immediately preceding the verification bout. Inter

individual differences in the proportion of type I fibres, their utilisation during the 

incremental exercise bout and their ability to recover from preceding exercise 

could be another factor affecting RER in the verification bout.

5.4.4. The [BLa] response to incremental vertical treadmill exercise

The [BLa] increased with every increment in exercise intensity up to all-out 

effort indicating an increased contribution from anaerobic energy systems. 

Using the 2 mmol-L'1 OBLA as a measure of lactate threshold (Aunola and 

Rusko, 1984) the results showed that lactate threshold occurred during vertical 

treadmill exercise at RPE 9 (1) suggesting an anaerobic contribution to the 

energy demand even during very light exercise. MLSS as measured by OBLA 

of 4 mmol-L"1 occurred during hard exercise (RPE 15 ±1) on the vertical 

treadmill. Similarly, Okuno et al., (2011) reported that MLSS occurred at an 

RPE of 15.7 (1.8) during treadmill running. Therefore, ‘hard’ vertical treadmill 

exercise (RPE 15) required a high anaerobic contribution and the MLSS was 

similar to that reported during conventional treadmill running.

Although a high anaerobic contribution was evident during vertical 

treadmill exercise, the participants were capable of tolerating greater [BLa] as 

indicated by the higher [BLa] achieved during the MART. The [BLa] was 35% 

lower in the vertical treadmill all-out effort than the MART. This could be
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accounted for by a lower muscle mass being used during vertical treadmill 

exercise (inactive vastii). The lower muscle mass reduces the capacity for the 

production of lactic acid when compared with treadmill running where additional 

muscle mass (vastii) would produce lactic acid, thus increasing the [BLa]. 

Another reason could be postural effects on blood flow. For example, it was 

reported that the elimination of lactate via oxidation is, in part, dependent on the 

redistribution of lactate via the blood to highly oxidative tissues such as 

muscles, heart and liver (Gladden, 2004 and Wasserman et al., 1986). It could 

be postulated that the more uniform hydrostatic pressure and tendency to flow 

toward the centre of the body while in the recumbent posture when compared 

with the erect posture (Coonan, 1983) might be advantageous since oxidisers of 

lactate: the liver and heart are located there. In addition, the CO2 produced by 

the buffering of H+ can be expelled by the lungs. However, this was an unlikely 

mechanism for the lower [BLa] during all-out vertical treadmill exercise because 

the circulatory dynamics and kinetics of ventilation differed even between 

recumbent postures. Circulatory dynamics, kinetics of ventilation and V02 

kinetics were slower during supine cycle ergometry than upright cycling 

ergometry (Convertino, 1984; Hughson et al., 1991 and Leyk et al., 1994) and 

were proposed to be due to an impaired muscle pump action and perfusion at 

the muscle (Leyk et al., 1994). When comparing the recumbent posture with the 

erect posture, a greater muscle pump action, ventilatory and perfusion muscle 

rates were reported in erect exercise (Coonan et al., 1983). Therefore the 

reduced muscle mass utilisation was a more probable cause for the lower [BLa] 

during all-out effort on the vertical treadmill than exhibited in the MART.

The [BLa] following the all-out effort on the vertical treadmill was lower

than the verification bout, but this difference was not significant and
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consequently the post-all-out [BLa] was verified. A large standard deviation was 

most likely responsible for the lack of significant difference. The large standard 

deviation could be a result of differences in the fitness between participants. 

Weltman et al., (2008) reported that in previously untrained women exercising 

above the lactate threshold increased lactate threshold and running speed at 

the fixed [BLa] of 2, 2.5, 4 mmol-L'1 and peak [BLa] when compared with control 

group exercising at lactate threshold (p<0.05). Therefore differences in trained 

status influenced the production and tolerance of maximum [BLa]. Thomas et 

al., (2004) reported that the maximal oxidative capacity was related to the 

removal of lactate following a 1-minute all-out effort and also delayed fatigue in 

subsequent continuous and intermittent supramaximal exercise. Therefore 

those who are aerobically fit could have buffered or oxidised more lactate in the 

10 minute rest period between all-out effort and verification bout than those less 

aerobically fit. The immediate sampling of blood after exercise bout meant that 

whether a true peak [BLa] was measured was questionable since peak [BLa] 

was reported to occur between 3-8 minutes after an exercise bout (Goodwin et 

al., 2007). The [BLa] measures in this study were taken within 1 minute of 

exercise bouts and therefore [BLa] profiles are only indicative of the anaerobic 

demand. The consistent sampling (within 1 minute) meant that the comparisons 

between increments of RPE were valid.

In conclusion, in individuals considered as untrained in terms of aerobic

and anaerobic fitness, the vertical treadmill placed less of a demand on the

cardiovascular system as indicated by lower HRmax. and KC>2peak than in the

treadmill running K02max- test. It is suggested that the dependency on the

smaller muscle mass and no vastii activity in vertical treadmill exercise limited

the oxygen consumption, hence K02peak and HRmax. were lower than in
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conventional treadmill running K02max. where a greater muscle mass utilisation 

contributed to the higher K02max.. The vertical treadmill required an anaerobic 

energy contribution even during low intensity exercise (RPE 9) as indicated by 

the RER (>1), [BLa] and 2 mmol-L'1 OBLA, which increased as with intensity. 

The anaerobic contribution, the [BLa] of vertical treadmill was also limited by the 

relatively small muscle mass undertaking anaerobic metabolism and producing 

lactic acid when compared to treadmill sprinting in the MART where greater 

muscle mass was recruited (inclusion of vastii). Therefore, the vertical treadmill 

could be described as a predominantly anaerobic exercise mode.
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Chapter 6: Sprint interval training on the vertical treadmill

6.1. Introduction

The preceding chapters (Chapters 4 and 5) indicated that vertical treadmill 

exercise principally targeted the muscles of the posterior chain and the demand 

on a relatively small muscle mass demanded a high contribution from anaerobic 

energy systems as indicated by [BLa] and high RER even at exercise perceived 

as low intensity. Therefore, the development of a training programme on the 

vertical treadmill should utilise predominantly anaerobic exercise. High intensity 

intermittent training programmes (HIIT) require high levels of anaerobic 

contribution (Buchheit and Laursen, 2013). HIIT consists of durations of high 

intensity exercise work with rest periods. As with any other training programme 

the adaptations depend on the nature of training and the subsequent stimulus 

thus the intensity, frequency, duration and recovery have to be considered. The 

intensity of HIIT ranges in the literature from 90-95% HRmax. for several minutes 

by Helgerud et al., (2007) and Bravo et al., (2008) to maximal or all-out efforts 

over short specified distances (30-80m by Dawson et al., 1998 and Bravo et 

al., 2008) or time such as a few seconds up to 30 s (0rtenblad et al., 2000; 

Burgomaster et al., 2005, 2008; Bravo et al., 2008 and Gibala et al., 2006), with 

the latter being referred to as sprint interval training (SIT). The gauging of 

intensity has proven difficult on the vertical treadmill because of the postural 

effects on HR, an inability to regulate the physiological responses at a set 

cadence and treadmill speed and obtain a measure of power (Watts). Without 

such information, sprint interval training might be more appropriate given that 

the intensity could be standardised as ‘all-out’ effort and therefore comparable 

with other exercise modes. In addition, SIT has been used by practitioners on
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the vertical treadmill and anecdotal evidence suggests it has been successful in 

improving sport performance in a variety of athletes such as footballers, boxers 

and triathletes (from personal contact with VertiRun) where aerobic and 

anaerobic performance are crucial to performance (Bangsbo et al., 2006; 

Smith, 2006 and Bernard et al., 2009).

There are numerous SIT in the literature with differing work : rest ratios.

Laursen and Jenkins (2002) reported that the optimal recovery duration was

unknown and probably dependent on the intended outcomes of the training.

One could argue that athletes would configure a programme to demonstrate

some specificity to their sport for example a team sport would be short duration

and short recovery periods (Coutts et al., 2003 and Bangsbo et al., 2006) as

was demonstrated in the study by Bravo et al., (2008) (40 m sprints with 20 s

rest vs. 4 minutes at 90-95% HRmax. with 4 minutes of rest). A common SIT

protocol consists of several 30 s all-out efforts were completed separated by 4 -

4.5 minutes of passive or low intensity exercise recovery repeated 3 times per

week for 2-7 weeks (Burgomaster et al., 2005; 2006; 2007; 2008; Gibala et

al., 2006; Babraj et al., 2009, Whyte et al., 2010 and Bayati et al., 2011). It has

been described as a time-efficient training programme for health improvements

in sedentary and obese individuals as well as inducing metabolic and

morphological adaptations to improve aerobic power and capacity and

anaerobic power in the physically active and trained individuals (Creer et

al., 2004; Burgomaster et al., 2005; 2006; 2007; 2008; Gibala et

al., 2006; Whyte et al., 2010 and Bayati et al., 2011). It is important to note that

aerobic and anaerobic adaptations were also shown in other work ; rest ratios

proposed by McDougall et al., (1998) (30 s : 4 -  2.5 minutes rest) and

0rtenblad et al., (2000) (10 s :50 s rest), however, the popularity and
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improvements in condition of participants with differing sports or physical activity 

levels make the 30 s : 4 -  4.5 minutes rest an attractive protocol for the first SIT 

intervention on the vertical treadmill.

The vertical treadmill was designed to provide an alternative low-impact 

exercise mode for conditioning and rehabilitation for over ground ambulation 

and running performance, however, no training studies utilising the vertical 

treadmill have been carried out. Therefore, the aim of this study was to 

determine the effect of a 6 -week of SIT programme performed on the vertical 

treadmill compared with over ground sprinting on aerobic and anaerobic running 

power.

6.2. Methods

6.2.1. Participants

After institutional ethics approval, 30 male participants (age 22 ± 4 years, stature 

1.79 ± 0.08 m, body mass 78.5 ±12.6 kg) volunteered for this study. All 

participants were healthy, physically active individuals, who were free from 

illness, musculoskeletal disease or injury at the time of testing.

6.2.2. Test protocols

The test protocols were performed pre and post-intervention on 2 days 

separated by 48 hours of rest. On the first testing day, the stature and mass of 

the participants was measured (see 3.9.2. and 3.9.3.). This was followed by a 

MART from which anaerobic power and [BLa] were established (see 3.9.9.).

174



A minimum of 48 hours later, but no later than a week, a conventional 

treadmill running [BLa] profile was performed. The stature and mass of the 

participants was measured (see 3.9.2. and 3.9.3.) and rested for 10 minutes, 

after which a [BLa] sample was taken for analysis (see 3.9.6.). The treadmill 

(see 3.9.1.) was inclined by 1% throughout the test. Participants ran for 3 

minutes at an RPE of 9, 12, 15 and 18. The speed at each RPE was recorded 

every minute for the purpose of replication in the post-intervention tests. Each 3 

minute bout was separated by 1 minute of rest while a [BLa] sample was taken. 

A final [BLa] sample was taken in the minute immediately after the last bout 

(RPE 18). Participants rested for 15 minutes before undertaking an incremental 

running K0 2max. test on the treadmill to assess the aerobic power of the 

participants and a [BLa] measure was taken within a minute of volitional fatigue 

(see 3.9.6.).

6.2.3. Training group assignment

Participants were matched based upon their anaerobic power (MART score) 

and assigned to a vertical treadmill group, sprint group or control group. The 

control group were instructed to maintain their normal activities and dietary 

habits.

6.2.4. SIT programme

Participants in the vertical treadmill and sprint groups undertook the same SIT

programme, only the exercise mode differed. Participants performed the SIT

programme in accordance with the study of Burgomaster et al., (2008) and

Whyte et al., (2010) which consisted of 4-6, 30 s all-out efforts separated by 4.5

minutes of low intensity active recovery (RPE 9), 3 times per week (Monday,
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Wednesday and Friday) for 6  weeks. Access to a large enough indoor area or 

track for the 30 s sprints meant that the sprint group had to perform 20 m sprint 

shuttles in a sports hall. The increments in the number of 30 s all-out repetitions 

are detailed in Table 9.

Table 15. SIT increments in 30 s all-out repetitions.

Week Repetitions

0 Pre-tests

1-2 4

3-4 5

5-6 6

7 Post-tests

6.2.5. SIT session protocol

Each SIT session began with a very light 10 minute warm-up. The initial 5 

minutes consisted of low intensity (RPE 9) vertical treadmill exercise or jogging 

for the sprint group. The last 5 minutes was reserved for dynamic stretches (hip 

flexion/extension leg swings, abduction/adduction leg swings, skips, high knees, 

heel flicks, step-overs, hurdle walks). Participants then engaged in the assigned 

SIT. Between sprints, the participants undertook very light (RPE 9) exercise in 

the respective exercise modes to prevent blood pooling and nausea 

(Burgomaster et al., 2008). After each SIT session, the participants undertook a 

light cool down (RPE 9) on the vertical treadmill exercise or jogging for 5 

minutes followed by 5 minutes of static stretching (quadriceps, hamstrings and 

gastrocnemius and groins) with each stretch being held for 30 s. Participants 

were supervised for 20-30 minutes after the cool down before leaving the 

laboratory or sports hall.
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6.2.6. Data analysis

The VO2 data in the K02max. test was averaged over 30 s intervals. The highest 

V02 30 s interval during conventional treadmill test was taken as the 

participants’ K02max. (see 3.9.8.1.) and the TVent and RCP were determined 

from the l/0 2max. data (see 3.9.8.2. and 3.9.8 .3.). The MART score was 

calculated using the ACSM (2000) V02 equivalents for running power (see 

3.9.9., Figure 5). In the conventional treadmill [BLa] profile, the HR exhibited 

15 s before the end of the 3 minute bouts at each intensity (RPE 9, 12, 15 and 

all-out) was recorded for analysis. The [BLa] exhibited in each RPE was 

inputted to the Lactate-E software (Newell et al., 2007) to determine the RPE at 

which 2 and 4 mmol-L' 1 OBLA occurred during incremental vertical treadmill 

exercise.

6.2.7. Statistical analysis

The K02max. and MART score of the vertical treadmill group, sprint group and 

control group were assessed for differences by a one-way ANOVA with 

Bonferroni pairwise comparisons prior to the intervention. The pre and 

post-intervention parametric variables of interest (K02max., MART score, [BLa] 

following the MART and K02max. test, and HR and [BLa] responses to 

submaximal conventional treadmill running) were subject to a mixed repeated 

measures ANOVA with Bonferroni pairwise comparisons and Cohen’s ‘d’ effect 

sizes (ES). Non-parametric variables of interest were subject to Friedman test 

and post hoc Wilcoxon signed ranks test. In addition, an independent t-test was 

used to assess compliancy rates of the SIT groups to the programme.
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6.3. Results

6.3.1. Pre-intervention group characteristics

Table 16. Mean (SD) pre-intervention group characterisitics (n=30).

Group Age (years) Stature (m) Mass (kg) MART (ml‘ kg"1»min V 'O s m a x . (ml*kg'1»min_1)

Vertical treadmill 22 (4)

R
'

ooCM 
00 
X— 82.1 (5.2) 105.2 (8.6) 46.8 (5.4)

(n=10)

Sprint 22 (3) 1.79 (0.07) 73.2 (16.3) 104.8 (9.3) 47.1 (4.5)

(n=i 0)
Control 21 (4) 1.80 (0.1) 80.2 (13.1) 104.9 (7.14) 46.9 (4.9)
(n=10)

Table 10 indicates no differences between groups with respect to their MART 

score (F(2,27)=0.005, p=0.995) or their K02max. as measured by K02max. 

(F(2)27)=0.009, p=0.991). Therefore the vertical treadmill, sprint and control 

groups were considered homogenous in terms of aerobic and anaerobic power 

prior to beginning the intervention.

6.3.2. SIT compliancy

The compliancy rate was similar between SIT groups (p=0.918). The vertical 

treadmill group completed 92.7 (7.2)% and the sprint group completed 

92.4 (9.7)% of the whole programme.
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6.3.3. Aerobic and anaerobic running power

Vertical Treadmill Sprint Control Vertical Treadmill Sprint Control

Figure 21. Mean (SD) MART score (A) and K02max. (B) pre-SIT H  and 
post-SIT □  * indicates difference between pre-SIT and post-SIT (p<0.05).

Figure 21 (A) demonstrates a main effect for anaerobic running power (MART) 

pre and post-intervention (F(i,27)=1 6.233, p<0.001) and a time x group 

interaction (F(2,27)=4.891, p=0.015). Bonferroni pairwise comparisons were 

unable to find any differences between the groups over time. Paired t-tests of 

pre and post-intervention were performed with Bonferroni adjustment indicated 

that the vertical treadmill and sprint group both increased MART score by 4% 

following SIT (t(9)=-4.256, p=0.006, ES=0.55 and t(g)=-6.092, p<0.001, ES=0.45 

respectively), whereas the control group was unchanged (t(9 ) = 1 .984, p=0.910, 

ES=0.00). The increases in MART scores were similar between over ground 

and vertical treadmill group (t(i8)=-0.466, p=0.647).

A main effect (F(i i27)=1 6.233, p<0.001) and time x group interaction 

(F(i,27)=4.891, p=0.015) was observed between pre and post-intervention 

V02max. scores (Figure 2 1  (B)). Bonferroni pairwise comparison was unable to 

demonstrate differences between the groups over time. Paired t-tests of pre and 

post-intervention were performed with Bonferroni adjustment and indicated that 

the vertical treadmill and sprint group both increased K02max. by 4 and 6 %
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respectively following SIT (t(9)=-4.118, p=0.009, ES=0.56 and t(g)=-3.257, 

p=0.020, ES=0.40 respectively), whereas the control group were unchanged 

(t(9)=0.110, p=0.915, ES=0.14). The increases in F 0 2max. were similar between 

overground and vertical treadmill group (t(i8)=-0.943, p=0.358).

There were no differences in the [BLa] exhibited after the MART or 

V0 2max. test between pre and post-intervention (F(1)27)=0.094, p=0.761, ES=0.08 

and F(1i27)=0.769, p=0.391, ES=0.07 respectively). The TVent and RCP could 

not be consistently identified using the V-slope method or by examining 

ventilatory equivalents. In some cases it was unclear whether inflections in the 

l/0 2-intensity relationships were indicative of TVent or RCP. In some cases the 

inflections were subtle and consequently not detected. Therefore, TVent and 

RCP could not be analysed.

6.3.4. Response to submaximal exercise

6.3.4.1. Conventional treadmill speed

6

5

R P E 9 RPE 12 RPE 15 RPE 18

Figure 22. Mean (SD) running speed of the vertical treadmill group ■  (n=10), 
sprint group □  (n=1 0 ) and control group □  (n=1 0 ) during incremental 
conventional treadmill running. * indicates main effect for intensity (RPE).
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Figure 22 demonstrates an increased running speed on the conventional 

treadmill as RPE increased from RPE 9, 12, 15 to 18 (F(i.8,49.5)=550.125, 

p<0.001). There was no RPE x group interaction (F(3.7,49.9)=0.881, p=0.476) 

indicating no difference in the running speeds between groups at each RPE.

6 .3.4.2. HR response

Rest RPE 9 RPE 12 RPE 15 RPE 18 Rest RPE 9 RPE 12 RPE 15 RPE 18

Figure 23. Mean (SD) pre-SIT heart rate (A) and post-SIT heart rate (B) of the 
vertical treadmill group H  (n=1 0 ), sprint group □  (n=1 0 ) and control group □  
(n=10) at rest and during incremental conventional treadmill running (RPE 9, 
12, 15 and 18). * indicates main effect for intensity (RPE).

Irrespective of group (vertical treadmill, sprint and control) or time (pre or post- 

SIT), the HR increased as RPE increased during submaximal treadmill running 

(F( 1. 7,42.7)=330.865, p<0.001) and there was no RPE x group interaction 

(F(3 442.7)=0.905, p=0.457). The HR response did not demonstrate any 

differences between pre and post-SIT (F(ii25)=0.849, p=0.336, ES=0.14-0.31) or 

time x group interaction (F(2,25)=0.987, p=0.387). At the fixed [BLa] of 2 mmol-L' 1 

and 4 mmol-L'1, the corresponding HR did not differ between pre and post-SIT. 

(F(i i23)=0.768, p=0.390, ES=0.16-0.89).
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6.3.4.3. [BLa] response

A * I 9 B

Rest RPE 9 RPE 12 RPE 15 RPE18 Rest RPE 9 RPE 12 RPE 15 RPE 18

Figure 24. Mean (SD) pre-SIT [BLa] (A) and post-SIT [BLa] (B) of the vertical 
treadmill group H  (n=1 0 ), sprint group □  (n=1 0 ) and control group IHl (n=1 0 ) 
at rest and during incremental conventional treadmill running (RPE 9, 12, 15 
and 18). * indicates main effect for intensity (RPE).

Irrespective of group or time (pre or post-SIT), the [BLa] increased as RPE 

increased in response to submaximal treadmill running (F(i .3,34.8)=2 79 .899 , 

p<0.001) and there was no RPE x group interaction (F(2.6,34.8)=1-871, p=0.160). 

The [BLa] response did not demonstrate any differences between pre and 

post-SIT (F (1i27)=0 .084 , p=0.774, ES=0.0-0.32) or time x group interaction 

(F(i,25)=0.618, p=0.547). The RPE at which the fixed [BLa] of 2 mmol-L' 1 and 

4 mmol-L' 1 occurred did not differ between pre and post-SIT (x2(i,30)=1-143, 

p=0.285, ES=0.01-0.11 and X2(i,30)=0.143, p=0.705, ES=0.00-0.17 respectively).

6.4. Discussion

The aim of this study was to identify the effects of a 6 -week SIT programme 

performed on the vertical treadmill on aerobic and anaerobic running power. 

These results were contextualised by comparison with over ground sprint 

training and a control group. The key findings of this study were that over 

ground and vertical treadmill SIT increased the MART score by 4% and
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increased K 0 2max., by 4 %  and 6 % , respectively. There were no differences in 

the increases in K0 2 max., and MART score between SIT groups and the control 

group was unchanged.

The transference of the training effect from recumbent exercise modes to 

running performance has been reported previously (Loy et a/., 1994), however 

not using a SIT protocol on the vertical treadmill. Hass et al., (2001) found that a 

1 2 -week endurance training programme on a recumbent stepper increased 

conventional treadmill running V02max. by 11%. A similar improvement was 

exhibited following the same endurance programme on a conventional treadmill 

suggesting transference of the training effect from recumbent exercise training 

without detriment to running performance (Hass et al., 2001). After 9-weeks of 

work-matched high-intensity cycle ergometry with treadmill running training both 

groups exhibited improvements in the cycle ergometer l ^ m a x . ,  treadmill K 0 2max. 

and 1 -mile run time suggesting a degree of transference of the training effect. 

The treadmill K 0 2max. and 1-mile run time were greater in the running group, 

therefore improvements can be observed from cross training but specificity of 

training elicited greater adaptations. Similarly, cross training on the vertical 

treadmill elicited similar improvements in running performance when compared 

with over ground sprint group, thus highlighting the potential for the vertical 

treadmill to be used as a conditioning tool.

Similar improvements in anaerobic performance parameters in response 

to various SIT have been reported previously. A 3.6% increase in mean power 

during a 30 s Wingate Anaerobic Test was reported after SIT (MacDougall et 

al., 1998) as was a decrease in over ground 40 m sprint time (Dawson et 

al., 1998) and improved repeated sprint ability (Dawson et al., 1998; 12%
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0rtenblad et al., 2000 and Bravo et al., 2008;). A few studies employing the 

same 30 s SIT protocol used in this study reported anaerobic performance 

improvements on cycle ergometers. Peak power during a 30 s Wingate 

anaerobic cycle test increased by 5.4% (Burgomaster et al., 2006) and by 8 % 

(Whyte et al., 2010). The peak power, mean power and total work performed in 

4 x 30 s Wingate anaerobic cycle tests were reported to increase by 6 % in all 

variables following 30 s SIT (Creer et al., 2004). Under the specificity principle, 

improvements in anaerobic performance parameters might be expected given 

the high intensity exercise and very high/exhaustive demand on the anaerobic 

system.

There have been several metabolic and morphological adaptations

reported to be responsible for the anaerobic performance improvements. These

include a higher H+ buffering capacity (Gibala et al., (2006), increased glycolytic

enzyme activity (MacDougall et al., 1998) such as an increased concentration of

phosphorylase (Dawson et al., 1998), increased proportion of and

cross-sectional area of type II muscle fibres (-10%) (Dawson et al., 1998).

Neurological adaptations to SIT included an increased sarcoplasmic reticulum

volume and Ca2+ released during neuromuscular stimulation (0rtenblad et

al., 2 0 0 0 ), potentially leading to greater motor unit activation as reported by

Creer et al., (2004) and delaying of neurological fatigue during high intensity

exercise (0rtenblad et al., 2000). Whether any of these adaptations were

responsible for the anaerobic improvements observed following vertical

treadmill SIT requires further research. The literature concerning the

30 s : 4.5 minutes SIT protocol used in this study has been reported to elicit

aerobic adaptations with little mention of anaerobic adaptations. This study

confirms, firstly, that a 6 -week SIT utilising 30 s : 4.5 minutes SIT protocol elicits
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anaerobic running power improvements and secondly, vertical treadmill can be 

used as a form cross training for improving anaerobic running power since 

improvements were similar to overground SIT.

An increase in aerobic running power was observed in the vertical 

treadmill group and over ground running group following SIT. Previous research 

reported improvements in K02max. following the 30 s SIT protocol used in this 

study but these were performed on cycle ergometers (Burgomaster et al., 2005; 

2006; 2007; 2008; Gibala et al., 2006; Babraj et al., 2009; Whyte et al., 2010 

and Bayati et al., 2011). Bayati et al., (2011) observed an increase in K02max. of 

9.6% after 4 weeks of 30 s SIT. Similar to this study, Burgomaster et al., (2008) 

reported a 6 .8 % increase in K02max. after 6  weeks of 30 s SIT.

Many metabolic and morphological adaptations have been attributed to 

the improvement of K02max. and aerobic performance. Firstly muscle glycogen 

stores were reported to increase by 26%-50% (Gibala et al., 2006 and 

Burgomaster et al., 2006) after just 2 weeks of SIT, thus the substrate 

availability for metabolism is increased. An improved enzymatic activity 

associated with increased muscle oxidative capacity and substrate use have 

been reported (Burgomaster et al., 2005; 2006). Citrate synthase activity 

increased by 38% in 2 weeks (Burgomaster et al., 2005), pyruvate 

dehydrogenase concentration increased (Burgomaster et al., 2006), thus 

enhancing the capacity for aerobic metabolism. The higher oxidative potential 

reduced the lactate response to submaximal exercise (Burgomaster et 

al., 2006) indicating reduced anaerobic metabolism during submaximal exercise 

following SIT. If coupled with an increased 3-hydroxyacyl-Coenzyme A 

dehydrogenase increases, lipid oxidation during exercise was reported to
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increase (Burgomaster et al., 2008) thus reserving glycogen and PCr 

(Burgomaster et al., (2008) for a prolongation of higher intensity exercise.

In this study, the increased anaerobic and aerobic running power 

following SIT was observed in both SIT groups without changes in the [BLa] in 

submaximal and maximal exercise. The [BLa] following the MART did not 

change, suggesting that the contribution of anaerobic glycolysis in the MART 

was unchanged following SIT. The increase in anaerobic performance without 

an increase in [BLa] was indicative of an inhibition of anaerobic glycolysis by 

metabolic acidosis (Gaitanos et al., 1993). The H+ buffering systems are 

responsible for the reducing the H+ and consequently metabolic acidosis 

(Gaitanos et al., 1993). Therefore, it appears that the H+ buffering systems did 

not improve in this study. In contrast, Gibala et al., (2006) reported an increased 

H+ buffering capacity as evidenced by reduced blood pH following 6 weeks of 

30 s SIT. The increased H+ buffering capacity reduces metabolic acidosis and 

could therefore, be responsible for an increased capacity for anaerobic 

metabolism as evidenced by a 15.5% increase in the peak [BLa] during a 

Wingate anaerobic test following 4 weeks of SIT (Bayati et al., 2011). In 

submaximal exercise, Burgomaster et al., (2006) reported a 13% reduction in 

[BLa] (10 minutes at -60 and -90% V02 peak) which was indicative of an 

increased aerobic metabolism, reduced anaerobic metabolism in lower intensity 

exercise and a SIT-induced increase in H+ buffering capacity. In this study, 

however, the submaximal [BLa] response was unchanged following SIT, which 

suggests that there were no changes in anaerobic metabolism or buffering 

capacity during submaximal exercise.
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The aerobic adaptations to 30 s SIT were reported to be comparable with 

or greater than continuous traditional endurance training on cycle ergometers 

(Burgomaster et al., 2008; Gibala et al., 2006). Therefore aerobic improvements 

can be achieved through SIT without engaging in prolonged exercise, however, 

whether these improvements from SIT were transferable into over ground 

running performance was not determined in previous research. This study found 

that vertical treadmill can also improve over ground aerobic running power 

despite differences in the exercise mode and that the improvements were 

comparable to those achieved from over ground SIT. When coupled with the 

improvements in the anaerobic running power, the vertical treadmill could be 

considered a cross training tool for both aerobic and anaerobic running power.

The HR responses to submaximal exercise could not offer any reason for

the change in maximal performance since no differences were found. In

contrast, Lesmes et al., (1978) reported a 6% reduction in submaximal HR and

an unchanged V02 after 8 weeks of SIT (varying sprint lengths, work : rest of

1 : 2-3). Lesmes et al., (1978) suggested that training-induced bradycardia at

the same absolute intensity indicated a decreased sympathetic drive. The

training stimulus from SIT is has been shown to demonstrate peripheral

adaptations in the muscle (for example citrate synthase, pyruvate

dehydrogenase, % fibre composition), rather than central adaptations of the

cardiovascular system (Bugomaster et al., 2005; 2006). There is however, a

high aerobic contribution to repeated sprint exercise (Bogdanis et al., 1996) so

one might expect the high aerobic demand to induce central adaptations to

improve the 0 2 delivery. Potentially, the central cardiovascular adaptations

might be secondary to peripheral adaptations to improve the 0 2 utilisation at the

muscle to resynthesise ATP and PCr for the subsequent sprint. An
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improvement in 0 2 utilisation at the muscle might still result in a lower HR as the 

requirement for nutrient and 0 2 rich blood flow would be reduced therefore the 

cardiovascular stress would be less at the same submaximal exercise intensity. 

Furthermore, the increases oxidative capacity would be expected to increase 

the anaerobic threshold and therefore the [BLa] was expected to be reduced 

during the submaximal exercise at the same submaximal intensity. Therefore 

the reasons for no differences in submaximal HR and [BLa] are unclear and 

might require further research. The lack of significant differences in the 

responses to submaximal exercise (HR and [BLa]) are partially supported by 

small effect sizes in the overwhelming majority of cases suggesting that SIT has 

not had an effect on these variables. However, these could be attributed to a 

large variability and a small sample size for the number of comparisons being 

made, thus reducing the effect size and increasing the potential for type II error. 

Therefore further research is required with larger sample sizes.

In conclusion, 6 weeks of SIT on the vertical treadmill increased the 

aerobic and anaerobic running power. The improvement in aerobic running 

power and anaerobic running power was similar to that observed in the over 

ground SIT group despite being different exercise modes. Therefore, the 

vertical treadmill could be used as a low-impact conditioning tool and is an 

appropriate substitute for exercise programmes involving prolonged over 

ground running. There have been many SIT-related metabolic and 

morphological adaptations reported in the literature that might be responsible 

for the performance enhancements, however, these were from cycling or 

running SIT literature. The variables measured in this study (HR and [BLa] 

responses to submaximal exercise and aerobic and anaerobic maximum tests)

could not offer an explanation for the improvements observed in the SIT groups.
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Chapter 7: Overall discussion

This chapter provides an overall discussion and summary of the thesis. Firstly, 

the aim of the thesis is re-stated. Secondly, a brief summary of each 

experimental study (Chapter 4, 5 and 6) is presented. Thirdly, the implications 

of the findings of this thesis are discussed in relation to the potential use of the 

vertical treadmill for conditioning and the limitations of the study are given. 

Lastly, the conclusion to the thesis is presented.

7.1. Overall aim

To the author’s knowledge, there is no empirical research to substantiate the 

anecdotal evidence of the vertical treadmill as a physical conditioning tool. 

Therefore the overall aim of this thesis was to establish whether the vertical 

treadmill could be used as a conditioning tool for the physical conditioning of 

physically active males.

7.2. Summary of findings

7.2.1. Kinematics and neuromuscular recruitment during vertical treadmill 

exercise

To fully understand the role of the vertical treadmill in a training programme the 

first study (Chapter 4) sought to determine the kinematics and neuromuscular 

recruitment patterns during vertical treadmill exercise in the supine, 40° and 70° 

postures at speeds that were perceived to replicate their over ground walking, 

jogging and running speed. The results indicated that irrespective of posture
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and intensity of vertical treadmill exercise the hamstrings and gastrocnemius 

muscles were active to draw the leg downwards against the treadmill belt and 

resistance cables. The rectus femoris and tibialis anterior were active in the 

upward phase. The vastii muscles were not active during vertical treadmill 

exercise. The 40° and 70° postures demonstrated similar kinematic and 

neuromuscular profiles when compared with supine posture. The rate of 

perceived exertion was greater in the supine posture in all speeds when 

compared with the 40° and 70°. The key findings were that the vertical treadmill 

primarily targets some of the muscles of the posterior chain (hamstrings and 

gastrocnemius) and hip flexors which are essential components for over ground 

running performance (Askling et al., 2003, Novacheck, 1998 and Deane et 

al., 2005).

7.2.2. Acute physiological responses to vertical treadmill exercise

Given the importance of the acute physiological responses to chronic 

adaptations to a training programme, the second study (Chapter 5) sought to 

determine the physiological responses to submaximal and maximal intensity 

vertical treadmill exercise to support the identification of an appropriate training 

programme. The physiological responses to submaximal and maximal vertical 

treadmill exercise (RPE 9, 12, 15 and all-out effort) in the 40° posture revealed 

a high contribution of anaerobic metabolism as evidenced by OBLA 2 mmol-L'1 

occurring during exercise perceived as very light (RPE 9). The K 0 2peak and 

HRmax. achieved during vertical treadmill exercise were 22% and 16% lower 

than the K 02max. and HRmax. on the conventional treadmill. The high anaerobic 

contribution during low intensity exercise and lower V02 and cardiovascular
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response identified the vertical treadmill exercise as a predominantly anaerobic 

exercise mode.

7.2.3. Sprint interval training on the vertical treadmill

The third study (Chapter 6) sought to determine the effects of 6 weeks of SIT 

(4-6, 30 s sprints with 4.5 minutes of recovery performed on the vertical 

treadmill on conventional treadmill K02max. and anaerobic running power 

(MART) and HR and [BLa] responses to submaximal conventional treadmill 

running. Comparisons were made with an over ground SIT group (4-6, 30 s of 

20 m shuttle sprints with 4.5 minutes recovery) and a control group. The key 

findings of this study were that over ground and vertical treadmill SIT increased 

the MART score by 4% each, and that K02max„ increased by 4% and 6%, 

respectively. There were no differences between pre and post-intervention in 

the control group. The HR and [BLa] response to submaximal conventional 

treadmill running were unchanged in all the groups and therefore other 

physiological adaptations responsible for the improvement in aerobic and 

anaerobic performance require further research. In conclusion, the vertical 

treadmill can be used for the physical conditioning of athletes and can yield 

similar performance benefits as over ground sprint training.

7.3. Vertical treadmill as a conditioning tool

The vertical treadmill improved maximum aerobic and anaerobic running power 

to similar proportions as over ground running SIT despite being vastly different 

exercise modes. In terms of the vertical treadmill exercise, Chapter 4 showed 

that the vertical treadmill recruited the rectus femoris, hamstrings,
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gastrocnemius and tibialis anterior. Metabolic and morphological adaptations 

might be more pronounced in the hamstrings since they were found to be the 

major contributor to vertical treadmill exercise, however, the rectus femoris was 

also active. The specific conditioning of the rectus femoris and hamstrings has 

been shown to improve running performance (Deane et al., 2005). The rectus 

femoris flexes the hip and hip flexor strength was described as integral in sprint 

and sports performance (Deane et al., 2005). During the acceleration phase of 

a sprint (<20 m), a pronounced forward body lean is evident (Delecluse, 1997). 

The main contributors to forward propulsion are the quadriceps to extend the 

knee and gluteals to extend the hip, however, hip flexor strength is required 

draw the leg forwards in a quick but controlled manner in preparation for the 

next foot contact (Novacheck, 1998 and Deane et al., 2005). Hip flexor strength 

also increases the stride length in the acceleration phase and maximum velocity 

phase of sprints (>20 m) (Novacheck, 1998 and Deane et al., 2005), hence, 

following specific hip flexor training, 40-yard sprint and repeated shuttle sprint 

times decreased by 3.8% and 9% respectively (Deane et al., 2005). Therefore a 

potential conditioning of the rectus femoris from vertical treadmill exercise could 

contribute to running performance.

The hamstrings are also major contributors to over ground running

performance (Mann and Hagy, 1980; Wiemann and Tidow, 1995 and

Delecluse, 1997). During maximum velocity sprinting (>20 m) an upright running

posture is assumed (Delecluse, 1997). Running velocity in the upright posture is

directly related to the posterior motion of the leg which begins at the high point

of knee lift down to foot contact and into the contact phase (Wiemann and

Tidow, 1995 and Delecluse, 1997). Due to the upright posture, the main

contributors to forward propulsion change from the quadriceps and gluteals to
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the hamstrings and gluteals (Wiemann and Tidow, 1995 and Delecluse, 1997). 

The hamstrings are active in the first 80% of the contact phase to draw the leg 

backwards thus increasing running velocity (Mann and Hagy, 1980), hence, 

peak running velocity increased and 30 m sprint time reduced by 2.4% following 

hamstring-specific conditioning (Askling et al., 2003). In addition, Pinniger et 

al., (2000) reported that in a hamstring specific fatiguing protocol followed by

3 x 40 m sprints, the joint motions were restricted in the latter sprint (decreased 

hip flexion, decreased knee extension in late swing phase and decreased 

angular velocity of the leg before ground contact). This restriction of joint motion 

in the latter sprints was deemed a protective mechanism for the hamstrings and 

was at detriment to sprint velocity (Pinniger et al., 2000). Therefore if the 

hamstrings were specifically conditioned by vertical treadmill SIT, the 

detrimental protective mechanism might be delayed thus enhancing running 

performance as observed in Chapter 6.

In Chapter 5 demonstrated that the anaerobic systems were under 

considerable stress as indicated by the onset of [BLa] during vertical treadmill 

exercise that was perceived to be very light (OBLA 2 mmol-L'1 at RPE 9, OBLA

4 mmol-L'1 at RPE 15) up to maximum intensity. A considerable aerobic 

contribution (vertical treadmill K02peak was 78% of conventional treadmill 

V0 2max.) was also evident during vertical treadmill exercise. Therefore the 

metabolic stresses in SIT likely provided a stimulus for metabolic adaptations to 

improve aerobic and anaerobic running performance as observed in other SIT 

programmes using cycle ergometers and over ground sprinting (MacDougall et 

al., 1998; Burgomaster et al., 2005; 2006; 2007; 2008 and Bravo et al., 2008).
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SIT on the vertical treadmill improved maximum aerobic and anaerobic 

running power and despite different exercise modes the improvements were 

comparable to those achieved in over ground running. Therefore, vertical 

treadmill SIT can be considered a cross training tool where athletes obtain 

performance gains in one exercise mode by training in other exercise modes 

(Foster et al., 1995). Therefore, the vertical treadmill could have many potential 

applications for a wide range of situations and populations. For athletic 

populations, the enhancement of V 0 2max. and anaerobic performance on the 

vertical treadmill could be beneficial for many sports. Anaerobic power and 

V0 2max. have been shown to correlate positively with endurance performance 

and repeated sprint-type team sports performance such as soccer (Tanaka et 

al., 1986 and Helgerud et al., 2001). Therefore, the vertical treadmill SIT could 

be used to supplement training programmes of both team sport and endurance 

athletes. Furthermore, SIT type activity is usually performed by team sports 

athletes in the pre-competition phase once athletes have acquired a strong 

aerobic fitness in the pre-season (Bompa and Claro, 2008). The pre-season 

training is characterised by a high training volume and relatively low intensity 

whereas pre-competition is characterised by a decrease in training volume and 

high intensity work (Fry et al., 1992 and Bompa and Carrera, 2005) Therefore, 

the vertical treadmill SIT could be used specifically in the pre-competition phase 

of a training programme to enhance the performance of athletes prior to the 

competitive season. Whether prolonged, lower intensity vertical treadmill 

exercise could be used in the pre-season requires further research. This is 

especially poignant given the high incidence of overuse injuries in the pre

season (28%; Engstrom et al., 1991).
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Prolonged over ground running predisposes the lower extremities to 

overuse injuries (Hreljac, 2004). Hreljac, (2004) reported that impact causes 

micro-trauma of body tissues and without sufficient recovery between exercise 

sessions, overuse injuries might occur. Overuse injuries have been observed in 

both team sports and endurance athletes and were reported to be higher in the 

preseason due to the high volume of training involving running (Nielsen and 

Yde, (1989); Engstrom et al., 1991; Soderman et al., 2001 and Hreljac, 2004). 

The low-impact nature of vertical treadmill exercise means that, potentially, 

athletes could exercise without the impact loading, micro-trauma and 

consequently reduce the likelihood of overuse injuries associated with running. 

With a reduced likelihood of overuse injury, the athlete could train more often for 

longer thus encouraging greater physiological adaptations to improve 

performance. Furthermore, in team sports characterised by many repeated 

sprints, hamstring injuries are prevalent (Orchard et al., 1998 and Croisier et 

al., 2008). In Australian football the injury prevalence (percentage of players 

missing through injury) at any given time is 15-18%, of which 13% are due to 

hamstring injuries (Orchard et al., 1997) and this equated to 86.4 hamstring 

injuries per 10,000 player hours and 30.2 hours of training missed per 1000 

hours of exercise (Orchard et al., 1998). In soccer players, Croisier et 

al., (2008) reported that 35 of 462 (7.5%) experienced a hamstring injury in one 

season. Hamstring injuries are detrimental to an athlete’s development since 

time off training is required and this is compounded by nearly a third of 

hamstring injuries recurring within a year (Heiderscheit et al., 2010). A 

mechanism for the injury is the imbalance between the quadriceps and 

hamstrings strength (Croisier et al., 2008). Hamstring injuries often occur during 

rapid extension of the knee by the quadriceps which is controlled eccentrically
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by the hamstrings. In weaker hamstrings the athlete surpasses the mechanical 

limits of the hamstring muscle during high intensity running, thus resulting in 

injury (Croisier et al., 2008). Therefore, hamstring strength training is 

recommended for injury prevention as well as running performance (Askling et 

al., 2003 and Croisier et al., 2008). The vertical treadmill primarily targets the 

hamstrings and therefore might condition the hamstrings to improve the 

performance and prevent injury, thus supporting the use of the vertical treadmill 

for team sports athletes.

7.4. Limitations

7.4.1. Technical limitations

The standardisation of the vertical treadmill for monitoring the intensity of 

exercise was difficult for several reasons. The material properties of the rubber 

bands that are anchored to the base of the treadmill and were responsible for 

the resistance experienced by the user were prone to changes with 

temperature. In warmer environments, rubber is more compliant and therefore 

less resistive to movement. The room temperature ranged from ~15-20° could 

and therefore the resistance experienced would change between vertical 

treadmill exercise sessions. In addition to ambient temperature, the mechanical 

stretching of rubber also creates heat and so as vertical treadmill exercise 

continues, the less resistance is offered. Differences in the resistance to the 

vertical treadmill action might incur different physiological responses. A more 

compliant and therefore less resistive system would require less hamstring 

activity to draw the leg downward and more rectus femoris activity to draw the 

leg upwards. Therefore the intensity of exercise at a given treadmill speed or
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cadence might vary over the duration of an exercise sessions and between 

days. Consequently, treadmill speed might not be an appropriate method of 

monitoring intensity. RPE however is an indicator of exercise intensity that is 

independent of the resistance and the exercise mode, thus supporting the use 

of RPE for monitoring intensity during vertical treadmill exercise.

The freedom of the lower limb to perform variable ranges of motion 

presents another problem for the standardisation of the exercise intensity. As 

mentioned previously, the resistance increased as the leg descended. 

Therefore the range of motion that a user employs will affect the resistance 

experienced and consequently the exercise intensity. The range of motion 

employed could be attributed to participant anthropometries as those with 

longer lower limbs might descend the leg further thus the inter-individual 

exercise intensity might vary considerably. Therefore another limitation of the 

vertical treadmill is that the resistance cannot be measured or set to a specific 

resistance.

7.4.2. Methodological limitations

In Chapter 4, the kinematic and neuromuscular recruitment was limited to 

unilateral analysis and a full lower limb analysis was not possible. Bilateral 

analysis is favourable because perturbations of the contralateral limb can be 

compensated by the ipsilateral limb thus altering the kinematics displayed. The 

activation and contribution of the gluteals in the extension of the hip during 

vertical treadmill exercise in relation to the posture could also be investigated. 

This would require a modification of the seat to allow the surface EMG 

electrodes to be unhindered. The relatively poor reliability of the kinematic data
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could have been attributed to the marker reapplication between days and the 

relative unfamiliarity of the participant to the vertical treadmill exercise. The 

ability of the participants to accurately reproduce the movements they exhibited 

previously is essential to the reliability of the study. To remedy these limitations, 

the position of the vertical treadmill should be considered to allow 360° camera 

placement for 3-D motion analysis. Participants should engage in a longer 

habituation process than the 2 x 30 minutes before analysis or engaging in 

vertical treadmill training.

In Chapter 5 the responses to incremental vertical treadmill were 

determined. During the all-out effort, y 0 2peak was achieved and verified by a 

supramaximal effort to exhaustion. In light of this comparisons were made 

between the vertical treadmill peak K02peak and K02max. of conventional 

treadmill exercise. The comparison was made tentatively because they are not 

strictly comparable. Potentially, a K02max. test where a plateau in the 

K02-intensity curve might be possible on the vertical treadmill by intensity 

increased by one interval on the RPE 6-20 scale every minute until volitional 

fatigue, thus determining vertical treadmill-specific K02max..

In both Chapter 5 and 6, the MART was used to assess the anaerobic 

performance of the participants. The MART was described as an assessment of 

anaerobic power since a high dependency on the anaerobic system was 

evident during the 20 s sprints (73.5 ±1.0%, Zagatto et al., 2011) and high 

correlation with anaerobic performance measures (Rusko et al., 1993). During 

the 140 s rest periods in the MART, a high degree of aerobic metabolism occurs 

as evidenced by a high aerobic contribution when the rest periods were 

included (65.4 ± 1.1%, Zagatto et al., 2011). Therefore, the aerobic fitness of
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the participant might influence the performance in the MART. In terms of the 

findings of Chapter 6, it is unclear whether the improvement in the anaerobic 

power was solely due to adaptations in the anaerobic energy systems and 

muscle morphology or an increase in the resynthesis of ATP and PCr between 

sprints, brought about by an increased aerobic power.

In chapter 6, the identification of TVent and RCP could have provided a 

useful insight to changes in the aerobic and anaerobic activity of the body pre 

and post-SIT. The TVent and RCP of some of the participants could not be 

determined pre or post-SIT. This could be attributed to the range varying fitness 

of the participants. Less fit participants might have exercising above Tvent in 

the initial stage of the F 02max. test, therefore a fitter and more homogenous 

participant group was required to accurately determine TVent and RCP.

7.4.3. Future directions

The findings of this thesis have provided a basis for future research on vertical 

treadmill exercise, influenced the design of subsequent models of the vertical 

treadmill and could be used to identify potential uses of the vertical treadmill for 

various populations which will require further research.

In terms of future research in physical conditioning, the vertical treadmill 

was identified as a predominantly anaerobic exercise mode, however, this 

finding was specific to the population in the study which were described as 

untrained athletes. In addition, the adaptations observed were specific to this 

population and their current trained status. Fitter participants or elite athletes 

might be able to meet the demands of the exercise with aerobic metabolism, 

thus the vertical treadmill could offer an aerobic-based exercise. Whether
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performance improvements observed in this thesis would be evident in elite 

athletes that are highly trained should be investigated. In addition, the effect of 

an aerobic-based training programme could also be performed to fully 

understand the nature and vertical treadmill exercise and its possible uses. 

Further research might also focus on the effects of vertical treadmill exercise on 

cycling performance. The results of such a study could have implications on the 

use of the vertical treadmill for runners and cyclists, and even larger 

implications for triathletes as they could use the vertical treadmill as a cross

trainer to improve both cycling and running performance in the triathlon 

competition.

The metabolic adaptations and muscle morphology to the vertical

treadmill SIT requires further investigation. These should include the

examination of metabolic markers such as citrate synthase, pyruvate

dehydrogenase, 3-hydroxylacyl-Coenzyme A as examined in previous SIT

research (Burgomaster et al., 2005 and 2006). Muscle biopsies of the major

muscles of the lower limbs could be used to determine the muscle morphology

(changes in the proportion of muscle fibre types) of major muscle groups,

especially the hamstrings in response to SIT on the vertical treadmill. Other

performance measures could be used to determine whether the vertical

treadmill offers any additional training effect that other exercise modes do not

provide. For example, isokinetic dynamometer strength tests on the major

muscles of the lower limbs could be performed. Young et al., (2001) reported

that linear sprint training has limited transference to performances involving fast

changes of direction as observed in team sports (Coutts et al., 2003 and

Bangsbo et al., 2006). The limited transference was purported to result from

different muscle recruitment and movement patterns during changing direction
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when compared with linear running (Young et al., 2001). Therefore, the effect of 

vertical treadmill training on sport-specific performance tests such as the YoYo 

intermittent recovery test for soccer players could be investigated to determine 

the effects on sports performance rather than linear running in laboratory tests 

as performed in this thesis. Determining the precise physiological adaptations 

will differentiate vertical treadmill adaptations from other exercise modes and 

therefore identify where vertical treadmill exercise might be most appropriate 

within an athlete’s training programme.

In Chapter 4 it was demonstrated that the vertical treadmill did not recruit 

the vastii muscles and there were some concerns over the use of rubber bands 

for the resistance as previously reported. This led to the re-design of the vertical 

treadmill and a new model with resistance straps positioned below and above 

the supporting bench (Figure 25). The resistance has been changed to metal 

springs that offer a more consistent resistance as the leg descends the 

treadmill. These resistance straps can be attached below or above the knee to 

alter the recruitment patterns. For vastii recruitment, the straps below the bench 

can be attached to the posterior of ankle to resist the extension of the knee as 

the leg ascends the treadmill belt. Further research is required to confirm the 

activation of vastii with this configuration and the effect of the new 

configurations on muscle recruitment and physical conditioning.
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Figure 25. Re-designed vertical treadmill (VertiRun) used in the supine posture 
with resistance straps positioned below and above the knee that are attached 
above the knee and to the arms.

If an athlete has sustained an injury, whether it is overuse or trauma, the vertical 

treadmill might be useful. The non-weight bearing nature of vertical treadmill 

exercise might reduce the loading of injured tissues and allow exercise to 

continue throughout the rehabilitation process thus maintaining the aerobic and 

anaerobic fitness of the athlete. Obese or pathological populations might also 

benefit from the safety of the supported body weight in a recumbent posture as 

observed in recumbent steppers (Billinger et al., 2008b). An advantage of the 

vertical treadmill over other forms of recumbent exercise is that the lower limbs 

are free to perform the motions that the injury or pathology will allow therefore 

the vertical treadmill has many applications for various athletes and potential 

applications for rehabilitation. For example, those with lower limb injuries might 

be able to use the vertical treadmill and maintain their fitness without 

exacerbating the injury.
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The vertical treadmill could also be used to train unilaterally. The ability 

to work the limbs unilaterally and in a recumbent posture could provide an 

exercise mode for lower limb amputees to increase or maintain fitness and 

potentially strengthen the musculature of the intact hip without the risk of falling 

and further injury. The hip strength was reported to be an important aspect of 

stability, progression and transference of weight on to the prosthetic limb during 

over ground ambulation (Vanicek et al., 2009). The re-designed vertical 

treadmill could also be used to improve the strength of the hip musculature in 

the transtibial amputated leg if the attachment was above the knee. The hip 

muscular strength of the amputated leg is also an important aspect of gait 

retraining to advance the leg in the swing phase and stabilise the leg during the 

transference of weight in the contact phase (Vanicek et al., 2009).

7.5. Conclusion

The vertical treadmill primarily targets the hamstrings, demonstrates a sizeable 

range of motion and places a high metabolic demand on users. The vertical 

treadmill and over ground SIT both increased aerobic and anaerobic running 

power to a similar extent despite differences in the exercise modes. The precise 

reasons for the improvements following vertical treadmill SIT require further 

research, but it is likely that the vertical treadmill is predominantly a hamstring 

conditioning tool and this conditioning enabled an improved running 

performance. Therefore vertical treadmill could be used to supplement training 

programmes for any athletes that require both aerobic and anaerobic running 

power.
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APPENDIX 1.1.

KINEMATICS AND NEUROMUSCULAR RECRUITMENT OF VERTICAL 
TREADMILL RUNNING

Jordan, A., Barnes, A., Fysh, M., Claxton, D., Purvis, A.
Sheffield Hallam University, Centre fo r  Sport and Exercise Science, United Kingdom 

Introduction
A vertical treadmill (VT) is being developed for the physical conditioning or 
rehabilitation o f athletes. It requires a running action in a recumbent or supine position 
on a vertically hung, non-motorised treadmill whilst the limbs are supported with 
overhanging resistance cables. The aim of this study was to describe the kinematics and 
neuromuscular recruitment pattern of VT running.

Methods
Thirteen active males aged 24.8 (7.1) years, height 1.8 (0.1) m, body mass 77.7 (8.8) kg 
undertook two familiarisation sessions to determine self-selected (SS) running speed. 
On a third visit, at the SS running speed, sagittal plane kinematics of the ankle, knee and 
hip were collected using a motion capture system (200Hz). Activation o f major leg 
muscles was determined by synchronised electromyography.

Results
Participants adopted a SS running speed of 2.12 (0.38) m/s and a cadence of 150 (20) 
steps/min. with a stance phase of 32.9 (6.6)% of the gait cycle. Ranges of motion at the 
ankle, knee and hip were 29.8 (3.6), 38.9 (8.7) and 34.8 (6.6)° respectively. The 
hamstrings were active between 0-30% of gait cycle and again at 57-100%. 
Gastrocnemius (GA) were both active 0-49% and 68-100%. Tibialis Anterior was active 
0-8% and 15-100%. Rectus Femoris (RF) was active between 10-83% of gait cycle.

Discussion
VT running elicits similar SS speed (2.25m/s, Koga et al. 2009) and stance phase 
(31.1%, Mann et al., 1980) to horizontal treadmill running. During VT running, the 
hamstrings pull the leg against the treadmill and resistance cables. RF initiates in stance 
to flex the hip and to control hamstring activity which ceases in late stance, thus hip 
hyperextension does not occur (peak extension 0.3 (5.7)°) as observed in horizontal 
running (Mann et al., 1980). GA activity and peak plantarflexion (20.4 (4.9)°) after toe 
off indicate a propulsion phase seen in horizontal running (Mann et al., 1980). 
Flowever, the muscular force is likely not as high due the absence of body mass loading. 
In swing, peak knee flexion (64.4 (8.1)°) was driven by the RF flexing the hip, not by 
hamstring activity. In late swing the RF extended the knee alone since the Vasti muscles 
were inactive. The results indicate that VT running targets some o f the muscles 
associated with the posterior chain that are essential for running performance and injury 
prevention (Askling et al., 2003). In conclusion, the VT shares many similarities with 
horizontal running without impact loading thus it might be appropriate for injury 
rehabilitation and physical conditioning for overground running.

References
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APPENDIX 1.2.

CHARACTERISING THE PHYSIOLOGICAL RESPONSES TO VERTICAL 
TREADMILL EXERCISE

Jordan, A., Claxton, D., Fysh, M., Purvis, A.
Sheffield Hallam University, Centre fo r  Sport and Exercise Science, United Kingdom 

Introduction
A vertical treadmill (VerT) is being developed for the physical conditioning or 
rehabilitation of athletes. It requires a running action in a recumbent position on a 
vertically hung, non-motorised treadmill whilst the limbs are supported with 
overhanging resistance cables. To compare VerT exercise with horizontal treadmill 
running, a Rate o f Perceived Exertion (RPE) of 15 was chosen as it approximates 
Maximum Lactate Steady-State (MLSS) which is the highest steady-state intensity 
without a continual blood lactate accumulation (Dekerle et al., 2003). The aim of this 
study was to determine the acute physiological responses to VT exercise at an RPE of 
15.
Methods
With institutional ethics approval, five males aged 26 (2) years, height 1.81 (0.6) m, 
body mass 76.3 (6.8) kg were recruited. The participants’ maximum oxygen 
consumption (51.7 (2.7) mL/kg/min) and Respiratory Compensation Point (RCP) were 
determined on a horizontal treadmill. MLSS was predicted from RCP minus 10% when 
expressed as percentage of maximum oxygen uptake (Dekerle et al., 2003). VertT 
exercise was performed for three minutes at an RPE of 15 during which treadmill belt 
speed and pulmonary gas exchange were continuously measured. Blood lactate was 
measured at rest and immediately after VerT exercise.
Results
Predicted MLSS during horizontal treadmill running elicited an oxygen uptake 
equivalent to 73.9 (2.9)% of the maximum oxygen uptake and a corresponding heart 
rate of 93.3 (8.4)% of the maximum. At an RPE of 15 on the VerT (equivalent to MLSS 
intensity), oxygen uptake was 58.7 (8.6)% of the horizontal maximum oxygen uptake, 
heart rate was 74.5 (5.7)% of the maximum, blood lactate rose from 1.41 (0.41) 
mmol/L rested to 3.67 (1.6) mmol/L and VerT belt speed was 1.60 (0.25) m/s. 
Discussion
VerT exercise elicits lower cardiovascular stress (HR and oxygen uptake) than 
horizontal running at the same perceived intensity. This might be explained by the 
participants in the current study being accustomed to, but not conditioned for VerT 
exercise as well as the effects of load bearing. During VerT exercise muscular force is 
required to draw the leg downwards against the resistance cables which adds to the 
postural effort. This might result in a contribution of type II fibres during VerT as 
evidenced by the 2.6 fold increase in blood lactate. Further research should make direct 
comparisons with RPE-matched horizontal running as a framework for characterising 
VerT.
References
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APPENDIX 1.3.

SPRINT INTERVAL TRAINING ON THE VERTICAL TREADMILL

Jordan, A., Claxton, D., Fysh, M., Purvis, A., Barnes, A.
Sheffield Hallam University, Centre fo r  Sport and Exercise Science, United Kingdom 

Introduction
Over a third of injuries throughout the soccer season are related to repetitive impacts on 
joints during running (1). Recumbent exercise modes have been employed to reduce 
impact on joints during training (2). A vertical treadmill (VerT), which requires a 
running action in a recumbent posture on a vertically hung, non-motorised treadmill 
whilst the limbs are supported with overhanging resistance cables, was designed for the 
physical conditioning of athletes. It has not yet been established if there are 
physiological adaptations or performance benefits of training using a VerT. The aim of 
this study was to determine the effects of sprint interval training (SIT) on the VerT 
compared with over ground sprint training on aerobic and anaerobic power.
Methods
With institutional ethics approval, twenty active males aged 23 (3) years, stature 
1.79 (7.35) m, body mass 77.6 (12.6) kg volunteered for this study. Participants’ aerobic 
and anaerobic running power were determined by incremental F 0 2 max.treadmill test and 
a maximum anaerobic running test (MART) respectively. Participants were pair 
matched, based upon their aerobic and anaerobic power, and assigned to VerT or 20 m 
shuttle sprint group (SG). SIT consisted o f 4-6, 30 s all-out efforts with 4 minutes 
recovery between bouts, 3 days a week for 6 weeks.
Results
SIT increased F02max. from 46.8 (5.4) to 49.9 (4.9) ml/kg/min in the VerT (p= 0.00) and 
from 46.1(4.4) to 49.1 (5.2) ml/kg/min in the SG (p= 0.00). MART score (O2 

equivalents) also increased from 105.2 (8.6) to 109.7 (8.7) ml/kg/min in the VerT 
(p= 0.00) and from 104.8 (9.3) to 108.9 (9.2) ml/kg/min in the SG (p=0.00). There were 
no group x time interactions.
Discussion
The improvement in aerobic and anaerobic power for SG was similar to that reported 
previously (3). The findings of this study suggest that SIT on the VerT results in similar 
improvements in aerobic and anaerobic running power to those from over ground sprint 
training. Therefore, the VerT could be used as a low-impact conditioning tool and might 
be a substitute for exercise involving prolonged over ground running.

References
1. Engstrom, B. Forssblad, M. Johansson, C. Tomkvist, H. (1990). Does a 

major knee injury definitely sideline an elite soccer player? Am. J. Sports 
Med. 18(l):101-5.

2. Billinger, S. Loudon, J. Gajewski, B. (2008). Validity of a Total Body 
Recumbent Stepper Exercise Test to Assess Cardiorespiratory Fitness. J. 
Strength and Cond. Res. 22(5): 1556-1562.

3. Hazell, T. Macpherson, R. Gravelle, B. Lemon, P. (2010). 10 or 30-s sprint 
interval training bouts enhance both aerobic and anaerobic performance. Eur. 
J. Appl. Physiol. 110(1): 153-60.

234



APPENDIX 2.1.

L Sheffield Hallam University

Faculty of Health and Wellbeing Research Ethics Committee 

Sport and Exercise Research Ethics Review Group 

Participant Information Sheet

Project Title The biomechanical and physiological profile of 
vertical treadmill exercise

Supervisor/Director of 
Studies

Mary Fysh

Principal Investigator Alastair Jordan

Principal Investigator

telephone/mobile
number

Tel: 0114 255 5368 

Mobile: 07931 633 677

Purpose of Study and Briel

(Not a legal explanation but

' Description of Procedures

a simple statement)

Exercising in a recumbent position has been reported to reduce the gravitational 
gradient acting on the cardiovascular and respiratory systems thus altering their 
function and the capacity to exercise. A vertical treadmill has been developed to 
encompass reported benefits of recumbent exercise whilst employing a running 
action. It consists of a non-motorised treadmill that is suspended vertically from a 
steel frame, a horizontal bench and seat that can be used to manipulate the position 
o f the user (more or less recumbent) and resistance is offered from overhanging 
cables attached to the legs and arms. To date there has not been any research 
regarding the use and feasibility of the vertical treadmill as a training or 
rehabilitation aid; hence you could be part o f pioneering research.

As a voluntary participant in this study you will be asked to attend the Centre for 
Sport and Exercise Science (CSES) at Collegiate Crescent Campus, Sheffield on 
four days separated by at least 24hr recovery, but no longer than one week between 
visits. On your first day, you will be asked to fill out a pre-screening questionnaire 
to ensure it is safe for you to proceed with exercise on the vertical treadmill and an 
informed consent form. You will be given a demonstration of the vertical treadmill 
by the researcher; you will then have the chance to familiarise yourself with the 
vertical treadmill in different body positions. Once familiarised with the vertical 
treadmill action you will try exercising at set speeds whilst keeping in time with a
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metronome. The intensity during familiarisation process will be light and the session 
will take approximately 30 minutes. Participants are asked to wear normal sports kit 
for the first visit and preferably tight fitting clothing for subsequent visits. You will 
o f course have the opportunity to ask questions throughout the familiarisation 
session. Following the familiarisation session you will be asked to return to CSES 
laboratories 24 hours-7days for testing.

When you return to CSES your height and mass will be measured. You will then lye 
on a plinth where reflective balls will be adhered to joints on the right side of the 
body and some electrodes to detect electrical activity of muscles of the right leg. 
This process will involve marking the skin with dots using non-toxic ink. We will 
position you on the treadmill and give you time for a brief warm up. Following your 
warm up, we will ask you to walk, jog and run for approximately a minute each or 
until you reach a constant speed and step rate in 3 different postures (seated upright, 
reclined and lying down). There will be brief periods of recovery between each 
posture change and cool down after all postures have been completed. Whilst you 
are on the vertical treadmill we will record movement of reflective balls and data 
regarding activity of your muscles as well as speed and step rate which you will try 
to replicate in subsequent visits. The session should take approximately 1.5 hours in 
total. You will then repeat the testing protocol on your third and fourth visit with at 
least 24hr between each visit but no longer than one week. You have the right to 
withdraw from the study at any time.

It has been made clear to me that, should I feel that these Regulations are being 
infringed or that my interests are otherwise being ignored, neglected or denied, I 
should inform Professor Edward Winter, Chair of the Faculty o f Health and 
Wellbeing Research Ethics Committee (Tel: 0114 225 4333) who will undertake to 
investigate my complaint.
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APPENDIX 2.2.

& Sheffield Hallam University

Faculty of Health and Wellbeing Research Ethics Committee 

Sport and Exercise Research Ethics Review Group 

Participant Information Sheet

Project Title The acute physiological responses to vertical treadmill 
exercise

Supervisor/Director
Studies

of Mary Fysh

Principal Investigator Alastair Jordan

Principal Investigator 

telephone/mobile number

Tel: 0114 255 5368 

Mobile: 07931 633 677

Purpose of Study and Brief Description of Procedures

(Not a legal explanation but a simple statement)

Exercising in a recumbent position has been reported to reduce the gravitational 
gradient acting on the cardiovascular and respiratory systems thus altering their 
function and the capacity to exercise. A vertical treadmill has been developed to 
encompass reported benefits o f recumbent exercise whilst employing a running-like 
action. It consists of a non-motorised treadmill that is suspended vertically from a 
steel frame, a horizontal bench and seat that can be used to manipulate the position 
of the user and resistance is offered from overhanging cables attached to the legs. To 
date there has not been any research regarding the use and feasibility o f the vertical 
treadmill as a training or rehabilitation aid.

As a voluntary participant in this study you will be asked to attend the Centre for 
Sport and Exercise Science at Collegiate Crescent Campus, Sheffield on 3 separate 
days (additional familiarisation session for new vertical treadmill users). Participants 
are asked to wear normal sports kit for all visits. Please refrain from strenuous 
exercise 24 hours before testing.

Familiarisation session (for new exercisers)

If you have not used a vertical treadmill before you will asked to attend 
familiarisation session. You will be given a demonstration of the vertical treadmill 
by the researcher and you will then have the chance to familiarise yourself with the 
vertical treadmill in different body positions. You will o f course have the 
opportunity to ask questions throughout the familiarisation session. The intensity 
during familiarisation process will be light and will take approximately 30 minutes.

1. Aerobic Fitness Test

After familiarisation session you will be given 24 hours to recover before you
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undertake a test of your aerobic fitness ( 2max test). On arrival you will also be 
asked to fill out a pre-screening questionnaire to ensure it is safe for you to proceed 
and an informed consent form. Your height and mass will be measured and you will 
rest supine for 15 minutes. After resting for 15 minutes a finger tip blood sample 
will be taken for blood lactate analysis followed by a blood pressure measurement. 
Then you will be fitted with a heart rate belt, gas analysis face mask that measures 
the gases you breathe in and out and then harnessed to the treadmill frame. The

max. test involves running on a conventional treadmill starting off slow with a 
low inclination of the treadmill. The speed and inclination of the treadmill will be 
increased by lkm/h every minute until you can no longer maintain the speed. The 
test will last 9-12 minutes.

2. Anaerobic Fitness Test

After a minimum of 48 hours you will return to the laboratories to undertake an 
anaerobic fitness test. You will be weighed, height measured, fitted with a heart rate 
belt and will be rested in a supine posture for 15 minutes. After resting a finger tip 
blood sample will be taken for blood lactate analysis followed by a blood pressure 
measurement. You will then be harnessed on to a conventional treadmill and fitted 
with gas analysis face mask. The protocol consists of 20 s runs (with an additional 3 
s acceleration phase) with a 100 s recovery between runs on the inclined treadmill 
(10.5%). The first 20 s run will be at 14.3 km/h and will increase every stage by 1.2 
km/h until you can’t do any more.

3. Steady-state and sprint exercise on vertical treadmill with verification sprint

After 48 hours o f rest you will return to determine the physiological demands of 
low, moderate, high intensity exercise on the vertical treadmill. You will have a 
blood pressure reading and then fitted with a HR monitor and gas analysis 
mouthpiece with nose clip. You will then rest on the vertical treadmill for 15 
minutes and then have a fingertip blood sample taken, followed by a blood pressure 
measurement. You will then be asked to undertake self-selected ‘walking’ on the 
vertical treadmill for 3 minutes, followed immediately by a 3 minute stage of 
jogging, run for a further 3 minutes followed by an all-out sprint for 1 minute. At the 
end of each stage, a fingertip blood sample will be taken. Participants will then rest 
for 15 minutes before undertaking the verification sprint. You will then exercise at 
110% of the speed achieved in the all-out sprint until you fatigue and can no longer 
maintain the required speed. After you fatigue and cease exercising you will have a 
fingertip blood sample taken, gas analysis and nose clip removed and then 
encouraged to cool down.

Reliability study: To assess the reliability of the measures taken during horizontal 
and vertical treadmill exercise you might be asked to repeat the 3 testing protocols a 
week later. Once again this is not obligatory.

You have the right to withdraw from the study at any time.

It has been made clear to me that, should I feel that these Regulations are being infringed or that my 
interests are otherwise being ignored, neglected or denied, I should inform Professor Edward Winter, 
Chair of the Faculty of Health and Wellbeing Research Ethics Committee (Tel: 0114 225 4333) who 
will undertake to investigate my complaint.
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APPENDIX 2.3.

L Sheffield Hallam University

Faculty of Health and Wellbeing Research Ethics Committee 

Sport and Exercise Research Ethics Review Group 

Participant Information Sheet

Project Title The effects of vertical treadmill high intensity interval 
training

Supervisor/Director of 
Studies

Mary Fysh

Principal Investigator Alastair Jordan

Principal Investigator 

telephone/mobile number

Tel: 0114 255 5368 

Mobile: 07931 633 677

Purpose of Study and Brief Description of Procedures

(Not a legal explanation but a simple statement)

A vertical treadmill has been developed for rehabilitation and strength and 
conditioning. It consists of a non-motorised treadmill that is suspended vertically 
from a steel frame, a horizontal bench and seat that can be used to manipulate the 
position of the user and resistance is offered from overhanging cables attached to the 
legs. To date there has been little research regarding the use and feasibility o f the 
vertical treadmill as a training or rehabilitation aid.

As a voluntary participant in this study you will be assigned to either a "normal 
training" group or a "vertical treadmill" training group or a "control group".

If you are assigned to the normal training group, you will be asked to continue with 
your usual training regime supplemented with high intensity intermittent training 
(HUT) on a treadmill. If you are assigned to vertical treadmill training group you 
will supplement your normal training with HUT performed on the vertical treadmill. 
Both HUT protocols have the same sets and reps, just the exercise mode is different 
(running or vertical treadmill). The protocol involves 6 weeks of HIIT with one 
week pre- and post-fitness testing. The HIIT sessions require participants to perform 
4-6 all-out efforts for 30 s separated by 4.5 minutes recovery between sets, three 
times a week.

If you are in the vertical treadmill group and unaccustomed to vertical treadmill 
exercise you will be asked to undertake 2 additional visits for habituation prior to 
engaging in the testing and exercise programmes. You will be given a demonstration 
of the equipment and then have a go at a variety of exercise intensities. You will o f 
course have the opportunity to ask questions throughout the familiarisation session.
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Familiarisation sessions will take approximately 30 minutes each.

To assess the effectiveness of the six week training programmes you will be 
required to undertake fitness tests prior to and after the completion of the training 
programme. In these weeks of fitness tests you will be asked to assess your current 
level of physical activity via a short questionnaire.

Pre- and post-HIIT testing

On your first visit (height and body composition measurement) you will be asked to 
fill out a pre-screening questionnaire to ensure it is safe for you to proceed, an 
informed consent form and a physical activity questionnaire before undertaking the 
tests.

1. Height and Body Composition

In bare feet, your height will be measured and you will be asked to stand on a 
machine which will determine your body mass and composition (fat, muscle, water 
etc.). You can then undertake one of the following tests in the same day.

2. Lactate threshold and aerobic fitness test

You should be rested for a minimum of 24 hours before attending the laboratory and 
you are asked not to eat in the preceding 3 hours. You will be weighed, height 
measured and rested for a few minutes, after which a fingertip blood sample (one 
drop) will be taken for analysis. The conventional treadmill will remain inclined by 
1% throughout the test to mimic the demands of running over ground. You will 
undertake very light, somewhat hard and hard exercise for 3 minutes each. Each 3 
minute bout will be separated by 1 minute of rest while a drop of blood is taken 
from the fingertip for blood lactate analysis. After 15 minutes of rest you will be 

VOasked to undertake a 2max test.

After resting for 15 minutes you will be fitted with a heart rate belt, gas analysis 
face mask that measures the gases you breathe in and out and then harnessed to the 
treadmill frame. The test involves running on a conventional treadmill starting off 
slow (9 km/h) with a 1 % gradient. The speed of the treadmill will be increased by 
lkm/h every minute until you can no longer maintain the speed. The test will last 9- 
12 minutes.

3. Anaerobic Fitness Test

After a minimum of 48 hours rest you will be weighed, height measured, fitted with 
a heart rate belt and a finger tip blood sample will be taken for blood lactate 
analysis. You will then be harnessed on to a conventional treadmill to warm up for 4 
minutes on the inclined treadmill (10.5%) at a speed of 8 km/h interspersed with 2 x 
20 s at 14.3 km/h. You will then undertake 10 minutes of dynamic stretching away 
from the treadmill. The test protocol consists of 20 s runs (with an additional 3 s 
acceleration phase) with a 100 s recovery between runs. The first 20 s run will be at 
14.3 km/h and will increase every stage by 1.2 km/h until you can’t do any more. A 
blood lactate sample will be taken immediately after the test.

Participants are asked to wear normal sports kit for all visits and please refrain from
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strenuous exercise 24 hours before each testing session.

Once the exercise programme and the testing have been completed you can perform 
the HIIT protocol on the other exercise mode should you wish to do so with the full 
support of the researcher.

You have the right to withdraw from the study at any time.

It has been made clear to me that, should I feel that these Regulations are being 
infringed or that my interests are otherwise being ignored, neglected or denied, I 
should inform Professor Edward Winter, Chair of the Faculty o f Health and 
Wellbeing Research Ethics Committee (Tel: 0114 225 4333) who will undertake to 
investigate my complaint.
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APPENDIX 3.

I Sheffield Hallam University

Faculty of Health and Wellbeing Research Ethics Committee 

Sport and Exercise Research Ethics Review Group

INFORMED CONSENT FORM

TITLE OF PROJECT:

The participant should complete the whole of this sheet himself/herself

Have you read the Participant Information Sheet? YES/NO

Have you had an opportunity to ask questions and discuss this 
study?

YES/NO

Have you received satisfactory answers to all o f your questions? YES/NO

Have you received enough information about the study? YES/NO

To whom have you spoken?...................................................................

Do you understand that you are free to withdraw from the study:

• at any time

• without having to give a reason for withdrawing

• and without affecting your future medical care

YES/NO

Have you had sufficient time to consider the nature of this project? YES/NO

Do you agree to take part in this study? YES/NO

Signed............................................................ D a te .............................................

(NAME IN BLOCK LETTERS).........................................................................

Signature of Parent / Guardian in the case of a minor
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FOR USE WHEN STILL OR MOVING IMAGES WILL BE RECORDED

Consent to scientific illustration

I hereby confirm that I give consent for photographic and/or videotape and sound 
recordings (the 'material') to be made of me. I confirm that the purpose for which 
the material would be used has been explained to me in terms which I have 
understood and I agree to the use of the material in such circumstances. I 
understand that if  the material is required for use in any other way than that 
explained to me then my consent to this will be specifically sought.

1. I understand that the material will form part of my confidential records and has 
value in scientific assessment and I agree to this use of the material.

Signed...........................................................  Date............................................

Signature of Parent / Guardian in the case of a minor

2. I understand the material has value in teaching and I consent to the material 
being shown to appropriate professional staff for the purpose of education, staff 
training and professional development.

Signed...........................................................  Date............................................

Signature of Parent / Guardian in the case of a minor

I hereby give consent for the photographic recording made of me on........................
to be published in an appropriate journal or textbook. It is understood that I have 
the right to withdraw consent at any time prior to publication but that once the 
images are in the public domain there may be no opportunity for the effective 
withdrawal o f consent.

Signed..........................................................  D ate .............................................

Signature o f Parent / Guardian in the case o f a minor
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M rrc iN u iA  «i.

t Sheffield Hallam University

Faculty of Health and Wellbeing Research Ethics Committee 
Sport and Exercise Research Ethics Review Group 

Pre-Test Medical Questionnaire

Name:

Date of Birth:____________ Age:_______________ Sex:_________________

Please answer the following questions by putting a circle round the appropriate 
response or filling in the blank.

1. How would you describe your present level of activity?
Sedentary / Moderately active / Active / Highly active

2. How would you describe you present level of fitness?
Unfit / Moderately fit / Trained / Highly trained

3. How would you consider your present body weight?
Underweight / Ideal / Slightly over / Very overweight

4. Smoking Habits Are you currently a smoker? Yes / No
How many do you smoke ...... per day
Are you a previous smoker? Yes / No
How long is it since you stopped?  years
Were you an occasional smoker? Yes / No

 per day
Were you a regular smoker? Yes / No

 per day

5. Do you drink alcohol? Yes / No
If you answered Yes, do you usually have?
An occasional drink / a drink every day / more than one drink a day?

6. Have you had to consult your doctor within the last six months?Yes / No 
If you answered Yes, please give details.................................................

7. Are you presently taking any form of medication? Yes / No
If you answered Yes, please give details................................................
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8. As far as you are aware, do you suffer or have you ever suffered from:

a Diabetes? Yes / No b Asthma? Yes / No
c Epilepsy? Yes / No d Bronchitis? Yes / No
e *Any heart complaint? Yes / No f Raynaud’s Disease Yes / No
g *Marfan’s Syndrome? Yes / No h *Aneurysm/embolism?Yes/No
I Anaemia Yes / No

9. *ls there a history of heart disease in your family? Yes/No

10. *Do you currently have any form of muscle or joint injury? Yes/No
If you answered Yes, please give details.................................................

11. Have you had to suspend your normal training in the last two weeks? 
Yes/No

If the answer is Yes please give details

If blood is not being taken from you please disregard Section 12. below.

12. * Please read the following questions:
a) Are you suffering from any known serious infection? Yes/No
b) Have you had jaundice within the previous year? Yes/No
c) Have you ever had any form of hepatitis? Yes/No
d) Are you HIV antibody positive Yes/No
e) Have you had unprotected sexual intercourse with any

person from an HIV high-risk population? Yes/No
f) Have you ever been involved in intravenous drug use? Yes/No
g) Are you hemophiliac? Yes/No

13. As far as you are aware, is there anything that might prevent you from 
successfully completing the tests that have been outlined to you? 
Yes/No

IF THE ANSWER TO ANY OF THE ABOVE IS YES: Discuss the nature of 

the problem with the Principal Investigator. Questions indicated by ( * ) 

Allow your Doctor to fill out the ‘Doctors Consent Form provided.

As far as I am aware the information I have given is accurate.

Signature: .........................................................................................

Signature of Parent or Guardian if the subject is under 18: 

..................................................................................... Date: ....... / ......./ ..........
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AP PE N D IX  5. Justification of statistical analyses.

Comparison of group means

t-test

The t-test is a simple analysis that examines the differences between 2 groups 

(Foster et al., 2006). There are 2 types of t-test available, independent and 

dependent t-test, the selection of which depends on the experimental design. In 

an independent t-test, there are 2 conditions and different participants were 

assigned to either condition. A dependent t-test involves 2 conditions in which 

participants were tested in both conditions (Field, 2005).

Analysis of variance

Analysis of Variance (ANOVA) examines the differences between the means of 

three or more groups and tests a global null (De Sa Marques, 2007). A benefit 

of the ANOVA tests rather than performing multiple t-tests is the identification of 

interactions that exist between the variables. That is, whether the effect of one 

variable influences another (Foster et al., 2006). Also performing multiple t-tests 

between variables does not consider all information and has a greater chance 

of incurring a ‘type I’ error whereby the null hypothesis is rejected when it is in 

fact true (Field, 2005). There are several types of ANOVA test available (with-in, 

between and mixed ANOVA), the selection of which is dependent on the 

experimental design. If a difference is detected by ANOVA, post-hoc tests such 

as Tukey’s, Bonferroni or Sidak could be employed in which multiple paired 

comparisons are made on all variables. The post-hoc tests have correction 

factors to reduce the potential of acquiring a type I error and are therefore more 

favourable to performing multiple t-tests (Foster etal., 2006).

246



Effect size

To determine whether a statistical significance demonstrates a sizable and 

therefore a meaningful effect, effect size calculations must be performed. Effect 

size is a standardised method of measuring the magnitude of an effect, whether 

it is the strength of a relationship between variables or differences between 

observed variables (Field, 2005). A common measure of effect size is cohen’s 

d. Cohen’s d. Cohen (1988) constructed guidelines on what constitutes as a 

large (0.8), medium (0.5) and small effect (0.2). Effect sizes should accompany 

reports of statistical significance to assess the meaningfulness of the 

differences between variables (Bakeman, 2005).

Reliability

Reliable measurement techniques are desirable as it implies a greater precision 

of single measures and superior tracking of changes in measures over an 

intervention (Hopkins, 2000). An observed measurement consists of the true 

measure and some degree of systematic and/or random error. The reliability 

can be quantified as the ratio between total variance (true measure + error) and 

the true data.

true  measure
R e liab il i ty  =  ----------------------------------

true measure  +  e r ro r

Minimising the error in the data is key to improving reliability, however, some 

degree of error will always be present. Therefore, Lachin (2004) advocated the 

publication of reliability of measurements as to allow the authors to better 

describe and readers to better understand the sources of error in the results. 

There are several methods available to estimate the reliability of measurement
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techniques, each with pros and cons. There does not appear to be one single 

acceptable measure of reliability and so several measures are often presented.

Coefficient of variation

The coefficient of variance (CV) indicates the degree of variation in the data set 

and is commonly used in the assessment of reliability. Lachin, (2004) stated 

that CV is not strictly speaking a measure of reliability since it does not measure 

the consistency between repeated measures, rather the variation in data sets. 

The CV is the ratio of the standard deviation to the mean and is often expressed 

as a percentage, thus making it unit independent. Therefore comparisons can 

be made between variables with different units. Bland and Altman (1986) 

expressed concerns with expressing the error as a percentage because the 

percentage of the smaller measures will differ from that of larger measures.

Technical error measurement

Perini et al., (2005) and Geeta et al., (2009) described the Technical Error 

Measurement (TEM) as an index of accuracy and is representative of the 

quality of the measurement and control dimension. In simpler terms, when 

measures of a variable are taken from the same individual on separate 

occasions, differences often exist that are due to the measurement technique 

and often stem from inaccuracies in the intra- and inter- examiner measurement 

technique (Perini et al., 2005). Mueller and Marterell (1988) highlighted one 

potential disadvantage of the TEM by suggesting that the TEM requires a 

minimum of 50 samples if it is to be used as a measure of reliability, however 

reliability studies have reported TEM with lower samples sizes (Deakin et 

al., 2011).
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Lim its o f agreem ent

The limits of agreement (LOA) technique has been used extensively since its 

development by Bland and Altman (1986) to assess the amount by which an 

independent variable varies from a dependent variable which is seen as the 

‘predictor’ or ‘gold standard’ measure. The LOA indicates the range in which 

95% of the differences lie within ± 1.96 standard deviations of the mean 

difference (Bland and Altman, 1986). If the variance from the regression line 

differs then the data requires a logarithm before the LOA can be executed. 

Although the LOA has been extensively used to indicate the reliability of 

measurement techniques, its use is heavily debated. The LOA provides a range 

for the data rather than a definitive figure of reliability and so its interpretation is 

subjective. Also, the LOA assumes one of the two measures is a gold standard 

and as such is free from error. This is seldom the case. Reliability in sport 

science often involves data, neither of which is the gold standard, especially in 

test retest situations and it is accepted that both measures contains an amount 

of error (Hopkins, 2000). A benefit of the LOA is that the LOA range produced is 

in the same units and therefore is easily understood in the context of the 

variable being measured. It is for these reasons that the LOA analysis was 

performed and the results collaborated with other reliability test results to 

collectively determine the reliability of the studies in this thesis.

Intra-class correlation coefficient

Intra-class Correlation Coefficient (ICC) has been implemented in the analysis

of the agreement or consistency between two measurements (Bland and

Altman, 1990). ICC quantifies the reliability by means of a ratio of variances

derived from ANOVA. There are several forms of ICC, however Weir (2005)
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suggests that in the sports science context where reliability is often measured 

on a test-retest basis requires a simple ICC measure defined by Bland and 

Altman (1995). A benefit of the ICC method is that it is unaffected by the order 

of the data unlike some other measures of reliability (LOA), because it 

represents the average correlation across all orderings of pairs (Bland and 

Altman, 1990).

Some authors have expressed concerns over the use of ICC. Firstly, 

attempts to clarify what constitutes a good or poor ICC are sparse. 

Vincent (2012) attempted to categorise ICC scores and suggested that an ICC 

of 0.7-0.8 indicated ‘questionable’ reliability, 0.8-0.89 indicated moderate 

reliability and >0.9 indicated high reliability. However, Atkinson and 

Nevill (1998) reported that there was no general consensus regarding what 

constitutes a good or poor ICC and this could be a result of the numerous 

versions of ICC that are available. Secondly, ICC was reported to be influenced 

by the between-subjects variability thus the heterogeneity of the participant 

groups influences the resultant ICC and so requires consideration (Atkinson and 

Nevill, 1998 and Weir, 2005). The result of this relationship with between 

subjects variance is that when measurement error is small, a poor ICC could 

still be demonstrated when the between-subjects variability is low. Similarly, 

when measurement error is a high, a high ICC could be demonstrated due to 

high between-subjects variability.

Although the between-subjects and ICC relationship is seen as 

disadvantageous, Weir (2005) states that ICC effectively normalises the 

measurement error to the heterogeneity of the group and provides an 

appropriate relative measure of reliability rather than an absolute measurement
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error. If ICC is intended to be used as an absolute measure of reliability it is 

recommended that standard error of measurement (SEM) accompanies ICC 

reports.

Standard error of measurement

Standard Error of Measurement (SEM) was reported to be an absolute measure 

of reliability and provides an indication of the precision of a score (Weir, 2005). 

The inclusion of the standard deviation was reported to ‘cancel’ out the 

intra-individual variability that is evident in the calculation of ICC (Bland and 

Altman, 1990). It is however affected by the sample heterogeneity and the 

resultant SEM is also dependent on the correct type of ICC being selected. 

Despite these concerns the calculation of SEM is useful as it enables the 

calculation of confidence intervals.

Confidence intervals

Confidence intervals represent the lower and upper boundaries of which a 

specified percentage of the sample population are distributed around the mean. 

The most commonly presented is the 95% Cl which is 2 standard deviations 

around the mean, with the less frequently used 68% Cl (1 standard deviation) 

(Field, 2005).
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APPENDIX 6. (Borg, 1998)

Instructions to the Borg-RPE-Scale1

During die work we want you to rate your perception of exertion, i.e. how 
hea^y and strenuous the exercise feels to you and how tired you are The 
perception of exertion is mainly felt as strain and fatigue in your muscles 
and as breathlessness or aches in the chest

Use this scale from 6 to 20. where 6 means "No exertion at all ‘ and 20 
means "Maximal exertion. "

9 Very light. As for a healthy person taking a short
walk at his or her own pace.

13 Somewhat hard. It still feels OK to continue.

1? It ŝ hard and tiring, but continuing is not terribly
difficult.

17 Very hard. It is very strenuous. You can still go
on. but you really have to push yourself and you are 
very tired.

19 An extremely strenuous level. For most people this
is the most strenuous exercise they have ever 
experienced.

Try to appraise your feeling of exertion and fatigue as spontaneously and 
as honestly as possible, without thinking about what the actual physical 
load is. Try not to underestimate, nor to overestimate. It is your own 
feeling of effort and exertion that i important, not how it compares to 
other people's. Look at the scale and the expressions and then give a 
number. You can equally well use even as odd numbers.

Any questions?

II»H4
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6 No exertion at all
7

8
Extremely light

9 Very light

10

11 Light

12

13 Somewhat hard

14

15 Hard (heavy)

16

17 Very hardft'

18

19 Extremely hardft*

20 Maximal exertion
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