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Abstract

The field of forensic drug testing is continually changing with analytical methodology 

being developed for an increasing number of drugs in a variety of biological matrices. 

The aim of this thesis was to develop a novel enzyme immunoassay (EIA) for 

screening oral fluid specimens for the presence of anhydroecgonine methyl ester 

(AEME), a pyrolysis product of cocaine. A confirmatory method was also to be 

developed to accurately quantify the levels of cocaine, its metabolites and pyrolysis 

products in oral fluid samples. The immunoassay development was started by 

synthesising an immunogen using anhydroecgonine (AE) and thyroglobulin. 

Following immunisation the antisera were screened by enzyme linked immunosorbent 

assay (ELISA) to enable selection of the antibody with the highest specificity and 

sensitivity. An enzyme labelled drug was synthesised and the titres of antibody and 

enzyme were optimised. A series of validation experiments were carried out which 

concluded that the EIA was sensitive, highly specific, and precise.

Gas chromatography-mass spectrometry (GC-MS) was investigated for the 

quantitation of cocaine and its metabolites. A temperature program was selected 

which allowed for the simultaneous analysis of all the analytes. A solid phase 

extraction (SPE) method was developed to extract cocaine and its metabolites from 

oral fluid. The SPE method provided high recovery for all analytes apart from the 

highly polar AE. Degradation of the GC column had a detrimental effect on the 

analysis of AEME, and so the confirmation method was switched to liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). A series of LC columns 

and mobile phases were tested for optimum separation and ionisation. The instrument 

parameters such as capillary voltage, drying gas temperature, shield voltage, and 

needle voltage, were optimised. Following a number of validation experiments the 

method was found to be highly sensitive, precise, accurate and robust.

Both the EIA and LC-MS/MS methods were applied to the analysis of clinical 

samples from self declared crack cocaine users. The EIA showed good correlation to 

LC-MS/MS. It was evident that the presence of AEME can positively identify 

smoking as the route of cocaine administration however its absence does not 

necessarily mean the individual has not smoked cocaine.
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1 Introduction

1.1 Overview of Drug use and Abuse

The term ‘drug of abuse’ can be defined as any drug that is used for a non-medicinal 

purpose, due to the desirable effect that particular substance may have.

Drug abuse is a growing problem in the UK and worldwide and places an immense 

burden on the health, social welfare and criminal justice systems.

The document ‘tackling drugs to build a better Britain’ was introduced in 1998 and 

forms the UK governments 10 year strategy for tackling drug misuse. The strategy 

comprises four key areas i.e. drug prevention, reducing supply, increasing availability of 

treatment, and reduction of drug related crime. The main focus is on the more dangerous 

class A drugs, in particular cocaine and heroin [1].

1.1.1 Regulation and Classification of Drugs

In the UK the primary drug legislation is the Misuse of Drugs Act 1971. The Act covers 

criminal offences such as possession, possession with intent to supply and production of 

controlled drugs without a licence. The advisory council on the misuse of drugs was 

established under the Misuse of Drugs Act 1971 to keep under review the drug situation 

in the UK, to advise the government on the appropriate classification of substances, 

facilitate treatment and educate the public [2]. Drugs are categorised as Class A, B or C. 

Class A drugs are considered the most harmful and carry the greatest penalty for 

offences related to them. Hundreds of drugs are categorised under the Misuse of Drugs 

Act, Table 1:1 summarises the categories under which the major abused drugs are 

placed.
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Drug Classification Compound

A Cocaine

Diacetylmorphine (Heroin)

Ecstasy

LSD

Magic Mushrooms (if prepared for use) 

Metamfetamine

B Amfetamine

Barbiturates

C Benzodiazepines

Cannabis

GHB

Table 1:1 Drug Classifications

The definition of the term drug includes natural, semi-synthetic, synthetic, and designer 

drugs.

• Natural drugs are the active ingredients or the secondary metabolic products of 

plants or other living systems.

• Semi-synthetic drugs are derived from natural sources that have undergone a 

chemical process.

• Synthetic drugs are artificially produced substances which are almost wholly 

manufactured from chemical compounds.

• Designer drugs are substances whose molecular structure has been modified in 

order to optimise their effect [3].

Plant derived substances such as cannabis and cocaine, and semi-synthetic substances 

such as heroin are the most prevalent illegal drugs abused in todays society. However 

the United Nations drug control programme believes that synthetic drugs such as
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amfetamine, metamfetamine, 3,4-methylenedioxymethamfetamine (MDMA) and other 

related designer drugs are likely to pose more of a social problem in the future [4].

1.1.2 Drug Use Statistics

The British crime survey is a large nationally representative survey of adults living in 

private households in England and Wales. Since 1996 the survey has included a self 

completion module of questions related to illicit drug use [5]. According to the 2000 

British crime survey; a third of 16-59 year olds in England and Wales have tried illicit 

drugs in their lifetime whilst the proportion of those using such drugs in the last year 

and month were 11% and 6% respectively [6], these figures remained stable for 2004/05 

[5]. Cannabis has consistently been the most commonly consumed drug across all age 

groups. In 2000 over 20% of 16-29 year olds reported its use within the last year, 

followed by cocaine at 5% and heroin at 1% [6],

Younger age groups reported higher levels of drug use, and men were far more likely 

than women to have used any illicit and Class A drugs in the last year [5]. In general the 

age of first use of drugs is decreasing and individuals are experimenting with a wider 

range of drugs [2].

There were 1,623 drug related deaths reported in England and Wales in 2001, as well as 

related deaths and substantial ill health arising from blood borne viruses such as 

hepatitis and HIV [7].

1.2 Forensic Toxicology

Forensic toxicology is defined as the study of the effects of drugs and poisons on human 

beings and the investigation of fatal intoxications for the purpose of a medico-legal
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enquiry [8]. Forensic toxicology can be separated into three separate areas, postmortem 

forensic toxicology, human performance toxicology, and forensic drug testing.

1.2.1 Postmortem Toxicology

Postmortem toxicology is used to determine whether alcohol, drugs or other poisons 

may have caused or contributed to the death of a person [9]. While the analytical 

techniques employed are the same for all forms of forensic toxicology, the time spent on 

sample preparation is greater in postmortem toxicology due to the nature of the samples. 

The specimens available for analysis in postmortem cases can be extensive. In cases of 

recent death they can include blood, urine, hair, vitreous humor, bile, liver, and on 

occasions lung, stomach contents, or spleen [10]. Alternatively with cases involving a 

decomposed body the only specimens available are likely to be hair, muscle and bone

[9]-

Interpretation of results is more difficult in postmortem toxicology, the measured drug 

concentration may not accurately reflect the concentration at death as some drugs have 

been known to redistribute after death [11], in addition, some drugs are unstable and are 

metabolised postmortem [12].

1.2.2 Human Performance Toxicology

This area of forensic toxicology is concerned with the role of drugs in the modification 

of human behaviour. The behavioural toxicologist not only focuses on the effects of 

illicit drugs but also on the effects of correctly or incorrectly administered licit drugs. 

The metabolic profile of the drug is important in the evaluation of behavioural effects, 

the presence of particular metabolites may provide some information on the time of 

drug consumption [10]. The specimen most commonly used in human performance 

toxicology is blood, however, other specimens such as urine, sweat and oral fluid are
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becoming increasingly popular. In general, human performance toxicology is applied to 

transport services and road safety [13].

1.2.2.1 Drugs and Driving

In the UK, The Road Traffic Act 1991 has a number of provisions relating to the use of 

alcohol or drugs whilst in charge of a motor vehicle [2]. Driving under the influence of 

drugs or alcohol is responsible for thousands of accidents every year and up to 25% of 

accidents involve drivers who test positive for the presence of drugs [14].

Legislating for driving under the influence of drugs is more difficult than legislating 

against alcohol as less is understood about exactly how drugs impair driving. Unlike 

alcohol there is no well established correlation between drug concentration in the blood 

and performance impairment [15].

Many roadside testing studies have been carried out on individuals suspected of being 

under the influence [16-20]. These studies have shown that cannabinoids and the 

amfetamine group are the most frequently detected drugs at the roadside. Single drug 

consumption was the most common with 61% of those tested confirming positive for at 

least one drug and 18% confirming positive for at least two drugs [16]. A recent 

roadside study in Glasgow where drivers were stopped on a random basis found that 

16.8% of the 1396 specimens tested were positive, with MDMA being the most 

frequently encountered drug [21].

Questionnaires completed following voluntary roadside testing of 1000 people showed 

that 2.8 % of respondents admitted to having driven despite being under the influence of 

an illegal drug [18]. One study found that 95% of drug addicts questioned reported to 

have driven at least once within an hour of consuming heroin and other illicit drugs, 

while 65% admit driving daily while under the influence [22].



1.2.3 Forensic Drug Testing

Forensic drug testing is carried out to demonstrate the use or abuse of selected drugs in 

many areas such as the criminal justice system, military, public sector and private 

sector. Other areas include sport, the insurance industry, and hospitals. The use of drug 

testing in the workplace and criminal justice sector will be discussed further.

1.2.3.1 Workplace Drug Testing

Workplace drug testing is a well established procedure in the United States, beginning 

in the 1970’s to prevent the spread of drugs amongst the US military forces during the 

Vietnam War. Drug screening was initiated following an accident on the naval carrier 

Nimitz which revealed that a number of military personnel were taking mind-altering 

drugs [23]. In 1986 an executive order was issued which stated that those federal 

employees in safety and security conscious positions were to be tested for drugs [24]. 

This resulted in the production of the mandatory guidelines for drug testing of federal 

employees now referred to as the Substance Abuse and Mental Heath Services 

Administration (SAMHSA) guidelines [25]. Testing can be undertaken on a random 

basis, following an accident, prior to promotion and ‘for cause’.

The United Kingdom established similar workplace drug testing programmes within the 

armed forces and the transport industry approximately 15 years ago and workplace drug 

testing now has an estimated turnover of £12 million [24]. Workplace drug testing 

appears to be more widespread in the UK than in any other European country with the 

highest proportion of drug tests being carried out for the military [26].
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1.2.3.2 Criminal Justice

The link between substance misuse and crime is well established, however what is less 

clear is whether the crime is always as a direct result of drug use or if the individual 

would have been an offender even without drugs [2].

In response to the 2000 British Crime Survey over 30% of people in England and Wales 

viewed drugs as a serious problem in their area [27]. This included instances of anti

social behaviour associated with drug dealing and also the activities of those individuals 

under the influence of drugs, such as robbery and organised crime, as well as the health 

risks of discarded syringes.

A strong link has been identified between drug misuse and crimes such as shoplifting, 

burglary, vehicle crime, and theft. Approximately 50% of these crimes can be linked to 

the use of heroin, cocaine and crack cocaine. Around 75% of crack cocaine and heroin 

users claim to be committing crime to maintain their habit [27].

Males are more likely to commit crimes such as supplying drugs, burglary, robbery and 

theft whilst females are more likely to shoplift, undertake fraud or solicit [2].

In 2003 the UK Home Office launched the drug interventions programme (DIP) which 

recognises that drug using offenders need to be monitored throughout every point in the 

criminal process from arrest to release from custody [28], as well as aftercare and 

resettlement [29]. As a result of the DIP a large proportion of police stations across 

England and Wales carry out a drugs test on individuals charged with the offences 

associated with illegal drug use. The testing is currently performed on-site using an 

immunoassay based point of care device for the presence of cocaine and heroin in oral 

fluid. If a positive result is obtained and contested the sample is confirmed by gas 

chromatography mass spectrometry (GC-MS). A positive result will not bring about a 

prosecution for unlawful possession or consumption, or even to support further police
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investigation into the offence, it will however be used in court to aid sentencing. The 

individual may be referred into treatment and the courts can chose to pass the sentence 

of a drug treatment and testing order (DTTO). Between 2001 and 2003 a total of 17,596 

tests were carried out of which 24% were positive for opiates, 12% for cocaine and 18% 

were positive for both [30].

Enrolment in treatment programmes produces a recognised reduction in acquisitive 

crime, with levels dropping by half after one year [31]. Treatment appears to be cost 

effective, the Home Office estimates that for every £1 spent on drug treatment at least 

£9.50 is saved in crime and health costs [27].

1.3 Analytical Methodology

Drugs of abuse testing usually includes a two step procedure, a preliminary screening 

procedure for groups of substances and a confirmation procedure for the identification 

of specific substances. The analytical strategy adopted is to a certain extent dependent 

on the potential consequences of the results obtained. Generally in the therapeutic care 

of drug addicts the analytical result is only one factor in the decision making process 

and is often a complement to self reported use. In this setting screening may be 

performed without subsequent confirmation of the positive samples. By contrast in a 

forensic setting (e.g. workplace, driving, criminal justice, and sports) the analytical 

result can have significant repercussions for the individual providing the specimen. In 

this situation the analytical approach is often screening of all samples followed by 

confirmation of the positives [32, 33].

Forensic identification of an analyte requires the use of two techniques that employ 

different physical and chemical principles [9]. Immunoassays are recommended for 

screening purposes and chromatographic methods coupled to mass spectrometry are 

required for identification [34].
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1.3.1 Screening

Screening for drugs of abuse is primarily performed using immunoassays [32]. 

Immunoassays are sensitive analytical methods based on signal responses generated as a 

consequence of antibody-antigen reactions, the signal is generated from a label attached 

to either the antigen or the antibody, or in some assays from a secondary antibody [35]. 

Immunoassays offer a quick and easy method to screen large numbers of samples in a 

whole range of biological specimens. The sample does not require extraction of the drug 

prior to analysis [36], and only small sample volumes are required [37].

Immunoassays may be used as a point of care test for the analysis of a single specimen, 

or as a laboratory based test where it can be partially or fully automated enabling the 

analysis of thousands of samples per day.

1.3.1.1 Laboratory Based Immunoassay

A number of different laboratory based immunoassay methods are available for drugs of 

abuse including radioimmunoassay (RIA) [38-40], enzyme multiplied immunoassay 

technique (EMIT®) [41], fluorescence polarisation immunoassay (FPIA), cloned 

enzyme donor immunoassay (CEDIA) [42], and enzyme immunoassay (EIA) [43-45]. 

The differences between the assays relate to the type of labelled compound employed or 

the method of detection. All the immunoassays mentioned are used routinely in 

laboratories worldwide, the different techniques show reasonably comparable results 

[38, 41, 42, 44, 46]. The choice of immunoassay is therefore dependent on the 

requirements of each laboratory.

EIA has been reported as being the main immunological technique employed across 

Europe for drug testing [32]. Its increasing popularity is due to the ease of use, rapid 

turnaround of results, low sample volume, and the adaptability for use with various
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biological matrices [47]. The technique has been used to measure qualitatively and 

semi-quantitatively for dmgs of abuse in hair [48-50], oral fluid [51-53], urine [54], 

meconium [55], blood [47] and sweat [56].

1.3.1.2 Point of Care Testing

Point of care testing (POCT) is defined as testing that is performed close to the patient. 

Important considerations for POCT are the fact that the test can be carried out virtually 

anywhere [57], there are no issues with chain of custody [58], and the patient can 

engage in immediate discussion of the results [33]. POCT is not suitable for high 

throughput screening as the devices lack automation.

POCT devices for drugs of abuse are generally based on lateral flow technology which 

use particles, such as colloidal gold, as the means of signal generation [59]. The devices 

can be in the form of cards, cassettes, dipsticks or cup devices. Often multiple drug lines 

are employed in the test making drug testing cheaper and quicker than assaying one 

drug at a time. Some manufacturers have developed an instrument to interpret the test 

result, taking away the individual subjectivity from visual interpretation.

This technique is well established in urine drug testing and a great number of devices 

are commercially available. In recent years the interest in the use of alternative 

biological matrices has seen the emergence of such devices for the application of oral 

fluid and sweat. As the technology is in its relatively early stages new devices are 

continuously appearing on the market, with some existing devices evolving or even 

becoming discontinued. Table 1:2 lists the point of care tests currently commercially 

available for the analysis of drugs of abuse in oral fluid.
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1.3.2 Confirmatory Analysis

The gold standard in forensic substance identification is considered to be GC-MS [1]. A 

study of the different analytical methodologies employed in drug of abuse testing 

laboratories across Europe showed that GC-MS was the main analytical method used 

for specific identification and quantification of drugs [32].

Mass spectral information of many compounds analysed by GC-MS have been 

compiled into mass spectral libraries, this allows for identification of unknown 

compounds in a sample following full scan analysis. However since GC-MS is limited 

to the analysis of volatile and thermally stable compounds, there is also a requirement 

for many polar compounds to be derivatised which extends the sample preparation time 

[60,61],

Liquid chromatography coupled to single stage or tandem mass spectrometry (LC-MS, 

LC-MS/MS) is becoming increasingly used in routine analysis [80, 81]. LC-MS is a 

powerful technique which has high sensitivity and specificity. It requires less sample 

volume which is an advantage when dealing with alternative biological samples, and 

does not require derivatisation of the sample prior to analysis thereby reducing the 

sample preparation time. In the areas where LC-MS has been used, the limits of 

detection or quantitation obtained are generally compared favourably with the other 

chromatographic techniques [82],

Limitations in the use of LC-MS(/MS) are that there are only certain volatile buffers 

and mobile phase additives which can be used. In addition the mass spectral libraries for 

electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI) are 

limited compared to electron ionisation (El) making identification of unknown 

compounds more difficult [36].
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1.3.3 Sample Preparation

The main aims of sample preparation prior to analysis by GC-MS and LC-MS are to 

isolate and concentrate the relevant compounds from a complex sample matrix while 

removing any unwanted substances. Interfering compounds within biological samples 

are often a source of imprecision and inaccuracy [83].

A number of sample preparation techniques exist but the ones more commonly used in 

the analysis of drugs of abuse include liquid-liquid extraction (LLE), solid phase 

extraction (SPE) and solid phase microextraction (SPME).

SPE is becoming more popular for sample pre-treatment due to the possibility of high 

throughput automation, and also due to the increased commercial availability of 

innovative SPE sorbents. It offers the advantage of cleaner extracts, speed and 

reproducibility, and ease of operation [84]. Whole selections are marketed from polar to 

non-polar, mixed mode, ion exchange, polymeric and combinations of ion exchange and 

polymeric [85].

Mixed mode columns utilise a packed bed containing a mixture of non polar short alkyl 

chains (Cg) and strong cation exchange resin. These types of column are good for drugs 

of abuse as the acidic and neutral drugs are retained by hydrophobic interactions with 

the alkyl chains and the basic drugs by interactions with the cation exchange groups [83, 

86, 87].

1.4 Analytical Cutoff Concentrations

It is common practice in drugs of abuse analysis to apply a cutoff value at which all 

samples with a concentration below the cutoff will be assigned a negative result and all 

those above will be classified as presumptive positives [88].

The UK guidelines for legally defensible workplace drug testing outline proposed cut 

off concentrations for screening and confirmation of drugs of abuse in urine, these are
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displayed in Table 1:3 and 1:4 [89]. There are however currently no guidelines in the 

UK, or the rest of Europe, for the assignment of cutoff values in the analysis of drugs of 

abuse in alternative biological matrices.

The US mandatory guidelines for federal workplace drug testing programmes 

established cutoff concentrations for specific drugs of abuse in urine, oral fluid, hair and 

sweat (Tables 1:3 and 1:4) [25, 90]. These guidelines have been adopted by many 

manufacturers and laboratories worldwide, and have provided some uniformity in drug 

testing procedures [32]. However as they are not mandatory in Europe there are 

significant differences in cutoff concentrations applied to screening and confirmatory 

methods [62].

Drug Screening Cutoff in Urine 

(ng/mL)

Screening Cutoff in 

Oral Fluid (ng/mL)

UK US US

Amfetamines 300 1000 50

Cannabis 50 50 4

Cocaine 300 300 20

Opiates 300 2000 40

Phencyclidine 25 25 10

Methadone 300 None None ;

Benzodiazepines 200 None None

Barbiturates 200 None None

LSD 1 None None

Buprenorphine 5 None None

Table 1:3 Proposed screening cutoff concentrations for urine and oral fluid in the UK

and US
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Drug Confirmation Cutoff in 

Urine (ng/mL)

Confirmation Cutoff 

in Oral Fluid (ng/mL)

UK US US

Amfetamines 200 500 50

Cannabis 15 15 4

Cocaine 150 150 8

Morphine 300 2000 40

6-Acetlymorphine 10 10 4

Phencyclidine 25 25 10

Methadone 250 None None

Benzodiazepines 100 None None

Barbiturates 150 None None

LSD 1 None None

Buprenorphine 5 None None

Table 1:4 Proposed Confirmation Cutoff Concentrations for Urine and Oral Fluid in the

UK and US

1.5 Drug Detection Times

The length of time a drug can be measured in a sample since the drug was last 

consumed is known as the detection time. There are a large number of factors which 

influence the detection time of drugs in a biological matrix such as, the rate of 

absorption, metabolism, and excretion of a drug. Other factors to consider are the 

administered dose, whether it is single or repeated dosing, the time of drug consumption 

in relation to the time the test was performed, and the route of drug administration. No 

one rule applies for all when it comes to drug detection times, it can, however, be 

generalised that the higher and more frequent the dose of drug the longer the drug will
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be detected. Detection times can also vary depending on the biological matrix being 

tested, as shown in Figure 1:1.

H ait & Nails-

B lood

O ta I Fluid

Utine

Minutes Hours Months

Figure 1:1 Drug detection times in different biological matrices [91]

1.6 Drug Testing Matrices

Traditionally the biological samples used for the qualitative and quantitative 

measurement o f drugs in living subjects are blood and urine. Recently there has been a 

growing interest in the use o f alternative matrices, such as saliva (oral fluid), hair, nails, 

and sweat. Meconium has also been used for the identification o f foetal exposure to 

drugs [55, 92-95], The use o f each matrix has its own advantages and disadvantages. No 

single technique or specimen can provide answers to all toxicological questions. It may 

be necessary to use more than one o f these matrices in combination to give a better 

profile o f an individual’s drug exposure.

1.6.1 Urine

Mandatory workplace drug testing guidelines in the UK use urine as the chosen 

specimen for analysis o f drugs o f abuse [89], Urine has the advantage o f being easy to 

collect and test, is cost effective, and also provides a more than adequate volume o f 

sample for repeat analysis and confirmation if required.
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Higher concentrations of the parent drug or metabolites are present compared to some 

other matrices. This is, however, dependant on the volume of liquid consumed by the 

individual, their degree of hydration at the time of drug ingestion and the amount of 

drug consumed.

A positive urine test does not necessarily mean that the subject was actually under the 

influence of the drug at the time of testing, it is merely a measure of the accumulated 

concentration of analytes since the last void of the bladder.

Disadvantages to using urine are the ease in which samples can be tampered with or 

adulterated. A donor may substitute his or her sample for a sample from a drug free 

individual, or they may try diluting their own sample with water or even adding 

substances to alter the test results [96]. It is for these reasons that it may be necessary to 

observe a urine specimen being given. This is not a dignified experience for the person 

observing or the person being tested, and is seen as an invasion of the individuals 

privacy.

1.6.2 Sweat

The mechanism for drug entry into sweat is unclear but it is most likely due to passive 

diffusion from the blood to the sweat gland [97]. Sweat consists of 99% water and can 

be collected by applying an absorbent patch to the surface of the skin. The patch can be 

left for several hours to give evidence of relatively recent use, or weeks to give an 

accumulative result. The disadvantages include high intersubject variability, and the 

potential for false positive results due to external contamination of the skin.

There is a variable time delay of 1-12 hours after drug administration before the drug is 

excreted in sweat, this makes sweat less of an appropriate matrix in detecting recent 

drug exposure [98].
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1.6.3 Nails

Drugs remain in nails for an extended period of time which is advantageous in 

determining individuals’ past drug exposure, but does not allow for determining recent 

drug use. There is a limited amount known about this aspect of drug testing [99, 100], 

with different mechanisms proposed for the incorporation of drugs into nails. Drug 

concentrations have shown to be higher in fingernails compared to toenails, the possible 

reasons could be the differences in blood supply to the nail bed, the rate of nail growth, 

or possible external contamination [93].

1.6.4 Hair

Hair has been widely evaluated as a drug testing matrix [48, 101-103] and offers a 

unique perspective on drug use. Hair gives a retrospective indication of drug use in the 

weeks or months preceding sampling. Sample collection is non invasive, unless head 

hair is unavailable, and there is the possibility of collecting a second almost identical 

specimen on another day for further testing. Given that it is not too long after collection 

of the first sample the two specimens will give almost identical profiles.

There are various theories as to how drugs become incorporated into the hair matrix, 

which include via the blood, sweat and sebaceous gland secretion and/or from the 

external environment [49, 102, 104]. It is generally assumed that scalp hair grows at 

approximately 1cm per month, but a wide range of growth rates have been reported 

[105].

There are many concerns and questions regarding the use and interpretation of hair 

testing. There is the question of drug stability once incorporated, problems with suitable 

specimen preparation for analysis, a lack of acceptable standards for reference material, 

bias due to hair colour or ethnic origin, value and validity of segmental analysis, dose
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versus concentration relationship and acceptable analytical cut off concentrations [104, 

106].

However one of the most controversial topics with respect to the validity of hair testing 

is the risk of false positive results due to external contamination [107-109].

1.6.5 Oral Fluid

Compared to urine or hair testing, oral fluid testing has lower refusal rates and is in 

general a more accepted sampling matrix [110]. Oral fluid has many advantages over 

other testing matrices as a diagnostic specimen. It is readily available, and multiple 

specimens may be collected from the same individual at the optimum time for 

diagnostic information. The sample can be collected non-invasively and, in contrast to 

collecting a blood sample, allows a specimen to be obtained from populations for whom 

it would normally be unethical to collect a blood sample, such as certain elderly 

patients, specific religious groups, and individuals with a mental or physical handicap. 

There is also the reduced risk of infection when collecting an oral fluid sample as there 

is no use of sharps and therefore no concerns over needle stick injuries [111]. Observed 

collection does not give rise to the privacy issues associated with urine collection.

Oral fluid is difficult to adulterate, the oral fluid in the mouth is rapidly turned over and 

a wait of approximately 10 minutes prior to collecting a sample allows re-equilibration 

of the oral cavity [68].

Disadvantages associated with oral fluid sampling are the limited sample size compared 

with urine [112]. Dry mouth syndrome is a common problem and can be caused by 

anxiety, lack of proper hydration, or the use of drugs known to reduce secretion of oral 

fluid such as the amfetamine group [113].
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In general drug concentrations are lower in oral fluid than in urine and therefore more 

sensitive assays are required for their detection. However the oral cavity can become 

contaminated with drugs administered orally or through inhalation or insufflation, 

which can result in artificially elevated drug concentrations [114].

Many drugs are bound to plasma proteins, but only the free, lipid soluble, non ionised 

fraction is able to cross cell membranes and is physiologically active. Drug 

concentrations in oral fluid therefore generally reflect the free unbound parent drug and 

lipophilic metabolites circulating in the blood [115]. Studies involving paired oral fluid 

and blood samples have shown good correlation in analytical findings [20]. This means 

that oral fluid is a good specimen for detecting drug involvement in driving behaviour, 

or impairment of performance as there is a greater chance that the subject is 

experiencing pharmacological effects of the drug at that time [20].

In recent years there has been considerable interest shown in the use of oral fluid as a 

matrix for drug monitoring in treatment, criminal justice and driving under the influence 

testing programmes [68, 98, 116]. Oral fluid is being considered by SAMHSA as an 

alternative to urine for federal workplace drug testing programmes [25].

1.7 Physiology of Oral Fluid

The term oral fluid is preferred over saliva due to the definition of saliva being the 

secretion of the salivary glands, oral fluid therefore refers to the fluid contained within 

the oral cavity which consists of saliva and a mixture of other components such as 

mucosal transudate and crevicular fluid [80].

Oral fluid contains water (99%), mineral salts, proteins such as mucins and enzymes for 

digestion. Cell debris from the epithelial cells of the mouth and food residues are also
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present. The composition of oral fluid can be affected by the time of day, food ingested, 

age, gender, health, and drug consumption. Between 0.5 and 1.5 L of saliva is produced 

daily in adults, this production being mainly from the secretions of the submandibular 

(65%), parotid (23%), and sublingual (4%) glands. The remaining 8% is produced from 

minor glands [115].

Mechanical and or chemical stimulation provokes a reflex response which in turn is 

controlled by the parasympathetic and sympathetic nerves resulting in the secretion of 

oral fluid. Drugs that stimulate the parasympathetic nerve increase the flow rate of oral 

fluid and therefore produce quite an aqueous solution. However stimulation of the 

sympathetic nerve results in the production of viscous and less abundant oral fluid, for 

example in the case of amfetamine use [115]. Flow rates may also depend on a person’s 

age and also seasonal influences.

1.8 Collection of Oral Fluid

Oral fluid can be collected with or without stimulation. Unstimulated oral fluid is best 

collected by expectoration into an empty tube [117]. Sour candy and citric acid crystals 

have been used to stimulate salivation, alternatively a number of products exist to 

stimulate and collect oral fluid. Table 1:5 lists the oral fluid collection devices currently 

commercially available. These devices provide a relatively clean specimen in 

comparison to expectoration which may contain cell debris and/or food particles.

The most commonly used method to collect oral fluid involves the use of absorptive 

materials. Some collectors contain a sample adequacy indicator to show sufficient 

sample has been collected. Some devices also incorporate a proprietary buffer to which 

the collector is added resulting in a dilution of the sample.
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The recovery of drugs from some of the collection devices may limit their usability. A 

study which assessed the overall performance of a selection of oral fluid sampling 

devices showed that recovery of THC was poor for the Salivette® but good for the 

Cozart® collector [118].

Stimulation of oral fluid production by citric acid, chewing gum or other agents changes 

the pH of the oral fluid. This has been shown to lower analyte concentrations in the oral 

fluid compared to unstimulated collection methods [113, 119]. A possible explanation is 

a pH change associated with a change in flow rate, the mechanism of which is discussed 

later.

1.9 Transfer of Drugs into Oral Fluid

Drugs circulating in the blood are believed to pass into the salivary ducts by various 

mechanisms such as passive diffusion, active transport against a concentration gradient, 

ultrafiltration through pores in the membrane, or by pinocytosis [130]. Drugs also enter 

oral fluid directly from contamination of the oral cavity from smoking, nasal 

insufflation, sublingual tablets, or oral dosing [131].

The presence of drug in oral fluid is influenced by the physiochemical characteristics of 

the drug molecule such as molecular size, degree of protein binding, degree of 

ionisation, and lipid solubility [117, 132], Other factors include the plasma and saliva 

pH, and the saliva flow rate [133].

Passive diffusion is believed to be the major mechanism of drug transport, therefore 

smaller, non ionised and lipophilic molecules will diffuse more rapidly [117]. Due to 

their size, serum binding proteins do not cross the cell membrane therefore only the 

unbound fraction of the drug diffuses across into oral fluid.
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The effect of pH has a significant influence on the concentrations of drug and 

metabolites in oral fluid. With regards to the degree of ionisation there are two drug 

groups. The first group comprises compounds which are largely non ionised under 

physiological conditions. These drugs are either neutral, have a pKa value greater than

8.5 or a pKa value less than 5.5, for this group the pH of the saliva will have little effect 

on the drug concentration. The second group consists of drugs which are largely ionised 

under physiological pH conditions, and will therefore be influenced by the pH of the 

saliva [134].

The pH of blood is approximately 7.4 and the pH of oral fluid is between 6 and 7 [135]. 

Drugs accumulate on the membrane side whose pH value favours a greater ionisation of 

the compound [136]. Acidic drugs tend to be lower in concentration and basic drugs 

tend to be higher in concentration in oral fluid than in blood. However if the salivary pH 

is higher than the blood pH then the reverse is true [130].

These rules are only representative of drugs entering saliva from plasma and do not take 

into account drug present due to contamination of the oral cavity from smoking or 

insufflation etc.

An increase in saliva flow from either chemical or mechanical stimulation increases the 

bicarbonate electrolyte concentration resulting in a higher pH value for saliva [137].

The pH of stimulated saliva can be as high as 8.0 [133].

Some oral fluid collection products use citric acid impregnated onto the collector to 

stimulate oral fluid, this can substantially decrease the pH of oral fluid to less than pH 

3.0 [138]. The concentrations of certain drugs such as cocaine and its metabolites are 

subsequently reduced in the oral fluid compared to samples collected by expectoration 

[114]. It has been reported that the mean pH of oral fluid specimens collected using the 

citric acid Salivette® (pH 2.8) was lower than that observed after citric acid candy
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expectoration (pH 4.3) while the mean pH of specimens collected with the neutral 

Salivette® was pH 6.0. Substantial inter-subject variability in pH (2.79 -  7.18) was 

observed in dmg free oral fluid specimens collected using the citric acid treated 

Salivette® [128].
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2 Preliminary Studies - Analysis of Amfetamines in Oral

Fluid

2.1 Aims and Objectives

The aim of this chapter is to evaluate a laboratory based and a point of care 

immunoassay for the analysis of metamfetamine and MDMA in oral fluid samples. GC- 

MS will be used as the reference method and to provide data on drug concentrations in 

oral fluid from individuals self reporting the use of amfetamine or MDMA.

2.2 Introduction

The amfetamine group represents a class of phenylethylamine compounds that have 

varying degrees of sympathomimetic activity [1]. In the context of this chapter the 

amfetamines group includes synthetic drugs such as amfetamine and metamfetamine, 

and designer drugs such as 3,4-methylenedioxyamfetamine (MDA), 3,4- 

methylenedioxymethamfetamine (MDMA), 3,4-methylenedioxy-N-ethylamfetamine 

(MDEA), and 3,4-methylenedioxyphenyl-2-butanamine (MBDB). All these compounds 

are central nervous system (CNS) stimulants that are abused for their psychotropic 

effects including euphoria and increased energy and alertness.

Substitutions on the nitrogen and the ring system account for most of the structural 

variations of amfetamine (Figure 2:1).

The compounds in the amfetamine group all exist as 2 isomers, the dextro (d) and laevo 

(1) isomers. The different isomers exhibit different pharmacological properties, with the 

d-isomers producing greater CNS stimulant activity than the 1-isomers [2, 3].
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Figure 2:1 Structures of the amfetamine group

2.2.1 Use and Abuse

Amfetamine was first synthesised in 1877 [1]. In the late 1920’s it was used as a 

replacement for ephedrine as a nasal decongestant [4]. During the Second World War 

amfetamine was used to maintain alertness and fight fatigue [5]. Currently amfetamine 

is available by prescription for narcolepsy, attention deficit hyperactivity disorder 

(ADHD) and as a dietary supplement for appetite suppression [1,6]. Single isomer 

forms of d-amfetamine are available as Dexedrine® [7].

Illicit amfetamine is more commonly seen in its powder form, with tablets representing 

approximately 10% of amfetamine available. Tablets have been shown to be poorly
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made with drug content varying from 3mg to 50mg [8]. Amfetamine is generally abused 

via the oral or intravenous routes. Chronic abuse of amfetamine brings about sufficient 

tolerance such that it has been known for addicts to swallow or inject up to 2000mg 

daily [9].

Recent drug use statistics in the UK indicate that illicit use of amfetamine is declining 

[ 10].

Metamfetamine was first synthesised in Japan in 1919 and patented in 1920 [11]. In the 

US metamfetamine is prescribed in the d-isomer form, under the brand name Desoxyn®, 

for ADHD and narcolepsy [7], however due to its high abuse potential it is generally 

only prescribed if all other medications have failed. The 1-isomer of metamfetamine 

exhibits vasoconstrictive effects and as a result is an ingredient of Vicks Inhaler and 

other nasal decongestants in the US [7].

Metamfetamine is a potent and highly addictive stimulant [12]. It is commonly found as 

a colourless crystalline solid, otherwise referred to as crystal meth, or alternatively in 

tablet or powder form. Metamfetamine is commonly abused via smoking, insufflation, 

intravenous and less commonly via the oral route [12]. Long term abusers have reported 

to use as much as 5000-15000mg/day [1].

Metamfetamine abuse became a social problem in the U.S in the 1960’s [1], and it 

remains the most frequently encountered clandestinely produced controlled substance in 

the US [12]. In contrast it is relatively uncommon in the UK and has been quoted as 

representing only 0.1% of all amfetamine related cases [8]. There are currently fears 

that metamfetamine use could become increasingly popular within the next two to three 

years following the discovery of a small number of clandestine laboratories synthesising 

metamfetamine in Britain [13]. In general metamfetamine use in the UK has been 

confined to the gay community [14], however there are suggestions that a fall in the
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price has led to its emergence into the clubbing scene. Following these recent concerns, 

recommendations from the Advisory Council on the Misuse of Drugs resulted in the 

government reclassifying metamfetamine from a class B drug to class A [13].

MDMA is one of the oldest designer drugs and is a derivative of metamfetamine [1]. 

MDMA was first synthesised in 1912 by two German chemists and was patented by the 

Merck Company two years later [15]. The first report that MDMA is psychoactive in 

humans appeared in a report by Alexander Shulgin in 1978 [16]. In the 1980’s MDMA 

was being used in psychotherapy where it was said to increase patient self esteem and 

facilitate therapeutic communication [16].

The end of the 1980’s saw a growth in the rave music scene in the UK and Europe and 

up to the present day MDMA has been used almost exclusively as a dance drug [9]. In 

the UK the use of MDMA has remained stable over the last year [10]. In contrast the 

availability of MDMA in the US has increased dramatically in recent years and it is now 

one of the most frequently used recreational drugs [17].

Ecstasy is the popular street name for MDMA but it has many other street names such 

as disco biscuits, love doves and Mitsibushies [18]. MDMA is available in tablet form 

and comes in a variety of colours, shapes and sizes and with different engraved pictures.

It has been reported that MDMA users often take a variety of other recreational drugs, 

with cannabis being the most popular [19-21]. Patterns of use vary considerably from 

half a tablet to the rare occasion where 10-25 have been consumed by experienced users 

possibly as a result of chronic pharmacodynamic tolerance [17], or as a result of low 

drug content [22]. On average the number of tablets consumed is between one and two 

[19].
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Illicit manufacture of amfetamines produces street drugs containing variable 

concentrations of different amfetamines as well as other impurities, intermediate 

products and adulterants such as caffeine and/or ephedrine [8, 23, 24]. The purity of 

ecstasy tablets has shown many fluctuations over the years. Recent studies indicate that 

purity levels are between 90 and 100% [25, 26], Dosage is also highly variable. In a 

study whereby subjects purchased ecstasy tablets for their own use and sent one of them 

to the lab for analysis, the average consumed dose was found to be 57mg of MDMA 

[27]. The Laboratory of the Government Chemist between 1 January and 31 December 

2002 found between 23 and 105mg of MDMA in ecstasy tablets, with an average 

content of 75mg [28]. Ecstasy tablets seized in Ireland in 2002 and 2003 were analysed 

and found to contain concentrations ranging from 7 to 79mg [29].

MDEA and MBDB have similar properties to MDMA [9], however their prevalence is 

low and the amount of information relating to these two designer drugs is limited.

2.2.2 Pharmacokinetic Effects

The amfetamines are generally well absorbed orally. They delay gastric emptying and 

decrease intestinal motility, thereby delaying their own absorption and that of other 

drugs taken at the same time [30]. A summary of the chemical properties of 

amfetamine, metamfetamine and MDMA can be seen in Table 2:1.

Amfetamine is metabolised in the liver and is excreted substantially unchanged in the 

urine [9, 30]. Following oral amfetamine administration the peak plasma concentrations 

are reported to be reached 2-3 hours later, with maximum subjective effects occurring at 

2 hours. Subjective and behavioural effects then decline despite substantial amfetamine
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concentrations [31]. The plasma elimination half life is 4-8 hours if the urine is acidic or 

10-13 hours if urinary pH is uncontrolled [32].

Drug Molecular

Weight

Boiling 

Point (°C)

pKa Protein

Binding

Amfetamine 135 200 10.1 16%

Metamfetamine 149 214 10.1 0%

MDMA 193 100 9.0 65%

Table 2:1 Summary of chemical properties of amfetamine, metamfetamine and MDMA

[30]

Following controlled administration of metamfetamine and amfetamine, the elimination 

half lives for oral fluid are comparable to plasma [12].

Metamfetamine has high lipid solubility allowing for rapid transfer across the blood 

brain barrier [33] which explains its greater CNS efficacy compared to amfetamine. 

Metamfetamine is excreted in the urine at concentrations approximately 37-45% of the 

dose [34]. Amfetamine is a metabolite of metamfetamine and represents approximately 

10% of a metamfetamine dose [12]. However amfetamine is not always detected 

following metamfetamine administration [12, 34].

The bioavailability of metamfetamine is very dependant on the route of administration. 

When smoked the bioavailability was found to be 90% compared to 67% when 

administered orally [34]. Immediate euphoric effects are experienced when 

metamfetamine is smoked due to rapid absorption from the lungs into the blood [35].

The blood concentration versus time profile for smoked metamfetamine is very similar 

to intravenous administration.
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The elimination half life of metamfetamine is significantly longer than any of the other 

amfetamines and is reported to be on average 10-12 hours regardless of the route of 

administration or biological matrix tested [12, 34, 36, 37]. The reported range is quite 

broad at between 6.4 and 15.1 hours [36].

Peak plasma concentrations are reached within minutes for the intravenous route and 

slightly later following smoking [35]. Oral dosing of metamfetamine produces 

maximum plasma concentrations at approximately 3 hours post dose [4].

Approximately 65% of MDMA is excreted unchanged in the urine [15]. MDA is one of 

the metabolites of MDMA and represents only approximately 8-9% of the total 

concentration of MDMA regardless of the dose administered [37] and the biological 

fluid tested [38]. 3,4-dihydroxymethamfetamine (HHMA) appears to be the major 

metabolite of MDMA in plasma and urine with concentrations showing to be equivalent 

to MDMA [37, 39], HHMA is however only present in its conjugated form in biological 

fluids.

The pharmacokinetics of MDMA has been observed to be non-linear [40, 41], this may 

have implications in cases of acute intoxication as small increases in MDMA dose may 

result in disproportionate rises in MDMA plasma concentration. Several mechanisms 

have been proposed for this observation such as saturation or inhibition of drug 

metabolism or the formation of a complex between a metabolite and endogenous 

enzymes [37].

The effects of MDMA have been reported to appear within 20-60 minutes following 

administration, with effects lasting 4-6 hours [15, 37, 42]. Peak plasma and oral fluid 

concentrations occur between 1.5-2 hours, [15, 21, 37, 38, 42].
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The plasma elimination half life following lOOmg of MDMA has been reported as 8-9 

hours [37].

2.2.3 Physiological and Pharmacodynamic Effects

The amfetamines exert their effects on the body by stimulating the release of the 

neurotransmitters serotonin, dopamine and noradrenaline, and blocking their 

presynaptic reuptake resulting in hyperstimulation of the CNS [43]. Amfetamine and 

metamfetamine exert the greatest effect on dopamine [1] while MDMA exhibits mainly 

serotonergic activity [16].

The acute and chronic subjective and toxic effects produced by the amfetamine group 

are difficult to distinguish clinically [43, 44]. The subjective effects include euphoria, 

increased alertness, intensified emotions, sensations of extreme physical and mental 

power, and in the case of MDMA enhanced sociability [1]. The euphoric effects of 

metamfetamine are longer lasting than those of the other amfetamines due to the longer 

elimination half life.

The acute effects closely resemble the physiological and psychological effects of the 

fight or flight response, including increased heart rate and blood pressure, 

vasoconstriction, bronchodilation and hyperglycaemia [37]. Other clinical symptoms 

include dilated pupils, hyperthermia, tremors, dry mouth and loss of appetite. 

Hyperthermia as a result of the amfetamines toxicity may lead to further fatal 

complications such as rhabdomyolysis, disseminated intravascular coagulation and 

acute renal failure [16, 44].

Undesirable psychological effects of the amfetamine group may be experienced up to 

24-72 hours after drug consumption and have been recorded as aggression, lack of 

judgement, build up of fatigue, muscle aches, depression, anxiety, agitation, delirium,
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seizures, hallucinations and paranoia. Long term and high dose use can induce an acute 

psychotic state [1, 45, 46],

Other effects recorded following the use of MDMA include nausea, chills, sweating, 

tremor, jaw clenching and insomnia [16], as well as more serious conditions such as 

metabolic acidosis and hyperkalemia. While relatively few cases of death involving 

MDMA use have been reported, the deaths have been attributed to cardiovascular, 

cerebrovascular and hyperthermic effects [47], while acidosis and electrolyte imbalance 

are sufficient to cause fatal cardiac arrythmias. Impaired thermoregulation resulting in 

hyperthermia is one of the major symptoms of acute MDMA induced toxicity and body 

temperatures >43 °C have been reported [16].

Different individuals may respond very differently to MDMA and so a lethal 

concentration can be as little as one tablet [42]. Adverse effects may be related to the 

hepatic enzyme CYP2D6 which is known to be deficient in 5-10% of the population, as 

a result poor metabolisers may be at greater risk of toxic responses to the drug even at 

low doses [26].

2.2.4 Amfetamines in Oral Fluid

Oral fluid concentrations of the amfetamines group have been reported to be higher than 

plasma concentrations [12, 27, 34, 36, 38]. This may be as a result of several factors 

including passive diffusion of drugs into the saliva across a concentration gradient, 

active transport, or ion trapping. Due to the low plasma binding of the majority of the 

amfetamines this may increase the diffusion of drug from plasma to saliva. Typically 

saliva is more acidic than blood, this provides a driving force for diffusion and 

partitioning of basic molecules into saliva, due to the basic properties of the 

amfetamines they will become ionised in the saliva which mean they can’t diffuse back
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into plasma resulting in their accumulation [48]. In addition the passage of drugs across 

cell membranes is favoured for low molecular weight molecules, another property of the 

amfetamines [38].

2.3 Experimental

2.3.1 Materials

Solutions of the reference standards (lmg/mL in methanol) amfetamine (AMP), 

metamfetamine (MAMP), MDMA, MDA, MDEA, MBDB and of the corresponding 

deuterated internal standards (O.lmg/mL in methanol) AMP-dn, MAMP-dn, MDMA- 

ds, MDA-ds, MDEA-d6 and MBDB-ds were obtained from Cerilliant (LGC 

Promochem, Teddington). The derivatising reagent pentafluoropropionic anhydride 

(PFPA) was purchased from Sigma Aldrich Company Ltd (Dorset, UK). Solid phase 

extraction (SPE) cartridges, Bond Elut™ Certify (50mg, 3mL), were purchased from 

Varian (Oxfordshire, UK). High recovery vials were purchased from Crawford 

Scientific (Lanarkshire, Scotland, UK). All other reagents and solvents were of 

analytical grade and were purchased from VWR International Ltd (Leicestershire, UK). 

The Cozart reagents including the oral fluid sample collector, drug test cartridge, 

RapiScan instrument, and metamfetamine EIA kits were supplied by Cozart Pic 

(Oxfordshire, UK).

2.3.2 Instrumentation

The GC-MS was an Agilent 5973N with 6890 GC purchased from Agilent 

Technologies (Cheshire, UK), equipped with Rtx-5Sil MS (30m x 0.25mm i.d x 

0.25pm) capillary column, purchased from Crawford Scientific (Lanarkshire, Scotland, 

UK). The GC mobile phase was helium (99.999% purity) and was supplied by Air 

Products (Cheshire, UK).
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SPE was performed on a vacuum manifold assembly purchased from Varian 

(Oxfordshire, UK). A Techne® Sample Concentrator with a DB-3 series Dri-Block® was 

purchased from LAB3 (Northampton, UK).

Microtitre plates were washed using a Dynex plate washer and the absorbance 

measurements were performed with a MRX microtitre plate reader in dual wavelength 

mode 450-650nm, both items were purchased from Dynex Techonologies (Worthing, 

UK).

2.3.3 Solution Preparation

2.3.3.1 Drug Standards

Combined analyte working solutions of lpg/mL and lOOng/mL were prepared in 

methanol from individual lmg/mL stock solutions of reference standards. A working 

solution of 1 pg/mL for the internal standards was prepared in methanol from the 

individual O.lmg/mL stock solutions. The standards were refrigerated at 4°C for up to 6 

months.

2.3.3.2 Reagents and Buffers

• 0.1 mol/L Phosphate Buffer pH 7.4 (500mL).

400mL of deionised water was added to 6.81 g of potassium dihydrogen 

orthophosphate (MW 139.09). The pH was adjusted to 7.4 using 10 mol/L 

potassium hydroxide. The volume was then made up to 500mL in a volumetric flask 

with deionised water and stored refrigerated (2-8°C) for up to 2 months.

• 10 mol/L Potassium Hydroxide (lOOmL).

80mL of deionised water was added to 56.1 lg  of potassium hydroxide (MW 56.11). 

The volume was made up to lOOmL in a volumetric flask with deionised water and 

stored at room temperature for up to six months.
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• 0.01 mol/L Acetic Acid pH 3.3 (lOOmL).

57.5pL of glacial acetic acid was added to 80mL of deionised water in a lOOmL 

volumetric flask. The volume was made up to lOOmL with deionised water and 

stored at room temperature for up to 2 months.

• lmg/mL (w/v) Tartaric Acid:Ethylacetate (lOOmL).

lOOmL of ethylacetate was added to 0.1 g of tartaric acid and sonicated for 30 

minutes. The solution was stored at room temperature for up to two months.

• 2% (v/v) Ammonium Hydroxide in Ethyl Acetate (50mL).

lmL of ammonium hydroxide was added to 49mL of ethyl acetate. The solution was 

prepared daily and mixed well before use.

2.3.4 Methods

2.3.4.1 Oral Fluid Specimens

Three hundred and seventy oral fluid specimens were obtained from the analytical 

laboratory at Cozart Pic following their routine analysis for dmgs of abuse.

Prior to submission to the laboratory lmL of oral fluid was collected from each 

individual using the Cozart® RapiScan Collector, the oral fluid soaked sample pad was 

then inserted into the transport tube which contained 2mL of Cozart proprietary buffer. 

This collection method results in a 1:3 dilution of the sample, all concentrations noted 

are corrected for undiluted oral fluid. Detailed information regarding each individual 

was not available.

Samples were screened for MDMA and metamfetamine using the Cozart® RapiScan 

and/or the Cozart® EIA, and confirmed by GC-MS analysis. The time delay between 

receipt of samples into the laboratory for routine screening, and their subsequent testing 

was less than 4 months, during which time the samples were stored at -20°C.
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An additional fifty six oral fluid samples were selected from the laboratory sample bank 

based on donor self reported use of amfetamine and/or MDMA up to 7 days prior to 

sample collection. Information on the gender of the donors was only available for 40 of 

the 56 samples, of which there was a ratio of females to males of 1:1.7.

The samples were quantified for amfetamines (AMP, MAMP, MDA, MDMA, MDEA, 

MBDB) by GC-MS, samples with a drug concentration greater than the top calibration 

point (180ng/mL) were serially diluted to give a concentration within the calibration 

curve.

2.3.4.2 Lateral Flow Point of Care Screening

The Cozart® RapiScan drug test cartridge is a competitive lateral flow immunoassay 

composed of a white nitrocellulose reaction strip with immobilised drug-binding sites. 

Gold-labelled polyclonal antibodies raised to d-metamfetamine are contained within a 

pad near the point of sample application. Addition of the sample rehydrates the gold- 

labelled antibodies and the mixture flows across the membrane, over the immobilised 

drug sites. If there is no drug present in the sample the antibodies will bind to the 

immobilised drug and a pink band will form, if drug is present then there is a decrease 

in band intensity.

The Cozart® RapiScan metamfetamine/MDMA test cartridge has a set cutoff of 

45ng/mL in undiluted oral fluid. The manufacturer states that other designer 

amfetamines such as MBDB and MDEA show cross reactivity with the antibody, and 

that concentrations of amfetamine greater than 30,000ng/mL will give a positive screen 

result [49], details of the cross reactivity can be seen in Table 2:2.

52



Drug Concentration (ng/mL) Cozart® RapiScan Response

D-Metamfetamine 45 Positive

L-Metamfetamine 1500 Positive

MDMA 45 Positive

MBDB 45 Positive

MDEA 1500 Positive

D-Amfetamine 30,000 Positive

MDA 30,000 Negative

Table 2:2 Cross reactivity profile of Cozart® RapiScan drug test cartridge for MDMA

and metamfetamine [49]

Samples were screened according to the manufacturers protocol [49]. In brief, four 

drops of oral fluid/buffer mixture were added to the cartridge using a disposable Pasteur 

pipette. As soon as the fluid appeared in the cartridge window the cartridge was inserted

(R )  •  •into the Cozart RapiScan instrument and the timer was initiated by pressing the start 

button. Following five minutes incubation the cartridge was read and the result 

interpreted by the RapiScan instrument which then displayed either positive or negative 

on the screen, subsequently a print out of the results was produced from the attached 

printer.

2.3.4.3 EIA Screening

The components of the Cozart® EIA kit include a 96 well microtitre plate coated with 

mouse monoclonal antibodies raised to d-metamfetamine. The antibody also displays 

cross reactivity to additional compounds within the amfetamines group, see Table 2:3.
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Drug % Cross Reactivity

D-Amfetamine 0.7

MDA 0.4

MDMA 49

MBDB 154

MDEA 5

Table 2:3 Cross reactivity profile of the Cozart® Metamfetamine EIA [50]

The enzyme conjugate employed was metamfetamine labelled with horseradish 

peroxidase (HRP). The substrate solution used was hydrogen peroxide with 3,3,5,5- 

tetramethyl benzidine (TMB) as the chromogen, and the stop solution was 1 mol/L of 

sulphuric acid. The calibrators contained d-metamfetamine in oral fluid/buffer matrix.

Samples with sufficient volume following screening using the point of care device were 

screened using the Cozart® Metamfetamine EIA according to the manufacturers 

protocol [50]. 25pL of sample, calibrator or control was added in duplicate to the 

antibody coated microtitre plate, followed by 1 OOjllL of enzyme conjugate. Following 30 

minutes incubation at room temperature, the plate was washed four times with 350(iL of 

wash buffer. 100pL of substrate solution was added to each well and incubated for an 

additional 30 minutes. Finally lOOpL of stop solution was added and the absorbance 

read at 450nm, with a reference filter at 630nm.

2.3.4.4 Solid Phase Extraction (SPE)

Prior to analysis by GC-MS the samples were extracted by SPE according to a 

previously published procedure [51]. Specimens were allowed to equilibrate to room 

temperature, mixed and 0.5mL was taken for analysis. A seven point calibration curve,

0, 15, 30, 60, 90, 120, and 180ng/mL, was prepared using the working solutions of drug
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standards, and negative oral fluid collected using the Cozart® collector. Using the 

l|ag/mL solution, deuterated internal standards at a concentration of 120ng/mL were 

added to each sample, blank, 60ng/mL control and standard followed by lmL of pH 7.4 

phosphate buffer.

SPE was performed using Bond Elut Certify™ cartridges (50mg, 3mL). The columns 

were conditioned with lmL of methanol followed by lmL of phosphate buffer (pH 7.4,

0. lmol/L). Sample was loaded onto the column and then washed with lmL of deionised 

water. The column pH was adjusted with 0.5mL acetic acid (pH 3.3, 0.0lmol/L) and 

dried on full vacuum for 10 minutes. The column was then washed with 50pL of 

methanol and dried on full vacuum for 1 minute. 2mL acetone:chloroform (1:1) was 

added as the final wash step. The retained analytes were then eluted with lmL ethyl 

acetate containing 2% ammonium hydroxide (98:2, v/v). lOOpL tartaric acid was added 

to the eluates and evaporated to dryness at room temperature under nitrogen. The 

samples were then reconstituted in lOOpL PFPA:ethylacetate (1:1) and again evaporated 

to dryness at room temperature under nitrogen. The samples were reconstituted in 

lOOpL of ethylacetate and 2pi was injected into the GC-MS.

2.3.4.5 GC-MS Parameters

The GC-MS was run in electron ionisation mode with splitless injection. The mobile 

phase was helium at a flow rate of lmL/min and at a constant pressure of 8.7 psi. The 

injector port temperature was set at 290°C, with the transfer line and source 

temperatures set to 280°C and 230°C respectively.

The temperature programme consisted of an initial 2 minutes at 55°C, ramped at 

20°C/min to 200°C, then ramped to 250°C at 10°C/min and finally to 300°C at
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25°C/min where it was held for 2 minutes. The ions monitored and the individual 

retention times can be seen in Table 2:4.

Analyte Retention

Time

Ions Monitored 

(m/z)

Ions for 

Quantitation (m/z) !

Amfetamine 8.14 91, 118 190

Amfetamine-di i 8.10 98, 128 194

Metamfetamine 8.92 118, 160 204

Metamfetamine-di4 8.87 128, 163 211

MDA 10.32 162, 190 325

MDA-ds 10.31 167, 194 330

MDMA 11.16 162,339 204

MDMA-ds 11.13 165, 344 208

MDEA 11.42 162,353 218

MDEA-d6 11.39 165,359 224

MBDB 11.57 160,353 218

MBDB-ds 11.59 163,358 222

Table 2:4 Retention times and ions monitored for each analyte

All the analytes show good baseline separation of the peaks. Examples of the 

chromatograms for each analyte and their internal standards can be seen in Figures 2:2 

and 2:5.

The method was linear (>0.9928) for all the amfetamines using seven data points 

ranging from Ong/mL to 180ng/mL, the CV was <0.5%. Inter-assay precision and intra

assay precision were <11% and <4% respectively. The limits of detection (LOD) for 

amfetamine, metamfetamine, MDA, MDMA, MDEA and MBDB were 2, 1,5, 1,2 and 

Ing/mL respectively, with the limits of quantitation (LOQ) as 5ng/mL for all 

compounds.

56



Ion 190.00 (189.70 to 190.70): C_AMP 07.D
I on 194.00 (193.70 to 194.701: C_AMP_07 D 
Ion 211.00 (210.70 to 211.70): C AMP_Q7.D
Ion 204.00 (203.70 to 204.70); C_AMP 07.D

1 1 0 0 0 0 -

1 0 0 0 0 0 -

8.8790000-
1.14

80000-

70000-

60000-

50000-

40000

30000-

2 0 0 0 0 -

1 0 0 0 0 -

7.79 7.86 9.0603

Time-->

Figure 2:2 Amfetamine-dn, amfetamine, metamfetamine-dn and metamfetamine
chromatogram
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Figure 2:3 MDA-ds and MDA chromatogram
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Figure 2:4 MDMA-ds and MDMA chromatogram
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Figure 2:5 MDEA-d6, MDEA, MBDB-ds and MBDB chromatogram

2.3.4.6 Sensitivity, Specificity and Efficiency

In the laboratory the word sensitivity has two definitions, analytical sensitivity is the 

lowest concentration at which an analyte can be measured precisely, and clinical 

sensitivity is defined as the probability o f a true positive test result as compared to a 

reference or gold standard [52], Clinical sensitivity is discussed here and is calculated 

from the tally o f true positives (TP) and false negatives (FN): Sensitivity = [TP/(TP + 

FN)] x 100%.

Specificity is the probability that a test will produce a true negative result and is 

calculated from the tally o f false positives (FP) and true negatives (TN): Specificity = 

[TN/(TN +FP)] x 100%.

Overall efficiency = [(TP + TN)/(TP + FP +TN + FN)] x 100%.

2.3.4.7 Receiver Operator Characteristic (ROC) Analysis

The efficiency o f a diagnostic test is characterised by its sensitivity and specificity. As 

the cutoff point is varied over a spectrum of results the sensitivity and specificity will 

move in opposite directions, as one increases the other decreases. ROC plots are a
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graphical representation o f all the sensitivity/specificity pairs resulting from varying the 

cutoff point. A test with perfect discrimination has an ROC plot that passes through the 

upper left corner where the true positive fraction is 1.0 (perfect sensitivity), and the false 

positive fraction is 0 (perfect specificity). A test with no discrimination will produce a 

45° diagonal line from the lower left hand corner to the upper right hand corner [53]. 

When results from multiple tests have been obtained the ROC plots can be graphed 

together. The relative positions o f the plots indicate the efficiency o f the tests. A plot 

lying above and to the left o f another plot indicates greater efficiency, an illustration o f 

this is shown in Figure 2:6.
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False positive rate

Figure 2:6 Illustration o f ROC Curves

2.4 Results and Discussion

2.4.1 Lateral Flow Point o f Care Screening

O f the three hundred and seventy oral fluid samples, one hundred and twenty one 

screened positive using the Cozart® RapiScan, and one hundred and twenty nine 

specimens were confirmed by GC-MS to contain detectable concentrations o f MDMA. 

Two hundred and thirty specimens contained one or more o f the amfetamines at

59



concentrations above the GC-MS LOQ of 5ng/mL. The Cozart® RapiScan and 

corresponding GC-MS results for these samples can be seen in 

Table 2:5.

Sample
Cozart® RapiScan 

Result
GC/MS (ng/mL)

AMP MDMA MDA MDEA MAMP
139 N 13 0 0 0 0
140 N 14 0 0 0 0
141 N 21 0 0 0 0
142 N 23 0 0 0 0
143 N 31 0 0 0 0
144 N 35 0 0 0 0
145 N 53 0 0 0 0
146 N 57 0 0 0 0
147 N 58 0 0 0 0
148 N 60 0 0 0 0
149 N 60 0 0 0 0
150 N 67 0 0 0 0
151 N 79 0 0 0 0
152 N 87 0 0 0 0
153 N 94 0 0 0 0
154 N 104 0 0 0 0
155 N 110 0 0 0 0
156 N 125 0 0 0 0
157 N 128 0 0 0 0
158 N 128 0 0 0 0
159 N 133 0 0 0 0
160 N 136 0 0 0 0
161 N 141 0 0 0 0
162 N 150 0 0 0 0
163 N 167 0 0 0 0
164 N 173 0 0 0 0
165 N 176 0 0 0 0
166 N 177 0 0 0 0
167 N >180 0 0 0 0
168 N >180 0 0 0 0
169 N >180 0 0 0 0
170 N >180 0 0 0 0
171 N >180 0 0 0 0
172 N >180 0 0 0 0
173 N >180 0 0 0 0
174 N >180 0 0 0 0
175 N >180 0 0 0 0
176 N >180 0 0 0 0
177 N >180 0 0 0 0
178 N >180 0 0 0 0
179 N >180 0 0 0 0
180 N >180 0 0 0 0
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Sample
Cozart® RapiScan 

Result
GC/MS (ng/mL)

AMP MDMA MDA MDEA MAMP
181 N >180 0 0 0 0
182 N >180 0 0 0 0
183 N >180 0 0 0 0
184 N >180 0 0 0 0
185 N >180 0 0 0 0
186 N >180 0 0 0 0
187 N >180 0 0 0 0
188 N >180 0 0 0 0
189 N >180 0 0 0 0
190 N >180 0 0 0 0
191 N >180 0 0 0 0
192 N >180 0 0 0 0
193 N >180 0 0 0 0
194 N >180 0 0 0 0
195 N >180 0 0 0 0
196 N >180 0 0 0 0
197 N >180 0 0 0 0
198 N >180 0 0 0 0
199 N >180 0 0 0 0
200 N >180 0 0 0 0
201 N >180 0 0 0 0
202 N >180 0 0 0 0
203 N >180 0 0 0 0
204 N >180 0 0 0 0
205 N >180 0 0 0 0
206 N >180 0 0 0 0
207 N >180 0 0 0 0
208 N >180 0 0 0 0
209 N >180 0 0 0 0
210 N >180 0 0 0 0
211 N >180 0 0 0 0
212 N >180 0 0 0 0
213 N >180 0 0 0 0
214 N >180 0 0 0 0
215 N >180 0 0 0 0
216 N >180 0 0 0 0
217 N >180 0 0 0 0
218 N >180 0 0 0 0
219 N >180 0 0 0 0
220 N >180 0 0 0 0
221 N >180 0 0 0 0
222 N >180 0 0 0 0
223 N >180 0 0 0 0
224 N >180 0 0 0 0
225 N >180 0 0 0 0
226 N >180 0 0 0 0
227 N >180 0 0 0 0
228 N >180 0 0 0 0
229 N >180 0 0 0 0
230 N >180 0 0 0 0
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Sample
Cozart® RapiScan 

Result
GC/MS (ng/mL)

AMP MDMA MDA MDEA MAMP
231 N >180 0 0 0 0
232 N >180 0 0 0 0
233 N >180 0 0 0 0
234 N 0 13 0 0 0
235 N 0 13 0 0 0
236 N 0 15 0 0 0
237 N 0 16 0 0 0
238 N 0 16 0 0 0
239 N 0 17 0 0 0
240 N 0 19 0 0 0
241 N 71 21 0 0 0
242 N 0 22 0 0 0
243 N 0 22 0 0 0
244 N 0 23 0 0 0
245 N 0 23 0 0 0
246 N 0 44 0 0 0
247 N 0 47 0 0 0
248 P 0 53 0 0 0
249 N 0 53 0 0 0
250 N 0 54 0 0 0
251 P 0 55 0 0 0
252 P 0 57 0 0 0
253 P >180 58 0 0 0
254 P 0 65 0 0 0
255 P 0 69 0 0 0
256 P 0 70 15 0 0
257 P 0 81 0 0 0
258 P >180 85 0 0 0
259 P >180 88 0 0 0
260 P 0 95 0 0 0
261 P 0 97 0 0 0
262 P >180 103 0 0 0
263 P 0 109 0 0 0
264 P 0 111 0 0 0
265 P >180 112 0 0 0
266 P >180 119 0 0 0
267 P 0 125 0 0 0
268 P 0 125 0 0 0
269 P 0 128 0 0 0
270 P 0 136 0 0 0
271 P >180 146 0 0 0
272 P 0 149 0 0 0
273 P 0 153 0 0 0
274 P 0 161 0 0 0
275 P 0 174 0 0 0
276 P 0 179 0 0 0
277 P >180 >180 0 0 0
278 P 0 >180 58 0 0
279 P >180 >180 >180 0 0
280 P >180 >180 >180 0 0
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Sample
Cozart® RapiScan 

Result
GC/MS (ng/mL)

AMP MDMA MDA MDEA MAMP
281 P >180 >180 0 0 0
282 P 0 >180 0 0 0
283 P 0 >180 0 0 0
284 P >180 >180 0 0 0
285 P 0 >180 0 0 0
286 P >180 >180 85 0 0
287 P >180 >180 >180 0 52
288 P 0 >180 0 0 0
289 P 0 >180 0 0 0
290 P 0 >180 113 0 0
291 P 147 >180 91 0 0
292 P 0 >180 0 0 0
293 P 0 >180 >180 0 0
294 P >180 >180 >180 0 0
295 P >180 >180 172 0 0
296 P 90 >180 175 0 0
297 P >180 >180 >180 0 0
298 P >180 >180 >180 0 0
299 P 0 >180 >180 0 0
300 P >180 >180 >180 0 0
301 P >180 >180 >180 0 0
302 P >180 >180 >180 0 0
303 P 87 >180 >180 0 0
304 P 0 >180 >180 0 >180
305 P 0 >180 0 0 0
306 P 0 >180 145 0 0
307 P >180 >180 107 0 0
308 P 0 >180 0 0 0
309 P 0 >180 0 0 0
310 P 0 >180 >180 0 0
311 P 0 >180 >180 0 0
312 P 0 >180 >180 0 0
313 P 0 >180 70 0 0
314 P >180 >180 0 0 0
315 P 0 >180 0 0 0
316 P 0 >180 43 0 0
317 P >180 >180 121 0 0
318 P 0 >180 23 0 0
319 P 0 >180 93 0 0
320 P 0 >180 0 0 0
321 P >180 >180 43 0 0
322 P >180 >180 >180 0 0
323 P 0 >180 >180 0 0
324 P >180 >180 0 0 0
325 P 0 >180 136 0 0
326 P 84 >180 >180 0 0
327 P 0 >180 0 0 0
328 P >180 >180 124 0 0
329 P 0 >180 20 0 0
330 P >180 >180 0 0 0
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Sample
Cozart® RapiScan 

Result
GC/MS (ng/mL)

AMP MDMA MDA MDEA MAMP
331 P >180 >180 0 0 0
332 P 0 >180 162 37 0
333 P 0 >180 0 0 0
334 P >180 >180 35 0 0
335 P >180 >180 >180 >180 0
336 P >180 >180 0 0 0
337 P >180 >180 46 0 0
338 P 0 >180 27 0 0
339 P 0 >180 57 0 0
340 P >180 >180 26 0 0
341 P >180 >180 >180 0 0
342 P 0 >180 133 0 0
343 P 0 >180 0 0 0
344 P 0 >180 176 0 0
345 P 0 >180 79 0 0
346 P 0 >180 36 0 0
347 P 0 >180 >180 0 108
348 P 0 >180 0 0 0
349 P 0 >180 34 0 0
350 P 0 >180 77 0 0
351 P 0 >180 147 0 0
352 P 0 >180 0 0 0
353 P 0 >180 0 0 0
354 P 0 >180 0 0 0
355 P 0 >180 0 0 0
356 P 0 >180 0 0 0
357 P 0 >180 0 0 0
358 P >180 >180 0 0 0
359 P 0 >180 0 0 0
360 P 0 >180 28 0 0
361 P 0 >180 0 0 0
362 P 13 >180 29 0 0
363 P >180 0 0 0 0
364 P >180 0 0 0 0
365 P >180 0 0 0 0
366 P >180 0 0 0 0
367 P >180 0 0 0 0
368 P >180 0 0 0 0

Table 2:5 Cozart® RapiScan results for 230 samples containing amfetamine and its 

related compounds as quantified by GC-MS

The concentration range and frequency of amfetamines detected by GC-MS can be seen 

in Table 2:6. MDMA and metamfetamine were detected in 34.9% (N=129) and 0.8%
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(N=3) respectively, of the samples tested. No specimens contained detectable quantities 

of MBDB.

Drug Number Range (ng/mL)

MDMA 129 13 ->180

Amfetamine 144 13 ->180

MDA 55 20->180

MDEA 2 37->180

Metamfetamine 3 52->180

Table 2:6 Range and frequency of amfetamine and related compounds confirmed by 

GC-MS following Cozart® RapiScan screening

Amfetamine was most frequently detected on its own, while MDMA was more often 

detected with its metabolite MDA, and/or amfetamine. On the few occasions where 

MDEA and metamfetamine were detected they were always present with MDMA. 

Table 2:7 displays the different combinations of amfetamine, MDMA and MDA 

encountered.

Analyte Combination Frequency

Amfetamine 101

MDMA 57

Amfetamine + MDMA 18

MDMA + MDA 25

Amfetamine + MDMA + MDA 24

Table 2:7 Combinations of amfetamine and its related compounds detected in oral fluid

Six samples screened positive by the Cozart® RapiScan but did not contain detectable

quantities of MDMA or metamfetamine by GC-MS. These samples contained

concentrations of amfetamine which greatly exceeded the top calibration standard of
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180ng/mL. The manufacturer’s protocol states a positive response will be obtained with 

d-amfetamine concentrations of 30,000ng/mL and above, it is therefore suggested that 

these 6 samples contained concentrations in excess of this.

An additional sample which screened positive by the Cozart® RapiScan was 

subsequently identified as containing pseudoephedrine. Although the concentration 

could not be determined it is suggested that it may have exceeded 30,000ng/mL which 

would trigger a positive response according to the manufacturer’s protocol.

The number of true positives (TP), false negatives (FN), false positives (FP), and true 

negatives (TN) were determined by comparing the Cozart® RapiScan test results to 

GC/MS using a cutoff of 30ng/mL, and the SAMSHA recommended cutoff of 50ng/mL 

of amfetamines in oral fluid (Table 2:8).

GC-MS Cut-off Concentration

Cozart 30ng/mL SAMSHA 50ng/mL

TP 113 113

FN 4 2

FP 8 8

TN 245 247

Sensitivity 96.6% 98.3%

Specificity 96.8% 96.9%

Efficiency 96.8% 97.3%

Table 2:8 Sensitivity, specificity and efficiency of the Cozart® RapiScan for 

metamfetamine/MDMA drug test cartridge versus the Cozart employed cutoff 

(30ng/mL) and the SAMSHA recommended GC-MS cut-off (50ng/mL)
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When applying the 30ng/mL GC-MS cutoff there were a total of 4 false negatives, this 

decreased to 2 false negatives when the 50ng/mL SAMSHA cutoff was applied. The 

concentrations of MDMA in these samples were within 20% of the Cozart® RapiScan 

cutoff of 45ng/mL at 44, 47, 53 and 54ng/mL.

The sensitivity, specificity and efficiency of the Cozart® RapiScan versus a GC-MS 

cutoff of 30ng/mL were excellent at 96.6, 96.8, and 96.8% respectively. When the 

SAMSHA recommended cutoff of 50ng/mL was used these values increased slightly to 

98.3, 96.9 and 97.3%.

A total of seven point of care devices have been identified in the literature as being 

designed to detect amfetamine and/or metamfetamine and MDMA in oral fluid [48, 54- 

57]. The cutoff points for these devices have ranged from 45ng/mL to 160ng/mL [58]. 

Previous studies have evaluated these devices at the roadside [55, 56], following 

controlled dose administration [21], or using spiked samples [57, 58].

The ORALscreen® assay for MDMA and metamfetamine was used to test nine samples 

from individuals declaring the use of amfetamines. Good correlation was shown when 

the oral fluid results were compared to the results of matched urine samples. However 

the number of samples analysed was small and only the urine samples were confirmed 

by GC-MS [54].

The Drugwipe® was used to test oral fluid from individuals administered lOOmg of 

MDMA. The device was initially tested onsite but performed poorly, samples were 

subsequently sent to the laboratory where the volume of sample applied to the device 

could be controlled [21].

Toxiquick® was evaluated during a roadside study, 263 oral fluid samples were tested 

using single amfetamine and metamfetamine test strips. Results of the study proved to 

be poor with only 77% correct results when compared to GC-MS [55], this result was
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not surprising considering the original application of the device was for urine and as a 

result the cutoff was very high (500ng/mL).

A direct comparison of the Cozart® RapiScan with similar point of care devices is not 

possible as this is the first known study to provide sensitivity, specificity and efficiency 

data on an oral fluid point of care test for metamfetamine/MDMA using samples from a 

known drug using population.

2.4.2 EIA Screening

Following the point of care study a total of eighty-five samples contained sufficient 

volume to allow for further analysis using the Cozart® Metamfetamine EIA for oral 

fluid.

The calibrators supplied with the assay contain metamfetamine and the manufacturers’ 

technical sheet states 50% cross reactivity of the assay to MDMA [50]. As previously 

shown in Table 2:6, MDMA was the second most frequently encountered analyte with 

only 3 samples containing metamfetamine. For this reason a set of calibrators were 

prepared using MDMA and were tested in parallel to the calibrators supplied with the 

kit.

The number of true positives (TP), false negatives (FN), false positives (FP), and true 

negatives (TN) were determined by comparing the Cozart® EIA test results, using both 

sets of calibrators, at various cutoff points, to the reference method GC/MS at a cutoff 

of 30ng/mL. From this data the sensitivity, specificity and efficiency were calculated for 

the assay against both the metamfetamine and MDMA calibrators (Table 2:9 and 2:10).
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Cutoff Concentration (ng/mL)

10 20 30 45 50 60 70 80 90 100

TP 44 42 38 30 30 28 26 26 24 23
FN 1 3 7 15 15 17 19 19 21 22
FP 3 2 1 0 0 0 0 0 0 0
TN 37 38 39 40 40 40 40 40 40 40

Sensitivity 97.8% 93.3% 84.4% 66.7% 66.7% 62.2% 57.8% 57.8% 53.3% 51.1%
Specificity 92.5% 95% 97.5% 100% 100% 100% 100% 100% 100% 100%

Efficiency 95.3% 94.1% 90.6% 82.4% 82.4% 80% 77.7% 77.7% 75.3% 74.1%

Table 2:9 Metamfetamine calibrators: Sensitivity, specificity and efficiency of the 

Cozart Metamfetamine EIA for oral fluid at various cutoff concentrations versus a

GC/MS cutoff of 30ng/mL

Cutoff Concentration (ng/mL)

10 20 30 45 50 60 70 80 90 100

TP 45 44 44 41 41 39 38 36 35 33
FN 0 1 1 4 4 6 7 9 10 12
FP 10 7 4 2 2 1 1 1 1 1
TN 30 33 36 38 38 39 39 39 39 39

Sensitivity 100% 97.8% 97.8% 91.1% 91.1% 86.7% 84.4% 80% 77.8% 73.3%
Specificity 75% 82.5% 90% 95% 95% 97.5% 97.5% 97.5% 97.5% 97.5%
Efficiency 88.2% 90.6% 94.1% 92.9% 92.9% 91.8% 90.6% 88.2% 87.1% 84.7%

Table 2:10 MDMA calibrators: Sensitivity, specificity and efficiency of the Cozart® 

Metamfetamine EIA for oral fluid at various cutoff concentrations versus a GC/MS

cutoff of 30ng/mL

Changing the calibrators so that the assay was calibrated to MDMA instead of 

metamfetamine increased the sensitivity, specificity and efficiency, at the manufacturers
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recommended cutoff (45ng/mL), from 66.7%, 100%, and 82.4% respectively to 91.1%, 

95%, and 92.9%, versus a GC-MS cutoff o f  30ng/mL.

Using data from both sets o f calibrators the sensitivity for each cut-off was plotted 

against 1-specificity as a Receiver Operator Characteristic (ROC) curve in Figure 2:7. 

From the ROC curve the optimum cutoff was 20ng/mL o f metamfetamine in undiluted 

oral fluid and between 30 and 50ng/mL o f MDMA.

20ng/mL MAMP

0.9
45/50ng/mL MDMA

0.7

0.6
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Figure 2:7 ROC Curve for the Cozart® Metamfetamine EIA for oral fluid comparing 

metamfetamine and MDMA calibrators. Data points from right to left are for cutoff

points 10 to lOOng/mL

The population o f samples encountered in these studies are consistent with reports that 

MDMA is more frequently abused in Europe while metamfetamine use is mainly found 

in the US [8], Therefore in European laboratories the assay can either be adapted by the
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incorporation of MDMA calibrators, or applying the lower 20ng/mL cutoff. Countries 

with a higher incidence of metamfetamine abuse can use the kit as it is supplied by the 

manufacturer.

A large number of EIA kits specific to metamfetamine exist, the manufacturers of these 

assays state they can be used for various biological matrices including oral fluid.

Despite their versatility there are a limited number of publications describing their 

evaluation. Where publications are available the assay has only been applied to blood 

[59], urine [60], or hair samples [61]. It is essential that every immunoassay is validated 

for the use of each biological fluid due to possible endogenous interferences from 

different matrices.

Previously the Cozart Amfetamine EIA was used to analyse oral fluid samples 

following controlled dose administration of MDMA. ROC analysis showed the 

optimum cutoff to be 51 ng/mL versus an LC-MS/MS cutoff of lOng/mL, the sensitivity 

and specificity of the assay were 98.6% [62]. The cross reactivity of the EIA to MDMA 

was <0.1%, as a result the authors were relying on the presence of MDA which cross 

reacts at >140%. However, the data in Table 2:7 shows MDA is not always present with 

MDMA.

2.4.3 Self Reported Use

Information on the quantity and frequency of drug use is important when assessing an 

individual prior to and during a drug treatment programme [63]. Drug use can be 

monitored by self reported use and objectively measured by qualitative and quantitative 

analysis of biological specimens [64, 65].

In this study thirty-four individuals claimed to have used amfetamine within 6 days 

prior to sample collection, 18 people admitted to using MDMA, and 4 people admitted
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using both amfetamine and MDMA either on the same day or within a day of each 

other. Full details of each sample can be found in Table 2:11.

GC-MS analysis confirmed the self report data in 87.5% of cases. On seven occasions 

the drugs declared were not consistent with the drugs detected. Three individuals 

claimed to have only used amfetamine, but their sample was found to also contain 

MDMA and MDA. Similarly three individuals who declared only MDMA use were 

found to contain detectable concentrations of amfetamine. One sample also contained 

metamfetamine when only MDMA had been reported. No detectable quantities of 

MDEA or MBDB were found in any of the samples.

Barcode Declared Substance Number of Days 
Since Use

GC-MS (ng/mL)
AMP MDMA MDA MAMP

S336350 MDMA 0 0 8630 358 299
S206208 Amfetamine 0 136 0 0 0
S251329 Amfetamine 0 2357 0 0 0
S I06600 Amfetamine 0 2898 2370 244 0
S347050 Amfetamine 0 2352 0 0 0
S106390 Amfetamine 0 550 0 0 0
S328571 Amfetamine 0 2985 0 0 0
S328546 Amfetamine 0 35600 3132 196 0
S251651 Amfetamine 0 360 0 0 0
S347311 Amfetamine 0 617 0 0 0
S384891 Amfetamine 0 19725 900 442 0
S349402 Amfetamine 0 8970 0 0 0
S123026 Amfetamine/MDMA 0,1 14160 3932 192 0
S282143 MDMA 1 0 1650 0 0
S149811 MDMA 1 0 22 0 0
S311890 Amfetamine 1 2257 0 0 0
S250940 Amfetamine 1 167 0 0 0
S350710 Amfetamine 1 721 0 0 0
S336430 Amfetamine 1 413 0 0 0
S020829 Amfetamine 1 141 0 0 0
S351385 Amfetamine 1 938 0 0 0
S320379 Amfetamine, MDMA 1 246 505 0 0
S320066 Amfetamine 1 830 0 0 0
S351360 Amfetamine 1 1260 0 0 0
S359247 Amfetamine 1 9430 0 0 0
S352594 Amfetamine 1 9300 0 0 0
S347393 Amfetamine 1 10600 0 0 0
S334311 Amfetamine 1 382 0 0 0
S328582 Amfetamine 1 173 0 0 0
S334197 MDMA 1 0 44 0 0
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Barcode Declared Substance Number of Days 
Since Use

GC-MS (ng/mL
AMP MDMA MDA MAMP

S384595 Amfetamine 1 4675 0 0 0
S328028 MDMA 1 0 5232 457 0
S123095 Amfetamine 1 1070 0 0 0
S348304 Amfetamine 1 58 0 0 0
S049895 MDMA 2 0 75 0 0
S302216 MDMA 2 0 0 0 0
S365809 MDMA 2 0 0 0 0
S311324 MDMA 2 0 530 0 0
S351356 MDMA 2 16 32 0 0
S106166 Amfetamine 2 0 0 0 0
S383273 Amfetamine 2 946 0 0 0
S347235 Amfetamine 2 357 0 0 0
S311576 MDMA, Amfetamine 3 90 2868 175 0
S282229 MDMA 3 0 22 0 0
S332200 Amfetamine 3 294 0 0 0
S347038 MDMA 3 0 13 0 0
S401229 Amfetamine 3 0 0 0 0
S383259 Amfetamine 3 11505 0 0 0
S347219 Amfetamine 3 35 0 0 0
S206274 Amfetamine, MDMA 5 0 67 0 0
S250949 MDMA 5 0 0 0 0
S351450 MDMA 5 25 32 0 0
S366814 MDMA 5 0 0 0 0
S316506 MDMA 5 0 0 0 0
S316193 MDMA 6 13 0 0 0
S316838 MDMA 6 0 0 0 0

Table 2:11 Summary of self report data and corresponding GC-MS data

A total of 39% of MDMA positive samples also contained MDA at lower 

concentrations. Six of the samples contained MDA at concentrations 4.1-10.3% of the 

total concentration of MDMA, an average of 6.7% metabolic conversion. This data is 

consistent with previous studies where MDA was found in 37.8% of the MDMA 

positive samples [48], and where the average MDA concentration was 3.8% of the 

MDMA concentration [56, 66]. In this study one sample (barcode S384891) contained 

MDA at 49% of the MDMA concentration and also had a very high concentration of 

amfetamine (19,725ng/mL). The donor had only declared the use of amfetamine and so
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it is possible that the presence of MDA, and maybe even MDMA, were as a result of 

drug impurity.

Twelve samples were classified as negative using the GC-MS cut-off of 30ng/mL, four 

of these samples contained a concentration of MDMA and/or amfetamine between the 

lower limit of quantitation (5ng/mL) and the cut-off (30ng/mL).

The concentration range of amfetamines measured in this population of samples can be 

seen in Table 2:12.

Drug Frequency Concentration 

Range (ng/mL)

Amfetamine 38 13-35600

MDMA 18 13-8630

MDA 7 175-457

Metamfetamine 1 299

Table 2:12 Frequency and concentration range of the amfetamine related compounds in

oral fluid

Amfetamine was the most frequently reported drug and the highest concentration 

reached 35600ng/mL, from same day use. No published data has been found to 

determine if a concentration this high is common in this sample population. The highest 

measured concentration of MDMA in this study was 8630ng/mL, this is on average 

21% higher than any other reported oral fluid concentration. The previously highest 

recorded concentrations of MDMA in oral fluid have been 6510ng/mL [38], 6871ng/mL 

[66], and 6982ng/mL [27]. These concentrations were achieved at 1.5 hours following 

controlled dose administration of either 75mg or lOOmg of MDMA. These doses are 

close to the average reported content of ecstasy tablets [27, 28] and therefore the oral
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fluid concentrations quoted may be a realistic reflection o f what should be expected 

from recreational users o f MDMA.

The sample with the highest concentration o f MDMA in this study was from an 

individual who reported consuming 4 tablets on the day the sample was collected, the 

purity and content o f which cannot be ascertained. In a study representative o f real life 

samples concentrations o f M DM A in oral fluid ranged from 33 to 3533ng/mL when a 

single tablet was consumed and up to 7077ng/mL with multiple tablets [27].

Figure 2:8 displays the samples from donors declaring amfetamine use up to six days 

prior to sample collection, and categorises them into a series o f concentration ranges. 

The same has been calculated for donors declaring MDMA use and is displayed in 

Figure 2:9.

0-29  30-250  251-1000 1001-5000 5000+
Concentration Range (ng/mL)

□  0 D ays

□  1 Day

□  2 D ays

□  3 D ays

■  5 D ays

Figure 2:8 Concentrations o f amfetamine in oral fluid up to 6 days following drug

consumption
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2001 +

Concentration Range (ng/mL)

□  0 Days

□  1 Day

CM□

D ays

□  3 D ays

■  5 D ays

□  6 D ays

Figure 2:9 Concentrations o f MDMA in oral fluid up to 6 days following drug

consumption

Generally as the number o f days since drug use increased, the concentrations o f 

amfetamine and MDMA detected decreased. However on one occasion a concentration 

o f amfetamine greater than 5000ng/mL was detected in a sample where the individual 

had claimed amfetamine use 3 days prior to sample collection.

Where drug use was declared on the same day as sample collection, concentrations were 

above 30ng/mL. No samples contained >30ng/mL of amfetamine or M DM A after 5 and 

6 days respectively.

There are concerns about the reliability o f self reported drug use [67], Although this 

study shows that the data is largely in accordance with the self reported drug use there 

are several inconsistencies in the data. It is suggested that either the purity or dose o f the 

drug ingested may be variable, subjects may not know how much they have used, or 

they may be being deliberately untruthful. Alternatively self report histories may be 

inaccurate due to the memory deficits commonly encountered with use o f the 

amfetamine compounds [68],

76



2.5 Conclusion

The work undertaken in this chapter has given an understanding of the fundamental 

processes of point of care and laboratory based immunoassay screening, GC-MS 

confirmatory analysis, and data interpretation. The knowledge gained can be applied to 

the development and validation of a novel EIA, and will help in the development of 

confirmatory techniques for the detection of smoked cocaine in oral fluid.

The data produced for the evaluation of the point of care test was published in Journal 

of Analytical Toxicology, 2007. 31: p. 98-104.
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3 Development of an Enzyme Immunoassay (EIA) for the

Detection of Anhydroecgonine Methyl Ester

3.1 Aims and Objectives

The aim is to develop a novel application of EIA for the detection of the pyrolysis 

products of cocaine. The requirements are for the assay to be specific for 

anhydroecgonine methyl ester (AEME), one of the pyrolysis products of cocaine, and 

not to show cross reactivity to cocaine or any of its other metabolites. Following assay 

development a series of validation experiments are to be carried out to establish the 

performance characteristics of the assay.

3.2 Introduction

3.2.1 Cocaine and Crack Cocaine

Cocaine is an alkaloid derived from the plant Erythroxylon coca. Pure cocaine was first 

extracted from the leaf of the plant in the mid-19 century [1], and was used in various 

elixirs and tonics. In 1884 cocaine was recognised for its anaesthetic properties when 

Carl Koller became the first physician to use cocaine as a topical anaesthetic in 

ophthalmological surgery [1].

Under the Misuse of Drugs Act Cocaine is classified as a class A drug. It has a high 

potential for abuse but can be administered by a doctor for legitimate medical purposes, 

such as a local anaesthetic for some eye, ear and throat surgeries.
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3.2.1.1 Types of Cocaine

There are two chemical forms of cocaine which are commonly abused, the 

hydrochloride salt and the cocaine base. The hydrochloride salt is generally a fine, 

white, crystalline powder known as ‘coke’, or ‘blow’. Cocaine hydrochloride is 

extracted as a crude paste from the coca leaf, purified to form cocaine base, and then 

converted to cocaine hydrochloride [2]. In this form it is water soluble and is either 

taken intranasally or dissolved in water and taken intravenously. Smoked administration 

is less common as cocaine hydrochloride only volatilises at high temperatures and 

decomposes when it is burned [3].

Cocaine base, otherwise known as ‘crack’, is prepared by dissolving cocaine 

hydrochloride in water, mixing it with baking soda and heating. Cocaine base 

precipitates into a soft mass which becomes hard when dry [4]. The texture and colour 

of cocaine base ranges from a crumbly to hard crystalline solid and white to light 

brown. Cocaine base is insoluble in water which means it is not suitable for snorting or 

injecting. It is however suited to smoking as it vaporises at a low temperature, it is 

usually smoked in a pipe, glass tube, plastic bottle or in foil.

3.2.1.2 Use and Abuse

Cocaine is one of the most frequently identified drugs of abuse in the general population 

and in drug testing programmes [5-7]. In 2000 drug seizures in the UK involving 

cocaine accounted for 17% of all seizures of Class A drugs [8]. Cocaine was originally 

seen as a drug for the wealthy, but lower prices and less expensive forms, such as crack, 

have resulted in widespread use in all populations [9].

The results of the British Crime Survey (BCS) found that between 1998 and 2005/06 

the use of cocaine hydrochloride has increased while the use of crack cocaine remained 

stable. The observed rise was mainly due to large increases in use between 1998 and
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2000 [6]. However the overall use of crack cocaine may be underestimated due to the 

fact that the BCS is a household survey and therefore may not capture more problematic 

drug users. This is supported by findings that the use of crack cocaine by individuals 

attending a drug treatment centre was twice that of cocaine hydrochloride [5].

A decline in the use of some drugs such as amfetamines has been noted [10], although 

the overall use of stimulants has remained stable. This supports the idea that cocaine 

powder has replaced other substances as the drug of choice for stimulant users [6].

The reported number of deaths where cocaine was specifically mentioned on the death 

certificate has increased from 18 in 1996 to 147 in 2004 [11].

The use of crack cocaine is a concern to health care professionals due to the increased 

health risks associated with this form of cocaine. It is also of great concern to criminal 

justice officials due to its association with criminal activity [12].

3.2.1.3 Cocaine and Crime

Offenders who use crack cocaine and/or heroin commit significantly more crimes than 

those who don’t use these particular Class A drugs. There are strong indicators that a 

significant proportion of the income used to pay for these drugs is obtained through low 

level crime, including property crime, benefit fraud, drug dealing and prostitution [5, 

13-15]. This is more typical of crack users rather than cocaine hydrochloride use as it is 

suggested that the majority of cocaine hydrochloride users are in regular employment 

and can afford to fund their cocaine use through their legitimate income [13].

A recent study of 100 London crack cocaine users found that they spent on average 

£800 a week on their habit, and 9 out of 10 of these were committing crimes to fund 

their use [15]. This is further supported by a study of arrestees in the UK between 

October 2003 and September 2004 in which 38% reported the use of heroin or cocaine, 

57% of which had been arrested for an acquisition crime [16].
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In addition to the problem of acquisition crime there is also a link between the use of 

crack cocaine and violent crime. An increase in availability and use of crack cocaine in 

the UK and US over the years has seen a concomitant increase in the recording of 

violent crime, often involving firearms [13, 17].

3.2.1.4 Physiological and Phamiacodynamic Effects

Cocaine is a potent central nervous system stimulant, but also acts as a local anaesthetic 

and a sympathomimetic [18]. The local anaesthetic action is a result of its ability to 

block sodium channel conductance in neuronal cells thereby increasing the threshold 

required to generate an action potential [19].

Cocaine induces the release of the neurotransmitters nor adrenaline, dopamine and 

serotonin, the effect of this on the individual is a feeling of euphoria [20]. Cocaine also 

blocks the reuptake of the neurotransmitters at the synaptic junctions resulting in an 

increase in their concentrations, and therefore prolonging the euphoria. As nor

adrenaline is the primary neurotransmitter of the sympathetic nervous system its 

stimulation results in vasoconstriction, hypertension, tachycardia, mydriasis and 

hyperthermia [19, 21]. The behavioural effects however appear to be mediated by its 

dopaminergic actions, these effects are listed in Table 3:1. The euphoria of cocaine is 

followed by a ‘crash’ 20-60 minutes later, where the individual may experience anxiety, 

depression, fatigue and the desire for more cocaine [18]. This can be explained by the 

initial brief elevation of dopamine after an acute dose followed by a marked reduction 

of dopamine below normal concentrations [1].

The most common acute and chronic complications of cocaine use are related to the 

cardiovascular system. The highest risk of cardiovascular problems is within the first 

hour after cocaine use [22].
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Dose Physical Effects Psychological Effects
Initial Low D oses Tachycardia, tachypnoea, 

hypertension. Dilated pupils (&  
flattened lenses), sweating, 
reduced appetite, reduced need  
for sleep, reduced lung 
function, dry mouth, impaired 
motor control & performance 
o f  delicate skills and driving

Euphoria, sense o f  w ell being, 
impaired reaction tim e and 
attention span, impaired 
learning o f  new  skills

Increased doses Seizures, cardiac arrhythmias, 
myocardial infarction, 
ischem ia, stroke, respiratory 
arrest

A nxiety, irritability, insomnia, 
depression, paranoia, 
aggressiveness, im pulsivity, 
delusions, agitated/excited  
delirium, reduced psychom otor  
function

Chronic U se Erosions, necrosis and 
perforation o f  nasal septum, 
anosmia, rhinorrhoea and nasal 
eczem a, chest pains, m uscle 
spasm s, sexual im potence, 
w eight loss, malnutrition, 
vascular disease, 
cardiomyopathy, m yocarditis

Dependence, disturbed eating 
and sleeping patterns

Table 3:1 Physiological and psychological effects of cocaine use

The physiological, psychoactive and cardiovascular effects of cocaine hydrochloride 

and crack are similar. However smoking crack is the fastest route of cocaine entry to the 

brain at approximately 6-8 seconds. Smoked drugs enter the blood stream rapidly 

through the large surface area of the lungs producing rapid peak concentrations, the 

result of this is a much more rapid high which creates a higher potential for addiction 

[19, 23-25].

Crack cocaine users have reported more psychological health problems associated with 

their habit compared to users of other drugs [5].

Good correlations exist between peak cocaine oral fluid and plasma concentrations and 

peak subjective and physiologic effects, indicating that the presence of cocaine in oral 

fluid shows strong evidence that the subject is under the influence of the drug [23, 26- 

28].
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3.2.1.5 Pharmacokinetics

The bioavailability of cocaine is variable depending on the route of administration. 

Intravenous administration consistently produces 100% drug bioavailability [4]. Orally 

administered cocaine takes approximately 30 minutes to enter the bloodstream and 

typically only 20-30% is absorbed, consequently the euphoric effects are reduced 

compared to other methods of administration and is therefore rarely the chosen route 

[1]. Intranasal bioavailability is variable and may be dose dependant, with increased 

bioavailability at higher doses due to the amount of drug available for absorption. 

Estimates have ranged from 25% to 94% [4, 23]. During insufflation there is a delay in 

absorption due to the barrier of the nasal mucosa and the vasoconstrictive properties of 

cocaine. In addition, a portion of the dose may be swallowed which leads to further 

delay in absorption [29].

The bioavailability of smoked cocaine is also highly variable and following a number of 

studies has been quoted to range from 25-110% [1, 19, 23]. The individual smoking 

technique, temperature, and the device used to smoke the cocaine can all influence the 

bioavailability of smoked cocaine. Approximately 26% of the original dose of cocaine 

has been recovered from the smoking device [23, 24].

3.2.1.5.1 Metabolism

The bicyclic structure of cocaine is characterised by functional groups including N- 

methyl, carboxyl methyl ester, and benzoyl ester, which are all susceptible to 

biotransformation (Figure 3:1) [30].

Cocaine is extensively metabolised, primarily in the liver, with less than 10% excreted 

unchanged in the urine [31, 32]. The main metabolites of cocaine are benzoylecgonine,
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ecgonine methyl ester (EME) and ecgonine all of which are pharmacologically inactive. 

The excretion recovery of cocaine metabolites have ranged from 29 to 54% for 

benzoylecgonine to 26-60% for EME [18].

The metabolism of cocaine to benzoylecgonine occurs via spontaneous chemical 

hydrolysis of the methyl ester group [18, 30]. There is however some evidence to show 

that cocaine can also be enzymatically hydrolysed to benzoylecgonine by liver 

carboxylesterases [1,31]. Cocaine is metabolised to EME via enzymatic hydrolysis of 

the benzoyl group [30, 31]. Ecgonine is produced from the enzymatic hydrolysis of the 

benzoyl group of benzoylecgonine or the methyl ester group of EME [33, 34].

cooch3

C 0 0 C H 3
Cytochrome P 450

Norcocaine

Chemical Hydrolysis

Norbenzoylecgonine

Cocaine

Enzymatic 
\  Hydrolysis

Pyrolysis

Benzoylecgonine

Ecgonine

A nhydroecgonine Methyl E ster

Ecgonine Methyl E ster
Transesterification

A nhydroecgonine
NorcocaethyleneCocaethylene

Figure 3:1 Metabolic and pyrolytic pathways of cocaine
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Concurrent use of cocaine and alcohol results in the transesterification of cocaine to 

cocaethylene in the liver. Cocaethylene is biologically active and metabolises into two 

non active metabolites norcocaethylene and ecgonine ethyl ester [9].

Norcocaine is produced from the N-demethylation of cocaine mediated by microsomal 

cytochrome P-450. Norcocaine is pharmacologically active with similar actions to 

cocaine [30]. Norcocaine hydrolyses chemically to the pharmacologically inactive 

norbenzoylecgonine [33].

The minor metabolites such as norcocaine etc. have been shown to account for <2% of 

the administered dose of cocaine regardless of the route of administration [1, 29].

Research over the last two decades has identified a unique pyrolysis product of cocaine 

known as AEME [34-38]. AEME is not formed metabolically [39], it is solely produced 

by the elimination of benzoic acid during the thermal decomposition of cocaine at 

temperatures above 170°C [40, 41]. The pyrolysis of cocaine base to AEME has been 

studied and in general it has been found that the higher the temperature of the smoking 

device the greater pyrolysis of cocaine to AEME [24, 40, 42]. At 170°C the thermal 

degradation of cocaine base to AEME was found to be negligible, at temperatures up to 

230°C the abundance of cocaine was 68-77%, and this decreased to 30% at temperatures 

over 255°C at which point AEME became the predominant compound. An increase in 

the temperature from 260°C to 400°C produced a linear increase in the degree of 

pyrolysis [40].

A similar pyrolysis experiment showed that at 350-400°C only 50% of cocaine was 

converted to AEME while at 650°C as much as 89% of cocaine was converted [42].

To prove the inefficiency of smoking cocaine hydrochloride it was subjected to 

pyrolysis, only 30% of cocaine was inhaled and there was no presence of AEME. When
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the temperature exceeded 170°C there was no cocaine remaining but there was a small 

appearance of AEME (<10%) [40].

AEME is converted to anhydroecgonine (AE) via spontaneous chemical hydrolysis at 

basic pH [43, 44], and via enzymatic hydrolysis [37, 45]. The rate of metabolism of 

AEME to AE is unclear [45], and there is no evidence to suggest either are 

pharmacologically active [33]. AEME also undergoes transesteriflcation to 

anhydroecgonine ethyl ester (AEEE) in the presence of ethanol, as is seen with cocaine 

and cocaethylene [46].

Neither AEME nor AE have been found in street samples of cocaine [43], or following 

intravenous or intranasal administration of cocaine hydrochloride [29, 47], therefore the 

presence of AEME or its metabolite AE in biological matrices can positively identify 

the route of administration as being smoking.

3.2.1.5.2 Identification o f Pyrolysis Products in Biological Fluids

It has been clearly established in the literature that the pyrolysis of cocaine produces a 

unique compound AEME. What is less clear is how useful AEME is for identifying the 

use of crack cocaine in a variety of biological matrices.

AEME has been detected in the urine [33, 34, 36, 38, 48], postmortem blood [9, 36, 49, 

50], oral fluid [27, 34, 47, 51], sweat [34], nails [52, 53], and hair [34, 54, 55] of crack 

cocaine smokers.

In the analysis of postmortem and urine samples it appears that AE may be a more 

reliable maker for identification of crack cocaine use due to reports of significantly 

higher concentrations of AE compared to AEME. [9, 43, 45, 49, 56]. This is further
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emphasised by the finding that AE was the predominant analyte in the urine of crack 

cocaine users [43, 56].

This is in contrast to sweat where a study of active cocaine and crack cocaine users 

showed that AEME was the predominant pyrolysis product [57].

The information on the presence of pyrolysis products in oral fluid is extremely limited. 

Due to the similarities between oral fluid and sweat with respect to parent cocaine being 

the predominant analyte [47, 58], it is possible that the identification of the pyrolysis 

products also follows a similar pattern to sweat with parent AEME being the 

predominant analyte over AE. Two controlled dose administration studies have been 

carried out, the results of which showed AEME to appear immediately in the oral fluid 

and clear within an hour. AE was not included in the analysis [27, 47]. AEME was 

detected in six oral fluid specimens from individuals with a history of drug use, the 

concentrations were reported to be low at <19ng/mL [34].

3.2.2 Screening for AEME

Typically biological samples are analysed for the presence of cocaine and or its 

metabolites, such as benzoylecgonine and ecgonine methyl ester, to identify cocaine 

use, [59-63], but determining the route of administration is not possible based on these 

analytes alone. It has been established that AEME is a pyrolysis product of cocaine [9, 

35, 42], therefore its identification in biological matrices can establish the route of 

administration as smoking.

Although all forms of cocaine use are problematic, the consequences of crack cocaine 

use are greater compared to powder cocaine. This is reflected in the US by harsher 

penalties imposed for crack use and trafficking [45].
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The use of crack presents a greater social problem, and has a high association with 

crime. Therefore the ability to distinguish between crack and powder cocaine would 

provide a valuable addition to drug treatment and criminal justice systems [57]. The 

identification and monitoring of crack cocaine use may also help to develop a better 

understanding of the prevalence and spread of crack use.

Although there are a number of studies published describing the application of EIA for 

the analysis of cocaine (see Table 3:2), there is currently no screening test available 

which will identify the presence of the pyrolysis products AEME or AE. Data regarding 

the prevalence of crack use has previously relied on self reports, the validity of which 

varies [12].

3.2.3 Immunoassay Development

3.2.3.1 Classification

In general immunoassays are categorised into two distinct groups, competitive and non

competitive. The general principle behind competitive immunoassay is that the drug 

antigen in the sample competes with a labelled antigen for a limited number of antibody 

molecules specific to that analyte. The amount of labelled analyte bound at equilibrium 

is inversely proportional to the number of unlabelled analyte molecules present [64]. 

The analysis of small molecules is largely limited to competitive immunoassay [65]. In 

non-competitive immunoassay the drug antigen reacts with an excess of antibody. The 

measured signal from the bound antibody increases with increasing antigen 

concentration [66].

Immunoassays which require separation of bound and free drug prior to signal 

measurement are known as heterogeneous and those which do not require separation are 

known as homogenous immunoassays. The advantage in using heterogeneous
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immunoassay is that potential endogenous interferences from the biological matrix are 

removed during the separation step [66-68].

3.2.3.2 Preparation of Immunogen

Small molecular weight compounds, such as drug molecules, are not immunogenic 

alone. They require conjugation with a larger molecule, such as a protein, to create 

immunogens which are capable of inducing an immune response. Examples of carrier 

proteins include keyhole limpet hemocyanin (KLH), Bovine Serum Albumin (BSA) and 

thyroglobulin. Generally higher titre antisera are obtained when a rabbit is immunised 

with an immunogen conjugated to a large molecular weight protein such as 

thyroglobulin [72].

The presence of a reactive group on the drug molecule facilitates conjugation with the 

carrier protein, the common reactive groups include amino, carboxyl, sulfhydryl, and 

carbonyl. Drug molecules without one of these reactive groups can be derivatised to 

introduce one [65]. It is important that the functional group chosen is not fundamental in 

the specificity. If  conjugation is performed using a spacer the drug molecule is better 

exposed to the immune system and therefore increases the specificity of the antibodies 

produced. However bridge antibodies may be produced which can decrease sensitivity 

[73].

Cross linkers are chemical reagents used to conjugate molecules together by a covalent 

bond [74]. A wide variety of crosslinking reagents with a choice of reactive groups is 

commercially available, the suitability of which depends on the type of reactive groups 

in the drug molecule and carrier protein [65].
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3.2.3.3 Antibodies and Immunisation

Immunoassays can employ either monoclonal or polyclonal antibodies. Monoclonal 

antibodies are a single specific antibody population, produced by the clones of a single 

hybrid cell which is formed by the fusion of a B lymphocyte with a tumour cell [75]. As 

long as the cell line is maintained there will be a continuous supply of the specific 

antibodies [73]. While monoclonal antibodies show more specificity to the analyte than 

polyclonal antibodies they generally have lower affinity, this can result in less sensitive 

assays.

Polyclonal antibodies are a mixture of immunoglobulin molecules which have different 

affinity and specificity for the compound of interest. Rabbits are the principal animal 

used for the production of polyclonal antibodies, however other possibilities are goats 

and sheep. Avian antibodies harvested from egg yolks can also be used, they offer 

advantages of large quantities and exhibit less non specific binding than found with 

mammalian antibodies [68].

A blood sample is collected prior to immunisation to establish any pre-existing 

antibodies with specificity to the analyte of interest. The primary immunisation is made 

with the immunogen and an adjuvant. The adjuvant acts to release the antigen slowly by 

way of altering the physical state of the immunogen by forming depots thereby lowering 

the rate of elimination. This results in a prolonged persistence of the immunogen in 

tissues and a continuous stimulation of the immune response. A series of adequately 

spaced booster immunisations are then administered and blood samples are taken at 

various points during the immunisation process to assess the quality of the antiserum. 

Once the antiserum proves to be adequate the animal is bled [64]. The immune response 

to the third and subsequent booster injections mirrors that of the second injection. As
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the immunisation schedule progresses the quality of the antibodies change due to the 

maturation of the immune response, therefore providing high affinity antibodies.

3.2.3.4 Antibody and Analyte Labelling

The antibody-antigen binding reaction itself does not produce a visible signal, therefore 

various labels are employed to produce a signal which is measurable [73]. Labels are 

conjugated to the drug molecule in a process similar to that of the preparation of the 

immunogen. A number of labels are used in immunoassay and the assays are often 

classified according to the label used. The more commonly used labels are radioisotopes 

(e.g RIA), active enzymes (e.g EMIT and ELISA), or fluorescent labels (e.g FPIA). 

Other labels exist such as chemi and bio-luminescent molecules, particles such as 

colloidal gold or latex beads.

3.2.3.5 Immunoassay Sensitivity and Specificity

While the general requirements of an immunoassay are speed, convenience, and 

robustness, the fundamental characteristics required are sensitivity and specificity. 

Analytical sensitivity relates to the degree to which an assay responds to small amounts 

of drug. High sensitivity is essential in any analytical technique as it allows smaller 

sample volumes to be analysed, and provides lower limits of detection which are often 

required in forensic analysis. The sensitivity of any immunoassay is a complex function 

of the physio-chemical basis of the technique, such as the type of label employed and 

the separation of bound and free drug, as well as the avidity of the antibody and the 

presence of non specific binding. Due to the dissociation of the antibody and antigen 

complex during the incubation and separation stages of the assay, it is the affinity of the
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antibody in a competitive system which primarily determines the sensitivity of the assay 

[76].

Clinical sensitivity is often referred to when the performance of a screening test is being 

evaluated, it is defined as the probability of a true positive test result as compared to a 

reference or gold standard.

Typically immunoassays for drugs of abuse test for a class of compounds and cannot 

distinguish drugs from within its class due to the similarities in molecular structure, an 

example is the opiates class which consists of codeine, pholcodeine, morphine, 

diacetylmorphine and a few other derivatives [77]. Specificity is the degree to which an 

assay correctly identifies only the compound(s) of interest, the extent to which other 

endogenous molecules and drugs interfere is known as the cross reactivity. A good 

immunoassay should have high specificity with minimum cross reactivity to non related 

compounds.

3.3 Experimental

3.3.1 Materials

3.3.1.1 Chemical s and Reagents

Anhydroecgonine (AE), anhydroecgonine methyl ester (AEME) and all compounds 

used for cross reactivity testing were purchased from LGC Promochem (Teddington, 

UK), bovine thyroglobulin, bovine serum albumin (BSA), goat anti-rabbit 

immunoglobulin conjugated to HRP, morpholinoethanesulfonic acid (MES), bronidox,

1,2-propandiol, trizma base, sephadex G-50M dry beads, copper sulphate pentahydrate, 

folin reagent, and chromatography column (1.5 x 30cm) were purchased from Sigma 

Aldrich Company (Dorset, UK). Horseradish peroxidase (HRP) was purchased from
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Biozyme Laboratories Ltd (South Wales, UK). Sodium hydroxide, 1M sulphuric acid, 

sodium carbonate, citric acid, sulphuric acid, EDTA, sodium chloride, sodium 

dihydrogen phosphate, sodium monohydrogen phosphate, sodium carbonate, and 

sodium bicarbonate were purchased from VWR International (Leicestershire, UK). 

Sodium azide was purchased from Molekula Ltd (Dorset, UK). 2mg/mL BSA solution, 

N-hydroxysulfosuccinimide (S-NHS) and 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) were purchased from Perbio Science Ltd (Cheshire, UK). 

Stabilzyme was purchased from Diarect AG (Freilburg, Germany).

Cozart Cocaine and Metabolites EIA for oral fluid, substrate solution (TMB), wash 

buffer and oral fluid collectors were supplied by Cozart Bioscience Limited 

(Oxfordshire, UK).

3.3.1.2 Buffers and Solutions

• Coating Buffer: 50mM Sodium Carbonate/Bicarbonate Buffer (30/70 ratio) pH 9.5 

with 0.05% w/v sodium azide (500ml).

0.795g of sodium carbonate (MW 106), 1.47g of sodium bicarbonate (MW 84) and 

0.25g of sodium azide (MW 65) were dissolved in 450ml of distilled water. pH 

adjustment was not necessary. The solution was filled to 500ml with distilled water, 

poured into a pre-labelled bottle and stored at 4°C.

• Concentrated Coupling Buffer: 1M Sodium Bicarbonate (15ml).

1.26g of sodium bicarbonate (MW 84) was dissolved in 14ml of distilled water, 

made up to 15ml and then stored at -20°C.

• Concentrated Activation Buffer: 0.5M Morpholinoethanesulfonic acid 

(MES)/Sodium Hydroxide Buffer pH 4.7 (25ml).
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2.665g of MES (MW 213.2) was dissolved in 20ml of distilled water. The pH of the 

solution was adjusted to pH 4.7 with 1M sodium hydroxide before being made up to 

25ml with deionised water. The solution was stored at -20°C.

• Phosphate Buffered Saline (PBS) (10X cone.): 0.2M Sodium dihydrogen/Sodium 

monohydrogen phosphate with 1.5M sodium chloride and 0.01% bronidox (w/v) 

(1000ml).

A 5% bronidox solution was first prepared by dissolving 0.5g of bronidox in 10ml 

of 1,2-propandiol. 87.7g of sodium chloride (MW 58.44), 23g of sodium 

monohydrogen phosphate (MW 115g), and 4g of sodium dihydrogen phosphate 

(MW 20g) were dissolved in 800ml of deionised water. 2ml of the 5% bronidox 

solution was added and the final volume made up to 1L with deionised water. This 

solution was stored at room temperature.

• EIA Buffer: 50% Stabilzyme (Tris) (500mL).

250mL of stabilzyme solution and 250mL of distilled water were measured out 

using a measuring cylinder. The solution was poured into a pre-labelled bottle and 

stored at 4°C.

• PBS (IX  cone.) with 0.05% sodium azide (1L).

100ml of 10X PBS was diluted with 900ml of distilled water. 0.5g of sodium azide 

was added. The solution was stored at room temperature.

• Affinity Chromatography Elution Buffer: 0 .1M citric acid, 0.5M sodium chloride, 

0.05% sodium azide and ImM EDTA (lOOmL).

2.1g of citric acid (MW 210.14), 2.9g of sodium chloride and 0.05g of sodium azide 

were dissolved in 90mL of water. 250pL of a 400mM stock solution of EDTA was 

added and the volume made up to lOOmL. The solution was stored at 4°C.

• Neutralisation Buffer: 2M Trizma base/HCl buffer pH 9.5 (lOOmL).
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24.2g of trizma (MW 121.14) was dissolved in 80mL of water. The pH was adjusted 

with hydrochloric acid to pH 9.5 and the volume made up to lOOmL with water. The 

solution was stored at 4°C.

• MES/NaOH Buffer pH 6.1 (25mL).

2.665g of MES was dissolved in 20mL of water, the pH was adjusted to pH 6.1 with 

1M sodium hydroxide and made up to 25ml with water. The solution was stored 

frozen at -20°C.

• Dialysis buffer: 0.05M Tris/HCl pH 7.5 with 0 .15M sodium chloride (1L).

6.06g of Trizma and 8.77g of sodium chloride were dissolved in 900mL of distilled 

water. The pH was adjusted to pH 7.5 using hydrochloric acid. The volume was then 

made up to 1L.

• Lowry Protein Assay Reagents

Reagent A: 2% sodium carbonate, 0.4% sodium hydroxide, 0.16% potassium 

sodium tartarate and 1% SDS. This reagent can be stored in a plastic bottle at 37°C. 

Reagent B: 4% copper sulphate pentahydrate comes as ready to use.

Reagent C: 100 parts of reagent A with 1 part reagent B, this must be prepared 

fresh.

Reagent D: Folin reagent diluted 1:1 with water, must be prepared fresh.

3.3.1.3 Instrumentation

EIA experiments were performed on 96 well Costar flat bottomed polystyrene stripwell 

plates purchased from Appleton Woods (Birmingham, UK). Plates were washed with a 

Dynex plate washer and the absorbance measurements were performed with a MRX 

microtitre plate reader in dual wavelength mode 450-650nm, both items were purchased 

from Dynex Techonologies (Worthing, UK).
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All buffers were made using filtered water from a Purite Select water purifier purchased 

from Purite Ltd (Thame, UK).

Absorbance measurements were carried out using a spectrophotometer purchased from 

Thermo Scientific (Basingstoke, UK).

3.4 Experimental Part 1 -  Characterisation of Aatisera

This section describes the processes involved for the production of polyclonal 

antibodies to the pyrolysis product AEME, and the experiments performed to assess the 

sensitivity and specificity of the antibodies prior to development of the EIA.

3.4.1 Synthesis of Immunogen

Although the target analyte was AEME it was decided to prepare the immunogen using 

its metabolite AE. AEME and AE only differ by one functional group, by using this 

group for conjugation it will be hidden from the immune system and the antibodies 

produced should show specificity to both AE and AEME. The functional group in AE is 

a carboxyl group which can be directly used for conjugation, AEME however would 

require derivatisation to incorporate a carboxyl group into the molecule. Therefore the 

use of AE makes the process simpler while still retaining the immunogenicity required 

to detect AEME.

The carboxyl group of anhydroecgonine was conjugated to the amine group on the 

lysine residues of thyroglobulin using a carbodiimide mediated reaction. An illustration 

of the linkage is shown in Figure 3:2. Generally high titre antisera are achieved when a 

rabbit is immunised with an immunogen conjugated to a large molecular weight protein 

such as thyroglobulin [72]. Due to the large number of lysine residues on thyroglobulin 

the molecule will be highly substituted.
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EDC is a water soluble derivative of the cross linker carbodiimide which reacts with 

carboxyl groups on the hapten to form an amine-reactive intermediate O-acylisourea 

[78]. This intermediate is unstable and can either be attacked by the amine group on the 

protein to form the conjugate, or undergo hydrolysis, which can severely limit the 

overall yields obtained.

CH NH

C =  0

^ C - N H - ( C H 2)4-C H

n - h

c = o

Anhydroecgonine Lysine Residue of Thyroglobulin

Figure 3:2 Illustration of the linkage between the carboxyl group of anhydroecgonine 

and the amine group on a lysine residue of thyroglobulin

A stabilisation step is therefore carried out by the addition of N- 

hydroxysulfosuccinimide (sulfo-NHS) which reacts with the intermediate to give stable 

active esters that hydrolyse very slowly, thereby enhancing the yield of EDC mediated 

coupling reactions [79], yields of up to 90% have been observed using this method [78]. 

The general conjugation process is illustrated in Figure 3:3.

One millilitre of a solution of AE (lmg/mL in methanol) was evaporated to dryness at 

37°C. The drug was reconstituted in 0.5mL of 0.1M activation buffer, prepared as a 

dilution from the 0.5M stock solution. The solution was left stirring for 20 minutes. 

1.5mg of Sulfo-NHS, dissolved in 50pL of 0.1M activation buffer, was added to the 

solution of AE, followed by 20mg of EDC, dissolved in 50pl of 0.1 M activation buffer. 

The mixture was left to stir for 30 minutes at room temperature.
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Figure 3:3 Illustration of conjugation reaction involving hapten (1), EDC, Sulfo-NHS,

and carrier protein (2) [80]

In a separate vial 10.2mg of bovine thyroglobulin (Tg) was dissolved in 2mL of 0 .1M 

coupling buffer, prepared as a dilution from the 1M stock solution. The solution was 

then left to stir for 20 minutes. The thyroglobulin solution and the AE/EDC/Sulfo-NHS 

solution were then combined and left to stir overnight at room temperature.

The Tg-AE conjugate solution was purified by dialysis to remove the unreacted small 

molecular weight substances. The solution was secured inside a dialysis membrane, 

immersed into 1L of dilute PBS, and dialysed at 4°C for 24 hours. The buffer was 

refreshed and dialysis resumed for a further 24 hours. The buffer was then replaced with 

1L of 0.15M sodium chloride, containing 0.01% bronidox, and dialysed overnight at 

4°C.

To determine the protein concentration, the purified Tg-AE conjugate was diluted 1:5, 

1:10 and 1:20, and a Lowry assay was performed. Using the equation produced from the
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Lowry assay standard curve (Figure 3:4), the protein concentration of each dilution was 

calculated. The results, corrected for the dilution factor, are displayed in Table 3:3.

1.8

1.6

1.4

1.2
y = 0.0034x + 0.1826 

R2 = 0.9836
Ecoto .to 1
Of0 c
1  0.8
o»n
<

0.6

0.4

0.2

0
450150 200 250 300 350 40050 1000

BSA Concentration (pg/mL)

Figure 3:4 Lowry assay standard curve

Tg-AE Conjugate 

Dilution

Absorbance

(660nm)

Final Protein 

Concentration (mg/mL)

1:5 1.168 1.45

1:10 0.724 1.59

1:20 0.436 1.49

Table 3:3 Protein concentrations of Tg-AE conjugate dilutions as determined by Lowry

assay

The average concentration of the purified Tg-AE conjugate was calculated to be 

1.51mg/mL.
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3.4.2 Immunisation

Four female New Zealand white rabbits, 402717, 402719, 402734 and 402738, received 

lOOjag intramuscular inoculations of the purified Tg-AE conjugate. Immunisation was 

performed by CovalAb (Cambridge, UK), the protocol employed is outlined in Table 

3:4.

Day Protocol

0 Pre-Immune Test Bleed (4-5mL)

1st Injection (0.5mL immunogen + 0.5mL Freund’s Complete Adjuvant

21
2nd Injection (0.5mL immunogen + 0.5mL Freund’s Incomplete Adjuvant

42 3rd Injection

53 Test Bleed (4-5mL)

63 4th Injection

74 Test Bleed (12-15mL)

88 Final Bleed (60mL)

Table 3:4 Immunisation protocol as performed by CovalAb 

3.4.3 Synthesis of Coating Antigen

To evaluate the antisera produced following immunisation, a coating antigen was 

prepared using essentially the same carbodiimide mediated conjugation reaction as 

described in section 3.4.1 for the preparation of the immunogen. The carboxyl group of 

AE was conjugated to the amine group on the lysine residues of BSA. A different 

carrier protein was chosen for the coating antigen to avoid interference from antibodies 

specific to the carrier protein used for immunisation.

One millilitre of a solution of AE (lmg/mL in methanol) was evaporated to dryness at 

37°C. The drug was reconstituted in 0.5mL of 0.1M activation buffer, prepared as a 

dilution from the 0.5M stock solution. The solution was left stirring for 20 minutes. 5mg
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o f Sulfo-NHS, dissolved in 50pL o f 0 .1M activation buffer, was added to the solution of 

AE followed by 30mg o f EDC, dissolved in 50pL o f 0.1M activation buffer. The 

solution was left to stir for 30 minutes at room temperature.

In a separate vial 8.5g o f BSA was dissolved in 2mL of 0.1M coupling buffer, prepared 

as a dilution from the 1M stock solution. The solution was then left to stir for 20 

minutes. The BSA solution and the AE/EDC/Sulfo-NHS solution were combined and 

left to stir overnight at room temperature.

The BSA-AE conjugate was purified by gel chromatography to remove the unreacted 

small molecular weight substances. A glass chromatography column containing 

sephadex G50M beads was conditioned using 50mL of IX  PBS. The BSA-AE 

conjugate was centrifuged at 3000rpm for 20 minutes and the supernatant was added to 

the sephadex column. The column eluant was collected immediately in 3mL fractions 

and the absorbance measured at 280nm using a spectrophotometer.

A total o f 19 fractions were collected and the absorbance values plotted (Figure 3:5).

Salt Peak
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E
co Protein Peak00
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<
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2 3 4 5 7 81 6 9 10 11 12 13 14 15 16 17 18 19

Figure 3:5 Absorbances o f sephadex G50M eluted fractions
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The BSA-AE conjugate eluted within the void volume and appears as the first peak on 

the graph. The second peak represents the unreacted free drug, EDC, and Sulfo-NHS. 

Fractions 5-7 which contained the BSA-AE conjugate were pooled, placed inside a 

dialysis membrane, and immersed into 1L of IX PBS for dialysis overnight at 4°C.

To determine the protein concentration, the purified BSA-AE conjugate was diluted 1:3, 

1:5 and 1:10, and a Lowry assay was performed. Using the equation produced from the 

Lowry assay standard curve (Figure 3:6), the protein concentration of each dilution was 

calculated. The results, corrected for the dilution factor, are displayed in Table 3:5.

150 200 250 300

Protein Concentration ((jfl/mL)

Figure 3:6 Lowry Assay Standard Curve

Coating Antigen 

Dilution

Absorbance

(660nm)

Protein Concentration 

(mg/mL)

1:3 1.085 0.86

1:5 0.738 0.88

1:10 0.480 0.92

Table 3:5 Conjugate absorbance values and undiluted protein concentrations
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The average protein concentration of the BSA-AE conjugate was calculated to be 

0.89mg/mL. The approximate volume of the solution was 9ml which gives an 

approximate total amount of 8.0 lmg. As the starting amount was 8.5mg of BSA then 

the recovery was approximately 94%.

3.4.4 Screening Antisera

To monitor the progress of the immunisation a screening procedure was performed on 

the antisera. The sera of the pre-immune, and the antisera of the day 53, and final bleeds 

were titrated against lpg/mL BSA-AE coated microtitre plates. The sera from the pre- 

immune bleeds were also titrated against plates coated with lpg/mL BSA only.

Three fold serial dilutions of the sera and antisera were performed and the ELISA 

procedure was carried out as described below, the microplate map in Figure 3:7 

illustrates the titration.

402717 402719 402734 402738

_A_
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_E_
F

J3_
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1
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1/2 1 8 7 0 0 0
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Figure 3:7 Microplate map for evaluation of sera and antisera

3.4.4.1 General Competitive ELISA Procedure

The BSA-AE conjugate was diluted in coating buffer. To coat the plate, lOOpL was 

added to the wells of a 96 well microtitre plate and incubated for 60 minutes on a shaker
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at room temperature. The plate was washed 4 times with wash buffer, with the final 

wash left in the wells for 15-30 minutes before being removed. The antisera were 

diluted in EIA buffer and lOOpL was added to the wells in duplicate. The plate was 

incubated for 60 minutes and then washed three times with wash buffer. The horse 

radish peroxidase labelled goat anti-rabbit IgG (GAR-HRP) was diluted 1/6000 in EIA 

buffer and lOOpL was added to each well. The plates were incubated for 30 minutes 

before being washed three times in wash buffer. Colour was developed by adding 

100pL of TMB solution to each well and incubating for 30 minutes. The reaction was 

stopped by the addition of lOOpL of 1M sulphuric acid. The absorbance was read using 

a microtitre plate reader at wavelength 450nm.

3.4.5 Titration of Coating Antigen

A two-dimensional chequerboard titration was used to assess the optimum coating 

concentration of the BSA-AE conjugate. Dilutions of the BSA-AE conjugate and the 

antiserum were prepared and the ELISA procedure followed as described in section 

3.4.4.1. Figure 3:8 shows the microplate map.

5|ig/mL BSA-AE l^g/mL BSA-AE 0.2pg/mL BSA-AE 0.04ng/mL BSA-AE 5|ig/mL BSA Only

1 2 3 4 5 6 7 8 9 10 11 12

A 1/3000 1/3000 1/3000 1/3000 1/3000 1/3000 1/3000 1/3000 1/3000 1/3000 jjg
B 1/9000 1/9000 1/9000 1/9000 1/9000 1/9000 1/9000 1/9000 1/9000 1/9000

IC 1/27000 1/27000 1/27000 1/27000 1/27000 1/27000 1/27000 1/27000 1/27000 1/27000

D 1/81000 1/81000 1/81000 1/81000 1/81000 1/81000 1/81000 1/81000 1/81000 1/81000 |
E 1/243000 1/243000 1/243000 1/243000 1/243000 1/243000 1/243000 1/243000 1/243000 1/243000 It
F 1/729000 1/729000 1/729000 1/729000 1/729000 1/729000 1/729000 1/729000 1/729000 1/729000 n
G 1/2187000 1/2187000 1/2187000 1/2187000 1/2187000 1/2187000 1/2187000 1/2187000 1/2187000 1/2187000 ■
H Control Control Control Control Control Control Control Control Control Control jjj

Figure 3:8 Checkerboard titration of BSA-AE conjugate and antiserum
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3.4.6 Competition Assay

The antibody affinity of each final bleed antiserum was investigated by calculating the 

percentage binding for a calibration curve containing AEME. Calibrators were prepared 

in EIA buffer, containing lOmg/mL BSA, at 0, 1, 10 and lOOng/mL AEME from a 

lmg/mL methanol stock solution. The absorbance of the Ong/mL standard represents 

100% antibody binding.

The ELISA procedure was performed as described in section 3.4.4.1. Prior to the 

addition of the antisera, 50jliL of each calibrator was added to the wells in quads as 

shown on the microplate map in Figure 3:9.

402719 402734 402738402717

100 100 100 100 100 100100 100
100 100 100 100 100 100100 100

Figure 3:9 Microplate map for AEME competition assay

3.4.7 Antiserum Specificity

Antiserum specificity was assessed by analysing 0, 10, 100, and lOOOng/mL solutions 

of AEME, AE, EME, benzoylecgonine, cocaethylene, and cocaine, prepared from 

lmg/mL stock solutions diluted in EIA buffer, containing lOmg/mL BSA.

The ELISA procedure was performed as described in section 3.4.4.1. Prior to the 

addition of the antisera, 50pL of each calibrator was added to the wells in quads.
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3.5 Part 1 - Results and Discussion

3.5.1 Screening Antisera

The purpose o f screening the pre-immune sera against the BSA-AE conjugate coated 

plates and the BSA coated plates was to eliminate the possibility o f any pre-existing 

antibodies which may cross react with AE or with the carrier protein.

The binding profile was the same for each serum using both the BSA-AE and BSA only 

coated plates (see Figures 3:10 and 3:11).

The highest absorbance value was obtained at the first dilution point and is a result o f 

non specific binding. The remainder o f the dilutions produce absorbance values close to 

those provided by the control line. This establishes that there are no pre-existing 

antibodies present in the serum of the rabbits which may interfere with the assay and 

cause non specific binding.

- ♦ - 4 0 2 7 1 7  
- ■ - 4 0 2 7 1 9  

402734  
402738 

X Control

Rabbit S erum

0.160

0.140

0.120

E 0 .100
con
3 ,
3 0 .080ra

0.040

0.020

0.000
1/3000 1/9000 1/27000 1/81000

Dilution

1/243000 1/729000 1 /2187000

Figure 3:10 lpg/m L BSA-AE coated plate: Pre-immune sera. Results represent the 

mean o f duplicate analyses, standard error o f the mean is <5%.
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Dilution

R abbit Serum

Figure 3:11 lpg/m L BSA coated plates: Pre-immune sera. Results represent the mean 

o f duplicate analyses, standard error o f the mean is <5%.

The ELISA screening o f the antisera from day 53 o f the immunisation shows all four 

rabbits have responded well to the immunisation protocol. The first few dilutions for 

most o f the antisera produced absorbance values above the threshold o f the plate reader, 

indicated by the arrows on Figure 3:12. Subsequent dilutions fell within the measurable 

absorbance range, with each antiserum showing a similar antibody titre.

The titration curves o f the final bleed antisera were similar to those o f the day 53 bleeds, 

however the titres were lower at equivalent dilutions. Overall the lowest antibody titre is 

provided by antiserum 402738, with the highest titre being provided by 402734 (Figure 

3:13). However a high titre does not necessarily mean that the antibodies will have high 

affinity for the antigen.
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Figure 3:12 Titration o f day 53 test bleed antisera. Results represent the mean o f

duplicate analyses, standard error o f the mean is <5%.
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402719
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0.5
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Dilution

Figure 3:13 Titration o f final bleed antisera. Results represent the mean o f  duplicate

analyses, standard error o f the mean is <5%.
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Due to the limitations in microplate reader technology, optimum absorbance values 

should lie between 2.0 and 3.0. Dilution o f the antisera to 1/300K should produce 

absorbance readings within this range for further studies.

Overall the immunisation proved successful with all antisera providing high titres.

3.5.2 Competition Assay

The competition assay was initially carried out using a BSA-AE coating concentration 

o f lpg/m L and antisera dilutions o f 1/300K. The percentage binding o f each antiserum 

is plotted as a dose response curve in Figure 3:14. The degree o f separation between the 

bindings at each concentration was small, therefore producing flat curves.

120

100

■402717

402719

402734

402738

100

AEME Concentration (ng/mL)

Figure 3:14 Competition assay: lpg/m L BSA-AE coating. Results represent the mean 

o f four replicates, standard error o f the mean is <5%.

The lack o f inhibition suggested the concentration o f free drug was not high enough to 

displace the antibody from the BSA-AE conjugate, or alternatively there was too much
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immobilised drug. Reducing the concentration o f BSA-AE conjugate would result in 

greater displacement o f the antibody and steeper dose response curves.

To determine the optimum BSA-AE coating concentration a titration was carried out 

using antiserum 402717. The titration curves in Figure 3:15 show that there was no 

significant difference between antibody bindings at BSA-AE concentrations 0.2- 

5.0pg/mL.

4.500

4.000

3.500

3.000

“J 2 .500

■2 2.000

1.500

1.000

0.500

 *---- 1 '"i*----------

1/2187000 1/6561000

0.000
1/3000 1/9000 1/27000 1/81000 1/243000 1/729000

Dilution

Figure 3:15 Titration o f antiserum 402717 and BSA-AE conjugate. Results represent 

the mean o f duplicate analyses, standard error o f the mean is <5%.

Coating at 0.04pg/mL BSA-AE produced a drop in the absorbance indicating the 

concentration o f coating antigen was no longer in excess. The competition assay was 

repeated for all four antisera using this concentration o f BSA-AE. On this occasion the 

degree o f separation between each drug concentration was greater, producing steeper 

dose response curves (Figure 3:16).
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The concentration required to displace 50% of drug bound to the antibody is otherwise 

known as the IC50. This value can be used to establish the affinity o f the antibody. 

Using this method the most sensitive antiserum was found to be 402717 with a value of 

lOng/mL, this was followed by 402734 at 35ng/mL, 402719 at 70ng/mL and 402738 at 

>100ng/mL.

120

100

►- 402717 

1 -4 0 2 7 1 9  

402734  

402738
r~

100

AEME Concentration (ng/mL)

Figure 3:16 Competition assay: 0.04pg/mL BSA-AE coating. Results represent the 

mean o f four replicates, standard error o f the mean is <5%.

Antiserum 402717 was selected for further testing as a result o f the higher sensitivity 

observed. Due to the low concentrations o f drugs in oral fluid, and limited sample 

volume available, an antibody with high sensitivity is preferred.

3.5.3 Antiserum Specificity

The specificity o f the antibody to AEME and AE alone is paramount in the 

development o f the assay. Considering the choice o f functional group used for the
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synthesis o f the immunogen it was expected that the antibodies produced would show 

equal specificity to both AEME and AE. This was not the case, AE only showed 0.6% 

cross reactivity at lOOOng/mL. The dose response curve for each analyte can be seen in 

Figure 3:17. A possible explanation for the unexpected lack o f cross reactivity to AE 

may be a result o f the negative charge on the AE molecule from the carboxyl group, at 

physiological pH. Conjugation o f AE to the carrier protein involves the formation o f a 

peptide bond using the carboxyl group o f AE and therefore does not carry a charge. The 

antibody is subsequently raised to a neutral molecule and may not bind strongly with 

free negatively charged AE. The carboxyl group o f AEME is esterified making the 

molecule neutral, it is also structurally related to AE. Therefore AEME resembles AE 

when bound to the carrier protein. The important fact is that the assay did not cross react 

with any o f the other cocaine related compounds.

100

AEME
AE
EME
BZE
CE
■coc

10 100 

Analyte Concentration (ng/mL)
1000

Figure 3:17 Specificity o f Antiserum 402717. Results represent the mean o f four 

replicates, standard error o f the mean is <5%.
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3.6 Experimental Part 2 -  Development of EIA

This section details the purification of the chosen antiserum, the development and 

optimisation process of the EIA for AEME, and the necessary validation experiments to 

assess the overall performance.

3.6.1 Purification of IgG Fraction from Antiserum

The IgG fraction of antiserum 402717 was purified by affinity chromatography on a 

sepharose protein A column. Antibody purity is critical in providing a sensitive and 

reproducible assay [81]. Although the total immunoglobulin concentration in the serum 

of a polyclonal antibody preparation may be high, the desired antibody may only 

constitute 10% of the fraction [76].

lmL of antiserum was mixed with 4mL of PBS azide and filtered through a 0.45pm 

filter. The pre-packed protein A column was conditioned with lOmL of PBS azide. The 

antiserum was applied to the column followed by PBS azide, 3mL fractions were 

collected immediately and the absorbance measured by a spectrophotometer at 280nm. 

Once the absorbance values of the fractions fell below 0.1 the collections were stopped. 

To elute the bound IgG antibodies citric acid buffer was added to the column and 2ml 

fractions of the eluant were collected in test tubes containing 0.5mL of neutralisation 

buffer. The absorbance of each fraction was monitored at 280nm and collections were 

stopped once the absorbance value fell below 0.1. The column was then washed 

immediately with 20mL PBS azide so the acid pH did not damage the gel in the column. 

The eluted fractions produced two absorbance peaks as shown in Figure 3:18. The first 

peak represents the elution of the unbound material while the second peak represents the 

purified IgG.
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Fractions 8-11 containing the purified IgG were pooled and dialysed overnight at 4°C in 

IX  PBS. The solution was filtered through a 0.45pm filter, and its absorbance measured 

at 280nm. The concentration o f IgG was calculated by dividing its absorbance at 280nm 

(0.623) by the absorbance o f lm g/mL of IgG (1.4). Therefore the concentration o f IgG 

was 0.445mg/mL which is a total concentration o f 4.9mg in 11ml.

Fractions 1-5 containing the unbound material were also pooled for assaying.

Unbound Fraction

3.000-

2.500- Purified IgG

2 .000 -

1.500-

1.0 0 0 -

0.500-

0.000
Eluted Fraction

Figure 3:18 Absorbance o f fractions eluted from protein A column

3.6.2 Assessment o f Purified Antibody

The purified antibody, the unbound eluted fraction from the protein A column, and the 

original antiserum, were serially diluted in EIA buffer containing lOmg/mL BSA, and 

subsequently screened using the ELISA procedure described in section 3.4.4.1.

The microplate map is shown in Figure 3:19.
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Original Antisera Unbound Fraction Purified Antibody

1 2 3 4 5 6 7 8 9 10 11 12
A 1 /1000 1 /1000 1/74 1/74 1 0 jjg /m L lO g g /m L

B 1 /3000 1 /3000 1/222 1/222 3 .3 g g /m L 3 .3 |rg /m L

C 1/9000 1/9000 1/666 1/666 l . l g g /m L 1.1 n g /m L

D 1/27000 1/27000 1/1998 i /1 9 9 8 0 .3 7 n g /m L 0 .3 7 g g /m L

E 1 /81000 1 /81000 1/5994 1/5994 0 .1 2 n g /m L 0 .1 2 |ig /m L

F 1 /243000 1/243000 1 /17982 1/17982 0 .0 4 n g /m L 0 .0 4 n g /m L

G 1 /7 29000 1 /729000 1 /53946 1 /53946 0 .0 1 4 g g /m L 0 .0 1 4 |ig /m L

H E IA  B u ffe r E IA  B u ffe r E IA  B u ffe r E IA  B u ffe r E IA  B u ffe r E IA  B u ffe r ■ 'WmfWw,1

Figure 3:19 Assessment of purified antiserum

3.6.3 Synthesis of Enzyme Labelled Drug Conjugate

AE was conjugated to the enzyme label horseradish peroxidase (HRP).

0.3mL of a solution of AE (lmg/mL in methanol) was evaporated to dryness at 37°C. 

The drug was reconstituted in 0.5mL of 0.1M activation buffer, prepared as a dilution 

from the 0.5M stock solution. The drug solution was then added dropwise to lOmg of 

HRP, dissolved in ImL of activation buffer. 5mg of Sulfo-NHS, dissolved in 0.05mL of 

activation buffer, was slowly added to the HRP/AE solution. lOmg of EDC, dissolved 

in 0.5mL of activation buffer, was added in lOOpL aliquots every 10 minutes. The 

solution was left to stir for 2 hours at room temperature.

A further 5mg of EDC, dissolved in O.lmL of activation buffer, was added to the 

HRP/AE/Sulfo-NHS/EDC solution. The mixture was left to stir overnight at room 

temperature.

The HRP-AE conjugate was transferred to a dialysis membrane, immersed into 1L of 

dialysis buffer and left to stir overnight dialysis at 4°C.

The HRP-AE conjugate was desalted on a Sephadex G50M column using 50% 

stabilzyme. The column was conditioned with 50mL of EIA buffer. The HRP-AE
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conjugate was added to the column. HRP produces a coloured liquid which is easy to 

track along the length o f the column, as soon as the conjugate approached the lower part 

o f the column the fractions were collected in 2ml aliquots and the absorbance measured 

at 403nm and 280nm.

Fractions 1-4 had an absorbance greater than 0.1 at 403nm and were pooled (see Figure 

3:20).

2 .800

2 .600

2 .400

2.200

2.000

1.800

1.600

■403nm

280nm
1.400

1.200

1.000

0.800

0.600

0.400

0.200

0.000

Eluted Fraction

Figure 3:20 Purification o f HRP-AE conjugate

3.6.4 General Protocol for Drug Capture EIA

Plates were coated overnight with lOOpL o f the purified antibody diluted in coating 

buffer. The plate was washed 4 times with wash buffer, with the final wash left in the 

wells for 15-30 minutes before being removed. The plate was incubated for 30 minutes 

with lOOpL o f HRP-AE conjugate. The plate was washed three times in wash buffer 

and the colour developed by the addition o f lOOpL o f TMB substrate solution. The plate 

was incubated for 30 minutes and the reaction was stopped by the addition o f lOOpL o f
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1M sulphuric acid. The plate was read using a microtitre plate reader at wavelength 

450nm.

3.6.5 Titration of AE-HRP and Antibody

The optimal antibody coating concentration and enzyme dilution was established by 

performing a two-dimensional titration experiment.

The EIA procedure was followed as outlined in section 3.6.4 with lpg/mL, 5pg/mL and 

lOpg/mL antibody coating concentrations. The HRP-AE conjugate was serially diluted 

in 50% stabilzyme solution containing lOmg/mL BSA. The microplate map is shown in 

Figure 3:21.

l|xg/m L______________ 5[ig/m L____________ lOgg/m L

1 2 3 4 5 6 7 8 9 10 11 12
A 1 /1 0 0 1/100 1 /100 1/100 1/100 1/100

B 1/200 1/200 1/200 1/200 1/200 1/200

C 1/400 1/400 1/400 1/400 1/400 1/400

D 1/800 1/800 1/800 1/800 1/800 1/800 UPr
E 1/1600 1/1600 1/1600 1/1600 1/1600 1/1600 B l
F 1/3200 1/3200 1/3200 1/3200 1/3200 1/3200

G 1/6400 1/6400 1/6400 1/6400 1/6400 1/6400

H E IA  B u ffe r E IA  B u ffe r E IA  B u ffe r  E IA  B u ffe r E IA  B u ffe r E IA  B u ffe r f i t

Figure 3:21 Titration of HRP-AE and purified antibody

3.6.6 AEME Oral Fluid Calibration Curve

Pooled oral fluid samples from drug free volunteers were spiked with AEME at 

Ong/mL, Ing/mL, lOng/mL and lOOng/mL from a stock lmg/mL standard. 25pL of 

each calibrator was added in duplicate for each antibody concentration. Appropriate 

dilutions of the AE-HRP were carried out for each coating concentration. The EIA 

procedure in section 3.6.4 was followed.

124



A dose response curve was constructed based on percentage bindings versus drug 

concentration.

3.6.7 Assay Validation

Assay development should include a number of experiments to assess the suitability and 

validity of the assay. Evaluation of assay specificity and precision are the primary 

objectives followed by additional experiments such as sensitivity, selectivity, and 

storage stability of reagents [82].

3.6.7.1 Stability Testing of AEME Oral Fluid Calibrators

The stability of AEME in oral fluid calibrators was assessed at room temperature, 

refrigerated at 4°C, frozen at -20°C and incubated at 37°C. Time points of 0, 1, 7, 14, 21 

and 36 days were tested. Fresh calibrators were prepared on day 0 and tested by the 

AEME EIA, lOOpL of the calibrators were then aliquoted into 0.5mL vials and stored at 

the various temperatures. At each subsequent time point a set of fresh calibrators were 

prepared and compared to each temperature point.

The stability of AEME in the calibrators was determined by the percentage binding 

values, an increase in the binding would be a result of degradation of AEME in the 

sample.

3.6.7.2 Matrix Effect

Assay interference is described as the effect of a substance present in an analytical 

system which causes a deviation of the measured value from the true value.

Components in biological materials such as proteins, carbohydrates, lipids etc. can
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affect analytical techniques. This is termed the matrix effect [83]. Immunoassays are 

prone to matrix effects due to the lack of sample extraction prior to analysis [82].

A total of 50 samples were collected from drug free volunteers using the Cozart® 

RapiScan collector. Each sample was screened using the newly developed EIA for 

AEME.

3.6.7.3 Cross Reactivity

The analytical specificity or cross reactivity of an immunoassay provides an indication 

of how the antibody responds to other drugs relative to the drug used to prepare the 

calibration curve [64]. Different methods are used to calculate cross reactivity, one way 

is the calculation of the ratio of the apparent concentration of analyte to the 

concentration of cross reactant. The accuracy of the immunoassay results will depend 

on minimising the cross reactive components [84].

A selection of commonly encountered over the counter and prescribed substances were 

tested for cross reactivity in both the Cocaine and Metabolites assay, and the AEME 

assay for comparison. The compounds were diluted 1:10 from the original stock 

concentration (lmg/mL or lOOpg/mL) using fresh oral fluid to give 100,000ng/mL and 

10,000ng/mL respectively.

The cross reactivity of cocaine related compounds was also tested using the AEME 

EIA. Dilutions were carried out from the lmg/mL stock solutions to give 

100,000ng/mL, 10,000ng/mL, and l,000ng/mL. If a measurable response was produced 

at lOOOng/mL the samples were diluted further and re-assayed until the concentration 

fell below the first calibration point.
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3.6.7.4 Precision

The precision of an immunoassay is the extent to which replicate analyses of a sample 

agree with each other, while the reproducibility is the ability to yield the same results 

within analyses and between analyses [73].

Negative oral fluid/buffer samples were spiked at 0, 2.5, 5, 7.5, 10, 15, 30, and 50ng/mL 

using a lmg/mL stock solution of AEME. For inter-assay precision the samples were 

tested in duplicate, in two separate assays, every day for 20 days. Intra-assay precision 

was evaluated by testing each concentration 20 times in one assay. Both the absorbance 

values and concentrations were used to calculate the precision of the assay.

3.6.7.5 Limit of Detection

Sensitivity in immunoassay is otherwise known as the theoretical limit of detection or 

analytical sensitivity, and is determined as the concentration three standard deviations 

below the mean response for zero analyte concentration [65].

A standard set of calibrators plus an additional 0. Ing/mL calibrator were pipetted, and 

the zero calibrator was assayed 20 times. The average absorbance of the 20 replicates of 

the zero calibrator minus 3 SD was then read from the calibration curve, this value was 

the limit of detection for the assay.

3.7 Results and Discussion

3.7.1 Assessment of Purified Antibody

After establishing its high sensitivity and specificity, antiserum 402717 was purified by 

affinity chromatography. The purified antibody, original antiserum, and the eluted 

unbound fraction were assayed by ELISA. Figure 3:22 shows the binding of each of the 

fractions to the BSA-AE conjugate.
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4.500

4.000

3.500

3.000

“} 2.500
Original A ntisera 

U nbound Colum n Material 

Purified Antibody_________2.000

1.500

1.000

0.500

0.000

Dilution Number

Figure 3:22 Assessment o f purified antibody. Results represent the mean o f duplicate 

analyses, standard error o f the mean is <5%.

The unbound fraction showed considerable binding for the first two points on the curve 

but this was a result o f non specific binding and the presence o f IgM.

Both the original antisera and the purified antibody produced similar absorbance values 

suggesting that there had been no significant loss of antibody function during the 

purification process.

3.7.2 Titration o f AE-HRP and Antibody

The absorbance readings from coating with lOpg/mL o f antibody are above the 

threshold o f the plate reader for all but the last enzyme dilution point (Figure 3:23). 

Coating at lpg/m L requires an enzyme dilution o f approximately 1/800, while coating 

at 5pg/mL would require an enzyme dilution o f approximately 1/4800.
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4.500

4.000

3.500

3.000

S 2.500

2.000

1.500

1.000

0 .500

0.000
1/200 1/4001/100 1/800 

AEME-HRP Dilution

1/1600 1/3200 1/6400

Figure 3:23 Antibody-enzyme titration. Results represent the mean o f duplicate 

analyses, standard error o f the mean is <5%.

Often in a commercial setting the antibody coating concentration is driven by cost. It is 

generally preferable to have a more dilute antibody and a less dilute enzyme conjugate 

than the other way round as the costs incurred in production o f an antibody are far 

greater.

Both the lpg/m L and 5pg/mL antibody concentrations were used for further evaluation.

3.7.3 AEME Oral Fluid Calibration Curve

In general high antibody concentrations show poor slope sensitivity. M ore dilute 

antibodies will show good slope sensitivity at the lower drug concentrations but a 

flattened curve at higher concentrations [85],

The dose response curves for the lpg/m L and 5pg/mL antibody concentrations showed 

good separation between each calibration point (Figure 3:24). Using lpg/m L  antibody
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coating the steepest part o f the curve was between Ong/mL and Ing/mL, and the IC50 

value was calculated to be 0.85ng/mL. Using 5pg/mL antibody coating the steepest part 

o f the curve was between Ing/mL and 1 Ong/mL, and the IC50 value was calculated to 

be 2.75ng/mL. Therefore coating at lpg/m L produced the highest sensitivity at the 

lower drug concentrations.

120 T

100

o>c
TJ
Cm

0 1 10 100

AEME Concentration (ng/mL)

— 1 ijg/mL Antibody 

*  5 |jg /m L  Antibody

Figure 3:24 AEME calibration curve in oral fluid. Results represent the mean o f 

duplicate analyses, standard error o f the mean is <5%.

3.7.4 Stability Testing o f AEME Oral Fluid Calibrators

The oral fluid calibrators were stable for the 36 day duration o f the experiment for the 

refrigerated and frozen samples. The room temperature samples were stable up until day 

21 after which the percentage binding starts to increase slightly. The samples stored at 

37°C were not stable, an increase in percentage binding was observed after day 1.

Figure 3:25 presents the results for each storage temperature. Therefore the most 

appropriate storage o f calibrators and samples would be at 4°C or at -20°C for longer 

term storage.
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AEME Calibrator Stability at Room Temperature

120 i

110  -

100

Ong/mL 

1 ng/mL 

10ng/m L 
100ng/m L

40 -

30 -

10 -

Number of Days

AEME Calibrator Stability at 3 7 'C
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40 -

30 -

20 -

Number of Days

Figure 3:25 Stability testing o f AEME oral fluid calibrators. Results represent the mean 

o f duplicate analyses, standard error o f the mean is <5%.
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3.7.5 Matrix Effect

No significant matrix effect was observed as all samples were below the first calibration 

point of Ing/mL for the AEME assay and therefore classified as negative. The average 

percent binding for the 50 negative samples was 88%.

3.7.6 Cross Reactivity

In this assay the antibody is required to be highly specific for AEME or its metabolite 

AE, without showing any cross reactivity to cocaine or any other structurally related 

compound. This is in contrast to a standard cocaine assay which requires the antibody to 

cross react to cocaine and its main metabolites benzoylecgonine and EME, but will not 

be negatively affected if it also cross reacted to other cocaine metabolites, as you are 

positively identifying the use of cocaine. The specificity of the antibody was fully 

evaluated with a series of cocaine related compounds as well as structurally unrelated 

compounds.

The cross reactivity data for cocaine and its structurally related compounds is shown in 

Table 3:6. None of the compounds produced significant cross reactivity in the AEME 

microplate. AE showed the highest cross reactivity at only 0.15-1.3%. Considering the 

choice of functional group for protein conjugation it was expected that the antibodies 

produced would show equal specificity to both AEME and AE. The important factor is 

that the assay does not cross react with any other compound and so is exclusive for the 

pyrolysis products of cocaine.
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Analyte

Concentration

(ng/mL)

Apparent AEME 

(ng/mL)

AEME % Cross 

Reactivity

Benzoylecgonine 100000 49 0.049

10000 2.1 0.021

1000 0.7 0.07

Cocaine 100000 118 0.118

10000 4.6 0.046

1000 0.95 0.095

AE 100000 146 0.146

10000 77 0.766

1000 9.4 0.94

100 1.3 1.285

Cocaethylene 100000 111 0.111

10000 6.4 0.064

1000 0.9 0.09

EME 100000 37 0.037

10000 2.2 0.022

1000 0.8 o.o8 ;

Norcocaine 100000 0.6 0.001

10000 0.6 0.006

1000 0.6 o.o6 ;

Ecgonine 100000 16.2 0.016

10000 1.4 0.014

1000 0.6 0.06

Table 3:6 Cross reactivity of cocaine related compounds

The cross reactivity data for the non-related compounds is shown in Table 3:7. All 

compounds were tested at 100,000ng/mL in blank oral fluid except for propoxyphene, 

buprenorphine and 7-aminoflunitrazepam which were tested at 10,000ng/mL. The 

highest cross reactivity of any of the compounds was <0.3% and therefore none of the 

compounds were classed as having any significant cross reactivity.
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Compound

A pparent AEME 

(ng/mL) AEME % Cross Reactivity

Pholcodeine 0.9 <0.001

Codeine 0.6 <0.001

6-Acetylmorphine 0.9 <0.001

Heroin 0.5 <0.001

Dihydrocodeine 0.4 <0.001

Morphine 0.5 <0.001

Tramadol 3 <0.01

MDA 0.4 <0.001

MDMA 5.9 <0.01

MDEA 13.5 <0.02 !

MBDB 8.1 <0.01

(+) Ephedrine 0.7 <0.001

(+) Pseudoephedrine 0.4 <0.001

(-) Pseudoephedrine 0.8 <0.001

Tyramine 0.4 <0.001 I

Fenfluramine 6.3 <0.01

Metamfetamine 2.4 <0.01 j

Diazepam 0.4 <0.001

Lorazepam 0.4 <0.001

Oxazepam 0.4 <0.001

Nitrazepam 0.5 <0.001

Nordiazepam 0.4 <0.001

Fluoxetine 0.4 <0.001

Temazepam 0.4 <0.001

Lidocaine 12.4 <0.2 !

Nicotine 4.6 <0.01

LSD 0.4 <0.001

Phenobarbital 0.6 <0.001

EDDP 1.7 <0.01

PCP 0.8 <0.001

Ibuprofen 3.4 <0.01
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Compound

Apparent AEME 

(ng/mL) AEME % Cross Reactivity

Chloroquine 22.5 <0.3

Ketamine 1.2 <0.01

Fentanyl 0.9 <0.001

Warfarin 0.6 <0.001

Propranolol 0.8 <0.001

Dothiepin 0.5 <0.001

Chlordiazepoxide 0.5 <0.001

Naloxone 0.6 <0.001

I I  Pheniramine 2.9 <0.01 !

Medperidine 0.9 <0.001

(-) Ephedrine 1.1 <0.01

Amfetamine 1.2 <0.01

Phentermine 1.3 <0.01

Cotinine 0.8 <0.001

Methadone 0.9 <0.001

11 -Hydroxy-Delta-9-THC 0.7 <0.001

Cannabidiol 0.6 <0.001

Ranitidine 1.2 <0.01

Amitriptyline 0.9 <0.001

Phenylpropanolamine 0.6 <0.001

Paracetamol 0.8 <0.001

Caffiene 0.9 <0.001

Secobarbital 0.8 <0.001

*Propoxyphene 0.8 <0.01

* 7 - Aminoflunitrazepam 0.8 <0.01

*Buprenorphine 0.7 <0.01

Table 3:7 Cross reactivity of non-related compounds
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3.7.7 Precision

The precision results are displayed in Tables 3:8 and 3:9. The inter-assay precision was 

6.7-12.3% based on absorbance values, and 7.1-29.7% based on concentrations. In 

general the lower the drug concentrations the higher the %CV. The intra-assay precision 

was 2.9-7% based on absorbance and 6.6-27.1% based on concentrations.

Concentration

(ng/mL)

Absorbance Concentration (ng/mL)

Mean (n=40) SD (n=40) CV (%) Mean (n=40) SD (n=40) CV (%)

0 2.391 0.25 10.4 0.45 0.12 26.2

2.5 1.567 0.19 12.3 2.4 0.72 29.7

5 1.147 0.11 9.8 6.1 1.05 17.3

7.5 0.954 0.08 8.8 9.97 1.45 14.5

15 0.626 0.05 8.4 30.4 5.00 16.5

30 0.470 0.04 9.2 59.7 7.58 12.7

50 0.389 0.03 6.7 86.8 6.19 7.1

Table 3:8 Inter-assay precision for AEME EIA using absorbance values and

interpolated concentrations

Concentration

(ng/mL)

Absorbance Concentration (ng/mL)

Mean (n=20) SD (n=20) CV (%) Mean (n=20) SD (n=20) CV (%)

0 1.917 0.07 3.9 0.4 0.08 21.5

2.5 1.221 0.08 6.2 2.9 0.77 27.1

5 1.028 0.05 4.5 5.1 0.69 13.5

7.5 0.858 0.04 5.0 9.1 1.30 14.3

15 0.640 0.03 5.4 21.4 3.08 14.4

30 0.489 0.01 2.9 41.3 2.72 6.6

50 0.375 0.03 7.0 70.6 9.30 13.2

Table 3:9 Intra-assay precision for AEME EIA using absorbance values and

interpolated concentrations 
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Due to the greater inherent imprecision o f immunoassays, acceptance criteria o f 25% 

CV for precision in routine assays are proposed by some authors [86], while others 

suggest 20%, with 25% at the limits o f quantitation [82], Using the absorbance values, 

inter and intra-assay precision were acceptable for this assay. Based on concentrations, 

inter and intra-assay precision were acceptable from 5ng/mL to 5Ong/mL.

3.7.8 Limit o f Detection

The average absorbance value for the replicate analysis o f 20 zero standards was 

calculated to be 2.635, and the SD was 0.12. The limit o f detection was the 

concentration relating to the average absorbance minus 3 SD values, interpolated from 

the standard curve (Figure 3:26). The limit o f detection was 0.5ng/mL.
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Figure 3:26 Log standard curve for estimation o f limit o f detection
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3.8 Conclusion

The goals in developing an EIA are to have a sensitive, specific, robust and reproducible 

assay. The antibodies produced from immunisation with AE were of a high titre and 

were highly specific for AEME. The lack of cross reactivity to AE was surprising as the 

functional group used for conjugation should have provided an antibody with equal 

specificity to AEME and AE. The assay was successfully applied to oral fluid samples 

with acceptable precision, and no problems with matrix effect.

The assay, in combination with a confirmatory method, will be further evaluated using 

clinical samples to determine an appropriate cutoff concentration to positively identity 

the use of smoked cocaine.
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4 Gas Chromatography-Mass Spectrometry Method

Development for the Quantitation of Cocaine, its 

Metabolites and Pyrolysis Products

4.1 Introduction

The simultaneous analysis of cocaine and its metabolites presents many analytical 

challenges. Difficulties are encountered both at the sample preparation stage and during 

chromatographic separation due to the large polarity difference between the analytes 

[1]. Cocaine and cocaethylene are non-polar, benzoylecgonine is moderately polar, and 

AEME, EME and AE are highly polar.

The quantification of cocaine and its metabolites in biological fluids has been 

commonly performed using GC-MS. In previous years the focus has been on cocaine 

and its major metabolites benzoylecgonine and EME, however since the identification 

of the unique pyrolysis products of cocaine some methods have also included AEME. A 

selection of GC-MS methods published since 1990 detailing the identification of 

cocaine and its metabolites in a variety of biological matrices are listed in Table 4:1. 

Twenty one of the thirty five methods described, include AEME in the analysis and 

only four of these methods were applied to oral fluid samples [2-5]. None of the oral 

fluid methods included the metabolite AE in the analysis despite the indication that the 

half life of AEME is short [6].

A wide range of temperature programmes have been used, starting as low as 55°C and 

increasing to a maximum of 320°C. The majority of these temperature programmes 

have employed a series of ramps in temperature.
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4.1.1 Artifact Production of AEME

AEME, as well as being produced from smoked cocaine, can be formed as an artifact of 

cocaine at high temperatures within injector ports in the GC. Similarly AE can be 

formed from the thermal decomposition of benzoylecgonine [13]. AEEE, a 

transesterification product of smoked cocaine co-abused with alcohol has also been 

established as an artifact of cocaethylene in the GC injector port [38].

Studies have shown that the amount of AEME formed as an artifact is <1.0% of the 

concentration of cocaine [4, 15, 20, 33], and that a linear relationship exists between 

AEME artifact production and the concentration of cocaine in the sample [24].

Artifact production can be monitored by injecting a known concentration of cocaine 

standard as a control and monitoring the peak corresponding to the 152 ion of AEME 

[15]. Alternatively the production of AEME-d3 as an artifact of COC-d3 can be 

measured [20].

It is suggested that decreasing the injector port temperature will reduce artifact 

formation of AEME and AE [21]. Some authors report a decreased formation of artifact 

AEME when the injector port temperature was reduced to 210°C [13], others claim 

there was no significant difference observed [15]. A compromise may need to be met 

whereby the injector port temperature is high enough so as not to decrease the response 

for all the other analytes but low enough to reduce the formation of artifact AEME.

The state of the insert liner has also been suggested as a contributing factor to artifact 

formation of AEME, so recommendations are to use a clean liner when analysing for 

AEME [24, 38].
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4.1.2 Sample Preparation

Sample preparation techniques which have proved successful in the extraction of 

cocaine and its metabolites from biological matrices include liquid-liquid extraction 

(LLE), solid phase microextraction (SPME), and more commonly, solid phase 

extraction (SPE). The different SPE methods employed for the analysis of cocaine and 

its metabolites are listed in Table 4:2. Mixed mode sorbents such as Bond Elut 

Certify™ are versatile and are frequently used for the analysis of drugs of abuse [39]. 

The extraction recoveries quoted vary considerably between different analytes and also 

between different extraction methods.

A large number of methods have utilised phosphate buffer at pH 6 for sample pre

treatment and column conditioning. In general at pH 6 a high percentage of cocaine, 

cocaethylene, benzoylecgonine, and AEME are retained on the SPE column, however 

the more polar compounds ecgonine, and AE, are not adsorbed under these conditions 

and so pass through the column into waste [18]. Very low recoveries (0.7-4.1%) have 

been reported for AE and ecgonine [15]. The difficulty experienced in extracting these 

compounds from biological matrices means they are not frequently analysed [40]. EME 

is another compound which has reasonably low recovery due to its polar functional 

group, most methods report recoveries of approximately 40-45% [3, 13, 14, 41].

The reasoning for the low reported recoveries using mixed mode sorbents may lie in the 

low ion exchange capacity of the products [42].
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A number of different methods have been tested in order to overcome the poor 

recoveries of the highly polar metabolites. Reducing or removing the wash steps has 

proven successful in increasing recovery while not significantly decreasing the 

sensitivity of the analytical method [1, 19, 45]. However the highest reported recoveries 

(50-99%) have been achieved by performing a two step SPE method [11, 12, 18, 21]. 

The eluant from the first SPE, following addition of the sample, is saved and then 

subjected to a second SPE extraction under different experimental conditions.

Even though AE is highly water soluble and a zwitterion, like benzoylecgonine, it 

cannot be extracted under the same conditions. The dissociation of the carboxylic acid is 

expected to be more than that of the sterically hindered carboxylic acid group in 

benzoylecgonine [12]. The key to increased recovery of the highly polar compounds AE 

and ecgonine appears to lie in the pH of the solution. Adsorption of AE was studied in 

the pH range of 2.0-5.0. Recoveries of 99% were found at pH 2.0, compared to 9% at 

pH 5.0 [12]. Under acidic conditions the dissociation of the carboxylic acid is reduced 

and the lipophilic and cationic character is improved allowing for more efficient 

adsorption to the solid phase [11, 12].

Two solvents, methanol and acetonitrile have been evaluated in the wash step prior to 

elution. The use of methanol produced low recovery of benzoylecgonine (30%), this 

increased considerably to 91% when acetonitrile was used [49]. There was no data 

provided to establish what effect this has on the non polar compounds such as cocaine 

and cocaethylene.

The extraction of cocaine and cocaethylene from biological materials is relatively 

simple, their hydrophobic nature allows extraction into non polar liquid or stationary 

phases [50]. This approach however is not suitable for the more polar metabolic and
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pyrolytic products of cocaine [51]. Mixtures of solvents such as dichloromethane or 

chloroform, plus ethanol or isopropanol have proved most efficient in extracting the 

majority of metabolites [39, 50]. Elution of substances retained via the cation exchange 

sites is achieved using an amine, in general 2-3% strong ammonia is used. The vast 

majority of methods listed in Table 4:2 have utilised dichloromethane and isopropanol 

with 2% ammonia solution.

4.1.3 Derivatisation

The presence of polar functional groups on some of the cocaine metabolites makes the 

analysis by GC-MS extremely difficult [51]. Derivatisation using different types of 

agent can be performed to change the structure of the molecule and mask the polar 

hydrogen bonding characteristics of these molecules [1].

Trimethylsilylation with bis(trimethylsilyl)trifluoroacetamide (BSTFA) + 1% 

trimethylchlorosilane (TMCS) is the main derivatising agent used as the hydroxyl and 

carboxylic groups present are readily derivatised. A disadvantage however is that the 

trimethylsilyl (TMS) matrix compounds have been found to elute in the same range as 

AEME, interfering considerably with sensitivity [20].

The use of pentafluoropropionic anhydride (PFPA) and 2,2,3,3,3-pentafluro-l-propanol 

(PFP) as derivatising agents has been reported as providing a much more stable 

derivative with a much higher molecular weight and less background noise than TMS 

[15]. PFPA derivatises hydroxyl groups and secondary amine functional groups, while 

PFP derivatises the carboxylic groups [13].
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4.2 Experimental

4.2.1 Materials

Solutions of the reference standards (lmg/mL in methanol or acetonitrile) AEME, AE, 

EME, cocaine, benzoylecgonine and of the corresponding deuterated internal standards 

(O.lmg/mL) EME-d3, cocaine-d3, benzoylecgonine-d3 and were obtained from Cerilliant 

(LGC Promochem, Teddington, UK). The derivatising reagents BSTFA with 1% v/v 

TMS, PFPA, and PFP were purchased from Sigma Aldrich Company Ltd (Dorset, UK). 

All other reagents and solvents were of analytical grade and were purchased from VWR 

International Ltd (Leicestershire, UK). Solid phase extraction (SPE) cartridges, Bond 

Elut™ Certify (50mg, 3mL), were purchased from Varian (Surrey, UK). High recovery 

vials were purchased from Crawford Scientific (Lanarkshire, Scotland, UK).

Oral fluid collectors were provided by Cozart pic (Oxfordshire, UK).

4.2.2 Solution Preparation

4.2.2.1 Drug Standards

Combined analyte working solutions of lpg/mL and lOOng/mL were prepared in 

acetonitrile from individual lmg/mL stock solutions of the reference standards. A 

working solution of 1 pg/mL for the internal standards was prepared in acetonitrile from 

the individual O.lmg/mL stock solutions. Analyte matched internal standards do not 

exist for every compound of interest, it is important therefore to use an internal standard 

that matches as close as possible the polarity of the compound being analysed [1]. For 

the compounds used in this study internal standards were only available for cocaine, 

benzoylecgonine, and EME. EME-d3 was used as the internal standard for both AEME 

and AE. The working solutions were refrigerated at 4°C for up to 6 months.
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4.2.2.2 Buffers and Reagents

• 0. lmol/L Phosphate Buffer pH 6 and 4. (500mL)

400mL of deionised water was added to 6.81 g of potassium dihydrogen 

orthophosphate (MW 139.09). The pH of the buffer was adjusted to the required pH 

using 10 mol/L potassium hydroxide. The buffer was made up to 500mL in a 

volumetric flask with deionised water and stored refrigerated (2-8°C) for up to 2 

months.

• 2mol/L Hydrochloric Acid (lOOmL)

19.2mL of a 32% hydrochloric acid solution was added to a lOOmL volumetric flask 

made up with deionised water.

• 0.01 mol/L Hydrochloric Acid (1 OOmL)

500pL of the 2M hydrochloric acid solution was added to a lOOmL volumetric flask 

made up with deionised water.

• 0.1 mol/L Hydrochloric Ac id (1 OOmL)

5mL of the 2M hydrochloric acid solution was added to a lOOmL volumetric flask 

made up with deionised water.

• Dichloromethane:Isopropanol (DCM/IPOL) (80:20) (1L)

800mL of dichloromethane and 200mL of isopropanol were measured out 

individually using measuring cylinders and then combined. The solution was stored 

in a 1L glass bottle.

4.2.2.3 SPE Elution Solvents

• Dichloromethane/Isopropanol/Ammonium Hydroxide (80/20/2 v/v). Prepared daily 

as required.

lm l of ammonium hydroxide was added to 49mL of DCM/IPOL, the solution was 

mixed vigorously before use.
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• Methanol/Isopropanol/Ammonium Hydroxide (40/60/2.5 v/v). Prepared daily as 

required.

20mL of methanol and 30mL of isopropanol were measured out using a 50mL 

measuring cylinder, 1.25mL of ammonium hydroxide was added and the solution 

was mixed vigorously before use.

• Methanol/Ammonium Hydroxide (98/2 v/v). Prepared daily as required.

lm l of ammonium hydroxide was added to 49mL of methanol, the solution was 

mixed vigorously before use.

4.2.3 Instrumentation

The GC-MS was an Agilent 5973N with 6890 GC purchased from Agilent 

Technologies (Cheshire, UK), equipped with Rtx-5Sil MS (30m x 0.25mm i.d x 

0.25pm) capillary column, purchased from Crawford Scientific (Lanarkshire, Scotland, 

UK). The GC mobile phase was helium (99.999% purity) and was supplied by Air 

Products (Cheshire, UK).

SPE was performed on a vacuum manifold assembly purchased from Varian (Surrey, 

UK). A Techne® Sample Concentrator with a DB-3 series Dri-Block® was purchased 

from LAB3 (Northampton, UK).

4.2.4 GC-MS Parameters

The GC-MS was run in electron ionisation mode with splitless injection. The mobile 

phase was helium at a flow rate of lmL/min and at a constant pressure of 8.7 psi. The 

injector port temperature was set at 210°C, with the transfer line and source 

temperatures set to 280°C and 230°C respectively. Due to short retention times reported 

for AE and AEME the MS acquisition was set at 4 minutes.
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4.2.5 Method

4.2.5.1 GC Temperature Programme

Seven temperature programmes were chosen from the literature and evaluated for the 

simultaneous detection of AEME, cocaine, EME and benzoylecgonine. A summary of 

these can be seen in Table 4:3. A cross section of methods published within the last 10 

years was considered. The detection of AEME was an important factor and most of the 

methods chosen described its analysis. Two methods did not analyse AEME but did 

however have excellent reproducibility and low limits of detection for cocaine and 

benzoylecgonine.

Method GC Oven Temperature Programme Reference

CRK01 150°C (1.5min) —»220oC at 5°C/min —>300°C at 30°C/min 

(3.83min)

Cozart in house 

method

CRK02 90°C (lm in) —>180°C at 20°C/min —>240°C at 5°C/min 

—>290°C at 30°C/min

[17]

CRK03 55°C (2min) —>170°C at 20°C/min —»310°Cat 12°C/min 

(5min)

[24]

CRK04 70°C —>250°C at 30°C/min (4min) [21]

CRK05 80°C (0.5min) —>150°C at 20°C/min (2min) [12]

CRK06 70°C —>135°C at 30°C/min —»140°C at 2°C/min —>230°C at 

30°C/min —>234°C at 2°C/min —>250°C at 50°C/min

[13]

CRK07 70°C —>130°C at 30°C/min ->140°C at 5°C/min -+210°C at 

35°C/min —>222°C at 4°C/min —»290°C at 45°C/min (0.49)

[15]

Table 4:3 Summary of GC oven temperature programmes tested 

4.2.5.2 Sample Derivatisation

Each temperature programme was assessed using an un-extracted standard which was

prepared using the 1 pg/mL working solution. Drug was added to a high recovery vial
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and evaporated to dryness at 40°C under a stream of nitrogen. Two different derivatising 

techniques were tested, acylation using PFPA and PFP, and silylation using BSTFA.

For silylation BSTFA (50pL) was added to the vial and heated to 70°C for 20 minutes. 

Acylation was performed by adding PFPA (50pL) and PFP (50pL) to the vial and 

heated to 70°C for 20 minutes. The solution was evaporated to dryness under a stream 

of nitrogen at room temperature. Ethylacetate (100pL) was added and the solution was 

evaporated to dryness again to remove any residual derivatising agent. The drug was 

reconstituted in 50pL of ethylacetate.

The derivatised sample (2pL) was injected onto the column using the HP autosampler. 

For each method described in Table 4.3, the sample was first analysed in fall scan 

mode, 50 to 550 AMU, to obtain the retention times of each analyte. After which the 

MS was set to selective ion monitoring (SIM) to increase the sensitivity and reduce the 

presence of background interference. The ions monitored for positive identification of 

the analytes are displayed in Table 4:4.

Analyte Ions Monitored

BSTFA PFPA and PFP

AE N/A 270, 271,299

AEME 152, 166, 181 152, 166, 188

EME 82, 97, 271 182,314, 345

EME-d3 85, 99, 274 185,317, 348

Benzoylecgonine 82, 240, 361 300,316, 421

Benzoylecgonine-d3 85, 243, 364 303,319, 424

Cocaine 82, 182,303 182, 272, 303

Cocaine-d3 85, 185, 306 185,275,306

Table 4:4 Ions monitored for each analyte using BSTFA or PFPA/PFP as derivatising

agents
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4.2.5.3 Solid Phase Extraction

Following a literature review of solid phase extraction methods for cocaine and its 

metabolites, it was found that the main differences between each published method 

were in the solutions used for pH adjustment and column washing. Four different SPE 

methods were tested to encompass a variety of solutions for evaluation. The volumes 

used were kept consistent between methods. The summary of each SPE method used 

can be seen in Table 4:5.

Method SPE Method Elution Solvent

1 (Cozart) lmL Methanol, lmL pH6 phosphate buffer, sample + lmL  

buffer, lmL water, lmL 0.01M HC1, dry lOmins, 2mL 

methanol, dry 2mins.

DCM/IPOL/NH3

2 (Adapted  

Cozart)

lmL Methanol, lmL pH4 phosphate buffer, sample + lmL  

buffer, lmL water, lmL 0.01M HC1, dry lOmins, 2mL 

methanol, dry 2mins.

DCM/IPOL/NH3

3 [15] lmL Methanol, lmL 0.1M pH4 sodium acetate buffer, sample 

+ buffer, lmL water, lmL 0.1M HC1, lOmin dry, 2mL 

methanol, dry 2 min

DCM/IPOL/NH3

4 [19] lmL methanol, lmL 0.1M HC1, sample + lmL 0.1M HC1, 

lmL water, lmL 0.25M acetic acid, dry lOmins, 2mL 

methanol, dry 2mins.

MeOH/IPOL/NH3

(4:6:0.25)

Table 4:5 Summary of solid phase extraction methods used for the extraction of 

cocaine, its metabolites and pyrolysis products

Drug and internal standard were added to 500pL of negative oral fluid buffer mixture at 

a concentration of 180ng/mL. Samples were extracted in duplicate according to each 

method as outlined in Table 4:5. An un-extracted standard was also prepared for 

comparison. Following elution each sample was evaporated to dryness under nitrogen at 

40°C and derivatised using PFPA and PFP as outlined in section 4.2.5.2.
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Each method was compared based on absolute recovery for each analyte. The analyte 

peak areas of the un-extracted standard were taken as 100% recovery and the peak areas 

of the extracted samples were calculated against it.

The choice of elution solvent can have a significant impact on the recovery of analytes 

from the SPE column. Three different elution solvents were tested, they included 

dichloromethane/isopropanol/ammonium hydroxide (80:20:2), 

methanol/isopropanol/ammonium hydroxide (4:6:0.25), and methanol/ammonium 

hydroxide (98:2).

Recovery of AE using SPE has been reported to be very low due to the polar nature of 

the analyte [15]. Some authors have used a two step extraction technique for AE 

whereby eluates from the first SPE after sample loading were saved and subjected to a 

second SPE. Two methods from the literature were selected, the details are summarised 

in Table 4:6.

Method SPE Method

AE Method A 

[11]

lmL Methanol, lmL 0.1M HC1, sample + lmL 2M HC1, lmL water, 

lmL 0.1M HC1, 2mL Methanol, lOmin dry.

AE Method B 

[21]

lmL methanol, lmL 0.2M phosphoric acid, sample + lmL 0.2M  

phosphoric acid, lmL water, lmL 0.2M phosphoric acid, 2mL 

methanol, lOmin dry.

Table 4:6 Summary of SPE methods for extraction of AE.

The SPE was started by conditioning the column with methanol, after which the waste 

tubes were removed and replaced with fresh pre-labelled tubes to collect the fraction 

containing AE. Figure 4:1 fully illustrates the process of the two step SPE method.
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The sample was loaded onto the column which was subsequently washed with the 

addition o f lm L o f water, the tubes were removed and saved for the second extraction. 

The original waste tubes were replaced and the rest o f the extraction was continued as 

previously described. The saved eluants were then extracted using each o f the two 

methods outlined in Table 4:6.

New SPE Started Using Saved Eluate Initial SPE Continued

Column Washing
lm L Water, lm L O .lM  

HC1, 2mL Methanol

Elute
M EOH/IPOL/NH4

Dry 2 minutes

Dry 10 minutes
Dry 10 minutes

Dry 10 minutes

Column Washing

Elute
M EOH/IPOL/NH4

Elute

Eluates Removed and Waste Tubes Replaced

Column W ashing

pH Adjustment

Sample Addition
Sample + lm L  2M 

HC1

Sample Addition
Sample + lm L  0.2M  

Phosphoric Acid

Column Conditioning

Waste Tubes Replaced with Pre-Labelled Tubes

Sample Addition

Column Washing
lm L Water, lm L 0.2M 
Phosphoric Acid, 2mL 

Methanol

Column Conditioning
lm L  M ethanol, lm L  0 .1M 

HCL

AE Method A:
Column Conditioning
lm L M ethanol, lm L  0.2M  

Phosphoric Acid

AE Method B:

Figure 4:1 Overview o f 2 step SPE methods
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Drug was eluted with methanol/isopropanol/ammonia in a ratio of 4:6:0.25. They were 

each evaporated to dryness under nitrogen at 40°C and derivatised using PFPA and PFP 

at 70°C for 20 minutes. The drugs were reconstituted in ethylacetate (1 OOjul), and the 

contents of the vial containing AE were added to the vial containing the other analytes 

to allow for simultaneous analysis. The samples were evaporated to dryness under 

nitrogen again and reconstituted in 50pL of ethylacetate.

4.2.6 Calibration Curve Linearity

A calibration curve prepared using drug free oral fluid was extracted. The calibration 

standards were prepared from the drug standard working solutions and consisted of 

eight points representing 0, 15, 30, 60, 90, 120, 180 and 360ng/mL of each analyte. 

Internal standards were added at a concentration of 120ng/mL.

To generate a calibration curve the peak area ratios between the standards and the 

internal standard were plotted against the concentration. The coefficients of 

determination (r2) obtained for the calibration curves were calculated.

4.3 Results and Discussion

4.3.1 GC Temperature Programme

Seven GC oven temperature programmes and two different derivatising agents were 

tested to identify the method which provided identification of all the required analytes 

from a single injection, with good resolution and peak shape.

Due to instrument availability two identical GC-MS instruments were used to evaluate 

the temperature programmes. Instrument 1 was used initially to evaluate methods 

CRK01 to CRK06 for the identification of AEME, EME, cocaine and benzoylecgonine 

using BSFTA as the derivatising agent. Methods CRK02, CRK03, and CRK04 allowed
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the simultaneous identification o f all the analytes. AEME eluted from the column first 

followed by EME, cocaine, and benzoylecgonine. Chromatographic peaks typically take 

the shape o f a normal Gaussian distribution curve. Method CRK02 provided better peak 

shapes compared to methods CRK03 and CRK04. The full scan chromatograms and 

mass spectra for method CRK02 can be seen in Figures 4:2 to 4:5.

Abundance Ion 152 .00  (151.70  to 152.70): L_TS T _05.D
I o n  1 66 . 0 0  (1 6 5 .7 0  to  1 6 6 .7 0 ):  L_ T S T ~ 0 5 .D 
Io n  181 0 0  (1 8 0 .7 0  to  1 81 .701: L _ T S T _ 0 5 .D6.31

1 5 0 0 0 -

6.3"5000

6 .366.31 6  53
6 .786.40027

6.40

Abundance
150 00 -

1̂ 2

73

10000

1815 0 0 0 -
9357

166 207106 281226 366191 3 27  341 3 5 5295

Figure 4:2 Full scan chromatogram and mass spectra for AEME using method CRK02

A b u n d a n c e Io n  9 9 .0 0  (9 8 .7 0  to  9 9 .7 0 ) :  L _ T S T _ 0 4 .D
Ion 96.00 (95.70 to 96.70): L_TST_£)4.D7 .6 9

V7.71
1 5 0 0 0

10000
7 .9 0

5 0 0 0

7 .8 0  7 .8 4

8 . 6 o7. 7.̂ 0 s . ioT im e ->

A b u n d a n c e

20000 - 7 3 9 9

1 5 0 0 0 -

10000
1 4 7

5 0 0 0 - 5 9
1 5 8 1 7 5  1 ? 5 2 1 51 3 3 2 4 3 2 7 41 1 7 2 0 7 ' 2 3151, 2 5 9190

2 8 0m / z ~ > 8 0 100

Figure 4:3 Full scan chromatogram and mass spectra for EME-d3 and EM E using

method CRK02
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Abundance Ion 185.00 (184.70 to 185.70): L_TST_0S.D
Ion 182.00 (181.70 to 182,70): L_TST_06.D1 Gd66 

16.63
30000-

25000-

20000 -

15000-

10000-
5000-

17̂016.50 17.00Time->

Abundance 185

20000 -

15000- 105

10000-
306

5000- 117
275198

I1?5 132 145 155 16G
237177, 241247 262 282

100->

F igure 4:4 Full scan chromatogram and mass spectra for cocaine-d3 and cocaine using

method CRK02

Abundance Ion243.00 (242.70 to 243.70): L_TST_06.D
Ion 240.00 (239.70 to 240.70): L_TST_06.D

20000 -

15000-

10000 -

5000-

18.301780 1790 18.10

25000-

2 0000 -
105

24015000-

10000 -

3S45000- 122 256207. 349
,214 224 272 281 295 317 341

240

F igure 4:5 Full scan chromatogram and mass spectra for benzoylecgonine-d3 and

benzoylecgonine using method CRK02

Method CRK03 and CRK04 produced very poor peak shapes for cocaine and 

benzoylecgonine, with either very poor selectivity or split peaks (Figure 4:6).
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Abundance
30000-1

Ion 182.00 (181.70 to 182.70): LTST 06.D
Ion 185.00 (184.70 to 185.701: L T S I 06.D 
Ion 243.00 (242.70 to 243.70): L TST 06.D
Ion 240.00 (239.70 to 240.70): L J S T J 6 .D15.81

15.5S
Cocaine

Benzoylecgonine
15000-

5000-
m

OV  'r^pT 
Time-) 15.40

15.47

15.50 15.60 15.80 15.90 16.1016.00

Figure 4:6 Chromatograms for cocaine, benzoylecgonine and their relative internal

standards using method CRK03

M ethods CRK02, CRK03, and CRK04 were subsequently tested using PFPA and PFP 

as the derivatising agents. AEME was not identified using PFPA and PFP in any o f  the 

methods, however significantly improved peak shapes for benzoylecgonine and cocaine

were observed (Figure 4:7).

Abundance Ion 182.00 (181.70 to 182.70): L CRK 06.D
Ion 185.00 (184.70 to 185.70): L_CRK OSD 
Ion 243.00 (242.70 to 243.70): L CRK 06.D
Ion 240.00 (239.70 to 240.70): L_CRK'06.D BSTFAisooo-

ioooo- Cocaine

Benzoylecgonine5000-

17.79

1G.80 17.00Time--) 18.40 16.80 17.20 17.40 17.8017.80

Ion 182.00 (181.70 to 182.70): L_CRK_09.D
lor, 185 .001'34.70 to 185.70): L CRK 09.D 
Ion 300.00 (299.70 to 300.70): L CRK 09.D
Ion 303.00 [302.70 to 303.70): L_CRK~09.D PFPA/PFP

30000- Benzoylecgonine

20000 -

Cocaine 161&P
1 0 0 0 0 -

"r—j — i . , p , * T
1 6 8 0  16.80Time-) 14.60 15.00 15.20 1 540 15.60 15.80 16.00 16.20 16.40

Figure 4:7 Effects o f derivatising agents on analysis o f cocaine and benzoylecgonine
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Using PFPA and PFP the order of elution changed, with benzoylecgonine eluting before 

cocaine. Cocaine does not contain any hydroxyl or carboxyl groups and therefore is not 

derivatised by BSTFA, PFPA, or PFP, benzoylecgonine on the other hand contains a 

carboxyl group which is derivatised. The benzoylecgonine derivative formed using PFP 

is structurally and chemically different to the derivative formed using BSTFA. The PFP 

derivative has a higher molecular weight and a reduced affinity for the column which 

resulted in earlier elution of benzoylecgonine. As cocaine is not derivatised there was no 

change in its retention time.

The advantages of improved peak shape and less background noise observed using 

PFPA led to the selection of two GC-MS methods in the literature which used PFPA for 

derivatisation of the cocaine metabolites. One of the methods chosen was previously 

tested using BSTFA as the derivatising agent and was method CRK06. Both methods 

were very similar to one another with respect to the analytes identified and the pattern 

of oven temperature ramping, however the second method, CRK07, produced a slightly 

longer run time and a higher final oven temperature.

Due to equipment availability instrument 2 was used to perform the remainder of the 

method development. AE was also included in the chromatographic analysis at this 

stage of the investigation.

Method CRK06 enabled the successful identification of AE, AEME, and EME.

However neither cocaine nor benzoylecgonine were identified using this temperature 

programme. Method CRK07 was successful in allowing for the identification of all 

analytes, with good separation between each compound. The analyte retention times for 

both methods are summarised in Table 4:7.
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Analyte Retention Time

CRK06 CRK07

AE 5.57 5.25

AEME 6.16 5.7

EME 6.54 5.99

Benzoylecgonine ND 10.13

Cocaine ND 10.73

Table 4:7 Summary o f analyte retention times for methods CRK06 and CRK07

The chromatograms produced using method CRK07 are shown in Figures 4:8 and 4:9. 

The smallest peak area was provided by AEME while AE produced the largest. 

Benzoylecgonine and cocaine were the last two compounds to elute from the column for 

each temperature programme tested. The polarity and volatility o f these two compounds 

is very different to AE, AEME and EME which all elute relatively early in the 

chromatographic run.

Abundance Ion 185.00(184.70 to 185.70): L TST 02.D
I on 182 00 (181.70 to 182 70): L TST'02.D 
Ion 15200 (151.70 to 15270): L TST 02D  
Ion 270.00 (268.70 to 270.70): L TST 02.D 
lor. 299.00 (298.70 to 293.70): L TST 02.D

Time--)

Figure 4:8 Chromatogram of AE, AEME, EM E-d3 and EME produced using method

CRK07
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Abundance Ion 185.00 (184.70 to 185.70): L TST 02.D
Ion 182.00 (181.70 to 182.70): L TST 02.D 
Ion 303.001302.70 to 303.70): L TST 02.D
lor. 300.001239.70 to 300.70): L TST 02.D

10.12

10.73

10.33 10.510.53 10.60
Time--) 10.10 10.20 10.40 10.60

Figure 4:9 Chromatogram o f COC-cb, COC, BZE-d3 and BZE produced using method

CRK07

The retention times o f AE, AEME and EME were slightly longer using method CRK06, 

the absence o f benzoylecgonine and cocaine may be a result o f the oven programme 

being too short. Method CRK06 has a total run time o f 9.99 minutes, while method 

CRK07 has a total run time o f  11 minutes. The column temperatures at the point where 

benzoylecgonine and cocaine were eluted, using method CRK07, were calculated to be 

273 °C and 290°C respectively. The fact that the final column temperature for method 

CRK06 was 250°C may also be a reason for the failure in detection o f benzoylecgonine 

and cocaine.

4.3.2 Solid Phase Extraction

An ideal SPE should provide analyte recovery close to 100%. Cocaine and its 

metabolites vary greatly in polarity and so SPE methods should be optimised to provide 

recoveries as high as possible, particularly for AEME as this is the compound o f most 

interest. The recoveries o f each analyte using the different SPE methods are summarised 

in Table 4:8.
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Analyte

Un

extracted

SPE 1 SPE 2 SPE 3 SPE 4

Peak Area Peak

Area

%
Recovery

Peak

Area

%
Recovery

Peak

Area

%
Recovery

Peak

Area

%
Recovery

AEME 21509 2934 13.6 25594 119 17702 82.3 22046 102.5

AE 39179 156 0.4 184 0.5 232 0 . 6 4292 11

EME 32132 9739 30.3 9822 30.6 8188 25.5 11992 37.3

COC 30281 30516 1 0 0 . 8 28797 95.1 26653 8 8 30343 1 0 0 . 2

BZE 39740 20218 50.9 19744 49.7 15010 37.8 23472 59.1

Table 4:8 Recovery of analytes following different solid phase extraction methods

The highest recoveries of AEME were produced using SPE 2 and 4 which gave >100%, 

SPE 1 performed poorly with only 14%. Cocaine recoveries were >95%, with the 

exception of SPE 3 which gave 8 8 %. Recovery of benzoylecgonine was lower and 

ranged from 38-59%, while EME ranged from 26-37%. As expected the analyte which 

produced the lowest recovery was AE, which at its highest was only 11% using SPE 4. 

Using 0.1M HC1 locks the analytes onto the sorbent using ion exchange mechanisms 

[52], and using acetic acid in the wash step helps remove a variety of impurities without 

affecting the recovery of the acidic substances [49]. This may be the reason for the 

increased recoveries shown for SPE 4.

Overall SPE 4 provided the highest recoveries and was selected to develop the 

extraction further.

4.3.3 Choice of Elution Solvent

The extraction recoveries using the different elution solvents are shown in Table 4:9.
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The greatest variability in extraction recoveries was for AEME which ranged from 59- 

96%. AE recovery was still low using each elution solvent, with the least recovery 

provided by DCM/IPOL.

Analyte Un-extracted DCM/IPOL/NH4 MeOH/IPOL/NH4 MeOH/NH4
Peak Area Peak Area % Recovery Peak Area % Recoveiy Peak Area % Recovery

AEME 20845 17126 82.2 20029 96.1 12259 58.9

AE 48670 500 1 5300 11 4425 9.1

EME 26941 10876 40.4 12359 45.6 8753 32.5

COC 22106 26201 118.5 25142 113.7 27577 124.8

BZE 36444 22363 61.4 23393 64.2 28353 77.8

Table 4:9 Recovery of analytes using three different elution solvents

The elution solvent methanol/isopropanol/ammonium hydroxide consistently gave the 

highest recovery for AE, AEME and EME compared to the other two elution solvents 

and was selected for further experiments.

4.3.4 Two Step SPE

Recovery of AE using the SPE methods investigated so far has been very poor. 

Employing a two step SPE did not produce significant increases in recovery of AE, 

despite some authors previously reporting an increase [11, 12, 18, 21]. A 5% increase 

was shown for method B, however this may not be attributed to the method, and may be 

a result of variability between extractions. Table 4:10 summarises the extraction 

recoveries for each analyte using the two step SPE methods.
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Analyte Un-extracted AE Method A AE Method B

Peak Area Peak Area % Recovery Peak Area % Recovery

AEME 49521 48185 97 60062 121

AE 83143 11036 13 13376 16

EME 62911 28644 46 40288 64

COC 43014 50870 118 50722 118

BZE 68162 41770 61 46312 6 8

Table 4:10 Analyte recoveries using a two step extraction technique

The recovery of EME was increased considerably using method B, and was the only 

analyte to show a significant increase. No difference in recoveries was shown between 

SPE4 from section 4.3.2 and AE method A.

The simultaneous analysis of cocaine and its metabolites presents difficulties in the 

extraction from biological matrices because of the large polarity difference between 

them. High recovery of cocaine and its metabolites is dependent on the sorbent and 

solutions used. Bond Elut™ Certify was chosen as it is effective in retaining both non 

polar and cationic analytes under the right extraction conditions. Previous publications 

have shown excellent recoveries using this sorbent [14, 19, 44].

Cocaine and AE represent the two extremes when performing SPE. Cocaine is strongly 

adsorbed via the hydrophobic interactions with the alkyl chains of the sorbent, 

subsequent wash steps do not disturb these bonds and so optimal recovery is achieved. 

This is illustrated by the high recoveries shown for each SPE method tested.

AE is not adsorbed under the same optimal conditions as cocaine and subsequently 

passes directly through the column into waste. Decreasing the pH of the solution ionises 

AE which should allow for retention via the cation exchange groups. The recovery 

however was still very poor, possibly as a result of inadequate analyte retention
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following sample addition or due to loss of AE in subsequent wash steps particularly 

when water is used.

The reduced recovery of the other analytes may also be linked to analyte loss during 

column washing, alternatively losses may have occurred during sample evaporation 

under nitrogen, particularly for EME which is known to be very volatile.

When analysing a large number o f compounds with differing polarities a SPE method 

may need to be chosen which provides a compromise on recovery for each analyte of 

interest. The compromise on this occasion is the poor recovery of AE, using AE 

method 4B achieved optimal recovery of AEME and cocaine and significant recovery of 

benzoylecgonine. These are the analytes which are most important for identifying 

cocaine hydrochloride and crack cocaine use.

4.3.5 Calibration Curve Linearity

Examples of the extracted calibration curves for each analyte are displayed in Figure 

4:10. The coefficients of determination were >0.99 for all analytes except for AEME 

which gave 0.988.

The peak area for AEME was very low, so to rule out poor extraction recovery an un

extracted standard was tested. Similar results were obtained and significant peak tailing 

was also observed.

A nhydroecgonine Methyl EsterAnhydroecgonine
R e sp o n se  RatioR esp onse  Ratio

3
Amount Ratio

R e sp  R atio  = 1.8Be+00Q “ Ami - 2.38e-001 

Coef of D el (^ 2 )  = 0 .9 9 0  C urve Fit: Linear

Amount Ratio
R e s p  R a tio  = 7 .0 5 e-0 0 1  " Amt + 2 .9 2 e -0 0 2  

C oef of D e t fr's2] = D.l C u rv e  Fit: L inear
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B enzoylecgonine
R esp on se  Ratio

Amount Ratio
R e s p  R atio  = 9 .43e-001 "A m t + 1 .5 1 e-0 0 2  

C oef of D e l ( ^ 2 )  = 1 .0 0 0  C urve Fit: Linear

Ecgonine Methyl Ester
R esp on se  Ratio

Amount Ratio
R e sp  R atio  = 3 .32e-001 * Amt + 5 .5 4 e-0 0 2  

Coef of D et [r^2] = 0 .9 9 0  C urve Fit: Linear

Cocaine
R esp o n se  Ratio

Amount Ratio
R e s p  R atio  = 1 .0 5 e + 0 0 Q " Amt + 2 .4 6 e -0 0 2  

C oef of D e t (r^2) = 1 .0 0 0  C urve  Fit: L inear

Figure 4:10 Extracted Calibration curves for AE, AEME, EME, cocaine and

benzoylecgonine

Column degradation can be caused by many different factors and can result in poor 

quality peaks, peak tailing, decreased peak size, and loss of column efficiency. Column 

contamination is a common problem encountered in GC, the contaminants can be either 

non-volatile or semi-volatile. Non volatile components in a sample can collect on the 

head of the column, this can result in deterioration of column performance [53]. Certain 

compounds can cause chemical damage to the GC column. PFPA is an example of an 

organic compound which can cause column damage. More problems are experienced 

when using splitless injection due to the large volume of sample deposited at the front 

of the column. While every effort is made to remove PFPA from the sample after 

derivatisation there is the possibility that small amounts could still enter the column,
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over time this may lead to a build up of the compound at the front of the column and 

subsequently cause column degradation.

Cutting approximately 10-20cm from the front end of the column removes the section 

of column with the greatest contamination and allows for improved chromatography. In 

this study the column was cut and a significant improvement in peak shape and peak 

area for AEME was observed. However the improvement was short lived, as 

deterioration of the chromatography occurred rapidly. Investigation into the 

maintenance log of the instrument showed that at the time of initiation of the 

experiments on instrument 2 a new column had been installed. It is speculated that the 

successful results observed early on in the method development was a result of a newly 

installed column, and that subsequent deterioration in the chromatography for AEME 

was most likely directly related to the deterioration of the GC column. The other 

analytes did not appear to be affected.

Active compounds such as carboxylic acids, amines, phenols and diols are particularly 

affected by contamination.

Column degradation also appeared to be a problem for another author, daily 

maintenance was performed on their GC-MS which included clipping the column and 

replacing the septum, liner and injector seal [3].

4.4 Conclusion

The work carried out in this chapter produced a sample preparation technique which 

was successful in providing good recoveries for the majority of the analytes. The GC- 

MS method enabled the simultaneous analysis of cocaine, its metabolites, and pyrolysis 

products. However further analysis using GC-MS was stopped due to frequent column 

degradation resulting in poor chromatography for AEME. To proceed with GC-MS it 

would have been necessary to continually cut the column or install a new column more
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regularly. This would introduce a significant rise in the cost of analysis, and also 

increase the turnaround time of sample analysis as a result of increased instrument 

maintenance.

Other problems associated with the use of GC-MS in the analysis of AEME have been 

reported to be artifact formation of AEME from cocaine in the GC injector port leading 

to false identification of crack use [4, 15, 20, 33].

It was therefore decided to pursue the development of a LC-MS/MS method. There 

would be no issue with regards to artifact formation of AEME as the temperature of the 

system does not exceed 55°C, also sample preparation is quicker using LC-MS/MS as 

there is no requirement for sample derivatisation.
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5 Liquid Chromatography-Tandem Mass Spectrometry

Method Development for the Quantitation of Cocaine, its 

Metabolites and Pyrolysis Products

5.1 Aims and Objectives

The aim of this chapter is to develop and validate a sensitive LC-MS/MS method for the 

simultaneous analysis of cocaine, its metabolites and pyrolysis products in oral fluid.

5.2 Introduction

Traditionally GC-MS has been used to quantify cocaine and its metabolites in biological 

fluids. However the high sensitivity and selectivity provided by LC-MS/MS, and the 

reduced sample analysis time [1 , 2 ], has led to an increase in its use and an increase in 

the number of methods published. Also the reports of artifact formation of AEME from 

cocaine in the injector port of the GC [3-6] highlights the importance of using LC-MS 

for the accurate analysis of the pyrolysis products of cocaine.

A literature search produced fourteen methods describing the use of LC-MS(MS) in the 

analysis of cocaine and its metabolites, the details of which are summarised in Table 

5:1. Six of these included the analysis of the pyrolysis product AEME but none included 

its metabolite AE. Only one of these methods was used for the analysis of oral fluid 

samples [7].

Across the methods the chromatographic conditions have varied significantly with 

regards to the LC columns employed and the compositions of the mobile phases. The 

MS conditions were predominantly electrospray ionisation with tandem MS.
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Methods of sample preparation employed in the analysis of cocaine and its metabolites 

have been previously described in chapter 4.
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5.3 Experimental

5.3.1 Materials

Solutions of the reference standards (lmg/mL in methanol or acetonitrile) AEME, AE, 

EME, cocaine, cocaethylene, benzoylecgonine and of the corresponding deuterated 

internal standards (O.lmg/mL) EME-d3, cocaine-d3, cocaethylene-d3 and 

benzoylecgonine-d3 were obtained from Cerilliant (LGC Promochem, Teddington, UK). 

Water, methanol, acetonitrile, acetic acid, formic acid, and ammonium formate were 

purchased from VWR International Ltd (Leicestershire, UK). Solid phase extraction 

(SPE) cartridges, Bond Elut™ Certify (50mg, 3mL), were purchased from Varian 

(Surrey, UK). High recovery vials were purchased from Crawford Scientific 

(Lanarkshire, Scotland, UK).

Oral fluid collectors were provided by Cozart pic (Oxfordshire, UK).

5.3.2 Solution Preparation

5.3.2.1 Drug Standards

Individual and combined analyte working solutions of lpg/mL, lOOng/mL and lOng/mL 

were prepared in acetonitrile using individual lmg/mL stock solutions of the reference 

standards. A working solution of lOOng/mL for the internal standards was prepared in 

acetonitrile using the individual O.lmg/mL stock solutions. The working solutions were 

refrigerated at 4°C for up to 6  months.

5.3.2.2 Mobile Phase Solutions

• 0.1% Acetic Acid in Water/Methanol/Acetonitrile (500mL)
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500pL of glacial acetic acid was added to 499.5mL of deionised water, methanol or 

acetonitrile. The solution was stored at room temperature for up to 2 months.

• 0.1% Formic Acid in Water/Methanol (500mL)

500pL of formic acid was added to 499.5mL of deionised water, methanol or 

acetonitrile. The solution was stored at room temperature for up to 2 months.

• lOmM Ammonium Formate (pH 3/pH 4) (500mL)

450mL of deionised water was added to 0.315g of ammonium formate in a 

volumetric flask. The pH was adjusted with formic acid to the required pH. The 

volume was made up to 500mL and stored at room temperature for 2 months.

• 20mM Ammonium Formate (pH 4) (500mL)

450mL of deionised water was added to 0.63 lg  of ammonium formate in a 

volumetric flask. The pH was adjusted to pH 4 with formic acid. The volume was 

made up to 500mL and stored at room temperature.

• 5mM Ammonium Formate (pH 3) (500mL)

450mL of deionised water was added to 0.158g of ammonium formate in a 

volumetric flask. The pH was adjusted to pH 3 with formic acid. The volume was 

made up to 500mL and stored at room temperature.

5.3.3 Instrumentation

LC-MS/MS analysis was performed on a Varian 1200L triple quadrupole mass 

spectrometer equipped with an atmospheric pressure ionisation source via an 

electrospray interface, ProStar 410 autosampler, and ProStar 210 isocratic solvent 

delivery modules. The MS was operated in positive ion multiple reaction monitoring 

(MRM) mode. The collision gas was 99.999% pure argon, purchased from Argo 

International (Basildon, UK).

191



The HPLC columns were manufactured by Agilent and purchased from Crawford 

Scientific (Lanarkshire, Scotland, UK) and included the Eclipse XDB-Phenyl (150 x 

2.1mm, 5pm), ZORBAX Eclipse Plus C18 (150 x 2.1mm) in 5pm and 3.5pm, and 

ZORBAX Eclipse Plus C8 (150 x 2.1mm, 3.5pm).

5.3.4 LC-MS/MS Parameters

The LC-MS/MS was initially set up according to the manufacturer’s recommendations. 

The drying gas was nitrogen and was maintained at 300°C with a constant pressure of 

18psi. The capillary, shield, and needle voltage were set at 70V, 600V, and 5000V 

respectively. The mobile phase flow rate was set at 0.25mL/min. The column oven 

temperature was set at 40°C.

5.3.5 Fragment Elucidation

A 1 pg/mL standard solution of each analyte was directly infused into the MS ion source 

using a syringe infusion pump at a flow rate of 50pL/min. The detector was turned on 

and the ion with the greatest intensity was identified as the protonated molecular ion, 

this was confirmed by comparison to the known molecular weight of the analyte. The 

CID gas was turned on to generate the product ions and the collision cell was set to scan 

the collision energy range. The optimum collision energy for each product ion was 

established as the energy which produced the greatest ion abundance.

Two product ions for each analyte and one for each internal standard were selected 

based on their abundance. The product ions and the optimum collision energies for the 

ten compounds are displayed in Table 5:2.
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Compound Precursor Ion —> 

Product Ion (m/z)

Collision 

Energy (eV)

AEME 182-122 14.5

182-118* 19.0

AE 168-122 15.0

168-91* 20.5

EME 2 0 0 -  182* 13.0

2 0 0  -  82 2 1 . 0

EME-d3 2 0 3 -  185* 13.0

Benzoylecgonine 2 9 0 -  168* 14.5

2 9 0 -  105 24.5

Benzoylecgonine-d3 2 9 3 -  171* 14.5

Cocaine 3 0 4 -  105 26.0

3 0 4 -  182* 15.0

Cocaine-d3 3 0 7 -  185* 15.0

Cocaethylene 318-196* 15.0

3 1 8 -1 5 0 20.5

Cocaethylene-d3 321 -  199* 14.5

Table 5:2 Product ions and optimum collision energies

Quadrupole 1 was set to select ion monitoring (SIM) mode to pass only the protonated 

molecular ions through to the collision cell. The specific collision energies for each 

fragment ion were set in the collision cell, and quadrupole 3 was set in SIM mode to 

pass only the selected product ions through to the detector.

The product ions used for quantitation are denoted by an asterisk in Table 5:2, the 

others were used as qualifier ions.
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5.3.6 Mobile Phase and Column Selection

The objective of any chromatographic method is to achieve optimal separation of the 

analytes with the shortest possible run time. Four LC columns and eleven mobile phases 

were compared for selectivity and efficiency. The details of the columns used can be 

found in section 5.3.3, and the different mobile phases tested are described in section 

5.3.2.2. The mobile phase flow rate was set to 0.25mL/min. The columns were selected 

based on those most commonly used for the analysis of cocaine. Two Cl 8 columns with 

different particle sizes were compared.

Columns were equilibrated for 20 minutes prior to each new mobile phase followed by 

the injection of a solvent blank at the start of each run. Drug solutions were prepared in 

the appropriate mobile phase and injected onto the column. Comparisons were made 

based on peak area and retention time.

5.3.7 Optimising Analyte Separation

Gradient elution has proved to be useful in the separation of compounds which span a 

relatively wide polarity range, separations are achieved more quickly and with better 

efficiency [13]. Due to the unknown hydrophobicity of all the analytes a simple linear 

mobile phase gradient was first adopted, the gradient composition is detailed in Table 

5.3. Manipulation of the gradient was subsequently performed to provide optimal 

separation and analysis time.

Time (minutes) % Mobile Phase A % Mobile Phase B

0 95% 5%

19 5% 95%

2 0 95% 5%

1 30 95% 5%

Table 5:3 Mobile phase gradient composition 
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5.3.8 Optimisation of Instrument Parameters

Instrument parameters were adjusted to establish settings which provided optimal 

ionisation of the analytes. Drying gas temperature was tested in 50°C increments from 

100°C to 400°C. Needle voltage was tested in 500V increments from 3000V up to 

6000V. Capillary voltage was increased from 50V to 90V in 5V increments and then 

from 90V to 100V. The shield voltage was increased from 100V to 700V in 100V 

increments.

Each parameter was assessed based on peak area for an un-extracted standard.

5.3.9 LC-MS/MS Method Validation

Method validation was carried out using oral fluid samples extracted using the 

optimised SPE method described in chapter 4.

5.3.9.1 Linearity

Very high concentrations of analyte can cause partial or total saturation of the stationary 

phase [21], therefore it is important to establish linearity. The linearity of the method 

over the working range of 0-360ng/mL was assessed using 4 separately prepared 

standard curves. Calibration curves were prepared using 200pL of negative oral fluid, 

drug standard, and 60ng/mL of internal standard. The method was deemed linear if the 

correlation of determination of the standard curve was greater than 0.99 [22].
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5.3.9.2 Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The LOD and LOQ of the assay were determined by the analysis of negative oral fluid 

spiked at concentrations 0, 0.5, 1, 2, 3, and 4ng/mL using the lOng/mL working drug 

standard. The experiment was repeated on three different days. The LOD was 

determined as the lowest concentration at which the method could reliably differentiate 

the analyte peak from background noise, where a signal to noise ratio was equal to or 

greater than 3 [23]. The LOQ was determined as the lowest concentration of analyte 

which can be quantitatively determined with acceptable precision and accuracy (<2 0 %). 

Quantification below the LOQ is by definition not acceptable and can only produce 

semiquantitative or qualitative data.

5.3.9.3 Precision and Accuracy

Three concentrations within the linear calibration range (21, 60 and 120ng/mL) were 

analysed five times within an analytical run to evaluate the intra-assay precision. The 

assay was repeated over three runs to assess the inter-assay precision. The precision of 

the method was expressed as the % CV of replicate analyses. Acceptable precision is 

<15% or 20% near the LLOQ [24].

Accuracy was assessed by calculating the percent deviations of the observed mean 

values from the respective true values for each concentration of spiked sample. 

Acceptable accuracy should be within 15% of the theoretical value, or within 20% near 

the LLOQ [24]. The calculation is as follows:

Accuracy = (mean measured value - true value) X 100 
true value

196



5.3.9.4 Robustness

The robustness of the method was investigated by assessing variation of peak retention 

times, ion intensity ratios, and assay drift throughout the run.

The variation of the retention time should be within 4%. The ion ratios for an analyte, 

measured as the peak area of a qualifier ion divided by the peak area of the target ion, 

should be within 20% of the average [25]. The drift of the assay was assessed by 

placing the 21ng/mL spiked sample at the beginning and end of the run. This determines 

if  an analytical run could be reanalysed in case of unexpected delay in the analysis, such 

as instrument failure [26]. The assay drift should not be greater than 10%.

5.3.9.5 Selectivity

Selectivity is the ability of a method to measure unequivocally and differentiate the 

analyte in the presence of components which may be expected to be present such as 

metabolites, impurities, degradants and matrix components. To prove lack of response 

in negative matrix, 48 samples collected from non cocaine users were analysed.

5.3.9.6  Recovery and Ion Suppression

Recovery was determined at three concentrations within the linear calibration range (21, 

60 and 120ng/mL). The first set of samples were spiked prior to extraction, the second 

set were spiked after sample extraction, and the third set were un-extracted standards. 

Analysis was performed in triplicate on three different days. Absolute recovery was 

calculated from the average peak areas obtained from set one and set three.

Ion suppression from the use of oral fluid samples was assessed by comparing sets two 

and three.
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5.4 Results and Discussion

5.4.1 Mobile Phase and Column Selection

The column and mobile phase combination chosen should ideally provide adequate 

retention of the more polar analytes, baseline separation of the peaks, and optimal 

ionisation. Faster elution times can be achieved by adjusting the column and mobile 

phase composition [10]. Assessment of each variable is based on the retention time and 

peak area response.

The first experiments were carried out using methanol or acetonitrile as the organic 

mobile phase, and water as the aqueous mobile phase. The organic and aqueous mobile 

phase pH was also modified with 0.1% acetic acid. The different combinations of 

organic and aqueous mobile phases used are listed in Table 5:4.

Aqueous Mobile Phase Organic Mobile Phase

Combination 1 

Combination 2 

Combination 3 

Combination 4 

Combination 5 

Combination 6

Water

0.1% Acetic Acid in Water 

0.1% Acetic Acid in Water 

Water

0.1% Acetic Acid in Water 

0.1% Acetic Acid in Water

Methanol

Methanol

0.1% Acetic Acid in Methanol

Acetonitrile

Acetonitrile

0.1% Acetic Acid in Acetonitrile

Table 5:4 Mobile phase combinations applied

The highest analyte retention was achieved using the phenyl followed by the Ci8 and 

finally the Cg. There was no significant difference between the two different Cig 

columns. The differences in analyte retention can be attributed to the molecular 

interactions and non-polar properties of the columns. The Cs column has the shortest
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hydrocarbon chain and as a result has fewer hydrophobic interactions compared to the 

Cis columns. The phenyl column however has additional molecular interactions which 

offer additional retention of the analytes [27, 28].

The first analyte to elute was either AE or EME and the retention times were greater 

than 2 minutes using the phenyl column compared to 1.5-1.7 minutes for the other 

columns. Similar studies have failed to retain EME using a cyano column or various 

types of Ci8 column [2]. It is important for increased sensitivity that analytes elute after 

2 minutes. Ion suppression from interfering compounds is often observed with analytes 

which elute within the first two minutes.

In each case the last analyte to elute was cocaethylene. AEME was often the third 

analyte to elute, while the elution order of cocaine and benzoylecgonine changed 

depending on the type of column and the mobile phase combination used. Tables 5:5 to 

5:8 show the analyte retention times for each column using the six different mobile 

phase combinations. The representative chromatograms for each column using mobile 

phase combinations 3 and 6  are shown in Figure 5:1.

The use of acetonitrile instead of methanol as the organic phase reduced the retention 

times of most of the analytes by 2-3 minutes. There was no significant difference shown 

for the early eluting analytes AE and EME.
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Figure 5:1 LC-MS/MS MRM chromatograms o f (A) EME, (B) AE, (C) AEME, (D) 

benzoylecgonine, (E) cocaine, (F) cocaethylene using (1, 5) C l 8  column 3.5 pm 

diameter, (2, 6 ) C18 column 5 pm diameter, (3, 7) C8  column, (4, 8 ) phenyl column. 

The mobile phase was 0.1% acetic acid in the aqueous and organic mobile phase with 

methanol (1-4) and acetonitrile (5-8).
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Cocaine and cocaethylene consistently produced the largest peak area, and AE 

consistently produced the smallest. It is hypothesised that as the concentration of 

organic solvent in the mobile phase is increased the ESI-MS signal increases due to 

more efficient desolvation in the ESI process compared to water [1, 29]. As cocaine and 

cocaethylene are the last two analytes to elute from the column the high percentage of 

organic phase may be a reason for their large peak area. The peak areas produced with 

each mobile phase are presented in Figures 5:2 to 5:5, the graphs relate to each column 

type.

The addition of an organic acid controls the pH of the mobile phase, improves peak 

shape and resolution, and can change the hydrophobicity of the analyte [30], as well as 

increase ionisation of the analytes [1]. The acid can neutralise the charge on any 

residual exposed silica on the stationary phase and act as ion pairing agents to neutralise 

charge on the analyte. The use of acetic acid in the mobile phase produced marked 

increases in the analyte peak areas.

In general the analyte peak areas were greater when methanol was used as the organic 

mobile phase. This is contrary to the findings of Jeanville et al who showed 

approximately 50% reduction in sensitivity for EME and cocaine when switching from 

acetonitrile to methanol [1].

202



2 .0 0 E + 0 9

1 .6 0 E + 0 9

8 .0 0 E + 0 8

4 .0 0 E + 0 8

□  M obile P h a s e  1 

M obile P h a s e  2

□  M obile P h a s e  3

□  M obile P h a s e  4 

M obile P h a s e  5

□  M obile P h a s e  6

i fjrfln Jren
AEM E

Analytes

Figure 5:2 Comparison o f analyte peak area with different mobile phase combinations

using a C i8 column with 3.5pm diameter

2 .0 0 E + 0 9  t

□  M obile P h a s e  1

■  M obile P h a s e  2

□  M obile P h a s e  3

□  M obile P h a s e  4

■  M obile P h a s e  5

□  M obile P h a s e  6

1 .2 0 E + 0 9

8 .0 0 E + 0 8

4 .0 0 E + 0 8

0 .0 0 E + 0 0 1r l f l r  r f f l T l
AEM E EM E BZE

Analyte

Figure 5:3 Comparison o f analyte peak area with different mobile phase combinations

using a Cig column with 5pm diameter 
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Although the LC column simply acts to retain the analytes and has no effect on the 

ionisation, it was observed that the peak areas produced when using the phenyl column 

were significantly larger than the other columns particularly for cocaine and 

cocaethylene.

Resolution is the parameter that describes the separation power of the chromatographic 

system and is expressed as the ratio of the distance between two peak maxima to the 

mean value of the peak width at the base line. If the ratio is less than 1 the analyte peaks 

overlap, a ratio > 1 . 0  indicates the two peaks overlap by approximately 2 % and is 

usually considered acceptable, whereas a ratio >1.5 indicates the peaks are completely 

resolved otherwise known as baseline resolution [28].

There was always baseline resolution between cocaethylene and its neighbouring peak. 

This was the same for AEME on all but one occasion where it eluted around the same 

time as benzoylecgonine. AE and EME eluted close together as did benzoylecgonine 

and cocaine. The resolution ratios of these peaks are displayed in Figure 5:6.

When acetonitrile was used as the organic mobile phase, AE and EME were not 

resolved using any of the columns, however the benzoylecgonine and cocaine peaks 

were completely resolved when acetic acid was added. When methanol and acetic acid 

were used a resolution of >1 was achieved for AE and EME in all but the Cs column. 

Resolution of the benzoylecgonine and cocaine peaks was low using all the columns 

apart from the phenyl column where baseline separation was achieved.
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Figure 5:6 Resolution ratios o f AE and EME, and benzoylecgonine and cocaine using 

different mobile phases and HPLC columns

A study attempting to separate two pharmaceutical analytes o f similar polarities found 

that they were only successfully separated using a phenyl column compared to a Cig, 

this was attributed to the additional molecular interactions occurring with a phenyl 

column. The organic phase used was also found to be important as separation was only 

achieved using methanol and not acetonitrile. It is suggested that the use o f acetonitrile 

suppresses the molecular interactions [21].

Phenyl columns are good for the separation o f complex mixtures [28], and have shown 

higher retention and enhanced resolution in the analysis o f drugs o f abuse [31].

The phenyl column provided increased retention for the early eluting compounds and

greater resolution between the closely eluting analytes, so was selected for assessment

o f additional mobile phases. Methanol was chosen as the organic mobile phase based on
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the greater peak areas produced and improved resolution of all analytes when using the 

phenyl column.

Mobile phase combination 3 was used for comparison. The new organic phase used was 

methanol with 0.1% formic acid. The different aqueous phases contained either 0.1% of 

formic acid or various concentrations of ammonium formate adjusted to either pH 3 or 4 

using formic acid. The different aqueous mobile phases used are listed in Table 5:9.

Aqueous Mobile Phase

0.1% Formic Acid in Water 

lOmM Ammonium Formate pH4 

20mM Ammonium Formate pH4 

lOmM Ammonium Formate pH3 

5mM Ammonium Formate pH3

Table 5:9 Aqueous mobile phase compositions

The chromatograms produced using each mobile phase are shown in Figure 5:7, and the 

representative peak areas are displayed in Figure 5:8. The use of formic acid improved 

ionisation compared to using acetic acid, however it was the use of ammonium formate 

which proved to be superior. Similar findings in the analysis of cocaine and its 

metabolites have been published [1]. There was no significant change in the analyte 

retention times using the different mobile phases.
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Figure 5:7 LC-MS/MS MRM chromatograms o f (A) EME, (B) AE, (C) AEME, (D) 

benzoylecgonine, (E) cocaine, (F) cocaethylene using a phenyl column. The mobile 

phase was 0.1% acetic acid (1), 0.1% formic acid (2), ammonium formate lOmM pH 4 

(3), 20mM pH 4 (4), lOmM pH 3 (5), and 5mM pH 3 (6 )
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Figure 5:8 Comparison o f analyte peak areas using different concentrations o f 

ammonium formate and formic acid

The use o f ammonium formate at lower molar concentrations provided improved 

ionisation. The use o f 5mM ammonium formate produced the largest peak areas for AE, 

cocaine and cocaethylene however the SD o f the replicate analyses were high for most 

o f the analytes. The correlation between ionisation and molar concentrations o f 

ammonium formate is unclear. Some authors found that lower concentrations increase 

ionisation [29], while others showed the opposite [1], or no significant effect [18]. H alf 

o f the analytes showed an improvement when pH 3 lOmM ammonium formate was 

used versus pH 4.

These experiments led to the selection o f the phenyl column with an organic mobile 

phase o f 0.1% formic acid and an aqueous mobile phase o f lOmM ammonium formate 

at pH 3.
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5.4.2 Gradient Elution Optimisation

Some of the metabolites of cocaine are highly polar, therefore low concentrations of 

organic solvent must be used to provide adequate retention of the analytes [29]. The 

gradient was started at 5% organic solvent so the hydrophobic hydrocarbon chains were 

exposed, at 0 % they would be flattened to the silica particle and therefore not available 

for capturing analyte.

When first performing a reversed phase separation of a complex sample, a broad linear 

gradient should be used to determine where the analytes will elute. In this case the 

gradient was increased to 95% organic phase. The amount of organic phase required to 

elute each analyte was estimated and is shown in Table 5:10 along with the retention 

times.

Analyte Retention 

Time (minutes)

Organic Phase

(%)

EME 2.175 15.3

AE 2.583 17.2

AEME 5.33 30.3

Benzoylecgonine 11.054 57.4

Cocaine 11.772 60.8

Cocaethylene 12.823 65.8

Table 5:10 Percentage organic mobile phase required to elute each analyte

Cocaethylene was the last analyte to elute and required approximately 6 6 % organic 

mobile phase. Stopping the gradient increase at 75% organic mobile phase allowed for 

the total analysis time to be reduced by 4 minutes. The time taken to return to 5% 

organic was reduced to 30 seconds and column equilibration was reduced to 7 minutes, 

this reduced the run time by an additional 3 and a half minutes making the total run time
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22.5 minutes. The retention times, percentage of organic mobile phase, and resolution 

ratios for the new gradient are displayed in Table 5:11.

Analyte Retention Time 

(minutes)

Organic Phase

(%)

Resolution Ratio

EME 2.08 14.8 N/A

AE 2.482 16.7 1 . 2

AEME 5.128 29.1 8 . 0

Benzoylecgonine 11.003 56.7 16.8

Cocaine 11.448 58.8 1 . 2

Cocaethylene 12.486 63.7 2.7

Table 5:11 Summary of data for gradient elution with 75% final composition organic

mobile phase

The final percentage of organic mobile phase was reduced further to 65% at 14 minutes. 

This reduced the total run time by an additional one minute. A summary of the retention 

times, percentage of organic mobile phase, and resolution ratios are displayed in Table 

5:12.

Analyte Retention Time 

(minutes)

Organic Phase

(%)

Resolution Ratio

EME N/A
2 . 0 2 2 12.9

AE 2.445 14.6 1 . 2

AEME 5.044 24.8 7.4
Benzoylecgonine 11.926 51.9 19.1
Cocaine 12.364 53.6 1 . 2

Cocaethylene 13.597 58.4 3.2

Table 5:12 Summary of data for gradient elution with 65% final composition organic

mobile phase 
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Both gradients provided resolution ratios of >1, the second gradient was shorter and so 

was selected for method development. While baseline resolution (>1.5) of all peaks is 

ideal it is less necessary in LC-MS/MS as long as the unresolved peaks have different 

m/z values or produce fragment ions of different masses [18] which in this case they do

As the analytes eluted in three distinct time bands three segments were introduced into 

the MRM programme. This allowed the MS to scan for fewer ions at each time point 

thereby increasing the sensitivity of the method. AE and EME were grouped into 

segment 1, AEME was in segment 2, and benzoylecgonine, cocaine, and cocaethylene 

were in segment 3.

5.4.3 Optimisation of Instrument Parameters

The effect of needle voltage on ionisation of the analytes is shown in Figures 5:9 and 

5:10. Increasing the needle voltage appears to have no significant effect on the peak 

areas of AE, EME, AEME or benzoylecgonine. Cocaine and cocaethylene peak areas 

show a gradual decline across the range.
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Figure 5:9 Optimisation o f needle voltage for AE, AEME, and EME
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Figure 5:10 Optimisation o f needle voltage for benzoylecgonine, cocaine, and

cocaethylene
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Due to the absence o f clear optimum needle voltage for all o f the analytes the 

instrument default setting o f 5000V was selected.

The drying gas temperature was started at 100°C as temperatures below this do not 

allow efficient evaporation o f the solvent from the column eluant and result in a build 

up o f  liquid in the ion source. The results displayed in Figure 5:11 show that increasing 

the drying gas temperature produced an increase in analyte peak areas up to 200-3 00 °C 

after which they gradually declined. A drying gas temperature o f 250°C was selected as 

it provided a suitable compromise for all the analytes.

AE AEM E C O C ■CE

9 .0 0 E + 0 7 - r  4 .5 0 E + 0 8

I.0 0 E + 0 7 4 .0 0 E + 0 8

7 .0 0 E + 0 7 3 .5 0 E + 0 8
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5 .0 0 E + 0 7 2 .5 0 E + 0 8

4 .0 0 E + 0 7 2 .0 0 E + 0 8

3 .0 0 E + 0 7 1 .5 0 E + 0 8

2 .0 0 E + 0 7 1 .0 0 E + 0 8

1 .0 0 E + 0 7 5 .0 0 E + 0 7

O.OOE+OO 0 .0 0 E + 0 0
150 200100 2 5 0

Drying Gas Tem perature ( C)

3 00 3 5 0 4 0 0

Figure 5:11 Effect o f drying gas temperature on ionisation o f AE, AEME, EME, 

cocaine, cocaethylene and benzoylecgonine

Each analyte may have an optimum capillary voltage at which maximum ionisation is 

achieved without fragmentation o f the ion. An increase in the capillary voltage from
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50V to 55V produced an increase in analyte peak area as shown in Figure 5:12. Further 

increases in capillary voltage produced gradual decreases in analyte peak area.

AE AEM E C O C C E

S.00E+07  T  4 .5 0 E + 0 8

j  4.00E+087 .0 0 E + 0 7

-■ 3.50E+08
i.OOE+07
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S 5.00E+07

-- 2.50E+08

S 4.00E+07

-- 2 .0 0 E + 0 8

S  3.00E+07
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2 .0 0 E + 0 7
-■ 1.00E+08

1 .0 0 E + 0 7
-- 5 .0 0 E + 0 7

0.00E+00 0 .0 0 E + 0 0

1 00

Capillary Voltage (V)

Figure 5:12 Effect o f capillary voltage on ionisation of AE, AEME, EME, 

benzoylecgonine, cocaine, and cocaethylene

As the capillary voltage increases the energy applied to the analyte ions increases 

causing fragmentation in the ion source. As a result less molecular ions pass through to 

the collision cell for fragmentation causing a decrease in the ion signal.

The capillary voltage was therefore set to 55 V.

The results displayed in Figure 5:13 and 5:14 show that increasing the shield voltage 

produced an increase in analyte peak areas up to 400-500V after which they gradually 

declined. Based on these results a shield voltage o f 500V was chosen.
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Figure 5:13 Effect o f shield voltage on ionisation o f cocaine, cocaethylene,

benzoylecgonine and AEME
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Figure 5:14 Effect o f shield voltage on ionisation o f EME and AE
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5.4.4 Validation Data

Method validation is required to demonstrate the performance of a method and the 

reliability of analytical results [32].

The method was first assessed by establishing the linearity of extracted calibration 

curves over the range of 0-360ng/mL for each analyte, see Table 5:13. Calibration 

curves were produced from the ratios of analyte peak area to its internal standard. All 

the analytes produced good linearity with coefficient of determinations greater than 

0.99, with the exception of AE which failed to produce a linear curve. At this point AE 

was excluded from further validation experiments as accurate quantitative results would 

not have been possible.

Analyte Range (ng/mL) Coefficient of Determination

Mean SD (n=4)

EME 0 - 3 6 0 0.9980 0 . 0 0 1 2

AEME 0 - 3 6 0 0.9968 0.0015

Benzoylecgonine 0 - 3 6 0 0.9983 0 . 0 0 1 1

Cocaine 0 - 3 6 0 0.9988 0.0006

Cocaethylene 0 - 3 6 0 0.9976 0.0017

Table 5:13 Calibration curve linearity data

Three analytical runs were performed to establish the LOD, LOQ, precision, accuracy, 

and robustness of the method. The LOD and LOQ for each analyte are displayed in 

Table 5:14. The results are favourable compared to other oral fluid LC-MS methods for 

the analysis of cocaine which state 0.2-5ng/mL LOD and 0.9-1 Ing/mL LOQ [7, 9, 16, 

17].
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Analyte LOD (ng/mL) LOQ (ng/mL)

EME 1 2

AEME 0.5 1

Benzoylecgonine 1 2

Cocaine 1 2

Cocaethylene 1 2

Table 5:14 LOD and LOQ of LC-MS/MS method

The LOQ can be further separated into the upper limit of quantitation and the lower 

limit of quantitation, which represent the concentration of the highest and lowest 

calibrations standards which in this case is 5ng/mL and 360ng/mL.

The goal of quantitative analysis is to determine with accuracy and precision how much 

analyte is present in a sample. Precision is the closeness of agreement between a series 

of measurements obtained from multiple sampling of the same homogenous sample. 

Accuracy describes the closeness of mean test results obtained to the true concentration 

of the analyte [24]. Very good inter-assay precision (1.9-7.1%), and intra-assay 

precision (1.4-4.9%) were obtained across the different concentrations. The results are 

an improvement of previously published methods which range from 4-23% [7, 9, 16]. 

The accuracy of the results was 0.1-16%, the highest % bias was produced by 

benzoylecgonine. The data is displayed in Table 5:15.

218



Analyte

Inter-assay Precision 

(n=15)

Intra-assay Precision 

(n=5)
Accuracy

Mean

Concentration

(ng/mL)

SD

(ng/mL)

CV

(%)

Mean

Concentration

(ng/mL)

SD

(ng/mL)

CV

(%)
% Bias

EME 19.8 0.9 4.4 19.8 0.8 4.1 -5.9

60.5 2.1 3.5 60.6 2.0 3.4 0.9

117 3.4 2.9 117 3.2 2.7 -2.5

AEME 21.2 1.5 7.1 21.2 0.75 3.6 1.0

60.6 3.8 6.3 60.6 2.3 3.8 0.1

113.3 6.1 5.4 113.3 3.7 3.2 -5.6

Benzoylecgonine 24.4 1.3 5.2 24.4 1.2 4.9 16.0

69.1 2.9 4.2 69.1 2.4 3.4 15.2

135.7 4.0 2.9 135.7 2.9 2.1 13.1

Cocaine 20.0 0.9 4.7 20.1 0.9 4.5 -4.5

61.4 1.4 2.3 61.4 1.2 2.0 2.4

118.8 3.1 2.6 118.8 2.1 1.8 -1.0

Cocaethylene 21.3 1.0 4.7 21.3 0.97 4.6 1.3

62.5 1.2 1.9 62.5 0.9 1.4 4.2

121.4 3.4 2.8 121.4 2.8 2.3 1.2

Table 5:15 Intra-assay and inter-assay precision, and accuracy of cocaine and its 

metabolites at different concentrations in oral fluid

The retention times and ion intensities were assessed across each run and the results are 

shown in Tables 5:16 and 5:17. The retention times were very close with % CV within

0.6%, and the ion ratios were within 7.6%.

The results of the assay drift showed very little change in the drug concentration with 

good accuracy values of 1.9% (Table 5:18).
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Analyte
Mean Retention 

Time (min)
SD CV (%)

EME 2.45 0.014 0.59

AEME 5.94 0 . 0 2 0.34

Benzoylecgonine 11.43 0.019 0.17

Cocaine 12.36 0.015 0 . 1 2

Cocaethylene 13.41 0 . 0 1 0.07

Table 5:16 Retention time variation data

Analyte Ion transition 
1 (IT1)

Ion transition 
2 (IT2)

Mean Ratio 
(IT2 as %  of 

IT1)

SD
(%)

CV
(%)

EME 200—>182 200—>82 44.1 1.7 3.9

AEME 182—>118 182—>-122 75.3 2.5 3.3

Benzoylecgonine 290—>168 290—>105 26.4 2 . 0 7.6

Cocaine 304—>182 304—>105 11.5 0 . 6 5.0

Cocaethylene 318—>196 318—>150 8 . 8 0.4 4.5

Table 5:17 Ion intensity variation data

Analyte D rift (%)

21 ng/mL 60 ng/mL 120ng/mL

EME -1.7 1 .6 1.4

AEME -0 . 1 1.9 1.4

Benzoylecgonine 2.7 3.1 -0.5

Cocaine - 1 . 8 1 . 6 1 . 6

Cocaethylene 0.7 0 . 2 1.9

Table 5:18 Assay drift data
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The analysis of 48 oral fluid samples from non cocaine users produced negative results. 

The method showed good selectivity as there were no interfering peaks present in the 

chromatograms.

Extraction recoveries based on samples spiked prior to extraction and un-extracted 

samples were evaluated and the data is shown in Table 5:19. The average recoveries 

were as follows, EME 53.6%, AEME 88.3%, benzoylecgonine 99.1%, cocaine 72.9%, 

and cocaethylene 72.1%. The results are similar to those previously reported. EME has 

reasonably low recovery due to its polar functional group, recoveries of approximately 

40-45% have been reported [20, 25, 33, 34], Although high recovery is desirable it is 

not needed to provide good accuracy and precision if adequate detection is attained [2 2 ].

Analyte Absolute Recovery

21 ng/mL 60ng/mL 120ng/mL

Average SD

(N=3)

CV

(%)

Average SD

(N=3)

CV

(%)

Average SD

(N=3)

CV

EME 50.4 3.3 6.5 59.9 5.4 9.0 50.5 4.6 9.2

AEME 90.5 4.3 4.8 96.8 8.4 8.7 77.7 6.4 8 . 2

Benzoylecgonine 106 4.5 4.2 101.5 5.5 5.4 89.9 10.3 11.4

Cocaine 71.2 2 . 1 2.9 78.6 4.3 5.5 68.9 3.9 5.77

Cocaethylene 6 8 . 2 7.2 10.5 81.9 4.3 5.2 6 6 . 1 4.9 7.4

Table 5:19 Absolute recovery of extracted samples

The presence of biological material can result in ion suppression at the ion source, this 

was investigated by comparing the results of samples spiked after extraction and un

extracted samples. The results are displayed in Table 5:20. The average recoveries were 

as follows, EME 100.3%, AEME 104%, benzoylecgonine 98.7%, cocaine 89%, and

cocaethylene 79.8%. This indicates that there is no ion suppression for EME, AEME, or
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benzoylecgonine using oral fluid specimens. The recoveries were lower for cocaine and 

cocaethylene suggesting a small degree of ion suppression towards the end of the 

analytical run.

The use of an isotopically labelled internal standard corrects any ion suppression effect 

experienced [23].

I I  Analyte Recovery - Ion Suppression

21 ng/mL 60ng/mL 120ng/mL

Average SD

(N=3)

CV

(%)

Average SD

(N=3)

CV

(%)

Average SD

(N=3)

CV

(%)

EME 93 4.4 4.8 112.3 7 6 . 2 96.4 4.5 1 . 0

AEME 1 0 2 . 8 7.1 6.9 116.1 7.6 6.5 93 1 4.7

Benzoylecgonine 96.8 8.5 8.7 108.2 15.5 14.3 91.1 6.5 7.1

Cocaine 83.3 4.1 4.9 1 0 2 . 1 13.3 13 81.7 4.5 5.5

Cocaethylene 73.7 7.1 9.7 91.7 9.1 9.9 74 3.2 4.3

Table 5:20 Assessment of ion suppression using spiked oral fluid samples 

5.5 Conclusion

This chapter documents the development of a quantitative LC-MS/MS method for the 

analysis of cocaine, benzoylecgonine, cocaethylene, AEME, and EME in oral fluid. The 

column, mobile phase and instrument parameters were all optimised to give improved 

analyte ionisation and separation. The validation data summarised meets the required 

acceptance criteria and demonstrates that the method is sufficiently reproducible, robust 

and sensitive to carry out routine analysis of oral fluid samples.

The application of this method to clinical samples is discussed in the following chapter. 

Cocaine and its metabolites pose difficulties in their analysis due to their chemistry 

ranging from polar (acidic and basic) to non polar. A compromise is often met in order
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to analyse all compounds within one analytical method. In this case the compromise 

was the decision to exclude AE from the method. The main reason was based on the 

lack of linearity for AE which would have meant that the method could only provide 

qualitative not quantitative results. The peak area for AE was considerably lower 

compared to the other analytes suggesting poor ionisation. This would reduce the 

sensitivity of the method for AE and would result in poor reproducibility. Other 

problems associated with the analysis of AE were the low extraction recoveries as 

detailed in chapter 4.

Further investigations are required to discover an appropriate chromatographic system 

which will allow AE to be accurately analysed either separately or simultaneously with 

other analytes.
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6 Analysis of Clinical Samples for the Presence of Cocaine,

its Metabolites and Pyrolysis Products

6.1 Aims and Objectives

The aim of this chapter is to analyse a large number of oral fluid samples from self 

declared cocaine hydrochloride and crack cocaine users. The samples will be screened 

using the newly developed AEME EIA and confirmed for the presence of cocaine, 

cocaethylene, benzoylecgonine, EME and AEME using liquid chromatography tandem 

mass spectrometry (LC-MS/MS).

The results will be used to establish an optimum cutoff concentration for the AEME 

EIA, and provide much needed information on the concentrations and relative detection 

times of AEME in oral fluid.

6.2 Introduction

The majority of published studies which report concentrations of abused drugs in 

biological fluids relate to controlled dose administration of drug. While this is a useful 

way of studying the pharmacokinetics and pharmacodynamics of a particular drug it 

does not accurately reflect real life cases where individuals may be using drugs 

frequently, which vary in purity and dose. In these situations the concentration of drug 

tends to be higher and have a longer window of detection than following controlled 

dose administration. For ethical reasons the frequent administration of high doses of 

drug in a controlled environment is not possible, therefore biological samples must be 

obtained from a drug using population. To enable a proper interpretation of data and 

estimation of detection times an accurate history of drug use is essential and therefore 

requires cooperation from the drug user to provide this information.
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A disadvantage of relying on self reported use is the inaccuracy and bias associated with 

it. If it is perceived that negative consequences, such as cessation of treatment or legal 

consequences, will be associated with reporting certain activities then the respondents 

may feel compelled to conceal the truth [1]. A 32% discrepancy between urine sample 

positives for cocaine and self report data was observed from a population of homeless 

persons. Half of this study population were guaranteed access to therapy and housing 

subject to abstinence from cocaine [2 ].

Individuals with a prior history of drug treatment or those who have been in contact 

with the criminal justice system are more likely to report their drug use accurately [3], 

while individuals who lead more socially acceptable lifestyles are more likely to under

report their drug use [4].

Higher rates of agreement were found between self report data and urinalysis for 

patients upon entry to treatment, the rate of agreement declined after intake with 

underreporting more common [5]. When patients were categorised into groups relative 

to their frequency of attendance at a drug treatment clinic it was found that there was 

poorer concordance between self-report and urinalysis for patients attending the clinic 

more frequently. It was concluded that older subjects have a tendency to be more honest 

[6 ] as well as those who have spent more money on drugs [3].

Recollection of drug consumption may be impaired by the duration of time since use, 

and the possible concurrent use of other psychoactive drugs that may impair the 

memory [7].

Drug use is usually reported as the amount of drug used, for example in grams or 

number of pills, or in the amount of money spent [7]. This information can be 

problematic as the subject may be a poor judge of weight, but more importantly the 

purity of the drug purchased on the street is unknown and may change frequently. This
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issue was highlighted in a study in the US where individuals self reported the use of 

ecstasy within two to three days prior to testing, only 20% tested positive for MDMA. 

However 65% of this population tested positive to metamfetamine [4]. Collecting 

information relating to monetary value has its disadvantages as prices change over time 

and may also differ significantly around the country.

Self report data with accompanying analytical results provides additional data to support 

that provided by controlled dose administration studies.

6.3 Experimental

6.3.1 Materials

The LC-MS/MS instrumentation, materials, and reagents used were as previously 

described in chapter 5. The AEME EIA used was as previously described in chapter 3.

6.3.2 Method

6.3.2.1 Clinical Specimens

Two hundred and seventy samples were obtained from the analytical laboratory at 

Cozart pic following their routine analysis for drugs of abuse. In general samples were 

selected on the basis of declared cocaine use from the donor, with the intention to 

identify two types of cocaine use, cocaine hydrochloride and crack. Of the 270 samples 

analysed a total of 229 were provided with self report information relating to the type of 

cocaine, quantity, and date consumed.

Prior to submission to the laboratory lmL of oral fluid was collected from each 

individual using the Cozart® RapiScan Collector, the oral fluid soaked sample pad was 

then inserted into the transport tube which contained 2mL of Cozart proprietary buffer.
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This collection method results in a 1:3 dilution of the sample, all concentrations noted 

are corrected for undiluted oral fluid. The samples were stored frozen following receipt 

at the laboratory and were tested within 2  months.

The samples were screened using the AEME EIA and confirmed for the presence of 

cocaine, cocaethylene, benzoylecgonine, EME, and AEME by LC-MS/MS. All 

procedures for the immunoassay, sample preparation, and confirmation by LC-MS/MS 

were as previously described in chapters 3, 4 and 5 respectively.

6 .3.2.2 Statistics

A receiver operator characteristic (ROC) analysis was carried out on the data obtained 

from the AEME EIA and LC-MS/MS methods to determine the most appropriate cutoff 

concentrations for accurate analysis of clinical samples.

The number of true positives (TP), false negatives (FN), false positives (FP), and true 

negatives (TN) were determined by comparing the AEME EIA results at various cutoff 

concentrations, to the reference method LC-MS/MS at cutoffs of 5ng/mL and lOng/mL. 

These values were used to calculate the sensitivity and specificity as follows:

Sensitivity = [TP/(TP + FN)] x 100%

Specificity = [TN/(TN +FP)] x 100%

To create the ROC curve the sensitivity is plotted against 1-specifcity for each cut off 

value. The accuracy of the test is determined by the area under the curve, the greater the 

area under the curve the greater the accuracy.

Pearson’s correlation coefficient is a measure of the linear relationship between two 

variables. The closer the value is to 1.0 the greater the correlation. The correlation 

coefficient value squared is otherwise known as the coefficient of determination, and
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gives the proportion of variance between two data sets. It represents the percent of data 

that is closest to the line of best fit.

The concentrations of AEME measured by EIA and LC-MS/MS were compared to see 

if there was any correlation between the two different methods. This was achieved by 

creating a scatter plot with the data and calculating the coefficient of determination. 

This statistical analysis was also carried out on the other analytes quantified by LC- 

MS/MS to see if there is a relationship between concentrations of cocaine and its 

metabolites.

6.4 Results and Discussion

6.4.1 AEME EIA Data Analysis

The full set of data for the AEME EIA and LC-MS/MS analysis is provided in Table 

6:3.

6 .4.1.1 Correlation

Good correlation was found between the AEME EIA and the results provided by LC- 

MS/MS. The coefficient of determination for the immunoassay across its calibration 

range 3-300ng/mL was calculated to be 0.76 (n= 157). The scatter plot can be seen in 

Figure 6:1.

The typical dose response curve of an immunoassay is sigmoidal in shape, the linear 

range is obtained around the middle of the curve and consequently are where the most 

precise measurements are obtained. Experimental errors increase towards the upper and 

lower portion of the curve [8 ]. The non linear characteristics of an immunoassay 

calibration curve means that samples containing drug concentrations outside of the
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calibration range are extrapolated from the curve and as a result the concentrations may 

vary considerably from the true value.

2 5 0 .0

y =  1.1411X  + 7 .7 8 4 1  

R 2 = 0 .7 5 6 7

200.0

1 5 0 .0

100.0

5 0 .0

0.0
0.0 5 0 .0 100.0 1 5 0 .0 200.0 2 5 0 .0

LC-M S/M S (ng/m L)

Figure 6:1 Correlation o f AEME EIA and LC-MS/MS

Correlation studies between immunoassays and confirmation analyses have been 

performed by several authors and have provided varied results. A comparison o f GC- 

MS results to the results o f four different immunoassays, for drugs o f abuse in whole 

blood, found that despite the occasional matching result, no correlation was found 

between the methods making quantitative analysis by immunoassay impossible [9 ], 

Many immunoassays are directed at classes o f drugs rather than individual analytes, 

therefore good correlation would require the confirmation method to analyse for all the 

compounds detected by the immunoassay. However due to the nature o f an 

immunoassay each analyte may have a different degree o f cross reactivity which may 

produce an overestimated or underestimated quantitative result, and as a result give low 

correlation between the screen and confirmation methods. Overestimation o f
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quantitative results has been reported more often and as a result of this a semi- 

quantitative approach to the immunoassay has been adopted [1 0 -1 2 ].

The AEME EIA has good correlation to LC-MS/MS and the reason may be that the 

assay is specific to AEME and does not cross react to cocaine or any of its other 

metabolites.

6.4.1.2 ROC Analysis

There are currently no mandatory guidelines which specify cutoff concentrations for 

immunoassay screening of drugs of abuse in oral fluid. For this reason, and the fact that 

this is a unique immunoassay, an ROC analysis was performed on the data to establish 

an appropriate cutoff.

The sensitivity, specificity, and efficiency data are presented in Tables 6:1 and 6:2.

LC/MS Cutoff 

5ng/mL

AEME Cut-off Concentration (ng/mL)

3 5 10 15 20 25 30 40 50

TP 84 82 6 8 63 56 50 46 38 37

FN 0 0 16 21 28 34 38 46 47

FP 8 6 45 14 6 1 1 0 0 0

TN 1 0 0 143 172 180 185 185 186 186 186

Sensitivity 1 0 0 1 0 0 81 75 66.7 59.5 54.8 45.2 44.1

Specificity 53.8 76.1 92.5 96.8 99.5 99.5 1 0 0 1 0 0 1 0 0

Efficiency 6 8 .1 83.3 88.9 90.0 89.3 87 85.9 83 82.6

Table 6:1 Sensitivity, specificity, and efficiency data for AEME EIA at various cutoff 

concentrations versus an LC-MS/MS cutoff of 5ng/mL

234



LC/MS Cutoff 

lOng/mL

AEME Cut-off Concentration (ng/mL)

3 5 10 15 20 25 30 40 50

TP 65 65 63 60 55 49 46 39 38

FN 0 0 2 5 10 16 19 26 27

FP 105 62 19 9 2 2 1 0 0

TN 1 0 0 143 186 196 203 203 204 205 205

Sensitivity 1 0 0 1 0 0 96.9 92.3 84.6 75.4 70.8 60 58.5

Specificity 48.8 69.8 90.7 95.6 99 99 99.5 1 0 0 1 0 0

Efficiency 61.1 77 92.2 94.8 95.6 93.3 92.6 90.4 90

Table 6:2 Sensitivity, specificity, and efficiency data for AEME EIA at various cutoff 

concentrations versus an LC-MS/MS cut-off of lOng/mL

A ROC curve was constructed from the data in Tables 6:1 and 6:2, and is shown in 

Figure 6:2. The results suggest that the most efficient screening cutoff was between 10 

and 15ng/mL of AEME in undiluted oral fluid using the lOng/mL LC-MS/MS cutoff, 

and lOng/mL EIA cutoff using the 5ng/mL LC-MS/MS cutoff.

Looking at the ROC curve it is clear that the greatest efficiency will be provided by 

employing the lOng/mL LC-MS/MS cutoff as this provided the greatest area under the 

curve.

235



15 ng /m L

1 0 n g /m L

'L C -M S  5 n g /m L  

■LC-MS 10 n g /m L

0 .4

0.2

0 .3 0 .40.2 0 .5

1-Specificity

0.6 0 .7 0 .9

Figure 6:2 ROC curve for AEME EIA versus LC-MS/MS

6.4.2 Quantitative LC-MS/MS Analysis

The full set o f results for both screening and confirmation can be seen in Table 6:3.

The samples are organised in ascending concentration o f apparent AEME from the EIA. 

A total o f 270 samples were tested by both methods, the most predominant analyte was 

benzoylecgonine contrary to the findings o f some studies [13, 14]. The reason for this 

may reside in the spontaneous hydrolysis o f cocaine to benzoylecgonine in the collected 

oral fluid sample, or alternatively may be attributed to the longer half life o f 

benzoylecgonine compared to cocaine [15]. On each occasion where EM E was 

detected, benzoylecgonine was also present. This is similar to the findings o f Kim et al 

[15].
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B arcode D rug
D eclared

Q uan tity D ays S ince  
D rug U se

A p p aren t 
A E M E  by E IA  

(ng/m L )

L C -M S/M S (ng/m L )

A E M E E M E BZE C O C CE

S702462 Crack £20 1 <3 0 3.3 41 1.2 0

S702195 Crack 1 Pipe 1 <3 0 0 27 0 0

S705540 Crack £20 3 <3 0 0 5.6 0 0

S697738 Crack 1 <3 0 4.5 11 6.7 0

S735016 Cocaine £20 2 <3 0 0 48 2.1 0

S705544 Crack £5 1 <3 0 33 154 7 0

S735562 Crack £5 1 <3 0 0 19 0 0

S776242 Crack 1 Rock 1 <3 0 7.4 24 1.6 0

S529421 Crack £40 3 <3 0 0 41 1.3 0

S644257 Cocaine £5 2 <3 0 0 15 0 0

S736170 Crack £20 1 <3 0 43 172 4 1.3

S705542 Crack £20 1 <3 0 7.2 58 2.2 2.2

S693937 Crack £5 1 <3 0 0 3.3 0 0

S737724 Cocaine £50 5 <3 0 0 0 0 0

S699482 Crack 0.2g 1 <3 1.5 29 133 4.4 0

S768695 Crack £20 1 <3 1.7 126 261 32 0

S705900 Cocaine 1 Line 2 <3 0 0 8 0 0

j S739097 Crack lg 3 <3 0 1.9 4.3 0 0

S705896 Cocaine 1 Line 3 <3 0 0 16 0 0

S694817 Crack 4 Pipes 3 <3 0 1.1 14 1.7 0

S736116 Crack £10 1 <3 0 6 36 12 0

S705756 Crack 2 Rocks 5 <3 0 0 1.5 0 0

J S632493 Crack 1 Stone 1 <3 0 0 8.8 0 0

S736433 Cocaine £40 3 <3 0 5.3 109 4.3 0

S644256 Cocaine £5 3 <3 0 0 18 0 0

S702190 Cocaine 2 Lines 2 <3 0 0 23 0 0

S693928 Crack 1 Pipe 1 <3 0 17 126 3.7 0

S706133 Crack £10 4 <3 0 3.4 18 14.7 0

S702118 Crack £10 1 <3 0 6.8 67 0 0

S693929 Crack £10 2 <3 0 0 16 0 0

S633268 Crack £20 2 <3 0 0 16 0 0

S698969 Crack £10 1 <3 0 0 41 0 0

S653859 Cocaine 2 <3 2.8 14.7 160 15 0

S706697 Cocaine 1 <3 0 28 275 32 0

S782767 Crack £20 1 <3 0 2.9 24 0 0

S641474 Crack £5 2 <3 0 7.2 42 0 0

S614055 Crack 0 <3 0 3 16 2.9 0

COZ 0879/06 <3 0 89 461 12 0

S696996 Crack 0.8g 1 <3 3.1 246 715 88 8.1

S768688 Crack £10 1 <3 0 18 104 3.6 0

, S698620 Cocaine 1 Line 2 <3 0 0 3.3 0 0

S693930 Crack £10 1 <3 0 2.4 71 1 0

S786617 Crack £20 1 <3 0 9.2 60 2.6 0

S645746 Crack £20 1 <3 0 0 14 0 0

S603058 Crack £10 2 <3 0 0 14 3.7 0

S706839 Crack £20 0 <3 0 6.5 101 2.8 0

S643631 Crack 2 <3 0 0 3.1 1.1 0

S639076 Cocaine 3g 3 <3 0 0 0 0 0

S754343 Crack £5 1 <3 0 1.3 16 0 0

S745629 Crack 1 Pipe 1 <3 1.9 70 261 56 17

S707068 Crack 2 Rocks 2 <3 0 0 11 0 0

| S610234 Crack 0.5g 2 <3 0 0 54 0 0

S638760 Cocaine 1 <3 0 8.9 61 34 0

1 S616822 Cocaine 1 Line 3 <3 0 0 23 4 0

COZ 0844/06 <3 0 0 0 0 0
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Barcode Drug
Declared

Quantity Days Since 
Drug Use

Apparent 
AEME by EIA 

(ng/mL)

LC-MS/MS (ng/mL)
AEME EME BZE COC CE

S 468000 Cocaine £10 3 <3 0 0 60 9.1 0

i S748357 Crack £30 1 <3 0 0 11 13 0

! S637267 Cocaine 0.2g 3 <3 0 2.5 41 0 0

S501536 Crack O .lg 3 <3 0 0 15 0 0

S877191 <3 0 1.7 42 46 0

S735320 Cocaine £20 1 <3 0 3.9 61 24 0

S653033 Cocaine £2 3 <3 1.3 3 85 14 0

S735316 Crack £30 3 <3 0 11 73 22 0

S696749 Crack 1 Pipe 3 <3 0 9.6 131 46 0

S786368 Crack 4 <3 0 0 11 4.6 0

S745626 Crack £10 1 <3 1 138 177 16 0

S639548 Crack £20 1 <3 0 34 419 11 0

COZ 0841/06 <3 0 0 0 0 0

: S735551 Crack £10 1 <3 0 13 216 3.2 0

S754316 Crack £30 1 <3 0 23 369 7.2 6.1

S735484 Crack £20 1 <3 0 74 208 38 1.4

S706700 Crack 1 <3 0 9.2 70 2.9 0

COZ 0827/06 <3 0 0 0 0 0

S637387 Crack £10 3 <3 0 0 2 0 0

S768669 Cocaine £50 1 <3 2.2 39.6 163 122 2.3

S639547 Crack £30 1 <3 0 4.9 219 0 0

COZ 0914/06 <3 0 0 1.3 0 0

COZ 0926/06 <3 0 1.2 40 1.2 0

S653858 Cocaine £2 2 <3 0 1.4 89 10 0

1215261 <3 0 2.9 7.4 7.8 0

S802542 Crack £10 1 <3 0 17 75 7.4 0

COZ 0821/06 <3 0 5.9 30 12 0

COZ 0919/06 <3 0 2.8 54 14 0

S707670 Crack £10 2 <3 0 8.3 75 4.5 0

| S647895 Cocaine 2 <3 3 33 292 5.3 0

I S706127 Crack £30 3 <3 3 27 196 25 0

S640254 Cocaine 1 Pipe 7 <3 0 0 7.2 0 0

COZ 0872/06 <3 0 0 0 0 0

S706150 Cocaine £10 4 <3 0 1.8 56 11 0

S707027 Crack £10 1 <3 1.8 4.2 33 24 0

S705546 Crack £20 1 <3 2.7 4.2 92 5.7 0

S603929 Crack 1 <3 0 6 260 9 0

COZ 0866/06 <3 0 0 0 0 0

S737475 Crack 3 <3 0 0 2.9 0 0

S754257 Crack £40 5 <3 0 1.4 5.8 3.7 0

S754253 Crack 1 Pipe 2 <3 0 1.7 14.7 8.8 0

S782769 Crack £20 3 <3 0 0 8.3 2.3 0

S706554 Crack £20 2 <3 4.4 560 951 60 0

1218379 <3 0 3.7 33 16 0

S786616 Crack £10 2 <3 0 14 314 2.6 0

S699404 Crack 0.75g 2 3.0 2.9 215 507 137 0

S844287 3 1.3 0 14.6 101 0

COZ 0874/06 3 0 0 19 6.4 0

S706138 Crack £10 2 3.0 0 0 27 1.1 0

S708410 Crack 1 3.1 2.3 2.0 228 0 0

S738251 Cocaine £10 2 3.1 1.8 7.7 170 5.8 0

COZ 0856/06 3.1 1.6 0 46 10 0

S718765 Crack 1 Pipe 1 3.1 0 5.9 49 0 0

1201162 3.2 0 36 116 48 1.6

S705147 Cocaine £20 1 3.4 0 77 276 26 0
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Barcode Drug Quantity Days Since Apparent LC-MS/MS (ng/mL)
Declared Drug Use AEME by EIA 

(ng/mL)
AEME EME BZE COC CE

S 768576 Crack £20 0 3.4 2.1 26 257 21 0

COZ 0858/06 3.4 0 8.7 145 3.9 0

S768795 Crack £25 1 3.5 0 1.6 31 1.1 0

S796760 Crack 1 3.5 4.5 53 329 94 0

S735019 Crack £60 3 3.6 0 0 5.8 0 0

S745733 Cocaine 2 Lines 2 3.6 0 3.4 51 6 0

S646905 Crack 0.5 Rock 1 3.6 0 0 126 0 0

S776243 Crack 0.25
Rock

0 3.6 3.5 26 253 216 0

S644728 Crack 1 Pipe 2 3.6 0 13 107 11 0

1225034 3.6 0 0 0 0 0

S778018 Crack £10 2 3.6 0 5.1 34 2.3 0

S 844284 3.7 3.1 21 164 89 0

COZ 0842/06 3.7 0 0 0 8 0

S706141 Crack £20 1 3.8 0 0 38 0 0

S776345 Crack 1 3.8 1.4 96 245 43 9.1

S735796 Cocaine 2 Lines 6 3.9 0 0 2.9 0 0

S707318 Crack 3 Rocks 1 3.9 5.5 12 211 28 0

S603646 Crack 1 Pipe 4 3.9 0 1.5 6.4 1 0

S772864 Crack 0 4.0 2.5 44 206 35 0

S782871 Crack £20 1 4.0 1.1 8.2 128 22 0

S700608 Crack £20 1 4.2 6.7 26 661 76 4.3

COZ 0917/06 4.2 0 0 1.7 0 0

S706140 Crack £5 2 4.3 2 0 342 0 0

S 7 18771 Crack £10 1 4.3 0 78 172 7.6 0

S699476 Crack 0.2g 2 4.3 0 4.2 38 4.9 0

S467998 Crack 2 4.4 0 7.4 74 7.0 0

S529693 Cocaine 1 Line 5 4.4 0 0 5.5 1.9 0

S746908 Crack £20 1 4.7 0 9 47 66 0

COZ 0833/06 4.7 0 0 0 0 0

S776349 Crack 4 4.8 0 0 3.8 1.3 0

S501310 Crack 0.8g 3 4.9 0 35 81 8.1 0

COZ 0836/06 4.9 0 0 0 0 0

S467977 Crack 2 Pipes 4 4.9 0 31 76 27 0

1225290 5 2.7 174 261 33 0

1202200 5 5.4 23 59 113 0

S472084 Crack 0.4g 1 5.1 0 6 44 3.6 0

S745874 Crack £5 1 5.1 0 1.9 12 2.2 0

COZ 0922/06 5.2 0 0 3.9 4.4 0

S706143 Cocaine 0 5.3 4.7 286 763 36 46

S776117 Crack 2 Pipes 1 5.4 0 1.6 16 0 0

COZ 0918/06 5.4 0 0 36 27 0

S706147 Crack £20 2 5.4 4.1 0 218 1.3 0

S647206 Crack 1 5.5 8.4 83 445 359 0

S706146 Crack £5 1 5.5 8 47 412 35 0

S 7 82481 Crack 0.5 Rock 3 5.8 0 7.3 65 28 0

S697493 Crack 1 5.8 5.3 9.1 191 15 0

S707306 Crack 6 Rocks 1 5.9 14 51 413 127 0

S735479 Crack 1 6.1 6.4 30 137 72 0

S768681 Crack £10 2 6.2 1.5 11 53 18 1.3

S 8 13044 Crack 0.5g 1 6.3 0 0 9 0 0
S796552 Cocaine £10 1 6.4 0 4.5 21 1.3 2.7
S754322 Crack £10 1 6.6 6 51 586 66 0

S776423 Crack 1 6.9 0 73 229 25 24

COZ 0840/06 7 5.8 6.7 51 38 0
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Barcode Drug
Declared

Quantity Days Since 
Drug Use

Apparent 
AEME by EIA 

(ng/mL)

LC-MS/MS (ng/mL)
AEME EME BZE COC CE

; S735339 Crack 2 Pipes 2 7.2 0 1.2 8.1 0 0

! S632489 Crack 0.7g 1 7.4 4.8 29 415 171 0

S636051 Crack 1 7.5 5.3 102 660 55 0

COZ 0849/06 7.5 5.9 4.9 107 322 0

S772494 Crack £40 1 7.8 0 1.0 16 3.2 0

1219049 8.1 0 1.3 9.7 22 0

S 471160 Cocaine 4 Lines 3 8.2 0 1.3 46 7.7 0

S 8 12910 Crack £30 1 8.3 0 19 208 36 1.4

S796800 Crack 1 8.3 0 47 337 5.5 0

1227037 8.4 6 76 221 88 0

S 861860 8.6 2.9 14 138 158 0

S644530 Cocaine £100 5 8.6 9.4 8.6 222 98 0

S647220 Crack 1

kO
 

oo 4.7 26 82 41 0

S787110 Crack 1 Rock 1 8.8 0 27 238 100 0

i 1218380

OOoo 2.7 295 353 49 0

S772727 Crack 1 8.8 7.8 90 307 154 0

S775655 Crack 2 8.8 1.6 3.1 69 18 0

S754354 Cocaine 1 Line 3 8.9 0 1.6 11 1.9 0

S772285 Crack £5 1 8.9 0 7.8 46 0 0

' S472086 Crack £20 1 9.4 0 3.2 85 0 0

i S706129 Cocaine £25 1 9.6 13 43 1008 205 2.6

S812901 Crack £20 1 9.9 0 22 105 20 0 I

S749911 Cocaine 1 Line 6 9.9 0 0 8.2 5.2 0

, S775545 Crack £100 1 9.9 0 26 103 28 0

S776394 Crack £10 1 10 0 30 61 12 0

S776083 Crack 3 Spliffs 2 11 5.7 52 201 73 0

S715231 Crack £40 3 11 11 22 94 58 0

S813032 Crack £20 2 11 0 0 9.9 2.1 0

S768941 Crack 1 Rock 0 11 0 5.9 62 23 6.6

S768874 Crack 2 11 0 79 302 11 0

S692665 Cocaine £20 1 11 14 212 666 325 0

1202191 11 8.8 12 199 199 0

S754319 Crack 4 12 0 1.6 8.3 2.7 0

S802691 Crack 2 Pipes 1 12 0 22 113 23 0

S775628 Crack 3 13 0 0 8.7 4.3 0

S776388 Crack 1 14 0 71 131 19 0

S736130 Crack £30 1 14.8 14 101 761 60 63

S802969 Cocaine 2 Lines 4 15 0 0 7.2 4.5 0

i S736168 Crack 1 Pipe 1 16 13 15 70 44 0

S735190 Cocaine 2 Lines 2 17 0 7 56 33 3.9

1210049 17 12 12 238 288 0

S768935 Crack £20 4 17 1.3 127 458 42 0

S702428 Crack £10 0 17 21 52 390 236 0

S706534 Crack £10 2 18 6.4 55 509 42 0

S736174 Crack £10 1 18 10 216 812 457 0

S816288 Cocaine 1 Line 4 18 0 1.5 23 4.3 0

S812903 Crack 3 Rocks 1 19 8.4 34 195 63 0

S 8 13029 Crack £50 2 19 0 0 3.6 1.3 0

S754325 Crack £10 2 19.8 10 7.2 274 70 0

S707495 Crack £10 1 21 26 139 1946 297 34

S644729 Crack 1 Rock 3 21 23 230 649 192 0

S782856 Crack £10 1 22 21 203 1537 1406 0

S702468 Crack £20 2 22 17 190 1570 318 0

S739046 Crack £40 0 23 22 140 562 438 0

S777302 Crack 1 24 23 118 632 289 0
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Barcode Drug
Declared

Quantity Days Since 
Drug Use

Apparent 
AEME by EIA 

(ng/mL)

LC-MS/MS (ng/mL)
AEME EME BZE coc CE

S 693944 Crack £5 2 25 19.6 14 342 15 0

i S 6 18766 Crack 1 Pipe 2 26 3.2 45 233 20 0

S 645680 Crack £30 1 26 14 69 791 85 0

S644272 Crack £10 1 26 22 102 518 417 0

S736156 Crack £10 1 29 28 111 799 676 0

' S782870 Crack £20 1 32 15 93 307 183 0

! S715361 Crack 0 32 29 4.4 32 38 0

S 706536 Cocaine £40 1 33 22 10 232 11 0

S750051 Cocaine 1 Line 1 33 6.9 39 507 399 0

S796863 Crack £2.50 2 34 14.9 27 195 75 0

S647885 Crack £20 0 34 14.9 22 501 22 0

S706013 Crack 4 Pipes 2 38 53 16 982 70 0

S 737507 Cocaine 1 39 69 446 3772 1479 553

S 746914 Crack 1 Pipe 1 43 19.5 37 348 467 0

S739096 Crack 1 51 53 410 1278 695 71

S735183 Cocaine 3 Lines 2 53 10 31 209 131 0

S 736110 Crack £30 0 58 43 114 762 1998 2.3

S 8 12920 Crack 2 Rocks 1 58 10 65 381 65 0

S736143 Crack £45 1 60 64 1204 2751 316 0

S754214 Crack £20 1 67 64 128 903 1800 0

S706139 Crack £80 1 75 104 211 2076 799 0

S647217 Crack 1 90 95 103 1340 992 o 1
S772861 Crack 1 90 30 163 841 1127 25

| S754305 Crack £10 0 90 74 433 2207 1123 0

S738567 Cocaine 2 Lines 1 94 58 36 2195 180 2.1

S776291 Crack 0.5g 1 95 48 330 1629 656 0

COZ 0915/06 101 40 61 1356 620 0

S 647864 Crack 3 104 61 35 407 65 0

S707463 Crack 1 Pipe 1 105 69 221 2871 831 0

S738284 Crack £20 0 107 52 365 2381 614 0

S746618 Crack 1 Rock 0 113 117 44 339 454 0

S772482 Crack £200 1 120 46 247 768 147 0

S 8 12923 Crack 1 Rock 0 121 38 68 731 543 0

COZ 0878/06 139 62 343 1108 495 0

S700668 Cocaine £20 0 158 41 201 1577 243 116

S781645 Crack £5 1 160 80 232 1003 1603 0

S746974 Crack 0.5g 1 178 123 135 1107 2075 0

COZ 0813/06 212 221 213 2029 5292 0

S746912 Crack £20 1 > 300 296 287 3057 710 0

j S633326 Crack 1 > 300 118 155 1471 2316 0

i S636717 Crack £2 2 > 300 499 396 5037 1852 0

S603071 Crack £10 4 > 300 825 909 3595 6593 0

COZ 0925/06 > 300 75 176 589 169 37

111317 Crack O.lg 2 > 300 647 175 1878 895 45

S707007 Crack £60 1 > 300 919 665 3481 889 0

S775509 Crack 1 > 300 989 1063 3668 3058 9.9

S735330 Cocaine £30 1 > 300 718 3161 8045 6557 1
S644258 Cocaine £20 0 > 300 357 354 2170 972 0

S775612 Crack 1 > 300 948 290 855 1747 0

i S644928 Crack £50 1 > 300 406 956 4166 2308 3.2

S778095 Crack 2 Rocks 1 > 300 441 1834 3901 4275 0

Table 6:3 EIA and LC-MS/MS results of oral fluid clinical samples
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A summary of the frequency of analyte detection, the average concentration, and the 

range of concentrations measured is presented in Table 6:4. Only concentrations above 

the LC-MS/MS LLOQ of 5ng/mL were taken into consideration.

Analyte Frequency Average Concentration 

(ng/mL)

Concentration 

Range (ng/mL)

Benzoylecgonine 246 441 0-8045

Cocaine 170 256 0-6593

EME 163 8 6 0-3161

AEME 84 36 0-989

Cocaethylene 16 4 0-553

Table 6:4 Summary of LC-MS/MS data

Out of 270 samples analysed the total number of samples positive for AEME by LC- 

MS/MS above the LLOQ of 5ng/mL was 84. The concentrations exceed any other 

reported concentrations in clinical studies from a drug using population. There are only 

two studies known which have quantified AEME in oral fluid specimens obtained from 

drug treatment clinics and forensic cases. A small study of only six oral fluid samples 

detected AEME by GC-MS at concentrations of 5-18ng/mL [16]. A larger study of 130 

oral fluid samples from 16 cocaine users found that five samples contained measurable 

quantities of AEME by LC-MS/MS at 25-143ng/mL, with an average of 96ng/mL [17]. 

Other investigations into the concentrations of AEME in oral fluid have included 

controlled dose administration of cocaine base by smoking. One study administered 

40mg of cocaine base to 7 subjects and found that the highest concentrations of AEME, 

558-4374ng/mL, were achieved in the first sample which was collected after two 

minutes. Concentrations then declined below the LOD of the method between 10 and
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120 minutes [13]. A similar study administered 42mg of cocaine base by smoking to 6  

subjects, peak concentrations of 51-775ng/mL were also achieved in the first sample 

which was collected after 5 minutes. Concentrations declined below the LOD of the 

assay between 10 and 60 minutes [18]. Despite the equivalent doses being administered 

in both studies, the peak concentrations of AEME were significantly lower in the 

second study. This is likely to be a result of the longer delay in collecting the first 

sample. When the 5 minute time point was compared for both studies the concentrations 

were similar.

In samples where AEME was present, above the LLOQ of 5ng/mL, EME was present 

(6.7-316 Ing/mL) in all but two of the samples, while cocaine and benzoylecgonine 

were always present at 11-6593 and 32-8045ng/mL respectively.

Cocaethylene was only detectable in a small number of samples, and was always 

accompanied by EME, benzoylecgonine and cocaine. EME was never found in isolation 

it was always accompanied by benzoylecgonine. A similar pattern was seen for cocaine 

where benzoylecgonine was also present in all but one sample.

The concentrations of analytes present in the samples were compared to one another 

using a scatter plot, their coefficient of determinations were calculated to identify any 

correlation between pairs of analytes. The plots are shown in Figure 6:3.
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Figure 6:3 Scatter plots to establish correlation between analyte concentrations

No significant correlation was found, the highest coefficient o f determination was 0.72 

which was produced by the comparison o f benzoylecgonine and EME. All the other
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analytes showed only moderate correlation towards each other, with values between

0.42 and 0.61. These results are similar to those of Lewis et al who found no correlation 

between AEME and cocaine, benzoylecgonine or EME concentrations in a variety of 

biological matrices [19]

Looking at the raw data for AEME it was observed that in general its presence was 

accompanied by reasonably high concentrations of benzoylecgonine and cocaine.

6.4.3 Self Report Data Analysis

Two hundred and thirty samples were provided with self report information, from this it 

was established that 184 declared the used of crack cocaine specifically, 17 declared the 

use of powder cocaine only, and 29 of the cases simply declared ‘cocaine’ making the 

distinction between the type of cocaine impossible.

The number of samples from cocaine hydrochloride users was very low and is likely to 

be a result of the study population. Samples were obtained from drug rehabilitation 

clinics and the criminal justice sector, and so the incidence of cocaine hydrochloride use 

in this population is much lower in comparison to crack cocaine [2 0 ].

AEME was detected in three of the samples from donors declaring powder cocaine use, 

indicating an inconsistency in the reporting of the type of cocaine use.

It was not possible to compare the quantity of drug consumed with the concentrations of 

analytes present in the oral fluid sample due to the different ways in which the 

quantities were reported. Cost was the most common method of reporting quantity 

where an average £ 2 2  was spent (range £2 -£2 0 0 ), however this can represent differing 

drug weights due to the variation in prices across the country as well as the purity of 

drug present.
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Table 6:5 summaries the data in relation to the number of days following drug use. The 

range was 0-7 days with the average calculated to be 1.7 days. Cocaethylene was not 

detectable after 2 days, and AEME and EME were detectable for up to 5 days. Cocaine 

and benzoylecgonine were detectable up to 6  and 7 days respectively, however the 

concentrations were approaching the LLOQ.

D ays

Since

Use

N u m ber

o f

Sam ples

F requ en cy P eak A n aly te  C on centration  (ng/m L )

A E M E E M E BZ E coc CE A E M E EM E BZE C O C CE

0 18 11 16 18 16 3 357 433 2381 1998 116

1 118 48 92 117 84 11 989 3161 8045 6557 553

2 47 10 25 44 25 1 647 560 5037 1852 45

3 28 3 9 24 11 0 61 230 649 192 0

4 11 1 3 10 5 0 825 909 3595 6593 0

5 5 1 1 3 1 0 9 9 222 98 0

6 2 0 0 1 1 0 0 0 8 5 0

7 1 0 0 1 0 0 0 0 7 0 0

Table 6:5 Summary of analyte frequency and peak concentrations up to 7 days

following drug use

Only general assumptions can be made from the data generated from the self report 

information. The analyte concentrations were at their highest at day 1 and from that 

point onwards the concentrations declined until day 4 where a significant rise in peak 

concentration was observed. This was a result of one particular sample which gave 

unusually high concentrations for each analyte.

The data produced from previous controlled dose studies indicates a short detection 

time for AEME of less than 120 minutes [13, 18]. However the data produced here 

provides evidence that AEME is detectable for a longer period of time, possibly up to
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48 hours following smoked cocaine use. The detection times can only be rough 

estimates in this study due to many factors such as inconsistencies when dealing with 

self report information, frequency of an individual’s drug use, and the different rate of 

metabolism of each person. Interpretation of concentrations and detection times of 

AEME is made more problematic due to the reported variability in the pyrolysis of 

cocaine to AEME at different smoking temperatures and using different smoking 

devices [21-23].

The self report data provided in this study proved to be reasonably reliable. Overall the 

comparison of the self reported declarations with the analytical results shows 95% 

concordance based on the presence of benzoylecgonine in the oral fluid samples up to 7 

days after declared use. However the information becomes less consistent when looking 

specifically at the concentrations of analytes present compared to the number of days 

since drug use. An example of this is where crack cocaine use was declared four days 

prior to sample collection and the concentrations of the analytes present were more 

consistent with those likely to be found in samples collected the same day or the day 

after drug use.

Other inconsistencies were found with the type of cocaine reported, three of the samples 

in which only powder cocaine use had been reported were also found to contain AEME.

6.5 Conclusion

This is the largest reported study of clinical samples in which the concentration of 

AEME is measured in oral fluid. The AEME immunoassay was shown to be highly 

sensitive and specific in the detection of AEME, with good correlation to LC-MS/MS. 

The concentrations of AEME in oral fluid quantified by LC-MS/MS are the highest 

reported to date in real life clinical samples, and have provided an indication of the
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possible detection times of AEME in oral fluid. Although the presence of AEME can be 

used to positively identify the route of cocaine administration as smoking, its absence 

cannot rule it out. The use of self report data has also shown to be a useful tool in 

establishing an individuals recent drug use, however it is not infallible and is best 

supported by the addition of analytical data to give a more reliable overall picture.
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7 Conclusions and Further Studies

A number of advances have been made in the field of forensic toxicology in recent 

years. An increasing number of laboratories worldwide are now routinely analysing oral 

fluid samples from donors in different settings such as workplace, criminal justice and 

rehabilitation settings [1]. The use of crack cocaine presents a great social problem, and 

has a high association with crime. The ability to distinguish between crack and powder 

cocaine would provide a valuable addition to drug treatment and criminal justice 

systems [2]. The identification and monitoring of crack cocaine use may also help to 

develop a better understanding of the prevalence and spread of crack use.

Preliminary studies carried out in this thesis involved screening a large number of 

samples from a drug using population, for the presence of MDMA and metamfetamine 

using a laboratory based EIA and a POCT device. All samples were subsequently 

confirmed by GC-MS. Overall the clinical sensitivity and specificity of both assays 

were excellent.

There is a limited amount of information available regarding the concentrations of 

amfetamine and MDMA present in oral fluid samples from a drug using population. 

Therefore the clinical data obtained from the self report study provided a significant 

contribution to the field of drug testing. There was good concordance between the self 

report data and analytical findings, although some inconsistencies were found. Overall 

these studies provided an understanding of the fundamental processes of point of care 

and laboratory based immunoassay screening, GC-MS confirmatory analysis, and data 

interpretation.
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The development of a novel EIA was described for the identification of AEME in oral 

fluid. It was found that immunisation with AE, linked via its carboxyl group to the 

carrier protein thyroglobulin, produces antibodies highly specific for AEME without 

exhibiting cross reactivity to any other cocaine related compound. This was the most 

important factor in the development of this assay as any cross reactivity, other than to 

AEME or its metabolite AE, would result in the false identification of crack cocaine 

use. The lack of significant cross reactivity to AE was surprising considering it was 

used for immunisation, and its structure is similar to that of AEME. Each of the four 

antisera contained a high titre of antibody, with 402717 providing increased sensitivity 

compared to the others.

The wide polarity range of cocaine and its related compounds presents many analytical 

challenges. Solid phase extraction (SPE) in this study provided good recovery for the 

majority of the analytes except for the highly polar AE. Attempts to significantly 

increase the recovery of AE by performing a two step SPE method were unsuccessful 

despite previous reports describing marked improvements [3-5]. Further research into 

different types of sorbent material is required to attempt to improve the recovery of AE.

Optimum chromatographic separation by LC and GC is difficult due to the large 

difference in elution times for the highly polar and non polar compounds. The use of 

GC-MS for quantification was ruled out due to the increased amount of column 

maintenance required during the early studies. As time progressed the chromatography 

of AEME deteriorated and as a result the column required regular cutting. Other 

concerns regarding the reported artifact formation of AEME from cocaine in the GC 

injector port confirmed the decision to switch to LC-MS/MS [6 ]. A number different 

column types and mobile phases were tested to identify the optimum chromatographic
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conditions. Adequate retention of EME and AE was only achievable using the phenyl 

column, and peak resolution was improved in many instances. The use of acetonitrile 

instead of methanol shortened the elution time of the later eluting non polar compounds 

but it also reduced analyte ionisation. The greatest analyte ionisation was achieved 

using low concentrations of ammonium formate adjusted to pH 3 with formic acid. AE 

continuously provided low peak areas and the lack of a linear calibration curve meant 

that accurate quantitation of AE would not have been possible. While it may have been 

feasible to analyse AE using a different LC-MS/MS method this was not the criteria in 

this study, it was important to analyse all analytes simultaneously. Further 

investigations to enable AE to be incorporated into the LC-MS/MS method are required.

A large number of samples from a drug using population were screened using the EIA 

for AEME and then confirmed by LC-MS/MS. Overall the clinical sensitivity and 

specificity of the EIA were excellent, concluding that the EIA successfully identifies the 

use of crack cocaine. Following on from this success a point of care test could be 

developed using this antibody to enable screening to be performed virtually anywhere. 

There is a limited amount of information available regarding the presence of the 

pyrolysis products of cocaine, particularly in the oral fluid of a drug using population 

[7, 8 ]. The large amount of clinical data generated in this thesis provides information 

relating to the possible detection times of AEME, peak concentrations, and the 

correlation of AEME with cocaine and its main metabolites. The majority of samples 

were provided with declarations of drug use, the degree of concordance between self 

reported use of cocaine and the presence of cocaine, or any of its metabolites, was 

89.6%, this reduced to 34.4% when looking specifically at declared crack cocaine use 

and the presence of AEME. This highlights two possible scenarios, either the self 

reported information regarding crack cocaine use was inaccurate, or the detection of
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AEME is problematic. The detection of AEME in oral fluid can be affected by various 

factors such as the temperature and flow rate of the smoking device, the rate of 

metabolism of AEME in the body, and its stability in collected oral fluid. Therefore the 

presence of AEME in a clinical sample can positively identify the use of crack cocaine, 

however, its absence does not necessarily mean that crack cocaine has not been used.

A number of studies can be undertaken following on from this work. The detection 

times of AEME can be investigated further by obtaining specimens from crack cocaine 

users over a number of days, in a controlled environment following cessation of drug 

use. The contribution of AE in oral fluid samples needs to be established to assess the 

extent of metabolism of AEME. Similarly the stability of both AEME and its metabolite 

in collected oral fluid also needs to be evaluated across a range of temperatures and pH 

values. The pH of oral fluid is known to affect the concentration of cocaine and 

benzoylecgonine present [9], therefore similar studies may be carried out to determine 

the effect of oral fluid pH on the concentration of the pyrolysis products of cocaine.

The EIA and LC-MS/MS methods have both proved to be successful in the analysis of 

AEME in oral fluid, and so may be applied to the analysis of additional biological fluids 

such as hair, blood, and urine. Full validation will be required to establish adequate 

sensitivity and precision for each biological matrix.
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