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Abstract
The overall aim of this thesis was to identify whether oxygen uptake ( V  O2) kinetics are a 
determining factor in the performance of soccer-specific high-intensity exercise. To achieve 
this aim there were five objectives: 1) to design a protocol for the assessment of V O2 kinetics 
at the onset and cessation of moderate- and heavy-intensity treadmill running; 2) to assess the
reproducibility of V O2 kinetics measured during such a protocol; 3) to quantify the
characteristics of V O2 kinetics during the onset and cessation of moderate- and heavy-
intensity running; 4) to identify if V O2 kinetics discriminate between elite and non-elite
soccer players and 5) to identify the physiological processes ( V O2 kinetics, V O2 max, GET, 
anaerobic capacity) that determine soccer-specific high-intensity running capacity.

To establish the day-to-day variability in aerobic markers of moderate- (80%GET) and heavy- 
(50%A) intensity exercise domains, the pulmonary gas exchange of nine participants was 
measured during an incremental treadmill test to exhaustion on two occasions. Narrow 95% 
limits of agreement (LOA) and low coefficients of variation (CV) indicated that such markers 
of intensity were reproducible. Based on these findings, eight participants performed a 
repeated exercise transition treadmill protocol (six moderate (80%GET) and two heavy 
(50%A) transitions) on two occasions. Two-way analysis of variance with repeated measures 
(ANOVA) revealed the phase II time constant (xj) to be invariant across intensity domains for 
both exercise transients (xion, moderate 23.2 ± 2.9 s vs. heavy 23.7 ±3.1 s; T]0ff moderate 27.4 
± 3.5 s vs. heavy 27.1 ± 2.4 s), while both phase II and III x were quicker during the onset than 
cessation of exercise (phase III, x2on 177.5 ± 43.9 s vs. x2ofr 396.1 ± 52.3). The 95% LOA and 
CV for phase II parameters were small for both intensities and transients of exercise. 
Conversely, broad 95% LOA were identified for all the phase III parameters. To address this 
problem, the treadmill protocol was modified to include four very heavy-intensity exercise 
transients (80%A) to improve the signal-to-noise ratio of the phase III response. Analysis of 
test-retest data obtained from ten participants revealed that although the CV and 95% LOA for 
the phase III parameters were improved, they were still larger than for phase II parameters.

Using the very-heavy intensity treadmill protocol, a relationship (bivariate correlation) was 
found between xion and soccer-specific high-intensity running capacity, both for professional 
(Pro, n = 18) (r = -0.71; P  =0.013) and amateur (Am, n = 18) (r = -0.69; P  = 0.014) soccer 
players. However, the role V O2 kinetics plays in such exercise appears to be limited, as a 
mixed design two-way ANOVA revealed that the Pro players ran further in a test of soccer- 
specific fitness (Pro 966 ± 153 m vs. Am 840 ± 156 m) despite the V O2 kinetic profiles of the 
two groups being indistinguishable (xion, Pro 24.5 ± 3.2 s vs. Am 24.7 ± 1.8 s; xi0fr, Pro 28.7 ±
2.8 s vs. Am 29.3 ±3 .5  s). To identify which physiological processes did determine soccer- 
specific high-intensity running capacity among elite players, a longitudinal study was 
conducted with 16 Pro soccer players (8 = controls, 8 = training), whose soccer specific 
fitness, aerobic ( F O 2 max, V O2 kinetics) and anaerobic profiles (anaerobic capacity) were 
assessed before and after a six week high-intensity training intervention. A two-way ANOVA 
mixed design revealed soccer-specific fitness (P=0.015) and anaerobic capacity (P = 0.021) 
were the only measures that increased among the training group following the intervention. 
The change between the two measures was also correlated (r = 0.89; P = 0.012). It is plausible 
that due to the sporadic nature and high-intensity of the running performed in soccer, V O2 
kinetics are not a determinant of performance, and above a certain threshold of aerobic fitness, 
it is the capacity for anaerobic energy production that is crucial for the performance of soccer- 
specific high-intensity running.
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CHAPTER 1

Introduction

1.1 Introduction

The physiology o f exercise is the study of how the body responds and adapts to 

exercise. Although this study can be traced to the observations of Empedocles in 490 

BC, it was not until the early 20th century through the work of Krogh and Lindhard 

(1913) and A.V. Hill and colleagues (1924) that concentrated and systematic efforts 

were made to measure human physiological responses to the onset of exercise. Since 

these pioneering studies, physiological assessments have advanced considerably, 

making it possible to identify physiological processes that influence the ability to 

perform exercise. In the context of sport, such information has been used to maximise 

the adaptation of relevant physiological systems through appropriate physical training.

The use of physiological assessments to enhance performance in repeated sprint-type 

sports such as soccer is challenging, as intermittent exercise involves a complex 

interaction of several physiological processes. Although successful soccer performance 

requires a high degree of technical ability, it has been reported that the most successful 

teams are also the fittest (Ekblom, 1986; Bangsbo, 1994; Reilly, 1996). Recent 

investigations have demonstrated that the strongest indicator o f a player's soccer- 

specific fitness is their ability to perform high-intensity running during a game 

(Krustrup and Bangsbo, 2001; Krustrup et al., 2003; Mohr et al., 2003). Aerobic 

metabolism is widely accepted to play an important role during prolonged high-intensity 

intermittent exercise, as it contributes to energy production during both exercise and 

recovery. However, recent research (Krustrup and Bangsbo, 2001; Krustrup et al., 2003) 

has shown that measures of aerobic fitness such as maximum oxygen uptake
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(V  O2 max) and gas exchange threshold (GET) are not related to these indices of soccer 

performance. Perhaps such gross measures of aerobic function that are the product of 

integrating cardiovascular, pulmonary and muscular systems are insensitive measures of 

the oxidative processes involved in soccer performance. This raises a key question: 

what are the aerobic processes that help determine a player’s capability to perform 

soccer-specific exercise?

An integral component of a performer’s aerobic profile (Whipp et al., 1982) that has not 

been considered in the context of soccer performance is pulmonary oxygen uptake

kinetics ( V O2 kinetics). Measures of these kinetics have been shown to mirror changes 

in muscle oxygen uptake (Q O 2) at the onset and cessation of exercise (Barstow and 

Mole, 1987; Grassi et al., 1996). Such information on the oxidative processes of muscle 

might provide valuable information about a soccer player's capability to perform the

required bouts of repeated high-intensity exercise. Fast V O2 kinetics at the onset o f 

such exercise have been shown to reduce the oxygen deficit (Demarle et al., 2001) and 

hence the reliance on potentially fatigue-inducing anaerobic energy production.

Similarly, quick V O2 kinetics during the rest periods of this exercise might indicate 

enhanced recovery capabilities within muscle, such as the resynthesis of 

phosphocreatine (PCr), restoration of oxygen stores and the metabolism o f lactate. The

net effect of quick V O2 kinetics during both exercise transients would be a minimal 

disruption of muscle homeostasis, which would benefit performance during subsequent

bouts of exercise. In addition, V O2 kinetics appear to be more sensitive to training than

both V O2 max and GET among endurance trained athletes (Phillips et al., 1995; Norris

and Peterson, 1998; Demarle et al., 2001). Therefore V O2 kinetics might reflect
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training-induced physiological adaptations that other measures of aerobic function fail 

to detect.

Much of the research that has investigated V O2 kinetic responses to the onset and 

cessation of exercise has involved moderate-intensity cycling. Such an exercise pattern

is clearly unrelated to soccer-specific activities. As V O2 kinetic responses appear to be 

dependent on the form of exercise (Carter et al., 2000a) and its intensity (Paterson and 

Whipp, 1991; Koga et al., 1999; Carter et al., 2002), it would be more appropriate to

measure the V O2 kinetics o f soccer players during the on- and off-transients of 

moderate- and heavy-intensity treadmill running, as this would replicate the type of 

exercise performed in a game. However, investigations using a treadmill protocol to

measure on- and off-transients of V  O2 kinetics are limited (Williams et al., 2001; 

Carter et al., 2002), and have in some cases provided conflicting results to those from

cycle ergometry (Carter et al., 2000a). Therefore, to investigate the relationship between
/

V O2 kinetics and soccer performance, an appropriate and reliable square-wave exercise 

protocol must be established. Such a study would also provide an opportunity to assess

the characteristics and day-to-day variability of V O2 kinetics. Reproducible measures

of V O2 kinetics are essential if  they are to be considered as a determinant of soccer 

performance and to be used as a tool to distinguish between players o f differing ability.

If the speed of QO 2 is a determinant of soccer performance, then a player’s V O2 

kinetic profile should differ in relation to their level of soccer-specific fitness. Speeded 

phase II x (Koppo et al., 2004) and reduced slow component (Billat, 2002; Carter et al., 

2 0 0 2 ) at the onset o f exercise have been reported for trained compared to less trained

individuals. Furthermore, Kilding et al. (2003) found that V O2 kinetics measured
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during the on- and off-transients o f moderate-intensity exercise were faster for highly 

trained long- than middle-distance runners. This implies that even for athletes who

perform similar sporting events, V O2 kinetics are sensitive to the influence of

differences in training on the oxidative capacity of muscle. The possibility that V O2 

kinetics can distinguish between soccer players who perform different types and 

volumes of training due to standard of competition has not been addressed.

If V O2 kinetics play a determining role in soccer performance, training undertaken to 

improve soccer-specific high-intensity running capability should lead to a change in

V O2 kinetic responses. Improvements in V O2 kinetic measures during the on- 

transients o f exercise following endurance training have been shown to coincide with 

enhanced cycling (Norris and Peterson, 1998) and running performance (Demarle et al.,

2001) without changes to V O2 max or lactate threshold (LT). High-intensity interval 

training similar to that performed by some soccer players (Bangsbo, 1994) has been

shown to speed V O2 kinetics to a greater extent than moderate-intensity continuous 

training (Berry and Moritani, 1985). This suggests that oxidative adaptations generated

from intermittent exercise influence V O2 kinetics in a way that will be beneficial for 

performance. However, no studies have been undertaken directly to assess the

relationship between soccer performance and training induced speeding o f V O2 

kinetics responses to the onset and cessation of exercise.
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1.2 Aims and objectives

The overall aim of this thesis is to identify if V O2 kinetics are a determining factor in 

the ability to perform soccer-specific high-intensity running. To achieve this aim there 

are 6 specific objectives:

1. To assess the reproducibility of physiological markers used to set moderate- and 

heavy-intensity exercise.

2. To design a treadmill protocol for the measurement of V O2 kinetics at the onset and 

cessation of moderate- and heavy-intensity running in soccer players.

3. To assess the reproducibility of V O2 kinetic responses measured during moderate- 

and heavy-intensity treadmill running.

4. To assess the characteristics of V O2 kinetic responses during moderate- and heavy- 

intensity treadmill running.

5. To identify if  V O2 kinetics discriminate between players who possess differing 

levels of soccer-specific fitness.

6 . To identify the physiological processes (V  O2 kinetics, V O2 max, GET, anaerobic 

capacity) that are associated with an increase in soccer-specific fitness following a 

period of high-intensity intermittent training.
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CHAPTER 2

Review of Literature

2.1. Explanation of soccer

2.1.1 Historical background

The earliest evidence of participation in an activity resembling soccer dates back to 

around the 2nd and 3rd centuries BC, when Chinese military kicked a ball into a net as 

part of a game or skill building exercise (Hill, 2003). However, it is widely accepted 

that the modem game of soccer was developed in Britain, where it is more commonly 

known as football. Played by the masses from the 8th century onwards, football often 

involved hundreds of people from rival towns and villages attempting to move a ball to 

a predetermined spot. The game could last all day and was notoriously violent, with 

kicking, gouging, biting and punching allowed. It was not until 1815 that Eton College 

established a set of rules that started to resemble those of the modem game. In 1845 

these rules were standardised and adopted by most of England's universities, becoming 

known as the Cambridge rules. Later in 1863, the Football Association was created, 

establishing the rule that banned any handling of the ball, marking the split between 

association and mgby football. Consequently, the name soccer is derived from the “soc” 

of association. The first Football Association challenge cup was contested in 1871 and a 

competitive league of 12 English clubs was formed in 1888. From these modest 

beginnings soccer has grown to become the most popular participation sport in the 

world, crossing cultural and economic barriers (Reilly, 1996).

2.1.2 Rules

The modem game of soccer is played on a rectangular pitch by two teams of 11 players, 

each consisting of one goalkeeper and 10 outfield players. According to the English
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Football Association (2004), a pitch must be within 90 and 120 m in length and 45.5 

and 90 m in width. Play is split into 45 min halves separated by a 15 min interval. The 

objective o f soccer is to score a goal by placing a ball into the opponent’s net/goal (7.32 

m x 2.44 m). This is primarily achieved by kicking the ball, although a goal can be 

scored using any body part except the upper limbs, as handling of the ball by outfield 

players is prohibited. Only the goalkeeper, whose role is to prevent the opposition from 

scoring is permitted to handle the ball, although this is restricted to a designated area 

encompassing their team's goal. Outfield players can typically be separated into: 1) 

defenders, whose primary role is to defend their goal by limiting the opposition scoring 

opportunities, 2) midfielders, who link defence with attack and 3) forwards, whose 

major responsibility is to score in the opposition's goal. The team that has scored the 

most goals by the end of a game is the winner. If both teams score the same number of 

goals by the end of play the game is drawn. In certain cup competitions however, if  a 

game is drawn at the end of the 90 min, extra time is played (two x 15 min) to allow a 

team to try to score the winning goal. If the score is level after extra time the outcome of 

the game is determined by penalty kicks.

2.2 The activity profile of an outfield soccer player

Over the course of a game, players are required to perform bouts of sub-maximal 

running interspersed by high-intensity runs and dynamic actions such as jumps, tackles, 

turns and kicks. Such an activity profile is highlighted by the observations of several 

studies that a player makes on average over 1000  changes in playing activity during a 

game, which equates to a change in movement every four to six seconds (Thomas and 

Reilly, 1976; Bangsbo, 1993; Drust et al., 1998). The total distance covered during a 

game while performing such variable activities typically ranges from 10 to 12 km, with 

midfielders and central defenders covering the furthest and least distances respectively



(Saltin, 1973; Thomas and Reilly, 1976; Van Gool et al., 1988; Bangsbo and Lindquist 

1992; Mohr et al., 2003).

It has been widely reported that 85 to 90% of the many activities a player performs 

during a game are at low- or sub-maximal intensities (Reilly and Thomas, 1976; 

Withers et al., 1982; Yamanaka et al., 1988; Drust et al., 1998; Mohr et al., 2003). 

Consequently, soccer has been reported to involve a large ratio o f low- to high-intensity 

running, in terms o f time on the pitch (7:1, Thomas and Reilly, 1976; 4:1, Bangsbo, 

1993) and distance run (2.2: 1, Thomas and Reilly, 1976). An example o f the running 

speeds used to classify game activities into low- or high-intensity categories is listed 

below.

Table 2.1 The intensity classification of match activities by Mohr et al. (2003).

Activity Speed (km .h'1) Intensity Classification

Walking 6

Low-intensityJogging >8

Low Speed Running > 12

Moderate Speed Running >15

High-intensityHigh Speed Running >18

Sprinting >30

Although such ratios emphasise the large amount of low-intensity running a player is 

required to perform during a game, the distance run at a high-intensity is not 

insignificant. Mohr et al. (2003) reported that with the exception o f central defenders, 

all outfield players ran in excess o f 2 km at a high-intensity during a game. 

Furthermore, it has been observed that a soccer player performs a high-intensity activity



every 28 to 90 s (Withers et al., 1982; Bangsbo, 1994). The capability to repeatedly 

perform high-intensity exercise would therefore seem to be a necessity of soccer 

performance.

2.2.1 High-intensity running as a marker of soccer-specific exercise capability

The total distance covered during a soccer game is a poor gauge of the physical demand 

placed on a player as it largely consists of walking and jogging, which are not 

physically demanding activities for a trained athlete. Instead, the distance covered 

performing high-intensity running has been suggested to be a more valid and reliable 

indicator o f a player’s performance capability, even though it constitutes a much smaller 

proportion of a player’s activity profile. There are several observations to support this 

viewpoint: 1) during the second half, the volume of high-intensity running can be 35% 

to 45% less than in the first half without a reduction in low intensity running (Mohr et 

al., 2003). Therefore, it is the reduced ability to exercise at high- not low-intensities that 

characterises fatigue in soccer (Krustrup and Bangso, 2001); 2) elite soccer players have 

been observed to run 28 ± 6% further at a high-intensity than moderate standard players 

during a game (Bangsbo, 1992; Mohr et al., 2003); 3) it is during high-intensity periods 

of play that the outcome of games are often decided (Bangsbo, 1994) and 4) the total 

distance covered between games can vary considerably, whereas the distance covered 

performing high-intensity running is more stable (Reilly, 1996). Therefore the 

physiological assessment of soccer players should focus on the processes that influence 

the performance of high-intensity intermittent exercise.

2.3 Energy provision for soccer

It has been widely demonstrated that both anaerobic (Gerisch, 1988; Bangsbo et al., 

1991; Smith et a l, 1993; Florida-James and Reilly, 1995) and aerobic (Seliger, 1968;
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Reilly and Holmes, 1983; Kawakami et al., 1992; Florida James and Reilly, 1995) 

energy systems are heavily taxed during the course of a soccer game. Rather than acting 

separately, the energy systems interact in an attempt to maintain ATP provision for 

muscle contraction.

2.3.1 Anaerobic energy metabolism

At the start of intermittent exercise, oxygen (O2) bound to myoglobin in the muscle and 

haemoglobin in the blood provide a direct source of O2 than can be used for energy 

provision (Saltin et al., 1976). However, this aerobic contribution is not sufficient to 

provide all the energy required at the onset of high-intensity exercise (Spriet, 1995). To 

ensure muscle force development can continue anaerobic energy systems must 

contribute. The immediate source o f anaerobic energy provision is the hydrolysis of the 

high energy phosphate compound, adenosine tri-phosphate (ATP) which is stored in 

muscle:

ATPase
A T P -------------- >  ADP + Pj + H+ + energy (1)

where ADP is adenosine diphosphate, Pi is inorganic phosphate and H+ is a hydrogen 

ion. Only a small amount o f ATP is stored in cells, therefore it must be resynthesised at 

the rate it is used to allow muscular activity to continue. There are two main anaerobic 

energy producing pathways which interact to maintain the supply of ATP for muscular 

force development: ATP- PCr and anaerobic glycolysis.

In the ATP-PCr pathway, the resynthesis of ATP can be achieved by combining ADP 

and Pi via a creatine kinase (CK) reaction in the cytoplasm of the cell:
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ADP + PCr + H+ <----------------------^  ATP + Cr (2)

This pathway provides immediate energy for muscular contraction at the onset of 

exercise and during short term high-intensity exercise, acting as an energy buffer to 

reduce the degradation of ATP stores within the muscle. However, there is only enough 

PCr stored in the muscle to aid ATP provision for approximately 10 s, therefore to 

maintain ATP provision contributions are required from simultaneously operating 

metabolic pathways.

The activation of anaerobic glycolysis occurs probably immediately at the onset of 

exercise and involves the resynthesis of ATP via degradation of glucose or glycogen to 

pyruvate in the cytoplasm of the cell. However, when glycolytic flux exceeds 

mitochondrial activity, as observed at the onset of exercise or during heavy-intensity 

exercise, pyruvate is subsequently converted to lactate, where:

Glucose + 2 ADP + 2 Pi ----- ► 2 Lactate + 2 H+ + 2 ATP (3)

2.3.2 Anaerobic energy metabolism during intermittent high-intensity exercise

The role of anaerobic energy production is complex during high-intensity intermittent 

exercise as it is directly influenced by the intensity and duration of both the exercise and 

recovery periods (Astrand et al., 1960; Essen, 1978). During the initial seconds of a 

high-intensity exercise bout, large reductions in stores of PCr (Balsom et al., 1992; 

Holymard et al., 1998; Bogdanis et al., 1996; Bangsbo, 2000) occur that cannot be 

resynthesised until the intensity of exercise is reduced (Tomlin and Wenger, 2001). The 

total restoration o f PCr stores can take between 3 to 5 min (Hultman et al., 1967), yet

11



the recovery periods in soccer are often much shorter. This could have implications for 

soccer performance, as the inhibition of PCr resynthesis during intermittent exercise by 

insufficient recovery periods (Bogdanis et al., 1995; Bogdanis et al., 1996) has been 

shown to considerably reduce power output and hence performance during subsequent 

bouts of exercise.

However, the capability to perform high-intensity intermittent exercise is not entirely 

dependent on the resynthesis of PCr, as decrements in the repeated performance of both 

abrupt (Gaitanos et al., 1993) and prolonged sprints (McCartney et al., 1986; Greenhaff 

et al., 1994; Bogdanis et al., 1996) have been linked to reductions in anaerobic energy 

turnover from glycolysis. This was clearly demonstrated by Spriet et al. (1989) who 

reported that a 25% reduction in power output during repeated sprints was related to a 

2 0 % reduction in glycogenolysis, with no change being detected in energy contribution 

from the ATP-PCr system. However, a reduction in anaerobic glycolysis during 

repeated high-intensity exercise is not always associated with a reduction in 

performance (Bangsbo, 2000). An increased contribution from aerobic metabolism can 

help maintain ATP supply for muscle contraction as anaerobic glycolysis becomes 

down-regulated, highlighting the complex interaction that occurs between the different 

energy systems during intermittent exercise

2.3.3 Aerobic energy metabolism

The regeneration of ATP from aerobic glycolysis involves the conversion of glucose or 

glycogen to pyruvate. However, if glycolytic flux does not exceed mitochondrial 

activity, lactate is not formed and oxidative phosphorylation occurs in the mitochondria. 

The beta-oxidation of fatty acids inside the mitochondria will also take place. The final 

reaction of oxidative phosphorylation is:
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NADH + y20 2 + H+ + 3 ADP + 3 P i  ► 3 ATP + NAD+ + H20 (4)

There are two major metabolic pathways involved in oxidative phosphorylation: the 

tricarboxylic acid cycle (TCA), which breaks down acetyl units derived from fuel 

molecules and generates the reduced coenzymes nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH2) as well as carbon dioxide (C 02) and 

the electron transport chain (ETC) where free energy, released when electrons are 

transferred from NADH and FADH2 to 0 2, gets channelled into phosphorylation of 

ADP to make ATP, that is, it drives the reaction:

ADP + P i ► ATP + H20  (5)

During electron transfer from NADH and FADH2 to 0 2, the free energy released pumps 

protons (H+) from the matrix side of the inner membrane of the mitochondria to the 

outer side thus creating an electrochemical gradient. When protons return down the 

gradient, the free energy released is used to resynthesise ATP from ADP and Pi.

2.3.4 Aerobic energy metabolism during high-intensity intermittent exercise

Aerobic metabolism is integral to the performance of high-intensity intermittent 

exercise as not only does it contribute to energy provision during abrupt (Seresse, 1988; 

Balsom et al., 1992) and prolonged sprints (McCartney et al., 1986; Bangsbo et al., 

1992; Bogdanis et al., 1996), but is fundamental to the restoration o f muscle 

homeostasis during recovery periods (Bogdanis et al., 1996; Tomlin and Wenger, 

2001).
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Substantial aerobic contributions during high-intensity intermittent exercise are 

necessary to maintain performance when rates o f anaerobic glycolysis are reduced. 

Bogdanis et al. (1996) reported a 45% reduction in anaerobic ATP production during a 

second 30 s sprint performed 5 min after the first sprint, yet only recorded an 18% drop 

in power output. This mismatch between anaerobic energy release and power output 

during sprint two was partly compensated for by an 18% increase in aerobic energy 

provision. Such elevation in aerobic metabolism during repeated bouts o f exercise has 

been reported previously for high-intensity cycling (McCartney et al., 1986; Green et 

al., 1987), and maximal leg extensor exercise (Bangsbo et al., 1992). It has also been

demonstrated that Q O2 is speeded during repeated bouts of exercise (Bangsbo, 2000), 

further demonstrating the increasing importance of aerobic metabolism during repetitive 

high-intensity exercise. Small increases in O2 uptake are beneficial as they will translate 

into large amounts of extra ATP due to carbohydrate (CHO) being oxidised rather than 

metabolised to lactate (Spriet, 1995).

During the recovery periods o f intermittent exercise, it has been shown that aerobic 

metabolism not only provides the energy for muscle activity but also plays a 

fundamental role in the restoration of muscle homeostasis (Lee et al., 1987; Balsom et 

al., 1992). Lee et al. (1987) reported that if the oxygen supply to muscle was restricted 

following a high-intensity exercise bout, PCr resynthesis was inhibited. It has also been 

demonstrated by Yoshida et al. (1993) that PCr resynthesis is faster in muscles that have 

a high oxidative capacity, and furthermore PCr reysnthesis is speeded through the intra

muscular oxidative adaptations that occur as a consequence o f endurance training.

The second major contribution aerobic metabolism plays in the recovery of muscle 

homeostasis is the oxidation of lactate and hence removal o f H+. Although lactate is an
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important precursor for gluconeogenisis in muscle and the liver via the TCA cycle 

(Gaesser and Brooks, 1984; Brooks, 2000), the primary fate of lactate is its oxidation by 

the heart, liver, resting muscles and muscles that are exercising at a low- to moderate- 

intensity (Mazzeo et al., 1986; Brooks, 2000; Gladden, 2000). This process has been 

commonly termed the lactate shuttle (Brooks, 1986). Recently, Brooks (2000) has 

suggested that intracellular uptake and oxidation of lactate might also occur, although 

this theory has been disputed (Sahlin et al., 2002). The complexities of the argument are 

too in-depth to cover in this review.

2.3.5 Adaptation of energy systems to high-intensity intermittent training

If recovery time between bouts of prolonged (20 to 30 s) high-intensity exercise is 

limited, anaerobic glycolysis will be heavily taxed as ATP provision from high energy 

phosphagens will be reduced due to limited PCr resynthesis (Margaria et al., 1969; 

Balsom, 1992; Bogdanis et al., 1996). However, as glycolysis becomes inhibited during 

repeated bouts of high-intensity exercise (Spriet, 1995) there is a considerable 

contribution from aerobic metabolism in an attempt to maintain force development 

(Bogdanis et al., 1996). The reliance on aerobic energy production increases in relation 

to the length of the exercise bout. Another important consequence o f short recovery 

periods is that they will cause V O2 to remain elevated through out the exercise, further 

increasing the demand on aerobic metabolism. This simultaneous stimulation of energy 

systems has been shown to improve anaerobic and to a lesser extent aerobic fitness. In a 

6 week training study by Tabata et al. (1996), recreationally active students performed 

7, 20 s exercise bouts at ~ 170% V O2 max, with 10 s o f recovery between each bout. 

Increases o f 13% and 28% were observed for V O2 max and MAOD respectively. 

MacDougall et al. (1998) demonstrated in a 7 week training study, where 10, 30 s bouts 

of maximal exercise were separated by 2.5 min of recovery, peak power output (+ 49%)
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and V O2 max (+ 7%) both increased. There were also marked increases in the activity 

of anaerobic and aerobic metabolic enzymes.

When short exercise bouts (5 - 10 s) are interspersed by long recoveries (~ 4 min) the 

demand on anaerobic glycolysis and aerobic metabolism is decreased, placing greater 

importance on the rapid breakdown and resynthesis of PCr stores. This will result in 

lower levels of lactate accumulation and muscle acidosis, which might to some extent 

protect against reductions in PCr resynthesis (Billat, 2001). Long recoveries will also 

result in V O2 dropping before the next exercise bout, reducing the demand on aerobic 

metabolism. Therefore, this intermittent training model would appear useful for 

improving ATP production from high energy phosphagens. Such training has been 

shown to benefit sprint performers, where the quickest athletes are the ones who are 

capable of breaking down their stores of PCr the fastest (Himoven et al., 1987). 

Although a number of studies have shown no increase in PCr degradation or CK levels 

following periods of sprint training (Jacobs et al., 1987; Nevill et al., 1989). Cadefau et 

al. (1990) have suggested that a relatively large activity of CK is evident in the muscle 

of sedentary individuals and the stress induced by periods of short sprint training is not 

sufficient to stimulate an increase in CK activity.

If exercise bouts are repeatedly performed at an intensity that will enable an individual 

to exercise for several minutes or more, aerobic metabolism will be the major source of 

ATP provision. Research by Billat et al. (1999) has shown that in well trained runners, 

interval training at > 90 % velocity V O2 max can lead to a substantial increase in V O2 

max as it places a maximal demand on aerobic metabolism. This would indicate that for 

larger improvements in aerobic fitness, the intensity o f exercise should be lower than
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for sprint training so that exercise bouts can be performed for longer to allow greater 

stimulus of the aerobic energy system.

2.4 Measures of physiological function and soccer performance

Extensive physiological assessments of soccer players have been undertaken in an 

attempt to quantify the importance o f aerobic and anaerobic energy provision for the 

performance of high-intensity soccer-specific exercise.

2.4.1 Maximal oxygen uptake

Maximal oxygen uptake is defined as the maximum rate at which an individual can 

extract, transport and utilise O2 at sea level (Astrand and Rodahl, 1986). The FO2 max 

of an individual is achieved when both cardiac output (Q) and the arterial-venous O2 

content difference (C(a-v)0 2 ) are maximal, which is expressed in a rearrangement o f the 

Fick equation:

FO2 max = Q max • C(a-v)0 2  max (6)

During activites such as soccer, where an individual is required to support their body,

*  1 1  
FO2 max is expressed relative to body mass (ml.kg .min ).

2.4.1.1 Limitations of FO2 max
«

Although a person's FO2 max can be increased through appropriate training (Thoden, 

1996), there appears to be a ceiling to its development. Both central and peripheral 

physiological mechanisms have been suggested as factors that limit FO2 max (Rowell, 

1986). Central mechansims involve cardiac and pulmonary function and hence the 

transport of O2 to exercising muscle. Peripheral mechanisms relate to the utilisation of
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O2 in the muscle and include factors such as capillary density, fibre type composition, 

oxidative enzyme activity and mitochondrial content and function (Wilmore and Costill, 

1994).

Support for the central limitation argument is provided by observations that perturbation 

to any step of the O2 transport pathway affects VO2 max. Stray-Gundersen et al. (1986) 

noted that peri-myocardial patients who underwent surgery to increase cardiac output 

and hence oxygen delivery capabilities experienced an 8% improvement in V O2 max. It 

has also been demonstrated that V O2 max can be altered through the manipulation of 

the blood’s oxygen carrying capacity. Richardson et al. (1999) reported that the leg

V O2 max of cyclists increased under hyperoxic breathing conditions. Comparable 

reductions in leg V O2 max were achieved through hypoxic breathing. Similarly, the 

infusion and removal of red blood cells has been shown to increase and decrease V O2 

max respectively (Ekblom et al., 1972).

Support for the peripheral argument is based on the observation that not all the O2 

delivered to the muscle is extracted (Taylor, 1987). In fact, during exhaustive exercise 

the delivery o f O2 to exercising muscle is sufficient to keep muscle PO2 above the 

critical threshold required for normal mitochondrial function (Weibel, 1987). Support 

for the peripheral argument is provided by studies that have found improvements in

V O2 max to be associated with increases in mitochondrial enzyme activity (Saltin et 

<3/ . , 1976b) and muscle capillary density (Weibel, 1987). A study by Henriksson and 

Reitman (1977) however questions the argument that increases in V O2 max can be 

solely attributed to peripheral adaptations. They reported that at the end of an 8 week 

training programme, V O2 max had increased by 19% and succinate-dehydrogenase 

(SDH), which is an indicator of a muscles aerobic potential by 32%. However, after 6



weeks of detraining, V O2 max remained unchanged but SDH had returned to pre

training levels. It is conceivable that it is an interaction of both central and peripheral 

mechanisms that determines V O2 max, and so an integrated model of oxygen delivery 

and utilisation might provide the best explanation (Di Prampero and Cerretelli, 1987).

2.4.1.2 M easurem ent of VO2 max

Due to its practicality, a field-based maximal shuttle run test (Leger and Lambert, 

1982) is often used in soccer to provide an indirect estimate o f a player's FO2 max. 

Although the test is convenient to use with squads of players, Leger et al. (1988) 

reported the error of the estimate for VO2 max to be 5.9 ml.kg^.min ' 1 or ~12%, which 

could mask small changes in a player’s VO2 max. A more accurate measure of a soccer 

player’s aerobic capacity can be obtained through direct determination of VO2 max 

(Armstrong and Costill, 1985), where pulmonary gas exchange is typically measured 

during an incremental (step or ramp) treadmill test to volitional exhaustion. The 

intensity of exercise is progressively increased by manipulating the speed or gradient of 

the treadmill. Importantly, VO2 max has been reported to be ~ 4% lower during a speed 

compared to a gradient protocol (Draper et al., 1998). This might be explained by the 

fact that if  individuals are not accustomed to running at high speeds, it is their inability 

to run quickly that stops them prematurely, rather than the attainment of volitional 

exhaustion. A second explanation is that to run uphill, increased contributions o f the 

upper extremities and less efficient type II fibres are required, which would result in a 

greater consumption of O2.

2.4.1.3 Relationship between V O2 max and soccer perform ance

The V O2 max o f soccer players has been observed to range from 56 to 69 ml.kg^.min’1 

(Puga et al., 1990; Rahkila and Luhtanen, 1991; Davis and Brewer, 1992; Bangsbo,
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1993; Reilly, 1996), which is higher than for sedentary individuals and similar to that 

reported for athletes from other team sports (Bangsbo, 1998). Such a range in V O2 max 

values appears to be the result of positional differences in aerobic fitness, with 

midfielders and fullbacks typically possessing the greatest aerobic capacity, followed by 

forwards and then central defenders (Puga et al., 1990; Rahkila and Luhtanen, 1991). 

Such differences in aerobic fitness among players might be attributable to position- 

specific physiological loads, as V O2 max has been found to be associated with the total 

distance run during a game (r = 0.98, Smaros, 1980; r = 0.68, Reilly, 1996).

A high VO2 max is advantageous for soccer performance as it enables aerobic 

metabolism to substantially contribute to energy provision during high-intensity 

exercise, reducing reliance on anaerobic energy sourses above the AT. A large VO2 max 

might also be beneficial for soccer performance as a high level of aerobic fitness has 

been associated with enhanced recovery capabilitites following high-intensity exercise 

(Tomlin and Wenger, 2001).

Direct support for the importance of V O2 max for soccer performance was provided by 

Helgerud et al. (2001), who reported that an increase in the V O2 max o f well-trained 

soccer players from 58.1 ± 4.5 ml.kg^.min ' 1 to 64.3 ±  3.9 ml.kg^.min ' 1 was associated 

with an increase in the number of sprints performed during a game. Furthermore, the 

distance run in a test of soccer-specific high-intensity running capacity has been found 

to be positively correlated with V O2 max (r = 0.79, Krustrup et al., 2003). However 

several studies have noted that V O2 max is not associated with the amount of high- 

intensity running performed during a match-play (Bangsbo and Mizuno, 1988; Krustrup 

and Bangsbo, 2001; Krustrup e al., 2003; Mohr et al., 2003), which as discussed in 

section 2.2 appears to be the most important aspect of soccer performance. Bangsbo and



Mizuno (1988) also reported V O2 max to be an insensitive indicator o f training status, 

as they observed a player’s performance in a soccer-specific fitness test to decrease 

markedly after 3 weeks of inactivity while their V  O2 max remained unchanged. 

Furthermore, Krustrup and Bangsbo (2001) observed that elite referees who undertook a 

12 week intermittent training programme that comprised a range of exercise to rest 

patterns ( 4 x 4  min runs, 8 x 2  min runs, 1 6 x 1  min runs and 24 x 30 s runs at heart 

rates above 90% of an individual’s maximum) were found to perform more high- 

intensity running during a game with no change being detected in V O2 max. Krustrup 

et al. (2003) also noted performance in a test of soccer-specific fitness to increase 

considerably (25 ± 6 %) following an intense period of pre-season training with only a 

small improvement in V O2 max (+ 7% ± 1%).

2.4.2 Anaerobic threshold

The anaerobic threshold refers to the V O2 at which the onset of metabolic (lactate) 

acidosis occurs within muscle. (Wasserman and Mcllroy, 1964). However, there is a 

lack of consensus as to the existence, definition and identification o f the AT (Yeh et al., 

1983; Brooks, 1985; Hughson et al., 1987). Consequently, several approaches have 

been developed for its measurement, which can make cross study comparisons 

problematic. However, Wasserman et al. (1994) stated that the use of contrasting 

methods of AT measurement does not dispute the existence of the underlying 

mechanism.

2.4.2.1 Mechanisms of AT

During exercise intensities performed below the AT, most of the hydrogen ions stripped 

from fuel substrates and carried by NADH are oxidised within the mitochondria and 

passed to oxygen via the ETC to form water. In these conditions, there is minimal
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lactate accumulation as the rate of lactate appearance is equal to the rate of lactate 

removal, creating a biochemical steady-state. However, as the intensity of exercise 

exceeds the AT, an increased contribution from anaerobic glycolysis and recruitment of 

less oxygen efficient type II fibres causes an increase in the lactate-pyruvate ratio. 

Consequently, pyruvate reacts with NADH + H+ and is reduced to lactate, via lactate 

dehydrogenase (LDH), while regenerating NAD+ and allowing anaerobic glycolysis to 

continue. The increased H+ is buffered intra-cellularly by HCO3, generating additional 

C 0 2.

The traditional explanation of the AT devised by Wasserman (1983) identified the 

following sequence of processes as forming the basis of AT: 1) The O2 required by 

exercising muscle can exceed the O2 supply to the mitochondria as exercise intensity 

progresses, 2) The imbalance between the O2 supply and O2 requirement causes the 

mitochondrial membrane shuttle to lose pace with the rate o f [NADH + H+] production, 

resulting in a reduced redox state. The condition of O2 limited oxidative 

phosphorylation is termed dysoxia. Recently, evidence has mounted that suggests 

dysoxia is not necessarily the primary cause of increased lactate production. During 

progressive exercise Richardson et al. (1998) reported increases in lactate even though 

intramuscular PO2 remained above the critical mitochondria PO2. It is also widely 

accepted that during rest and low-intensity exercise in fully aerobic conditions, lactate is 

continuously being produced and removed (Brooks, 1986). As cell acidosis is dependent 

on the rates o f production and removal of lactate, it is conceivable that it is the ability to 

remove lactate that determines where AT occurs.

22



2.4.2.2 M easurem ent of AT

One method for identifying AT is to determine the point at which lactate production 

exceeds its removal, leading to increases in muscle and blood lactate concentrations, 

referred to as the lactate threshold (LT). Typically, LT is identified during a protocol 

which consists o f several small incremental stages that tend to be 3 to 4 min long. 

Lactate measurements are taken at the end of each stage. When represented graphically, 

the lactate response to the increasing exercise intensity typically consists of a two 

component curve, the first being shallow, often not passing 2  m m olT1 or exceeding 1 

mmol.l' 1 above resting. The second component then tends to lead into a steep rise, often 

resulting in values above 4 mmol.l' 1 (Karlson and Jacobs, 1982). Beaver et al. (1985) 

suggested that the point at which the two components intersect is LT. Although it must 

be stressed that there are several methods o f LT identification and each can provide an 

alternative V O2 value for LT.

The gas exchange threshold (GET) is a non-invasive method of determining AT. 

Pulmonary gas exchange is recorded during a continuous incremental exercise test, 

where at the low and moderate exercise intensities; V CO2 and V E rise in a linear 

pattern until GET. Above GET, CO2 production from the buffering o f lactate results in 

an increase in V CO2 relative to V E . As V E  and V CO2 initially accelerate linearly 

above GET, there is a short period where V E I V  CO2 and PETCO2 do not change while 

V E / V  O2 and PETO2 increase, which is referred to as the isocapnic buffering stage. 

This point can be used to identify GET. However, this approach can be inaccurate 

because o f its reliance on the ventilatory response to metabolic acidosis. In some people 

with insensitive ventilatory chemoreceptors, the expected ventilatory response might be 

absent. To overcome this problem Beaver et al. (1986) developed the V-Slope method 

to determine the occurrence of GET. It is based upon the fact that CO2 is released when



lactic acid is buffered by bicarbonate in the cells, and that this CO2 is quickly 

transported to the lungs. This additional CO2 can be detected by an increase in CO2 

output over and above the CO2 produced from aerobic metabolism. When breath-by- 

breath V CO2 is plotted against V O2, the point at which V  CO2 increases 

disproportionally to the aerobic energy production is GET (Wasserman et al., 1988).

2.4.2.3 Relationship between AT and soccer performance

The LT and GET of soccer players has been reported to occur between 72 to 86% of 

V O2 max (White et al., 1988; Chin et al., 1992; Edwards et al., 2003), which is similar 

to that reported for both team players and endurance athletes (Kilding et al., 2003). The 

range in values is probably due to positional differences in endurance fitness as well as 

the use of different criteria to assess where LT and GET occur.

Recently, Edwards et al. (2003) observed that after a period of preseason training, V O2 

at both LT and GET increased considerably, although V O2 max remained unchanged. 

This suggests that the ability to delay lactate accumulation as exercise intensity 

increases is more important for soccer performance than a large aerobic capacity. 

Alternatively, it might be that AT is a more sensitive marker of soccer-specific fitness 

than V O2 max. Bangsbo and Lindquist (1992), using a modified measure of LT 

reported that players whose lactate levels did not reach 3 mmol.l' 1 until a high 

percentage of their V O2 max ran further during a game. Although, as stated in section 

2 .2 , the total distance covered during a game provides limited information concerning a 

player’s physical performance. Furthermore, Balsom, (1991) noted little correspondence 

between an individual's V O2 at LT and decrement in high-intensity running 

performance over the course of a game. This observation is logical as the high-intensity 

runs involved in soccer are often at a speed that is well above a player’s AT. Although



this does not account for the beneficial role a high AT might have in recovery 

capabilities and the removal of lactate.

2.4.3 Anaerobic Capacity

The concept o f anaerobic capacity refers to the total amount of ATP that can be derived 

from the high-energy phosphagen and glycolytic energy systems (Green et al., 1987).

2.4.3.1 M echanisms of anaerobic capacity

The capacity to produce energy via the high energy phosphagen and glycolytic energy 

systems is strongly influenced by the architecture of exercising muscle. A high 

distribution of type Ha and IIx fibres predisposes a muscle for anaerobic energy 

production as they possess high concentrations of the metabolic enzymes (Table 2.2) 

that drive and regulate PCr degradation and glycolysis. An association has been 

demonstrated between type II fibre distribution and the glycolytic capacity of muscle 

(Simoneau et al., 1985). Also strong links have been observed between the amount of 

energy that can be derived anaerobically and concentrations o f these key enzymes 

before and after a period of high-intensity training (Himoven et al., 1987; Neville et al., 

1989; Linnossier et al., 1993; MacDougall et al., 1998).

Table 2.2 Enzymes and their role in energy production.

Enzyme Role

Creatine phosphokinase (CPK) Breakdown of PCr

Phosphofructokinase (PFK) Regulation o f glycolysis

Glycogen Phosphorylase (PHOS) Breakdown of glycogen

Lactate dehydrogenase (LDH) Conversion of pyruvate to lactate

ATPase Splitting of ATP
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It is also feasible that a high distribution of type II muscle fibres will enhance muscle’s 

anaerobic energy producing capacity as they contain high concentrations of PCr and 

glycogen; the substrates required by the high energy phosphagen and glycolytic energy 

systems (Ross and Leveritt, 2001).

Associated with the capacity for anaerobic energy production is the acidic buffering 

capacity o f muscle. During prolonged high-intensity exercise, the accumulation of H+ 

dissociating from lactic acid has been linked with fatigue by lowering muscle pH to 

such an extent that energy metabolism is reduced or prohibited. Human skeletal muscle 

has the ability to offset this change in pH through the use of various buffering 

mechanisms, including chemical buffers HCO3', phosphate, proteins and haemoglobin 

in red blood cells (Ross and Leveritt, 2001). Recent evidence (Jeul, 1998) has shown 

that enhanced buffering capacity is associated with lower blood pH levels, indicating it 

is the ability o f skeletal muscle to transport H+ into the blood rather than tolerate them 

that is key to maintaining exercise. Several studies have demonstrated that the buffering 

capacity of muscle can be increased following a period of high-intensity training 

(Parkhouse and McKenzie, 1984; Allen et al., 1995; Jeul, 1998). Such an adaptation 

might contribute to a large anaerobic capacity as it would enable anaerobic energy 

metabolism to continue during high-intensity exercise.

2.4.3.2 Measurement of anaerobic capacity

A direct estimation of anaerobic capacity is obtained by measuring changes in ATP, 

PCr and lactate in muscle following high-intensity exercise. Such measures have only 

been made possible by the introduction of the muscle biopsy technique. A small sample 

o f tissue is taken from the exercising muscle and immediately frozen in liquid nitrogen. 

It is important that the procedure is performed quickly as resynthesis o f ATP and PCr
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could otherwise occur. To obtain valid estimates of anaerobic capacity from a muscle 

biopsy, the muscle mass involved in the exercise must be accurately determined. During 

cycling or treadmill running working muscle mass is estimated to be approximately 

25% of body mass (Medbo and Tabata, 1993), however this is only an assumption and 

does not take into account the possibility that different muscles or muscle fibres are 

utilised as exercise continues (Bangsbo, 1993). A further limitation of the muscle 

biopsy technique is that it only accounts for lactate in the muscle, and does not provide 

a measure of lactate that has been released into the blood. This could lead to an 

underestimation of anaerobic energy production from glycolysis.

A commonly used indirect measure of anaerobic capacity is the maximal accumulated 

oxygen deficit (MAOD). To calculate MAOD, a linear relationship between V O2 and a 

range of sub-maximal exercise intensities is established. On a later occasion, this 

relationship is used to exercise a participant at 120% V O2 max until exhaustion 

(Medbo, 1988). The MAOD is calculated as the difference between the accumulated O2 

demand and the accumulated O2 uptake. Medbo et al. (1988) demonstrated that MAOD 

would reach a maximum value and plateau off for exhaustive bouts o f running which 

lasted 2 minutes or more, indicating the attainment of maximum anaerobic capacity. In 

support o f MAOD as a measure o f anaerobic capacity, Medbo et al. (1988) found a 

strong correlation between MAOD and measures of maximal anaerobic energy 

production determined from muscle biopsies. The authors also noted MAOD to be a 

valid measure of anaerobic energy production as it was unaffected by reductions in PO2 

during hypoxic breathing conditions.

However there is controversy surrounding the use of MAOD as a measure of anaerobic 

capacity, as the physiological processes involved in its assumptions are complex and
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poorly understood in large exercising muscle groups (Bangsbo, 1993; Bangsbo, 1998). 

It might be more appropriate to use the MAOD as a measure o f anaerobic energy 

release or a performance measure of prolonged high-intensity running capability, rather 

than saying it provides a measure of anaerobic capacity per se.

Several indirect estimates o f maximal anaerobic capacity have since been developed 

that are less time consuming and hence more practical than the MAOD (Rusko et al., 

1993; Ramsbottom et al., 1997; Hill et al., 1998), however it is beyond the scope of this 

review to describe them all. One particular test that appears to be applicable to soccer is 

the Maximal Anaerobic Running Test (MART) devised by Rusko et al. (1993) and later 

modified by Maxwell and Nimmo (1996). The test involves 20 s running bouts on a 

motorised treadmill separated by 100 s of passive recovery. The starting speed is 14.3 

km.h ' 1 and increases by 1.2 km.h ' 1 for each subsequent running bout. Treadmill gradient 

is kept constant at 10.5%. It is the aim of the participant to complete as many 20 s bouts 

as possible until exhaustion. The time to fatigue and the running speed achieved is then 

used to calculate maximal anaerobic power. Maxwell and Nimmo (1996) observed a 

strong correlation (r = 0.83) between the maximal anaerobic power values obtained in 

the MART and MAOD for a group of 18 recreationally active students. Earlier research 

by Rusko et al. (1993) showed the MART to be reliable on a test-retest basis, reporting 

correlation coefficients of r = 0.93 for maximal anaerobic power. It has also been 

suggested that the MART is sensitive to differences in training status as sprinters have 

been observed to achieve significantly greater max anaerobic power scores ( 119.2 ± 5.4 

ml.kg^.min'1) than endurance runners (97.8 ml.kg‘1.min'1) (Nummela et a l  1996; 

Vuorima et al. 1996). So it would appear that the MART is an appropriate indicator of 

an individual’s ability for anaerobic energy provision, and its intermittent nature might
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make it a more appropriate indirect measure of anaerobic capacity for soccer players 

than MAOD.

2.4.3.3 Relationship between anaerobic capacity and soccer performance

It is conceivable that the ability to derive large amounts of energy anaerobically would 

benefit soccer performance as it would enable a player to exercise for longer at supra 

V O2 max intensities. Odetoyinbo and Ramsbottom (1998) observed the MAOD of 

University standard soccer players to increase from 74.3 ml.O2-Eq.kg to 80 ml.0 2 - 

Eq.kg after a period of high-intensity training, while studies by Ramsbottom et al. 

(1997) and Ramsbottom et al. (2001) reported that an increase in anaerobic capacity 

was positively correlated with improvements in continuous high-intensity shuttle 

running capacity.

In contrast, Bangsbo and Michalsik, (1993) reported that a high anaerobic capacity 

might not be crucial in order to succeed in soccer as the MAOD of elite Danish soccer 

players (49.5 ± 3.0 ml.O2-Eq.min*1.kg'1) did not differ to that o f distance runners (51.9 ± 

3.8 ml.O2-Eq.min'1.kg*1) and oarsmen ( 47.3 ± 6.3 ml.O2-Eq.min'1.kg '1). Bangsbo and 

Michalsik (1993) also noted a large variation in MAOD to exist within the group of 

soccer players. Unfortunately, there does not appear to be any research that has 

investigated whether anaerobic capacity is a determining factor in the ability to perform 

high-intensity soccer-specific exercise. If it is the case that aerobic processes do not 

limit soccer performance, then the link between anaerobic capacity and soccer 

performance warrants investigation.
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2.5 Soccer-specific performance measures

Soccer-specific performance tests can provide a direct means of investigating the 

physiological processes involved in the performance of high-intensity soccer-specific 

exercise. Due to the variable physical demands of soccer, a broad range of performance 

tests have been devised. However, for the purpose of this thesis, attention shall be 

focused on measures of intermittent high-intensity exercise capability.

2.5.1 Intermittent high-intensity exercise capacity

Tests of capacity provide information about the total amount of exercise that an 

individual can perform. Several soccer-specific exercise capacity tests have been 

devised (Ekblom, 1986; Balsom, 1992; Bangsbo and Lindquist, 1992; Nicholas et al.,

2 0 0 0 ), all o f which are field based and involve an intermittent exercise pattern. 

Recently, the Yo-Yo intermittent recovery test (YIRT) devised by Bangsbo (1996) has 

received considerable attention. The test requires players to perform repeated 20 m 

shuttle runs interspersed by 10 s recovery periods. During the recovery periods, players 

are required to jog around a marker set 5 m back from the 20 m shuttle. The time 

allowed for each 20  m shuttle is progressively decreased and is dictated by audible 

signals generated from a cassette tape. Players must try to keep in time with the signals 

until they reach volitional exhaustion. The test result is the total distance run. The 

reproducibility of the YIRT test has been reported to be high, with a coefficient of 

variation of 4.9% for test-retest data (Krustrup et al., 2003). Performance in the YIRT is 

strongly related with the amount of high-intensity running a player is capable of 

performing during a game (r = 0.71) (Krustrup et al., 2003). The YIRT has also been 

observed to distinguish between players of different standards (Mohr et al., 2003), and 

improvements in YIRT performance following a period of training are mirrored by an 

increase in the amount of game related high-intensity running (Krustrup and Bangsbo,
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2001). Such findings would indicate that the YIRT provides a valid and reliable 

measure of the capacity to perform high-intensity soccer-specific exercise.

2.5.2 Repeated sprint perform ance

Repeated sprint tests provide information about the capability to maintain performance 

over a series of maximal exercise bouts. Although there are a variety of repeated sprint 

tests, very few have actually been based on match analysis data. Bangsbo (1994) 

developed a repeated sprint protocol where players are required to sprint along a 30 m 

course that involves a 5 m deviation to the left. On completing the course players have 

25 s to jog back to the start before performing the next trial. Seven trials are performed 

in total. Performance measures from the test include best sprint time, mean time for the 

7 sprints and fatigue index (fastest minus slowest sprint). Wragg et al. (2000) reported 

that the ratio of high- to low-intensity running involved in the test is 1:3.3 and the mean 

time taken to perform the 7 repetitions was 203.6 s These values correspond very 

closely with match analysis data published by Withers et a l  (1982) who found that the 

most physiologically demanding situation experienced by a player involved a high to 

low-intensity ratio o f 1:3.1 that lasted for a duration of 178.2 s. Wragg et al. (2000) also 

reported a coefficient of variation of 1.8% for within subject variability. Unfortunately 

the test has not been used to gain information regarding the physiological mechanisms 

that influence high-intensity soccer-specific exercise capability. Research is therefore 

warranted to address this paucity in knowledge.

2.6 Pulm onary V O2 kinetics and soccer perform ance

The performance of high-intensity soccer-specific running has been shown to have a 

limited association with traditional measures of aerobic fitness. Yet, it is clear that 

aerobic energy provision plays an important role during the performance of high-
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intensity intermittent exercise (Bogdanis et al., 1996; Tomlin and Wenger, 2001). A 

potential reason for this apparent contradiction is that tests of aerobic fitness such as

V O2 max and AT do not measure the aerobic processes that might benefit soccer 

performance. It is plausible that it is the speed at which aerobic metabolism can meet 

the energy demands of a change in exercise intensity that is fundamental for the 

performance of intermittent exercise. A rapid onset o f aerobic metabolism would 

decrease the oxygen deficit and result in less reliance on anaerobic energy pathways. 

Also quick recovery kinetics might indicate enhanced PCr resynthesis and fast removal 

of lactate, leading to a quicker restoration of muscle homeostasis which would benefit 

the performance of subsequent exercise bouts. Furthermore, as the slow component has 

been associated with fatigue processes (Casaburi et al., 1987; Barstow et al., 1994), a 

small slow component might suggest an enhanced capacity to tolerate high-intensity 

exercise which could be beneficial for soccer performance. Previous research has 

demonstrated a link between quick V O2 kinetics at the onset of exercise and superior 

performance of continuous high intensity exercise (Norris and Peterson, 1998; Demarle 

et al., 2001). It is conceivable therefore that V O2 kinetics might be a determining factor 

in the capability to perform soccer-specific high-intensity intermittent exercise.

2.7 Pulm onary V O2 kinetics

Pulmonary V O2 kinetics is a measure of the rate at which V  O2 adjusts to alterations in 

exercise intensity. As the dynamics of V O2 measured at the mouth during exercise are 

closely coupled to metabolic cellular events (Cooper et al., 1985), the measurement of

V O2 kinetics can provide a useful insight into the mechanisms and effectiveness of 

cellular energy production. It is important to consider the exercise intensity domain in

which V O2 kinetics are measured, as the kinetic response both for on- and off- 

transients become more complex as exercise intensity exceeds AT. Since soccer
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involves a range of running speeds, the dynamic V  O2 kinetic responses both to 

moderate- (sub AT) and heavy- (supra AT) intensity exercise will be discussed.

2.7.1 The V O2 response to m oderate- and heavy-intensity square-wave exercise

2.7.1.1 Onset of exercise

A square-wave exercise transition in the moderate-intensity domain typically results in a

three phased V O2 response (Linnarsson, 1974; Whipp et al., 1982) which is illustrated 

below in Figure 2.1.
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Figure 2.1 The V O2 response to the onset o f exercise in the moderate-intensity domain. 

The three phases are described in the text (adapted from Sietsema et al., 1989)

A sudden rise in exercise intensity causes an immediate increase in cardiac output ( Q ) 

and pulmonary blood flow, the consequence of which is the abrupt increase in V O2

identified as phase I in Figure 2.1. This cardio-dynamic increase in V O2 lasts

approximately 15 to 20  s and does not reflect increased muscle O2 utilisation as it is not
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the result o f deoxygenated blood returning to the lungs from active muscle. Once

venous blood arrives at the lungs there is a mono-exponential rise in V O2 termed phase 

II, which reflects the increased O2 demand of the active muscles to sustain muscle

contraction at the imposed intensity. This rise in V O2 continues until the O2 demand of 

the exercising muscles is met, or the oxidative processes are at full capacity. If exercise 

is performed in the moderate-intensity domain, the energy demands o f the active

muscles can be met aerobically, which will result in a plateau of the V O2 response

termed phase III. The time taken for V O2 to reach phase III typically takes two to three 

min, although variations have been observed in diseased (Hepple et al., 1999) and 

highly trained individuals (Kilding et al., 2003).

If exercise is performed in the heavy-intensity domain, aerobic metabolism alone is 

insufficient to meet the energy demands of exercising muscle and must be 

supplemented by anaerobic processes. This inability to meet the demands of the 

exercise aerobically prevents the attainment o f a steady-state, instead phase III is 

extended, and takes the form of a gradual increase in the rate o f oxygen utilisation. This

development of excess V O2 has been termed the slow component and will continue to

rise either to a delayed steady-state or V O2 max and exhaustion (Poole et al., 1994).

b
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Figure 2.2 The three phased V 0 2 response to square-wave exercise in the heavy-

intensity domain. The amplitude of phases II and III (slow component) are expressed as 

A\ and respectively. The time delay between the onset of exercise and the beginning 

of phases II and III is represented by TDi and TD2 respectively. A full explanation of 

terms is provided in chapter 2.7.5.

2.7.1.2 Cessation of exercise

At the cessation of exercise in the moderate-intensity domain, the V 0 2 response 

consists of three distinct phases that mirror those of the on-transient. To summarise,

Phase I is characterised by a sudden drop in V  0 2 due to a decrease in Q reducing

blood flow. Phase II immediately follows and is identified as the exponential fall in

V 0 2 which is associated with the restoration of muscle oxygen stores and the

resynthesis o f PCr. Phase III (steady-state) represents the return of V 0 2 to pre-exercise 

values (Cunningham et al., 2000; Ozyener et al., 2001). If exercise is performed in the 

heavy-intensity domain a slow component has been observed to develop (Fig 2.4),

which keeps V 0 2 elevated above pre-exercise values.
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Figure 2.3 The V O2 response during recovery from square-wave exercise in the heavy- 

intensity domain. The amplitude of phases II and III (slow component) are expressed as 

A 1 and A 2 respectively. The time delay between the onset of exercise and the beginning 

of phases II and III is represented by TDi and TD2 respectively. A full explanation of 

terms is provided in chapter 2.7.5.

2.7.2 Characterisation of V O2 kinetics as a function of exercise intensity

Several researchers have observed phase II x to be invariant for cycle ergometry across 

a range of intensity domains in both the on- (Barstow and Mole, 1991; Barstow et al., 

1993) and off-transients (Cunningham et al., 2000). This was demonstrated by Ozyener 

et al. (2001) who observed the phase II x for exercise onset and cessation did not differ 

between moderate- (33 ± 16 vs. 29 ± 6 s), very heavy- (34 ±11 vs. 33 ± 5 s) and severe- 

intensity exercise (34 ± 7 vs. 35 ± 11 s). An earlier study by Barstow et al. (1993) 

reported similar findings where phase II x was invariant across intensities ranging from 

30 to 100% V O2 max.
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There are however several studies that have observed x to lengthen as exercise intensity 

increases (Paterson and Whipp, 1991; Koga et al., 1999; Carter et al., 2002), suggesting

the control of V O2 kinetic responses are not independent of exercise intensity. Paterson 

and Whipp (1991) reported a slower phase II x for heavy- (40.2 ± 2.7s) than moderate- 

(31.3 ± 3.3 s) intensity cycle ergometry. Barstow et al. (1994) questioned the validity of 

these results as a mono-exponential model was used to characterise the heavy exercise 

transition. This would not have allowed a distinction to be made between the

dynamically different V O2 responses of phase II and the slow component. It is 

conceivable that the inclusion of the slow component would artificially slow the true 

phase II x, leading to incorrect result interpretation. The use of a two-component model 

to take into account the slow component might have improved accuracy. More recent 

research by Carter et al. (2002) reported that phase II x was shorter for moderate- than 

heavy-, very heavy- and severe-intensity treadmill running. The x was found to be 

invariant across all the supra AT intensities.

The suggestion that x is invariant across intensity domains has implications for the 

development of a testing protocol for soccer players. It is plausible that only heavy- 

intensity exercise bouts would have to be performed to gain valid information about the

dynamics o f the V O2 response both to low- and high-intensity running. Yet, the 

contradictory findings of the above studies make it difficult to draw firm conclusions

about the characterisation of V O2 kinetics as a function of exercise intensity, prompting 

further research in the area.

2.7.3 C haracterisation of V O2 kinetics as a function of the exercise transien t

Studies into the characteristics of V O2 kinetics during both the on- and off-transients of 

exercise have reported conflicting results. Several investigations have reported
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symmetry between V O2 kinetic responses during the onset and cessation of moderate- 

intensity square-wave cycling (Paterson and Whipp 1991; Barstow et al., 1996; Ozyener 

et al., 2001). Conversely other studies have reported asymmetry between on- and off-

V O2 kinetic parameters during such exercise (Hughson et al., 1988; Rossiter et al.,

2002). A study which involved both cycling and running was conducted by Carter et al. 

(2000a) and reported the phase II t  to be asymmetrical between the on- and off- 

transients of moderate-intensity cycling (On: 18.0 ± 4.0 s vs. Off: 35.9 ± 4.2 s) and

treadmill running (On: 15.0 ± 2.0 s vs. Off: 39.3 ± 3 . 0  s). The observation that V O2 

kinetics are asymmetrical irrespective of exercise modality strongly supports the

argument that V O2 kinetics are influenced by the exercise transient in which they are 

measured.

With regards to exercise performed in the heavy-intensity domain, several 

investigations have reported the phase II t  to be invariant across exercise transients for 

cycling (Engelen et al., 1996; Scheurmann et al., 2001). This is in disagreement 

however with more recent research that has reported phase II x to be longer during the 

off- than the on-transient of heavy-intensity cycling (Cleuziou et al., 2004) and knee 

extensor exercise (Rossitter et al., 2002).

There is also uncertainty about the symmetry of V O2 slow component responses 

between exercise and recovery. Recently, Cleuziou et al. (2004) reported x to be similar 

between the on- (113.7 ± 39.4 s) and off- (118.9 ± 41.4 s) transient slow component 

responses. However, in most cases x for the slow component has been found to be much 

longer during recovery than exercise (Cunningham et al., 2000; Ozyener et al., 2001). 

In a study by Ozyener et al. (2001), x of the slow component during recovery from very 

heavy exercise was 460 db 123 s compared to 163 ± 46 s recorded during exercise onset.
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Differences in x of the slow component could be attributable to the modelling technique 

used to characterise the delayed V O2 response during recovery (Cleuziou et al., 2004).

The amplitude of the slow component during recovery has been reported to be similar to 

that measured during exercise (Barstow et al., 1996; Engelen et al., 1996; Scheurman et 

al., 2001; Cleuziou et al., 2004). Barstow et al. (1996) concluded that the symmetry 

between slow components represents a clear exercise induced metabolic process that 

retains its distinction in recovery. However other studies have noted the amplitude of 

the slow component to be substantially smaller during recovery than exercise (Carter et 

al., 2000a; Cunningham et al., 2000; Ozyener et al., 2001). Cunningham et al. (2000) 

reported that the slow component during recovery was independent of the intensity and 

hence slow component contribution of the previous exercise, so refuting the earlier 

claims of Barstow et al. (1996).

2.7.4 M easurem ent of V O2 kinetics

The investigation of V O2 kinetics has resulted in several exercise protocols being 

devised to force a measurable change in cellular metabolism. The most common 

involves a square-wave (or step) transition in exercise intensity, where breath-by-breath 

pulmonary gas exchange is measured during an abrupt change from rest or low-intensity 

exercise to moderate- or high-intensity exercise. This exercise pattern can be reversed to

measure dynamic V O2 responses during recovery. The intensity o f the exercise

transition is determined relative to an individual’s AT and V C^max, ensuring that V O2 

kinetic responses to the appropriate intensity domain are obtained.

To minimise the variability or noise inherent in breath-by-breath pulmonary gas 

exchange (Lamarra et al., 1987), several square-wave transitions are performed, either
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consecutively with appropriate rest periods or on separate occasions. The data from 

each transition are often interpolated and then ensemble averaged to produce a single

representative measure o f the V O2 response. Exponential modelling techniques can 

then be used to accurately determine a series of kinetic parameters.

2.7.5 Modelling V O2 kinetics a t the onset and cessation of exercise

Exponential modelling techniques incorporating least squares regression identify the

kinetic parameters that describe V O2 responses to the onset or cessation of square-wave 

exercise. In the moderate-intensity domain, a first-order exponential model is typically

used to characterise V O2 responses during both the on- and off-transients (Chilibeck et 

al., 1998; Ozyener et al., 2001). In an attempt to gain a true reflection of the exponential 

change in V O2 during phase II, interference from the initial cardio-dynamic phase

(phase I) is reduced by either removing the first 20 s of V  O2 data or constraining the 

model to start at the beginning of the phase II response (Whipp et al., 1982). In the on- 

and off-transients o f heavy-intensity exercise, a double-exponential model is commonly

used to separately characterise the exponential rise in V O2 and subsequent slow 

component (Barstow et al., 1996; Cunningham et a l, 2000). A number o f researchers 

have included phase I in the modelling procedure, which will require two and three 

component exponential models for moderate- and heavy-intensity exercise respectively.

Kinetic parameters that are generated from this analysis of both the on- and off- 

transients are: 1) time delay (TD), which refers to the point(s) after the onset or 

cessation of exercise when phase II and/or the slow component begin; 2) x, reflects the

time taken to reach 63% of the exponential change in V O2 during phase II and/or the 

slow component following the onset or cessation of exercise; 3) amplitude term (A),

40



representing the magnitude of the V O2 change for each of the three phases. The above 

parameters are depicted in Figures 2.2 and 2.3 for the on- and off-transients of heavy-

intensity exercise. In place of x, early investigations into V O2 kinetics used the rate

constant [k] or V O2 half-time [ V O2 tJ/2] t0 characterise a V O2 response (Whipp and

Casaburi, 1982; Powers et al., 1985).

2.7.6 The site of V O2 kinetic limitation

The study of V O2 kinetics has indicated that at the onset o f exercise, oxidative

phosphorylation is limited either by: 1) the transport of oxygen to the exercising muscle 

(central) or 2) the inability of the muscle to utilise the O2 delivered (peripheral). An O2 

transport limitation infers that mitochondria PO2 is not saturating in all active muscle 

fibres during the exercise transition and O2 utilisation could be increased if  more O2 was 

made available (Tschakovsky and Hughson, 1999). Alternatively, O2 utilisation 

limitation suggests that the rate of oxidative phosphorylation during the exercise 

transition is determined by metabolic controllers. To investigate these opposing theories 

researchers have disrupted either one or more steps in the O2 delivery chain, or

attempted to identify physiological processes that follow the same response pattern as

V O2 to the onset of exercise.

2.7.6.1 D isruption of the oxygen delivery chain

Several investigations have shown that when oxygen availability was lowered by the 

use of P-adrenergic receptor blockade drugs to reduce Q , the V O2 response was slowed 

(Hughson and Smyth, 1983; Hughson, 1984). The use of such data to support an O2 

delivery limitation has however been questioned, as the use of P-adrenergic blocking 

drugs could cause participants to exercise in a heavier intensity domain (Hoffman et al.,

41



1994), which has been suggested to result in slower V O2 kinetic responses (Paterson 

and Whipp, 1991).

Studies that have reduced the amount of O2 that can be delivered to exercising muscle

through hypoxic breathing have reported a substantial slowing of V O2 kinetic 

responses (Murphy et al., 1989) compared with normoxic conditions. Such an 

observation suggests that the site of V O2 kinetic limitation is central rather than 

peripheral. However, the inhalation of hyperoxic gas concentrations (70% O2) does not

affect the phase II V O2 kinetic responses (Hughson and Kowalchuck, 1995). Such

findings suggest that the oxygen delivery only limits V O2 kinetics if  inspired oxygen is 

reduced, under normal arterial O2 content, oxygen transport is not limiting.

A less invasive approach to increasing oxygen delivery is the elevation and circulatory 

occlusion of both legs as this will increase central blood volume and so cardiac output.

Under such conditions V O2 kinetic parameters have been observed to speed up during 

arm exercise (Hughson and Inman, 1986). A limitation of this study is that the 

information generated only relates to arm exercise, making assumptions about whole 

body exercise difficult. Such methodological problems can be overcome if circulatory 

changes are imposed by the manipulation of body position. When supine, venous return 

and so cardiac output are augmented as the effect of gravity is reduced compared to

upright exercise. Consequently, supine exercise has been shown to slow the V Oi 

kinetic response (Convertino et al., 1984; Hughson et al., 1990) as the perfusion 

pressure across muscle capillary beds will decrease, therefore reducing muscle blood

flow. This is supported by the observation that both blood flow and V O2 kinetics are 

slowed during knee extension exercise in the supine position (MacDonald et al., 1998).
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An alternative method o f increasing blood flow and hence O2 delivery is the use of 

lower body negative pressure. The increase in blood flow instigated by this technique

has been associated with a speeding of V O2 kinetic responses in the supine position to 

a level similar to that recorded for upright exercise (Eiken, 1988; Hughson et al., 1993).

This would suggest that the slowing in V O2 kinetics observed by Hughson et al. (1990) 

during supine exercise is mediated by a reduction in oxygen delivery as it can be 

reversed by a technique that increases O2 delivery. Following the same principles, lower

body positive pressure would be expected to slow V O2 kinetic responses by restricting 

oxygen delivery. However Williamson et al. (1996) reported that lower body positive

pressure had no effect on V O2 kinetic responses to moderate-intensity exercise, and so

refuted findings that V O2 kinetics are limited by steps in the oxygen delivery process.

The potential influence a prior exercise bout might have on dynamic V O2 responses to 

the onset of exercise is particularly relevant to the study of soccer performance, as a 

soccer player's activity profile involves the execution of a series o f exercise bouts that

sporadically change in intensity. It is hypothesised that prior exercise could speed V O2 

kinetics as oxygen delivery will be enhanced due to increases in the transport and 

perfusion of oxygenated blood to exercising muscle (Hughson and Morrissey, 1982).

Recent investigations have reported that the V O2 kinetic responses to the onset of 

moderate-intensity exercise are unaltered by preceding bouts of moderate- and heavy-

intensity exercise (Gerbino et al., 1996; Burnley et al., 2000). In contrast, the V O2 

kinetic responses to heavy-intensity exercise have been found to be speeded by 

preceding heavy- but not moderate-intensity exercise (Gerbino et al., 1996; Koppo and 

Bouckaert, 2000; Bumley et al., 2000). Research by Gerbino et al. (1996) reported that

t  for the entire V O2 response during a heavy-intensity exercise bout was 56.2 ± 37.8 s



and 36.9 ± 24.8 s when preceded by moderate and heavy-intensity exercise warm-ups

respectively. It was also noted that the V O2 slow component response was substantially 

lower during heavy-intensity exercise that had been preceded by a warm-up in the 

heavy- (100 ± 60 ml.min’1) compared with the moderate-intensity domain (250 ±105  

ml.min'1). The authors took these kinetic responses as evidence that oxygen delivery is

the rate-limiting step in V O2 kinetics, suggesting that the residual muscle acidema from

prior heavy-intensity exercise improves muscle perfusion and hence speeded V O2 

kinetics in the heavy-intensity domain.

This conclusion has since been questioned as the V O2 response to the onset of heavy- 

intensity exercise was characterised by a mono-exponential model. This does not allow

a distinction to be made between the phase II and slow component V O2 responses. As 

the slow component was smaller during the second exercise bout a lower exercise end

V O2 would be attained which would naturally lead to a reduced x (Burnley et al., 

2000). When more appropriate double-exponential models have been used to describe

V O2 responses to a second heavy-intensity exercise bout, phase II x was found to be 

unaffected (Burnley et al., 2000; Koppo and Bouckaert, 2000). It was also confirmed

that a quicker x for the entire V O2 response was a consequence of a reduced slow 

component. Such evidence refutes the claims that oxygen supply is the limiting factor in

V O2 kinetic responses to heavy-intensity exercise.

An explanation for the reduced V O2 slow component during a second heavy-intensity 

exercise bout could be attributable to the recruitment o f fewer type II muscle fibres. It 

has been hypothesised that type II fibres take longer to recover after intense exercise 

and more type I fibres might therefore be involved when exercise is repeated (Koppo
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and Bouckaert, 2000). It has also been proposed that an increase in muscle temperature 

as a result o f prior exercise increases mechanical efficiency of muscle contraction (Koga 

et al., 1997; Burnley et al., 2000), which contradicts the theory that the slow component 

response is caused by an increase in temperature via the Qio effect. So the cause of a

reduced V  O2 slow component during repeated exercise still needs to be firmly 

established.

2,1.62  Physiological responses tha t m irro r V O2

At the onset o f exercise the rate at which cardiac output and heart rate increase has been

found to be quicker than that of V O2. Such an observation indicates that V O2 kinetics 

are not limited by central factors as the mechanisms responsible for O2 delivery appear 

to exceed its utilisation (Cerretelli et al., 1966; Linnarsson, 1974; Yoshida and Whipp, 

1994). However, such measures of cardiac function cannot be used totally to disregard

central limitation theories of V O2 kinetics as they do not provide information about the 

redistribution of oxygenated blood delivery in the muscle. Furthermore, Hughson and

Morrisey (1983) found the changes in heart rate and V O2 kinetics were comparable for 

a range of square-wave exercise intensities. The similar changes in the two

physiological processes were taken as evidence that V  O2 kinetics are limited by O2 

delivery assuming heart rate kinetics reflect muscle blood flow.

When V O2 kinetics have been measured simultaneously with muscle blood flow at the

onset of exercise, the increase in muscle V O2 was much slower than the increase in 

muscle blood flow (Grassi et al., 1996). This suggests that muscle is incapable of

utilising all the O2 delivered, providing strong evidence that the limitation of V O2 

kinetics is peripheral. Yet when blood flow has been restricted during leg exercise in the
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supine position or arm exercise above the heart, the reduction in muscle blood flow has 

been associated with slowed V O2 kinetics.

Studies that have employed phosphorous nuclear magnetic resonance spectroscopy 

(P-NMR) measurement techniques during the onset and cessation o f exercise have 

identified a close association between the kinetics of PCr degradation in the muscle and

V O2 at the lung (Barstow et al., 1990; Grassi et al., 1996; McCreary et al., 1996; 

Rossiter et al., 1999; 2002). Graphical representation of this association is depicted in 

Figure 2.4. Such observations provide strong evidence that the degradation of PCr

through the PCr shuttle is involved in the control of cellular respiration and hence Q O2

(Whipp and Mahler, 1980). This implies that the rate limiting step o f V O2 kinetics is 

the peripheral regulation of oxidative phosphorylation.
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Figure 2.4 Temporal response of V O2 (•) and (°) PCr to the onset of moderate-intensity 

square-wave exercise (Rossitter et al., 1999).
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2.7.7 Mechanisms regulating oxidative phosphorylation

2.7.7.1 Exercise onset - Phase II response

Oxidative phosphorylation is increased via both feed forward and feedback 

mechanisms. In the feed forward system, the release of calcium from the sarcoplasmic 

reticulum activates the contractile apparatus of the muscle. As a consequence, calcium 

is believed to be a metabolic switch that triggers ATP hydrolysis and hence oxidative 

phosphorylation (Meyer and Foley, 1996).

Increase in mitochondrial ADP that occurs from the hydrolysis of ATP has been argued 

to act in a feedback manner to stimulate additional ATP production. Early research by 

Chance and Williams (1956) observed the rate of oxygen consumption to vary with 

ADP concentration in the classic enzyme kinetic model of Michaelis-Menten (Meyer 

and Foley, 1996). Associated with ADP mediated control of respiration is the ATP/ADP 

ratio. Adenine nucleotide translocase (ANT) catalyses the transmembrane exchange 

between ATP generated by oxidative phosphorylation and inter-membrane ADP. As the 

rate of ANT translocase reaction is determined by ATP, the extra-mitochondrial

[ATP]/[ADP] ratio has been proposed as a potential controller of Q O2 by determining 

the rate of ADP delivery to the mitochondrion (Rossiter et al., 2005). As the Km for the 

resynthesis of ADP to ATP is dependent on both ADP and Pi, it has been suggested that 

the rate of oxidative phosphorylation might be reliant on the phosphorylation potential 

of the mitochondria ([ATP]/([ADP] x [Pi]) and/or the intra-mitochondrial redox 

potential [NADH]/[NAD] (Wilson, 1994). However, recent research has questioned the 

contribution ADP plays in the regulation of oxidative phosphorylation as the kinetics of

ADP during exercise were not found to correspond closely to those o f V  O2 and hence 

Q O2 (Rossiter et al., 2002).

47



In contrast, the kinetics of PCr degradation and V O2 appear to be indistinguishable 

(Whipp and Mahler, 1980; Rossiter et al., 1999; Rossiter et al., 2002). Such 

observations have been used to support the creatine shuttle hypothesis of respiratory 

control. Whereas ADP access to the inner mitochondrial membrane is restricted (see 

Figure 2.5), PCr and Cr can move relatively freely between intra and extra- 

mitochondrial sites. A local increase in Cr resulting from energy buffering at the cross 

bridge is transduced to the inter-mitochondrial membrane where it can accept a high 

energy phosphate from newly formed ATP to produce PCr. This reaction permits the 

shuttling of high energy phosphate to the myofibril and elevates the levels of ADP 

entering the inner mitochondrial membrane, hence increasing the substrate for oxidative 

phosphorylation. Therefore the rate of delivery of Cr to the mitochondria and rate of

PCr hydrolysis provides a feedback control signal for Q O2, rather than direct feedback 

control from ADP.
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Figure 2.5 A diagram illustrating the PCr, CK and ANT systems involved in respiratory 

control. Phosphate exchange occurs between Cr and PCr via CK and is shuttled between 

sites of CK at the mechanical machinery (MMCK) and the mitochondria (MiCK). PCr 

and Cr entry to the mitochondrial inter-membrane space is relatively uninhibited 

compared to ADP (dotted line). High energy phosphates are primarily transferred 

between mitochondrion and myofibrils by the exchange of PCr/Cr rather than 

ATP/ADP. The weighting of the arrows indicates the relative flux of each pathway 

during exercise; ATP is thought to be quickly hydrolysed on exiting the inner space via 

MiCK, producing PCr (adapted from Rossiter et al., 2005).

By measuring PCr degradation and V O2 simultaneously, Rossitter et al. (2002) suggest 

that this CK-mediated control of respiration appears to remain simple and linear across 

moderate- and heavy-intensity exercise. This supports the observations of invariant t  

across intensity domains discussed previously in section 2.8.4. However, further

research is required to firmly establish if V O2 kinetics do express dynamic linearity 

across exercise intensities as a number investigations have reported phase II x to
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lengthen as exercise intensity increases from moderate to heavy (Paterson and Whipp, 

1991; Koga et a l, 1999; Carter et al., 2002; Koppo et al., 2004). It has been 

hypothesised that an increased contribution towards force production from less

oxidative type II fibres is the cause of slowed phase II V O2 kinetic responses during 

heavy-intensity exercise (Carter et al., 2002). This theory is underpinned by the 

observations that type II fibres have up to two thirds fewer mitochondria than type I 

fibres (Meyer et al., 1985) and also express low oxidative efficiency and slow kinetics 

in responses to square-wave exercise (Crow and Kushmerick, 1982; Barstow et al., 

1996).

2.1.12 Exercise onset - Slow component

Several mediators of the slow component have been proposed. During heavy- and 

severe-intensity exercise, it was hypothesised that the increase in the work of cardiac, 

respiratory and accessory muscles would generate an additional O2 cost that would 

substantially contribute to the development of the slow component (Hagberg, 1980; 

Poole et al., 1988). However, such theories have been largely disregarded as it has since

been demonstrated that -86%  of the V O2 of the slow component originates from within 

the exercising muscle (Poole et al., 1994), an observation supported by the work of

Rossitter et a l  (2002) who found the V O2 slow component to be mirrored by a low and 

gradual decrease in intramuscular PCr.

Several studies have reported a strong association between lactate concentration and

V O2 slow component development (Casaburi et a l , 1987; Barstow 1994; Womack et 

a l , 1995). An increased circulation of lactate could stimulate glyconeogenesis that 

would result in an increased oxygen cost in skeletal muscle (Barstow et al., 1996). The 

oxygen cost of glycogen resynthesis is however likely to be small (Whipp, 1994) and
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the development of a slow component has been observed in-the absence of lactate 

accumulation (Barstow and Mole, 1991; Poole et al., 1994). Furthermore, the infusion 

of noradrenaline during exercise has been found to increases lactate substantially

without an elevation in V O2 (Gaesser et al., 1994). Therefore the relationship between

blood lactate accumulation and the V O2 slow component could be coincidental rather 

than causal (Womack et al., 1995; Carter et al., 2002).

An increased O2 cost due to elevation in temperature via the Q 10 effect has been 

proposed as a contributor to slow component development. Recent studies however 

have observed that an elevation in muscle temperature can occur without an elevation in

exercising V O2 (Poole et al., 1994; Koga et al., 1997), dismissing the hypothesis.

A theory that has received much attention is that some aspect of fibre type recruitment 

accounts for the development of the slow component. Several researchers have 

proposed that an increased recruitment of less oxidative type II muscle fibres to 

generate and maintain the high forces necessary to perform heavy-intensity exercise will

lead to a slow and excessive rise in V O2 (Shinohara and Moritani, 1992; Barstow et al., 

1996; Carter et al., 2000a). Using integrated electromyography (iEMG), mean power 

frequency (MPF), which is used as an indicator o f type II fibre recruitment, has been 

found to coincide with the onset of the slow component (Borrani et. al., 2001). In 

addition an innovative study by Krustrup et al. (2004a) demonstrated a reduced slow 

component amplitude during knee extensor exercise following the selective aerobic 

training of type II fibres. Krustrup et al. (2004b) also reported that a slow component 

could be developed below the AT by glycogen depleting type I fibres to promote the 

increased recruitment of type II fibres.
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In contrast, other investigations have failed to find any evidence associating an increase 

in type II fibre type recruitment and the slow component. During repeated bouts of 

heavy-intensity exercise, Scheuermann et al. (2001) observed the iEMG and MPF of the 

vastus lateralis muscle to remain constant despite the amplitude of the slow component 

decreasing. These results have been replicated in the rectus femoris, vastus medialis and 

gastocnemius muscles (Tordi et al., 2003). Poole and Jones (2005) make the

observation that the equivocal findings of the above studies could indicate that the V O2 

cost of force production increases during heavy exercise due to either elevated cytosolic 

[Ca +] or Ca + turnover rates, irrespective of whether additional type II fibres are 

recruited.

2.1.13 Exercise cessation

Less research has been conducted into the control of oxidative phosphorylation during 

recovery. The metabolic circumstances differ from those at the onset of exercise as the 

energy demand from exercising muscles has substantially diminished, although it is 

possible that during the initial stages of recovery muscles involved in respiratory and 

cardiac functions will still be highly active (Cunningham et al., 2000). This reduction in 

the demand for ATP hydrolysis will be reflected by a fall in oxidative phosphorylation

and hence V O2. During recovery, Rossitter et a l  (2002) reported that the phase II

kinetic responses of V O2 and PCr resynthesis were closely associated, adequately 

characterised by a mono-exponential model and independent o f exercise intensity. This 

would suggest that phosphate linked controllers of respiration are active during recovery 

and demonstrate dynamic linearity across exercise intensities similar to that observed 

during the onset of exercise.
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However, observed asymmetry between the on- and off-transient V O2 responses

suggests that the control of V O2 is not linear between exercise and recovery, implying 

mechanisms of respiratory control are influenced by the exercise transient in which they

are operating. An explanation for asymmetrical phase II V O2 responses is provided by 

the work of Kushmerick (1998), who demonstrated a potential for asymmetry in PCr

and so V O2 between exercise transitions due to alterations in the CK equilibrium

associated with changes in ATP utilisation. Hence the dynamic response o f V O2 could 

retain first-order control between transients, but via a transfer function that is dependent 

on CK equilibrium (Rossitter et al., 2002). Several alternative or contributing 

explanations for this apparent asymmetry have also been suggested: 1) an involvement 

of a component of obligatory anaerobisis arising from the dynamics of cardiac output 

(Yoshida and Whipp, 1994), 2) asymmetries of intramuscular pH (Rossitter et al., 

2002), 3) influences of asymmetrical Pi kinetics to respiratory control mechanisms 

(Bendahan et al., 1990) 4) possibility that constant intensity exercise does not require a 

constant ATP supply (Bangsbo et al., 2001).

The cause of the small but prolonged V O2 slow component and hence oxidative 

phosphorylation during recovery is unclear. One explanation stems from the hypothesis 

that the recruitment of type II fibres contributes to the slow component during exercise. 

In the off-transient, type II fibre recruitment would cease, and without delay 

mitochondrial oxygen utilisation would contribute to the restoration o f PCr. This 

oxidative metabolism in glycolytic type II fibres will have a slow time course and so

might be reflected as a prolonged elevation of V O2 during recovery. However, this

explanation needs further investigation as simultaneous measurement of PCr resynthesis

and slow component development during recovery has not been performed (Rossiter et

al., 2002). An alternative or contributing explanation is the metabolic cost of lactate
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metabolism. If following heavy-intensity exercise lactate serves as a source of 

gluconeogenesis there will be an obligatory increase in oxygen consumption. Similarly, 

any lactate reducing equivalents transported into the mitochondria as an aerobic source 

that utilises the a-glycerophosphate shuttle rather than the malate-asparate shuttle would 

also incur an additional oxygen demand during recovery. It was demonstrated by Roth 

et al. (1988) that an additional oxygen cost from the metabolism of lactate might only 

be substantial when blood lactate exceeds 5 mmol.l'1. Similarly, Whipp (1987) showed 

slow component magnitudes become appreciably larger above these blood lactate 

values. It has been stated by Gaesser and Brooks (1984) that the process of lactate 

metabolism and PCr resynthesis will impose only relatively low oxygen costs, which 

would fit the observation that the amplitude of the slow component during recovery is 

small. Other processes that might contribute to this prolonged metabolic cost include 

raised temperature, circulating catchecolamines and cost of increased ventilation and 

cardiac function during recovery.

2.7.8 Application of V Oi kinetics

The application of V  O2 kinetics is wide reaching as it provides a non-invasive means to 

obtain information about cellular metabolism. Settings in which it is used range from 

the study of patients with cardiovascular and peripheral arterial disease (Bauer et al., 

1999; Hepple et al., 1999; Brandenberg et al., 1999) to identification o f physiological 

processes that determine elite sports performance (Norris and Peterson, 1998; Demarle 

et al., 2001).

2.7.8.1 The effects of training on V O2 kinetics

The influence of physical training on V O2 kinetics has been studied using various 

intensities and forms of exercise. Endurance training has been a particular area of
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interest because of the adaptations it imposes on the aerobic energy system. Studies

have reported speeded V O2 kinetic responses following endurance training to both on- 

(Hickson et al., 1978; Ceretelli et al., 1979; Berry and Moritani, 1985; Phillips et al., 

1995; Koppo and Bouckaert, 2004) and off- (Hagberg et al., 1980; Phillips et al., 1995) 

exercise transients.

Oxygen uptake kinetic responses are influenced by the intensity o f endurance training. 

Berry and Moritani (1985) reported that five weeks of heavy-intensity interval training

at 85 to 95% of maximum heart rate reserve (HRres) speeded V O2 kinetics at the onset 

of moderate-intensity exercise to a greater extent than less intense continuous training at 

65 to 75% HRres. The total distance covered in each condition was the same. 

Unfortunately the authors did not report the effect the two different training regimes had 

on other physiological processes, which makes interpretation of the mechanisms

responsible for the changes in V O2 kinetics difficult.

Endurance training has also been reported to influence V O2 kinetic responses to the 

onset of heavy-intensity exercise (Womack et al., 1996). Carter et al. (2000b) reported 

that six weeks of endurance training reduced the slow component from 321 ± 32

m l.m in1 to 217 ± 23 ml.min'1 but had no effect on phase II V O2 kinetics. Using trained 

runners, Billat, (2002) reported that eight weeks o f high-intensity aerobic training 

substantially reduced the slow component at the same absolute speed. Such an 

attenuation o f the slow component will have occurred due to the running speed being of 

a lower intensity relative to the participant’s increased aerobic fitness. In addition, if 

endurance training increases the oxidative potential of type II muscle fibres, then any 

role they play in the development of the slow component will be reduced. It has also 

been suggested that a smaller slow component amplitude might be associated with
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reduced lactate production during high-intensity exercise following a period of 

endurance training. However Carter et al. (2000b) observed that training induced 

reductions in blood lactate following a heavy-intensity run were not associated with the 

decrease in the amplitude of the slow component. There is a scarcity in the research that 

has investigated the influence endurance training might have on the recovery slow 

component.

Training programmes that are more anaerobic in nature influence V O2 kinetics to a

lesser extent. Fukuoka et al. (1997) reported that sprint training increased V O2 max but

not the amplitude of the phase shift response of F  O2 to a sinusoidal intensity forcing

function. Sprint-trained athletes also have slower V  O2 kinetics than endurance trained,

although their V O2 max was found to be greater than that expected for a sedentary 

individual (Edwards et al., 1999). These findings suggest that different mechanisms are

involved in the control of V O2 kinetics and V O2 max. This is supported by Carter et

al. (2000b) who reported no change in the phase II V O2 kinetics after six weeks of

endurance training, despite significant increases in V O2 max and LT. Anaerobic-type

training might be ineffective in augmenting V O2 kinetics as it does not improve the 

aerobic capability of muscle.

The time required to enhance V O2 kinetic responses through physical training can be

small. Changes in V O2 kinetics have been observed after eight hours of endurance 

training (Yoshida et al., 1992). Phillips et al. (1995) noted the mean response time 

(MRT) to be speeded after four days of aerobic cycling and was found to decrease as the

training was extended to 30 days. So it appears V O2 kinetics become progressively 

faster as training is progressed.
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2.7.8.2 Mechanisms of training induced adaptations

Several mechanisms have been proposed to explain why endurance training in particular

speeds V O2 kinetic responses. Aerobic based endurance training increases the 

mitochondrial content of skeletal muscle, which might contribute to the speeding of

V O2 kinetics. This would agree with Meyer's (1988) first-order model of respiratory 

control that suggests x is a product of mitochondrial resistance (a function of the number 

and properties of the mitochondria). These explanations could account for the absence

of speeded V O2 kinetics in sprint trained athletes (Fukuoka et al., 1997; Edwards et al., 

1999), as the anaerobic based training they perform will not incur specific adaptations 

that will increase the aerobic potential of the muscle. A high percentage of type I fibres 

has also been associated with faster kinetics (Pringle et al., 2003) as they are better 

equipped to use O2 than type II fibres.

The role o f central delivery mechanisms in the speeding of. V O2 kinetic responses 

however should not be disregarded. Phillips et al. (1995) showed that a decrease in 

MRT to the onset and cessation of moderate square-wave cycling after only four days of 

endurance training was not matched by concomitant increases in the oxidative potential

of muscles or V O2 max. This initial speeding after only limited training was attributed 

to an increase in femoral artery blood flow leading to accelerated O2 transport to active 

muscle. However, after 30 days of training a further decrease in MRT was accompanied 

by a 50% increase in citrate synthase activity and hence muscle oxidative potential.

Although changes in oxidative enzymes were not observed in the early stages of 

training, this cannot exclude an O2 utilisation mechanism as the reason for the speeding

of V O2 kinetics. It is possible that other enzymes involved in oxidative phosphorylation
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such as pyruvate dehydrogenase (PDH), which were not measured could contribute to 

the speeding of the V O2 kinetic response.

Alternatively, endurance training could result in a reduction in the diffusion distance of 

O2. It has been shown that the capillary-to-fibre interface is matched to mitochondrial 

volume/fibre length with adaptation to training (Poole and Mathieu-Costello, 1996). 

This would enable O2 to diffuse from circulating blood and into the mitochondria at a

faster rate and contribute to a speeding of V O2 kinetics.

It is possible that endurance training brings about a series of central and peripheral 

adaptations that combine at different time points during a training programme to speed

V O2 kinetic responses. After initial central adaptations, O2 utilisation mechanisms

appear to be responsible for the speeding of V O2 kinetics. If V O2 kinetics are related 

to performance, then it would be beneficial to determine the time course and 

contribution of central and peripheral mechanisms, as training could then be designed to 

optimise specific adaptations.

2.7.8.3 Application of V O 2 kinetics to perform ance

It has been speculated that speeded V O2 kinetics at the onset of exercise might benefit 

the performance of endurance athletes as it will reduce the reliance on intramuscular 

energy stores and fatigue inducing anaerobic glycolysis (Poole and Richardson, 1997). 

The consequence of this behaviour will be a reduced disturbance to muscle homeostasis, 

particularly in the heavy-intensity exercise domain. Norris and Peterson (1998) reported 

that during eight weeks of endurance training, reductions in x coincided with 

improvements in 40 km time trial performance. By week four of the training

programme the reduction in x was mirrored by increases in V O2 max, V O2 at GET and

58



power output at GET. However at week eight, further reductions in x and 40 km 

performance time were observed but with no further increases in the other aerobic or 

performance indices. Demarle et al. (2001) made similar observations when they

investigated the association between V O2 kinetics and running performance. In this 

study, eight weeks of endurance training increased run time to exhaustion without a

concomitant increase in V O2 max. Instead the performance improvement was found to

be associated with a reduced oxygen deficit as a result o f speeded V O2 kinetics at

exercise onset. Such observations are important as they indicate that V O2 kinetics 

measured at the onset of exercise: 1) play an important role in high-intensity endurance

performance and 2) are more sensitive than V O2 max and GET to changes in 

physiological status and performance potential.

The role of V O2 kinetic responses during recovery from exercise has received little 

attention. This could be because the ability to recover in many endurance type sports is 

irrelevant due to the continuous nature of the event. However, in a prolonged 

intermittent sport such as soccer, an enhanced ability to recover between bouts of high- 

intensity exercise could markedly improve performance. Speeded kinetics in the off- 

transient could be representative of rapid PCr and muscle O2 store restoration plus

metabolism of lactate. Based on these assumptions, the role that V O2 kinetics might 

play during the performance of soccer-specific high-intensity exercise warrants 

investigation.
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CHAPTER 3

METHODS

The following methods relate to the individual studies completed as part o f this thesis. 

This chapter provides an in-depth explanation of: 1) the equipment used and its 

calibration; 2) the protocols used for the acquisition of anthropometric and 

physiological data; 3) data preparation and analysis techniques and 4) statistical 

analyses.

3.1 Equipment and calibration

The equipment used in this thesis can be separated into four distinct categories:

1) ergometry; 2) pulmonary gas analysis; 3) HR monitoring and 4) lactate analysis.

3.1.1 Ergometry

A motorised treadmill (Saturn, HP Cosmos, Nussdorf - Traunstein, Germany) was used 

to measure physiological responses to sub-maximal and maximal running speeds. The 

treadmill had a top speed of 40 km.h'1 (11.11 m.s’1), with 7 acceleration/deceleration 

steps (from 0 to 40 km.h'1 in 3 to 131 s). The treadmill belt could be elevated between 0 

and 25% (0 - 14°) by increments of 0.1%. Verification for treadmill speed and gradient 

are provided in appendix 2, page 232.

3.1.2 Pulmonary gas analysis

In the .first three studies, pulmonary gas concentrations were measured by mass 

spectrometry (MGA 1100 mass spectrometer, Marquette Electronics Inc, Milwaukee, 

WI, USA). However, the MGA 1100 became unusable and beyond repair following the 

third study. To allow the data collection for the thesis to be completed, breath-by-breath 

pulmonary gas concentrations in study four were measured using rapid-response
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zirconian O2 and infrared CO2 analysers (CPX/D, Medgraphics, St Paul, MN, USA).

Pilot investigations revealed that V O2 values measured at 50 W, 100 W, 150 W, 175W

and V O2 max using the Medgraphics rapid response analysers did not differ (P>0.05) 

to those recorded by the respiratory mass spectrometer. Using the equation of Lamarra 

et al. (1987), it was also observed that the 95% Cl for x estimation were superior for the 

Medgraphics than the mass spectrometer. These data indicated that the Medgraphics

system could be used to provide accurate measures o f aerobic fitness and V O2 kinetics 

during the fourth study. Refer to appendix 3 page 234 for more detailed information.

3.1.2.1 MGA 1100 principle of operation

Inspiratory and expiratory gas volumes were determined from the breathing of room air 

through a low dead-space, low resistance turbine volume transducer (VMM 110, Alpha 

Technologies, Laguna Niguel, CA, USA). Inspiratory and expiratory gas concentrations 

were sampled by a capillary tube inserted into the flow volume apparatus. The volume 

transducer and sample line were both coupled to the MGA 1100 mass spectrometer. Gas 

concentration and volume signals were fed to a computer (PS325C, Tiko Computer 

Corporation, Broxburn, UK) via an analogue-to-digital converter, where they were 

integrated online using First Breath Software v2.0 (First Breath Inc., St Agatha, Ontario, 

Canada, 1992). Estimates of alveolar gas exchange were based on the algorithm of 

Beaver et al. (1981).

3.1.2.2 CPX/D principle of operation

Expiratory and inspiratory gas volumes were determined from the breathing o f room air 

through a low dead space (20 ml) bi-directional differential pressure pneumotach 

(Medgraphics Corporation, St Paul, MN, USA). Expiratory gas concentrations were 

sampled by a capillary tube inserted into the pneumotach. The sample line was
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connected to the zirconian O2 and infrared CO2 analysers and the pneumotach to a flow 

module. The flow volume and gas concentration signals were sent to a computer 

(Elonex PC 466/1, UK) via an analogue-to-digital converter for integration by Breeze3 

software vl.O (Medgraphics Corporation, St Paul, Mn, USA). The Medgraphics 

Corporation will not disclose the algorithm used by the Breeze3 software to estimate 

alveolar gas exchange.

3.1.2.3 Calibration of pulmonary gas analysis equipment

Both the MGA 1100 and CPX/D were calibrated immediately before and verified 

immediately after each exercise test in the same systematic order: 1) gas calibration, 2) 

volume calibration and 3) lag time calibration.

3.1.2.3.1 Gas Calibration

Calibration of the MGA 1100 was performed using two high tolerance (± 0.03%) gases 

(Medgraphics Corporation, St Paul, MN, USA) of fixed concentrations (Reference gas, 

21% O2, 0% CO2, Bal N2 and Calibration gas, 12% O2, 5% CO2, Bal N2). A two-point 

calibration was performed, 21% and 12% for O2 and 5% and 0% for CO2. Gas was 

delivered to the analysers at a pressure of 15 PSI along the capillary sample line. A 

successful calibration resulted in measurement of the reference gas to within ± 0.03%. 

To verify the gas calibration, a pre-test check was completed using the reference gas. 

Calibration of the O2 and CO2 rapid response analysers of the CPX/D followed the same 

procedure as used for the MGA 1100.

3.1.2.3.2 Volume calibration

Irrespective of the method of pulmonary gas analysis, when making comparisons 

between tests carried out under different atmospheric conditions, it was necessary to
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apply a correction factor to account for the effects of differences in ambient 

temperature, pressure and water vapour on measures of volume. Standard temperature 

and pressure dry (STPD) was used for all metabolic measurements and was calculated 

as a dry gas at a temperature o f 273 K and a pressure of 760 mmHg. When referring to a

physiological measure such as V E, body temperature and pressure saturated (BTPS) 

was used, where temperature was 310 K and pressure was ambient and saturated with 

water vapour.

The gas volume turbine of the MGA 1100 (VMM 110, Alpha Technologies, Laguna 

Niguel, CA, USA) was calibrated using a precision 3 1 syringe (Hans Rudolph Inc, 

Kansas City, MO, USA) to pump room air at a rate representative of human ventilation 

during exercise (~ 2 l.s’1) through the turbine The accuracy o f the turbine volume 

determination was deemed suitable if the mean of five inspiratory and expiratory 

volumes was within ± 1% (30 ml) of 3 1.

The bi-directional differential pressure pneumotach (Medgraphics Corporation, St Paul, 

MN, USA) of the CPX/D was calibrated with the same precision 3 1 syringe (Hans 

Rudolph USA). Following the manufacturer’s guidelines, room air was pumped through 

the pneumotach at five inspiration and expiration flow rates ranging from 0.5 to 6 l.s'1. 

The calibration was successful if the inspiration and expiration volumes for each flow 

rate were within ±  1% of 3 1.

3.1.2.3.3 Lag-Time Calibration

Measures of gas volume are provided almost instantaneously, whereas the measurement 

of fractional gas concentrations is delayed by the transport of expired gases from the 

mouthpiece to the gas analysis system and the response of the gas analysis system to a
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change in gas concentration. Integration of these two signals via a lag time calibration is 

necessary for the accurate determination of V O2 and V CO2.

The system lag-time of the MGA 1100 was determined by exhaling through the 

assembled breathing apparatus at a constant rate and then inhaling rapidly. An algorithm 

(First Breath software v2.0, First Breath Inc, St Agatha, Ontario, Canada, 1992) was 

then applied to calculate the lag time between the signal change at the start of 

inspiration detected by the volume turbine and the time taken by the MGA 1100 to 

measure the exponential increase (t ) in end tidal CO2. The time lag was found stable at 

-300 ms for each exercise test.

Lag-time calibration for the CPX/D was performed autonomously by the Breeze3 

software vl.O (Medgraphics Corporation, St Paul, Mn, USA). Using the reference and 

calibration gases described in section 3.2.1.2.3, the software recorded the time for the 

rapid response analysers to measure near square-wave changes in O2 (21% to 12%) and 

CO2 (0% to 5%). The calibration was successful if  the time taken for the analysers to 

measure these changes in O2 and CO2 concentrations was within 0.1 to 0.6 s. The 

Breeze3 software then aligned the response time of the analysers with that of the 

pneumotach.

3.1.2.4 Estimation of pulmonary gas exchange

The First Breath software of the MGA 1100 employed the algorithms described by 

Beaver et al. (1981) to estimate pulmonary gas exchange. The values for gas exchange 

measured at the mouth are corrected for changes in lung gas stores which are dependent 

on changes in alveolar gas concentration and functional residual capacity change. To
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provide a measure of alveolar gas exchange these corrections are then applied to total 

lung gas exchange that is obtained by subtracting expired from inspired gas quantities.

The CPX/D only measures expired gas concentrations, which prevents the Breeze3 

software from using the algorithm of Beaver (1981) described above. Unfortunately, the 

Medgraphics Corporation will not disclose the actual algorithm used by the Breeze3 

software to estimate pulmonary gas exchange from the CPX/D. Therefore this section of 

the methods chapter is limited due to factors beyond the researcher’s control.

.3.1.3 Heart rate monitoring

During all exercise tests, HR was continuously recorded every 5 s using a short-range 

telemetric HR monitor (Accurex Plus, Polar Electro Oy, Kempele, Finland). An 

electrode belt worn around the chest measured the time between each R-R interval of 

the heart's sinus rhythm. This information was telemetrically transmitted to a receiver 

and displayed in b.min'1. Previous research (Leger and Thivierge, 1988) has 

demonstrated that the accuracy of Polar HR monitors is comparable to that of 

electrocardiograms (ECG).

3.1.4 Blood lactate analysis

Blood lactate was determined from a single sample of whole capillary blood taken at the 

fingertip. The skin of the fingertip was punctured using a lancet (Soft Clix Pro, Roche, 

Sussex, UK). Whole capillary blood was then drawn into a 25 pi sample tube (YSI Inc, 

Yellow Springs, OH, US) via capillary action. The sample was immediately analysed 

using an automated lactate analyser (1500 Sport, YSI Inc, Yellow Springs, OH, USA) 

that uses immobilised enzyme electrode technology. A thin film of lactate enzyme is 

immobilised within a membrane. Hydrogen peroxide is produced when the lactate in the 

injected blood sample diffuses through the membrane. The hydrogen peroxide measured
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at a platinum electrode is proportional to the lactate in the sample. The measurement 

range o f the YSI 1500 sport is 0 to 30 mmoLl'1, with a precision of 2% of the reading or

0.1 mmol.l'1, whichever is larger.

3.1.4.1 C alibration of the lactate analyser

The lactate analyser was calibrated before each exercise test and every 10 samples 

thereafter using 25 pi of a 5 mmol.l'1 lactate standard (YSI Inc, Yellow Springs, OH, 

USA). Calibration was deemed acceptable if  values were within ± 0.25 mmol.l'1 (5%) of 

the 5 mmol.l'1 standard. If the value for the calibration check was outside this range then 

the calibration procedure was repeated. Calibration was verified by injecting 25pi of a 

lactate standard that would have a similar concentration to that of subsequent blood 

samples (Table 3.1). Reproducibility data for the YSI 1500 sport is shown in appendix 5 

page 237.

Table 3.1 Lactate standard concentrations used to verify the calibration of the lactate 

analyser.

Physical activity Lactate standard  concentration 

(mmol.l'1)

Rest / moderate exercise 2.5

Heavy exercise 5

Maximal exercise 10
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3.2 Exercise testing procedures and protocols

3.2.1 Pre-exercise test procedures

3.2.1.1 Ethics

Prior to each study, ethics approval was sought and granted by the School o f Sport and 

Leisure Management Research Ethics Committee, Sheffield Hallam University, in 

accordance with the declaration of Helsinki.

3.2.1.2 Informed consent

Before each investigation, participants were given clear and concise information 

explaining the purpose, procedures and requirements of the study. Any questions the 

participants had about the study were answered verbally on a one-to-one basis. 

Examples of the informed consent forms are provided in appendix 7 page 240.

3.2.1.3 Pre-exercise screening

All participants were required to complete a pre-exercise medical questionnaire 

(appendix 6, page 238) to screen for previous and/or current medical conditions or 

musculo-skeletal injuries.

3.2.1.4 Pre-test instructions / requirements

Prior to the undertaking of any laboratory or field based exercise test, participants were 

instructed to: 1) be in a 3 hour post absorptive state, 2) have maintained normal dietary 

intake 3) not consumed alcohol or caffeine in the 12 hours preceding the test and 4) 

abstained from strenuous physical activity in the 48 hours preceding the exercise test.
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3.2.2 Stature

Stature was measured using a wall mounted stadiometer (Holtain, Crymych Dyfed, 

UK). In bare feet, participants were required to stand with heels, buttocks and shoulder 

blades touching the back board of the stadiometer, while their head was positioned in 

the Frankfort plane. Once in the correct position, participants were instructed to inhale 

fully while light pressure was applied to the mandibles. Stature was then recorded to the 

nearest mm.

3.2.3 Body mass

Body mass was recorded using a beam balance type scale (Weylux, UK) that 

incremented in 0.05 kg. Male participants were required to wear only shorts and female 

participants shorts and T-shirt.

3.2.4 Incremental exercise test

A continuous and maximal incremental exercise test was performed to volitional 

exhaustion on a motorised treadmill (Saturn, HP Cosmos, Nussdorf - Traunstein,

Germany) for the determination of V O2 max and GET via breath-by-breath analysis of 

pulmonary gas exchange. Prior to the test, all participants were accustomed to running 

on a motorised treadmill, the pulmonary gas exchange and HR apparatus. It was the aim

of the incremental exercise test to elicit V O2 max within 8 to 12 min. Participants 

performed a 5 min warm-up at a running speed that elicited a HR of approximately 150 

b.min'1. The initial running speed for the incremental exercise test was 8 km.h*1 and was 

increased by 1 km.h-1 every min until volitional exhaustion. On cessation of the test, 

treadmill speed was reduced to 4 km.h'1 for 5 min to allow the participant an active 

recovery. Run time to exhaustion was noted (s).
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3.2.4.1 Determ ination of V O2 max

Breath-by-breath pulmonary gas exchange data collected during the incremental

exercise test were averaged on a 30 s basis. The highest V O2 attained during the

incremental exercise test was taken as V O2 max if a plateau in the V O2 / exercise

intensity relationship was evident, or V O2 increased by no more than 2 ml.kg^.min'1 

with a further increase in exercise intensity (BASES, 1997). If a plateau was not present,

V O2 max was only reported to have been achieved if two of the following secondary 

criteria (BASES, 1997) were observed: 1) HR within ±10  beats of age predicted 

maximum HR (220 -  age); 2) a plateau in HR (± 2 b.min'1) with an increase in exercise 

intensity; 3) a respiratory exchange ratio (RER) >1.15.

3.2.4.2 Determ ination of GET

The GET was determined from the breath-by-breath pulmonary gas exchange data 

collected during the incremental exercise test. Using the V-slope method (Beaver,

1986), V O2 was plotted against V CO2. The data were visually inspected and GET was

taken as the transition in the relationship between V O2 and V CO2 caused by the 

buffering of lactic acid by HCO3. When the transition point was difficult to discern, 

additional analysis of the pulmonary gas exchange data was performed (ventilatory 

equivalent, Whipp et al., 1981) to aid the identification of GET. This involved the

construction of individual graphs: V E / V  O2, V E / V  CO2, end tidal P 0 2 (PETO2) and

end tidal PCO2 (PETCO2) against V O2. Gas exchange threshold was identified as the

nadir of the V E / V O2 and PETO2 graphs before they began to increase consistently

without a concomitant increase in V E / V  CO2 or a decrease in PETCO2.
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3.2.4.3 Determination of moderate- and heavy-intensity running speeds

The running speed / V  O2 relationship generated from the incremental exercise test was 

used to identify the speeds that would elicit V  O2 values corresponding to moderate- 

(80% of GET), heavy- (halfway between GET and V O2 max, 50%A) and very heavy- 

(80% of the way between GET and V O2 max, 80%A) intensity exercise. To take into 

account the time required for Q O 2 to meet the metabolic demand of an increase in 

exercise intensity and for this increase in Q O2 to be measured at the lungs, a specific

V O2 value (e.g. 80%GET) was elicited by selecting the preceding running speed from 

the incremental exercise test.

3.2.4.3.1 Verification of intensity domain specific running speeds

A treadmill protocol was devised to verify how successfully running speeds that elicit

V O2 values corresponding to different intensity domains could be identified from the

running speed / V O2 relationship of the incremental exercise test. Blood lactate was 

measured before a 5 min warm-up on a motorised treadmill (Saturn, HP Cosmos, 

Nussdorf - Traunstein, Germany) at 8 km.h'1. Pulmonary gas exchange was then 

recorded on a breath-by-breath basis while participants ran for 6 min at a speed

estimated to elicit a V O2 response that corresponded to 80% GET. On completion of 

the run, blood lactate was measured and a 5 min cool down was performed. Following a 

further 5 min o f passive recovery the procedure was repeated, with the running speed

increased to one estimated to elicit a V O2 response that corresponded to 50%A. 

Following the test, participants were allowed to cool down for at least 5 min at a self 

selected running speed.
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3.2.5 Repeated square-wave transition treadmill protocols

3.2.5.1 Moderate- and heavy-intensity protocol

A square-wave treadmill protocol was devised for the measurement of V O2 kinetics at 

the onset and cessation of moderate- and heavy-intensity exercise. On arrival to the

laboratory, participant's resting V O2, HR and blood lactate were recorded after being 

seated for 5-min. Before the protocol, participants performed a 5-min warm-up on a 

motorised treadmill (Saturn, HP Cosmos, Nussdorf - Traunstein, Germany HP) at 8 

km.h*1. The protocol was continuous and consisted of 3, 6 min runs at a speed 

corresponding to 80%GET and a 6 min run at a speed corresponding to 50%A (Figure

3.1). Each run was preceded by a 6 min walk at 4 km.h*1. Following the 50%A run, 

participants walked for a further 12 min at 4 km.h*1. The time taken to change between 

running speeds (< 1.5 s) allowed for near square-wave transitions in exercise intensity. 

A blood lactate measurement was taken immediately after the 50%A run while breath- 

by-breath pulmonary gas exchange was measured continuously. After 30 min of passive

recovery, resting measures of V O2, HR and blood lactate were taken to verify that 

participants' metabolism had returned to pre-exercise levels (Bernard et al., 1998). The 

protocol was then repeated to provide 6 moderate and 2 heavy exercise transitions in 

total. During the recovery period, the accuracy of the pulmonary gas analysis equipment 

was verified, and if necessary recalibration was performed.
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Figure 3.1 Graphical representation of the square-wave treadmill protocol used to

measure V Oi kinetic responses to the onset and cessation of moderate- and heavy- 

intensity exercise. The protocol was repeated following a 30 min recovery period to 

provide six moderate- and two heavy-intensity running transitions in total.

3.2.5.2 Very heavy-intensity protocol

Participants performed a 5 min warm up on a motorised treadmill (Saturn, HP Cosmos, 

Nussdorf - Traunstein, Germany HP) at 8 km.h'1. The protocol was continuous and 

involved walking for 2 min at 4 km.h'1 followed by a square-wave transition to a speed

that elicited a V O2 response corresponding to 80%A for 6 min. On completion of the 

run, blood lactate was measured and treadmill speed was reduced to 4 km.h'1 for a 

further 12 min (Figure 3.2). Pulmonary gas exchange was measured on a breath-by- 

breath basis throughout the protocol. Following 30 min o f passive recovery, blood 

lactate and HR were recorded to ensure the participants' metabolism had returned to pre

exercise levels. This procedure was repeated a further 3 times, providing 4 transitions of 

an 80%A run. In between each repetition the accuracy of the pulmonary gas analysis 

equipment were verified, and if necessary recalibrated.
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Figure 3.2 Graphical representation of the square-wave treadmill protocol for the

measurement of V O2 kinetics at the onset and cessation of very heavy-intensity 

running. The protocol was performed four times, each separated by a 30 min recovery 

period.

3.2.5.3 Data Analysis

The V  O2 responses generated from the intermittent running protocol were characterised 

by either a single or double exponential model, which used a non-linear least-squares 

fitting procedure (Excel, Microsoft, USA). The first 20 s (phase I) were removed from 

the fitting field for both the on- and off-transients. Although the duration o f phase I is 

likely to be less in recovery, as blood flow is higher in the off-transient than the on, little 

is known about this duration and so 20 s was deemed a suitable time period to eliminate 

any influence o f phase I on subsequent kinetics (Ozyener et al., 2001).
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For the on V O2 kinetic transient the following models were used (Ozyener et al., 
2001):

Moderate-intensity exercise: A V 02(t) = A \ (1 -e *(t'8‘)/x>) (7)

Heavy-intensity exercise: A V 02(t) = A\ (1-e + ^ 2(l-e ‘(t’52)/T2) (8)

where A V 02(t) is the change in V O2 above base line, t is the time after the onset of 

exercise, and t , 8 and A are the associated time constant, time delay and amplitude 

terms. A two component model was used for heavy exercise so that the fast and slow 

components could be characterised.

For the off-transient:

Moderate exercise: A V C>2(t) = A te '(t'5|)/t| (9)

Heavy and very heavy exercise: A V C>2(t) = (Ate '(t*5‘)/Tl) + (y42e*(t*8‘)/T2) (10)

In the case of equation 10, the fundamental and slow components were constrained to 

begin at the same time delay, it being logical to assume that these were both in 

operation at the start o f recovery (Ozyener et al., 2001)

The amplitude of the slow component was calculated as the difference between the

asymptotic V O2 values of phase II and phase III. A rigid time frame for the 

identification of the slow component was not used because mathematical modelling has 

shown that the onset of the slow component varies among individuals (Bearden and 

Moffatt, 2001).
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3.2.5.4 Filtering of the oxygen uptake response to reduce noise

Prior to data analysis, spurious (non physiologic) V O2 values were removed from the

data set. The method used to identify non physiologic V O2 values was that outlined by

Claxton (2000), where mean breath-to-breath change in V O2 is first calculated. Any 

breath-to-breath variation greater than 3 standard deviations of the mean breath-to- 

breath difference was removed.

3.2.5.5 Calculation of 95% Confidence intervals

The variability inherent in breath-by-breath measures of pulmonary gas exchange can

influence the accuracy of V O2 kinetic measures calculated from exponential modelling 

techniques. For the estimation of x, Lamarra et al. (1987) proposed two equations to

determine the 95% confidence intervals (95% Cl) for an individual's V O2 kinetic 

response. The accuracy of the non-linear least squares estimation of x is directly 

proportional to the SD of the noise (S0). This allows apriori determination to be made 

of the number of transitions required to achieve a desired 95% Cl in the estimated 

parameter for a given participant. The 95% Cl for the x on was calculated as follows:

K i = L  So
AYss ( n )

Where Ki is the Cl, So is the SD of the noise, AYss is the amplitude of V O2 above

A

baseline and L is a constant, as described in Lamarra et al. (1987). For the 

superposition of n independent transitions, the effective noise variance is reduced by a 

factor o f n if  the noise is assumed to be Gaussian and uncorrelated between transitions. 

Hence, the confidence interval (Kn) is reduced by the factor of V w .  The number of 

transitions (n) required for a desired 95% Cl (Kn) is given by:
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jj =  L • So
Kn ■ AYss (1 2 ^

3.2.5.6 Calculation of the mean sum of squares

To assess how closely the mono- and double-exponential models fitted the V O2 data,

the mean sum of squares was calculated for the last 100 breaths of the V O2 response 

for each phase during the moderate- and heavy/very heavy-intensity exercise transitions 

as follows:

Breath 1 ((Model- V  O 2)2) + Breath 2 ((Model- V 0 2)2) + ......Breath 100 ((Model- V 0 2)2)

100

(13)

3.2.5.7 Calculation of oxygen deficit

The oxygen deficit (DO2) for the phase II and phase III V O2 responses were calculated 

separately (Demarle et al., 2001) and then combined to provide a measure of the total 

DO2 deficit incurred during the 80%A run:

Phase IID O 2 = (Ai x TDi) + (Ai x xj) (14)

Phase III DO2 = (A2 x TD2) + (A2 x T2) (15)

Total D 0 2 = ((A 1 x TDi) + (A 1 x u )) + ((A2 x TD2) + (A2 x t 2)) (16)
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3.2.6 Maximal Anaerobic Running Test (MART)

The MART (Maxwell and Nimmo, 1996) was performed on a motorised treadmill 

(Saturn, HP Cosmos, Nussdorf - Traunstein, Germany HP) to obtain an indirect 

estimation of anaerobic capacity. All participants were accustomed to running at high 

speeds on a motorised treadmill while wearing a safety harness. The pre-test warm-up 

consisted of 4 min at 8 km.h'1 interspersed by 30s at 14.3 km.h'1. The MART is a 

discontinuous incremental protocol in which participants perform a series of 20 s runs 

separated by 100 s of passive recovery. The gradient of the treadmill was kept at 10.5% 

and the initial running speed was 14.3 km.h’1. For each subsequent run the speed was 

increased by 1.2 km.h’1 until volitional exhaustion. Holding onto the handrails of the 

treadmill was permitted while stepping onto the treadmill belt but the 20 s count did not 

start until the participant was running unsupported. The measure provided by the test 

was anaerobic power expressed in ml O2. kg'1.min'1 and calculated using the following 

equation (ACSM, 1986):

F 0 2 = 3.5 + 12v  + 54gv (17)

where v is the highest treadmill speed in m .s'1 that could be performed for 20 s, g  is the

gradient expressed as a fraction and the value 3.5 represents resting V  0 2. If participants 

became exhausted and stopped 10 s into a 20 s running bout, 1 ml.kg'1.min'1 was added 

to the anaerobic power value calculated from the above equation (13). Each additional 2 

s completed in the 20 s bout thereafter accounted for another 1 ml.kg^.min'1 being 

added to the calculated anaerobic power value. At the end of the protocol blood lactate 

was measured and a 5 min cool down at a self selected speed was performed.
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3.2.7 Yo Yo Intermittent Recovery Test Level 2 (YTRT2)

The YIRT2 (Bangsbo, 1996) is an incremental test of high-intensity intermittent 

running capacity. The course of the test is presented below in Figure 3.3. All 

participants were accustomed to the course and practised it during a 5 min warm-up. 

After a 5 s countdown the test began; participants were required to perform a shuttle 

that consisted o f running back and forth between markers A and B, adjusting their 

running speed so that they reached each marker in time with an audible signal generated 

from a cassette tape. On returning to marker A, participants had 10 s to jog around 

marker C and back to marker A, before the next audible signal sounded and the shuttle 

between markers A and B was repeated. This intermittent running pattern remained 

constant throughout the test. The running speed and number o f shuttles run for each of 

the 12 incrementing levels of the YIRT2 is depicted below in Figure 3.4. Participants 

were stopped when they could not maintain the running speed between markers A and 

B dictated by the audible signals. The first time a marker was not reached a warning 

was given and the second time the participant was withdrawn from the test. The 

performance measure provided by the test was distance run (m).

 ̂ 5 m  ̂ 20 m

▲ c  A,
< ................► <-----

Figure 3.3 The course layout for the YoYo Intermittent recovery test.

\

A 60 s interval on the cassette tape was timed before each test to verify the speed of the 

cassette player (X-670, Sony, Japan). The speed of the cassette player was deemed 

acceptable if the 60 s interval was within ± 1 s. A pilot investigation found the distance

A b
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run in the YIRT2 to be reproducible on a test-retest basis, refer to appendix 4 page 236 

for detailed information.

1 2 3 4 5 6 7

Level

9 10 11 12

Figure 3.4 Running speed o—  and number of shuttles • - - - f o r  each level of the 

YIRT2.

3.2.8 Repeated Sprint Test (RST)

A RST (Bangsbo, 1994) was used to determine a participant's ability to perform 

repeated bouts of maximal intensity exercise. The 30 m course used for the RST is 

depicted below in Figure 3.5. Prior to the RST participants were accustomed to the 

course and practised it during a 5 min warm-up. The RST involved sprinting from point 

A to point B, performing a 5 m deviation to the left after 10 m. On completing the sprint 

participants had 25 s to jog back to point A. This procedure was performed 7 times. 

Photo-electric timing gates (Brower Timing Systems, Salt Lake City, Utah, USA) were 

positioned at points A and B to record the time taken for the sprint. The 25 s jog was 

recorded using a manual stop watch (W-42H, Casio, China). The recorded sprint times
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were used to identify the quickest sprint and to calculate the mean time of the 7 sprints. 

Fatigue index for the test was also calculated by subtracting the slowest from the 

quickest sprint.

5 m
Finish5 mStart

I
V

C

0 10 20 30 40

(Meters)

Figure 3.5 Representation of the running course used in the RST. Solid and dashed lines 

indicate where the participants must sprint and jog respectively.

3.3 Statistical analyses

Various methods of statistical analysis have been used in this thesis to determine: 1) the 

reproducibility for certain physiological measures; 2) the strength of association 

between measures of performance and physiological function and 3) the difference 

between the various measures. All the statistical tests were performed using 

commercially available statistical software (SPSS for Windows vll.O ; SPSS Inc., 

Chicago, IL., USA).

3.3.1 Limits of agreement

A popular assessment of test-retest reproducibility is the 95% limits o f agreement 

(LOA) first described by Bland and Altman (1986). The LOA is used to determine the
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difference between two measures (measurement errors) using simple calculations and 

graphical techniques. The major assumption of LOA is that the difference (error) 

between measures is homoscedastic. That is, the differences are of the same magnitude 

regardless of the magnitude of the measure. A simple check for homeoscedasticity can 

be obtained from a scatter plot of the differences between the two tests against the grand 

mean of the two tests. If a relationship is visually detected between the two variables, 

confirmation can be achieved by calculating the correlation coefficient between the 

absolute differences between the two tests and the grand mean. If it is found that larger 

errors are associated with larger measurement means, the measurement error is 

heteroscedastic, which requires logarithms of each measurement be performed before 

LOA can be applied (Atkinson and Nevill, 1998). It has been demonstrated that 

heteroscedastic errors are common among measurements in sport and exercise science 

recorded on a ratio scale (Atkinson and Nevill, 1998). However, provided that the 

previously stated assumption has been checked and the differences are homeoscedastic, 

the LOA can be calculated without the need for logarithmic transformation, as:

Where SDdiff is the SD of the differences between test 1 and test 2. The LOA in 

proportion to the grand mean of test 1 and 2 is calculated as:

±95%  LOA = 1.96 x SDdiff (18)

1.96 x SDdiff
Measurement error (%) = Grand mean x ^ (19)

Where grand mean is (mean of test 1 + mean of test 2)12.
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Whether the calculated LOA reflect a reproducible measure is a subjective decision that 

must be made by the researcher. An advantage o f using LOA to assess reproducibility is 

that when the error is homeoscedastic, the calculated values are in the original units of 

measurement, hence allowing direct application to the measure being assessed.

3.3.2 Coefficient of variation

An alternative and more traditionally used measure of reproducibility is the coefficient 

of variation (CV). This statistical test was performed to allow greater cross study 

comparisons than would be permitted by using LOA alone. The CV (%) was calculated 

as follows:

SD
CV (%) = -= -  xlOO (20)

-X.

Where SD is the standard deviation and X is the mean.

3.3.3 Method Error

The calculation of CV requires several measures to be taken either on the same day or

over several days. This is not practical in the study of V O2 kinetics where exercise tests 

can involve maximal efforts or be long in duration. It is conceivable that performing 

such exercise over several occasions could have a training effect on the physiological or 

performance variable being measured. A suitable alternative to CV is the calculation of 

the Method Error (ME). It has been demonstrated that the difference between two 

measures would have a mean of zero and that the SDdiff would be equal to the SD of an 

individual (SDindiv) divided by the square root of two (Gore, 2000). As infinite measures 

on infinite participants is impossible, Dahberg (1940) proposed the use o f duplicate
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measures on a group of participants to approximate the standard error of a single 

determination (cf. Gore, 2000). This has been termed method error and is calculated as:

Method error (ME) = SDdiff (21)
V2

3.3.4 t-tests

To assess whether the mean of two samples differed, t-tests were performed. If the two 

means were generated from the same participant sample under different experimental 

conditions a paired sample t-test was used. When the two means came from two 

different sample groups an independent t-test was used. For the t-test to be used the 

following assumptions outlined by Vincent (1995) were checked: 1) participants are 

randomly sampled; 2) data are normally distributed and parametric and 3) there is 

homogeneity of variance (i.e. the variance between groups is equal), assessed using 

Levene’s test for equal variances. Providing the test result is non-significant, the 

variances can be assumed to be homogeneous.

3.3.5 Analysis of variance

Analysis of variance (ANOVA) is a set of tests used to identify if  3 or more means 

differ (Kinnear and Gray, 2000). The type of ANOVA used depends upon whether the 

experiment has a within (repeated measures from one sample group), between 

(individual measures from several sample groups) or mixed (a combination o f within 

and between measures) design. It has been suggested that it is preferable to run an 

ANOVA rather than multiple t-tests because: 1) multiple t-tests increase the chance of 

type I error (probability of falsely rejecting the null hypothesis); 2) separate tests do not 

combine all o f the available information about the population, and might lead to 

additional errors o f inference and 3) provides more informative results i.e. the
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interaction term. In addition to checking the standard assumptions that must be met to 

perform a parametric test, the sphericity of the data was also checked. This refers to 

whether there is compound symmetry of homogeneity of covariance (i.e. correlations 

between all groups are similar) and homogeneity of variance (i.e. variances of all groups 

are similar). Sphericity of the data was assessed using Maulchly's test of sphericity, 

where sphericity could be assumed if P>0.05. Levene's test o f homogeneity of variance 

was also performed.

3.3.6 Bivariate correlations

According to Vincent (1995), correlation is a numerical coefficient that indicates the 

extent to which two variables are related or associated. Theoretically this can range in 

either a negative or positive direction from zero, no relationship, to 1, a perfect 

relationship. The association between physiological and performance measures in this 

thesis was assessed using Pearson’s product moment correlation coefficient (r). The 

assumptions that were assessed prior to the test being performed were: 1) visual 

inspection of the association between the two variables using a scatter plot; 2) the data 

were parametric and 3) the data were normally distributed.
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CHAPTER 4

The reproducibility and identification of aerobic m arkers used to set exercise 
intensities in the study of V O2 kinetics

4.1 Introduction

The characteristics of V O2 kinetics are dependent upon the intensity domain in which 

exercise is performed (Whipp and Wasserman, 1972; Linnarsson, 1974; Whipp et al., 

1982). In the moderate-intensity domain, which encompasses all intensities below the

AT, constant rate exercise causes V O2 to increase exponentially to a steady-state,

usually within 3 min (Mahler, 1980). The speed of this primary V O2 response appears 

to be invariant o f exercise intensity within the moderate-intensity domain (Barstow and 

Mole, 1991).

In contrast, constant rate exercise in the heavy-intensity domain, which comprises 

exercise intensities that lie between an individual’s AT and critical power (the 

asymptote of the power-duration curve for high-intensity exercise, Jones and Poole,

2005), leads to the primary V O2 response being complicated by the development of an 

additional and delayed O2 cost termed the slow component. This additional energy cost 

causes V O2 to rise above the predicted value to either a deferred attainment of steady-

state or exhaustion (Whipp, 1994). There is also evidence to suggest the primary V O2 

response is slowed in the heavy-intensity domain (Paterson and Whipp, 1991; Koga et 

al, 1999; Carter et al., 2002), although there is a lack of consensus among the available 

literature to support this statement (Barstow and Mole, 1991; Barstow et al., 1996).

In an attempt to ensure the desired V O2 kinetic response is derived from a square-wave 

exercise transition, aerobic markers have been used to define the different intensity
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domains. Several investigations (Barstow et al., 1994; Jones and McConnell, 1999; 

Carter et al., 2000) have used 80%AT (80% of AT) and 50%A (mid-point between AT

and V O2) to denote moderate- and heavy-intensity exercise respectively.

Although 80%AT and 50%A are commonly used within the study of V O2 kinetics as 

indicators of exercise intensity domains, there seems to be little published data on the 

reproducibility of the two measures. There has, however, been research into the

reproducibility of V O2 max and GET from which 80%AT and 50%A are derived. 

Repeated measures have been performed using different forms of ergometry as well as

participants o f differing age and fitness. Coefficients of variation for V O2 max and 

GET have been reported to range from 4.4% to 16% and 5.5% to 31% respectively 

(Meyer et al., 1997; Baba et al., 1999; Skinner et al., 1999). Such observations suggest 

that both measures can be highly variable on a day-to-day basis, which could influence 

how accurately 80%AT and 50%A can be identified. The consequence of which would 

be an increased chance of incursion into an undesired intensity domain and the

measurement of inappropriate V O2 responses. However, a major limitation of these 

investigations is that CV does not necessarily assess both fixed and proportional biases 

and the possible interaction that may occur between the two (Mullineaux et al., 1999). 

This can lead to an incorrect conclusion about the reproducibility of a measure.

The exercise intensities that elicit V O2 values corresponding to 80%AT and 50%A are

typically identified from the V O2 / exercise intensity relationship obtained from an 

incremental exercise test to exhaustion. A recent approach has been to measure 

pulmonary gas exchange during a series of incrementing four min sub-maximal stages 

(Burnley et al., 2000; Carter et al., 2000b; Carter et al., 2002), where blood lactate is
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measured at the end of each stage for the identification o f LT and hence AT. Once the 

criteria for LT is met, exercise intensity is increased every min until volitional

exhaustion for a measure of V O2 max. An advantage of this method is that the four min

exercise bouts permit a steady-state V O2 / exercise intensity relationship to be 

established, which will allow for accurate identification of moderate exercise intensities 

(Carter et al., 2000a).

Such a protocol however can be both invasive and time consuming. An alternative 

approach is to measure pulmonary gas exchange during a ramp type incremental 

protocol (Barstow et al., 1994; Barstow et al., 1996), where exercise intensity is 

increased every min until exhaustion. From such a test, GET can be used as the 

indicator of AT for the calculation of moderate- and heavy-intensity exercise domains.

However, such a protocol will not allow steady-state V O2 responses to be achieved in 

the moderate-intensity domain due to the rapid increments in exercise intensity. The

consequence of which is that the V O2 at a given exercise intensity will be an 

underestimation of the energy demand for that exercise (Whipp, 1987). A method for

establishing an appropriate V O2 / exercise intensity relationship from a quickly 

incrementing exercise test needs to be established if  such a protocol is to be used in

future studies of this thesis. A possible solution could be provided from the t  of V O2 

responses to changes in exercise intensity. For example, if  the phase II x for 

recreationally active individuals at the onset o f exercise is taken to be ~ 30 s, then it

could be predicted that after 60 s (~ 2 x t), 86% of the V O2 response is attained 

(Whipp, 1987; Jones and Poole, 2005). Therefore, during a quickly incrementing 

exercise test where exercise intensity increases every 60 s, it is conceivable that a given

V O2 value will be largely attributable to the increment in exercise intensity that
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occurred 60 s earlier. Subsequent use of this exercise intensity should not lead to V O2 

exceeding the predicted V O2 value for the moderate-intensity domain.

4.1.1 Aims

1. To assess the reproducibility of V O2 max, GET, 80%GET and 50%A.

2. To determine if the running speeds intended to elicit specific V O2 responses can be 

accurately determined from a ramp-type incremental exercise test.



4.2 Participants and Methods

4.2.1 Participants

With institutional ethics approval, nine participants (8 male, 1 female) mean ± SD: age

24.4 ±4 .1  years, stature 176.6 ± 9.2 cm, body mass 67.8 ± 4.5 kg took part. All 

participants were healthy and performed physical activity on a regular basis. Prior to the 

administration of any test, participants were screened for existing medical conditions 

that might become aggravated during the testing procedure (appendix 6, page 238). Pre

test instructions can be seen in chapter 3.2.1.4.

4.2.2 Experimental design

Participants performed three laboratory based physiological assessments over a period 

of two weeks. Two incremental tests to exhaustion were performed in week one, five 

days apart. Continuous sub-maximal treadmill running was performed once in week 

two, at speeds identified from the first incremental exercise test to elicit V O2 responses 

corresponding to 80%GET and 50%A. On each visit to the laboratory participants' 

stature and body mass were measured and heart rate was recorded at 5 s intervals during 

each assessment. All assessments were performed at the same time of day to reduce the 

effects of diurnal variation and the temperature of the laboratory was kept within 20°C 

±1°C.

4.2.3 Experimental protocols

All exercise tests were performed on a motorised treadmill (Saturn, HP Cosmos, 

Nussdorf - Traunstein, Germany). Pulmonary gas exchange (MGA 1100 mass 

spectrometer, Marquette Electronics Inc, Milwaukee, WI, USA) was measured on a 

breath-by-breath basis during an incremental exercise test to volitional exhaustion for

the identification of V O2 values and running speeds that corresponded to V O2 max,
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GET, 80%GET and 50%A (see chapter 3.2.4). To verify whether the specific running

speeds identified from the GXT elicited V O2 values corresponding to 80%GET and 

50%A, a sub-maximal running protocol was performed (see chapter 3.2.4.3.1). In

summary, this consisted of a 6 min run at a speed calculated to elicit a V O2 value 

corresponding to 80%GET (see chapter 3.2.4.3). Participants were then allowed 10 min 

of rest before performing a 6 min run at a speed calculated to elicit a V O2 

corresponding to 50%A (see chapter 3.2.4.3). Pulmonary gas exchange was measured 

during both 6 min runs on a breath-by-breath basis (MGA 1100 mass spectrometer, 

Marquette Electronics Inc, Milwaukee, WI, USA). Blood lactate was measured at rest 

and immediately after the 80%GET and 50%A runs.

4.2.4 Data analysis

Breath-by-breath pulmonary gas exchange data collected during the incremental 

exercise tests and sub-maximal running protocol were analysed following the 

procedures outlined in chapter 3.2.4.1 and 3.2.5.3 respectively.

4.2.5 Statistical analyses

To identify whether a difference exists between the test-retest measurements a paired 

sample t-test was performed. Statistical significance was set at P  < 0.05. To assess the 

reproducibility of the repeated measures LOA (95% confidence interval) calculations 

were performed. Coefficients of variation were also calculated so that results could be 

compared with those of previous investigations.
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4.3 Results

4.3.1 Increm ental exercise test perform ance

The maximum speed attained in the first incremental exercise test was

17.8 ±1 . 8  km.h'1, which did not differ (P=0.242) to the 17.6 ± 1 .6  km.h'1 achieved in 

test 2. Consequently, time to exhaustion in tests 1 (8.79 ± 0.82 min) and 2 

(8.74 ± 0.7 4min) did not differ (P=0.273).

4.3.2 Reproducibility of aerobic m arkers of exercise intensity

Paired sample t-tests revealed no differences to exist between test-retest values (Table

4.1) for any of the aerobic markers (V  O2 max P=0.271; GET P=0.214; 80%GET 

P=0.296; 50%A P=0.232) measured from the graded exercise test to exhaustion.

Table 4.1 Mean (± SD) test-retest values of the aerobic markers (n = 9).

M easure Test 1 Test 2

V O2 max (ml.kg.min'1) 51.5 ±4 .2 52.1 ± 4 .9

GET (ml.kg^.min*1) 32.9 ±3.5 31.9 ±4.7

80%GET (ml.kg’1.m in1) 24.3 ± 2.0 25.5 ±3.2

50%A (ml.kg‘1.min'1) 41.6 ±3.6 41.9 ±3.6

The measures o f reproducibility summarised in Table 4.2 indicate that the day-today 

variability in the aerobic markers of exercise intensity is low. Method error and CV for 

all measures did not exceed 5%. The largest measurement errors obtained from the LOA 

calculations was 12.3% and 11.9% for GET and 80%GET respectively, while the

measurement errors for V  O2 max and 50%A were lower at 5.5% and 6.7%.
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4.3.3 Prediction and measurement of 80%GET and 50%A

During the sub-maximal treadmill protocol, a paired sample t-test demonstrated that 

running at the calculated 80%GET speed of 9.5 ±1.5  km.h’1 produced a V O2 of 26.4 

± 3 . 2  ml.kg^.min'1, which was not different (P=0.194) from the predicted 80%GET 

value of 24.3 ± 2.0 ml.kg^.min'1. Similarly, the calculated 50%A speed of 14.5 ± 2.0 

km.h’1 produced a F  O2 of 41.6 ± 3.6 ml.kg^.min'1, which did not differ (P= 0.257) 

from the predicted 50%A V O2 of 42.2 ±3.6 ml.kg^.min’1.

The blood lactate values measured after the 80%GET and 50%A running speeds were 

different (P=0.002), with means of 1.39 ± 0.21 mmol.l'1 and 2.26 ± 0.54 mmol.l'1 

respectively. A mean slow component value of 246 ± 97 ml.min'1 was produced during 

the 50%A running speeds, which would indicate the run took place in the heavy- 

intensity domain.
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4.4 Discussion

4.4.1 Reproducibility of aerobic markers of exercise intensity

The results suggest that the four aerobic measures determined from the incremental

exercise test are reproducible. The V O2 max was the most reproducible, indicated by 

the small CV (1%) and narrow LOA (-0.12 ± 2.9 ml.kg^.min'1). The lower 

reproducibility observed for GET, demonstrated by a greater CV (4.5%) and wider LOA 

(0.04 ± 3.9 ml.kg^.min'1) is similar to that reported previously (Meyer et al., 1997; 

Baba et al., 1999; Skinner et al., 1999). Repeated identification of the specific changes 

in pulmonary gas exchange behaviour that correspond to GET is possibly impaired by 

the large amount of noise (Lamara et al., 1987) inherent in breath-by-breath 

measurements o f pulmonary gas-exchange. The lower level of reproducibility for GET

could be problematic as it is widely used in the study of V O2 kinetics to provide a 

reference point for the setting of exercise intensities. A solution could be to average the 

breath-by-breath data to reduce the impact of the noise on the underlying signal.

However, averaging a V O2 response can artificially delay the occurrence of GET 

(Whipp, 1987), which would lead to the setting of inappropriate exercise intensities.

Despite the observations that GET is less reproducible than V O2 max, the variability in 

GET identification in this study using unaveraged data is such (LOA, -3.86 to 3.94 

ml.kg'1.min’1) that the chance of exercise being performed in the wrong intensity 

domain is small (see Figure 4.1).

As 80%GET and 50%A were derived from the identification of GET, they also had low 

test-retest CV (80%GET, 4.4%; 50%A, 3.6%) and narrow LOA (80%GET, -0.04 ± 1.61 

ml.kg^.min'1: 50%A, -0.03 ± 2.9 ml.kg^.min*1). The calculations show that 50%A is 

more reproducible than 80%GET. A reason for the discrepancy in the reproducibility of 

the two measures is that 80%GET is calculated solely from GET, whereas 50%A is
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calculated from both GET and the less variable measure of V  O2 max. A second 

explanation is that the corresponding running speed for 80%GET (9.5 ± 1 .5  km.h'1) was 

too slow in some cases for the participants to perform a natural running style, which 

could have inhibited the standardisation of the activity. Conversely, the 50%A run (14.5 

± 2.0 km.h'1) was at a higher speed that allowed participants to perform a more 

consistent and natural stride pattern.

50 1

45 -

40 -
te
B

20 -

80%GET GET 50%A
Intensity marker

Figure 4.1 The mean 80%GET, GET and 50%A values from the two incremental 

exercise tests (n=9), incorporating the LOA ± 95% spread of differences (I). The dashed 

lines denote the upper and lower 95% spread of differences for GET, marking the 

boundaries of the heavy- and moderate-intensity domains.

4.4.2 Identification of moderate- and heavy-intensity running speeds

Running speeds intended to elicit V O2 values corresponding to 80%GET and 50%A 

were successfully identified from the speed / V O2 relationsip established from the 

incremental exercise test. The predicted V O2 value of 24.3 ± 2.0 ml.kg^.m in'1 for 80%
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GET did not differ from the actual V  O2 value of 26.4 ± 3 .2  ml.kg'^min'1. The same 

was found during the 50%A run (42.2 ± 3.6 vs. 41.8 ± 3.7 ml.kg.min'1). The blood 

lactate measured after the 80%GET (1.39 ±  0.21 mmol.l'1) and 50%A (2.26 ± 0.54 

mmol.l'1) runs fell below and above 2 mmol.l'1 respectively, which is of significance as 

2 mmol.l'1 has previously been used an arbitrary marker o f AT (MacDougall et al., 

1979). Further analysis also revealed that a slow component response of 246 ± 97 

ml.min'1 was evident during the 50%A. Such data indicates that aerobic markers of 

exercise intensity can be accurately determined from the incremental exercise test used

in this investigation if  a 60 s time delay (2 x ~x) is incorporated into the V O2 / exercise 

intensity relationship. This would suggest that prolonged and more invasive protocols 

are not required to reliably and accurately calculate aerobic makers o f exercise intensity 

such as 80%GET and 50%A.

4.5 Conclusion

The LOA calculations indicated that 80%GET and 50%A are reproducible and can be 

used to set exercise intensities, for at least a week after an incremental test. Over this 

time period the variability is such that moderate-intensity exercise would be 

approximately within 68 to 92% GET, and heavy-intensity exercise within 44 to 57%A. 

These data suggest that the possibility of incursion into undesired exercise intensity 

domains is small. The V O2 and blood lactate measurements taken during the 80%GET 

and 50%A runs confirmed that appropriate exercise intensities can be identified from a 

quickly incrementing exercise test.
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CHAPTER 5

The development of a treadmill protocol for the measurement of V  O2 kinetics 

during the on- and off- transients of moderate- and heavy-intensity running

5.1 Introduction

The characteristics of V Oi kinetic responses during the on- and off-transients of 

moderate- and heavy-intensity exercise are unclear. Several moderate-intensity cycling 

based studies (Linnarson, 1974; Whipp et al., 1982; Paterson and Whipp, 1991; 

Ozyener et al., 2001) have reported that phase II x and A are symmetrical between the 

on- and off-transients. Conversely, other investigations have noted phase II x to be 

slower during the off- than the on-transient of moderate-intensity cycling (Hughson et 

al., 1988; Carter et al., 2000a; Rossiter et al., 2002) and running (Carter et al., 2000b; 

Kilding et al., 2003).

In the heavy-intensity domain, Barstow et al. (1994) observed symmetry to exist

between the on and off V O2 kinetic responses for cycling and stated that the primary 

and slow components represented distinct metabolic processes that retained their 

distinction in recovery. The findings of several other investigations however contradict 

this statement (Henry and DeMoor, 1974; Engelen et al., 1996; Cunningham et al.,

2000), as they have shown the off- V O2 transient of heavy-intensity cycling to have a 

much longer x and smaller A than the corresponding on-transient. This would suggest 

off-transient kinetics are independent of the metabolic profile during the preceding 

exercise (Cunningham et al., 2000). However, in the literature, information about the

characteristics of V O2 responses during both the on- and off-transient o f heavy- 

intensity treadmill running is limited. This is surprising, as knowledge of how quickly a 

person’s aerobic system can recover from moderate- and heavy-intensity runs might
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provide a useful insight into what limits performance during intermittent sports such as 

soccer, where athletes are repetitively required to respond and recover from bouts of 

exercise differing in intensity.

Considering that V  O2 kinetics could have such important implications for sports 

performance, there are relatively few studies that have investigated the reproducibility 

of V O2 kinetic parameters at the onset and cessation of different exercise intensities. 

The majority of reproducibility studies that have been conducted have concentrated on 

moderate-intensity cycling. Berg (1947) reported the reproducibility of V O2 kinetics 

responses to the cessation of single transitions of moderate-intensity cycling performed 

on consecutive days. The test-retest correlation was 0.55 and the standard error of the 

measurement was ± 4.5 s, which equated to 15% of the mean. Berry and Moritani 

(1985) later reported the test-retest reproducibility for the time course of V O2 during 

the onset of moderate-intensity cycling. The test-retest values were correlated (0.87; 

P O .O l), with a mean difference of only 0.73 s, suggesting the level of reproducibility 

was satisfactory. In a more recent study (Puente-Maestu et al., 2001), patients with 

chronic obstructive pulmonary disease (COPD) performed two repetitions of cycling at 

80%LT or 50% of V O2 peak if LT was insufficiently differentiable. Test-retest 

correlation coefficients higher than 0.97 were reported for t i  and A\. The statistical 

techniques employed in these studies lack the ability to assess fixed and proportional 

bias as well as only measuring error in one measurement. Interestingly, when the

reproducibility of test-retest V O2 kinetic parameters has been assessed via LOA (95% 

confidence), large measurement errors and substantial intra-participant variability 

between tests has been observed (Kilding et al., 2003), indicating phase II kinetic 

parameters are poorly reproducible.
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Studies into the reproducibility o f V O2 kinetic responses to heavy-intensity exercise are 

extremely limited. Ozyener et al. (2001) assessed the reproducibility o f on- and off- 

transient kinetics for both sub and supra GET exercise (moderate, heavy, very heavy 

and severe), x was found to typically vary by up to 10% across all intensity domains, 

with greater variation for x and A being observed for the on- than the off-transients.

As it is intended that future studies of this thesis will assess the relationship between

V O2 kinetics and soccer-specific exercise capability, the lack of information regarding 

the characteristics and reproducibility of V O2 kinetics responses to the on- and off- 

transients of moderate- and heavy-intensity treadmill running must be addressed. To do 

this it will be necessary to devise a specific square-wave treadmill protocol. A single 

protocol that consists of sufficient moderate and heavy exercise transitions to allow 

confident parameter estimation would be advantageous, as it would reduce the number 

of times a participant was required to visit the laboratory. This would make the study, of

V O2 kinetics less time consuming and hence more practical. The use o f such a protocol 

in previous investigations (Carter et al., 2000a) has tended to involve the performance 

of several moderate-intensity exercise transitions followed by a single heavy exercise 

transition, with each transition being separated by ~6 min. Following a recovery period 

the procedure is often repeated to increase the number of transitions for each intensity in 

an attempt to improve the accuracy of parameter estimation.

When performing such repeated square-wave exercise transitions, the influence prior

exercise might have on subsequent V O2 responses must be taken into consideration. 

Previous cycle based research (Gerbino et al., 1996; Burnley et al., 2000; Koppo and 

Bouckaert, 2001) has demonstrated a prior bout of heavy-intensity exercise reduces the 

amplitude of the slow component during a subsequent bout of heavy-intensity exercise.

This reduction in the amplitude of the slow component speeds the overall V O2
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response, although the speed of phase II kinetics remains unchanged. Later Burnley 

(2001) also noted that prior heavy exercise increases the phase II amplitude during a 

second heavy exercise transition. In relation to the design of a repeated square-wave 

transition protocol, such findings suggest sufficient time must be allowed between

repeated bouts of heavy-intensity exercise to prevent distortion o f the V O2 response 

during the second heavy-intensity transition. Otherwise, the ensemble average o f the 

two heavy-intensity transitions could lead to inaccurate estimates of phase III 

parameters. However, the time required for the reversal of the physiological adaptations 

that are associated with a reduction in the slow component has not been clearly defined.

5.1.1 Aims

1. To develop a protocol for the measurement of V O2 kinetics at the onset and 

cessation of moderate- and heavy-intensity treadmill running.

2. To identify the influence prior bouts of moderate and heavy-intensity exercise have

on V O2 kinetic parameters during a repeated square-wave treadmill protocol.

3. To determine the reproducibility of V O2 kinetics measured at the onset and cessation

of moderate- and heavy-intensity treadmill running.

4. To determine V O2 kinetic characteristics measured at the onset and cessation of 

moderate- and heavy-intensity treadmill running.
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5.2 Participants and Methods

5.2.1 Participants

With institutional ethics approval eight males (mean ± SD): age 23.5 ± 1 .3  years, body 

mass 77.1 ± 12.2 kg, stature 179.9 ± 7.5 cm) took part. All participants were healthy and 

performed physical activity on a regular basis. Prior to the administration of any test, 

participants were screened for existing medical conditions that might become 

aggravated during the testing procedure (appendix 6, page 238). Pre-test instructions 

can be seen in chapter 3.2.1.4.

5.2.2 Experimental design

Participants performed three laboratory based physiological assessments, each separated 

by three days. The first assessment was an incremental exercise test to exhaustion, on 

the other two occasions participants performed a repeated square-wave transition 

treadmill protocol. On each visit to the laboratory the participants’ stature and body 

mass were measured and heart rate was recorded at 5 s intervals during each 

assessment. All assessments were performed at the same time of day to reduce the 

effects of diurnal variation and the temperature of the laboratory was kept within 20°C 

±1°C.

5.2.3 Experimental protocols

All exercise tests were performed on a motorised treadmill (Saturn, HP Cosmos, 

Nussdorf - Traunstein, Germany). Pulmonary gas exchange (MGA 1100 mass 

spectrometer, Marquette Electronics Inc, Milwaukee, WI, USA) was measured on a 

breath-by-breath basis during an incremental exercise test to volitional exhaustion for

the identification of V O2 values and running speeds that corresponded to V O2 max, 

GET, 80%GET and 50%A (see chapter 3.2.4). These running speeds were then used to
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design a repeated exercise transition treadmill protocol that consisted of 3, 6 min 

moderate-intensity runs and 1, 6 min heavy-intensity run (part A). Following a 30 min 

recovery period the protocol was repeated (part B), providing 6 moderate-intensity and 

2 heavy-intensity square-wave transitions in total (see chapter 3.2.5.1). Pulmonary gas 

exchange was measured through out the test (MGA 1100 mass spectrometer, Marquette

Electronics Inc, Milwaukee, WI, USA) to determine V O2 kinetics during the onset and 

cessation of moderate- and heavy-intensity treadmill running. Blood lactate was 

measured before parts A and B of the protocol (see chapter 3.2.5.1). The protocol was 

performed three and six days after the incremental exercise test to generate test-retest 

measures o f the V O2 kinetic responses.

5.2.4 Data Analysis

Breath-by-breath pulmonary gas exchange data collected during the incremental 

exercise tests and repeated square-wave transition protocol were analysed following the 

procedures outlined in chapter 3.2.4.1 and 3.2.5.3 respectively.

5.2.5 Statistical Analyses

Statistical significance was set at P  <0.05. The reproducibility o f the test-retest V O2 

kinetic measures generated from the intermittent treadmill protocol was assessed using 

method error, CV and LOA (95% confidence). To determine if test-retest data differed, 

two-way analysis of variance with repeated measures was performed. Paired sample t- 

tests were used to detect for any differences in physiological measures taken at rest 

before parts A and B of the intermittent treadmill protocol.

To determine if a repeated square-wave transition protocol could be used to provide 

accurate measures of V O2 kinetics, the influence of previous moderate- and heavy-
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inensity exercise on V O2 kinetics and physiological status was assessed. To check this 

the following analysis was performed:

1. The V O2 data collected for the three moderate-intensity transitions (1-3) from part A

of test 1 was ensemble averaged with the V O2 data collected during the corresponding 

transitions from part A of test 2 (retest). This procedure was repeated for the test-retest

moderate-intensity transitions (4-6) from part B of the protocol. The two sets of V O2 

data were then characterised by a single exponential model. The heavy-intensity 

transitions from parts A and B of test 1 were also ensemble averaged with their 

corresponding retest transitions and characterised by a double exponential model. Using

paired sample t-tests it was then possible to see if the V O2 kinetic parameters measured 

during the on- and off-transients of moderate- and heavy-intensity exercise differed 

between parts A and B of the protocol. The test-retest transitions were combined to

increase confidence in parameter estimation by reducing noise in the V  O2 response.

2. To check the participant’s V O2 had returned to baseline following a moderate- 

intensity exercise transition before the next exercise transition commenced, transitions 

1-3 from part A and 4-6 from part B of test 1 were separated and analysed individually. 

This analysis required determining the actual V O2 for the 2 min period preceding each 

80%GET transition. One-way analysis of variation with repeated measures was then

performed to reveal whether the V O2 before transition 1 (baseline V O2) differed from 

the V O2 preceding any other.transition during the protocol.
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5.3 Results

5.3.1 Incremental exercise test performance

The mean (± SD) V O2 max was 51.3 ± 3.1 ml.kg'1 .min'1, or expressed in absolute terms 

was 3955 ± 285 ml.min'1. The GET occurred at 37.4 ± 3.7 ml.kg.min'1 (74.3 ± 3.4 % of

V  O2 max) or 2884 ±131 ml.min'1. The mean running speed at V O2 max was 17.5 ±

1.2 km.h'1, with time to exhaustion being recorded at 11.34 ± 1.1 min. Maximal HR was 

194 ± 7 b.min'1.

5.3.2 Influence of repeated square-wave exercise transitions on V  O2 kinetics

Paired sample t-tests revealed %\ (Onset, P=0.297: Cessation, P=0.311) and A\ (Onset, 

P=0.156: Cessation, P= 0.183) values derived from parts A and B of the multi square- 

wave protocol (Table 5.1) to not differ for either exercise transient. Such data suggests

that phase II V O2 kinetic parameters during the moderate exercise transitions in part B 

of the protocol are unaffected by the preceding bouts o f moderate- or heavy-intensity 

exercise in part A. A comparison of the phase III parameters (Table 5.1) revealed that 12 

and A 2 were slightly faster and smaller respectively during the on-transient of part B, 

but the difference was not significant (12, P=0.192; A 2, P=0.231). However, analysis did 

reveal t 2 and A2 to be larger dumg the off-transient (%2, P=0.023: A 2, P=0.028) for part 

B of the protocol. The blood lactate measured immediately before parts A (1.23 ±0 .18  

mmol.l'1) and part B (1.18 ± 0.12 mmol.l'1) of the protocol did not differ (P=0.141). In

addition, the mean resting V O2 (Part A, 446 ± 122 ml.min'1; Part B, 443 ± 1 0 4  

ml.min'1) and HR (Part A, 59 ± 4 b.min'1; Part B, 60 ± 3 b.min'1) values were not 

different before parts A and B of the protocol (V  O2, P=0.162; HR, P=0.125). The 

blood lactate concentrations measured immediately after the heavy-intensty runs were 

not different (P=0.253) between parts A (3.22 ± 0.34 mmol.l'1) and B (3.16 ± 0.26 

mmol.l'1). A one-way analysis of variance with repeated measures showed that there
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was no difference in V 0 2 before transition 1 and any other transition (P=0.083). This

suggests V 0 2 had returned to its pre-exercise baseline after each bout o f 80%GET 

exercise.

Table 5.1 The V 0 2 kinetic measures (mean ± SD) calculated for parts A and B of the 

multi square-wave treadmill protocol (n = 8).

M easure P art A P a rt B

Tion80%GET (s) 23.2 ± 1.7 23.8 ±1 .5

Tioff 80%GET (s) 28.1 ±2 .4 27.9 ± 1.8

Tion 50%A (s) 23.6 ±1.1 23.9 ± 1.3

Tioff 50%A (s) 27.3 ±1 .2 27.6 ± 1.8

A ion 80%GET (ml.min'1) 852 ± 39 861 ± 4 6

^ioff80%GET (ml.min'1) 811 ± 4 7 823 ± 37

Aion 50%A (ml.min'1) 2073 ±212 2043 ± 205

^iofr50%A (ml.min'1) 2106 ±241 2127 ±216

^2 on (S) 176.3 ±29.4 164.7 ±35.8

2̂off (s) 394.6 ± 54.3 424.2 ± 48.7*

A2on (ml.min'1) 283 ± 27 277 ± 3 2

A2off (ml.min'1) 123 ± 48 146 ±56*

* Differences (P<0.05) between parts A and B of the protocol.

5.3.3 Reproducibility of V O2 kinetics

5.3.3.1 Time constants

Two-way ANOVA with repeated measures revealed no differences or interaction 

(P>0.05) to exist between any of the test-retest on- or off-transient kinetic measures for 

both moderate- and heavy-intensity exercise (see appendix 10.1, page 244). All the test-
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retest measures of xi demonstrated low levels of variability, with method error not 

exceeding ±  1.6 s and CV remaining under 6% (Table 5.2). In addition, narrow LOA 

were observed for all x\ measures, with xi for test 1 being slightly longer than for test 2 

for all exercise conditions, indicating a small positive fixed bias (Table 5.3). The x2 was 

found to be more variable during the off- than on-transient of exercise, revealed by both 

method error (Off, ± 2 .1  s v On, ± 1.2 s) and CV (Off, 6.3% v On, 4.4%). This was 

further reflected by broader LOA during the off- (-7.8 ± 90.2 s) than on-transient (-5.8 ±

37.3 s), which indicate a negative bias of x2 being quicker during test 1 than 2. In 

proportion to the grand mean, the measurement error for x2 during the off-transient 

(24%) was similar to that for the on-transient (21%).

5.3.3.2 Amplitudes

During all exercise conditions, the test-retest variability for^4i was low, with the method 

error not exceeding ± 26 ml.min'1 (Table 5.2) and the CV values being 2.1% or less. 

The LOA analysis revealed small positive and negative biases between test-retest 

measures of A\ for the on- (33 ± 43 ml.min-1) and off-transients (-16 ± 37 ml.min'1) of 

80%GET exercise respectively. In contrast, the direction of the bias was reversed fo r^ i 

measured during the on (-16 ± 179 ml.min'1) and off-transients (58 ± 139 ml.min'1) of 

50%A running. The measurement error of the grand mean was lower for 80%GET (On, 

4.9%; Off, 3.8%) than 50%A (On, 8.8%; Off 6.4%) measures o f^ i .

The method error for A2 during exercise (± 24.7 ml.min'1) and recovery 

(±16.1 ml.min'1) over the two tests was similar to that reported for A\. However the CV 

for A2 was greater, calculated at 8.4% and 13.3% for the onset and cessation o f exercise 

respectively. The LOA revealed a positive bias between the test-retest measures for A2 

during both the on- (23 ± 52 ml.min'1) and off-transient (25 ± 50 ml.min'1) of exercise.
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The measurement error o f the grand mean for A 2 was large for both exercise transients 

(On, 24%; Off, 41%).

Table 5.2 Method error calculated for t  ( s)  and A (ml.min'1) for sub and supra GET 

running (n = 8).

M easure M ethod E rro r (±) Coefficient of variation (% )

80%GET On Tm (s) 0.4 6.0

80% GET Off TDi ( s) 0.5 5.4

50%A On TDi ( s ) 1.1 12

50%A Off TDi ( s) 0.7 10.5

50%A On TD2 ( s) 10.2 12.5

80%GET On t i  ( s ) 1.4 5.6

80%GET Off t j  (s) 0.3 1.2

50%A On Ti (s) 0.8 3.4

50%A Off Ti (s) 1.5 5.2

50%A On T2 (s) 1.2 4.4

50%A Off t 2 ( s ) 2.1 6.3

80%GET A \ On (m l.m in1) 17.5 2.1

80%GET O ftA i (ml.min !) 11.2 1.2

50%A O nA\ (ml.min'1) 25.4 1.3

50%A OffA\  (ml.min'1) 17.0 0.7

50%A On A 2 (ml.min'1) 24.7 8.4

50% Off ̂ 2  (ml.min'1) 16.1 13.3

107



Table 5.3 The 95% LOA for the on- and off-transients of moderate and heavy-intensity

treadmill running (n = 8).

M easure Mean ± SD 

Difference x 1.96

95%

LOA

M easurem ent

E rro r

80%GET On TDi (s) -0.2 ±1 .6 -1.8 to 1.4 24.2

80% GET Off TDi ( s) -0.4 ±1.3 -1.7 to 0.9 18.6

50%A On Tdi (s) 0.3 ±1.5 -1.2 to 1.8 19.3

50%A  O ff T d i  ( s) 0.3 ±1 .7 -1.4 to 2.0 21.2

50%A On TD2 ( s) -5.1 ±9 .9 -15.0 ±4 .8 8.4

t i  80% GET On ( s ) 1.3 ± 2 .4 -1.1 to 3.7 10.8

t i  80% GET Off ( s ) 0.8 ±2 .9 -2.2 to 3.7 10.7

Ti 50%A On (s) 0.4 ±2.5 -2.1 to 2.9 10.6

t i  50%A Off (s) 2.1 ±2.6 - 0.6 to 4.7 10.6

t 2 50%A On (s) -5.8 ±37.3 -43.1 to 31.5 21.1

t 2 50%A Off (s) -7.8 ± 90.2 -97.0 - 82.5 24.0

Ai 80%GET On (ml.min'1) 33 ± 44 -10.5 to 77.2 4.9

Ai 80%GET Off (ml.min'1) -16 ± 37 -53.7 to 21.2 3.8

Ai 50%A On (ml.min'1) -1 6 ± 179 -195.2 to 163.4 8.8

Ai 50%A Off (ml.min'1) 58 ±139 -81.1 to 197.5 6.4

A2 50%A On (ml.min'1) 23 ±52 -75.8 to 29.5 24.2

A2 50% Off (ml.min'1) 25 ± 50 -25 to 75 41.6
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5.3.4 On-transient kinetic characteristics

Typical V O2 responses for a representative participant (2) to the on-transients of 

moderate- and heavy-intensity treadmill running are presented below in Figure 5.1 (A

and B). The V O2 during the on-transients of 80%GET running displayed the 3 phase 

response expected for sub-AT exercise and was successfully characterised by a mono

exponential model with a time delay. The V O2 response to the on-transient of 50%A 

running demonstrated the development o f a delayed slow component response that has 

been reported previously for heavy-intensity exercise and was therefore better 

characterised by a double-exponential model with a time delay (see chapter 3.2.5.3).
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Figure 5.1 A and B. The V O2 response from a representative participant (2) during the

onset of moderate- (A) and heavy- (B) intensity treadmill running. The V O2 responses 

to moderate- and heavy-intensity running are characterised by a mono-exponential and

double exponential model respectively. The residuals (Model - V O2 response) for 

phases II and III have been plotted for each exercise intensity to indicate how closely

the model fits the V O2 data during different phases of the response («=8).
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Using the speed / V O2 relationship generated from the incremental exercise test, the 

mean 80%GET value of 2307 ± 119 ml.min'1 was calculated to occur at a speed of 9.3 ±

1.2 km.h'1, whereas the mean 50%A value o f 3420 ± 1 8 6  ml.min'1 was expected to 

occur at the higher speed of 15.1 ± 0.9 km.h'1. By fitting a mono-exponential model, it

was identified that running at 9.3 ± 1 .2  km.h'1 resulted in V O2 responses of 2091 ±191 

ml.min'1 (73 ± 7% of GET) and 2186 ± 172 ml.min'1 (76 ± 6% of GET) for tests 1 and 2 

respectively. Similarly, it was determined from a double exponential model that running

at 15.1 ± 0.9 km.h'1 produced V O2 values of 3377 ± 324 ml.min'1 (48%A) and 3400 ± 

318 ml.min'1 (49.5 %A) for the two tests. Such values confirm that the running speeds

identified from the incremental exercise test elicited the desired V O2 values. As 

expected, mean HR was lower for the 80%GET than the 50%A runs (P=0.023), and 

only the 50%A runs caused an elevation in blood lactate (P=0.013). The physiological

measures and V O2 kinetics parameters measured at the onset of 80%GET and 50%A 

running during the square-wave protocol are listed below in Table 5.4.
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Table 5.4 Test-retest on-transient V O2 kinetic parameters (mean ± SD) measured 

during moderate- and heavy-intensity running (n = 8).

80% GET 50%A

M easure Test 1 Test 2 Test 1 Test 2

Speed (km.h'1) 9.3 ±1 .2 9.3 ±1 .2 15.1 ±0.9** 15.1 ±0.9**

HR (b.min'1) 148 ± 9 151 ± 7 179± 10** 176 ±9**

A[HLa] (mmol.r1) 0.4 ±0 .2 0.6 ±0.1 2.4 ±0.6** 2.6 ±0.8**

Tdi (s) 6.6 ± 2 .4 6.4 ±2.1 5.8 ±3 .4 6.0 ±3.3

Td2 (s) 118.3 ±13.4 121.4 ±15.3

ti On (s) 23.2 ±2 .9 22.0 ± 2.8 23.7 ±3.1 24.8 ±2 .6

x2 On (s) 177.5 ±43.9 179.3 ±40.7

A\ (ml.min'1) 853 ± 354 853 ±336 2003 ±218** 2057 ±178**

A2 (ml.min'1) 289 ± 151 295 ±118

**Higher for 50%A, P O .O l.

5.3.5 Off-transient kinetic characteristics

A typical V O2 response during the off-transients of moderate- and heavy-intensity 

exercise for a representative participant (2) are depicted below in Figure 5.2 (A and B).

The phases of the V O2 response were similar to those observed during the onset of 

exercise for both intensities. Therefore, a mono-exponential and double exponential

model (see chapter 3.2.5.3) were used to model V O2 at the cessation o f moderate- and 

heavy-intensity exercise respectively.
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Figure 5.2 A and B. The V O2 response from a representative participant (2) during the

off-transient of moderate- (A) and heavy- (B) intensity treadmill running. The V O2 

responses to moderate- and heavy-intensity running are characterised by a mono

exponential and double exponential model respectively. The residuals (Model - V O2 

response) for phases II and III have been plotted for each exercise intensity to indicate

how closely the model fits the V O2 data during different phases of the response («=8).
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The physiological measures and kinetic parameters recorded during the off-transient of 

moderate and heavy-intensity exercise are displayed below in Table 5.5.

Table 5.5 The test-retest (mean ± SD) V O2 kinetic parameters and physiological 

measures recorded during the off-transient of moderate- and heavy-intensity treadmill 

running («=8).

80% GET 50%A

M easure Test 1 Test 2 Test 1 Test 2

Speed (km.h'1) 4 ±  0 4 ±  0 4 ±  0 4 ±  0

Tdi (s) 6.7 ± 3 .7 7.4 ±  4.2 7.8 ±  2.4 7.7 ± 2 .6

TD2 (s) 124.2 ± 2 6 .3 127.3 ± 2 5 .9

ti (s) 27.4 ±  3.5# 27.6 ±  3 .1# 27.1 ±  2.4# 26.0 ±  2.2#

*2 (s) 396.1 ± 5 2 .3 ## 403.1 ± 7 8 .2 ##

A \ (ml.min ) 8 1 4 ±  211 865 ± 2 0 5 2134 ± 2 7 5 * * 2167 ± 2 8 1 * *

A 2 (ml.min )

sfcslc t t i  1 „  x* „  e r \ ( \ /  a

138 ±  59## 105 ±  47##

** Higher for 50%A, PO .O l; Different from corresponding on-transient value, 

P<0.05; ## Different from corresponding on-transient value, PO .O l.

5.3.6 Comparison of on- and off-transient kinetics

Two way ANOVA with repeated measures revealed T\ for 80%GET and 50%A running 

to be shorter (P=0.033) when measured during the on- than the off-transient of exercise 

(Figure 5.3 A ). However, the analysis found A\  values to not differ between transients 

(P=0.312) for both 80%GET and 50%A runs, while as expected, A\  was found to be 

larger (P=0.029) for the 50%A than 80%GET runs, at exercise onset and cessation. 

Paired sample t-test demonstrated that T20n was shorter (Figure 5.3 B) than i 20ff 

(P=0.004). The A 20n was however found to be larger (P=0.005) than ^off-
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Figure 5.3 A and B. The V O2 responses from a representative participant (2) during the 

on- (•) and off-transients (°) of moderate- (A) and heavy- (B) intensity treadmill 

running. The xion and X20n are significantly quicker than xi0ff and X20ff (P<0.05).
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5.4 Discussion

5.4.1 The practicality of a repeated exercise-transition treadmill protocol

A repeated square-wave transition treadmill protocol was devised to provide measures

of V O2 kinetic responses during the on- and off-transitions of moderate- and heavy- 

intensity running. However, it has not been firmly established if such a protocol can be

used to obtain valid and reliable V O2 kinetic parameters, as prior exercise bouts have

been demonstrated to alter V O2 responses during subsequent exercise (Gerbino et al., 

1996; Burnley et al., 2000; Koppo and Bouckaert, 2000).

The analysis revealed that 6 min is sufficient time for V O2 to return to pre-exercise 

levels following moderate-intensity treadmill running, ensuring the amplitude response

during the subsequent exercise bout was unaffected by an elevated baseline V O2

(Burnley et al., 2001). It was also found that no difference existed between the V O2 

kinetic parameters measured during the onset and cessation of moderate exercise 

transitions of parts A or B of the protocol.

In contrast, the X20n and Aion values were found to be shorter and smaller for part B, 

although the corresponding values for part A were not significantly different. 

Furthermore, X20ff (FMJ.023) and ̂ 2off (P=0.028) were significantly slower and larger for

part B of the protocol. Such differences in the phase III V  O2 responses o f both

transients during part B might indicate that V O2 kinetic measures were influenced by a

prior bout of heavy-intensity exercise. However, the cause of the distortion to V O2

kinetics in this study is unclear, as all physiological measures (HR, V O2, blood lactate) 

were observed to have returned to pre-exercise levels before part B o f the protocol 

commenced. The lack of difference in the blood lactate measured immediately before



parts A (1.23 ± 0.18 mmol.1'1) and B (1.18 ± 0.12 mmol.l"1) indicates that residual 

lactate acidosis that has been previously associated with a reduction in the slow 

component during subsequent exercise bouts is not present. Hence, the 42 min (12 min 

walk + 30 min passive recovery) that separated the heavy-intensity runs was sufficient 

to remove any lactate acidosis before the next bout o f exercise. This might be expected 

as the recovery of blood lactate has a half-time of 15 to 20 min (Burnley et al., 2005). In 

addition, if  it is accepted that the oxidation of lactate is a contributing factor in the 

recovery slow component (Ozyener et al., 2001), then it is also ambiguous why X20fr and 

^ 2ofr were larger following the heavy-intensity run in part B, as similar blood lactate 

concentrations were measured after each heavy-intensity run. Although other factors

that have been proposed to account for an elevated V O2 following heavy-intensity 

exercise such as increased temperature (Gore and Withers, 1990) were not measured.

An alternative explanation for the differences in phase III kinetic measures between 

parts A and B of the protocol might be the large variability observed in this study for 

test-restest measures o f the slow component (see chapter 5.3.3). Large day-to-day 

variability could lead an incorrect assumption that a measure has changed when in fact 

it has remained stable. Hence, it cannot be firmly concluded that the difference in phase 

III parameters between parts A and B observed here are attributable to the prior heavy- 

intensity exercise. An increase in the reproducibility of phase III measures is required if 

firm conclusions are to be drawn concerning the influence o f prior heavy-intensity 

exercise on V O2 kinetic measures during subsequent exercise bouts (see chapter 6).

5.4.2 Reproducibility of V O2 kinetics

The findings o f this investigation indicate that phase II V O2 kinetic responses during 

the on- and off-transients of moderate and heavy treadmill running are reproducible.
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The CV was under 10% for all phase II x and A, which compares well to the CV of

7.3% reported for V O2 max (Katch et al., 1972) which has been frequently used in 

physiological assessments. Furthermore, LOA (95% confidence) indicated that for both 

the on- and off-transients of moderate- and heavy-intensity exercise, Ti and A\ 

measurement error did not exceed 9.8% of the grand mean. Such findings are in 

agreement with previous research that has reported high reproducibility for V O2 kinetic 

parameters measured during the onset of moderate-intensity cycling (Puente-Maestu et 

al., 2001).

In contrast, X20n and X20fr were more variable, with measurement errors of 21% and 24% 

of their respective grand means. The A 2 during the on- and off-transients expressed the 

greatest test-retest variability, with measurement errors of 24% and 41% of their grand 

mean respectively. Although previous research into the variability o f phase III V O2 

kinetic parameters is limited, a substantial variation in X2 and A 2 has been reported by 

Ozyener et al. (2001) for a range of supra GET cycling intensities.

For the purpose of this thesis, the variability in xj and A\ found in the current 

investigation appears to be acceptable as it is not greater than previously observed

changes in phase II V O2 kinetics (10 to 58%) following a period of training (Berry and 

Moritani, 1985; Babcock et al., 1994; Phillips et al., 1995). However, the variability of 

A 2on / ^ 2off reported here is similar or greater than the change in slow component 

amplitude reported by Carter et al. (2002) of 32% following six weeks o f endurance 

training. Therefore, an improvement in the test-retest reproducibility of phase III 

parameters might be necessary if  the influence an intermittent training regime has on the 

slow component is to be assessed in a future study of this thesis.
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5.4.2.1 Factors influencing the reproducibility of phase III V  O2 kinetics

Only two transitions of heavy-intensity treadmill running were ensemble averaged in 

this study. This might not be a sufficient number of transitions to reduce the influence 

that the noise inherent in breath-by-breath measurements of V O2 (Lamarra et al., 1987) 

has on parameter estimation. A noisy V O2 response would make it difficult to 

consistently fit an exponential model to the true physiological signal. Visual inspection 

of the residuals plotted in Figures 5.1 (A+B) and 5.2 (A+B) demonstrate the poor model 

fit for phase III compared to phase II in both transients. This is supported by the 

observation that the mean sum of squares for phase II (on-transient, 1647; off-transient, 

2059) is smaller than for phase III (on-transient, 10516; off-transient, 7899) during the 

heavy-intensity exercise transitions.

A contributing explanation for the poor reproducibility is the small signal to noise ratio 

for phase III V O2 measurements. For example, the mean phase III amplitudes in this 

investigation are 291 ± 134 and 122 ± 73 ml.min'1 for the on- and off-transients 

respectively. Yet the ± S0 of the breath-to-breath noise for these components o f the

V O2 response are 116 ml.min'1 during the on- and 47 ml.min'1 during the off-transient 

of exercise. Expressed as a percentage the signal to noise ratio is 39% for T20n and 38% 

for X2ofr- Based on these data, the ± 95% Cl (Lamarra et al., 1987) for X2 measurements 

is estimated to be ± 33.0 s for the on- and ± 120 s for the off-transients, which equates 

to 18% and 31% of the mean X20n and x0fr values. In comparison, the amplitudes of the 

phase II response are much larger (On, 853 ± 364 ml.min'1; Off 858 ± 305 ml.min'1) and 

the ± S0 of breath-to-breath noise relatively smaller (On, ± 6 1  ml.min'1; Off, ± 47 

ml.min'1). Consequently, the signal to noise ratio for phase II of moderate-intensity 

running is 7.2% for the on-transient and 5.4% for the off-transient. Such an enhanced 

signal to noise ratios produces smaller 95% Cl estimates for xi of ± 1.21 s for the on-



and ± 1.48 s for the off-transient, which correspond to 5.2% and 5.4% of the mean xion 

and Tiofr values. Although calculation of 95% Cl using the equation of Lamarra et al. 

(1987) was intended for x estimation during the steady-state response to moderate- 

intensity exercise, it was used as an estimate of the 95% Cl for X2 in this study as the

phase III V O2 response was observed to reach a delayed steady-state before the final 

100 s of the heavy exercise transitions for all participants.

The signal to noise ratio during phase III of heavy-intensity running might be improved

by measuring the V O2 response at a heavier exercise intensity, as the amplitude of the 

slow component is reported to be larger for very-heavy (80%A, Whipp et al., 2005) than 

heavy-intensity exercise. Although, it must be taken into consideration that exercise in

different supra-GET intensity domains can lead to contrasting V O2 responses (Ozyener 

et al., 2001). It is also possible that a combination o f techniques employed by previous 

studies such as increasing the number of heavy-intensity exercise transitions (Ozyener

et al., 2001) and averaging the V O2 data (Koga et al., 1999) could help reduce the 

impact of breath-to-breath noise on parameter estimation.

5.4.3 Characteristics of phase II V O2 kinetics

The limited number of studies that have measured the V O2 kinetics of recreationally 

active individuals during treadmill running makes modality specific cross study 

comparisons difficult. The mean test-retest xion for moderate- and heavy-intensity 

treadmill running in this study were 22.6 ± 2.1 s and 23.7 ± 2.4 s respectively. This is 

slower than has previously been reported for recreationally active participants following 

the onset of moderate- (13.9 ± 1.4s, Carter et al., 2000b; 15.0 ± 2.0 s, Carter et al., 

2000a; 14.7 ± 2.8 s, Williams et al., 2001) and heavy- (19.4 ±  2.1 s, Carter et al., 2000a;

20.1 ± 2.3 s, Carter et al., 2000b; 19.0 ± 1.8 s, Williams et al., 2001) intensity treadmill
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running, but similar to moderate-intensity cycling (23.2 ± 7.0 s, Barstow et al., 1996;

21.2 ± 8.2 s, Koga et al., 1999). In contrast, the Ti0fr of 27.5 ± 5.5 s and 26.7 ± 5.1 s for 

moderate- and heavy-intensity treadmill running in this investigation is substantially 

faster than that previously reported for recreationally active individuals, (39.9 ± 3.0 s, 

Carter et al., 2000a), and is more comparable to that reported for endurance trained 

athletes (25.0 ± 1.8 s, Phillips et al., 1995: 27.1 ± 3.0 s, Kilding et al., 2003).

It is unclear why the T\ o f recreationally active participants in this study should differ to 

that previously reported for similar participant groups. A possible explanation might be

a difference in the aerobic fitness of participants, as V O2 max has been shown to be 

inversely associated with T\ (Chilibeck et al., 1996; Fawkner et al., 2002). However,

this does not seem to be a causative factor, as the mean V O2 max of the participants in 

the studies of Carter et al. (2000a) and Williams et al. (2001) were 50.7 ±  13.0 

ml.kg^.min'1 and 56.6 ± 3.0 ml.kg‘1.min‘1 respectively, which is similar to 51.3 ± 3.1

ml.kg"1.min'1 reported in this study. Furthermore, off-transient V O2 kinetics appear to

be independent o f V O2 max, as the more aerobically trained endurance athletes (60.0 ± 

4.9 ml.kg^.min'1) in the study o f Kilding et al. (2003) did not possess faster Ti during 

recovery than the participants of this study. These findings would in fact suggest that

V O2 max and V O2 kinetics are controlled by different mechanisms (Carter et al., 

2000a; Kilding et al., 2003). To help clarify the cross study variability in Ti, further

research is warranted to establish the relationship between aerobic fitness and V O2 

kinetics during the different transients of exercise.

The seemingly fast V O2 kinetics observed for recreationally active (Carter et al., 

2000a) and untrained (Williams et al., 2001) individuals might be explained by
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differences in the methods used to measure V O2 kinetic responses. The transition to 

moderate-intensity running in the current investigation was initiated from walking (4 

km.h'1), whereas in the studies of Carter et al. (2000a) and Williams et al. (2001), 

transitions were initiated from resting conditions. Also, the V O2 responses to the onset 

and cessation of moderate-intensity runs in this study were characterised using a mono

exponential model with a time delay, whereas in the above studies authors used a higher

order two component exponential model to take into consideration phase I of the V Oi 

response.

5.4.3.1 Influence of intensity domain on phase II V O2 kinetics

An important observation from the analysis o f the V O2 kinetic responses during the 

heavy-intensity exercise in this study is that x\ is invariant of exercise intensity. 

Although several cycle based investigations (Ozyener et al., 2001; Scheuermann and 

Barstow, 2003) have also noted x\ to be independent of intensity domain, this appears to 

be the first time it has been reported for square-wave treadmill running. In contrast, a 

large proportion of the literature has reported x\ to lengthen during heavy-intensity 

exercise, for both treadmill running and cycling. It has been proposed that large inter

individual variability in Ti combined with small sample sizes might lead investigators to 

find non-significant differences in x\ between moderate and heavy exercise, even when 

the mean difference in the values appears to be substantial (Perry et al., 2001). Although 

the sample size in this study is small (n = 8), further analysis reveals that the invariance 

of Ti across exercise intensities was apparent for all participants (see Figure 5.4). In 

addition, the standard deviations of the mean x\ values for 80%GET (± 2.1 s, 8.5% of 

mean) and 50%A (± 2.3 s, 8.3% of mean) are small. Analysis in this study has also 

shown Ti to be invariant on a test-retest basis, where the variability between tests was
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low (see Tables 5.2 and 5.3). So it would appear that the invariant x\ in this study are 

not the consequence of variable data.
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Figure 5.4 Graph A represents Tion for 80%GET (□) and 50%A (■) running from test 1 

for each participant. Graph B represents Ti0ff for 80%GET (□) and 50%A (■) running 

from test 1 for each participant. Such data demonstrate the small inter-participant 

variability for t\ during moderate- and heavy-intensity exercise (n=8).
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With regards to future investigations of this thesis, an invariant Ti across intensity

domains indicates that the primary V O2 response reflects a linear system. 

Consequently, transitions to or from moderate- and heavy-intensity exercise would 

provide similar information about the speed of O2 utilisation at the muscle, removing 

the need to measure t i  separately for moderate- and heavy-intensity treadmill running. 

This would make laboratory based V O2 kinetic assessments less time consuming, 

which could increase accessibility to specialist groups such as elite soccer players 

whose time can be limited due to training and competition commitments.

5.4.4 Characteristics of phase III V O2 kinetics

The values for T2 in this study of 178.2 ±41.3  s and 399.1 ±86.1 s for exercise onset 

and cessation are substantially longer than the corresponding x\ values, which is in 

agreement with the findings of previous investigations (Patersson and Whipp, 1991; 

Barstow et al., 1996; Carter et al., 2000a). Previous investigations have reported the 

length of i 2 to range from 32 ± 7 s to 416 ± 406 s at the onset and from 163 ± 46 s to 

539 ± 379 s at the cessation of heavy-intensity running and cycling (Carter et al., 2000c; 

Demarle et al., 2001; Ozyener et al., 2001). Clearly, it is not possible from such highly 

variable observations to make cross-study comparisons, and is difficult to identify what 

an expected 12 should be for a recreationally active participant during both the on- and 

off-transients o f heavy-intensity treadmill running. The cause of such variability in 

reported 12 values is unclear. It could be explained by the poor reproducibility

previously observed for phase III V O2 kinetics (James and Doust, 1996; Ozyener et al., 

2001), and which has been identified in the current investigation (see chapter 5.3.3), as 

any parameter that varies substantially on a day-today basis will lead to inconsistent 

findings. Alternatively, inconsistent identification of intensity domains in previously

published studies could lead to variable phase III V O2 measures.
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5.4.5 Asymmetry of V O i kinetics

For moderate- and heavy-intensity treadmill running, the %\ in this study was quicker for 

the on- than the off-kinetic response (see Tables 5.4 and 5.5), which is in agreement 

with previous treadmill (Carter et al., 2000a), cycle (Linnarsson, 1974; Hughson et al., 

1988; Scheuermann et al., 1998) and prone leg extension (Rossitter et al., 2002) studies. 

In contrast, A\ was found to be similar between transients for both intensities.

Asymmetry between phase II parameters is significant, as it implies that the V O2 

response to moderate and heavy treadmill running does not conform to a dynamic linear 

model across exercise transients.

The present investigation also found T2 for heavy-intensity exercise to be approximately 

50% quicker during exercise than in recovery, which is in agreement with earlier cycle 

investigations (Carter et al., 2000a; Cunningham et a l , 2000; Ozyener et al., 2001).

Asymmetry was also observed to exist in the amplitudes of the V O2 kinetic response to 

heavy-intensity exercise. The A 2 was approximately 3 fold larger for the on- than the 

off-kinetic response, supporting previous research, (Carter et al., 2000a, Cunningham et 

al., 2000). Such asymmetry suggests that the slow component during recovery is 

independent o f the slow component during the preceding exercise (Cunningham et al., 

2000). This notion is further supported by the findings of Ozyener et al. (2001) who 

found no significant differences in the t  o f the off-transient slow component for very 

heavy and severe exercise intensities.

There is currently little evidence explaining the asymmetry between transients. The 

discrepancy in x\ between on and off V O2 responses could be indicated from a 

quantitative analysis of the time course of [PCr] degradation and recovery kinetics. 

Kushmerick (1998) has shown, via computer modelling, that the full expression o f CK
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(forward and reverse flux) and differing processes during the imposed increase in 

ATPase activity in the breakdown and recovery phases, results in asymmetry between 

[PCr] on and off-transients. As it has been identified that [PCr] and V O2 have similar 

kinetics (Rossiter et al., 1999; Rossiter et al., 2002), this is anticipated to cause an 

asymmetry between V O2 on- and off-transients as was observed in the present study.

It has been hypothesised that the longer 12 and smaller A 2 reported during recovery in 

comparison to exercise could be caused by the different energetics in type I and type II 

muscle fibres (Barstow et al., 1996; Cunningham et al., 2000). During heavy aerobic 

exercise, there is an increased recruitment of low efficiency, high oxygen cost, type II

fibres, which is consistent with the additional increase in V O2 during exercise above 

GET. In recovery however, the type II recruitment would cease immediately, and 

without delay mitochondrial oxygen utilisation would contribute to the restoration of 

PCr in these fibres. This oxidative metabolism in type II fibres will have a slow time 

course and small oxygen demand, which might be reflected as a prolonged but small A 2 

(slow component) during recovery. Alternatively, following heavy-intensity exercise, a 

slow component might be present during recovery due to lactate serving as a source of 

glyconeogenesis. Similarly, any lactate reducing equivalents transported into 

mitochondria as an aerobic source that utilises the a-glycerophosphate shuttle rather 

than the malate-asparate shuttle would also incur a small and possibly long-lasting 

additional oxygen cost that would be expressed as a slow component.

5.5 Conclusion

A repeated square-wave transition treadmill protocol can be used to measure V O2 

kinetic parameters to the onset and cessation of moderate-intensity exercise. It remains

to be established however if such a protocol can be used to measure V O2 kinetic
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parameters during the onset and cessation of heavy-intensity exercise, as the V O2 

kinetic profile during a second heavy-intensity run was found to differ to that recorded 

for the first run. The x\ was found to be invariant of intensity domain, which suggests 

V O2 kinetic responses to moderate- and heavy-intensity exercise do not need to be

measured separately. The implication of such a finding is that the study o f V O2 kinetics 

can become less time consuming, potentially increasing access to elite athletes.

The V O2 kinetic parameters were found to be reproducible for the on and off phase II

transients of the V O2 response. The level of reproducibility for the phase II parameters 

is such that it is concluded they can be used in a future investigation to determine the

influence soccer training has on a player’s V O2 kinetic profile. The level of variability

found for V O2 kinetic parameters during phase III of the V O2 response however was 

high, limiting their application when investigating the determinants of sports 

performance. Such variability could also account for the difference observed between 

phase III parameters measured during parts A and B of the protocol. To address these 

problems, further research is required to identify whether the reproducibility of phase III 

parameters can be improved.

The V O2 kinetic responses measured during the onset of moderate- and heavy-intensity 

treadmill running are slower than have previously been reported for recreationally 

active participants. Conversely, the %\ off for moderate and heavy-intensity treadmill 

running was substantially faster than reported for the same participant group and was 

similar to that expected for endurance trained athletes. Such findings question

observations that V O2 kinetics are influenced by V O2 max.
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CHAPTER 6

Im provem ent of phase III V O2 kinetic param eter reproducibility

6.1 Introduction

The reproducibility o f phase III parameters observed in the previous study of this thesis 

must be improved if  the role the slow component plays in soccer performance is to be 

understood. The cause of the low reproducibility appears to be a poor model fit to the

V O2 data, due to the phase III response containing a large amount o f noise in relation to 

its amplitude. In an attempt to improve the reproducibility of the phase III response the 

following modifications to the square-wave protocol will be implemented: 1) an 

increase in the intensity of the runs from 50%A to 80%A (80% of the way between GET

and V  O2 max, defined as the very heavy-intensity domain, Whipp et al., 2005) to 

enlarge the amplitude of the slow component, and 2) an increase in the number o f supra-

GET exercise transitions from 2 to 4 in an attempt to smooth the noise in the V O2 

response. It is intended that the product of these two changes will enhance the signal to

noise ratio for the phase III V O2 response, which should lead to a better model fit to the

V O2 data and hence less variable parameter estimations.

The influence that prior heavy-intensity exercise has on V O2 kinetic parameters during 

subsequent exercise bouts must be established if  such a repeated heavy-intensity 

transition protocol is to be adopted in future studies o f this thesis. An improvement in 

the reproducibility of phase III parameters will help determine whether any change to

the V O2 kinetic parameters measured during subsequent heavy-intensity runs are 

caused by physiological responses to a prior bout of heavy-intensity exercise.
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No moderate-intensity transitions have been incorporated into the protocol as the 

findings of the previous investigation o f this thesis showed Ti to be invariant across 

intensity domains, which would suggest no additional information would be gained

from measuring phase II V O2 kinetics for moderate- and heavy-intensity exercise

separately. Furthermore, restricting the measurement o f phase II V O2 kinetics to the on- 

and off-transients of very heavy-intensity running will possibly be more relevant to

soccer, as the running speeds that elicit a V O2 value that corresponds to 80%A will be 

> 1 5  km.h-1, which is the speed recently used (Mohr et al., 2003) to define the lower 

boundary of high-intensity running during a competitive game.

6.1.1 Aim

1. To determine if an increase in the number and intensity of square-wave exercise 

transitions improves the reproducibility of phase III parameters measured at the onset 

and cessation of treadmill running.

2. To identify whether prior bouts of square-wave 80%A running distort V O2 kinetic 

measures during subsequent runs.
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6.2 Participants and Methods

6.2.1 Participants

With institutional ethics approval, 10 recreationally active males (mean ± SD): age 25.3 

± 2 .1  years, stature 179.6 ± 8.3 cm, body mass 74.7 ± 10.2 participated. Prior to the 

administration of any test, participants were screened for existing medical conditions 

that might become aggravated during the testing procedure (Appendix 6, page 238). 

Pre-test instructions can be seen in chapter 3.2.1.4.

6.2.2 Experimental design

Participants performed three exercise tests, each separated by three days. The first 

assessment was the incremental exercise test to exhaustion, on the other two occasions 

participants performed the repeated very heavy-intensity square-wave protocol. All 

laboratory tests were performed at approximately the same time of day to reduce the 

effects of diurnal variation. Each time players visited the laboratory stature and body 

mass were measured and heart rate was recorded on 5 s intervals during each 

assessment. Temperature in the laboratory was kept within 20°C ± 1°C.

6.2.3 Experimental Protocols

All exercise tests were performed on a motorised treadmill (Saturn, HP Cosmos, 

Nussdorf - Traunstein, Germany). Pulmonary gas exchange (MGA 1100 mass 

spectrometer, Marquette Electronics Inc, Milwaukee, WI, USA) was measured on a 

breath-by-breath basis during an incremental exercise test to volitional exhaustion for

the identification of V O2 values and running speeds that corresponded to V O2 max, 

GET and 80%A (see chapter 3.2.4). These running speeds were then used to design a 

repeated very heavy-intensity square-wave transition protocol that consisted o f 4, 6 min 

runs at 80% A. Each run was separated by a 12 min walk and a further 30 min of passive
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recovery (see chapter 3.2.5.2). Pulmonary gas exchange was measured through out the 

test (MGA 1100 mass spectrometer, Marquette Electronics Inc, Milwaukee, WI, USA)

to determine V O2 kinetics.

6.2.4 Data Analysis

Breath-by-breath pulmonary gas exchange data collected during the incremental 

exercise tests and repeated square-wave transition protocol were analysed following the 

procedures outlined in chapter 3.2.4.1 and 3.2.5.3 respectively.

6.2.5 Statistical Analyses

Statistical significance was set at P  <0.05. To determine whether V O2 kinetic measures

varied across four 80% A transitions, the V O2 data collected for each transition of test 1

was ensemble averaged with the V O2 data collected during the corresponding transition 

from test 2 (retest). The transitions from the test-retest protocols were combined to

reduce noise in the V O2 response. These data were then modelled to produce a set of

V O2 kinetic measures for the onset and cessation of four transitions of 80%A running. 

A two-way ANOVA with repeated measures was then used to identify whether any

differences existed between V O2 kinetic measures at exercise onset and cessation 

across the four transitions.

To check a participant’s V O2 had returned to baseline following a very heavy-intensity

exercise transition before the next exercise transition commenced, the actual V O2 for 

the 2 min period preceding each 80%A transition was compared using a One-way 

ANOVA with repeated measures.
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Differences in the test-retest data for the repeated heavy-intensity square-wave protocol 

were assessed using Two way ANOVA with repeated measures. The reproducibility of 

the test-retest data was analysed using method error, CV and LOA.
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6.3 Results

6.3.1 Incremental exercise test performance

The physiological and performance measures recorded during the treadmill based 

incremental exercise test to exhaustion are listed below in Table 6.1. The aerobic fitness 

of the participants is comparable to that reported previously for professional soccer 

players (Reilly, 1996).

Table 6.1 The performance and physiological measures (mean ± SD) recorded from the 

incremental exercise test to exhaustion (n = 10).

M easure M ean ± SD

V O2 max (ml.kg^.min'1) 55.9 ±4.3

V O2 max (ml.min'1) 4175 ±321

Maximal speed (km.h'1) 18.1 ± 0 .4

Time to exhaustion (min) 11.2 ±0 .5

Maximal HR (b.min*1) 196 ± 12

GET (ml.kg^.m m 1) 39.6 ± 3 .7

GET (ml.min'1) 2978 ± 216

GET as % of F  O2 max 71 ± 5

6.3.2 Com parison of V O2 kinetic measures across four 80%A running transitions

The two-way ANOVA repeated measures design revealed no difference to exist for %\ 

(P=0.341) o r^ i  (P=0.247) at the onset or cessation of exercise across the four running 

transitions. As expected, the analysis did show i\  to be longer during the off-transient 

(P=0.036), but no interaction was reported between trial and transient (P=0.196). 

Although phase III measures are more variable, the two-way ANOVA with repeated 

measures did not show any difference to exist for 12 (P=0.127) or A 2 (jP=0.261) for
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exercise onset or cessation across the four transitions. The x2 was found to be longer (P=

0.025) and A j smaller (P= 0.004) during the off-transient, although no interaction was 

observed between transient and transition (x2, P=0.133; A 2 , P=0.176). A one-way

ANOVA with repeated measures revealed the V O2 during the 2 min prior to each 

80%A transition to not differ (P=0.284).

Table 6.2 The V O2 kinetic measures (mean ± SD) during the onset of each of the four 

80%A running transitions (n = 10).

M easure Transition 1 Transition 2 Transition 3 Transition 4

Ti (S ) 24.3 ± 2.3 24.8 ± 1 .9 ' 24.4 ±3.1 25.2 ± 2 .7

t 2 ( s ) 154.9 ± 28.6 165.7± 30.2 162.1 ±23.1 196.3 ±17.5

A \ (ml.min*1) 2534 ±304 2485 ±267 2553 ± 253 2562 ± 289

Aj (ml.min*1) 301 ± 54 271 ±43 265 ± 56 283 ± 47

Table 6.3 The V O2 kinetic measures (mean ± SD) during the cessation of each of the

four 80%A running transitions (n = 10).

M easure Transition 1 Transition 2 Transition 3 Transition 4

Tl (S) 28.1 ±3.8 27.2 ±5.1 27.8 ± 4.3 27.5 ±4.1

t 2 ( s ) 329 ±84.6 357 ±74.1 366 ±88.5 324 ±63.8

A \ (ml.min*1) 2593 ±205 2534 ±264 2553 ± 278 2522± 196

A 2 (ml.min*1) 171 ± 57 184 ± 46 192 ±63 176 ±41

6.3.3 Reproducibility of time constants

The test-retest V O2 kinetic and physiological responses to running at a speed 

corresponding to 80%A are listed below in Table 6.2. Two-way ANOVA with repeated 

measures found no difference between the test-retest values for xi (P=0.172) or x2
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(P=0.326) when measured at either the onset or cessation of exercise. The mean x\ was 

shorter for exercise onset than cessation (P=0.034); this was also the case for %i 

(P=0.001).

Table 6.4 The test-retest V 0 2 kinetic and physiological responses (mean ± SD) to the 

on-transient of very heavy-intensity treadmill running (n = 10).

M easure Test 1 Test 2

Speed (km.h'1) 16.2 ±1 .4 16.3 ± 1.3

V O2 (ml.min'1) 3678± 321 3767 ±355

HR (b.min'1) 178 ± 12 177 ±11

Tdi (s) 8.8 ±2.3 9.2 ±3.1

Td2 (s) 125.6 ± 12.7 127.4 ±13.2

ti (s) 24.9 ± 2.6 24.4 ± 2.7

x2 (s) 178.7 ±24.7 156.3 ±25.4

A 1 (ml.min'1) 2508 ±216
r

2556 ±186

A2 (ml.min'1) 282 ± 63 272 ± 48
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Table 6.5 The test-retest V O2 kinetic and physiological responses (mean ± SD) to the 

off-transient o f very heavy-intensity treadmill running (n = 10).

M easure Test 1 Test 2

Speed (km.h'1) 4.0 ±0 .0 4.0 ±0 .0

Tdi ( s) 9.3 ±3.1 9.4 ±2 .7

Xi (s) 28.3 ± 4.2# 27.1 ± 4.5#

x2 (s) 331.6 ±41.7** 353.8 ±53.5##

A\ (ml.min'1) 2524 ±106 2573 ± 64

A 2 (ml.min'1) 198 ±43 161 ±33

r,'"  ^  ^  M ____ .^  ......  - ■ ' 1    —  - -  — .p.  i f - - - -  ■

Different to the corresponding value for the on-transient, P<0.05; Different to the 

corresponding value for the on-transient, P O .O l.

Results from the tests of reproducibility are listed in Table 6.6. The CV and method 

error did not exceed 3% or ± 1 s for ti during either the on- or off-transients of exercise. 

The LOA for xi were narrow and suggest there is a small fixed bias of xi being longer 

during test 1 than test 2 for both transients. The measurement error for xi during the on- 

and off-transients did not exceed 9% of their grand means, which is comparable to that 

calculated for heavy-intensity running in the previous chapter.

Greater variance was found for X2, as the method error and CV were ± 15.6 s and 14.4% 

during the on- and ± 32 s and 16.4% at for the off-transients. Although the LOA (95% 

confidence) were improved for X2 during both transients compared to the previous study, 

they were still wider than those calculated for xi. There was a positive fixed bias o f X2 

being longer during test 1 than test 2 for both transients. The measurement error for X2 

as a proportion of the grand mean approached 20% for both transients.
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The test-retest V O2 response to the onset and cessation of the very heavy-exercise 

transitions for a representative participant (4) are listed below in Figure 6.1 (A and B).

In Figure 6.2 (A and B) the V O2 response (participant 4) to the onset and cessation of 

very heavy exercise from the first test has been modelled and the residuals plotted to 

provide an indication of how closely the model fits phases II and III.
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Figure 6.1 A and B. The test-retest V O2 response of a typical participant (4) to the 

onset (A) and cessation (B) of very heavy-intensity treadmill running.
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Figure 6.2 A and B. The V O2 response from a representative participant (4) during the 

onset (A) and cessation (B) of very heavy-intensity treadmill running (Test 1). The

residuals (Model -  V O2) have been plotted to demonstrate the closeness of model fit to

the V O2 data for the phases II and III of the response.
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6.3.4 Reproducibility of amplitudes

A two-way ANOVA with repeated measures revealed no difference between test-retest 

values for A\ (P=0.115) or A 2 (P=0.134) during either the on- or off-transients of 

exercise. The mean value fo r^ i at exercise onset and cessation did not differ (P=0.168), 

however A 2 was found to be larger (P=0.032) at exercise onset than cessation. The 

method error and CV (Table 6.4) for A\ were low for both transients of exercise. In 

addition, narrow LOA were calculated for A\ during both on- and off-transients of 

exercise, indicating a positive fixed bias of test 1 measuring more than test 2 (Table 

6.6). The measurement error as a proportion of the grand mean for A\ was low, not 

exceeding 7% for either transient. For ̂ 2  the method error and CV were also low at ± 74 

ml.min'1 and 1.9% during the on- and ± 22 ml.min'1 and 2.3% for the off-transients of 

exercise. However, LOA analysis revealed A 2 to be highly variable for both transients, 

with the measurement error exceeding 20% of the grand means for the on- and off- 

transients respectively.
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6.4 Discussion

No difference was found between the V 0 2 kinetic parameters measured across the four

80%A running transitions. Visual inspection o f the V O2 kinetic parameters (Tables 6.2) 

also reveals that there is no trend of T20n and A2on becoming faster and smaller as the 

transitions are repeated. Similarly, i 20ff and A2off do not become longer and larger (Table 

6.3). Such findings conflict with those of the previous study of this thesis, where the

V O2 kinetics measured during a second bout of 50%A running differed to those 

measured in the first run. The cause of such conflicting results might be attributable to

the lower level o f variability reported for the V O2 kinetic parameters measured in the 

80%A protocol (see chapter 6.3.3) not masking the true kinetic responses for each 

transition. Furthermore, as exercising at 80%A would be expected to result in greater 

production of lactate and disruption to cell homeostasis than at 50%A, these findings 

strongly suggest that 42 min is an adequate recovery period between very heavy-

intensity runs for the reversal o f physiological adaptations that might distort V O2 

kinetic parameters in subsequent runs. Hence, such a repeated transition protocol can be

used in future studies to assess V O2 kinetics.

The phase II V O2 kinetic parameters measured during the on- and off-transients of 

80%A treadmill running were found to be reproducible. The method error and CV did 

not exceed 0.8 s and 2.9% for ii  and 56.7 ml.min’1 and 3.7% for A\ for either transient. 

The LOA also indicated a small spread of differences between the measurements (see

Table 6.4). Such reproducibility for phase II V O2 kinetic responses compares well to 

that observed in the previous study of this thesis for both moderate- and heavy-intensity 

running (see chapter 5). It is also in agreement with previous research that has reported 

reproducible phase II V O2 kinetic parameters in response to moderate-intensity cycling
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(Puente-Maestu et aL, 2001). These findings suggest that day-to-day variability in phase 

II V O2 kinetic parameters derived from very heavy-intensity treadmill running is such

that they can be used to investigate the role of V 0 2 kinetics in the performance of high- 

intensity soccer-specific exercise.

In comparison with the previous study, the test-retest reproducibility for phase III 

measures was improved. The 12 was found to have a method error and CV of ± 15.6 s 

and 14.4% at the onset and ± 16.4 s and.32.1% at the cessation of exercise. The LOA 

analysis revealed the test-retest measurement error equated to 17% and 19% of the 

grand mean t2 values for exercise onset and cessation respectively. The A 2 values were 

found to be more variable, with LOA analysis showing the measurement error between 

the test-retest data to be proportional to 20% and 35% of the grand means for A2on and 

A 2off respectively.

The improvement in phase III parameter reproducibility was matched by an 

enhancement in the signal to noise ratio from that observed in the previous study from 

39% to 27% for the on-transient and 38% to 23% for the off-transient. Consequently, 

the model fit to the phase III response appears to have been improved, as the mean sum 

of squares for the last 100 s of the exercise transient (see chapter 3.2.5.6) is substantially 

less for this (on-transient, 2947 ± 1036; off-transient, 3010 ± 1056) than the previous 

study (on-transient, 10516 ± 4416; off-transient, 7899 ± 377). However, it is clear that 

the enhancement of the signal to noise ratio by 12% for the on-transient and 15% for the 

off-transient was not sufficient to improve the reproducibility of the phase III 

parameters to the level observed for phase II parameters. For example, the 95% Cl 

(Lamarra et al., 1987) for t2 are still large, ranging from ± 16.7 s during the on-transient 

to ± 38.9 s for the off-transient. It remains to be established if  such variability in phase



Ill measures will be greater than any change induced to the slow component responses 

of soccer players through high-intensity intermittent training in future studies of this 

thesis.

It would appear that greater improvements in the reproducibility of phase III measures 

were not achieved as the modifications made to the repeated square-wave transition

protocol did not increase the amplitude and reduce the noise in the V 0 2 response as 

expected. For exercise onset, the increase in the number o f ensemble averaged 

transitions from two to four did reduce the noise in the phase III V 0 2 response. This is 

demonstrated by the smaller ± S0 of the breath-by-breath noise observed in the first

assessment of V 0 2 kinetics in this (On-transient, ± 76 ml.min'1) compared to the 

previous study of this thesis (On-transient, ± 1 1 6  ml.min'1). However, this was partly 

negated by the observation that exercising at a heavier intensity did not increase the 

signal (^2on) as anticipated. The mean A2on for 80%A (277 ± 143 ml.min'1) running was 

not larger than for 50%A (293 ± 135 ml.min'1).

In contrast, for exercise cessation, the increased number of transitions did not 

considerably reduce the breath-by-breath noise in this (± S0 = 41 ml.min'1) compared to 

the previous study (± S0 = 47 ml.min'1). It appears this was compensated for to some 

extent by the A2 during the off-transient being larger for 80%A (179 ± 68 ml.min'1) than 

50%A (122 ± 64 ml.mn'1) running as expected. Further research is required to identify 

whether a further increase in the number and intensity of exercise transitions would

produce an increase in the amplitude but reduction in the noise of the V O2 response for 

both transients of exercise. This might then allow more reproducible phase III measures 

to be obtained. However, it is likely that the use of such an intensive protocol in this 

thesis would exclude elite soccer players from participating, as the time and physical
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effort required would impact on their daily training regime during the competitive 

season.

Despite the above findings, the repeated exercise transition protocol of four square- 

wave runs at 80%A will be used in subsequent studies as it does provide more 

reproducible measures than two transitions of 50%A running. Furthermore, the mean 

80%A speed of 16.3 ± 1.4 km.h'1 is greater than that of >15.0 km.h'1 used in recent 

match analysis studies (Mohr et al., 2003) to define the lower boundary o f high- 

intensity running. Therefore, using such a very heavy-intensity protocol will ensure that

the measurement of phase II V O2 kinetic parameters to the onset and cessation of 

running will occur at speeds that are classified as high-intensity in relation to soccer 

performance.

As the overall aim of this thesis is to assess the role of V O2 kinetics in soccer 

performance, ideally, this and the previous reproducibility studies should have been 

conducted using professional soccer players. However, the recreationally active

individuals who participated in the reproducibility studies have V O2 max and GET 

values within the range previously reported for professional soccer players (Reilly,

1996; Edwards et al., 2003). Therefore, the reproducibility o f V O2 kinetics will have 

been assessed at exercise intensities similar to those that would be performed by 

professional soccer players if  they were to undertake a 50%A or 80%A square-wave 

treadmill protocol. This indicates that the findings of the reproducibility studies are

applicable to future investigations examining the role of V O2 kinetics in soccer 

performance.
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6.5 Conclusion

The findings from this study show that the kinetic parameters measured during the on- 

and off-transients of a repeated very heavy-intensity treadmill running protocol do not

become distorted after the first transition. Furthermore, V  O2 kinetic parameters were

reproducible for the phase II V O2 response. Although the modifications to the square- 

wave treadmill protocol improved the signal to noise ratio for phase III, they did not 

lead to a proportional improvement in phase III parameter reproducibility. It is yet to be 

determined whether the test-retest variability for the phase III parameters will mask any 

manipulation of the slow component response through training.
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CHAPTER 7

Pulm onary V 0 2 kinetics and perform ance in am ateur and professional soccer
players

7.1 Introduction

Soccer is an intermittent sport, where a player is required to perform prolonged periods 

of low-intensity running sporadically interspersed by sprints and high-intensity runs 

(Mohr et al., 2003). As low-intensity running (<12 km.h'1) is not physically taxing for 

elite soccer players (Balsom, 2001), it has been proposed that it is the capability to 

repeatedly perform the high-intensity runs (>15 km.h'1) that is most important for soccer 

performance (Bangsbo, 1994). A soccer player's performance could therefore be 

enhanced through the identification and manipulation of the physiological mechanisms 

that determine the capability to repeatedly perform high-intensity exercise.

Aerobic metabolism has been shown to play a fundamental role during repeated high- 

intensity exercise (Spriet, 1995; Bogdanis et al., 1996), and its importance for soccer

performance is highlighted by the high GET (Edwards et al., 2003) and V  0 2 max 

values (Ekblom, 1986; Bangsbo, 1994) observed for elite soccer players. However,

recent investigations have reported that V O2 max is an insensitive predictor o f soccer- 

specific intermittent high-intensity running capacity. As the ability to utilise 0 2 

effectively to facilitate a change in exercise intensity, or to assist a rapid recovery 

between bouts o f activity is an aerobic necessity of prolonged intermittent exercise

performance, it is possible that the speed and amplitude of a players V 0 2 kinetics rather

than V 0 2 max that is more important for successful soccer performance. Rapid phase II 

kinetics at the onset of high-intensity running would reduce the demand placed on the 

anaerobic energy pathways, so reducing the oxygen deficit and lowering lactate
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accumulation (Hagberg et al., 1980; Demarle et al., 2001). Fast phase II recovery 

kinetics might indicate that the performer has replenished their phosphate stores, 

removed metabolic end products and is physiologically ready for another bout of 

exercise (Gaesser and Brooks, 1984). Furthermore, as the slow component appears to be 

associated with fatigue processes (Poole et al., 1994), it is possible that a reduced slow 

component during high-intensity running would increase exercise tolerance and hence 

performance.

Currently, no research appears to have been conducted to firmly establish the role of on-

and off-transient V 0 2 kinetics in high-intensity intermittent exercise performance. A 

small number of studies have demonstrated however, that elite performers in continuous

type sports possess enhanced V 0 2 kinetic profiles compared to non-elite performers. 

An early investigation by Cerretelli et al. (1979) showed that the half-time for the

increase in V 0 2 during arm cranking at the same intensity was significantly faster for 

trained than untrained kayakers. In more recent studies, Tion has been reported to be 

quicker for trained than untrained cyclists (Koppo et al., 2004) and for long compared 

to middle distance runners (Kilding et al., 2003). The amplitude of the slow component 

has also been found to be smaller for highly trained endurance cyclists than 

recreationally active individuals (Russell et al., 2002).

It has also been demonstrated that following short periods of endurance training, 

enhanced continuous high-intensity exercise capacity is matched with a speeding of 

phase II Ti at the onset of running (Demarle et al., 2001) and cycling (Norris and 

Peterson, 1998) in the absence of a significant change in V 0 2 max. With regards to 

phase III responses, Carter et al. (2000b) reported that following six weeks o f training, 

the slow component was similar or slightly reduced at a faster 50%A running speed than
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before the training with no change in V O2 max. The authors state this would suggest an 

enhanced exercise tolerance, which would be beneficial for performance.

The purpose of this study is therefore to identify whether V O2 kinetics o f exercise and 

recovery play a determining role in high-intensity intermittent running capacity. It will

be assessed whether V O2 kinetics can discriminate between elite (professional) and non

elite (amateur) soccer players, and whether any difference in the V O2 kinetic profile 

between the two groups is associated with an enhanced capacity for soccer-specific 

running.

7.1.1 Aims

1. To identify if the V O2 kinetic profile for an elite soccer player differs from that of a 

non-elite player.

2. To determine if V O2 kinetics are related to the capability to perform soccer-specific 

high-intensity running.
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7.2 Participants and methods

7.2.1 Participants

With institutional ethics approval, 18 professional (Pro) soccer players (mean ± SD): 

age 23.2 ± 2.4 years, stature 180.3 ± 6.6 cm, body mass 76.4 ±  7.5 kg, and 18 amateur 

(Am) soccer players (mean ± SD): age 21.1 ± 1.6 years, stature 179.3 ± 8.2 cm, body 

mass 75.8 ± 11.4 kg participated. All Pro players had been on a full time contract at an 

English first division professional club for at least 2 years. During the stage of the 

season that this study was conducted, a typical week for the Pro players consisted five 

training sessions and one competitive game. Each Am played in a local amateur league 

and did not play or train more than 3 times per week. Training diaries for the two 

groups can be seen in appendix 12.1, page 247. Prior to the administration o f any test, 

participants were screened for existing medical conditions that might become 

aggravated during the testing procedure (appendix 6, page 238). Pre-test instructions 

can be seen in chapter 3.2.1.4.

7.2.2 Experimental design

All participants performed 4 exercise tests, each separated by 4 days. The first two tests 

were the incremental exercise test to exhaustion and the repeated very heavy-intensity 

square-wave protocol. The remaining two tests were field based assessments of soccer- 

specific fitness, the YoYo Intermittent Recovery Test level 2 (YIRT2) and repeated 

sprint test (RST). Both laboratory and field tests were performed at approximately the 

same time of day to reduce the effects of diurnal variation. Each time players visited the 

laboratory stature and body mass were measured and heart rate was recorded at 5 s 

intervals during each assessment. Temperature in the laboratory was kept within 20°C ± 

1°C.
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7.2.3 Experimental protocols

All laboratory based exercise tests were performed on a motorised treadmill (Saturn, HP 

Cosmos, Nussdorf - Traunstein, Germany). Pulmonary gas exchange (MGA 1100 mass 

spectrometer, Marquette Electronics Inc, Milwaukee, WI, USA) was measured on a 

breath-by-breath basis during an incremental exercise test to volitional exhaustion for

the identification of V O2 values and running speeds that corresponded to V O2 max, 

GET and 80%A (see chapter 3.2.4). These running speeds were then used to design a 

repeated very heavy-intensity square-wave transition protocol that consisted of 4, 6 min 

runs at 80%A. Each run was separated by a 12 min walk and a further 30 min of passive 

recovery (see chapter 3.2.5.2). Pulmonary gas exchange was measured through out the 

test (MGA 1100 mass spectrometer, Marquette Electronics Inc, Milwaukee, WI, USA) 

for the determination of V O2 kinetics.

The field based tests o f soccer-specific fitness were performed outdoors on a dry 

artificial grass surface. The YIRT2 is an incremental and maximal test that provides a 

measure o f high-intensity intermittent running capacity. The test involves running back 

and forth along a 25 m track in an intermittent fashion. The running speed was dictated 

by audible signals generated from a cassette tape. Once participants were unable to 

maintain the dictated running speed they were withdrawn from the test (see chapter 

3.2.7). The test result is the total distance covered. The RST assesses a player's 

capability to maintain performance over 7 maximal sprints along a 30m course 

involving a 5 m deviation to the left. Each sprint is separated by 25 s, during which the 

participant must jog back to the start point (see chapter 3.2.8). The test provides 

measures o f best sprint time, mean sprint time for the 7 sprints and fatigue index.
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7.2.4 Data Analysis

Breath-by-breath pulmonary gas exchange data collected during the incremental 

exercise tests and repeated square-wave transition protocol were analysed following the 

procedures outlined in chapter 3.2.4.1 and 3.2.5.3 respectively. The equation used to 

calculate oxygen deficit (DO2) (Demarle et al., 2001) is presented in chapter 3.2.5.7.

7.2.5 Statistical analyses

To assess if any differences existed between the V O2 kinetic parameters for Pro and 

Am players, a mixed design two way analysis o f variance was used. Independent

sample t-tests were performed to check for differences in V O2 max, GET and field test 

performance between the Pro and Am players. Pearson's Correlation coefficient was 

conducted to identify if  any relationships existed between the physiological variables 

measured for Pro and Am players. Statistical significance was set at P  <0.05.
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7.3 Results

7.3.1 Incremental exercise test performance

The physiological and performance measures recorded during the incremental exercise 

test to exhaustion for Pro and Am soccer players are listed in Table 7.1. Independent 

sample t-tests (see appendix 12.2, page 248) revealed no difference (P>0.05) between 

the physiological and performance measures of Pro and Am players.

Table 7.1 Mean (± SD) physiological and performance measures for Pro (n = 18) and 

Am (w = 18) players recorded during the incremental exercise test to exhaustion.

M easure Pro Am

V O2 max (ml.kg^.min.'1) 56.5 ±2 .9 55.7 ±3 .5

V O2 max (ml.min'1) 4316 ±221 4272 ± 265

Maximal speed (km.h'1) 18.5 ±0 .7 18.6 ±1.1

Time to exhaustion (min) 11.4 ± 1.2 11.6 ± 0 .9

Maximal HR (b.min'1) 191 ± 8 193 ± 5

GET (ml.kg^.min'1) 40.6 ±2 .6 38.4 ± 3 .2

GET (ml.min'1) 3096 ±188 2925 ± 250

GET as % o f V O2 max 72 ± 6 69 ± 6

7.3.2 Physiological and V O2 kinetic measures

The V  O2 kinetic responses of Pro and Am players to very heavy-intensity treadmill 

running were very similar and are presented in Table 7.2. The mixed design two-way 

ANOVA showed no difference between the two groups at exercise onset or cessation 

for xi (P=0.923). The %2 was however shorter for the Pro players (P=0.034), although 

independent sample t-tests showed this was not accompanied by a difference in the 

phase III DO2 (P=0.086) or total DO2 (P=0.154) between the two groups. The mean
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value for Ti was found to be smaller for exercise onset than cessation for Pro and Am 

(P=0.026), this was also the case for x2 (P=0.001).

Table 7.2 The V O2 kinetic parameters for Pro (n = 18) and Am (n = 18) soccer players 

(mean ± SD) measured during the on-transients of very heavy-intensity treadmill 

running.

M easure Professional A m ateur

Speed (km.h'1) 16.5 ±1 .2 16.2 ±1.1

V O2 (ml.min'1) 3884 ±377 3864 ±386

HR (b.min'1) 179 ± 8 174 ±11

Td i (s) 7.7 ±3.1 8.3 ±2 .8

Td2 (s) 126.3 ±13.4 124.7 ± 106.5

ti (s) 24.5 ± 3.2 24.7 ± 1.8

x2 (s) 98.2 ±36.6 142.4 ±48.6*

A i (ml.min'1) 2606 ± 263 2641 ±159

A 2 (ml.min'1) 279 ±124 301 ±135

DO2 for Phase II (ml) 1406 ± 42 1438 ± 9 6

DO2 for Phase III (ml) 1173 ±71 1245 ± 52

DO2 total (ml) 2579 ± 85 2683 ± 96

* Difference between Pro and Am players, P<0.05.
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Table 7.3 The V  O2 kinetic parameters for Pro (n = 18) and Am (n=  18) soccer players 

(mean ± SD) measured during the off-transients of very heavy-intensity treadmill 

running.

M easure Professional A m ateur

Speed (km.h'1) 4.0 ± 0.0 4.0 ± 0.0

Tdi (s) 9.1 ±2 .7 8.3 ±3.5

T ,  ( S ) 28.7 ±2.8 29.3 ±3.5

T 2 ( S ) 261.7 ±50.2 277.3 ±41.8

A i (ml.min ) 2606 ± 322 2610 ±248

A2 (ml.min ) 279 ±111 291 ±93

The mixed design two-way ANOVA revealed no difference between Pro and Am for A\ 

(P=0.122) at either transient o f exercise. The mean value for A ion did not differ from 

^loff (P=0.092). The A 2 for Am and Pro players did not differ (P=0.183) across 

transients. The mean A 2 value of both groups was however found to be larger during the

on- than off-transient (P=0.022). The V O2 response of represenative Pro (9) and Am 

(4) players to the onset and cessation of very heavy-intensity treadmill running is shown 

below in Figure 7.1 (A and B).
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Figure 7.1 A and B. The V O2 responses from representative Pro (9) and Am (4) soccer 

players during the on- (A) and off-transients (B) of very heavy-intensity treadmill 

running.
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7.3.3 Soccer-specific fitness

The performance of the Pro and Am in the field tests o f soccer-specific fitness are 

presented in Table 7.4. The independent sample t-test revealed the Pro group to run 

further in the YIRT2 than the Am group (P=0.034). The Pro group also out performed 

the Am group in the RST, performing the course more quickly for one sprint (best time, 

P=0.012), maintaining a faster speed over the seven sprints (mean time for the seven 

sprints, P=0.014) and hence experiencing less fatigue during the test (Fatigue Index, 

fastest time - slowest time, P=0.024).

Table 7.4 Performance o f Pro («=18) and Am (n= 18) soccer players in the in the YIRT2 

and RST (mean ± SD).

M easure Professional A m ateur

YIRT2 Distance (m) 966 ±153 840± 156*

RST Best Time (s) 6.46 ±0.27 6.84 ±0.24*

RST Mean Time (s) 6.69 ±0.36 7.02 ± 0.25*

RST Fatigue Index (s) 0.36 ±0.15 0.51 ±0.20*

* Difference between Pro and Am players, P<0.05.

7.3.4 Relationships between physiological and perform ance measures

7.3.4.1 Professionals

The relationships between measures of V O2 kinetics, aerobic fitness and soccer-

specific fitness are illustrated in Figure 7.2 (A to D). The V O2 max of Pro players was

inversely related with Tion (r = -0-65; P=0.012) and Ti„fr (r = -0.51; P=0.035), but

positively correlated with the distance run during the YIRT2 (r = 0.71; P=0.011).

Similar but less strong associations were found between GET and Tion (r = -0.58;

P=0.048), xioir (r = -0.49; P=0.052) and YIRT2 distance (r = 0.68; P=0.016). Distance

in the YIRT2 was also inversely correlated with Tion (r = -0.71; P  = 0.013) and Ti0ff (r =
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-0.63; P=0.021). A significant correlation was found between Tion and Ti0ff (r =0.58; 

P=0.024) and ^4ion and A \0̂  (r = 0.55; P=0.034). A full correlation matrix can be seen in 

appendix 12.2, page 249 and 250.
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Figure 7.2 A to D. Significant correlations for Pro players (n = 18) between V O2 max
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7.3.4.2 Amateurs

The correlations between measures of V O2 kinetics, aerobic fitness and soccer-specific

fitness are illustrated in Figure 7.3 (A to D). The V O2 max of Am players was inversely 

related to Tion (r = -0.66; P=0.012) but unlike Pro players it was not significantly

correlated with xi0fr (r = -0.34; P=0.14). The V O2 max of Am players is strongly 

correlated with YIRT2 performance (r = 0.78; P=0.001). As for Pro players, GET was 

also associated with Tion (r = -0.63; P=0.045) and YIRT2 performance (r = 0.58; 

P=0.037). The Tion was correlated with YIRT2 (r = -0.69; P=0.001) but x0ff was not (r = 

-0.34; P=0.091). A significant correlation was also observed between Tion and x0ff (r =

0.53; P=0.045) andy4ion a n d ^ i0fr (r = 0.52; P=0.041).
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7.4 Discussion

7.4.1 Soccer-specific fitness of Pro and Am soccer players

Pro players out-performed Am players in both the YIRT2 and RST, indicating they 

have a greater capability to perform soccer-specific high-intensity intermittent exercise. 

The mean distances of 966 ± 153 m and 840 ± 156 m achieved by the Pro and Am 

players in the YIRT2 are both within the range of 600 to 1320 m previously observed 

for elite players (Bangsbo, 1996). In the RST, Pro players were faster over a single 

sprint (best time: Pro 6.46 ± 0.27 s; Am 6.84 ± 0.24 s), maintained a faster speed over 

the seven sprints (mean time: Pro 6.69 ± 0.36 s; Am 6.84 ± 0.24 s) and hence 

experienced less fatigue (fatigue index: Pro .0.36 ±0 .15  s; Am 0.51 ± 0.2 s). However, 

performance of both groups was comparable or superior to that previously reported by 

Bangsbo (1994) for elite Danish players (Best time 6.80 s; Mean time 7.10 s; Fatigue 

index 0.64 s). Although the soccer-specific fitness of the Am in this study is lower than 

that of the Pro players, it compares well to that previously reported for elite players, 

indicating the group of Am players used in this study were relatively well trained.

7.4.2 Soccer perform ance and V 0 2 kinetics

7.4.2.1 Phase II kinetics

There was an inverse relationship between YIRT2 performance and z\ at both exercise 

onset and cessation for Pro players, while the relationship was only found to be 

significant at exercise onset for Am players. In contrast, no associations were detected

between RST performance measures and any phase II V 0 2 kinetic parameters for either

group. Such findings suggest that quick V 0 2 kinetics are important for the performance

of prolonged high-intensity running. However, V 0 2 kinetics do not account for the 

greater intermittent high-intensity running capacity of the Pro players as the Ti did not 

differ between player groups (Pro, on-transient, 24.5 ± 3.2 s; off-transient, 28.7 ± 2.8 s:
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Am, on-transient, 24.7 ± 1.8 s; off-transient, 29.3 ± 3 .5  s). Comparison with previous 

research also reveals equivalent or quicker phase II x values at the onset (21.5 ± 8.5 s 

Barstow et al., 1996; 21.2 ± 8.2 s Koga et al., 1999; 19.1 ± 1.4 s Carter et al., 2000a) 

and cessation (36.8 ± 1.9 s, Paterson and Whipp, 1991; 33 ± 6.4 s, Koga et al., 1999; 

39.9 ± 3 s, Carter et al., 2000a) of exercise for recreationally active and endurance 

trained individuals. This indicates that the higher frequency o f intermittent training

undertaken by Pro players does not speed V O2 responses to the on- and off-transients 

of very heavy-intensity running compared to Am players. Consequently, a rapid onset 

o f oxidative metabolism to reduce the oxygen deficit, combined with the quick 

replenishment of PCr during recovery, do not appear to be the determinants of superior 

performance in the YIRT2 and RST in this study.

An explanation why phase II V O2 kinetics are associated with YIRT2 performance but 

do not discriminate between players with differing soccer-specific fitness can be

estimated from further analysis of the correlation data. A player's V  O2 max and GET 

were positively associated with YIRT2 performance, which indicates the importance of

aerobic metabolism for the soccer-specific high-intensity exercise. In addition, V O2 

max and GET were inversely related with Tion and xi0fr, which suggests x provide similar

information about a player's aerobic conditioning as V O2 max and GET. Therefore, it 

seems that the association between xi and YIRT2 performance is a consequence of the 

importance of aerobic energy production for the performance of soccer-specific

exercise. Based on these observations, if  it is the case that V O2 max is not a 

determining factor for soccer performance among elite players as has been proposed by 

Krustrup et al. (2003), then it is conceivable that neither will phase II x. This would 

explain why the Pro soccer players in the current investigation ran substantially further
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than Am players in the YIRT2, even though they were matched for V  O2 max and phase 

II V O2 kinetic responses.

7.4.2.2 Phase III kinetics

The only observed difference in aerobic measures between the Pro and Am players was 

the time constant of the slow component response feon), which was longer in Am 

(P=0.034) despite the similarity in A 2 between the two groups. However, any 

physiological significance of the quicker T2 0n of the Pro is not supported by differences 

(P=0.086) in the phase III DO2 o f the two groups (Pro 1173 ± 71 ml; Am 1245 ± 62 

ml), which was only 6% larger for the Am players. This suggests that disparity in 

soccer-specific fitness between Pro and Am players cannot be attributed to differences 

in the speed of the slow component response. Furthermore, previous observations have 

demonstrated that it is the amplitude of the slow component that is critical for 

performance (Carter et al., 2000a), with a decreased amplitude following training being 

associated with enhanced tolerance o f high-intensity exercise.

The most plausible rationale for the difference observed for T2 0n between Pro and Am 

players relates to the large inter-participant measurement variability rather than 

physiological parameters. Large test-retest variability for phase III parameters measured 

during the on- and off-transients of heavy- and very heavy-intensity running is 

demonstrated in chapters 5.3.3 and 6.3.2 of this thesis, while large measurement

variability has previously been associated with phase III V O2 kinetics during cycling 

(Ozyener et al. 2001). Therefore, it cannot be concluded that the difference in r2 

between the two groups is the result o f a difference in training status and hence 

performance potential.
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7.4.2.3 Why V O2 kinetics do not determine performance in the YIRT2 and RST

Analysis reveals that the maximal running speeds attained by players in the YIRT2 and 

RST ranged from 17 to 26 km.h'1, which are similar or greater than those recorded at

V O2 max in the treadmill based incremental exercise test. It is also well documented 

that the lower efficiency of intermittent compared to continuous running results in an 

increased metabolic load (Christensen et al., 1960). As a consequence of these two 

factors, it is possible that the intensity of the runs during substantial periods of the 

YIRT2 and RST will have been above V O2 max, which suggests therefore that a 

player’s capability to perform such an intensity and pattern of exercise is heavily 

influenced by their potential for anaerobic energy provision. Hence, the capacity for 

soccer-specific high-intensity running might not benefit from a reduced DO2 at the

onset of exercise due to quick V O2 kinetics, as the nature o f the exercise demands a 

considerable anaerobic contribution.

The design of the soccer-specific performance tests used in this study make it difficult

to establish why off-transient V O2 kinetics do not appear to be a determining factor in

soccer performance. Previous research suggests that the short periods separating runs in

the YIRT2 (10 s) and RST (25 s) will have limited the extent to which recovery

processes such as resynthesis of PCr stores (Balsom, 1992) and reversal o f muscle pH

(Bogdanis et al., 1996) occurred, potentially inhibiting any advantage to be gained from

possessing quick recovery kinetics. In contrast, the longer recoveries observed to

separate high-intensity runs during competitive games (~90s, Withers et al., 1982)

might provide further information about the role off-transient kinetics play in soccer

performance, as it would allow any physiological benefits associated with having

quicker off-kinetics to become more evident. However, the practical implications of

performing match analysis studies to directly assess a player's high-intensity running
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capabilities preclude their inclusion from this thesis. With the exception of match 

analysis data, the YIRT2 and RST are two of the strongest and most practical indirect 

measures o f a soccer player's high-intensity running capability.

The superior performance of the Pro players could be attributable to a larger anaerobic
f

capacity than the Am players, as this would have enabled them to run for longer in the 

YIRT2 and RST at supra- V O2 max intensities. Previous research has demonstrated 

continuous high-intensity shuttle running capability to be associated with anaerobic 

capacity (Ramsbottom et al., 2001), although this has not been established for soccer 

performance. Therefore, further research is warranted to determine whether anaerobic 

capacity is a key determinant of soccer-specific fitness.

7.4.3 Limitations of correlation analysis

Relationships between V O2 kinetics, V O2 max and soccer-specific fitness were 

identified in this study using the Pearson product-moment correlation coefficient (r). 

However, when interpreting such statistical analyses it is important to realise that a 

significant relationship between two measures does not prove causation; it only shows 

that a non chance relationship exists. Furthermore, the strength of a relationship 

between two variables can be misrepresented. The magnitude of r is influenced by the 

ranges of the two variables under consideration (Vincent, 1995). Large ranges 

(heterogeneity) in one or both measures can produce high r values, where as small 

ranges (homogeneity) can depress r. In addition, the value and significance o f r can be 

influenced by the size of the sample (Vincent, 1995). The number of pairs o f scores (n) 

influences the degrees of freedom (dj), which represents the number of values that are 

free to vary when the sum of variables is set. When n is small, it is possible that 

artificially high r values can be obtained by chance. In addition, when n is small, r must 

be high to reach significance and vice versa. The correlation coefficient r can also be
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influenced by spurious data that is not representative of the sample. Such data can 

produce less meaningful high and low r values.

7.5 Conclusion

The Pro players were capable of performing more soccer-specific high-intensity running

than Am players, despite the V O2 kinetic profiles and aerobic fitness of the two groups 

being indistinguishable. The findings suggest that although aerobic metabolism is 

important for intermittent high-intensity running capacity, other physiological 

mechanisms must account for the difference in soccer-specific fitness between Pro and 

Am players. This finding should be treated cautiously however, as it is based on a cross 

section of Pro and Am players, whose training status was only defined by recording the 

frequency of training sessions they performed in a typical week (appendix 12.1). From 

such data, it is not possible to precisely discern why both groups of players were

matched for V O2 max and V O2 kinetics but not soccer-specific fitness, as 

cardiovascular and peripheral adaptations are influenced by the volume (Hickson, 

1981), duration (Fox et al., 1975) and intensity (Harms and Hickson, 1983) of training. 

Therefore, a longitudinal training study is warranted where every aspect of a player's 

training load can be closely manipulated. It will then be possible to establish whether an

enhanced high-intensity running capacity is associated with the speeding of V O2 

kinetics or other physiological processes such as anaerobic capacity.

168



CHAPTER 8

A training intervention to identify the physiological determinants of high-intensity
soccer-specific running capacity

8.1 Introduction

The physiological determinants of performance during multiple-sprint sports such as 

soccer remain to be elucidated due to the diverse physical demands of competitive 

match-play. Elite soccer performance is, in part, dependent on a high level of 

cardiopulmonary fitness due to the large overall distance a player is required to run. 

This was demonstrated by Helgerud et al. (2001), who reported that an increase in the

V O2 max of elite adolescent soccer players was associated with a 100% increase in the 

number of sprints they performed during a competitive game. However, more recent

research has demonstrated that V O2 max is not correlated to high-intensity exercise 

during a game (Krustrup et al. 2003) and has not consistently been shown to reflect 

short-term changes in the training condition of elite soccer performers (Edwards et al.

2003a). Several researchers have proposed that a V O2 max of ~60 ml-kg-min'1 is a 

minimal requirement for elite professional male soccer performance (Bangsbo, 1994; 

Reilly et al. 2000), but beyond the identification of this ‘threshold’ it is unclear whether 

cardiopulmonary fitness is of direct value.

Alternative indicators o f a player's aerobic status such as V O2 kinetics have received 

little attention. The previous study of this thesis found phase II kinetics to both the onset 

and cessation of very heavy-intensity running to not discriminate between soccer 

players who possessed differing capacities for high-intensity soccer-specific running.

However, firm conclusions about the role of V O2 kinetics in soccer performance cannot 

be drawn from these findings as they were based on a cross-sectional comparison of
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elite and non-elite players, which did not permit the relationship between changes in 

V O2 kinetics and high-intensity running capacity to be assessed.

As a considerable proportion of the runs classed as high-intensity during a game are 

above those that correspond to GET and V O2 max, it is conceivable that it is a player's 

ability to exercise anaerobically that might be the decisive factor for soccer 

performance. Although a high level of anaerobic fitness has been alluded to by previous 

studies (Krustrup and Bangsbo, 2001; Krustrup et al., 2003) as being fundamental for 

the performance of soccer-specific high-intensity running, none have stated how it 

would benefit performance. A large anaerobic capacity indicates that an individual has 

an enhanced ability to derive large amounts of energy from the ATP-PC and glycolytic 

systems. This would potentially enable prolonged performance o f supra- V O2 max 

running speeds.

Evidence for this hypothesis is provided by Ramsbottom et al. (2001), who noted that 

following a period of high-intensity training, improved time to exhaustion in a

continuous shuttle run at 120% of V O2 max was matched by an increase in MAOD but

not V O2 max. Similarly, Roberts et al. (1982) observed that increased run time to

exhaustion during a supra- V O2 max run (16 km.h'1 at 15% incline) following 5 weeks 

of high-intensity training was associated with an increase in ATP derived from 

anaerobic glycolysis rather than aerobic metabolism. Further support is provided by the

findings that 400 m runners who are required to run at supra- V O2 max speeds for a ~ 

45 s have a considerably larger anaerobic capacity as indicated by the MART than 

middle and long distance runners (Nummela et al., 1996; Vuorimaa et al., 1996). In 

contrast, Bangsbo and Michalsik (1993) reported similar MAOD values for a range of 

elite athletes whose sports required distinctly different anaerobic contributions. The
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same authors also reported a large variation in MAOD among a group of elite soccer 

players, leading them to conclude that performance in soccer is actually determined by 

the rate of aerobic energy turnover or alternatively, anaerobic energy production might 

not be limiting to performance.

To address the equivocal findings of the above investigations, a longitudinal training 

study is required that will establish which physiological processes have the strongest 

association with an improvement in soccer-specific high-intensity running capacity. 

Although no clear consensus exists as to which model o f training is the most effective 

for improving soccer-specific high-intensity running capacity, it has been reported that 

if  a player performs two or more high-intensity training sessions per week in addition to 

their normal training regime, significant improvements can be made to their soccer- 

specific fitness (Bangsbo, 1994). A recent study by Krustrup et al. (2005) demonstrated 

25% and 10% improvements in YIRT2 performance following eight weeks o f repeated 

30 s and 10 s sprint training programmes respectively. It has been suggested that the 

greatest performance gains are achieved if the training undertaken is sport-specific 

(Bangsbo, 1994). Hence, an intermittent exercise model should be used that 

incorporates a range of soccer-specific running speeds.

8.1.1 Aims:

1. To identify if performance in the YIRT2 can be increased after 6 weeks of soccer- 

specific high-intensity training.

2. To identify if  it is a change in aerobic (V  O2 max, GET, on- and off-transient V O2 

kinetics) or anaerobic (anaerobic capacity) physiological measure that is associated 

with an increase in YIRT2 performance following the training intervention.
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8.2 Participants and methods

8.2.1 Participants

With institutional ethics approval 16 male professional soccer players (mean ± SD): age 

21.3 ± 2 .1  years, stature 177.4 ± 4.2 cm, body mass 73.1 ± 8 .1  kg took part. All the 

players had been at a professional club for at least two years. Players were randomly 

allocated to either the training (Tr, n = 8) or control (Cn, n = 8) group. Prior to the 

administration of any test, participants were screened for existing medical conditions 

that might become aggravated during the testing procedure (appendix 6, page 238). Pre

test instructions can be seen in chapter 3.2.1.4.

8.2.2 Experimental design

All participants performed four physiological assessments, each separated by four days. 

The first three assessments were the laboratory based incremental exercise test to 

exhaustion, repeated very heavy-intensity square-wave protocol and the MART for an 

indication of anaerobic capacity. The remaining test was the YIRT2. Following 

completion of the four assessments the Tr group undertook a 6 week high-intensity 

running programme (see Table 8.1) in addition to the club's normal training regime 

performed by the Cn group (see appendix 13.1, page 251). After the sixth week the 

assessments were repeated for both groups to identify if  the intervention had influenced 

any of the physiological and performance measures. On each visit to the laboratory the 

participants’ stature and body mass were measured and heart rate was recorded at 5 s 

intervals during each assessment. All assessments were performed at the same time of 

day to reduce the effects of diumal variation and the temperature o f the laboratory was 

kept within 20°C ± 1°C.
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8.2.3 Experimental protocols

All laboratory based exercise tests were performed on a motorised treadmill (Saturn, HP 

Cosmos, Nussdorf - Traunstein, Germany). Pulmonary gas exchange was measured on a 

breath-by-breath basis (CPX/D, Medgraphics Corporation, St Paul, MN, USA) during

an incremental exercise test to exhaustion for the identification of V O2 values and

running speeds that corresponded to V O2 max, GET and 80%A (see chapter 3.2.4). 

These running speeds were then used to design a repeated very heavy-intensity square- 

wave transition protocol that consisted of 4, 6 min runs at 80%A. Each run was 

separated by a 12 min walk and a further 30 min of passive recovery (see chapter 

3.2.5.2). Pulmonary gas exchange was measured throughout the test (CPX/D,

Medgraphics Corporation, St Paul, MN, USA) to determine V O2 kinetics during the 

onset and cessation of very heavy-intensity treadmill running.

The final laboratory test was the MART. Briefly, the test involved 20 s running bouts 

separated by 100 s of passive recovery. The starting speed was 14.3 km.h'1 and 

increased by 1.2 km.h'1 for each subsequent 20 s run. The gradient of the treadmill belt 

was kept at 10.5%. The participant completed as many 20 s runs as possible until 

exhaustion (see chapter 3.2.6). Using the equation listed in chapter 3.2.6, performance 

in the MART provided a measure termed anaerobic power, which due to its strong 

association (r = 0.81) with MAOD (Maxwell and Nimmo, 1996) is used as an indicator 

of anaerobic capacity.

The YIRT2 was performed outdoors on a dry artificial grass surface. The YIRT2 is an 

incremental and maximal test that provides a measure o f high-intensity intermittent 

running capacity. The test involved running back and forth along a 25 m track in an 

intermittent fashion. The running speed was dictated by audible signals generated from
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a cassette tape. Once participants were unable to maintain the dictated running speed 

they were withdrawn from the test (see chapter 3.2.7). The test result is the total 

distance covered.

8.2.4 High-intensity training programme

The training programme ran for 6 weeks and consisted of three running sessions per 

week, all were performed outside on a soccer pitch with a natural grass surface. The 

running involved performing pre-determined courses (see appendix 13.2, page 252) of 

different lengths that incorporated changes in direction to make them more applicable to 

soccer. The volume of the training was gradually increased over the 6 weeks and its 

structure is listed below in Table 8.1. Sets of repetitions were split into sub sets, with 2 

min of active recovery separating each sub set. Based on match analysis data (Van Gool 

et al., 1988; Mohr et al., 2003) each running course was performed at speeds that 

spanned the high-intensity spectrum (>18 km.h'1 to maximum sprint speed) o f soccer 

performance as follows: session 1) ~ 19 km.h'1 , session 2) ~ 24 km.h'1 and session 3) 

maximal sprint (~ 30 km.h'1). The duration of the runs were set at 60 s, 35 s and 10 s for 

sessions 1, 2 and 3 respectively to ensure that the players were capable of maintaining 

the desired speed for each run of each session. Players were instructed to complete each 

running course within a predetermined time to ensure they were running at the correct 

speed. The exercise to recovery ratio was 1:3, as this has previously been used in a 

training study that reported an increase in high-intensity shuttle running capacity 

(Ramsbottom et al., 2001). The recovery periods consisted of low-intensity jogs back 

and forth along a 10-metre track. Heart rate was recorded for each session as it was 

intended that the participants would be exercising at >95% of HRmax. Before and after 

each running session participants performed an appropriate 10 min warm-up and cool 

down.
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Table 8.1 The 6-week high-intensity intermittent training schedule followed by the 

training group.

W eek Session sets and repetitions

1 2 3

1 4 x 60 s 6 x 35 s 10 x 10 s
(2 + 2) (3 + 3) (5 + 5)

2 4 x 60 s 6 x 35 s 10 x 10 s
(2 + 2) (3 + 3) (5 + 5)

3 6 x 60 s 8 x 35 s 12 x 10 s
(3 + 3) (4 + 4) (6 + 6)

4 6 x 60 s 8 x 35 s 12x 10s
(3 + 3) (4 + 4) (6 + 6)

5 8 x 60 s 10 x 35 s 14 x 10 s
(4 + 4) (5 + 5) (7 + 7)

6 8 x 60 s 10 x 35 s 14 x 10 s
(4 + 4) (5 + 5) (7 + 7)

8.2.5 D ata Analysis

Breath-by-breath pulmonary gas exchange data collected during the incremental 

exercise tests and repeated square-wave transition protocol were analysed following the 

procedures outlined in chapter 3.2.4.1 and 3.2.5.3 respectively.

8.2.6 Statistical Analyses

To determine if any differences existed for measures between and within the Tr and Cn 

groups, pre and post the training programme, a mixed design two-way analysis of 

variance analysis was performed. Pearson's correlation was conducted to assess the 

strength o f association between measures pre and post the training intervention. 

Significance was set at P O .05 .
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8.3 Results

8.3.1 Incremental exercise test performance

A two-way ANOVA mixed design found measures of aerobic fitness and exercise 

performance (Table 8.2 ) recorded during the incremental exercise test to exhaustion not 

to differ (P>0.05) between or within the Tr and Cn groups before or after the training 

intervention (see appendix 13.3, page 254).

Table 8.2 Values (mean ± SD) for aerobic and performance recorded from the 

incremental exercise test before and after the training intervention for the Tr (n = 8) and 

Cn (n = 8) groups.

Cn T r

M easure Before After Before After

V O2 max (ml.kg^.min'1) 57.1 ±3 .6 57.6 ±3.1 57.6 ± 5 .4 58.9 ±4 .7

GET (ml.kg'1.min'1) 41.8 ± 1.7 40.3 ±1 .7 42.5 ± 3 .6 42.8 ± 4.4

GET % of V  O2 max 71 ±4.3 72 ± 3 .4 70 ± 4.2 69 ± 3 .2

HR max (b.min ) 192 ± 8 193 ± 7 191 ± 6 193 ± 6

Max speed (km.h'1) 19.0 ±0.9 18.6 ±0 .6 19.2 ± 1.2 19.1 ± 0 .9

Time to exhaustion (s) 708 ± 54 702 ± 30 705 ± 73 709 ± 74

8.3.2 M easures of V O2 kinetics

The mean V O2 kinetic parameters for the Tr and Cn groups before and after the training 

intervention are listed below in Table 8.3. The mixed design two-way ANOVA revealed 

no difference for xi between (xion, P=0.475; Ti0ff, P=0.832) or within (xion, P=0.568; 

iioff, P=0.736) Tr and Cn before or after the training intervention for either transient of 

exercise. Before the intervention the Cn had a quicker X20n (P=0.039) than that of the Tr 

(Cn X2on, 96.4 ± 38.7 s vs. Tr X20n, 133.8 ± 77.5 s). After the intervention however, X20n
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for the Cn increased (P=0.012) to a value similar to that of the Tr group (Cn 12, 139.5 ± 

55.7 s vs. Tr 12, 131.3 vs. 107.1 s). As a consequence, the phase III DO2 was found to 

differ before and after the intervention within the Cn group (P=0.041) and between the 

Cn and Tr groups (P=0.038). This is further supported by a significant interaction 

between player group and time of measurement for phase III DO2 (P=0.036). However, 

this difference in phase III DO2 was not large enough to cause a difference in the total 

DO2 (phase II DO2 + phase III DO2) for the onset of exercise, with no difference 

observed within (P=0.176) or between (P=0.218) groups before or after the intervention 

for total DO2. There was also no interaction between time of measurement and player 

group for total DO2 (P=0.071). This is attributable to the similar phase II DO2 values 

between (P=0.195) and within (P=0.276) groups before and after the intervention. 

There was no interaction between player group and time of measurement for Phase II 

DO2 (P=0.572). No difference was found for X20fr before or after the intervention within 

(P=0.319) or between (P=0.461) groups. There was also no interaction between time of 

measurement and player group (P=0.368).
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Table 8.3 The physiological and V O2 kinetic parameters (mean ± SD) measured during 

the on-transient o f very heavy-intensity treadmill running for the Cn (n = 8) and Tr (n = 

8) groups before and after the training intervention.

C n T r

M easure Before After Before After

HR (b.min'1) 174 ± 7 176 ± 5 178 ± 9 176 ± 4

T di (s) 7.8 ±3.5 8.6 ±2 .2 8.9 ±3 .8 8.2 ±3.1

TD2 (s) 125.4 ± 11.7 128.3 ±9 .4 124.2 ± 13.2 126.6 ± 12.8

Ti (S) 25.7 ±1 .9 24.3 ± 2.9 24.6 ± 4 .2 24.1 ±2.3

t 2 (s) 96.4 ±38.7* 139.5 ±55.7 133.8 ±77.5 131.3 ± 107.1

A 1 (ml.min'1) 2859 ±114 2774 ±142 2802 ± 226 2673 ±185

A 2 (ml.min"1) 363 ± 23 379 ± 54 323 ±71 355± 155

DO2 for Phase II (ml) 1478 ± 3 9 1437 ± 4 7 1458 ± 5 2 1423 ± 3 6

DO2 for Phase III (ml) 916 ± 55*# 1045 ±61 1009 ± 78 1028 ± 5 7

DO2 total (ml) 2394 ± 62 2482 ± 47 2467 ± 8 9 2451 ± 75

* Difference before and after the intervention for corresponding values within the same 

group PO .05. # Difference before the intervention for corresponding values between 

the different groups P<0.05.
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Table 8.4 The V 0 2 kinetic parameters (mean ± SD) measured during the off-transient 

of very heavy-intensity treadmill running for the Cn (n = 8) and Tr (n = 8) groups before 

and after the training intervention.

Cn T r

M easure Before After Before After

Tdi (s) 8.9 ±3 .2 9.4 ± 3 .4 8.4 ±4.1 8.7 ±3 .7

t |( s ) 29.1 ±1 .6 28.3 ± 1.8 30.3 ± 1 .2 29.8 ±1.1

12 (S) 314.6 ±56.2 295.3 ±42.5 300.4 ±65.6 275.4 ±43.6

A\ (ml.min'1) 2604 ±122 2634 ±171 2797 ± 100 2892 ±105

A i (ml.min'1) 131 ± 32 124 ±41 118 ± 48 129 ± 39

A two-way mixed design ANOVA indicated that A\ did not differ between (A ion, P=

0.746; Aioff, P=0.474) or within (Aion, P=0.274; A i0ff, P= 0.216) groups before or after 

the training intervention for either exercise transient. These findings were replicated for 

A2on and ^ 2ofr between (A2on, P=0.328; ^ 2off, P=0.104) and within (A2on, P=0.735; y420ff, 

P=0.093) groups. There was no interaction for ^ 2off between time of measurement and 

player group (P=0.142).
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Figure 8.1 The V O2 response to the on- (A) and off-transients (B) of very heavy- 

intensity treadmill running for a representative participant (2) from the Tr group before 

(•) and after (o) the training intervention.
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8.3.3 MART performance

Measures obtained from the MART are listed in Table 8.5. The two-way ANOVA 

mixed design revealed the anaerobic power (P=0.021), time to exhaustion (P=0.019) 

and maximal running speed (P=0.023) to only increase for the Tr group following the 

training intervention, and as a result were greater for the Tr than the Cn group 

(anaerobic power, P=0.024; time to exhaustion, P=0.012; maximal running speed, 

P=0.037/). Blood lactate did not differ between (P=1.217) or within groups (P=1.246) 

before and after the training intervention.

8.3.4 YIRT2 performance

A two-way mixed ANOVA showed that following the training intervention, distance 

run increased for the Tr (P=0.015), consequently the Tr group were capable of running 

further in the YIRT2 after the intervention that the Cn group (P=0.011).
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Table 8.5 Performance and physiological measures recorded from the YIRT2 and 

MART for the Cn (n = 8) and Tr (n = 8) groups before and after the training 

intervention (mean ± SD).

M easure Before

Cn

A fter Before

T r

After

YIRT2 Distance (m) 891 ± 46 888 ± 4 2 896 ± 3 7 987 ±44****

YIRT2 HR max (b.min'1) 190 ± 5 191 ± 4 193 ± 6 192 ± 7

MART Power (ml.kg^.min"1) 113.1 ± 5.1 112.6 ±5 .7 115.2 ± 4 .0 124.2 ±5.2**#

MART Speed (km.1T1) 22.3 ±1 .0 22.6 ± 1 .4 22.4 ± 1.2 24.6 ± 1.1*#

MART Time (s) 170 ± 16 172 ± 16 167 ± 18 184 ± 16*1"

MART [Hla] nunol.l'1) 17.6 ±1.3 16.7 ±1 .7 17.2 ± 1 .2 17.4 ± 1 .4

* Difference after the intervention within a group, P<0.05; ** Difference after the 

intervention within a group, P<0.01; # Difference after the intervention for 

corresponding values between groups, P<0.05; ## Difference after the intervention for 

corresponding values between groups, P O .O l.

8.3.5 Relationship between YIRT2 perform ance and physiological measures

A full correlational matrix is listed in appendix 13.3, page 256. The association detected

between YIRT2 performance and ^  O2 max was not found to change before or after the 

training intervention for the Cn (Pre: r = 0.71; P=0.041; Post: r = 0.73; P=0.033) or Tr 

groups (Pre: r = 0.69; P=0.031; Post r = 0.70; P=0.030). In comparison, xion was 

inversley related with YIRT2 performance before and after the intervention for the Tr 

(Pre r = -0.65; P=0.032: Post r = -0.66; P=0.034) and Cn ( Pre r = -0.75; P=0.029: Post 

r = -0.71; n = 8; P=0.030) groups, although no change in the strength o f the association 

between measures is apparent for either group. The Ti0ff was not related to YIRT2 

performance before or after the intervention for either Tr (Pre r = -032; n = 8; P=0.068:



Post r = -0.28; n = 8; P=0.067) or Cn (Pre r = -0.39; n = 8; P=0.061: Post r = -0.34; n = 

8; P=0.066) groups.

After the training intervention, stronger relationships existed between YIRT2 

performance and the MART measures of power (Pre = 0.81; P=0.023: Post r = 0.89; 

P=0.014:), maximal speed (Pre r = 0.74; P=0032: Post r = 0.84; P=0.016) and time to 

exhaustion (Pre r = 0.81; P=0.021: Post r = 0.85; P=0.015) for the Tr group. However, 

there was no noticable change in these associations after the intervention for the Cn 

group (power, Pre r = 0.78; P=0.028: Post r = 0.75: P=0.029; speed, Pre r = 0.72; P=

0.033: Post r = 0.72; P=0.033; time to exhaustion, Pre r = 0.76; P=0.029: Post r = 0.77; 

P=0.024). Relationships between the change in variables were only found to exist for 

the Tr group. Associations were observed (Figure 7.2 A to D) between the increases in 

YIRT2 performance and MART power (r = 0.89; P=0.013), time to exhaustion (r =

0.90; P=0.011) and maximal speed (r = 0.87; P= 0.015), with no association being 

revealed between YIRT2 performance improvement and any other physiological 

measure (see appendix 13.3, page 256).

183



Y
IR

T
2 

p
e

rf
o

rm
a

n
c

e
 

in
cr

ea
se

 
(m

) 
Y

IR
T

2 
p

e
rf

o
rm

a
n

c
e

 
in

cr
es

e 
(m

)

A
1 4 0  i

120 -

100 -

8 0  -

6 0  -

r = 0.74; P = 0.035 
(SEE = 17.7 m; SEE% = 19.4%

4 0  -

20  -

0 1  2 3 4 5 6 7 8 9  1 0  1 1

M A R T  p o w e r  i n c r e a s e  ( m l . k g ' 1. m i n ' 1)

B
1 4 0  i

120 -

100  -

8 0  -

6 0  -

r = 0.87; P = 0.005 
(SEE = 12.9 m; SEE% = 14)

4 0  -

20  -

10 2 3 4

M A R T  m a x i m a l  s p e e d  i n c r e a s e  ( k m . h ' 1)

184



E  1 4 0

a>corev
L_

120

s  100
oo
c
(0
E

r = 0.85; P = 0.006
(SEE = 13.5 m; SEE% = 14.8)0a .

CNh

>
20 4 0 6 0 1000 8 0

M A R T  t i m e  t o  e x h a u s t i o n  i n c r e a s e  ( s )
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improvements in YIRT2 performance and power (A), maximal running speed (B) and 

time to exhaustion for the Tr group (C) (n = 8).
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8.4 Discussion

8.4.1 Training induced changes to the physiological and fitness status of the players

The findings of this study show that six weeks of high-intensity intermittent training in 

addition to an elite soccer player's normal training regime can increase their soccer- 

specific high-intensity running capacity. The Tr group improvement in YIRT2 

performance of 13.1% was matched by an 8.7% increase in anaerobic power derived 

from the MART. The only aerobic measure that changed after the intervention was %2 of 

the Cn group, which lengthened considerably to match that of the Tr group.

The change in YIRT2 for the Tr group is in accordance with improvements of 26 % and 

31% reported for elite soccer referees (Krustrup and Bangsbo, 2001) and players 

(Krustrup et al., 2003) performing level one of the test. The improvement in MART 

performance is greater than that of 3.4% previously observed for elite sprinters 

following 10 weeks of training (Nummela et al., 1996), and was sufficient to give the 

players an anaerobic power (124.2 ± 5.2 ml.kg.min'1) comparable to that previously 

reported (Nummela et al., 1996) for elite 400 m runners (122.6 ± 4.9 ml.kg.min'1).

Significant relationships were observed before and after the training intervention

between YIRT2 performance and V O2 max, GET, Tion and the anaerobic performance 

parameters derived from the MART, which supports previous suggestions that both the 

aerobic and anaerobic energy systems are important for the performance o f soccer- 

specific high-intensity intermittent exercise (Bangsbo, 1993). However, the post 

training improvement in YIRT2 performance was only associated with the increase in 

the player's anaerobic fitness when expressed as anaerobic power, maximal speed 

attained and time to exhaustion in the MART.
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8.4.2 The role of aerobic and anaerobic metabolism in YIRT2 performance

During the sub-maximal stages of the YIRT2, a high level of aerobic fitness will 

prevent reliance on anaerobic energy production and so potentially delay the onset of 

fatigue. However, as the intensity of the shuttle runs increase and exceed a player's 

V O2 max, a large capacity for anaerobic energy production will be beneficial as it will 

enable a player to exercise for a sustained period at these supra- V O2 max running 

speeds. Therefore, when soccer players are matched for aerobic fitness and V O2 

kinetics, it is the players who possess a larger anaerobic capacity that will be capable of 

performing more high-intensity soccer-specific running. Analysis of HR measures taken 

during the YIRT2 supports this hypothesis. As the max HR values recorded during the

YIRT2 (Table 8.5) were similar to those recorded at V O2 max during the incremental

exercise test to exhaustion (Table 8.2), it can be assumed that V O2 max was attained in 

the YIRT2. Based on this association, HR data would indicate that although the Tr

group reached V O2 max at the same stage of the YIRT2 before (720 m) and after (728

m) training, they were capable of running further at speeds above V  O2 max after (259 

m) than before (176 m) the intervention.

These findings support Ramsbottom et al. (2001) who reported improved continuous 

high-intensity running capacity was associated with an increased anaerobic capacity

without a change to V O2 max. The decisive contribution made by the anaerobic energy 

system during high-intensity exercise could also help to explain the results of Krustrup 

and Bangsbo (2001) and Krustrup et al. (2003) who reported increases in YIRT1

performance with no or only small changes in V O2 max after periods o f high-intensity 

soccer-specific training.
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The i 2on of the Cn group was significantly shorter than that of the Tr before the , 

intervention (P=0.031). Consequently, analysis revealed the Cn group (916 ± 55 ml) to 

have a smaller (P=0.039) phase III DO2 than the Tr group (1009 ± 6 1  ml), although 

there was no difference in phase II (P=0.195) or total (P=0.218) DO2 between groups. It 

is also arguable whether a difference of 93 ml in DO2 between groups (10.2%) would be 

of physiological significance for soccer performance, as no difference in YIRT2 

performance was observed between groups before the intervention. Following the 

intervention, the phase III DO2 of the groups was similar as the T20n of the Cn group 

lengthened considerably to a value similar to that of the Tr group. Such a change in a 

kinetic measure for the Cn group was not expected and is possibly a result of the poor 

test-retest reproducibility that seems inherent in phase III measures. Furthermore, the 

lengthening in 12 of the Cn group did not lead to a decrease in their YIRT2 performance. 

This supports the findings of the previous study of this thesis that the speed of the slow 

component and hence DO2 does not influence soccer-specific high-intensity running 

capacity in players matched for aerobic fitness.

8.4.3 Physiological adaptations associated with an improved anaerobic capacity

Following a period o f either run (Neville et al., 1989; Medbo and Burgers, 1989) or 

cycle (Boobis, 1987) sprint training, improvements in high-intensity exercise 

performance have been mirrored by increased glycolytic contribution to anaerobic 

energy production. Therefore, any increase in anaerobic capacity and hence 

performance is largely attributable to adaptations that will enhance a skeletal muscle's 

glycolytic capacity (Sahlin et al., 1979; Soderland et al., 1991; Bangsbo et al., 1992; 

Bogdanis et al., 1996).
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Several adaptations within skeletal muscle have been associated with an increase in 

glycolytic capacity following a period of training. The metabolic enzymes that drive and 

regulate glycolysis such as Phos, PFK, Hx and LDH have been reported to increase 

between 10 and 56% along with a concomitant improvement in high-intensity exercise 

performance following periods of high-intensity training (Roberts et al., 1982; 

Simoneau et al., 1985; MacDougall et al., 1998). The increase in glycolytic enzymes 

following a period o f high-intensity training causes a change in the characteristics of the 

different muscle fibre types. It has been reported that high-intensity interval training 

similar to that performed in this study increases the glcolytic capabilities of type I 

fibres, while instigating type Ha to take on the characteristics o f type IIx fibres and 

promotes greater type II fibre recruitment during exercise (Boobis, 1987; Jannsson et 

al., 1990). The high force generation and rapid contraction time o f type II fibres would 

also be beneficial for the large forces required in the performance of high- and maximal- 

intensity runs. In addition, type II fibres possess greater levels of the substrates required 

for anaerobic energy production. Soderlund and Hultman (1991) and Greenhaff et al. 

(1991) reported that PCr content could be 15% and 25% higher in type II than type I 

fibres.

8.5 Conclusion

The findings of this study indicate that performance of elite soccer players in the YIRT2 

significantly improved after 6 weeks of high-intensity intermittent training designed to 

increase soccer-specific high-intensity running capacity. The increase in YIRT2 was 

matched by an increase in anaerobic capacity as indicated by the MART and the change 

in the two measures was positively correlated. Although measures o f aerobic fitness and

V Oi kinetics were correlated with YIRT2, they were not observed to increase
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following the training. Consequently they were not correlated with the change in 

YIRT2.

These findings show that when soccer players are matched for aerobic fitness, it is the 

ones who possess the largest anaerobic capacity that will be capable of performing the 

most high-intensity intermittent running. The high-intensity and sporadic nature of 

YIRT2, where a player performs a high-intensity run every 10 s, would appear to be 

such that the V O2 kinetic responses of elite players do not substantially reduce 

anaerobic contributions to the onset of exercise or enhance recovery processes at 

exercise cessation. Further research is required to determine which o f the physiological 

adaptations that accompany an increase in anaerobic capacity are responsible for the 

improvement in YIRT2 test performance. These findings could potentially have 

important implications for the way in which the fitness of soccer players is trained in the 

future.
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CHAPTER 9

Overall Discussion

9.1 Overall Aim

The pulmonary V O2 kinetics of elite soccer players during the onset and cessation of 

moderate- and heavy-intensity running has not previously been investigated. Therefore, 

the overall aim of this thesis was to establish if on- and off-transient V O2 kinetics were 

a determinant of soccer-specific high-intensity running capacity.

9.2 Methodological investigations

The initial studies of this thesis investigated key methodological issues involved in the 

study of V O2 kinetics that had not previously been addressed in the scientific literature. 

It was first established that the physiological markers of 80%GET and 50%A commonly 

used- to define moderate- and heavy-intensity exercise demonstrated low levels of day- 

to-day variability, and could be accurately determined from a rapidly incrementing 

treadmill test to exhaustion.

The accurate and reliable identification of intensity domains allowed for the design of a 

multiple square-wave protocol for the measurement of V O2 kinetics during the onset 

and cessation of moderate- and heavy-intensity treadmill running. The use of such a 

protocol would enable V O2 kinetics to be measured during a pattern o f running that 

was similar to that performed by soccer players during a game. A reproducibility study 

was conducted using the protocol to establish the day-to-day variability in V O2 kinetics 

during both the on- and of-transients of moderate- and heavy-intensity treadmill 

running. Statistical analysis of test-retest data showed the reproducibility of phase II 

parameters in the moderate-* and heavy-intensity domains to be satisfactory, as the
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variability in the measures was smaller than the change in phase II kinetics previously 

reported after some form of training intervention (Berry and Moritani, 1985). In 

comparison, previous studies reported poor reproducibility of their measures of phase II 

on- (Ozyener et al., 2001; Puente-Maestu et al., 2001) and off-transient (Ozyener et a l, 

2001) V O2 kinetics.

The phase III parameters measured during the heavy-intensity runs however 

' demonstrated large test-retest variability for the on- and off-transients, which is in 

agreement with previous cycle based research (Ozyener et al., 2001). The variable 

phase III response appeared to be caused by a poor signal to noise ratio, as the 

amplitude of phase III for both transients was small in comparison to the inherent 

breath-by-breath noise. In a subsequent study, although an increase in the number (4) 

and intensity (80%A) of the supra-GET transitions (very heavy-intensity treadmill 

protocol) improved the signal to noise ratio by 12% and 15% for the phase III on- and 

off-transients respectively, they were still highly variable in comparison to the phase II 

measures. Although a further increase in the number and intensity o f transitions might 

have further improved phase III parameter reproducibility, it would not have been 

possible to use such a demanding protocol with elite soccer players due to their training 

and competition commitments. Therefore, the very-heavy intensity protocol was used in 

future studies, as it produced more reproducible kinetic measures than two 50%A 

transitions. Furthermore, the running speeds involved would ensure V O2 kinetic 

parameters would be measured at running speeds that were within the high-intensity 

spectrum identified for competitive match-play. However, it is not clear if  the variability 

in phase III parameters generated from such a protocol would mask any training 

induced changes to the slow component response.
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9.3 Characteristics of V O2 kinetics during treadmill running

The characteristics of V O2 kinetic responses measured during the on- and off-transients 

of moderate- and heavy-intensity exercise were investigated so that their role in soccer-

performance could be fully understood. The V O2 data collected during the repeated 

square-wave transition protocol in this thesis showed phase II x to be invariant across 

moderate- and heavy-intensity domains during the onset and cessation of exercise. Such

a finding is significant as it suggests the control of V O2 kinetics follows a simple linear 

model, which is in disagreement with previous research that has reported x to become 

slowed in the heavy-intensity domain (Williams et al., 2001; Carter et al., 2002).

«
It has been proposed that during moderate-intensity exercise, where it is thought mainly 

mitochondria rich type I fibres are recruited, kinetics are expected to be faster than 

during heavy-intensity exercise when less oxidative type Ha fibres become increasingly 

involved in muscle contraction (Carter et al., 2002). This hypothesis is supported by the 

observations that the speed of x is inversely related to the percentage of type I fibres in 

humans (Pringle et al., 2003), and that x is longer in mouse muscle that predominantly 

consists type II fibres. However, the arbitrary classification of human muscle fibres into 

aerobic type I and glycolytic type II is not always appropriate. It has been suggested that 

type Ha fibres can exhibit considerable variability in their oxidative potential across 

individuals (Kushmerick et al., 1992) and that a continuum of oxidative potential of 

fibres from type I to type IIx probably exists. It is therefore feasible that the exercising 

muscle groups of the recreational athletes and soccer players (both Pro and Am) who 

participated in this thesis contained type I and type II fibres that possessed similar 

aerobic properties, which would account for why the speed of x was not slowed in the 

heavy- compared to the moderate-intensity domain. In contrast, in studies where x is
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observed to lengthen between intensity domains, the participants might display a clearer 

distinction in the aerobic properties of their type I and type II fibres.

The cause of such muscle fibre characteristics among participants in this thesis might be 

attributable to some high-intensity aspect of their training routine increasing the aerobic 

potential of type II fibres. For example, Henricksson and Reitman (1976) found that 

high-intensity interval training carried out at maximal intensity increased SDH activity 

in type II fibres by ~50% with no increase in SDH activity in type I fibres. Although 

training diaries were not acquired for the recreational athletes in this thesis, they were 

for the Am and Pro soccer players. Both groups of players played soccer at least three 

times per week, which will have involved the obligatory performance of high-intensity 

exercise.

9.4 Role of V  O2 kinetics in soccer perform ance

Phase II x at the onset of very heavy-intensity running was found to be inversely 

associated with YIRT2 performance among both Am and Pro soccer players. Yet Pros

ran significantly further than the Ams in the YIRT2, despite the phase II V O2 kinetic

profiles of the two groups being indistinguishable. Rather than quick V O2 kinetics at 

the onset of exercise enabling superior performance through a reduction in the oxygen 

deficit, the association appears to be a consequence of the importance of aerobic 

metabolism for performance of soccer-specific exercise, as V O2 max and GET were 

also positively related with YIRT2 performance. The slow component also appears to 

be o f little importance during soccer performance, as although the T20n was longer in Am 

than Pro, despite a similar amplitude, no difference was observed in the phase III or 

total DO2 of the two groups. This suggests that disparity in soccer-specific fitness
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between Pro and Am players cannot be attributed to differences in the speed or 

amplitude of the slow component response.

It is conceivable that performance in soccer-specific tests such as the YIRT2 and RST 

will not benefit from quick V O2 kinetics due to the high-intensity and short duration of 

the activities involving a substantial anaerobic contribution that would negate a decrease

in DO2 caused by quick V O2 kinetics. Even though performance in the YIRT2 has been 

associated with high-intensity running during a game, the progressive and maximal 

pattern o f running incorporated in the test is not truly representative o f competitive 

match-play, where high-intensity runs can be separated by 90 s (Withers et al., 1982). 

Therefore, any conclusions made about the physiological determinants of soccer- 

specific running capacity based on YIRT performance should be treated cautiously. It is 

possible that the physiological processes associated with performance in this thesis 

would be different if  the measure of high-intensity running capacity was obtained from 

a competitive game, where the intermittent exercise pattern differs markedly from that 

o f the YIRT2.

9.5 The physiological determinants of soccer performance?

It is clear from the findings of this thesis that both aerobic and anaerobic energy systems 

interact in the performance of high-intensity soccer-specific exercise. A novel finding of 

this thesis is however, that if  elite soccer players are matched for aerobic fitness and

V O2 kinetics, their soccer-specific fitness can be enhanced by increasing their 

anaerobic capacity via a high-intensity intermittent training programme in addition to 

their normal training regime. Although it cannot be concluded from this observation that 

the largest gains in soccer-specific fitness among elite soccer players are attained 

through an increase in anaerobic rather than aerobic fitness, such a finding could have
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significant implications for the training of elite soccer players. The duration and volume 

of training required to increase anaerobic capacity is smaller than that for aerobic 

capacity. Therefore, during the competitive season, when players are required to play in 

excess of 40 games, plus technical and tactical training sessions, it might be more 

practical to increase soccer-specific fitness via an increase in anaerobic rather than 

aerobic capacity.

The absence of change in the V O2 kinetics o f the Tr group could be attributed to the 

structure o f the training programme not being suitable to induce adaptations in a

muscle's aerobic potential that are associated with a speeding of V O2 kinetics. The 

intensity (>95 % max HR; including high intensity runs and maximal sprints) and 

duration (12, 30 or 60 s) of the runs incorporated in the intervention were such that for

aerobically trained soccer players ( V O2 max = 57.8 ± 4.2 ml.kg^.min'1), it was only the 

anaerobic energy systems that were sufficiently stimulated by the high-intensity running 

to demonstrate an enhancement through training. For example, during 10 and 30 s 

maximal sprints, aerobic metabolism has been reported to only provide ~ 9% (Serresse 

et al., 1991) and 30% (Bogdanis et al., 1996) of the energy for muscle contraction 

respectively. Although the contribution from aerobic metabolism towards energy 

provision can exceed 50% as sprints are repeated, previous research (Tabata et al., 

1996; MacDougall et al., 1998) has reported that for less aerobically trained individuals 

(51 to 53 ml.kg"l.min_1), repeated sprint training only induces a small increase in aerobic 

compared to anaerobic fitness.

In contrast, it has been shown that if  the training undertaken is of a more moderate 

intensity, an increase in the aerobic potential of muscle occurs through increased levels 

of myoglobin (Hickson, 1981), mitochondrial size and number (Kiessling et al., 1971),
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oxidative enzyme activity (Gollnick et al., 1972) and altered muscle fibre composition 

(Henricksson and Reitman, 1977). Such an increase in muscle aerobic potential results 

in tighter coupling between ATP supply and demand (Dudley et al., 1987), 

characterised by a smaller increase in ADP, AMP, IMP, Cr and Pi and a lesser decrease

in PCr. It is these improvements that are thought to influence the speed o f V O2 kinetic 

responses. Also, a high volume (> 5 times per week) of endurance training is thought to

be a stimulus for faster V O2 kinetics (Kilding, 2003) as oxidative adaptations to 

training in muscle fibres have been shown to be proportional to the volume of training 

(Fitts et al., 1975; Sjoldin et al., 1976; Terung, 1976; Hickson, 1981). Consequently, the 

time spent training at the high-intensities in this study will reduce the opportunity for

aerobic adaptations to take place, resulting in less speeding of V O2 kinetics. This is 

supported by Edwards et al. (1999) who found slower kinetics for sprinters than 

endurance runners.

The observation that following a high intensity training programme, it is solely an 

increase in anaerobic capacity that improves YIRT2 performance however is perhaps 

too simplistic. It is plausible that the adaptations to skeletal muscle which contribute to

an increased anaerobic capacity would slow an individual's V O2 kinetics as the skeletal 

muscle has become more anaerobic than aerobic in nature (Crow and Kushmerick, 

1982; Pringle et al., 2003). For example, an increases in [PCr] and [Cr] observed with 

high-intensity training (Parra et al., 2000) has been proposed to result in a slower turn

on of mitochondria, while studies involving rats reported that CS activity increased after 

a reduction in Cr (Sweeney, 1994). In support, Meyer and Folery (1994) demonstrated 

that the rate of oxidative phosphorylation is linearly dependent upon total

Cr([PCr]+[Cr]). Collectively, these findings suggest that V  O2 kinetics might be slowed
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in soccer players who experience an increase in anaerobic capacity in response to the 

high-intensity training.

However, the observation of this study that t  remained unaltered after the training 

intervention suggests that changes to the aerobic capacity of muscle might have also

occurred to prevent a slowing of V O2 kinetics. This is supported by several 

investigations where an increase in mitochondrial enzyme activity has been observed 

following a period of high-intensity or maximal sprint interval training (Henriksson and 

Reitman, 1976; MacDougall et al., 1998). Therefore, it is conceivable that changes to 

aerobic metabolism at the muscular level might have contributed to the increase in 

soccer-specific fitness following the high-intensity training programme, but were 

masked by the changes that also occurred to anaerobic metabolism.

9.6 Limitations

In chapters seven and eight, the role of aerobic and anaerobic physiological mechanisms 

in soccer was investigated by assessing their relationship with performance in YIRT2, 

which is an indirect measure of soccer-specific high-intensity running capacity. Firmer 

conclusions might have been drawn if these physiological mechanisms were 

investigated in relation to the actual amount of high-intensity running the players 

performed over several competitive games. The recovery between shuttles in the YIRT2 

was fixed at 10 s, whereas during a competitive game it has been observed that a high- 

intensity run is performed every 25 to 90s (Withers et al., 1982; Bangsbo, 1994). It is 

conceivable that longer periods between runs i.e. > 10 s, would make it possible to 

distinguish between players who possessed different recovery capabilities associated 

with aerobic fitness. This might explain the conflicting results of Helgerud et al. (2001)
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who reported an increase in V O2 max was associated with an increase in sprints 

performed during competitive games.

In chapter eight, anaerobic capacity was measured indirectly from the MART. Although 

direct estimations from muscle biopsy also have their limitations, such a technique 

might have provided a greater insight into the role of anaerobic metabolism during 

soccer performance. Furthermore, no direct determinations of the mechanisms proposed 

as being responsible for an increase in anaerobic capacity and hence soccer-specific 

high-intensity running capacity were taken. The addition of these measures to the 

analysis might have allowed firmer conclusions to be drawn regarding which 

physiological mechanism determined soccer performance.

9.7 Future directions

Due to methodological restrictions imposed upon the studies of this thesis, it has only 

been possible to hypothesise as to the physiological processes and adaptations following 

a period of high-intensity training that account for an improvement in soccer-specific 

high-intensity running capacity. Furthermore, a high-intensity training model as used in 

chapter 8 o f this thesis might not have stressed aerobic metabolism sufficiently to bring

about improvements in aerobic fitness or V O2 kinetics of aerobically trained soccer 

players. Hence, a future longitudinal training study is required where direct assessments 

of the physiological processes that are involved in soccer performance can be assessed 

in conjunction with improvements in soccer-specific fitness. To identify which 

physiological processes are most important for increasing soccer-specific fitness, the 

training study must incorporate a range of exercise intensities to induce training 

adaptations to both aerobic and anaerobic energy systems'. From such research it would 

then be possible to determine which physiological process should be targeted through



training to bring about optimal increases in soccer-specific fitness. The aims of a future 

study are:

1. To directly determine the physiological processes and adaptations responsible for 

improvements in soccer-specific fitness.

2. To determine if an increase in aerobic, anaerobic or both energy systems brings about 

the largest increase in soccer-specific fitness.

The proposed study would involve a training intervention lasting 6 to 8 weeks (Saltin 

and Gollnick, 1983), comprising three groups acting as their own controls who would 

undertake different intensities and volumes of intermittent running: Group 1) high- 

intensity, Group 2) moderate-intensity and group 3) a combination of high and 

moderate-intensity running. The training of the high-intensity group would comprise 

repeated maximal sprints for durations ranging from 10 to 30 s to primarily tax the high- 

energy phosphagen and glycolytic systems to cause an increase in anaerobic capacity. In 

contrast, the moderate-intensity training group would run at speeds that correspond to

~90% velocity V O2 max for 4 min to predominantly tax the aerobic system in order to

increase V O2 max and induce peripheral adaptations to enhance the aerobic potential of 

skeletal muscle. The combination group would perform a mixture of moderate- and 

high-intensity runs to stress both the aerobic and anaerobic energy systems.

To ensure an adequate and continuous overload, the volume o f the training regime 

would be progressively increased. The study would involve elite soccer players, as less 

trained players would be more likely to experience an increase in soccer-specific fitness
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as a result of any type of training stimulus, regardless of which energy system was 

being targeted.

Prior to the training intervention, physiological and performance measures for each 

participant would be performed. This would allow the intensity of training to be made 

specific for each participant. The physiological and performance measures would 

comprise the following:

1. Quantification of the amount of high-intensity running a player performs over three 

consecutive competitive games. Direct assessment of the amount o f high-intensity 

running a player performs will be a more accurate and valid measure o f high-intensity 

running capability than that provided by the YIRT2. It has been suggested (Bangsbo, 

1994) that to ensure representative measures of a player's activity profile are obtained, 

match analysis should be performed over three consecutive games, as performance in an 

individual game might be artificially limited due the playing tactics employed.

2. Graded exercise test to volitional exhaustion. This will allow for measures of V Oi 

max and GET, plus the identification of the running speed required to elicit a V O2 

value corresponding to 80%A in future assessments of V O2 kinetics.

3. Very heavy-intensity square-wave treadmill protocol. This would be performed so

that V O2 kinetic data could be obtained for phases II and III at the on- and off-

transients o f high-intensity running. Combined with the above measures of V O2 max 

and GET, it will be possible to determine which components o f a player's aerobic 

profile are responsible for changes in soccer-specific fitness following a period of 

training.
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3. Direct assessment of anaerobic capacity. Although the direct assessment of anaerobic 

capacity through muscle biopsy does have limitations, it will provide direct evidence of 

adaptations within skeletal muscle following the training interventions. The taking of 

muscle biopsies will also allow any enzymatic (aerobic and anaerobic) and/or muscle 

fibre changes that have occurred as the result of the three interventions to be assessed. 

Such data would make it possible to draw firmer conclusions about the processes that 

determine soccer-performance.

Following the intervention this range of measures would be repeated. Statistical analysis 

would consist of a mixed factorial ANOVA to identify if  any differences existed in the 

repeated measures for the three groups. Any difference could be identified from post- 

hoc analysis of the data. Pearson's correlation coefficient could also be used to 

determine the strength of association between physiological and performance measures.
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CHAPTER 10

Conclusions

The findings of this thesis suggest that a player's soccer-specific intermittent high-

intensity running capacity is not determined by the speed of their V O2 kinetics during 

either the onset or cessation of exercise. However, further research is required to

determine the role of V O2 kinetics, in the performance of high-intensity running during

competitive games, and whether the speeding of V O2 kinetics through an appropriate 

training programme will lead to an improvement in soccer-specific fitness. The specific 

conclusions drawn from this thesis are:

1. The physiological markers 80%GET and 50%A can be reliably and accurately 

determined from a rapidly incrementing treadmill protocol to exhaustion. 

Consequently they can be used to set moderate- and heavy-intensity running speeds.

2. Phase II x and A are invariant of intensity domain but not exercise transient for 

treadmill running.

3. Phase II V O2 kinetics are reproducible at the onset and cessation o f moderate-,

heavy- and very heavy-intensity treadmill running. Phase III V  O2 kinetics however 

are highly variable during both the onset and cessation o f heavy- and very heavy- 

intensity treadmill running.

4. Performance in the YIRT2 and %\ at both exercise onset and cessation were inversely 

related for elite soccer players. However, this association appears to be an artefact of
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the importance of aerobic metabolism in YIRT2 performance, as V O2 max and 

GET were related to both x\ and YIRT2 performance.

5. Aerobic and anaerobic fitness are both associated with soccer-specific high-intensity 

running capacity. However, when elite players are matched for aerobic fitness, it is 

the ones who possess the largest anaerobic capacity that can perform the most 

soccer-specific high intensity running.

6. Three high-intensity intermittent running sessions per week in addition to a 

professional player's normal training regime can increase a player's soccer-specific 

fitness during the competitive season by enhancing their anaerobic capacity.
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Appendix 1

Conference Communications

1.1 BASES Abstract 2002

ASYMMETRY OF OXYGEN UPTAKE KINETIC RESPONSES TO THE ONSET AND OFFSET 
OF TREADMILL RUNNING

Carl Wells1: Barry Drust2; Edward Winter1 and Mary Fysh1
1 The Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, United Kingdom
2 School of Sport, Health and Exercise, University of Durham, Stockton on Tees, United Kingdom.

Oxygen uptake ( VOi) kinetic responses to the onset and offset of running could be important measures 
for athletes who compete in intermittent type sports. Fast VO2 kinetics at the onset of exercise would 
result in less reliance on fatigue-inducing anaerobic pathways to meet energy demands. Also, the 
VO2 kinetic response at the offset of exercise might indicate how quickly an athlete can recover. 
However, whether or not these responses are symmetrical is unclear as they seem to depend on the 
intensity (Ozyener et al., 2001) and mode of exercise (Carter et al., 2000). The aim of this study was to 
investigate whether there was symmetry between the fast and slow components of the VO2 kinetic 
responses to the onset and offset of treadmill running.
With institutional ethics approval eight men mean ± s: age 23.5 ±1.3 years, stature 179 ± 7 cm, body 
mass 77.1 ± 12.2 kg provided written informed consent and participated. Participants performed a graded 
exercise test (GXT) in which running speed was increased 1 km-h'1 every minute until volitional 
exhaustion. During the GXT respiratory gases were measured breath-by-breath using a mass spectrometer 
(Marquette 1100 ME, Milwaukee, USA) so that a running speed / VO2 relationship could be established. 
On a later occasion, participants performed a treadmill protocol for the measurement of VO2 kinetic 
responses to the onset and offset of exercise, above and below the gas exchange threshold (GET). The 
protocol was continuous and consisted of 4 square-wave walk-to-run transitions (6 min walking, 6 min 
running); 3 at a running speed equivalent to 80% of VO2 at GET (subGET) and 1 equivalent to half way 
between GET and maximal oxygen consumption (supraGET). A 12 min walk ended the protocol. 
Following 1 hour of recovery the protocol was repeated, producing 6 subGET and 2 supraGET 
transitions.
Using two way analysis of variance with repeated measures, the phase II time constants (ij) were shorter 
(P = 0.017) at the onset (24 ± 5) than the offset (27 ± 6) of exercise, with no interaction between 
exercise intensity and exercise transition (P = 0.803). The Tj for sub and supra GET exercise at onset and 
offset did not differ (P = 0.861). The amplitude of the phase II response (Aj) was less (P = 0.041) for 
exercise onset than offset (1441 ± 232 vs. 1541 ± 298 ml.min'1). No interaction was found for A! between 
exercise intensity and the exercise transition (P = 0.431). The for sub and supra GET exercise at onset 
and offset was also different (P = 0.021). Paired sample t tests showed that the phase III time constant (1 2) 
was less at the onset than the offset of exercise (177 ± 44 vs. 396 ± 72 s; P = 0.001). The amplitude of the 
phase III response (A2) was greater for exercise onset than offset (295 ± 118 vs. 138 ± 89 ml.min'1; P = 
0.013).
The results suggest that there is asymmetry between VO2 kinetic responses to the onset and offset of 
treadmill running, both above and below GET and that ii is independent of exercise intensity for exercise 
onset and offset. These findings support the work of Carter et al., (2000) and Ozyener et al., (2001) for 
the fast and slow components respectively. Identification of mechanisms that account for this asymmetry 
and the implications for intermittent-type sports performance requires further investigation.

Carter, H., Jones, A.M., Barstow, T.J., Burnley, M., Williams, C.A. and Doust, J.H. (2000). Oxygen 
uptake kinetics in treadmill running and cycle ergometry: a comparison. Journal of Applied Physiology, 
89, 899-907.

Ozyener, F., Rossiter, H.B., Ward, S.A. and Whipp, B.J. (2001). Influence of exercise, intensity on the on- 
and off- transient kinetics of pulmonary oxygen uptake in humans. Journal of Physiology, 533, 891-902.
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1.2. BASES Abstract 2003

Characteristics of the phase II oxygen uptake response to the onset and offset of 
exercise in different intensity domains

It is accepted (Ozyener et al., 2001 Journal o f  Physiology, 533.3, 891-902) that the 
characteristics o f oxygen uptake (VO 2 ) kinetics at the onset and offset o f exercise 
depend upon whether exercise is performed above or below the gas exchange threshold 
(GET). However it is unclear if  the time constant (ti) of the phase II response is 
independent of the exercise intensity domain, and the transient of exercise in which it is 
measured. The aim of this study was to determine if  the phase II response was constant 
at the onset and offset of sub and supra GET exercise.
With institutional ethics approval ten men (mean ± s): age 23.5 ± 1 .3  years, stature 179 
± 7 cm, body mass 77.1 ± 12.2 kg, VO2 max 3859 ± 5 1 2  ml.min'1, provided written 
informed consent and participated. Participants performed a graded exercise test (GXT) 
in which running speed was increased 1 km-h'1 every minute until volitional exhaustion. 
During the GXT respiratory gases were analysed breath-by-breath using a mass 
spectrometer system (Marquette 1100 ME, Milwaukee, USA) so that a running speed / 
VO2 relationship could be established. On a later occasion, participants performed a 
treadmill protocol for the measurement of VO2 kinetic responses to the onset and offset 
of exercise above and below the gas exchange threshold (GET). The protocol was 
continuous and consisted of 4 square-wave walk-to-run transitions (6 min walking, 6 
min running), 3 at a running speed equivalent to 80% of VO2 at GET (subGET) and 1 
equivalent to mid way between GET and maximal oxygen consumption (supraGET). 
The walking speed in between each run was 4 km.h' . A 12 min walk ended the 
protocol. Following 1 hour of recovery the protocol was repeated so producing 6 sub 
GET and 2 supra GET transitions.
After verifying underlying assumptions such as the normality o f distribution and 
sphericity o f the data, phase II VO2 kinetic parameters were compared using two way 
analysis of variance with repeated measures. The x\ for sub did not differ from supra 
GET exercise, at onset (23.2 ± 5.5 vs. 23.7 ± 4 s) or offset (27.1 ± 4.9 vs. 27.4 ± 6.9 s) 
of exercise (P = 0.86). The mean Ti of the sub and supra GET exercise was less at the 
onset (23.5 ± 4.5 s) than the offset (27.2 ± 5 s) of exercise (P = 0.02), with no 
interaction between exercise intensity and exercise transition (P = 0.80). The Aj was 
less for sub than supra GET exercise, at both the onset ( 853 ± 1 2 4  vs. 2003 ± 2 1 8  
ml.min'1 ) and offset ( 878 ± 133 vs. 2134 ± 275 ml.min"1) of exercise (P = 0.02). The 
mean Ai for sub and supra GET exercise was less (P = 0.04) for the onset o f exercise 
than offset (1441 ± 232 vs. 1541 ± 298 ml.min'1). There was no interaction for Ai 
between exercise intensity and the exercise transition (P = 0.43).
As anticipated, there was a difference between Ai at sub and supra GET exercise. 
However, Ti was independent o f the exercise intensity domain for both the onset and 
offset of exercise. The autonomy of ii  in relation to intensity domain in this study 
supports previous research where square-wave exercise has been performed on a cycle 
ergometer (Ozyener et al., 2001 Journal o f  Physiology, 533.3, 891-902). Conversely a 
recent study by Carter et al. (2002 Journal o f  Applied Physiology, 86, 347-354) 
observed a marked increase in Ti during supra compared to sub GET exercise performed 
on a treadmill. Differences in Ti above GET m ight.be attributable to the different 
techniques used to model the VO2 data or the design of the protocols used to generate 
square-wave changes in VO2 . The results suggest that there is an asymmetry in VO2 

kinetics between the onset and offset of exercise, further research is required to 
determine the precise mechanisms responsible.
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1.3 BASES Abstract 2004

Performance of professional and amateur soccer players in the YoYo Recovery test 
level 2

Performance in the YoYo recovery test level 1 (YRT1) is strongly related to the high- 
intensity running performed during soccer and distinguishes between international and 
standard level players (Mohr et al., 2003: Journal o f  Sport Sciences, 21, 519-528). It is 
therefore seen as a valid measure of a player's ability to perform soccer-specific exercise 
(Krustrup et al., 2003: Medicine and science in sport and exercise, 35, 697-705). In 
contrast there is little research into the validity of the YoYo recovery test level 2 
(YRT2) as a measure of soccer-specific fitness, even though it might be a more 
appropriate test for elite level players as it incorporates faster running speeds than 
YRT1. Therefore the purpose of this investigation was to see if  performance in the 
YRT2 was more sensitive to differences in the fitness of soccer players of different 
standards during the competitive season than a laboratory based assessment of aerobic 
fitness.
With institutional ethics approval 18 professional soccer players (mean ± s): age 23.2 ± 
2.4 years, stature 180.3 ± 6.6 cm, body mass 78.4 ± 7.5 kg, VOi max 58.2 ± 2.8 ml.kg' 
^m in'1 and 18 amateur soccer players (mean± s): age 21.1 ± 1.6 years, stature 179 ± 8.2 
cm, body mass 75.8 ± 11.4 kg and VO2 max 57.1 ± 3.9 ml.kg^.min'1 provided written 
informed consent and participated. Participants performed a graded exercise test in 
which running speed was increased 1 km-h*1 every minute until volitional exhaustion. 
During the graded exercise test respiratory gases were analysed breath-by-breath using a 
mass spectrometer system (Marquette 1100 ME, Milwaukee, USA) so that gas 
exchange threshold (GET) and maximal oxygen consumption (VO 2 max) could be 
determined. Time to exhaustion and maximal running speed were also recorded. Seven 
days after the graded exercise test participants performed the YRT2. The test was 
performed outside on Astroturf in dry weather conditions. Participants were required to 
run back and forth along a 25 m track, keeping in time to audible signals from a cassette 
tape that sounded intermittently. Participants stopped when they could no longer keep in 
time with the signals.
The mean physiological and performance measures for both groups of players are 
illustrated in Table 1. After verifying underlying assumptions such as normal 
distribution and homogeneity of variances, a two sample t-test was used to compare the 
values recorded for the two groups in the different tests. Statistical significance was set 
at P < 0.05. No difference was observed between professional and amateur soccer 
players for VO2 max ( T (34) =1.61 ;P  = 0.117), GET (T (34) = 1 .1 2 ; P  = 0.211), time 
to exhaustion (T  (34) = 1.64; P  = 0.124) and maximal running speed (T  (34) = 2.01; P  = 
0.21). Professional players ran further during the YRT2 (T  (34) = 2.419; P  = 0.021).

Table A l. Physiological and performance measures for professional and amateur 
players (mean ± s).

Group VO2 max 
(ml.kg'1.min* 

*)

GET
(l.min*1)

Time to 
exhaustion 

(min)

Max Speed 
(km.h*1)

YoYo Test 
(m)

Professional 
C*»- 18)

58.2 ±2.8 3.32 ± 
0.25

10.55 ±0.84 18.6 ± 0 .9 840 ±153

Amateur 
(n = 18)

57.1 ±3 .9 3.10 ± 
0.39

10.36 ± 1.02 18.3 ± 1.1 7 1 6 ± 123
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Measures of aerobic fitness did not differentiate the two groups. However professionals 
out performed amateurs in the YRT2. This indicates that the YRT2 is more appropriate 
for measuring differences in the fitness of soccer players than VO2 max or GET during 
the competitive season. These findings support the use of the YRT2 as a measure of 
fitness among soccer players. Future research should be conducted to determine 
mechanisms that explain professional players' enhanced performance in the YRT2, as 
this could have implications for the fitness training of soccer players in the future. It 
would also be beneficial to know the strength of the relationship between performance 
in the YRT2 and the amount of high-intensity running performed during a game. It 
would then be possible to determine which level o f the YoYo Recovery test was the 
most appropriate for measuring the soccer-specific fitness of elite players.
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1.4 Appendix ACSM Abstract

Title: Pulm onary kinetics of oxygen uptake and sport specific fitness in soccer 
players.

Elite soccer performance is, in part, dependent on a high level of cardiopulmonary 
fitness, which can either be assessed maximally (V0 2 max), or as a dynamic response to 
a change in work (VO2 kinetics). The kinetics of oxygen uptake (VO2) are enhanced 
following endurance training, and are also differentially fastest in elite endurance 
athletes; it is therefore surprising that VO2 kinetics have not been reported in 
intermittent sports such as soccer, where the ability to rapidly respond to a change in 
work is of importance. PURPOSE: To compare laboratory (VO2 kinetics & VO2 max) 
and field based (Yo-Yo intermittent test) assessments o f cardiopulmonary fitness in 
professional and amateur soccer players. METHODS: A group of professional (Pro) 
(n=18) and amateur (Am) (n=18) soccer players agreed to participate in the study. Both 
groups performed 3 tests: 1) a graded exercise test to exhaustion for the determination 
of VO2 max 2) four repeats o f a single exercise transient from walking to 80%A (80% 
of the difference between GET and VO2 max) for the assessment of VO2 kinetics, and 
3) a soccer-specific test (Yo-Yo Intermittent Recovery Test level 2). Gas exchange was 
measured breath-by-breath and a two component exponential model was used to 
characterise the kinetics of the VO2 response. Statistical analyses were made using 
ANOVA and ‘t ’ tests as appropriate. RESULTS: There was no difference in the 
cardiopulmonary fitness of the professional and amateur players when expressed as VO2 
max (Pro 56.5 ±2.9ml-kg-min'1 vs. Am 55.7 ±3.5ml-kg-min'1) or the VO2 kinetic 
fundamental (tj onset, Pro 24.5 =t 3.2 s vs. Am 24.0 ± 1.8 s; tj offset, Pro 28.7 ± 2.8 s 
vs. Am 29.3 ± 3.5 s) and slow components (12 onset, Pro 98.2 ± 56.6 s vs. Am 142.2 ± 
58.6 s; i 2 offset, Pro 261.1 ± 60.7 s vs. 277.8 ± 71.7 s). However, professionals (966 
±153m) achieved a greater total distance covered than amateurs (840 ±156m) in the Yo- 
Yo test (PO.05).
CONCLUSION: The intermittent demands of soccer make the determination of 
specific fitness difficult to quantify. Nevertheless, the findings of this study suggest that 
sport specific assessment has greater relevance to the identification o f fitness in 
performers participating at different levels of the sport. Whilst cardiopulmonary fitness 
is important for soccer performance, the ability to rapidly respond to a change in work 
rate does not contribute to the difference in soccer-specific performance observed 
between the professional and amateur players. Other factors, such as anaerobic fitness, 
may be of more importance.
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Appendix 2

Verification of treadmill speed and gradient

2.1 Treadmill speed

The speed of the treadmill belt was verified over a range o f speeds applicable to 
investigations within this thesis (Table A .l). A participant with a body mass of 72.4 kg 
ran on the treadmill while these speeds were manually calculated.

Table A.2 Treadmill belt speeds that were verified for accuracy.

m .s'1 1.0 1.2 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

km .h'1 3.6 4.3 7.2 9 10.8 12.6 14.4 16.2 18 19.8 21.6

To manually calculate treadmill belt speed the following formula was used:

Speed = d/t

where d is the distance (m) that would be travelled in 20 revolutions o f the treadmill 
belt and t is the mean of 3 measures of the time (s) taken for 20 revolutions. A marker 
was placed on the treadmill belt to allow identification of one full revolution o f the belt. 
Time taken for twenty revolutions of the belt at each pre-selected speed was recorded 
with a stopwatch (C200sport, Casio, UK) to the nearest 0.1 s.

It can be seen from Figure A .l that a close relationship (r2 = 0.997) exists between the 
belt speeds displayed on the console of the treadmill and the manually calculated belt 
speeds. The linear modelling technique used was least squares regression (x on y).

25
y = 0.9996X + 0.0073 

R2 = 0.997
20

15Q.

AT10

5

0
0 105 15 20 25

Console display belt speed (km.h'1)

Fig A .l Verification of displayed treadmill belt speed vs. calculated treadmill belt speed 
in a loaded condition. Dashed line represents line of identity.
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2.2 Verification of treadmill incline

To verify zero incline the elevation meter of the treadmill was set to zero and a spirit 
level was used to ensure the treadmill belt was level in the horizontal plane. Vertical 
incline of the treadmill belt was expressed as the sine of the angle, in which sine equals 
the vertical rise over the hypotenuse:

Treadmill Incline (sine) = (rise / hypotenuse) * 100

The treadmill used in this investigation has moveable front and rear axles. The vertical 
rise is equal to the sum of the rise of the front axle and the drop of the rear axle. When 
this total is divided by the axle to axle length, the grade is expressed as a fraction. 
Linear regression analysis demonstrated a close relationship between the displayed an 
actual treadmill incline (Figure A.2) which remained linear through out the range of 
inclines measured (r = 0.99).
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y = 0.9886x + 0.122 
R2 = 0.9999
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D isp la y ed  Incline (%)

20 25

Fig A.2 Displayed treadmill gradient vs. actual gradient. Dashed line represents line of 
identity.

233



Appendix 3

A comparison of two systems of pulmonary gas analysis

For the first three studies of this thesis, pulmonary gas analysis was performed using a 
respiratory mass spectrometer, the MGA 1100 (Marquette Electronics Inc, Milwaukee, 
WI, USA). Unfortunately after the third study the MGA 1100 became unusable and 
beyond repair. To allow data collection for the thesis to be completed, during the fourth 
study pulmonary gas analysis was performed using the Medgraphics CPX/D (St Paul, 
Mn, USA) which consists of rapid response zirconian O2 and infrared CO2 analysers. To 
determine whether the Medgraphics CPX/D could be used as a suitable replacement, 
pulmonary gas exchange data from the two systems was compared for accuracy.

3.1 Accuracy

A pilot study was conducted to compare the accuracy of the two systems of pulmonary 
gas analysis over a range o f intensities that ranged from sub-maximal to VO2 max.
Four participants (3 male, 1 female) mean ± s: age 24.3 ± 4.2 years, stature 175.3 ± 12.1 
cm; body mass 65.3 ± 8.2 kg took part. All participants were healthy and performed 
physical activity on a regular basis. Prior to the administration of any test, participants 
were screened for existing medical conditions that might become aggravated during the 
testing procedure.
Participants undertook the same exercise test on two occasions, separated by seven 
days. Pulmonary gas analysis was performed using the CPX/D during the first test and 
the MGA 1100 for the second. The exercise tests involved cycling on an electronically 
braked cycle ergometer (Excalibur Sport, Lode, Netherlands) for four incrementing six 
min bouts at 50 W, 100 W, 150 W and 175 W to obtain steady-state pulmonary gas 
exchange data. On completion o f the last six min bout, the exercise intensity was 
increased by 25 W per min until exhaustion for a measure o f VO2 max. Each 
assessment was carried out at the same time of day to reduce the effects of diurnal 
variation and heart rate was measured every 5 s.
The test data for the two systems is presented below in Table A.3. Although the MGA 
1100 appears to constantly measure higher than the CPX/D, a paired sample t-test 
revealed that the mean FChdata from the two systems did not differ for any of the 
exercise intensities: 50 W, (t (5) = -2.17; P  = 0.072); 100 W, (t (5) = -2.11; P = 0.081); 
150 W, (t (8) = -1.89; P = 0.094); 175 W, (t (5) = -1.81; P = 0.112), F o rn a x , (t (8) = - 
1.32; P = 0.162).

Table A.3 Test-retest data (mean ± s) for sub-maximal and maximal VO2 data measured 
by the CPX/D and MGA 1100.

CPX/D MGA 110
Intensity Test 1 Test 2
50 W (L.min'1) 0.93 ± 0.03 1.03 ±0.02
100 W (L.min'1) 1.39 ±0.04 1.46 ±0.04
150 W (L.min'1) 2.02 ± 0.06 2.07 ± 0.04
175 W (L.min'1) 2.31 ±0.06 2.36 ± 0.03
VO2 max (L.min'1) . 3.89 ±0.12 3.86 ± 1.1
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Such pilot data indicates that the CPX/D pulmonary gas analysis system provides 
measures of VO2 that are comparable to those of the MGA 1100 across a range of 
exercise intensities for participants with similar levels o f aerobic fitness as soccer 
players.

3.2 V O2 kinetic param eter estimation

The S0 of the noise for the steady-state VO2 response to the 100 W cycling was 
determined for each system (CPX/D, 0.07 L.min*1; MGA 1100, 0.10 L.min*1) so that the 
95% Cl for 80%A xi estimation could be calculated (Lamarra et al., 1987). It was 
revealed that to estimate 80%A x\ to within ± 2 s, 1 exercise transition was required for 
both the CPX/D and the MGA 1100. The analysis also revealed that if  four 80%A 
exercise transitions were performed, %\ estimation would be within ± 0.35 s for the 
CPX/D, which is smaller than the ± 0.5 s calculated for the MGA 1100. So it would 
appear that parameter estimation is comparable if not superior for the CPX/D.
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Appendix 4

Reproducibility of the Yo-Yo Intermittent Recovery Test Level 2 (YTRT2)

The reproducibility of the performance scores obtained from the YIRT2 has not 
previously been investigated. As the test is to be used in the thesis as the indicator of 
soccer-specific high-intensity running capacity this was a paucity in the knowledge that 
needed to be addressed.

With institutional ethical approval eight professional soccer players (mean ± s) age 21.2 
± 3.2 years, stature 178.4 ± 6.2 cm, body mass 76.7 ± 4.3 and VChmax 58.4 ± 2.8 
ml.kg^.min'1 took part. All players had been at a professional club for at least two years. 
Prior to the administration of any test, participants were screened for existing medical 
conditions that might become aggravated during the testing procedure.

Players performed the YIRT2 on two occasions, separated by seven days. The test was 
performed, outdoors on a dry artificial grass surface. Players were withdrawn from the 
test when they could no longer perform 25m shuttles in time with audible signals 
generated from a cassette tape. Test performance was recorded as number of shuttles 
and distance covered (see chapter 3.2.7).

The players’ performance over the two tests is listed below in Table A.6. Paired sample 
t-tests revealed that the test-retest data for shuttles (t (8) = -1.12; P  = 0.18) and distance 
(t (8) = -1.01; P = 0.21) covered did not differ.

Table A.4. Test-retest data (mean ± s) for the number of shuttles and distance covered 
by professional soccer players in the YIRT2.

M easure Test 1 Test 2

Shuttle number 21.24 ±0.41 21.12 ±0.43
Distance run (m) 864 ± 8 7 851 ±91

The CV for the test-retest data was low at 3%, as was the method error ± 15.5 m. These 
findings compare well to those of Krustrup et al. (2003) who reported a corresponding 
CV value of 5% for level 1 of the test. The LOA calculation indicated a narrow range of 
differences between test-retest measures with a range of -24  ± 43 m. This 95% spread 
of differences equates to 3.8% of the grand mean YIRT2 distance o f 857 m.

Such data indicates that performance measures from the YIRT2 are reproducible on a 
test-retest basis and compare well to reproducibility data previously published for level 
1 of the test.
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Appendix 5

Lactate Analyser Reproducibility

The CV of the lactate analyser was established. Five 25 ql samples o f 5 mmol.l'1 were 
analysed. The pippetting sequence and technique were standardised to reduce any inter
sample variation that might influence reproducibility.

Table A. 5. The CV data for the measures of lactate standard.

5 mmol.l"1 Sample Reading
1 5.01
2 5.10
3 5.02
4 4.98
5 4.96

Mean 5.06
s 0.05

CV% 1.1
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Appendix 6  

Pre-test Medical Questionnaire

Name:

Date of Birth: Age: Sex:

Please answer the following questions by putting a circle round the appropriate response or 
filling in the blank.

1. How would you describe your present level of activity? 

Sedentary moderately active Active Highly active

2. How would you describe your present level of fitness? 

Low level of fitness Moderately fit Fit Very fit

3. How would you consider your present body weight?

Underweight Ideal Slightly overweight Very overweight

4. Smoking Habits: Do you currently smoke? Yes No

Are you a previous smoker? Yes No

How long is it since you stopped Years

Were you an occasional smoker Yes No

Per day

Were you a regular smoker Yes No

Per day

5. Do you drink alcohol?

If you answered Yes, do you have:

Yes No

An occasional drink A drink every day More than one drink a day

6. Have you had to consult your doctor within the last six months? 

If you answered Yes, please give details to the tester.

Yes No

7. Are you presently taking any form of medication?

If you answered Yes, please give details to the tester.

Yes No
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8. As far as you are aware, do you suffer or have you ever suffered from:

a. Diabetes? Yes No b. Asthma? Yes No

c. Epilepsy? Yes No d. Bronchitis? Yes No

e. Any form of heart complaint? Yes No f. Raynaud’s Disease? Yes No

f. Marfan’s Syndrome? Yes No h. Aneurysm or embolism? Yes No

9. Is there a history of heart disease in your family Yes No

10. Do you currently have any form of muscle or joint injury? Yes No

11. Have you had to suspend your normal training in the last two weeks Yes No...........

12. As far as you are aware, is there anything that might prevent you from successfully 
completing the tests that have been outlined to you?

Yes No

13. Please read the following questions.

As far as you are aware:

a. Are you suffering from any known active serious infection?

b. Have you had jaundice within the previous year?

c. Have you ever had any form of hepatitis?

d. Are you HIV antibody positive?

e. Have you had unprotected sexual intercourse with any person from an HIV high risk population.

f. Have you ever been involved in intravenous drug use?

g. Are you a haemophiliac?

If you can answer yes to any of questions a -  g, please sign here

If you have answered.no to all of question a -  g, please sign here 

Thank you
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Appendix 7

Informed Consent

! Sheffield Hallam University

Faculty of Health and Wellbeing 
Sport and Exercise Research Ethics Committee

I N F O R M E D  C O N S E N T  F O R M

T I T L E  O F  P R O J E C T :

T h e  p a r t i c i p a n t  s h o u l d  c o m p l e t e  t h e  w h o l e  o f  t h i s  s h e e t  h i m s e l f / h e r s e l f

Have you read the Participant Information Sheet? YES/NO

Have you had an opportunity to ask questions and discuss this 
study? YES/NO

Have you received satisfactory answers to all of your questions? YES/NO

Have you received enough information about the study? YES/NO

To whom have you spoken?

YES/NO

Do you understand that you are free to withdraw from the study:

• at any time

• without having to give a reason for withdrawing

• and without affecting your future medical care

Have you had sufficient time to consider the nature of this project? YES/NO

Do you agree to take part in this study? YES/NO

Signed....................................................... Date........................................

(NAME IN BLOCK LETTERS)................................................................................

Signature of Parent / Guardian in the case of a minor
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Appendix 8

Participant Information Sheet

t Sheffield Hallam University

School of Sport and Leisure Management
Research Ethics Committee 
Participant Information Sheet

Project Title | Oxygen uptake kinetics of football players

Name of Participant

Supervisor/Director of Studies | DrMaryFysh

Principal Investigator | Carl Wells

Purpose of Study and Brief Description of Procedures
(Not a legal explanation but a simple statement)
The purpose of the investigation is to identify if oxygen uptake ( VO i) kinetics determine the ability to perform

football specific exercise. VO2 kinetics refers to the rate at which oxygen is used at the muscle in response to 
changes in exercise intensity. In the current study this will be achieved by measuring the air a person breathes out 
when exercising. The procedure for this is explained below. When participants visit the laboratory they are . 
expected to behave in a sensible and orderly manner.

The testing procedures involved are:

1. Graded exercise test.
This will involve running on a motorised treadmill. The speed of the treadmill will start at 8 km.h'1 (a slow jog) 
and will be increased by 1 km.h'1 (a small increase) every minute. You will be required to run for as long as 
possible until you are exhausted. The test is maximal and will cause feelings of fatigue that will last for a few 
minutes and are similar to those experienced at the end of a hard training session. During the test you will have to 
breathe through a mouthpiece that is connected to a gas analyser, this is so the amount of oxygen you are using to 
produce energy can be measured.

2. Intermittent treadmill test.
You will be required to walk slowly for 2 minutes, run at a 3/4 pace for 6 minutes and then walk for 12 minutes at 
a slow pace, followed by a 20-minute passive recovery period. This protocol is performed four times. The test is 
sub-maximal. During the protocol, you will have to breathe through a mouthpiece as for the graded exercise test.

3. Maximal anaerobic run test (MART)
You will be required to perform a series of runs on a motorised treadmill. Each run will last for 20 seconds 
followed by 100 seconds of passive recovery. The starting speed is 14.3 km.h'1 (a fast jog) with the gradient at 
10.5% (steep hill), thereafter the speed is increased by 1.2 km.h'1 for each run and the gradient is kept constant. 
This process is repeated until you reach voluntary exhaustion.

4. Y0 Y0  Intermittent endurance test.
You will be instructed to run back and forth along a twenty-meter course, keeping in time with audible bleeps 
generated from an audiocassette tape. The time between the bleeps will gradually decrease so that you have to run 
faster to keep in time with the tape. You must try to keep in time with the bleeps until you are exhausted. The test 
is maximal and will cause fatigue.

Risk of injury or cardiovascular complication during these testing procedures is very low.
I f  necessary continue overleaf
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Purpose of Study and Brief Description of Procedures
(Not a legal explanation but a simple statement)_______________________ _________________
Study design

The study is structured in the following way:

Weeks 1-2:  perform the physiological assessments detailed above

Weeks 3 - 8 :  perform 6 weeks of soccer-specific training. This will involve high-intensity exercise consisting of 
small sided games and running drills. It is intended that the exercise performed is at an intensity equal to or 
greater than 90% of your maximal heart rate. You will be required to perform the exercise 3 times per week. The 
timetabling of this will be arranged subsequently.

Weeks 9-10:  repeat the physiological assessments to identify any changes in fitness.

It has been made clear to me that, should I feel that these Regulations are being infringed or that my 
interests are otherwise being ignored, neglected or denied, I should inform Professor Edward Winter, Chair 
of the School of Sport and Leisure Management Research Ethics Committee (Tel: 0114 225 4333) who 
will undertake to investigate my complaint.

242



Appendix 9

Chapter 4 Statistical analyses

9.1 Statistical analyses

Table A.6 Paired sample -t-tests: Pairs 1 to 6 are the test-retest values for measures 
taken from the incremental exercise test to exhaustion. Pairs 7 to 8 are the actual and 
predicted values for 80%GET and 50%A. Pair 9 is the blood lactate measured after the 
80%GET and 50%A runs.

P a ire d  S a m p le  t - te s t
95%  c o n f id e n c e  

in te rv a l o f  
d if fe re n c e s

t d f s ig .  2  ta ile d

Lower U pper
P a ir 1 M axspeed -0 .244 2 .136 1.18 8 0 .242
P air 2 tiexh -0 .196 2 .443 1.09 8 0.273
P air 3 V 0 2  1 -V02 2 -0.471 2 .032 1.14 8 0.271
P air 4 T V E N 1 -T V E N 2 -0.342 2 .113 1.32 8 0.214
P air 5 80% 1-80% 2 -0.733 3.143 0 .89 8 0.296
P air 6 50% 1-50% 2 -0 .436 2 .043 1.25 8 0 .232
P air 7 80% P-80% A -0 .455 3.121 1.46 8 0.194
P air 8 50% P-50% A -0 .212 1.675 1.13 8 0.257
P air 9 80% la-50% la -0 .547 4 .087 3 .85 8 0 .002
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Appendix 10

Chapter 5 Statistical Analyses

10.1 Statistical Analyses

Table A.7 Paired sample t-tests: Pairs 1 to 14, comparison of measures from parts A and 
B of the square-wave treadmill protocol: Pairs 15 to 18, comparison of phase III test- 
retest kinetic parameters measured during the heavy-intensity square-wave protocol: 
Pairs 19 to 20, comparison of on- and off-transient phase III kinetic parameters.

P a ire d  S a m p le  t - te s t
95%  c o n f id e n c e  

in te rv a l o f  
d if fe re n c e s

t d f s ig .  2 ta ile d

L o w er U p p e r
P a ir 1 LaA-LaB -0.341 2 .447 1.45 7 0.141
P air 2 LapostA -LapostB -0 .277 2 .342 1.05 7 0.253
P air 2 vo2k-vo2B -0 .457 2 .324 1.26 7 0 .162
P air 3 HRA-HRB -0 .565 3 .326 1.51 7 0 .125
P air 4 H R 80% -H R 50% -0 .322 3 .05 2 .68 7 0.023
P air 5 5 0% la1-50% la2 -0 .466 2 .875 3.23 7 0.013
P air 6 tiA-tBon -0 .287 1.032 1.07 7 0 .297
P air 7 tA-tBoff -0 .219 1.045 1.02 7 0.311
P air 8 AiA-AiBon -0 .436 2 .899 1.34 7 0 .156
P air 9 AiA-ABoff 0 .154 1.654 1.17 0 .183
P air 10 td1A -td1B -0.644 4 .323 1.11 7 0 .216
P air 11 t2A-t2Bon -0 .366 2 .073 1.15 0 .192
P air 12 t2A-t2Boff -0 .287 2 .194 2 .68 7 0 .023
P air 13 A2A-A2Bon -0.433 2.561 1.09 7 0.231
P air 14 A2A-A2Boff -0 .336 2 .675 2 .56 7 0 .028
P air 15 t21on-t22on -0 .287 1.032 1.28 7 0 .168
P air 16 t21off-t22off -0 .426 2 .563 1.01 7 0.291
P air 17 A 21on-A 22on -0 .575 4 .332 1.47 7 0 .115
P air 18 A21off-A22off -0 .453 2 .376 2 .26 7 0 .083
P air 19 t2on-t2off -0.211 1.126 3 .78 7 0 .004
P air 20 A2on-A2off -0.371 2 .878 3.51 7 0 .005

Table A.8 Two-way ANOVA repeated measures: Comparison of test-retest phase II 
kinetic parameters measured during for moderate- and heavy-intensity exercise.

P a ra m e te r S o u rc e F S ig
Tion S phericity  a s su m e d Intensity 1.46 0 .184

T e st 1.43 0.191
lntensity*Test 1.21 0 .373

TiOff S phericity  a s su m e d Intensity 1.78 0 .152
T e s t 1.35 0 .216
lntensity*Test 1.29 0 .285

A ion S phericity  a s su m e d Intensity 5 .43 0 .029
T e s t 1 .52 0 .175
lntensity*Test 1 .45 0.201

A-ioff S phericity  a s su m e d Intensity 6 .76 0 .004
T e s t 1 .33 0 .267
lntensity*Test 1 .58 0 .142

td1 on Sphericity  a s su m e d Intensity 1.04 0 .437
T est 1.72 0 .168
lntensity*Test 1.13 0.351

td 1 off Sphericity  a s su m e d Intensity 1.69 0.171
T e s t 1.44 0 .234
lntensity*Test 1.06 0 .436
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Table A.9 Two-way ANOVA repeated measures: comparison of on- and off-transient
phase II kinetic parameters for moderate- and heavy-intensity running.

P a ra m e te r S o u rc e F S ig
Ti S phericity  a s su m e d Intensity 1 .78 0 .137

T ran sien t 4 .32 0 .033
ln tensity*transient 1.86 0 .116

Ai S phericity  a s su m e d Intensity 6 .52 0 .029
T ran sien t 1 .12 0 .312
ln tensity*transient 1.33 0 .228

td1 S phericity  a s su m e d Intensity 1 .08 0 .324
T ran sien t 1 .02 0 .368
ln tensity*transient 1 .76 0 .146
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Appendix 11 

Chapter 6  Statistical Analyses

11.1 Statistical analyses

Table A. 10 Paired sample t-tests: Pair 1, comparison of phase II time delays for the on- 
and off-transients: Pair 2, comparison of phase II and phase III time delays during 
exercise onset.

P a ire d  S a m p le  t - te s t
95%  c o n f id e n c e  

in te rv a l o f  
d i f fe re n c e s

t d f s ig .  2 ta ile d

Lower U pper
P a ir 1 td1on-td1off -0.451 1.027 1.87 9 0.343
P air 2 td1on-td2-on -0 .238 2 .772 4 .34 9 0.021

Table A. 11 Two-way ANOVA repeated measures: comparison o f test-retest phase II 
and III parameters measured during the onset and cessation of very heavy-intensity 
running

P a ra m e te r S o u rc e F S ig
t1 te s t- re te s t S phericity  a s su m e d T ran sien t 5 .47 0 .034

T est 2 .5 6 0 .172
T ransien t*T est 1 .36 0 .295

t2  te s t- re te s t S phericity  a s su m e d T ran sien t 78.91 0 .000
T e st 1.12 0 .326
T ransien t*T est 2.41 0 .193

t1 an d  t2 S phericity  a s su m e d P h a s e 4 3 .5 4 0 .000
com parison T ran sien t 17.85 0 .006

P h ase* T ran sien t 1 .32 0 .312
A 1on te s t- re te s t Sphericity  a s su m e d T ran sien t 2 .66 0 .168

T est 3 .78 0 .115
T ransien t*T est 0 .87 0 .479

A2 off te s t- re te s t S phericity  a s su m e d T ran sien t 5.41 0 .032
T est 2 .89 0 .134
T ransien t*T est 1 .77 0 .227

A1 an d  A2 S phericity  a s su m e d P h a s e 63 .8 7 0 .000
com parison T ran sien t 12.32 0 .014

P h ase * T ran sien t 2 .32 0.211

Table A. 12 Two-way ANOVA repeated measures: comparison o f phase II and phase III 
parameters at the onset and cessation of exercise across the four 80%A transitions.

P a ra m e te r S o u rc e F S ig
t1 1-4 S phericity  a s su m e d Transition 1 .06 0.341

T ran sien t 5 .19 0 .036
T ransition*T ran sien t 2 .28 0 .196

t2 1-4 S phericity  a s su m e d Transition 3 .8 3 0 .1 2 7
T ran sien t 5 .79 0 .025
T ransition*T ran sien t 3 .63 0 .133

A1 1-4 S phericity  a s su m e d Transition 1.77 0 .247
T ran sien t 1.64 0.271
T ransition*T ransient 2 .37 0 .194

A2 1-4 S phericity  a s su m e d Transition 1.61 0.261
T ran sien t 15.65 0 .004
T ransition*T ran sien t 2 .32 0 .176
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Appendix 12

C hapter 7 Training Diaries and Statistical Analyses

12.1 Training Diaries

A record of the training sessions and games performed by players during the eight 
weeks prior to the investigation.

Table A. 13 Professional

Week No. o f  training sessions No. o f  matches
1 5 1

2 6 1

3 3 2

4 5 1

5 6 1

6 5 1

7 3 2

8 5 1

M ean 4.8 1.3

Table A. 14 Amateur

W eek No. of training sessions No. of matches
1 1 1

2 1 2

3 1 2

4 1 2

5 1 1

6 1

7 1 1

8 1 1

Mean 1 1.4
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12.2 Statistical Analyses

Table A. 15 Independent sample t-tests: Pairs 1 to 5, comparison of physiological and 
performance measures recorded for the Pro and Am soccer players during the 
incremental treadmill test to exhaustion: Pairs 6 to 9, comparison o f performance 
measures recorded for Pro and Am soccer players recorded from the soccer-specific 
field tests. Pairs 10 to 12, comparison of DO2 between the two groups during the onset 
of 80%A running.

I n d e p e n d e n t  S a m p le  t - te s t
95%  c o n f id e n c e  

in te rv a l o f  
d i f fe re n c e s

t d f s ig .  2 ta ile d

Lower U pper
P a ir 1 V 0 2 m ax A m -V 0 2 m ax P ro -2 .143 1.966 -0.11 35 0 .484
P air 2 G ETA m -G ETPro -1.531 1.695 1.26 35 0.291
P air 3 T im eexA m -T im eexPro -2 .448 2 .176 -0 .16 35 0 .426
P air 4 M xspA m -M xspPro -3 .187 2 .664 -0 .14 35 0 .463
P air 5 MxHrAm-MxHrPro -1 .388 1.684 0 .89 35 0 .326
P air 6 YoYoAm -YoYoPro -2 .432 1.674 2 .54 35 0 .034
P air 7 R S T b esA m -R S T b esP ro -1 .887 1.455 -4.41 35 0 .012
P air 8 RSTA vA m -R STA vPro -3 .322 2 .564 -3 .06 35 0 .014
P air 9 RSTfiAm -RSTfiPro -2 .318 1.986 -2 .42 35 0 .024
P air 10 D 02IIA m -Pro -3 .216 1.984 0 .69 35 0 .368
P air 11 D 02IIIA m -Pro -1 .659 2 .032 1.97 35 0 .086
P air 12 D 02to tA m -Pro -2 .547 2 .196 1.68 35 0 .154

Two-way mixed ANOVA: Comparison of phase II and III kinetic parameters between 
and within the Pro and Am soccer players measured during the on- and off-transients of 
very heavy-intensity treadmill running.

Table A. 16 Tests of Within subject effects

P a ra m e te r S o u rc e F S ig
t1 S phericity  a s su m e d T ran sien t 8 .79 0 .026

T ransien t*P layer 1.51 0 .283
t2 Sphericity  a s su m e d T ran sien t 112 .46 0 .0 0 0

T ransien t*P layer 5 .05 0 .037
A1 S phericity  a s su m e d T ran sien t 3 .12 0 .092

T ransien t*P layer 2 .7 2 0 .118
A2 S phericity  a s su m e d T ran sien t 9 .89 0 .0 2 2

T ransien t*P layer 1 .89 0 .2 6 5

Table A. 17 Tests of Between subjects effects

P a ra m e te r F Sig
t1 0 .10 0 .923

t2 4 .03 0.034

A1 2.76 0.122

A2 2.52 0.183
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d

o
p
cd

CO
d

X f
eg
d

o
p
cd

V0
2K

G 
|

oo oo
CO*d

oo
d 18

.00
 

I

d
o
o 18

.00
 

I

s
9

xr
o

oo
cd

toCM
o

b-tn
d

oo
co

CM

d
to
o

oo
cd

d
p

ino
o

I 
18

.00
 

I

CO
d

h-Xf
o

o
p
cdd

CMo
d

oo
cd

CO
d

Xfm
d

oo
cd

*2
o

oo
d

oo
cd

COCM
o

COto
d

oo
cd

CM
d

CM05
d

oo
cd

to
o

oe-
d

oo
cd

Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ile
d)

 
I

2: Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ite
d)

 
I

2 Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ile
d)

 
I

2 Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ile
d)

 
I

Z Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ile
d)

 
I

Z Pe
ar

so
n 

Co
rr 

I
Si

g.
 (

2-
ta

ile
d)

 
I

Z Pe
ar

so
n 

Co
rr
 

1
Si

g.
 (

2-
ta

ile
d)

 
I

2 Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ile
d)

 
I

Z Pe
ar

so
n 

Co
rr
 

I
Si

g.
 (

2-
ta

ile
d)

 
I

Z Pe
ar

so
n 

Co
rr
 

I
| 
Si

g.
 (

2-
ta

ile
d)

 
I

Z

! 
Pe

ar
so

n 
Co

rr
 

I
I 
Si

g.
 (

2-
ta

lle
d)

 
I

Z

I 
Pe

ar
so

n 
C
or

r
I 
Si

g.
 (

2-
ta

ile
d)

Z

I 
Pe

ar
so

n 
Co

rr
| 
Si

g.
 (

2-
ta

ile
d)

Z

I 
Pe

ar
so

n 
C
or

r
I 

Si
g.
 (

2-
ta

ile
d)

Z

§
CM
O
>

I 
TV

EN
T 

|

I 
T1

0N
 

I

UL
U .o
•(—
h-

I 
T2

0N
 

|

I 
T2

0F
F 

]

I 
A1

0N
 

|

I 
A
10

FF
 

I

2
O
CM
<

I L
I Lo
CM
<

o
> -o
> -

I 
FA

TI
GU

E 
i

I 
AV

ER
AG

E 
!

I 
B
E
ST

249



Ta
bl

e 
A.

 19
 

C
or

re
la

tio
ns

 
Pr

of
es

si
on

al

1 
R

SB
E

ST
 

1

CM
d

CO
CO
o

o
o

CD
CM
o

CM
d

d
o
cd

o

d

or--
d

o
o CO

o

<o
CO
o

o
o
K

CO
CM
o

r-
CO
o

o
o
cd

r>-
o
d

co
h-
d

o
o
cd d

in
CO
d

o
o
co’

CM
d

O
xr
d

o
o
cd

CM

5

xr
CO
d

oo
GO

CMo
9

xr
CD
o

O
q
od

CO
o
d

o
CD
o

o
o
00

m
d

o
o
d

o
o
00 d

o
o
d

o
o
00*

o
q

o
o
GO

E 
R

SM
E

A
N

 
1

CO
CM
d

CM
o>
d

o
o CO

d
CM
o

o
o
cd

CO
CM
d

co
CO
d

o
o

CM
CM
d

CM
O)
d

o
o

CO

d

CO
o
d

o
o
cd

Is-

o
s
d

o
o
cd

xr
CM
q

3
d

o
co

CD
O
o

o
co
d

o
o
cd

N
CM
o

00
CM
o

o
o
od

CO
o
d

55
d

o
o
cd

N-

d
in
d

o
o
cd

q
o
o
d

o
o
cd

o
o

o
o
cd

g

d

o
o
o

o
o
cd

1 
R

SF
A

T
I 

I
in

d

00
CO
d

o
o
i^

ymm
CO
o

CM
o

o
o
cd

in
CM
o

Is-CD
o

o
o
r̂ '

in

d

in
to
d

o
a
r̂ ‘

Is-
co
o

CO

d

o
o
cd

xr
o
d

Is-CO
d

oo
cd

co
CM
o

CO
CM
o

o
q
cd

o

d

CO
CO
d

o
o
cd

co
CM
di

to
CM
d

o
q
od

o
o
d

03
03
d

o
q
cd

CD

d

xr
xr
o

o
q
cd

o
q

o
q
od

in
&>

o
o
d

o
o
cd d

o
o
d

o
o
CO

1 
Y

O
Y

O
O

 
1

rL
d

o
d

o
o
co

{&CM
O
d

o
o
cd

n * o
o

o
o
cd

to
d

CM
o
o

o
o
cd

<o
CM
o

o
CO
o

o
o
co

r-
■M*
d

in
o
d

o
o
CO d

CO
h-
d

o
o
cd

Is-
o
d

fc
d

o
o
cd

CMCM
d

r>-
tn
d

o
o
od

xr
d

Is-
q
d

O
q
cd

o
o

o
o
co

CD

o

xr
xr
d

o
o
00

h-

d
m
d

o
o
cd

CO
o
d

o
03
d

o
o
cd

LL
U.
IL
O

S!

CM
O
o

CO
CO
d

o
o
cd

CO
o
d

m
h-
d

o
o
cd

CM

d

CO
co
d

o
o
cd

CO
d

r-

o

o
o
cd

CM
o
o

xT
03
d

o
o
cd

CO
xr
d

^r
o
o

o
o
cd

o
o
d

05
CD
d

o
o
co

oo
CM
o

m
CM
o

o
o
cd

CO
o
d

o
CD
o

o
q
cd

o
q

o
o
od

3
d

h-
O
d

o
o
cd

o
o
d

CD
CD
o

o
q
co

CO
o
o

55
d

o
o
cd

CM
O
o

M’
CD
d

o
o
cd

A
20

N
N

 
1

CM
CM
o

CM
CO
o

o
o
cd

CM

o

xr
CO
d

o
o
cd

to o
o
d

o
o
cd

CO
CM
o

CO
CO
d

o
o
CO

o
CM
d

xT
d

o
o
00

CO
o
d

(0

d

o
o
cd o

CO
Is-
d

o
o
cd d

CM
O
d

o
o
cd

o
q

o
o
cd

CO
o
d

o
CD
o

o
o
cd

CM
to
d

o
d

o
o
cd

CO
CM
d

to
CM
d

o
o
cd

r-
CM
9

co
CM
o

o
o
cd

CM

d
3
d

o
o
od

A
10

F
F

F
 

I

CO
CO
d

o

d

o
o
cd

xT

d

CO
m
d

o
o
cd

o
xT
d

o

d

o
q
cd

CM

d

CO
CO
o

o
o
cd d

o
in
o

o
o
cd

o

d

CO
o
d

8
GO

q
d

CO
o
d

o
o
cd

o
o

o
o
co

CO
in
d

CM
o
d

o
o
od

CO
CM
d

in
CM
d

o
o
od

h-
o
d

|X-
Is-
d

o
o
cd

o

d

00
to
d

o
q
cd

to
o
d

oCO
d

o
o
cd

CM
d

o
M’
d

o
o
od

I 
A

10
N

N
N

 
|

d

o
o
d

o
o
cd

in

d

xT
in
d

o
o
CO d

o
o
d

o
o
cd

CO
CM
d

in
CO
d

o
o
cd

o
d

(OCD
d

o
q
cd

CM

d

CO
CO
d

o
o
cd

o
o

o
o
cd

in
m CO

o
o

o
o
cd d

COr̂ .
d

o
o
od

o
o
d

CDCD
d

o
o
od

o
m
9

xr
o
d

o
o
cd

CO
CM
d

CO
CM
d

o
o
cd

xr
CM
9

xr
CO
d

o
o
od d

in
to
d

o
q
oo

I 
T

20
F

F
 

|

CO

o d

o
o
cd

Is-
CM
o

O)
CM
o

o
o
cd

xrCM
o

xr
CO
o

o
o
CO

xtCM
o

in
<o
o

o
q
cd

CO
CO
o

CM
o

o
o
cd

o
q

o
o
cd

CM

d

CO
CO
d

o
o
cd

q CO
o
o

o
q
cd

CO
o
d

to
Is-
d

o
q
od

00
xr
9

xro
d

o
q
cd

Is-
xr
9

in
o
d

a
o
cd

xr
o
d

h-
00
d

o
q
od

Is-

o
to
d

o
o
cd

N-
O
d

CO
Is-
d

o
q
cd

T
20

N
 

|

o
in
o

o
q
cd

co

5

CO
xr
d

o
o
cd

co

d

CO
r*.
d

o
o
cd

xr
CM
d

T~

d

o
o
00

o
o

o
q
ad

05
O
o

n !
d

o
q
cd

o
o

COCD
d

o
o
cd

xr

d

03
m
d

o
o
co

o
CM
d

xr
xr
d

oo
00

CMO
d

xr
CD
d

o
o
cd

to
CM
d

oCO
d

o
q
cd

Is-
co
9

CO

o

o
o
od

to

9

co
o
o

o
o
cd

CO
CM
9

Is-co
o

o
o
cd

T
IO

FF
 

|

m
d

CO
o
d

o
o
CO

in
o
d

o
o
cd

5S
c?

CM
o
d

o
o
CO

o
o

o
o
cd
r*

CD
CO
9 d

O
o
co

xrCM
d

in
CO
d

o
o
cd

CO
CM
d

in
CO
d

o
o
cd

CM

d

CO
CO
d

o
o
CO

CO
CM
d

to
CO
d

o
o
00

3
d

Is-

d

o
q
cd

C--3

d

CO
CO
d

o
o
od

in

d

in
in
d

o
o
cd

CM
o
d

CM
CD
d

o
o
CO

xr
o
d

toCO
d

o
o
cd

T
10

N
 

|

l%>o
d

o
o
cd

COin
d

xr
o
o

o
o
cd

o
q

o
q
cd

<8 CM
o
d

O
q
cd

CO

o

o
Is-
o

o
o
cd

x}*
CM
o

xr
CO
o

8
cd

10
K

o
o
d

8
cd

o
M-
d

o

d
o
o
cd

inr* 8
o

8
cd

CM

9

<0
ID
o

o
o
cd q o

d
8
cd

o
d

Is-
<D
o

o
o
cd

xr
o
9

CO
CO
d

8
CO

o

o

o
r-
o

o
o
cd

T
V

E
N

T
 

|

q
CM
o
d

o
o
CO

o
o

o
oCO§

o
s
d

o
o
cd

g

d

m
o
d

o
o
cd

co

d
CO
•O'
o

o
o
cd

Is-
CM
9

CD
CM
o

o
o
cd

in

d
3
o

o
o
cd

xr

o

CO
m
o

o
o
cd

CM

d
3
d

o
o
cd

CO
o
d

to
Is-
d

8
od d

in
xr
o

o
q
oo

to
d

CM
d

o
o
cd

c0
d

CM
d

o
q
od

CD
CM
o

xr
CM
d

o
o
od

V
02

M
L

K
G

 
|

o
o

o
o
cd

CM
O
o

o
o
cd

d
9 “

o
d

o
o
cd

LO
CO
o
d

o
o
cd

r-

d
«n
d

o
o
cd

CO

o
£
d

o
o
cd d

o
o
d

o
o
cd

CO
CO
o

o
d

o
o
cd

CM
CM
o

CM
to
d

o
o
co

m
xr
d

too
o

o
o
cd o

o
o
d

o
o
cd

m

d
CO
CO
o

o
o
cd

oo
CM
d

CM
CD
d

o
o
cd

CM
o

<o
to
d

o
o
cd

fco
o
c
o
*2
«
03

o .

S 'o
2
CM

d
<0 z

O
O
c
o2rooCL

ro

2
CM

03
CO Z

o
Oc
o
e
cts
0)
a .

t?ro
-2
CM

cf)
W Z

t:
o
O
c
o2
CO
0>
a .

S
2
is
CM

d)
CO Z

o
O
c
o2
CO
0)
a .

sg-
2
2
CM

03
(0 z

fc
o

O
c
o
*2
cts0CL

S
2
2
CM

03COZ

fc
o

a
c
o
E2
cts
CD

CL

S ’
2
js
CM

dCOz

t:
o
a
c
o2
ro
0)

a .

2
2
CM

OJCOz

o
a
c
o
e
roo

a .

2
2
CM

CD
in z

o
aco2
ro
<D

a

S '
2
2
CM

03
to z

o
O
c
o
12
ro
a
£L

S '
2
2
CM

03
to Z

o
a
c
o2
roo

CL

S
2
2
CM

d
to z

o
O
c
o2
ro
<D

a

S '
2
*ro
CM

di
CO Z

O
oc
o
52
ro
0)
a .

S2
2
CM

03
to z

O
*
- j

CMo
>

1—
Z
LU

£

zoXT-
H

LL
LLoT“
H

zo
p

LL
LLo
p

Z
zzo
<

IL
IL
LLo
r*
<

zzo
CM
<

LL
LL
LL
O
CM
<

Oo
>o
>-

5
LL
COa:

z<
LU£tocc

1-co
LUCD
COCC

250



Appendix 13

Chapter 8: Training Diary, Running Courses and Statistical Analyses

13.1 Training Diary

A record of the soccer clubs normal training regime performed by the control group 
during the six week training intervention. This regime was also performed by the 
training group in addition to the running program listed in chapter 7.2.4.

Table A.20 Training diary

Week No. of training sessions No. of matches

1 6 1

2 4 1

3 3 2

4 5 1

5 5 1

6 5 1

Mean 4.7 1.2
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13.2 Running Courses (not to scale)

10 s runs

Distance: 84 m, Time Target: 10 s, Estimated running speed: 30 km.h*1

Figure A.3 20 m 12 m

5 m

Figure A.4
32 m

5 m

10m

35 s runs

Distance: 235 m, Time Target: 35 s. Estimated running speed: 24 km.h*1 

Figure A.6
80 m

80 m

75 m

Figure A.7

80 m 80 m

75 m
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60s runs

Distance: 320 m, Time target: 60 s, Estimated running speed: 19 km .h'1 

Figure A.8 g o m

80 m
80 m

80 m

Figure A.9 100 m

120 m

100 m
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13.3 Statistical Analyses

Two-way ANOVA mixed design: comparison of physiological, kinetic and 
performance measures within and between the Tr and Cn groups before and after the six 
week training intervention.

Table A.21 Tests o f Within subject effects

P a ra m e te r S o u rc e F S ig
V 0 2  m ax S phericity  a s su m e d Tim e 3 .46 0.081

Tim e*G roup 0.11 0 .8 2 2
G ET S phericity  a s su m e d Tim e 2 .03 0 .1 7 5

Tim e*G roup 0 .59 0 .464
Exhtim e S phericity  a s su m e d Tim e 1.41 0 .216

Tim e*G roup 0 .85 0 .344
M axspeed S phericity  a s su m e d Tim e 0 .37 0 .517

Tim e*G roup 0 .59 0 .433
t1on S phericity  a s su m e d Tim e 0.34 0 .568

Tim e*G roup 0 .43 0 .532
t1 off S phericity  a s su m e d Tim e*G roup 0 .17 0 .736

Tim e 2.01 0.191
t2 on S phericity  a s su m e d Tim e 10.21 0 .012

Tim e*G roup 6 .28 0 .038
t2 off S phericity  a s su m e d Tim e 1.16 0 .319

T im e*G roup 0 .84 0 .368
A 1on S phericity  a s su m e d T im e 1.22 0 .274

T im e*G roup 0 .13 0 .7 4 2
A1off S phericity  a s su m e d Tim e 1.99 0 .216

T im e*G roup 0 .58 0 .472
A 2on S phericity  a s su m e d Tim e 0 .15 0 .7 3 5

Tim e*G roup 2 .58 0 .637
A2off S phericity  a s su m e d Tim e 3 .18 0 .093

Tim e*G roup 1.87 0 .142
T d lo n S phericity  a s su m e d Tim e 0 .39 0 .5 2 2

T im e*G roup 2 .06 0 .1 8 5
T d lo ff S phericity  a s su m e d Tim e 2 .18 0 .114

T im e*G roup 0 .24 0 .738
T d2on Sphericity  a s su m e d Tim e 0 .46 0 .577

Tim e*G roup 0 .16 0 .763
YoYo Sphericity  a s su m e d Tim e 10 .12 0 .015

Tim e*G roup 9 .56 0 .022
M ARTpower S phericity  a s su m e d Tim e 9.58 0.021

Tim e*G roup 10.56 0 .0 1 2
M A R Tspeed S phericity  a s su m e d Tim e 9 .45 0 .023

Tim e*G roup 9 .57 0 .0 2 0
MARTtime S phericity  a s su m e d Tim e 10.32 0 .0 1 9

Tim e*G roup 10.54 0 .0 1 2
MARTIa S phericity  a s su m e d Tim e 2 .95 1.246

Tim e*G roup 0 .35 0 .865
D 0 2  Total S phericity  a s su m e d Tim e 2 .34 0 .1 7 6

Tim e*G roup 4 .6 7 0.071
D 0 2 II S phericity  a s su m e d Tim e 1.87 0 .276

Tim e*G roup 0 .49 0 .572
D 0 2  III S phericity  a s su m e d Tim e 5.81 0.041

Tim e*G roup 6 .97 0 .0 3 6
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Table A.22Tests o f Between subjects effects

P a r a m e te r F S ig
V 0 2  m ax 0.23 0 .737

G ET 0.63 0 .467

Exhtim e 0.18 0 .765

M ax sp eed 0 .39 0 .646

t1on 0.58 0 .475

tlo ff 0 .12 0 .832

t2on 6.98 0 .039

t2off 0 .72 0.461

A 1on 0.19 0 .746

A1off 0 .57 0.474

A 2on 1.18* 0 .328

A2off 2 .93 0.104

T d lo n 1.21 0 .288

T d lo ff 1 .56 0 .222

T d2on 1.41 0 .254

YoYo 12.67 0.011

M A RTpow er 8 .28 0 .024

M A R Tspeed 7 .54 0.037

MARTtime 11.21 0.012

MARTIa 2 .45 1.217

D 0 2  Total 1.59 0 .218

D 0 2 I I 1.67 0 .195

D 0 2  III 7 .53 0.038
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