# Sheffield Hallam University

Investigations on die materials.

THOMAS, Alwyne.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20668/

## A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20668/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions.



**Sheffield City Polytechnic Library** 

## **REFERENCE ONLY**

ProQuest Number: 10702005

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.



ProQuest 10702005

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

## Investigations on Die Materials

## Thesis submitted to The Council for National Academic Awards for the Degree of DOCTOR OF PHILOSOPHY

by

ALWYNE THOMAS

SHER LIBRARY 22 0

## TABLE OF CONTENTS

| - 20 |        |
|------|--------|
| 1.0  | - 11 C |
|      | 100    |
| -    |        |
|      |        |
| 1.2  |        |
|      |        |

0

0

Page No.

33

| 1. | INTRODUCTION                                                                          |    |
|----|---------------------------------------------------------------------------------------|----|
|    | 1.1 The Need for Improved Die Materials                                               | 1  |
|    | 1.2 Die Steels Used in the Drop Forging Industry<br>at the Start of the Investigation | 3  |
|    | 1.3 Performance of Forging Dies                                                       | 5  |
|    | 1.4 Modes of Die Failure                                                              | 8  |
|    | 1.5 Scope and Objectives of the Present Investi-<br>gation                            | 8  |
|    |                                                                                       |    |
| 2. | LITERATURE REVIEW                                                                     |    |
|    | 2.1 Service Conditions of Forging Dies                                                | 4  |
|    | 2.1.1 Die Surface Temperatures .                                                      | 11 |
|    | 2.1.2 Die Stresses                                                                    | 16 |
|    | 2.2 General Work on Die Steels                                                        | 20 |
|    | 2.3 Specific Investigations of Die Wear .                                             | 23 |
|    | 2.4 Discussion of Previous Work                                                       | 31 |
|    |                                                                                       |    |
| -  | EXPERIMENTAL WORK - LABORATORY TESTS                                                  |    |
|    | 3.1 Service Conditions in Forging Dies                                                | 33 |

3.1.2 Temperature Measurements in Dies 42



0

3.1.1 Metal Flow and Die Stresses during Forging

| 3.2 Development of a Wear Test                                  | 48 |
|-----------------------------------------------------------------|----|
| 3.2.1 Conditions Necessary to Simulate Practical<br>Forging     | 48 |
| 3.2.2 Load and Temperature Measurements during<br>Upset Forging | 49 |
| 3.2.3 Development of an Automatic Forging Press                 | 53 |
| 3.2.4 Test Procedure                                            | 59 |
| 5.2.5 Assessment of Die Wear                                    | 63 |
| 5.2.5.1 Reproducibility of Wear Measurement                     | 63 |
| 3.3 Wear Tests                                                  | 67 |
| 3.3.1 Materials Selected for Wear Tests                         | 67 |
| 3.3.2 Wear Test Results                                         | 70 |
| 3.3.3 The Influence of Stock Temperature on Die<br>Wear         | 76 |
| 3.3.4 Influence of Stock Material on Die Wear                   | 79 |
| 3.3.5 The Influence of Surface Treatment on Die<br>Wear         | 80 |
| 3.3.5.1 The Influence of Nitriding on Die Wear                  | 80 |
| 5.3.5.2 Influence of Sulfinus Treatment on Die<br>Wear          | 82 |
| 3.3.6 The Influence of Lubrication on Die Wear                  | 83 |
| 5.4 Tempering Resistance of Materials Investigated              | 88 |
| 5.5 Changes in Die Hardness during Wear Testing                 | 93 |
| 3.5 Mechanical Properties of Materials Tested                   | 98 |

| 40 | EXPERIMENTAL WORK - WORKS TRIALS                                                 |     |
|----|----------------------------------------------------------------------------------|-----|
|    | 4.1 Materials Selected for Works Trials                                          | 107 |
|    | 4.2 Results of Works Trials                                                      | 108 |
| 5. | DISCUSSION OF RESULTS                                                            |     |
|    | 5.1 Laboratory Test Results                                                      | 111 |
|    | 5.1.1 Possible Mechanisms of Wear during Forging                                 | 111 |
|    | 5.1.2 Factors Affecting Die Wear under Three-<br>Body Erosive Wear Conditions    | 115 |
|    | 5.1.3 Mechanics of Deformation in Upsetting of<br>Cylinders                      | 116 |
|    | 5.1.4 Development of Wear Pattern on Test Dies                                   | 119 |
|    | 5.1.5 The Influence of Lubrication on Die Wear                                   | 124 |
|    | 5.1.6 The Influence of Stock Temperature on Die<br>Wear                          | 129 |
|    | 5.1.7 The Influence of Forging Stock on Die Wear                                 | 135 |
|    | 5.1.8 Summary of the Influence of Forging Vari-<br>ables on Die Wear             | 136 |
|    | 5.1.9 The Influence of Die Material on Wear                                      | 137 |
|    | 5.1.9.1 Method of Comparing Weer Resistance<br>for Different Die Materials       | 137 |
|    | 5.1.9.2 Influence of Tempering Resistance on<br>Wear Resistance                  | 140 |
|    | 5.1.10 The Influence of Composition on Wear<br>Resistance                        | 146 |
|    | 5.1.10.1 Possible Functions of Alloying Elements<br>in Promoting Wear Resistance | 146 |

Page No.

| 5.1.11    | Method of Analysing Wear Test Data                                                              | 149  |
|-----------|-------------------------------------------------------------------------------------------------|------|
| 5.1.12    | Variables Considered in Regression Analysis                                                     | 152  |
| 5.1.13    | Results of Regression Analysis                                                                  | 158  |
| 5.1.14    | The Influence of Initial Die Hardness on<br>Wear Resistance                                     | 163  |
| 5.1.15    | Wear of Surface Treated Dies                                                                    | 164  |
| 5.1.16    | Influence of Microstructure on Wear Resis-<br>tance                                             | 165  |
| 5.2 Resu  | ilts of Works Trials                                                                            | 170  |
| 5.2.1     | Agreement Between Observed Die Life in the<br>Forge and Life Predicted from Laboratory<br>Tests | 170  |
| 5.2.2     | Economic Assessment of Die Materials Studied                                                    | 172  |
| 5.2.3     | Performance of Alloys Investigated                                                              | 177  |
| CONCLUSIO | DNS                                                                                             | 180  |
| REFERENCI |                                                                                                 | 182  |
| APPENDIX  | I                                                                                               | A1   |
| APPENDIX  |                                                                                                 | А4   |
| APPENDIX  | III                                                                                             | A7   |
| APPENDIX  | IV                                                                                              | A 32 |

6.

#### Acknowledgements

The author wishes to thank the Council and Director of the Drop Forging Research Association for permission to submit the present work in the form of a thesis.

Thanks are also due to Dr. P. H. R. Lane, Dr. H. W. Rayson, and Mr. R. C. Farmer who acted as supervisors and were ever generous with advice and encouragement.

The considerable help given with experimental work by Messra. J. McKay and B. Chambers is gratefully acknowledged.

Finally, the author would like to thank Mrs. P. M. Willingham and Miss S. Pickering for typing the thesis.

## INVESTIGATIONS ON DIE MATERIALS

#### 1. INTRODUCTION

#### 1.1 The Need for Improved Die Materials

Drop forging is a metal forming process in which hot metal, in the form of cut pieces or bar stock, is shaped by forging between dies which contain an impression of the shape to be formed. It is ideally suited to the production of large numbers of identical components, such as those required by the motor vehicle, aircraft, and general engineering industries.

The most important market for drop forgings is the motor vehicle industry which absorbs about 70% of all the drop forgings produced in Great Britain. Over the last twenty years, there has been a gradual, but significant, decline in the number of forgings used in motor vehicles<sup>1</sup>. This erosion of the principal market for drop forgings has been caused by continual improvements in products made by competing processes such as casting, powder metallurgy, welding, extrusion and cold forging.

Where replacement of forgings has occurred, it has usually been for one of two reasons. Either the first cost of the part made by the alternative method has been lower than that of a forging, or the dimensional accuracy has been greater, thus reducing subsequent machining costs. Fortunately for the drop forger, the reduced usage of his products has, until now, been more than offset by the large increase in the number of vehicles produced. There are, however, indications that this state of affairs will come to an end so that there could be a reduction in the tonnage of forgings required.

Thus, the drop forging industry is under increasing pressure to produce more accurate parts at reduced cost to maintain its present markets. The accuracy of drop forgings can, of course, only be ensured so long as the shape of the die cavity is maintained. The need for more accurate forgings is synonymous, therefore, with the need for improved die materials.

An approximate breakdown of the costs involved in producing drop forgings is given in Table 1.

#### Table 1

#### Approximate Cost Breakdown of Drop Forgings

| and the second second |                                        |                 |
|-----------------------|----------------------------------------|-----------------|
|                       |                                        | % of Total Cost |
| 440                   | Plant costs                            | 10              |
| 2.                    | Labour costs                           | 20              |
| 3.                    | Forging material costs                 | 50              |
| 120                   | Heating costs                          | la              |
| 5.                    | Neat treatment and<br>inspection costs | 6               |
| 6.                    | Die costs                              | 10              |
|                       |                                        |                 |

Table 1 shows that die costs account for a significant part of the total production costs.

- 2 -

The annual expanditure of the drop forging industry on die materials has been estimated<sup>2</sup> at about  $\pounds 1\frac{1}{2}m$ . In addition to this, a further  $\pounds 5m$ . is spent on machining dies, so that the total die costs amount to  $\pounds 7\frac{1}{2}m$ . per annum. These figures show that comparatively small reductions in die costs could save the drop forging industry large sums of money each year. It was with the object of realising such large potential savings that the work to be described was undertaken.

## 1.2 <u>Die Steels used in the Drop Forging Industry at the Start of the</u> <u>Investigation</u>

Steels for drop forging dies are covered by B.S.S. 224, 1938, which lists only four materials, whose compositions are shown in Table 2.

#### Table 2

|           |     |            |    | Compo | sition |              |        |              |
|-----------|-----|------------|----|-------|--------|--------------|--------|--------------|
| Vie Steel | C   | <b>S</b> 1 | Mn | S     | P      | Ni           | Cr     | Мо           |
| No. 1     | .6  | •3         | •7 | .05m  | .05m   | 09 <b>69</b> | фа.    | 63) wa       |
| No. 2     | .6  | •3         | ۰7 | .05m  | .05m   | 1.25         | 82 620 | <b>85 63</b> |
| No. 3     | .55 | • 3        | .7 | .05m  | .05m   | 1.5          | .6     | ee etc       |
| No. 5     | •55 | •3         | •7 | .05m  | .05m   | 1.5          | .6     | •3           |

## Composition of Die Steels Listed in B.S.S. 224, 1938

Of these four steels only the last one, No. 5 Die Steel, is used extensively. This steel, however, is used almost exclusively for hammer dies /and large and large press dies. It is invariably supplied to the drop forger in the hardened and tempered condition ready for sinking. The hardness to which it is heat treated depends on the size and complexity of the die cavity. Table 3 shows the hardness levels recommended by a leading die block supplier<sup>3</sup>.

## Table 3

## Recommended Hardness Levels for No. 5 Die Steel for Hammer Dies

| Hardness | Hardness          |                   | Equivalent            | Ann? Fanthing                 |  |
|----------|-------------------|-------------------|-----------------------|-------------------------------|--|
| Rango    | BHN               | Hv30              | UTS t/in <sup>2</sup> | ADDITCRATOU                   |  |
|          | 401               | <u>425</u>        | <u>88</u>             | Small, shallow impressions up |  |
| Fa       | 429               | 455               | 95                    | to ‡ in. deep                 |  |
| B        | <u>363</u>        | <u>385</u>        | 80                    | General forging dies with im- |  |
|          | 388               | 401               | 85                    | pressions up to 2 in. deep    |  |
| с        | <u>221</u>        | <u>350</u>        | <u>13</u>             | Larger forgings up to 5 in.   |  |
|          | 552               | 370               | 77                    | doep                          |  |
| D        | <u>293</u><br>321 | <u>298</u><br>335 | <u>64</u><br>71       | Very large forgings only      |  |

Long experience in the use of No. 5 Die Steel has confirmed the general suitability of these hardness levels for the applications indicated.

A knowledge of the mechanical properties of this steel at these hardness levels, therefore, forms a useful basis for the likely property requirements of alternative materials for hammer dies.

The only other die steel in common use is a 5% chromium steel of the American H.12 type, with the following nominal composition - 0.3 C, 1.0 Si, 5.0 Cr, 2.0 Mo, 1.0 V, and 0.25 V. This steel is used for press dies and inserts of small and medium size. Dies are normally sunk in the annealed condition and are subsequently hardened and tempered to somewhat higher levels than are used for hammer dies. The dies are also sometimes nitrided after heat treatment.

The material has never gained popularity for harmer dies due to the brittleness compared with No. 5 Die Steel. The original H.12 steel was developed for the die-casting of aluminium alloys<sup>4</sup> and appears to have been introduced into the forging industry in about 1945.

A very small quantity of dies is still made from plain carbon steel, similar to No. 1 Die Steel. The use of this material is confined to dies with small, shallow impressions such as those used in the production of small spanners, pliers and cutlery. The dies are hardened by water quenching of the impression face after machining.

Cutlery dies may be made from a high carbon, high chromium steel (0.6 - 2.0 C, 12 Cr) which is air or oil hardened after sinking. The use of such a brittle material is permissible due to the small size of the forging equip-

#### 1.3 Performance of Forging Dies

It may some surprising that only two die steels have gained wide acceptance over the last thirty years, during which time vast strides have been made in the development of alloy steels.

The reasons for this are the difficulties encountered in assessing the performance of new die materials in the forge, and an almost complete lack of research into die materials specifically intended for drop forging.

- 5 -

Under production conditions, there is invariably a wide variation in the life of allegedly identical dies used to produce a given forging. Generally, the life is normally distributed about a mean value as illustrated in Figure 1 (p. 7 ).

In addition to this variation of die life for a given forging, the <u>mean</u> die life varies widely from forging to forging, and as the average life increases, so does the spread about the mean value as indicated in Figure 2 (p. 7 ). This figure shows the standard deviation of die life plotted as a function of mean die life, and is based on data collected by Jackson et al<sup>5</sup>, Littler<sup>6</sup>, and data collected during works die wear trials made in connection with the present investigations.

The difficulty involved in establishing an accurate value of mean die life in a forge is well illustrated in Figure 3 (p. 9 ), which shows the cumulative mean die life for a forging, plotted against the number of impressions used. The data on which Figure 3 is based were taken from die life records maintained by a drop forger. Clearly, from this figure, a reliable indication of mean die life is not obtained until quite a large number of impressions has been used. In practice, the accumulation of such a large amount of data can take several years, especially in jobbing forges where repeat orders of a given pattern are infrequent.

Another complication is the fact that dies can fail by a number of different mechanisms, as discussed in section 1.4. Thus, a material which performs well in one application may not do so in another.

These difficulties have, over the years, been responsible for the failure of drop forgers to introduce improved die materials.

- 6 -



## Figure 1





## Figure 2.

Nolationship Botwaen Standard Daviation of Die Life and Maan Die Life

## 1.4 Modes of Die Failure

Figure 4 (p. 9 ) illustrates the various modes of die failure and also indicates the positions in a die cavity where each type of failure is most likely to occur. Typical examples of dies which have suffered erosive wear, heat checking and mechanical fatigue cracking are shown in Figure 5 (p. 10).

## 1.5 Scope and Objectives of the Present Investigations

The final objective of the investigations was to reduce the contribution which die costs make to the overall cost of producing forgings.

To achieve this objective, it was necessary to establish what properties were required by die materials and then to select or develop materials which satisfied these requirements at a minimum cost.

It was clear from the outset that certain requirements of die materials were related to conventional mechanical properties which are readily determined. It was equally clear that the least understood mechanism of failure was wear. Discussions held with drop forgers showed that wear was also the major cause of die failure in small and medium sized dies which constitute the greatest proportion of dies used in the industry.

Reliable data on the wear resistance of different die materials could not be obtained from forges because of the widespread lack of performance records, the variability in die performance already mentioned, and the slowness with which data could be collected. It was necessary, therefore, to develop a method of studying wear by means of laboratory tests.

co () \*\*\*





Modes of Die Failure



Erosion of Flash Lands



Thermal Fatigue Cracking



Mechanical Fatigue Cracking

## Figure 5

Examples of Three Nodes of Die Failure

#### 2. LITERATURE REVIEW

#### 2.1 Service Conditions of Forging Dies

The service conditions of forging dies may be defined in terms of the thermal and stress cycles to which dies are subjected during use.

Knowledge of surface temperatures is important for two reasons. Firstly it will indicate the temperatures up to which die steels must retain adequate strength. Secondly, surface temperature will probably influence the wear of a die material by its effect on the structural stability of the die surface.

Equally important in deciding the property requirements of die materials will be the loads to which a die is subjected. Knowledge of such loads will determine the hardness level to which dies must be heat treated to avoid deformation. The load will also have a marked influence on the likelihood of mochanical fatigue cracking, gross fracture, and the extent of die wear.

#### 2.1.1 Dia surface temperatures

The most comprehensive investigation of die temperatures during forging is that of Beck<sup>7</sup>, who calculated the maximum theoretical die temperature at the surface as a function of bulk die temperature and stock temperature, as shown in Figure 6 (p.13).

Similar calculations by Kindbom<sup>8</sup> are in close agreement with these of Beek.

Invariably, attempts to measure surface temperatures by means of thermocouples have yielded values below those indicated by Beck's and Kindbom's calculations. Thus, Beck measured maximum temperatures of only 650°C whilst Vigor and Hormaday<sup>9</sup>, using the sophisticated thermocouple arrangement shown in Figure 7 (p.13), obtained a maximum reading of 695°C. Details of stock and die temperature were not recorded in the above investigations.

Metallographic examinations and hardness measurements on used dies have given valuable indications of the temperatures reached during forging. Tholander<sup>10</sup> has made such investigations, and his results are summarised in Table 4.

## Table 4

## Surface Structure and Microhardness of Worn Forging Dies

| Die Material                                                             |                 | Original Surface<br>Hardnoss hard<br>Hy30* After |      | Nicro-<br>Mosa<br>Vae | Forgings<br>Produced | Hanner<br>or<br>Press                 | Surface Structure                     |  |
|--------------------------------------------------------------------------|-----------------|--------------------------------------------------|------|-----------------------|----------------------|---------------------------------------|---------------------------------------|--|
|                                                                          |                 |                                                  | Min. | Max.                  |                      |                                       |                                       |  |
| Chen the                                                                 | SIS 2550        | 435                                              | 370  | 800                   | 15 000               | 8-9<br>2-2<br>2-2                     | Regions of untempered<br>martensite.  |  |
| 25                                                                       | SIS 2550        | 440                                              | 350  | 850                   | 13 000               | H                                     | As above.                             |  |
| 3.                                                                       | SIS 2550        | 595                                              | 400  | 700                   | 5 000                | a a a a a a a a a a a a a a a a a a a | Tempered martensite<br>and bainite.   |  |
| 9.9.5<br>8                                                               | Cr-No<br>Steel  | 445                                              | 315  | 900                   | 12 000               | HA                                    | Tempered and untempered<br>martensite |  |
| 23.8                                                                     | SIS <u>2242</u> | 550                                              | 322  | 470                   | 36 500               | gp                                    | Acicular tempered mar-<br>tensite.    |  |
| " Converted from Rockwell values<br>H = Hammer SP = Friction Screw Press |                 |                                                  |      |                       |                      |                                       |                                       |  |





Theoretical Die Surface Temperature as a Function of Stock Temperature end Bulk Die Temperature (After Beck<sup>7</sup>)



## Figure 7

Thermocouple Arrangement Used by Vigor & Hornaday to Measure Die Surface Temperatures.

| Composition        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                 |
|--------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                  | 51                    | Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NI                                                                                                                    | Cr                                                                                                                                                                                                                             | Mo                                                                                                                                                                                                        | V                                                                                                                                                                                                                                             | AC1 m v6                                                                                                                                                                                                                                                                                           |
| -5                 |                       | M15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>2.8</u><br>3.2                                                                                                     | <u>2</u><br>1.1                                                                                                                                                                                                                | <u>.25</u><br>.35                                                                                                                                                                                         | 29                                                                                                                                                                                                                                            | 710                                                                                                                                                                                                                                                                                                |
| • 45               | .25                   | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ø                                                                                                                     | 3.0                                                                                                                                                                                                                            | 05                                                                                                                                                                                                        | ang s                                                                                                                                                                                                                                         | 750                                                                                                                                                                                                                                                                                                |
| - <u>35</u><br>.42 | .8                    | o lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | κŋ                                                                                                                    | <u>5.0</u><br>5.5                                                                                                                                                                                                              | 1.6                                                                                                                                                                                                       | <u>.85</u><br>1.15                                                                                                                                                                                                                            | 840                                                                                                                                                                                                                                                                                                |
|                    | C<br>16<br>.45<br>.45 | C 51<br>-5<br>-6<br>-4<br>-4<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-4<br>-2<br>-4<br>-2<br>-2<br>-4<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | C S1 Mn<br>-5<br>-6<br>-45<br>-45<br>-2<br>-2<br>-2<br>-2<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5 | C       S1       Mn       Ni $\cdot 5$ $\cdot 2$ $\cdot 3$ $2 \cdot 8$ $\cdot 5$ $\cdot 2$ $\cdot 5$ $2 \cdot 8$ $\cdot 45$ $\cdot 25$ $\cdot 5$ $ \cdot 35$ $\cdot 8$ $\cdot 2$ $\cdot 6$ $\cdot 45$ $\cdot 25$ $\cdot 6$ $-$ | C       S1       Mn       N1       Cr $\frac{5}{.6}$ $\frac{.2}{.4}$ $\frac{.3}{.5}$ $\frac{2.8}{3.2}$ $\frac{.9}{1.1}$ $.45$ $.25$ $.5$ $ 3.0$ $\frac{.35}{.42}$ $\frac{.8}{1.2}$ $\frac{.3}{.6}$ $ 5.0$ | C       S1       Mn       N1       Cr       Mo $\frac{5}{.6}$ $\frac{.2}{.4}$ $\frac{.3}{.5}$ $\frac{2.8}{3.2}$ $\frac{.92}{1.1}$ $\frac{.25}{.35}$ $.45$ $.25$ $.5$ $ 3.0$ $.5$ $.\frac{35}{.42}$ $\frac{.35}{.6}$ $ 5.0$ $\frac{1.22}{1.6}$ | Composition         C       S1       Mn       Ni       Cr       Mo       V $\frac{5}{.6}$ $\frac{.2}{.4}$ $\frac{.3}{.5}$ $\frac{2.8}{3.2}$ $\frac{.9}{1.1}$ $\frac{.25}{.35}$ - $.\frac{45}{.5}$ $.25$ $.66$ - $3.00$ $.55$ - $.\frac{35}{.42}$ $.\frac{3}{.6}$ - $5.0$ $1.2$ $.\frac{.85}{1.25}$ |

Table 4 continued

Thelander concluded that the high surface hardness of the lower alloy steels after use proved that re-austenitisation of the surface occurred during forging, with subsequent transformation after forging finished. He further suggested that, during use, the die surface remained austenitic until the end of forging, as shown in Figure 8 (p.  $_{17}$ ).

Since the high alloy steel (SIS 2242) did not transform, Tholander fixed the maximum die surface temperature between 750 and 890°C.

Heller and Truskov<sup>11</sup> deduced, from hardness measurements on worn upsetting machine punches, that surface temperatures of 800 - 850°C were reached. They investigated the service life of four punch materials, their results being summarised in Table 5.

## Table 5

## Hardness Change and Service Life of Punch Materials in a Horizontal Forging Machine

| Notorios | Composition |      |      |      |        |  |
|----------|-------------|------|------|------|--------|--|
| Materiei | С           | Si   | Mn   | Cr   | Mo     |  |
| ford.    | .46         | 3.2  | .45  | 8.18 | er er  |  |
| 2        | .54         | . 38 | 1.39 | .78  | .28    |  |
| 3        | . 35        | 1.4  | 1.05 | 1.3  | 55 653 |  |
| 14       | .64         | •3   | 07   | 68   | 65 ED  |  |

| Matorial | Original<br>Hardnosa<br>BHN | Hardness<br>After Use<br>BHN | Ac3<br>-00 | Rolative<br>Life<br>% |
|----------|-----------------------------|------------------------------|------------|-----------------------|
| 1        | 364/387                     | 196/241                      | 975        | 100/120               |
| 2        | 364/418                     | 444/550                      | 790        | 100                   |
| 3        | 285/302                     | 196/241                      | 860        | 200/220               |
| 3        | 364/444                     | 196/241                      | 860        | මට හඩු හදා            |
| 45       | 340/380                     | 196/241                      | 760        | 30/40                 |
|          |                             |                              |            |                       |

Tomilin and Belskij<sup>12</sup> also estimated surface temperatures by relating the micro-hardness of used die sections to tempering curves. Extrapolating their results to the die surface, they found temperatures of  $700 - 800^{\circ}$ C indicated for hammer dies, but only  $500 - 650^{\circ}$ C for press dies.

- 15 -

In none of the above investigations were bulk die temperatures or stock temperatures reported.

Beck concluded from his investigations that heat transfer from the stock to the die was effective only so long as the forging load was maintained. Because of this load duration and forging contact times for different forging machines may be expected to influence die surface temperatures. Thelander<sup>13</sup> has published such data for a drop hammer, a friction screw press, and a crank press as shown in Figure 9 (p. 17).

## 2.1.2 Die strosses

The problem of estimating stresses in dies is even more difficult than that of estimating temperatures, because of the wide range of shapes and sizes to be considered.

Several authors<sup>14, 15, 16</sup> have treated the problem analytically using plasticity theory to derive the stress distribution in a forging die. Experimental vorification of the predictions has been confined to the simplest cases of deformation, such as the upsetting of cylinders and measurements of the total head on a die during forging.

The complex formulae developed from plasticity theory to predict die strasses depend, for their accuracy, on a knowledge of the coefficient of friction between the stock and the die, and also a knowledge of the yield strass of the stock material at the appropriate temperature and strain rate.

Since these values are not accurately known, an estimate of stresses in dies is more casily made by the use of a simpler formula such as that proposed by Siebel<sup>17</sup>.

- 16 -





Temperature Fluctuations at the Surface of a Drop - Forging Die (After Tholander<sup>10</sup>)



Time - milliseconds

## Figure 9.

Die Centact and Load Duration Times in Forging Nachines (After Tholander<sup>12</sup>)

- 17 -

Siebel suggested that the normal stress "q" at a distance "z" from the free edge of a forging is given by the expression,

where Kf is the yield stress of the material being forged and "p" is given by the expression,

$$p = \int_0^\infty \frac{2\mu \, kf}{h} \, d \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (2)$$

in which µ is the coefficient of friction between stock and die and "~" and "h" are the quantities indicated in Figure 10 (p. 19). Whilst Siebel's formula still demands a knowledge of µ and the yield stress of the metal, it is much simpler to apply than most others.

Foster<sup>18</sup> has assumed that a forging may be split into "sections" to each of which he applies Siebel's formula to estimate the dio stress distribution as shown in Figure 11 (p. 19).

In discussing stresses in relation to forging dies, it is important to realise that the values estimated from the various formulae proposed are those reached when the forging process is just completed. They take no account of the effect of residual energy in the forging machine after die closure, which has been shown<sup>19</sup> to have a profound effect in determining the maximum stress to which a die is subjected.

More specific information is also needed on the stress levels which exist at any point of a die during the period when metal sliding past that point is occuring, since, as will be shown later, wear occurs only when sliding of the stock takes place.



Figure 10

Development of Flow Resistance According to Siebel<sup>17</sup>







Typical Die Strosses in Drop - Forging Dies (After Foster<sup>18</sup>)

## 2.2 General Work on Die Steels

Several investigators have attempted to develop improved die steels by considering the conventional mechanical properties of steels at elevated temperatures, usually in the region 500 - 700°C.

Prominent among these investigations have been those of the Russian workers Khasim and Parabina<sup>20</sup>, Shishlakov<sup>21</sup>, Livshits<sup>22</sup>, and Gulyaev et al<sup>23</sup>. All these workers mught alternative materials to the commonly used Russian die steels listed in Table 5.

## Table 6

| Material |             | Composition |              |                 |           |     |                  |             |           |                   |  |
|----------|-------------|-------------|--------------|-----------------|-----------|-----|------------------|-------------|-----------|-------------------|--|
|          | Application | C           | Si           | Mm              | Ni        | Cr  | Mo               | W           | V         | Tí                |  |
| SKHNY    | Hamer dies  | .5          | . 35         | .3              | 1.4       | -13 | <u>.6</u><br>1.0 | ಗಲ          | 439       | C                 |  |
| SKhNT    | Hamser dies | 300         | .15          | <u>.5</u><br>.8 | 1.0       | 1.0 | #3 cu            | 63          | 623       | <u>.08</u><br>.15 |  |
| 3Kh2V8   | Press dios  |             | .35<br>max.  | 2.2             | ලාස       | 2.2 | ria 63           | 7.02<br>9.0 | .5        | 5 6               |  |
| 4kh2v3FM | Press dies  |             | . 55<br>max. | .40<br>max.     | <i></i> 6 | 2.0 | .6               | 4.5         | .8<br>1.2 | , SLD ANR         |  |

## Commonly Used Russian Die Steels

On the basis of their tests, the various authors recommended the use of the steels shown in Table 7. Table 7

Die Steels Reconnended by Russian Investigators

| Testod in<br>Works<br>Trials  |              |   | NO                     | 0N3        | Yes                             | Xes        | ON     | No            | No       | No             | Yes           |
|-------------------------------|--------------|---|------------------------|------------|---------------------------------|------------|--------|---------------|----------|----------------|---------------|
| Application                   |              |   | lamer                  | Press      | Jonney                          | Press      | SSB L  | Press         | Press    | Press          | press         |
|                               | Α            |   | °00                    | 20         | 8                               | 20         | 9°     | ŝ             | 3.6      | ŝ              | 8             |
| Reconmended Steel Composition | 4758<br>1923 | - | 00                     | 4.5        | 8                               | 3.6        | 6.4.   | 0°2           | 0        | ŝ              | 00<br>e4      |
|                               | Mo           |   | 9.                     | ш <u>у</u> | 69 69                           | 8          | 62 EP  | 640<br>(447   | <b>1</b> | 5              | 63 <b>8</b> 9 |
|                               | Cr           |   | 3.0                    | 50         | • 00                            | 4°2        | 6.5    | 3.25          | 5        | 3.25           | 6             |
|                               | ŢN           |   | 59 62                  | 8          | 8                               | 9°         | 8      | 8             | 8        | 13 0 m         | N             |
|                               | Min          |   | 6                      | u,         | 1.0                             | 8          | 5      | 00            | 5        | y,             | 500           |
|                               | ***<br>12    |   | N.S.<br>0              | 0<br>14)   | 2.03                            | 2°0        | 0<br>* | 80            | ŝ        | C <sup>3</sup> | 5<br>1<br>1   |
|                               | υ            |   | 0 24                   | ŝ          | ŝ                               | s.         | 0 64   | o ha          | olt      | • L            | ņ             |
| Identification<br>of Material |              |   | (A                     | 23         | 2)                              | (D         | E (    | 13 V          | 5        | RI )           | Ħ             |
| Investigator                  |              |   | Khasin and<br>Parabina |            | المالية مع المالي من المحمد الم | Shishlakov |        | Gulyaev et al |          |                |               |

Only Shishlakov reported data on works trials of the recommended materials. He compared the performance of material D in Table 7 with that of steel 5KhNT for the forging of three different flanges, and reported reductions in die costs between 10 and 38%.

Hopage et al<sup>24</sup> investigated the influence of tungsten content on the properties of chromium-tungsten steels, and considered the possible replacement of tungsten by molybdenum and/or vanadium. They found that vanadium was the most effective element in promoting hot strength (0.2% P.S. of 50 toi at 400°C), followed by molybdenum and finally tungsten. The relative effects of the elements were found to be 0.5 V  $\approx$  0.9 Mo  $\approx$  4.4 W. However, they noted a considerable reduction in impact properties with increasing vanadium additions.

Molybdenum and vanadium were found to reduce thermal fatigue resistance more than tungston, due to roducing the thermal conductivity of the steels as shown in Figure 12 (p. 25).

Corbett at al<sup>25</sup> investigated the properties of low carbon, 3% molybdomum stools to assess their suitability for use as die steels. They found that a michal addition of 3% was necessary to produce a material of adequate hardenability and the composition finally recommended was 0.2 C, 3.0 Ni, 3.0 Mo. The authors reported that trials of the material on horizontal upsetting machines and crank presses showed good results with the steel having adequate wear resistance and particularly good resistance to heat checking. Subsequent trials in England<sup>26</sup> have confirmed the high resistance of this material to thermal fatigue.

∾ 22 ∾

In a review article ("The Present State of the Development of Cold and Hot Working Steels") Dorrenberg and Mulders<sup>27</sup> mention the use of Cr-Mo/W steels essentially similar to those suggested by the Russian investigators. In addition, they mention the use of nickel based alloys as die materials. Such materials have been shown to give high die lives when used as extrusion dies and brass stamping dies<sup>28</sup>. In the latter application, the nickelbased alloy outperformed dies made from high tungsten steel.

#### 2.5 Spacific Investigations of Die Wear

In spite of the importance of wear as a mechanism of failure in forging dies, little work has been devoted to the topic.

Livshits<sup>22</sup> made wear tests on experimental die steels by rotating a 13 in. dismeter x 0.040 in. thick disc of cold rolled steel against the ground face of a 0.63 in. wide x 2.35 in. long test specimen. The wear resistance was judged by the length and depth of the wear scar produced. Beyond mentioning that the highest wear resistance was shown by a .5 C, 8 Cr, 3 W, .6 Ti steel, Livshits gives no details of the test results, except for photographs of the test specimens. It is by no means clear that the test conditions used simulate these in forging dies, and little value can be placed on the test without further validation of the results.

Smith et al<sup>29</sup> used a radio-activated insert in a production forging die to try to assess wear. They found that most of the radio-activity transferred from the insert occurred in the scale of the forgings, and thus it was necessary to collect scale from around the harmer and determine its activity to assess how which wear the insert had suffered. The fact that the radio-activity occurred

/in the scale

- 23 -

in the scale was thought to be due to exidation of metallic particles removed from the insert. Although the mechanism of wear was not definitely established, Smith et al suggested that the most likely mechanism was abrasion by exide particles derived from the forging stock.

Lange and Meinert<sup>30</sup>, during an investigation into the effect of hardchromium plating of dies, made wear tests by a method essentially similar to that developed by the present author. They compared the wear which occurred on plated and unplated dies by upsetting slugs 1 in. diameter x  $1\frac{1}{4}$  in. long to discs  $\frac{3}{2}$  in. thick. The volume of metal worn from the dies was used as a measure of wear. The wear traces shown in Figure 13 (p. 25) are taken from Moinert's paper.

Wetter<sup>31</sup> studied the influence of tungsten and molybdenum additions to a 0.4 C, 2.5 Cr and 0.5 V by measuring the wear on small inserts placed in a production die, as shown in Figure 14 (p. 26). Wetter showed that wear was a function of what he termed the "tungsten equivalent" of the die, the tungsten equivalent  $W_E$  being given by (W. wt %) + (2 x Mo wt %).

Up to a tungsten equivalent of 6%, Wetter showed that improved wear resistance could be attributed to the progressive increase in the tempering resistance of the steels investigated. The Larson-Miller tempering parameter P to soften as quenched steels to a tensile strength of 160 Kp/mm<sup>2</sup> (100 tonf/  $in^2$ ) was used as a measure of tempering resistance. The parameter P is given by the expression P = T (20 + log<sub>10</sub>t), where T is the tempering temperature in degrees Kelvin and t is the tempering time in hours.

Beyond a tungeten equivalent of 6%, no increase in tempering resistance was observed although a further slight increase in wear resistance occurred. Figures 15 and 16 (p. 26 and 28) show the effect of tungsten equivalent and tempering parameter on wear.

- 24 -



Alloying Element Content - Wt %

## Figure 12

Influence of Mo, W and V on the Thermel Conductivity of Steels. (After Hopage et al $^{23}$ )



Distance From Centre of Die

## Figure 13

Wear Contour Formed on Press Dies After Upsetting of Cylinders (After Lange & Meinert<sup>29</sup>)



## Figure 14

Inserts in a Drop - Forging Die Used by Watter<sup>50</sup> to Study Die Wear



ыţ.

## Figure 15

Influence of Tungsten Equivalent on Die Wear (After Wetter<sup>50</sup>).
The improved wear resistance in steels of constant tempering resistance was shown to be due to the influence of the equivalent tungston content on the stability of carbides in re-austenitized steels. Thus, Wetter was able to correlate wear resistance with the amount of carbide remaining undissolved in steels after rehardening, as shown in Figure 17 (p. 28).

Thelander<sup>32</sup> has studied the influence of die hardness on wear by measuring dimensional changes in dies during a forging run. The dimensions measured are indicated in Figure 18 (p. 29), whilst Figures 19 and 20 (p. 29 and 30) summarise some of the results obtained. It is clear from Figure 20 (p. 30) that Thelander's results are complicated to interpret, since deformation and wear are occuring simultaneously, but a high die herdness is obvicually baneficial.

Kirkham<sup>33</sup>, using an improved version of the wear test equipment developed by the author, has investigated the influence of initial die hardness and die prehest temperature on the wear of No. 5 Die Steel.

Kirkham found that wear increased (1) as the initial hardness of the die decreased, and (2) as the preheat temperature of the die increased. Once the die preheat temperature was high enough to cause re-sustenitisation of the die surface during forging, the amount of wear occuring remained almost constant as shown in Figure 21 (p. 30 ).

Attempts by Kirkham to study structural changes at the test die surface by optical metallography were largely unsuccessful, and surface changes were more readily followed by hardness measurements. Metallographic examination did, however, confirm that re-austenitisation of the die surface did occur for dies initially proheated to 150°C or above.

- 27 -



## Figure 16

Influence of Larson - Millor Tempering Parameter on Die Wear (After Wetter<sup>30</sup>)



## Figuro 17

Influence of Carbide Stability on Die Wear (After Wotter<sup>30</sup>)









Number of Places Forged

## Figure 19





Number of Pisces Forged

## Figure 20

Change in Height of Flash Land in a Die During Use (After Tholander<sup>31</sup>)



## Figure 21

Variation in Wear as a Function of Die Preheat Temperature (After Kirkham<sup>32</sup>)

### 2.4 Discussion of Previous Work

It is clear from the literature review that maximum die surface temperatures of 700 - 800°C can be reached in some places in both hammer and press dies. The fact that surface temperatures are similar in both forging machines is surprising, since the contact times vary by an order of magnitude. Previous work has failed to account for this apparent anomaly.

Acknowledging the fact of high die temperatures, most attempts to develop improved die materials have involved selection on the basis of tensile strength at some arbitrarily determined high temperature, usually in the region 500 -650°C.

As a quantitative method of comparing the performance of die steels, this approach is open to question, since a change in the composition of a die steel will influence not only its hot strength but also its thermal properties, as shown by Hopage et al<sup>24</sup>.

Thus, whilst alloy additions will increase strength, they will also increase the operating surface temperature of the die, and it will not be possible to determine which effect will have the greatest influence on performence.

Wetter's work<sup>31</sup> has shown that an arbitrarily defined measure of tempering resistance could be used to explain, in part, the wear resistance of die steels over a limited range of composition. It is not clear, however, how widely this approach to selection of die materials can be applied.

So far as wear resistance is concerned, there is as yet no physical parameter which can be used to predict the behaviour of different die materials in a quantitative manner. This suggests that, until more knowledge of the working conditions of die steels is obtained, a comparison of year resistance must be made on the basis of year tests which simulate forging conditions as closely as possible.

A large number of die materials has been suggested for use in all types of forging machines. There has, however, been, in nearly all cases, no economic justification for the materials recommended. There is, therefore, at the moment still no information to guide the drop forger in the selection of improved die materials and their field of application. This is likely to remain the case until there is some common basis on which die materials can be compared in a quantitative manner which correlates with service performance.

To remark this situation, so far as wear resistance is concerned, the present investigations were undertaken to study the wear of die steels in isolation from conditions which induce other forms of die failure, such as deformation or cracking.

As already mentioned, it is clear that any form of test for year resistance must correlate closely with service performance and, in addition, economic considerations must be studied to indicate the fields of application of materials investigated.

Furthermore, attention must be paid to other die steel requirements than their wear resistance and hot strength, since it is important that improvements in these properties do not impair toughness.

- 32 -

### 3. EXPERIMENTAL WORK - LABORATORY TESTS

### 3.1 Service Conditions in Forging Dies

Before designing a wear test apparatus, it was felt that more information was needed regarding the loads under which metal movement occurred at various stages of die filling, rather than a more knowledge of maximum loads at the end of a forging cycle.

Proliminary investigations were made, therefore, to study metal flow and load variations during forging in simple die cavities.

In addition, some temperature measurements were made on hammer dies to establish the temperature fluctuations which occurred during forging, since published indications of maximum temperatures, derived from hardness measurements, <sup>10</sup>, <sup>11</sup>, <sup>12</sup> appeared incompatible with the very low contact times encountered in hemmers compared with presses.

### 5.1.1 Metal flow and die stresses during forging

Metal flow and die stresses during forging were studied initially by using the simple apparatus shown in Figure 22 (p. 34 ). During the forging of load slugs under a 35 ton capacity hydraulic pross, the stress at selected points of the die surface was measured as follows.

The load at the surface was transmitted by hardened steel pins, with hemispherical ends, to rigidly supported brass measuring discs. Periodically, forging was stopped and the part-forged slug and the brass measuring discs were removed from the die. Examination of the slug enabled the pattern and extent

/of metal flow



## Figure 22

Die Used to Study Metal Flow and Die Stress Distribution of metal flow to be determined whilst the maximum load which had occurred was determined by measuring the diameter of the impressions made by the load transmission pins in the brass discs, and comparing them with a previously determined calibration curve of impression diameter versus load.

The results obtained from these tests are shown in Figures 23 and 24 (p. 36 and 37 ), the former showing the extent of metal flow and the latter the stress at the die surface as a function of the total applied load. These figures show that sliding of metal over the central peg has ceased when the total load is about 15 tons and the stress at the centre of the pog is about 5 tons/in<sup>2</sup>.

Horizontal stresses acting on the "vertical" die wall when metal sliding is occuring are below about 4 tons/in<sup>2</sup>, and are always low compared with stresses acting in the vertical direction.

These tests show that, although high die loads may occur in the later stages of forging when the flash is being thinned, during the period when metal movement is occuring within the die cavity, die stresses are relatively low. During the last stages of forging, metal flow will occur only in the region of the flash land of a die. To investigate stresses in this region during the final stages of forging, a further die was made as shown in Figure 25 (p. 38 ). A loose peg was incorporated in this die so that measurements of forging stresses would be made in the die with and without a peg.

Using the same measuring procedure as already described, measurements of die stresses were made after pressing lead slugs to a maximum load of 30 tonf. in dies with and without the peg. Typical results are shown in Figure 26 (p. 38 ) in which the stress in the die has been plotted as a function of the distance of the measuring pin from the centre of the die.

- 35 -



Figuro 23 Netal Flow at Various Stages During Forging in the Die. Shoum in Figure 22.



Stress Distribution at Various Stages During Forging in Die Shown in Figure 22.





Die Used to Investigate Stresses in Body of Die and in Flash Land



Distance From Centre of Die - ma.

## Figure 26

Stress Distribution at End of Forging Period in Die Shown Above In all cases, the stress in the flash land was always low compared with the stress at the centre of the die at the completion of forging.

The experiments described show that metal sliding at any point in a die will occur under relatively small loads, even though the stress at certain points in the die may ultimately reach high values. However, the tests did not give any quantitative information on the level of stresses during the hot forging of steel. To obtain this information, the die shown in Figure 27 (p. 40) was made.

In this die, the stress at the centre of the die was measured by a compression load cell, whilst the stress in the flash land was measured by a beam-type load cell.

Both load cells utilised electrical resistance strain gauges connected into a Wheatstone bridge network to measure the loads. The bridge outputs during forging were recorded by a dual-beam oscilloscope; the traces being photographed by means of a polaroid camera. A typical load-time trace obtained during the forging of mild steel at 1100°C under a friction screw press is shown in Figure 28 (p. 43).

A screw press was chosen as the forging machine in preference to a hammer, since Stöter<sup>34</sup> has shown that the stress levels which occur when making a given forging are higher in the former machine than in the latter.

Figure 28 (p. 43) shows that during the initial period of forging when the slug is being upset to fill the die cavity, stresses are quite low. Only when metal meets the vertical wall of the die, and sliding on the base of the die ceases, does the stress at the centre of the die rise sharply. The stresses measured in the flash land were always low compared with stresses at the centre of the die.

- 39 -



Figure 27

Die used for Measuring Stresses at Centre of Die Cavity and in the Flash Lend It has been claimed<sup>34</sup> that the flash land ratio (flash width/thickness ratio) has an important effect in determining die stresses. Tests were made, therefore, with different values of this ratio, the results obtained being shown in Table 8. In this table, the term "yield stress" has been used to denote the stress level at the centre of the die during the initial free-upsetting period.

### Table 8

|             | Flash Land Dimensions |                     |                                 | nyield                          | Die St <b>ress -</b><br>tonf/in <sup>2</sup> |      |
|-------------|-----------------------|---------------------|---------------------------------|---------------------------------|----------------------------------------------|------|
| Test<br>No. | Width<br>inches       | Thickness<br>inches | <u>Width</u> Ratio<br>Thickness | Stress"<br>tonf/in <sup>2</sup> | Centre                                       | Land |
|             |                       |                     |                                 |                                 |                                              |      |
| 1           | . 197                 | . 120               | 1.64                            | 0.7                             | 35.4                                         | 20.5 |
| 8           | .197                  | . 120               | 1.64                            | 5.7                             | 37.8                                         | 20.0 |
| 3           | . 197                 | .080                | 2.46                            | 6.5                             | 34.3                                         | 12.7 |
| L3,         | . 197                 | .080                | 2.46                            | 8.0                             | 34.9                                         | 15.6 |
| 5           | .197                  | .040                | 4.92                            | 7.7                             | 27.0                                         | 16.3 |
| 6           | .197                  | .040                | 4.92                            | 7.6                             | 27.4                                         | 16.1 |
|             |                       |                     |                                 |                                 |                                              |      |

## Stresses in a Die During Forging of M.S. at 1200°C

Table 8 shows that sliding at the centre of the die occurs at stress levels of 6 - 8 tonf/in<sup>2</sup> (i.e. the stress level during the free upsetting period). Sliding over the flash land occurs at higher stress levels between about 13 - 20 tonf/in<sup>2</sup>

The stress under which sliding takes place is not influenced very much by the flash land ratio within the limits investigated.

#### 3.1.2 Temperature measurements in dies

Although it was appreciated that true measurements of die surface temperature were unlikely to be obtained, temperature measurements in dies were undertaken for the following reasons:

- (1) If the same method was used for temperature determinations in forging dies and dies used in a wear test apparatus, similar readings would assure similar thermal conditions even though absolute values of temperature were not determined.
- (2) As already stated, more information was needed to determine why temperatures for hammer and press dies, deduced from hardness measurements, were similar when contact times differed by an order of magnitude.

The thermocouple arrangement used for all die temperature measurements is shown in Figure 29 (p. 43 ). A 1/16 in. diameter hole was drilled from the back of a die insert to within 1/16 in. of the die surface. A 0.020 in. diameter hole was then drilled from the die surface to meet the larger hole. A Constantan wire with a bead on the end was passed through the smaller hole and the bead peened into the hole and polished flush with the insert surface. An iron wire was then attached to the die to form an Iron-Constantan thermocouple.

The output from the thermocouple was connected to one beam of a double beam oscilloscope, the other beam being used during a test to record a time trace derived from a signal generator.





Typical Oscilloscope Trace Obtained When Forging in Die Shown in Figure 27



## Figure 29

Thermocouple Arrangement Used for Die Surface Temperature Measurement

- 43 -

Using the die shown in Figure 29 (p. 43) a run of eleven forgings was made from 1 in. diameter x 2 in. long slugs forged at  $1200^{\circ}$ C in three blows on a 10 cwt. drop hammer. A typical time-temperature trace for the forging of one slug is shown in Figure 30 (p. 45).

The various time intervals into which the forging process may be divided are indicated in Figure 30 (p. 45). At the beginning of interval  $t_1$ the slug is placed on the die which is at temperature  $\Theta_0$  and a very slight temperature rise occurs to  $\Theta_1$  at the end of  $t_1$ . The heat transfer during this period is very low, due to the presence of scale on the slug and the poor thermal contact between slug and die.

At the beginning of time intervals  $t_2$ ,  $t_4$ , and  $t_6$  the forging blows are struck, and during these periods improved thermal contact between the forging and the die leads to the temperature increases shown. Table 9 (p. 46) shows the time intervals and temperatures recorded during forging of eleven slugs.

Load-time traces were also recorded for forgings produced in the same way as those used for temperature measurements. Typical traces for each of the three blows used to produce the forging are plotted in Figure 31 (p. 45).

Table 9 shows a number of interesting features. Firstly, the recorded values of  $\Theta_0$  show that a quasi-equilibrium state is soon established at the die surface with the steady die temperature settling down at about  $130^{\circ}C$  after only five forgings, as shown in Figure 32 (p. 51).

A second point of particular interest concerns the duration of the temporature rise during the three forging blows, as shown by the time intervals  $t_2$ ,  $t_4$ , and  $t_6$ .

- lala -





<u>Figure 30</u> Typical Time-Temperature Record During Forging



Figure 31 Stress at Centre of a Die During Manufacture of a Forging in Three Blows.

Table 9

Time Intervals and Corresponding Temperatures during Forging

|                              | -         |          | -     |                      |       |       |      |      |      |      |       |          |
|------------------------------|-----------|----------|-------|----------------------|-------|-------|------|------|------|------|-------|----------|
|                              | La        | 2.32     | 2.4.7 | 2202                 | 56°0  | 3°.36 | 0.35 | 1°99 | 0.33 | 1°54 | 1.92  | 20 la la |
|                              | 9         | 0.17     | 0.17  | 0.13                 | 0.17  | 0.45  | 0.16 | 0.43 | 0.13 | 0°17 | 0.22  | 0.20     |
| econds                       | ¢<br>U    | 64<br>64 | 1.03  | 10 72                | 2.013 | 4°05  | 1.06 | 1.07 | 1.09 | 1°09 | 1.05  | 4021     |
| - Teale                      | th.       | 0.17     | 0.13  | 0.13                 | 0.13  | 0.16  | 0.15 | 0.13 | 0.14 | 0.13 | 0.17  | 0°17     |
| line Inte                    | т<br>М    | 1°01     | 1.048 | 10 10 00<br>10 10 00 | 1.27  | 1.27  | 1.27 | 1.16 | 5.4  | 1.07 | 1° 70 | 1.20     |
|                              | 1)<br>4   | 0.23     | 0.02  | 0.13                 | 0°01  | 0.01  | 0.01 | 0.15 | 0.10 | 0.37 | 0.17  | 0°08     |
|                              | 475<br>수급 | 3.98     | 3.16  | 2.22                 | 7.26  | 2.15  | 3.26 | 2.10 | 2.58 | 2.68 | 2.23  | 1074     |
|                              | 64        | 389      | 374   | 340                  | 389   | 360   | 330  | 367  | 330  | 372  | 338   | 367      |
|                              | 90        | 1240     | 044   | 404                  | 454   | 431   | 368  | 389  | 352  | 418  | 268   | 421      |
| ()                           | 62        | 328      | 323   | 330                  | 345   | 367   | 222  | 244  | 244  | 330  | 323   | 345      |
| Temperature - <sup>o</sup> C | elt.      | 345      | 367   | 378                  | 382   | 396   | 80%  | 396  | 396  | 372  | 342   | 360      |
|                              | 63        | 126      | 148   | 172                  | 187   | 234   | 184  | 222  | 215  | 230  | 36E   | 206      |
|                              | 62        | 115      | 241   | 250                  | 237   | 208   | 5    | 220  | 215  | 244  | 372   | 184      |
|                              | 81        | 72       | 142   | 34.8                 | 121   | 162   | 132  | 148  | 244  | 130  | 127   | 130      |
|                              | ©<br>©    | 50       | 87    | 108                  | 116   | 123   | 130  | 120  | 344  | 130  | 112   | 10<br>17 |
| Forging<br>No.               |           | क्ष्म    | 0     | м                    | 4     | ß     | 9    | 1    | Ø    | 6    | 10    | 1        |

Table 10 below compares the load duration for each blow (from Figure 31 p. 45 ) with the duration of the temperature rise.

#### Table 10

|                |                                            | *                             |
|----------------|--------------------------------------------|-------------------------------|
| Blow<br>Number | Duration of Temperature<br>Rise - seconds* | Duration of<br>Load - seconds |
| P.             | 0.12                                       | 0.015                         |
| 2              | 0.15                                       | 0.005                         |
| 3              | 0.17                                       | 0.004                         |
|                | *mean values from Table 9                  | )                             |

Load and Temperature Rise Durations

The table shows that heat transfer from the slug to the die occurs over a much longer period than that for which the forging load is sustained. A probable explanation of this apparent anomaly is as follows.

During the period when the forging load is maintained, good thermal contact is established between the forging and the die. After the energy of the blow has been dissipated in forging, the tup probably rests on the die for a short period before the hammer driver lifts it to deliver the next blow. During this period, the only load on the die is that due to the weight of the tup, which is too small to be registered by the load cell. It is probable, however, that this tup weight is sufficient to maintain the good heat transfer between stock and die which was established during the period of a high forging load. Thus, the duration of heat transfer in hammers and presses is probably similar in spite of the large differences in forging load duration. This would explain the similar thermal effects noted on the two forging machines by previous investigators.

The maximum die temperatures shown in Table 9 ( $\Theta_6$ ) were between 350 and 450°C, and this indicates that similar temperatures should be achieved, if possible, in dies used in a simulative wear test.

### 3.2 Development of a Wear Test

#### 3.2.1 Conditions necessary to simulate practical forging

In any form of simulative wear test, the forging conditions in the test should approach as closely as possible those occuring in practical forging if the test results are to be applicable in the forge.

Knowledge gained from the literature survey, and the experiments described in sections 3.1.1 and 3.1.2 of this thesis, give a good indication of the forging conditions to be reproduced.

Briefly summarised, the requirements are as follows:

- During a wear test, hot scaled forging stock must slide over the surface of the test die.
- (2) Contact between the forging stock and the die surface must be intermittent with a contact period of about .1 to .2 seconds as indicated by the time intervals  $t_2$ ,  $t_4$ , and  $t_6$  in Table 9. The non-contact period should be representative of the time interval between the completion of one forging and the start of the next one under practical forging conditions. This

/period will

- 48 -

period will vary widely according to the type and size of the forging, but for small to medium sized forgings, which account for the majority made, will be typically of the order of 10 seconds.

(3) The loads under which sliding of the stock material over the test die occurs must be representative of those found in commercial forging. The experiments described in section 3.1.1 suggest that sliding should take place under a stress of 6 - 20 tonf/in<sup>2</sup>.

The adaptation of conventional methods of wear testing, such as pin and disc tests, crossed cylinder tests, and rotating ball tests, was considered to be difficult due to the need to heat one component to such high temperatures that plastic deformation would ensue.

The inevitability of plastic deformation suggested that the wear test should take the form of a simple forging operation. Preliminary investigations were made, therefore, to investigate whether the required test conditions could be met by the simplest of all forging operations, that of upsetting small cylinders between flat dies.

#### 3.2.2 Lond and temperature measurements during upset forging

The first step taken in the development of an erosive wear test was to determine die loads and temperatures during upset forging.

An eccentric press of the C-frame type, with a stroke length of 1 in. and a nominal capacity of 20 tonf, was selected as the forging machine for the tests.

To study the loads and temperatures when forging under this press, the die shown in Figure 27 (p. 40) was used.

- 49 -

Mild steel slugs  $\frac{1}{2}$  in. long x  $\frac{1}{2}$  in. diameter were upset to various final thicknesses by forging at 1100°C. Loads and temperatures were recorded on a double beam oscilloscope. A typical trace showing load and temperature during forging is shown in Figure 33 (p. 51 ). The second deflections on this trace were due to a second forging blow being struck before the press could be stopped or the slug removed from the die. Only the loads and temperatures indicated by the first deflection are considered.

The results of these preliminary tests are presented in Table 11 and Figure 34 (p. 52).

#### Table 11

## Die Loads and Temperatures during Upsetting of Mild Steel Slugs f in. long x f in. diameter

| Test<br>No.                                                          | Original Slug<br>Length - in. | Final Slug<br>Longth - in. | Maximum<br>Temperature - <sup>o</sup> C | Maximum<br>Stress - tonf/in <sup>2</sup> * |  |  |
|----------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------------------|--------------------------------------------|--|--|
| 1                                                                    | 0.750                         | 0.728                      | 56                                      | 0                                          |  |  |
| 2                                                                    | 0.750                         | 0.748                      | 42                                      | o                                          |  |  |
| R                                                                    | 0.750                         | 0.660                      | 232                                     | 5.4                                        |  |  |
| Ŀ                                                                    | 0.750                         | 0.665                      | 297                                     | 3.6                                        |  |  |
| 5                                                                    | 0.750                         | 0.538                      | 287                                     | 8.1                                        |  |  |
| 6                                                                    | 0.750                         | 0.537                      | 305                                     | 7.5                                        |  |  |
| 7                                                                    | 0.750                         | 0.416                      | 282                                     | 9.7                                        |  |  |
| 3                                                                    | 0.750                         | 0.414                      | 278                                     | 8.2                                        |  |  |
| 9                                                                    | 0.750                         | 0.302                      | 342                                     | 12.5                                       |  |  |
| 10                                                                   | 0.750                         | 0.300                      | 360                                     | 13.0                                       |  |  |
| 4                                                                    | 0.750                         | 0.203                      | 406                                     | 21.0                                       |  |  |
| 12                                                                   | 0.750                         | 0.211                      | 360                                     | 20.0                                       |  |  |
| "calculated from maximum load and final cross section of forged slug |                               |                            |                                         |                                            |  |  |

- 50 -



Number of Forgings Made

Figure 32

Die Surface Temperature at Start of Forging as a Function of Number of Forgings Made.



## Figure 33

Load and Temperature Traces During Upset Forging

of Siugs.



Slug Height - in.

## Figure 34

Maximum Stress and Die Surface Temperature During Uppet Forging as a Function of Final Slug Height

an first) w

Table 11 and Figure 34 (p. 52) show that for forgings of a final thickness of 0.3 in. or less the stresses and temperatures are very close to those required to simulate forging in closed dies. The measured die temperatures (340 -  $400^{\circ}$ C) agree well with those previously determined, by the same thermocouple arrangement, under practical heamer forging conditions (350 -  $450^{\circ}$ C).

The results of these preliminary tests, therefore, suggested that forging conditions could be simulated by simple upsetting, and that this method could be used as the basis of a wear test.

The work of Smith et al<sup>28</sup>, proviously described, suggested that the rate of die wear during forging would be of the order of .001 in. per 1000 forgings. This indicated that, to produce a measurable amount of die wear by upset forging, several thousand forgings would have to be made. Hand feeding of such large numbers would be time consuming and tedious, and it was decided, therefore, that feeding of slugs to the press must be done automatically. The next section of this thesis describes the development of an automatic feeding system.

#### 3.2.3 Development of an automatic forging press

The automatic feeding mechanism developed for the forging press is shown schematically in Figure 35 (p. 5% ).

Sheared and barrelled slugs were placed in a vibratory bowl feeder "A" which fed them, correctly oriented, to a conduit "B". The slugs were led by the conduit to a double-gate system "C" which allowed one slug at a time to pass into an induction heating coil "D".

The operation of the double-gate system was as follows. The column of slugs was supported by a bar "E" which was retracted by an air cylinder when a slug was to be passed into the induction coil. Retraction of the bar "E"

/allowed the

- 55 -



Figure 35 Schematic Diagram of Automatic Feeding Arrangement

allowed the bottom slug in the column to drop into the coil whilst the remainder of the column of slugs was held in position by the spring-loaded bar "F" holding a slug against the conduit wall.

When the bar "E" returned to its forward position, the bar "F" released the column of slugs which were again supported on the bar "E".

The slug was supported in the heating coil by a refractory finger "G". When heating was completed, the finger "G" was lowered by an air cylinder transferring the slug into the tongs "H". Operation of another air cylinder moved the tongs to the forging station under the press. When this position was reached, a further cylinder withdrew the retaining arm "J" of the tongs, which then returned under the heating coil leaving the slug in position on the die ready for forging.

The clutch of the press was then engaged and the slug forged. After forging, the slug was ejected by a cylinder operated ejector arm.

All the air cylinders, except that operating the ejector, were activated by can operated air values. The came to operate the values were carried on a drum driven by a synchronous motor. The positions of the cam on the drum and their length determined the timing of operation of the cylinders.

The ejector cylinder was operated by air valves which were triggered by cans mounted on the ran of the press. The ejector cylinder was timed to operate before the ran pressure on the forged slug was released. In this way, the ejector pushed hard against the forging and ejected it forcibly as soon as the forging pressure was released. This was necessary to ensure ejection of the slug, even if sticking of the slug to the top die tended to cocur.

- 55 -

The air circuit which operated the press clutch cylinder was designed in such a way that the elutch could not be engaged until the tongs had returned to a safe position under the heating coil, thus obviating any possibility of forging the tongs. Details of the circuit are given in Appendix I to this thesis, together with details of an electro-pneumatic circuit which replaced the original one during the period of the tests.

Figure 36 (p. 57 ) shows a photograph of the automatic feeding apparatus fitted to a 20 tonf. capacity crank press.

The sequence of operations for a complete forging cycle together with the approximate time interval for each operation is shown in Table 12 below.

| T            | ab | 10            | 12                                                                                                              |
|--------------|----|---------------|-----------------------------------------------------------------------------------------------------------------|
| - Alexandria |    | Character and | the new Party of the second |

## Sequence of Operations of Automatic Forging Press

|       | Operation                           | Time Occupied - sec. |
|-------|-------------------------------------|----------------------|
| dir-f | Slug dropped into heating coil      | 93                   |
| 2.    | Slug heated to forging temperature  | 7                    |
| 3.    | Slug transforred to tongs           | ci<br>el             |
| 120   | Slug transferred to forging station | 2                    |
| 5.    | Tongs returned under coil           | Ą                    |
| 6.    | Slug forged )                       |                      |
|       | Slug sjected)                       |                      |
| 8.    | Next zlug into heating coil         |                      |

The heating time of 7 seconds was the minimum time in which uniform heating of the slup could be achieved.



The total cycle time of 12 seconds allowed 300 forgings an hour to be made, which is typical of production rates in commercial forging, so that thermal cycles in the test dies were similar to those in industrial dies.

The temperature of each slug immediately prior to forging was monitored by a Land continuous optical pyrometer. Equipment was developed which allowed the member of slugs falling within three pre-selected temperature ranges to be recorded on counters. Details of this equipment are given in Appendix II.

Table 13, which shows the percentage of 2000 slugs falling within the indicated temperature ranges, illustrates the degree of temperature uniformity achieved.

|                           |         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |               | a la la companya da l |
|---------------------------|---------|------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| Test No.                  | < 1075℃ | 1075 - 1095°C                            | 1095 - 1115°C | >1115°C                                                                                                         |
| 87                        | 4 + Å   | 10.0                                     | 72.6          | 16.0                                                                                                            |
| 28                        | 0.0     | 3.0                                      | 41.0          | 56.0                                                                                                            |
| 29                        | 1.4     | 6.9                                      | 54.1          | 37.6                                                                                                            |
| 548<br>548                | 0.0     | 19.0                                     | 60.0          | 21.7                                                                                                            |
| 52                        | 0.2     | 18.2                                     | 55.8          | 24.2                                                                                                            |
| 22                        | 14.1    | 18.7                                     | 50.1          | 17.1                                                                                                            |
| 34                        | 1.8     | 16.4                                     | 52.0          | 19.7                                                                                                            |
| Average<br>for<br>7 testa | 4.0     | 13.0                                     | 55.0          | 28.0                                                                                                            |

#### Table 13

### Percentage of Slugs Within Indicated Temperature Ranges

Table 13 shows that about 70% of all slugs forged were within  $\frac{1}{2}$  20°C of the required forging temperature of 1200°C. Almost all those falling outside this range were too hot.

The reason for this was eventually traced to an increase in mains voltage when local depend fell during lunch breaks and in the late afternoon when nearby factories closed for the day.

Suitable adjustment of the output transformer of the H.F. heating set at the appropriate time eventually allowed over 90% of slugs to be forged within  $\stackrel{*}{}$  20% of the required temperature.

## 3.2.4 Test procedure

Steel for the test dies was obtained in the form of  $2\frac{1}{2}$  in. round bars. These were machined to 2 in. diameter, and slices  $\frac{1}{2}$  in. thick were cut from them. These slices were then hardened and tempered to the required hardness level before grinding 2/16 in. from each face to remove any decarburisation.

The test dies were then placed in the press and 1000 mild steel slugs were forged at 1100°C. The top and bottom dies were then reversed, and a further 1000 slugs forged. The reason for reversing the dies half way through each test was as follows.

In early tests, a temporature gradient existed in the slugs with the top of the slug being botter than the bottom. This led to more spreading of the slug securing at the top than at the bottem.

This effect can easily be shown to have a pronounced effect on the relative wear occuring on top and bottom dies as follows.

- 59 -

Evenly heated slugs deform uniformly as shown in Figure 37a (p. 61), producing equal areas of sliding on both top and bottom dies. Unevenly heated slugs, however, deform as shown in Figure 37b (p. 61), producing unequal areas of sliding. A limiting case is shown in Figure 37c (p. 61) where no sliding has occurred on the bottom die.

Figure 38 (p. 61) shows the calculated ratio of the sliding areas on top and bottom dies as a function of the ratio Dt/Db, where Dt is the final diameter of the top of the slug and Db the final diameter of the bottom of the slug. This figure shows that the ratio of the two sliding areas is very sensitive to non-uniform deformation.

The sum of the two sliding areas is, however, much less sensitive to non-uniform defortation, as shown in Figure 39 (p. 62).

To obviate any errors in die wear assessment due to such an effect, the dies were reversed half way through a test cycle.

Figure 40 (p. 62) shows a typical test die after making 2000 forgings. The wear pattern takes the form of an annular groove surrounding a central unworn plateau, as illustrated schematically in Figure 41 (p. 64).

In the worn region of the die, radial grooves appeared indicating the direction of metal flow during upsetting. These grooves are similar to those found in production forging dies in locations where erosive wear takes place. Grooves were not found in the central unworn plateau, which was marked only by a fine network of cracks indicative of heat-checking.





Figure 38

Influence of Non-Uniform Deformation on Ratio of Wear Areas of Top and Bottom Dies



# Figure 39

Influence of Non-Uniform Deformation on Sum of Top and Bottom Die Wear Areas



Figure 40

Typical Test Die After 2000 Forgings
#### 3.2.5 Assessment of die wear

An apparatus developed to allow autographic recording of wear contours on test dies is shown schematically in Figure 42 (p. 64 ), whilst Figure 43 (p. 65 ) shows a photograph of the equipment.

Dopth measurements along a diametral contour of the worn die ware made by a differential transformer type displacement transducer, the output of which was fed via a potential divider, to a high speed strip chart recorder. The die was moved past the transducer on a carriage which was driven, through a gear system, by the chart drive motor of the recorder. This arrangement ensured that die movement and chart movement were strictly proportional.

The carriage on which the die was placed ran level on guide rails to within  $\frac{1}{2}$  0.0001 in. over the full length of travel.

A typical diametral contour trace from a worn die is shown in Figure 44 (p. 65 ).

To assess the wear on a die, eight such traces were made and the average of sixteen radial wear areas (shaded in Figure 44 p. 65 ) was used as an index of die wear. The units of wear index used were  $\ln^2 \ge 10^{-6}$ , the wear areas being measured by a planimeter.

#### 5.2.5.1 Reproducibility of wear mensurement

The reproducibility of year measurement was assessed as follows. Two dies were selected, one having a wear index of about 150 in<sup>2</sup> x  $10^{-6}$  and the other a wear index of about 550 in<sup>2</sup> x  $10^{-6}$ .

Four disactors at 45° intervals round the die were selected independently by three different investigators. Each investigator then made three auto-

/graphic recordings









# Piguro 42

Schematic Diagram of Apparatus for Voar Measurement

.



Figure 43

Photograph of Wear Measuring Equipment



# Figure 44



graphic recordings of each diametral wear contour to determine how accurately the measuring equipment would reproduce a given trace. The area under each radial trace was then determined in triplicate by each investigator on the diameters which he had traced.

Each investigator thus made nine assessments of the wear index of each die. The results obtained are shown in Table 14 below.

#### Table 14

| 1-0 9 |              |     | Wear Index |     |     |     |     |      |     |     | Mean          | Standard   |
|-------|--------------|-----|------------|-----|-----|-----|-----|------|-----|-----|---------------|------------|
| DIG   | Investigator | 1   | 2          | 3   | Ц.  | 5   | 6   | 7    | 8   | 9   | wear<br>Index | Deviation  |
|       |              |     |            |     |     |     |     |      |     |     |               |            |
| Bach  | and a        | 147 | 247        | 151 | 152 | 151 | 153 | 150  | 155 | 159 | 152           | ly.        |
| r and | B            | 148 | 154        | 150 | 146 | 148 | 153 | 153  | 154 | 155 | 151           | l <u>k</u> |
| çaj   | C            | 152 | 151        | 149 | 145 | 148 | 147 | 150  | 143 | 148 | 148           | 3          |
| 2     | A            | 563 | 561        | 559 | 566 | 566 | 567 | 539  | 534 | 532 | 554           | 15         |
| 2     | В            | 562 | 562        | 559 | 569 | 565 | 565 | -535 | 536 | 534 | 554           | 35         |
| 2     | С            | 546 | 578        | 564 | 548 | 558 | 563 | 534  | 555 | 543 | 554           | 11         |
|       |              |     |            |     |     |     |     |      |     |     |               |            |

#### Reproducibility of Die Wear Measurement

All the values for die 1 show very close agreement with the highest and lowest values differing by only 9%, whilst the highest and lowest values for die 2 differ by 12%.

It was concluded from these measurements that die wear indices could be determined to an accuracy of about 2 5%.

#### 3.3 Noar Tests

#### 3.3.1 Materials selected for year tests

As already stated, the objective of the present work was the introduction into the forging industry of new die materials which would reduce the contribution of die costs to the total production costs of forgings.

To achieve this objective two approaches were possible. The wear resistance of specially melted alloys could be studied in the hope of obtaining a relationship between alloy composition and wear resistance. Although some investigations were made along these lines, the approach has one serious practical drawback. Special steels for which only a small initial demand would exist are very expensive and it was felt, therefore, that such steels would be uneconomic until a large demand for them was created, which could take a considerable time.

To provide more immediate help to the drop forger, it was considered preferable, therefore, to study the wear resistance of a number of readily available potential die steels. Most of the materials tested had been suggested as suitable for use as hot work die steels.

Table 15 bolow, gives the chemical composition of all materials selectod for testing. The identification number allotted to each alloy in Table 15 has been retained throughout the remainder of this thesis.

|          | -            |                      |                        |                   | 01 11 10 10 10 10 10 10 10 10 10 10 10 1 |           | -                  |                   | -                |                      | -                  |                | -                  |            | -             |               |               |              |                |                | - |
|----------|--------------|----------------------|------------------------|-------------------|------------------------------------------|-----------|--------------------|-------------------|------------------|----------------------|--------------------|----------------|--------------------|------------|---------------|---------------|---------------|--------------|----------------|----------------|---|
|          |              | Zr                   |                        |                   |                                          |           |                    |                   |                  |                      |                    |                |                    |            |               |               |               |              |                |                |   |
|          |              | 03                   |                        |                   |                                          |           |                    |                   |                  |                      |                    |                |                    |            |               |               |               |              |                |                |   |
|          |              | N                    | Accession and the same |                   |                                          |           | 777                |                   |                  |                      | °05                |                | 5                  |            |               |               |               |              |                |                |   |
|          |              | GN                   |                        |                   |                                          |           |                    |                   |                  |                      |                    |                |                    |            |               |               |               |              |                |                |   |
|          |              | e la                 |                        |                   |                                          |           |                    |                   |                  |                      | 1.1                |                |                    |            |               |               |               | 5°0          | 000            | bal.           |   |
|          |              | Co                   |                        |                   |                                          |           |                    |                   |                  | 3.0                  |                    |                |                    |            | *             |               |               | 2.0<br>max.  | bal.           |                |   |
|          |              | 41                   |                        |                   |                                          |           |                    |                   |                  |                      |                    |                |                    |            |               |               |               | 2010         | 5              | 54<br>10<br>10 |   |
| 6666     | 083          | 2.2                  |                        | MAC BACKED        |                                          | 14740234  |                    |                   |                  |                      |                    |                |                    |            |               |               |               | 3100         | 1.82           | 2.9            |   |
| MCGL.    | DBitie       | A                    |                        |                   | ent<br>0                                 | 3         | .23                | 50                |                  | 1.0                  | ° 35               | 5              |                    |            |               |               |               |              |                |                |   |
| T DIG    | Comp         | M                    |                        |                   |                                          |           |                    | 4°2               |                  | 1.0                  |                    | 10.0           |                    |            |               |               |               |              |                |                |   |
| DT DOLL  |              | MO                   |                        | 5                 | \$                                       | 1.0       | 3.0                | 1.2               | 0.00             | 0000                 | 1.8                |                |                    |            | .57           | .59           | . 36          |              | 500            | 2.2            |   |
| Selected |              | 5                    |                        | 9.                | 1a1<br>03                                | 3.0       | 100                | n.<br>o           | 200              | 3.0                  | 12.0               | 3.0            | 23.07              | 4.6        | 14°9          | 9.5           | ·0.           | 01 H         | 14             | 22°4           |   |
| Cerlals  |              | N.S.                 |                        | IA<br>o<br>yet    | 60<br>0                                  | . ls      | 5                  |                   | ls. 8            |                      | 2. h               |                | 3.9                |            |               |               |               | bal.         | 0al.           | 7057           |   |
| El-I     |              | MIJ                  | 9.                     | 5                 | G.F                                      | 9.        | ·9°                | 3                 | 9.               | 9.                   | 20                 | 5              | 6°0                | 9.         | 9.            | 90            | 9°            | 1.0<br>mex.  | 1°O<br>max.    | cy.            |   |
|          |              | iei<br>V2            | 643                    | 80                | 6.3                                      | 23        | Nº o               | 1.0               | .9               | 50                   | 87                 | 55             | dendj<br>O         | 8          | N)            | 67            | 87            | 1.0<br>mex.  | 1.0<br>max.    | . Oł           |   |
|          |              | 0                    | .65                    | 9                 | ŝ                                        | 10        | 3                  | 6 33<br>0         | (bel)<br>(b      | 53                   | Çurş<br>O          | 500            | ŝ                  | .32        | 5             | • 33          | .23           | T °          | .2008          | °03            |   |
|          | Matarial and | dentification Number | . Plain C Steel        | . No. 5 Die Steel | . Cr Mn Ni Mo Steel                      | . En 4.00 | . No Ni Cr V Steel | . Cr Mo W V Steel | . Ni Cr No Steel | . Cr Co Mo V W Steel | . Cr Ni Mo V Steel | . W Cr V Steel | . Cr Mn Ni N Steel | . Cr Steel | . Cr Mo Steel | . Cr Mo Steel | . Cr No Steel | . Nimonic 90 | . Nimocast 713 | . Inco 901     |   |
|          |              | ind.                 | -                      | N                 | 613                                      | A.        | IN                 | 0                 | 50               | 00                   | 9                  | 0              | 6mj<br>6mj         | 2          | 24            | 14            | 15%           | 19           | 14             | 18             |   |

which is a subscription of the subscription of

Teble 15

- 68 -

Materials 1, 2, and 6 were selected for test because they were already used as forging dies, as described proviously in section 1.2. Similarly, material 20 was selected since it is occasionally used for small inserts in the body of larger dies.

Although they are not extensively used, materials 3 and 5 are offered as die steels by a manufacturer of die blocks<sup>3</sup>, and were, therefore, investigated.

Material 4 was selected for test because it is a cheap, readily available material, intermediate in alloy content between No. 5 Die Steel and the 5% Cr No V steel (No. 6) used for press dies.

Claims have been made<sup>35</sup> that material 8 has superior hot strength and better wear resistance than material 6, and the former steel was, therefore, included in the tests.

The results of early wear tests suggested a possible correlation between the chromium contont of a die steel and its wear resistance. Because of this, it was decided to investigate the wear resistance of high chromium steels, and materials 9 and 11 were selected as commercially available steels.

Material 7 was tested to investigate whether low carbon, chromiummolybdenum steels would be sufficiently wear resistant for use as forging dies. The advantage of low carbon content is the improvement obtained in toughness.

The mickel based alloys (materials 16 to 18) were included because such alloys are commonly used as extrusion dies, in which application they have been shown to outperform high alloy steels. These alloys have

/also been

also been reported to be superior to chromium and tungstan hot work die steels for producing brass stampings<sup>28</sup>.

Materials 12 to 15 inclusive were experimentally melted steels included specifically to investigate the influence of carbon, molybdenum, and chromium contents on wear resistance in the absence of other elements.

In addition to the materials listed in Table 15, a series of carbon free iron-chromium alloys was tested to investigate the influence of chromium on wear resistance in the absence of carbon. These alloys contained chromium contents up to 13% chromium.

#### 3.5.2 Wear test results

Wear tests were made on the materials listed in Table 15 by forging 2000 mild steel slugs  $\frac{1}{2}$  in. diameter x  $\frac{3}{4}$  in. long down to discs 0.200 in. thick at 1100°C.

Figures 45 to 60 inclusive (pp. 71 to 74) show, for each material, wear index plotted as a function of the initial die hardness. The lines drawn through the points in these figures are lines showing the regression of wear index upon initial die hardness, determined by the method of least squares.

Table 16 shows the regression equations obtained for each material tested.

- 70 -









Wear Test Results





Initial Die Hordness - Hv30

Figure 51





Figure 52

Went Test Results



Wear Test Results









Initial Die Hardnoss - Hv30

#### Figure 59



Initial Die Hardness - Hv30

### Figure 60

Wear Test Results

a gla a

| Tes     | h   | 2.  | 63 | 4 | 63 |
|---------|-----|-----|----|---|----|
| via Sod | 227 | Su. | 9  | ŝ | 29 |

Equations for Regression of Wear Index on Initial Die Hardness

| Material                               | Regression Equation<br>(W = wear index H = initial die hardness - Hv3O) |
|----------------------------------------|-------------------------------------------------------------------------|
| 1                                      | W = 2033 - 9.44 H                                                       |
| 2                                      | ¥ = 3073 a 6.03 H                                                       |
| 60<br>                                 | V = 1720 - 0 47 W                                                       |
| 2                                      | 4 = 1900 = 2.0.1 m                                                      |
| łą.                                    | W = 1391 - 2.73 H                                                       |
| 5                                      | W = 421 - 0.51 H                                                        |
| 6                                      | W = 1249 = 2.27 H                                                       |
| 7                                      | W = 882 - 1.16 H                                                        |
| 8                                      | W = 337 - 0.14 H                                                        |
| 9                                      | W = 21 + 0.51 H                                                         |
| 10                                     | W = 558 - 0.95 H                                                        |
| 47 47<br>47 47<br>47 47<br>47 47<br>47 | w = 380 - 0.85 H                                                        |
| 12                                     | W = 2510 - 3.74 H                                                       |
| 13                                     | W = 2391 - 4.11 M                                                       |
| 14                                     | W = 1358 - 2.12 H                                                       |
| 15                                     | W = 1442 - 2.17 H                                                       |
|                                        |                                                                         |

The wear tests made on the iron-chromium alloys were performed on as forged material without any heat treatment.

The results obtained on these alloys are shown in Table 17 below.

#### Table 17

| Composition | Initial Hardness<br>Hv30 | Wear Index    |
|-------------|--------------------------|---------------|
| Fe - 5% Cr  | 181/185                  | 1018, 956     |
| Fe - 9% Cr  | 241/292                  | 577, 639, 645 |
| Fe - 13% Cr | 124/153                  | 338, 406      |

#### Wear Test Results on Iron-Chromium Alloys

The forging conditions for these tests were non-standard, as described in section 5.1.10

# 3.3.3 The influence of stock temperature on die wear

All the wear tests described in section 3.3.2 were made with a forging temperature of 1100<sup>9</sup>C. This temperature was selected as being typical of the temperature of a forging when it is presented to the final impression in a forging die.

Tests were made to investigate the influence of forging temperature on die wear for the following reasons:

- (1) Stock temperature is a forging variable which can be controlled under production forging conditions, and therefore, a knowledge of its influence on die wear will indicate whether improvements in die life are possible by control of the forging temperature.
- (2) There is widespread interest in the possibility of producing components by "warm forging" and a knowledge of the likely effects on die

- 76 -

/life

life of changing from "hot forging" to "warm forging" would be valuable in essessing the likely economics of "warm forging".

Wear tests were made, therefore, using No. 5 Die Steel dies, with forging temperatures between 900°C and 1250°C. 1250°C was selected as the upper limit since drop forgings are not heated beyond this temperature due to the possibility of overheating occuring.

It was initially hoped to carry out trials below 900°C, but experience showed that, with the press used for the tests, insufficient load was available to allow forging at lower temperatures.

The results of two series of tests are shown below in Table 18, and also in Figure 61 (p. 78 ).

#### Table 18

| Ndex Wear Index<br>10 <sup>-6</sup> Corrected<br>to Hy = 334 |
|--------------------------------------------------------------|
|                                                              |
| 7                                                            |
| 100                                                          |
|                                                              |
|                                                              |
| -                                                            |
|                                                              |
| ca.                                                          |
| 918                                                          |
| 680                                                          |
| 516                                                          |
| 287                                                          |
|                                                              |

#### Influence of Stock Temperature on Die Wear



# Figure 61

Influence of Stock Temperature on Die Wear

Tost dies 9 - 12 were harder than dies 1 - 8, and since hardness has a considerable influence on the wear of No. 5 Die Steel (see Figure 46 p. 71 ) a correction has been made to the wear index of dies 9 - 12 so that they can be compared with dies 1 - 8. The mean hardness of dies 1 - 8 was 354 Hv30 and that of dies 9 - 12 was 357 Hv30.

Figure 46 (p. 71°) shows that the wear index for No. 5 Die Steel at 33% Nv30 is 16% higher than at 357 Hv30.

The wear index of dies 9 - 12 has been increased, therefore, by 16%, and this corrected wear index is plotted in Figure 61 (p. 78 ).

#### 3.3.4 Influence of stock material on die wear

All the tests described so far were made using mild steel as the forging stock. This material was selected as the standard stock, since the majority of drop forgings are made from either mild steel or plain carbon steels.

In addition, the lew price of mild steal commended its use, since a lot of steel was used during the tests.

Drop Sergings era, however, made from both alloy and stainless steels, and it was considered nacessary, therefore, to investigate the influence of forging steck on die wear.

Wear tests wave made on three die materials (numbers 4, 6, and 9 in Table 15), using En 24 and En 57 as the forging stock.

The chemical composition of En 24 and En 57 is shown in Table 19.

#### Table 19

#### Composition of En 24 and En 57

|                | Composition     |                  |                  |                    |                     |             |  |  |  |  |
|----------------|-----------------|------------------|------------------|--------------------|---------------------|-------------|--|--|--|--|
| Material       | C               | Si               | Mn               | Ni                 | Cr                  | Mo          |  |  |  |  |
| En 24<br>En 57 | •35/•45<br><.25 | •1/•35<br>•1/1•0 | .45/.75<br>& 1.0 | 1.3/1.8<br>1.0/3.0 | .9/1.4<br>15.5/20.0 | °2/°35<br>~ |  |  |  |  |

The results of these tests are shown in Figure 62 (p. 81 ).

#### 3.3.5 The influence of surface treatment on die wear

#### 3.3.5.1 The influence of nitriding on die wear

Dies for forging presses are sometimes nitrided to increase their wear resistance. Invariably, the die material which is nitrided is the 5% Cr Mo W die steel (material 6) and there appear to have been no investigations into the suitability of other materials.

In the present investigations, the influence of nitriding on the wear resistance of three die materials (materials 4, 6, and 9) was investigated. Material 4 was investigated because it is cheaper than material 6 (£222 per ton compared with £365 per ton). Material 9 was investigated to see whether its improved wear resistance compared with materials 4 and 6 was maintained in the nitrided condition.

Hardened and tempered dies were nitrided for 80 hours in a cracked ammonia atmosphere. Figure 63 (p. 84 ) shows the case depth produced in each material.





Table 20 shows the surface hardness produced by nitriding, and also the surface hardness at the centre of the dies after testing.

#### Table 20

#### Hardness of Nitrided Dies Before and After Testing

| Matorial      |                  | Surface Hardness - Hv30 |                 |               |  |  |  |  |
|---------------|------------------|-------------------------|-----------------|---------------|--|--|--|--|
|               |                  | Before Nitriding        | After Nitriding | After Testing |  |  |  |  |
| l <u>i</u> so | En 40C           | 396 <i>- 424</i>        | 779 - 950       | 780 - 790     |  |  |  |  |
| 6.            | Cr Mo W V Steal  | 364 - 388               | 1063 - 1108     | 763 - 883     |  |  |  |  |
| 9.            | Cr Ni Mo V Steel | 390 - 419               | 861 - 966       | 635 - 810     |  |  |  |  |

After the normal test procedure of forging 2000 mild steel slugs, no wear could be detected on the nitrided dies. A further 2000 slugs were forged, therefore, but even then no wear was measurable.

#### 5.3.5.2 Influence of Sulfinuz treatment on die wear

The Sulfinuz treatment process is a surface treatment method in which the surface of the treated material is simultaneously impregnated with nitrogen and sulphur.

Parts to be treated are immersed in a molten bath containing cyanides and sulphides. The treatment is carried out at about 570°C, and lasts for periods up to 3 hours.

Three No. 5 Die Steel dies were subjected to the Sulfinuz treatment after hardening and tempering. The dies were then tested in pairs with untreated dies of the same initial hardness as possessed by the treated dies. The results of these tests are shown in Table 21.

#### Table 21

#### Original Hardness After Wear Index Die No. Treated Hardness Treatment $in^2 \ge 10^{-6}$ Hv30 Hv30 101 358 400 193 Yes 359 632 277 No 356 390 200 192 Yes 363 603 220 No 436 226 Yes 372 51 238 411 379 No

#### Wear Tests on Sulfinuz Treated Dies

After testing, the Sulfinuz treated dies showed a pronounced network of thermal fatigue cracks not normally encountered in No. 5 Die Steel. Figure 64 (p. 84) shows treated and untreated dies after testing.

#### 3.3.6 The influence of lubrication on die wear

A possible method of improving the life of forging dies is by the use of die lubricants.

Most investigations of forging lubricants<sup>36</sup>, 37, 38 under hot forging conditions have been concerned with measurements of the coefficient of friction and the influence of lubrication on the load and energy requirements when making a forging.



Depth below Surface - .001"

Figure 63 Case Dopth in Nitrided Dies



<u>Figura 64</u> Untroated (left) and Sulfinuz Treated Dies Aftor Test

Only one report<sup>39</sup> has been found which describes the influence of lubrication on die life. In this investigation, the life of two dies, used to produce connecting rods, one unlubricated and the other lubricated with colloidal graphite, were compared.

The unlubricated die produced 12,900 forgings, whilst the lubricated die produced 22,500.

Reference to section 1.3 of this thesis will show that such a small amount of testing of the effect of lubrication is inconclusive. In addition it was not clear in the reported investigation whether the use of a lubricant reduced crosive wear or deformation of the die.

It was decided, therefore, to carry out tests aimed specifically at studying the effect of lubrication on die wear.

In drop forging, the term "lubricant" is used rather loosely to refer to any material thrown, swabbed, or sprayed on to dies to assist the forging proeess. The most common lubricants used are sawdust, all, and dispersions of colloidal graphite. It is generally agreed that only graphite exerts a true lubricating effect; the function of all and sawdust being to aid descaling of the forging and release of the forging from the die by an explosive action.

In the present investigations, only colloidal graphite was used. The office of lubrication on die wear was studied as follows.

A test die of No. 5 Die Steel was placed in a special die holder which allewed the die to be preheated to 150°C by means of a mineral-insulated heating cell wound in the die holder.

After preheating to 150°C, 1000 mild steel slugs were forged with wear measurements being made after 500 and 1000 forgings. The dies were then coated with graphite by swabbing at 150°C and subsequently polished with rag. A further 1000 forgings were then made with the dies probented to 150°C, and sprayed with graphite in water after the completion of every forging. Wear measurements were made after 1500 and 2000 forgings.

All traces of graphite were then removed from the die by scrubbing in water, and a further 1000 forgings made without lubrication. A further 1000 forgings were then made using lubrication.

The results of two tests made in this manner are shown in Table 22 and Figure 65 (p. 87 ). Because of difficulties in spraying the top die, the test dies remained in the bottom die position throughout the tests, the top dies being blanks on which no wear measurements were made. Due to a mistake in the sotting of the press, all forgings made in the investigations of lubrication were forged to a thickness of 0.210 in. instead of the usual 0.200 in.



# Figure 65

Wear v Number of Forgings with and without Lubrication

#### - 88 -

#### Table 22

| Test<br>No. | Die Hardness<br>Hv30 | Nc. of<br>Forgings | Lubricated During<br>Last 500 Forgings | Wear Index<br>in <sup>2</sup> x 10 <sup>-6</sup> |
|-------------|----------------------|--------------------|----------------------------------------|--------------------------------------------------|
| 100         | 379                  | 500                | No                                     | 252                                              |
|             |                      | 1000               | No                                     | 4.74                                             |
|             |                      | 1500               | Yes                                    | 928                                              |
|             |                      | 2000               | Yes                                    | 1309                                             |
|             |                      | 2500               | No                                     | 1543                                             |
|             |                      | 3000               | No                                     | 1905                                             |
|             |                      | 3500               | Yes                                    | 2458                                             |
|             |                      | 6000               | Yes                                    | 2880                                             |
|             |                      |                    |                                        |                                                  |
| 2           | 384                  | 500                | Yes                                    | 565                                              |
|             |                      | 1000               | Yes                                    | 730                                              |
|             |                      | 1500               | No                                     | 994                                              |
|             |                      | 2000               | No                                     | 1216                                             |
|             |                      |                    |                                        |                                                  |

#### Influence of Lubrication on Die Wear

#### 3.4 Tempering Resistance of Materials Investigated

Tempering curves were determined for the die steels investigated, and are shown in Figures 66 - 68 (pp. 89 - 91). No curves are shown for the Nickel based alloys or material 11, since these are age-hardening materials. All the tempering curves shown in Figures 66 - 68 were determined for a tempering time of two hours.

Since, in use, an already tempered die is subjected to further tempering by heat transferred from the forging, additional tempering tests were made on materials 2, 4, 6, and 9. These materials were chosen as representing steels with poor, intermediate, and good wear resistance. Samples of these materials were initially hardened and tempered to 450, 400, and 350 Hv30 and then subjected









Tempering Curves for Die Materials



Tempering Curves for Die Materials

to further tempering treatments at 650, 700, and 750°C for periods between tem minutes and two hours.

The results of these tests are shown in Table 23 and Figures 69 - 72 (pp. 94 - 97).

#### Table 23

Hardness of Die Materials After Retempering

| Metorici         | Initial<br>Verdroad | Tempering            | Hardne<br>for In | ess Aft<br>Idicate | er Temp<br>d Time | ering<br>- mins. |
|------------------|---------------------|----------------------|------------------|--------------------|-------------------|------------------|
| 1999 (J. 469).   | Hv30                | OC<br>Yember crear c | 10               | 30                 | 60                | 120              |
| 3                | Lals 7              | 650                  | 442              | 424                | 400               | 387              |
| 3                | 458                 | 700                  | 366              | 344                | 320               | 291              |
| 2                | 451                 | 750                  | 495              | 422                | 536               | 826              |
| 2                | 396                 | 650                  | 375              | 388                | 370               | 361              |
| 2                | 397                 | 700                  | 355              | 342                | 327               | 301              |
| 2                | 395                 | 750                  | 811              | 464                | 635               | 835              |
| 2                | 357                 | 650                  | 359              | 365                | 362               | 351              |
| 2                | 355                 | 700                  | 345              | 324                | 315               | 304              |
| 2                | 332                 | 750                  | 632              | 404                | 595               | 801              |
|                  | 445                 | 650                  | 429              | 427                | 423               | 397              |
| 4                | 1453                | 700                  | 365              | 340                | 316               | 291              |
| 14               | 450                 | 750                  | 299              | 286                | 272               | 259              |
| Ę.               | 398                 | 650                  | 400              | 396                | 388               | 377              |
| L <sub>e</sub> . | 403                 | 700                  | 365              | 343                | 321               | 296              |
| ly.              | 393                 | 750                  | 278              | 271                | 370               | 247              |
| 4                | 329                 | 650                  | 321              | 318                | 319               | 315              |
| ł <u>ę</u>       | 32/z                | 700                  | 300              | 299                | 295               | 281              |
| 4                | 329                 | 750                  | 300              | 287                | 270               | 274              |

| Material | Initial<br>Hardness<br>Hv30 | Teapering<br>Teaporaturo<br>OC | Herdn<br>for I<br>10 | ess Aft<br>ndicate<br>30 | er Temp<br>d Time<br>60 | ering<br>- mins.<br>120 |
|----------|-----------------------------|--------------------------------|----------------------|--------------------------|-------------------------|-------------------------|
| 6        | 453                         | 650                            | 441                  | 448                      | 433                     | 393                     |
| 6        | 443                         | 700                            | 403                  | 375                      | 347                     | 310                     |
| 6        | 445                         | 750                            | 317                  | 307                      | 291                     | 285                     |
| 6        | 411                         | 650                            | 420                  | 428                      | 408                     | 387                     |
| 6        | 405                         | 700                            | 388                  | 371                      | 341                     | 307                     |
| 6        | 407                         | 750                            | 320                  | 302                      | 295                     | 286                     |
| 6        | 341                         | 650                            | 337                  | 345                      | 341                     | 327                     |
| 6        | 353                         | 700                            | 364                  | 353                      | 329                     | 320                     |
| 6        | 350                         | 750                            | 300                  | 287                      | 273                     | 287                     |
| 9.<br>9. | 460                         | 650                            | 457                  | 419                      | 379                     | 364                     |
| 9        | 459                         | 700                            | 352                  | 346                      | 334                     | 320                     |
| 9        | 450                         | 750                            | 326                  | 316                      | 292                     | 293                     |
| 9        | 393                         | 650                            | 397                  | 397                      | 372                     | 352                     |
| 9        | 399                         | 700                            | 351                  | 341                      | 339                     | 326                     |
| 9        | 393                         | 750                            | 343                  | 316                      | 303                     | 300                     |
| 9        | 364                         | 650                            | 371                  | 369                      | 361                     | 367                     |
| 9        | 355                         | 700                            | 351                  | 341                      | 331                     | 325                     |
| 9        | 367                         | 750                            | 341                  | 325                      | 308                     | 309                     |
|          |                             |                                |                      |                          |                         |                         |

### Table 25 continued

# 3.5 Changes in Die Hardnoss during Wear Testing

A number of investigations was made to study the tempering of dies which occurred during testing.







Tempered at 700°C

Figure 69

Retemporing Curves for Material 2



# and the second and

#### in such and the second second

# . L722.8

2. Parato - 201 - 201





Retemporing Curves for Material &





# Figure 71

Retemporing Curves for Material 6



## Figure 72

Retempering Curves for Material 9
To investigate the extent and rate of tempering, the hardness changes in dies were followed during the early stages of testing. Hardness measurements were wade in the central unworn plateau, in the wear annulus, and at the periphery of dies. Figure 73 (p. 99 ) shows the results of such hardness measurements on two typical dies.

Figure 74 (p. 100) shows the hardness distribution across a radius of a die after the completion of 50 forgings.

Hardness tests were also made after the completion of testing on some dies. Figure 75 (p. 100) shows the relationship between initial and final die hardness for these dies, whils\* Figure 76 (p. 101) gives a more detailed picture of the same relationship for materials 2, 4, 6, and 9.

#### 3.6 Mechanical Properties of Materials Tested

The mechanical properties of greatest interest in connection with hot work die steels are hot strength and toughness. Het tensile tosts and Charpy V-notch impact tests were made, therefore, on the four materials. selected for detailed investigation (i.e. materials 2, 4, 6, and 9).

The hot tensile tests were made on a Hounsfield Tensometer machine using the specimens shown in Figure 77 (p. 102 ).

The results of the mechanical tests are given in Table 24, and Figures 78 and 79 (pp. 105 and 105 ).



Number of Forgings Made

# Figure 73

Change in Surface Hardness of No. 5 Die Steel Dies with Number of Forgings Made



Distance from Centre of Die - cm

## Figure 74

Typical Radial Hardness Contours on Dies after Making 50 Forgings (Die Material No. 6)



Criginal Die Surface Hardness - Hv30

# Figure 75

Final Die Hardness (at Centre) v. Original Die Hardness

- 100 -



# Figure 76

Change in Die Hardness during Testing





Specimen Used for Hot Tensile Tests

# - 103 -

# Table 24

| Material   | Hv30  | Test Temperature<br>OC | U.T.S.<br>tonf/in <sup>2</sup> |
|------------|-------|------------------------|--------------------------------|
| 2.         | 42043 | 400                    | 64.5                           |
| 2          | 423   | 450                    | 65.5                           |
| 2          | 402   | 500                    | 53.0                           |
| 2          | 398   | 550                    | 37.8                           |
| 2          | 406   | 600                    | 33.2                           |
| 2          | 405   | 650                    | 15.0                           |
| 2          | 390   | 700                    | 8.0                            |
| 2          | 407   | 750                    | 7.0                            |
| 2          | 401   | 750                    | 7.0                            |
| 2          | 400   | 800                    | 5.5                            |
| 2          | 403   | 800                    | 5.4                            |
| 12         | 415   | 400                    | 68.0                           |
| l <u>e</u> | 409   | 450                    | 65.0                           |
| 42         | 410   | 500                    | 56.0                           |
| l <u>e</u> | 402   | 550                    | 39.0                           |
| ly         | 405   | 600                    | 41.2                           |
| 12         | 412   | 650                    | 21.5                           |
| l <u>à</u> | 444   | 700                    | 11.5                           |
| l <u>s</u> | 424   | 750                    | 6.6                            |
| l <u>a</u> | 408   | 750                    | 5.5                            |
| Ĺ,         | 412   | 800                    | 8.5                            |
| 12         | 403   | 800                    | 8.2                            |

# Hot Tensile Strength of Die Materials

| - | 104 | 0.0 |
|---|-----|-----|
|---|-----|-----|

# Table 24 continued

| Material | Hv30 | Test Temperature<br>°C | U.T.S.<br>tonf/in <sup>2</sup> |
|----------|------|------------------------|--------------------------------|
| 6        | 4:0% | 400                    | 72.0                           |
| 6        | 402  | 450                    | 64.0                           |
| 6        | 400  | 500                    | 55.2                           |
| 6        | 403  | 550                    | 44.0                           |
| 6        | 399  | 600                    | 58.5                           |
| 6        | 402  | 650                    | 26.2                           |
| 6        | 401  | 700                    | 14.0                           |
| 6        | 405  | 750                    | 9.7                            |
| 6        | 403  | 800                    | 7.2                            |
|          |      |                        |                                |
| 9        | 420  | 5.00                   | 09.5                           |
| 9        | 413  | 500                    | 60.0                           |
| 9        | 411  | 600                    | 48.5                           |
| 9        | 418  | 650                    | 27.0                           |
| 9        | 415  | 700                    | 20.5                           |
| 9        | 413  | 750                    | 13.5                           |
| 9        | 419  | 800                    | 4405                           |



Hot Tensile Strength of Materials 2, 4, 6 and 9







Impact Properties of Materials 2, 4, 6 and 9

#### 4. Experimental work - works trials

#### 4.1 Matorials Salected for Norks Trials

Even though great care has been taken during the development of the went test, to ensure that test conditions simulated practical forging conditions as closely as possible, it was, nevertheless, considered essential to validate the laboratory test results by works trials.

Of the eighteen materials tested, four were not intended as materials suitable for use as dies (materials 22 - 15 inclusive) and these steels were not considered, therefore, for works trials. Material 1 gave such peer results in laboratory tests that it was excluded from subsequent trials. Material 7 was excluded because the low earbon content provented the production of dies of sufficient hardness to avoid the risk of deformation. No opportunity was found for testing materials 8 and 10. Since the Nickel based alloys were very expensive, only one of the three alloys investigated was used in works investigations.

The following materials were, therefore, used in works trials; materials 2, 3, 4, 7, 6, 9, 11, and 17.

The approximate price of these materials at the time of commencing the trials is chosen in Table 26 below.

| Material      | Price per Ton<br>£ | Price per 1b.<br>s. d. | Price Ratio Compared<br>with Material 2 |
|---------------|--------------------|------------------------|-----------------------------------------|
| 2             | 166                | 1. 6.                  | 1                                       |
| 3             | 187                | en en                  | 1.13                                    |
| l <u>i</u> te | 222                |                        | 2.34                                    |
| 5             | 373                | ლ ლ                    | 2.25                                    |
| 6             | 364                | 8 E                    | 2.19                                    |
| 9             | 476                |                        | 2.87                                    |
| 11            | 3                  | 88                     | 609 605                                 |
| 17            | 430                | 24. 0.                 | 16.00                                   |

## Table 26

#### 4.2 Results of Works Trials

The essential results of the works trials are shown in Table 27. In each trial, the cost of a pair of dies in the standard material (No. 5 Die Steel) has been taken as ten units, and all other costs have been related to this. It is possible, therefore, to compare costs only within one trial and not from one trial to another. Full details of the works trials' data used to draw up Table 27 are given in Appendix III to the thesis.

In row eight of Table 27, the figure before the oblique stroke is the mean die life determined from the number of sinkings shown after the oblique stroke. Where the letter "Q" appears, the die life is that quoted by the forge. Table 27

# Results of Works Die Wear Trials

|                 | 6-4<br>612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                    | 60                                             |                    |                   | 120                          | (C)                                        | 32                                                    | 90                                                            | N                            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------------------------------------------|--------------------|-------------------|------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| 67              | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                             | A:                 | 25                                             | CI                 | 9                 | 7999                         | 40<br>6                                    | 0                                                     | 6 0<br>0                                                      | N)                           |
| 63              | Hinge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rfcs.                         | tegad<br>Billiot   |                                                | ŝ                  | 9                 | 132,958/4<br>159,661/4       | 1. SO                                      | 2.24                                                  | . 120<br>. 108                                                | 0<br>r                       |
| 40              | Sleeve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ₩°                            | Q.                 | 3.66                                           | 03                 | IN                | 1200/Q<br>1900/Q             | 00<br>13<br>14                             | 2,10                                                  | 3.88                                                          | 62                           |
| Q               | Combination<br>Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03                            | ana 1<br>pala 5    | ¢                                              | c3.                | lan.              | 4029/2<br>h459/2             | 2010                                       | 1 ° 30                                                | 8.0                                                           | ß                            |
| 5               | Protractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | وسک<br>وسک                    | gegen]<br>Belanj   | St e S                                         | -01                | and<br>The        | 1582/2<br>2571/2             | 1.63                                       | 1.30                                                  | 5. 50<br>5. 50<br>5. 50                                       | S.<br>K                      |
| l <u>i</u> s    | Spanner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **                            | đư, ng<br>Lược j   | ç                                              | 63                 | -1 <sup>30</sup>  | 15,047/21<br>19,335/3        | 1.29                                       | 1 . 50                                                | - B D                                                         | not<br>establizhed           |
| 5               | Conrod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĩ۸                            | tend .             | 5.67                                           | 02                 | 14                | 4518/2<br>5778/2             | alto e                                     | 1 - 30                                                | 3.77 ar 3.60<br>3.98                                          | 01. 40<br>2                  |
| 63              | a state of the second s | 4                             | 2724<br>2724       | 04                                             | cu.                | E.                | 7800/0                       | 9                                          | Ũ                                                     | в 3                                                           | increase                     |
| Las.            | Lever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IV.                           | bayet<br>totat     | 60                                             | C.I                | 19                | 3280/3<br>2470/3             | 13<br>19<br>19                             | 2<br>(-)<br>(-)                                       | 6 6<br>9 6<br>7 6                                             | a la                         |
| 1. Trici Number | 2. Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. Weight of Component in 15. | 4. Hanner or Press | 5. Labour/Material Cost for<br>Normal Material | 6. Normal Material | 7. Trial Material | 8. Die Life – Trial Material | 9. Die Life Ratio<br>Trial/Normal Material | 10. Cost of Trial Material<br>Cost of Normal Material | Die Cost per Forging<br>11. Trial Material<br>Normal Material | 12. % Reduction in Die Costa |

Table 27 continued

Results of Works Die Wear Trials

| 57              | Diac                 | 84)<br>(V]                    | î,                 | ţ                                           | 20                 | Levis<br>dec.j    | 4000/Q<br>198/1              | IJ                                         | 8                                                      | ß                                                             | U                            |
|-----------------|----------------------|-------------------------------|--------------------|---------------------------------------------|--------------------|-------------------|------------------------------|--------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| 00<br>tel       | Gear                 | dan j                         | G                  | <u>i</u>                                    | 9                  | Ling              | 15,000/0                     | an a                                       | ų                                                      | Û Ű                                                           | U                            |
| 27              | Flange               |                               |                    | a.                                          | 03                 | G,                | 3000/U<br>4230/3             | éng<br>B<br>brj                            | 2°87                                                   | 5.58<br>2.24                                                  | increase                     |
| <b>46</b>       | Protractor<br>France | दल्ग्रैंटाउ<br>कृष्ण्         | Pd D               | 5. 25                                       | C <sup>3</sup>     | ō.                | 1582/2<br>4535/2             | 2.86                                       | 2.70                                                   | 5° 7°                                                         | 57                           |
| 57              | Hook                 | 29                            | a of years         | ß                                           | 54                 | 6                 | 3-4000/Q<br>4218/1           | IJ                                         | 600                                                    | 0.3                                                           | increase                     |
| a da<br>La da   | Con-rod              | enter<br>cal                  | protê<br>Bole oğ   | 6.91                                        | 23                 | 6                 | 21,197/12                    | t O t                                      | 2.60                                                   | 2.23<br>3.73<br>3.72                                          | 22                           |
| (^)<br>(~)      | Controd              | L.                            | IJ                 | 4.<br>80<br>80                              | C3                 | 6                 | 5,219/25<br>13,547/1         | 2.59                                       | 2.50                                                   | 76°4                                                          | 5                            |
| (1)<br>१=१      | Geor                 | 10                            | Ω.,                | 4.63                                        | ~3                 | Q.                | 5064/13<br>3849/6            | 1.75                                       | 2°83                                                   | 1.84                                                          | increase                     |
| lad<br>Lad      | Gear                 | 10                            | ſL.                | 7.4.8                                       | 03                 | 6                 | 3730/13<br>6469/7            | C2 . 7                                     | 2.88                                                   | 2.70                                                          | 30                           |
| 0<br>17         | Gear                 | Ø                             | Ω,                 | 3.60                                        | ~                  | 9                 | 5,918/5<br>13,546/5          | 2.29                                       | 2,24                                                   | 2°03<br>1°96                                                  | 428                          |
| 1. Trial Number | 2. Component         | 3. Weight of Component in 1b. | 4. Hanner or Press | 5. Labour/Material Cost for Normal Material | 6. Normal Material | 7. Trial Material | 8. Die Life - Trial Material | 9. Die Life Ratio<br>Trial/Normal Material | 10. Cost of Normal Material<br>Cost of Normal Material | Die Cost per Forging<br>11. Triàl Material<br>Normal Material | 12. % Reduction in Die Costs |

#### 5. DISCUSSION OF RESULTS

#### 5.1 Laboratory Test Results

#### 5.1.1 Possible mechanisms of wear during forging

Braithwaite<sup>40</sup> has defined wear as "the progressive loss of substance from the surface of a body brought about by mechanical action". He suggested that wear may occur by one or more of the following mechanisms.

- (1) Adhesion or galling.
- (2) Abrasion,
- (3) Corrosion, including oxidation.
- (4) Surface fatigue.
- (5) Other miscellaneous mechanisms.

The possibility of these mechanisms being responsible for die wear is discussed below.

## (a) Adhesivo Wear

When two surfaces come into contact they touch only at high points on the surface as shown in figure 80a (p114). As the load on the surfaces is increased the real areas of contact increase until the total real area of contact  $A_r$  can support the applied load W, as shown in figure 80 b (p114). If H is the indontation hardness of the softer material the real area of contact is given by,

If sliding of the surface takes place metal removal occurs from the softer material by shearing as shown in figure 80c (p114). If L is the sliding distance the volume of metal removed, V, is given by

 $V = KA_L = \frac{KWL}{H}$  where K is a constant characteristic of the softer material.

It is difficult to envisage metal removal from a die surface by adhesive wear since the die is always much harder than the forging stock. If adhesive wear of dies did occur it should be most severe at the centre of the test die, since at this possition the die load is highest (see figure 26 p 38) and the die hardness is at a minimum (see figure 74 p100).

The die wear contour shown in figure 44 (p 65) however shows that no metal removal occurs at the centre of the die. Thus the pattern of die wear confirms that appreciable metal removal cannot occur by an adhesive wear mechanism.

(b) Oxidation

A second possible mechanism of metal removal from the die is by direct oxidation of the die Surface.

To investigate whether this is a likely mechanism it is necessary to consider the time which is available for scaling of the die surface to occur during a test.

Figure 33 (p 51) shows that the contact time between the slug and die during forging is about half a second. Thus the total contact time when forging 2,000 slugs is approximately 2,000 x  $\frac{1}{2}$  seconds, or about 17 minutes.

Published scaling curves<sup>41</sup> for materials of the following compositions .4C, 1.0Cr, .7Mo and .16C, 11.6Cr, .6Mo, .25Nb, .3V, which are similar to some of the die materials studied, give scaling rates of about  $4 \ge 10^{-5}$  and  $2 \ge 10^{-6}$  inches per hour respectively at 800°C.

Thus the depth of metal removal to be expected by oxidation in a wear test, even if the die surface temperature was at  $800^{\circ}$ C for the entire contact period, would be about 1 x  $10^{-5}$  to 0.5 x  $10^{-6}$  inches.

Figure 44 (p 65) shows that the actual depth of metal removal in a wear test is of the order of  $5 \times 10^{-3}$  inches i.e. two orders of magnitude greater than could be accounted for by an oxidative wear mechanism.

- 112 -

Again the shape of the wear contour also indicates that exidation is not responsible for metal loss since the unworn central plateau is subjected to the highest temperatures, so that exidative wear, if it was significant, would be greater in this region.

#### (c) Surface Fatigue

In the hot forging of slugs the mechanical stresses in the die surface would be low so that pitting caused by mechanical fatigue would not be expected to occur.

It is possible however that thermal fatigue could cause cracking of the die surface and lead to small fragments of metal being removed from the die. This has in fact been proposed as a mechanism of die wear<sup>42</sup>.

Generally the only evidence of thermal fatigue cracks in test dies was a fine network of cracks in the central unworn region. Except for dies subjected to Sulfinuz treatment and the carbon steel dies, heat-treated to very high hardness levels, this cracking was never severe.

Since the greatest metal removal occurs in a region where the thermal stresses are not most severe it seems unlikely that thermal fatigue of the die surface can play an important part in the mechanism of metal removal.

(d) Erosive Wear

The most likely form of wear in the die wear tests is erosive wear. This form of wear can occur under two-body or three-body conditions as illustrated in figure 81 (p114).

In a two-body wear system asperities on the harder material penetrate the softer body and, when sliding occurs, score grooves in the soft material so that metal is removed by a micro-machining process. Depending on the metal pair under consideration the wear debris formed can exidise to form hard abrasive particles which embed in the softer material and

- 113 -



## Figure 80

Mechaniam of Adhesive Wear



## Figure 81

2 and 3-Body Abrasive Wear Systems

abrade the harder one.

In a three-body wear system hard abrasive particles are present between the two surfaces from the start of the wear process. In the case of hotforging of steel the components of the system will be the forging stock, the die steel and scale particles formed on the forging stock.

The factors which are likely to influence the amount of wear occuring in such a system are discussed in the next section.

#### 5.1.2 Factors affecting die wear under three-body erosive wear conditions.

Figure 81b (p114) shows schematically the situation which will exist at the die-forging interface. As this figure shows scale particles will be embedded partly in the die surface and partly in the forging stock. The relative degree of penetration into each surface will depend on the hardness of the respective surfaces. Thus the wear occuring at the die surface will depend on the die hardness at the time when penetration and sliding of the scale occurs and also on the hot strength of the forging stock.

The amount of scale formed on the stock material will influence the amount of wear, since heavily scaled stock will provide more abrasive particles than lightly scaled stock. The degree of scaling of the forging stock will be determined by the stock composition and the heating conditions of time and temperature.

It is also possible that the forging temperature will control not only the amount of scale formed, but also the nature of the oxide. This point is discussed in more detail in section 5.1.6.

The amount of wear taking place at any point on the die surface will depend on how much sliding of stock occurs at that point. This factor will depend on initial and final slug geometry and the coefficient of friction at the stock-die interface as will be shown in section 5.1.3.

- 115 -

Table 28 below summarises the factors which should influence die wear if erosion by scale derived from the forging stock is the mechanism of wear.

#### Table 28

#### Factors Influencing Die Wear in Laboratory Tests

Factor Property Affecting Die Wear Die Material 20 Initial Hardness Strength at Working Temperature Stock Material 20 Amount and Type of Scale Formed Strength at Forging Temperature 3. Stock Temperature Amount and Type of Scale Formed 40 Slug Geometry Amount of Sliding Die Load Lubrication 5. Amount of Sliding Die Load

The experimental results obtained in the laboratory wear tests will be examined and interpreted in terms of the parameters listed in table 28. Before this can be done however it is necessary to consider the mechanics of deformation of the slug during forging.

#### 5.1.3 Mechanics of deformation in upsetting of cylinders

Figure 82 (p 118) shows a segment of a cylinder at some stage during an upsetting process, together with the stresses acting on an element of infinitesimal width dr.

Static equilibruim in the radial direction at any instant demands that

ę

The first term in this expression represents the radial force acting on the element, the second term represents the force due to the circumferential stresses resolved in a radial direction, and the last term represents the frictional force resisting movement in a radial direction.

Equation 1 above can be reduced to the differential equation

$$\frac{dp_r}{dr} + pr - pe + 2up_z r = 0$$
 (2)

or using stresses instead of forces

It can be shown<sup>15</sup> that  $\sigma r = \sigma_0^2$  and consequently equation 3 becomes

It can further be shown<sup>15</sup> that by replacing  $\mathcal{J}_r$  by  $\mathcal{J}_z$  through the plasticity condition that equation (4) can be written in the form

$$\frac{de_{2}}{\sigma_{2}} + \frac{2n}{b} dr = 0$$

During the upsetting of cylinders sliding does not occur over the entire surface of the end face but only in an outer annulus between a radius  $r_0$  and the outside of the cylinder as shown in figure 85 (p119).

In this outer annulus, or sliding region, equation (5) may be integrated to give the normal stress  $\sigma_z$  at any point on the radius r ( $r < r < r_g$ ). The solution obtained is

$$-6_2 = 6' \exp\left[\frac{2n}{h}(r_f - r)\right]$$
 .....(6)

00000000000000(7)

Where  $\mathscr{C}$  is the stress at the free edge of the cylinder, which is equal to the yield strength of the material.

Sticking occurs in the central region up to a radius  $r_0$  given by the expression

$$r_0 = r_f - \frac{h_2}{2\mu} \ln(\frac{1}{\mu})$$

Since there are shear stresses in the direction of the principal stress, the above approach is not strictly valid under present experimental conditions, but similar assumptions are frequently made in the literature.



# Figure 82





# Figure 83

Sticking and Slipping Regions in Upsot Slug

- 118 -

Utilize the sticking region the normal stress at any point  $\pi$  is given by

$$d_{\mathbf{B}} = \mathbf{S} \begin{bmatrix} \mathbf{2} & (\mathbf{x} \mathbf{0} = \mathbf{x}) + \mathbf{1} \\ \mathbf{3} \end{bmatrix}$$
 crossecores (6)

Equations 6, 7 and 8 will be used later to calculate the depent of the oticiting some and the die stresses during forging.

#### 5.1.4 Development of year pattern on test dies

All the dies tested showed a characteristic wear pattern consisting of a central unvern plateau surrounded by an annular V-shaped groove.

The shape and entent of the wear pattern can be shown to depend on the initial slug geometry, the degree of upsetting and the seconficient of friction between the stock and die as follows.

As upsetting of a sing cours sliding of metal with imprograted scale takes place in the outer annulus of the deformed sing, beyond the region of sticking. The extent of the sticking region at any instant depends on the degree of upsetting.

Equation 7 in postion 5.1.3 can be used to calculate the size of the sticking region (r ) at any instant for any given value of coefficient of friction (u) between die and stock.

Figure 64 (p12) shows how the sticking region grows during uppetting, for  $\mu$  values between 0.25 and 0.56, as a slug initially  $\frac{1}{2}^{\mu}$  dismotor is  $\frac{1}{2}^{\mu}$ long is uppet. Also plotted in figure 65 is the maximum radius of the slug ( $r_{\mu}$ ) at any instant during the uppetting process.

Assuming that the depth of wear at any point on the die will be proportional to the amount of motal which plides park the point of the theoretrical wear contour on the die any be calculated as follows. In figure 85 (p 121), which shows  $r_0$  and  $r_f$  as a function of the instantaneous slug height  $h_i$  (assuming  $\mu = 0.5$ ), consider three points A, B and C on the radius of a die.

Point A lies within the sticking region from the onset of forging so that no sliding of the slug over the die occurs at this point. Since no sliding occurs at point A no wear will occur if erosion is responsible for wear. At point B sliding of metal starts at the beginning of forging and continues until the sticking region (r\_) reaches point B. Figure 85 (p 121) shows that this occurs when the slug has been upset to height  $h_{d,p,0}$  At this slug height the maximum radius of the slug has grown to rea shown in figure 84 i.e. the slug radius has grown by an amount RQ. Thus the distance of sliding at point B is given by the length of the line RQ and the amount of wear occuring at this point will be proportional to the distance RQ. At point C no metal sliding occurs until the maximum radius r, reaches point C, sliding then continues until the sticking radius r reaches point C. Reference to figure 85 will show that during the period when metal is sliding past point C the outer radius  $r_{\rho}$  has grown from  $r_{\rho}S$  to r,T. Thus the sliding distance and the depth of wear will be proportional to the length ST.

In this manner the theoretical depth of wear at any point on the die can be calculated for any given initial slug geometry, degree of upsetting and pr value.

In making this analysis it has been assumed that the strain in the slug in a radial direction is uniform throughout the sliding region. This is not so, but has been assumed for simplicity since no analytical solution of the strain distribution during upsetting exists. For high values of p where the sliding region is smalk errors due to the assumption of uniform strain are likely to be small.

Theoretical wear contours calculated for the slug geometry and degree of upsetting used in the present investigations are shown in figure 86a (p 123) for various ju values.

- 120 -



Curves for Use in Calculating Theoretical Die Wear Contours

- 121 -

In all the wear tests described in this thesis a central plateau was formed, but Ali<sup>43</sup> using a similar method of wear testing in which slugs were forged on a Petroforge machine<sup>44</sup>, using colloidal graphite spray lubrication, has observed wear contours extending to the centre of the die, confirming that the theoretically predicted wear patterns do occur.

Figure 86 shows that the exact shape of the wear pattern is critically dependent on the p value but the fact that the observed wear contours agree well with those predicted is strong evidence that the mechanism of wear in the tests is erosive wear which occurs only at places where there is relative movement between stock and die. In figure 86b (p 123) a wear contour has been superimposed on the observed wear contour previously shown in figure 44 (p 65). The vertical scale of the theoretically predicted contour has been arbitrarily chosen so that the maximum wear depths of both curves coincide approximately.

Whilst the general shape of both curves agrees closely there are differences in detail. The measured wear curve tends to lie to the left of the predicted curve.

The failure to place all slugs in exactly the same position on the die will tend to cause an apparent reduction in the size of the unworn central plateau and this explanation may account for the discrepancy in the two curves near the centre of the die.

Near the outside of the wear region less wear occurs on dies than the theoretical pattern predicts. This may be due to plastic deformation of the die surface pushing metal towards the outside of the wear region and thus compensating for metal loss in this region. This suggestion is supported by the appearance of circumferential ridge markings towards the outside of the wear annulus. These can be seen in the photograph of a worn die shown in figure 40 (p 62) and also in the contour trace shown in figure 44 (p 65). An alternative explanation may be the "dilution" of scale as the surface area of the slug increases. Thus the density of scale particles per unit area of slug surface may be less during the later stages of forging.

- 122 -



- 183 -

# Figure 86a





# Figure 86b

Thecrotical Wear Contour Superimposed on Measured Wear Contour In spite of these detailed differences in predicted and observed wear contours the agreement is close enough to suggest that the theory proposed for the shape of the wear contour is correct.

It is convenient at this stage of the discussion to examine how far the results of the wear tests under lubricated conditions can be explained in terms of the wear theory developed. This is done in the next section.

#### 5.1.5 The influence of lubristion on die wear

The first impression created by the results of the die wear test on lubricated dies is that lubrication actually <u>increases</u> the rate of die wear, since, as figure 65 (p 87) and table 22 show, more metal removal occurs from a die for a given number of forgings produced with lubricant than without lubricant.

The situation is complicated however by the fact that lubrication will influence not only the depth of wear at any point, for a given amount of metal sliding, but also the area over which sliding occurs, as shown in section 5.1.3. A more detailed analysis of the effect of lubrication is required therefore.

An indication of the coefficient of friction between the stock and the die during lubricated and unlubricated forging practice can be obtained by considering the radius of the central unworn plateau of the die. This plateau corresponds to the initial sticking zone at the commencement of deformation. Thus by measuring the size of the plateau  $r_0$  in equation 7 can be found and since h and  $r_f$  (the initial slug dimensions) are known the value of  $\mu$  can be calculated from equation 7. Measurements of the radius of the unworn plateau on lubricated and unlubricated dies gave average values of 0.184" and 0.230" respectively. These measurements correspond to  $\mu$  values of 0.525 for lubricated dies and 0.560 for unlubricated dies.

The latter value agrees well with other determinations<sup>45</sup> of j under similar conditions of dry forging but the value for lubricated forging is much higher than is usually found. It is not known whether the high j value in the present investigations was due to inefficient lubrication or some degradation of the lubricant during the period when the hot slug rested on the lubricated die.

Using the calculated j values theoretical wear contours have been drawn using the method described in section 5.1.3. These theoretical contours are shown in figure 87 (p126). The area of each contour has been measured by a planimeter and the wear area for lubricated forging was found to be five times as great as that for unlubricated forging.

Using the data presented in table 22 the observed wear areas after forging 1,000 slugs under dry and lubricated conditions have been calculated and are shown below in table 29.

## Table 29

#### Wear Area After Forging 1,000 Slugs

| With Lu | orication | Without | Lubrication |
|---------|-----------|---------|-------------|
| 8       | 35        |         | 474         |
| 9'      | 75        |         | 596         |
| 2       | 30        |         | 486         |
| mean 8  | 17        |         | 519         |

Thus the observed ratio of wear under lubricated conditions to wear under dry conditions was 847/519 = 1.63, compared with the theoretically calculated ratio of 5.



# Figuro 87

Theoretical Die Wear Contours for  $\mu = .56$  and .525

The calculated wear areas were determined on the assumption that the loads during sliding, and hence scale penetration, were the same with and without lubricant. It was thought therefore that the discrepancy between the calculated and observed wear ratios may be explained by metal sliding taking place under lower loads when a lubricant was used.

Using the observed values of  $\mu$  (.525 and .56) in equations 6 and 8 (section 5.1.3) the stress at various points on the die radius was calculated throughout the upsetting process. The results of these calculations are shown in figure 88 (p128).

The blue part of each curve indicates the stress when sliding is taking place at any point, whilst the red part of each curve shows the stress when the point on the die under consideration is within the sticking region.

These curves show that during the period when sliding is occuring the stress at any point on the die is very slightly <u>higher</u> when a lubricant is used than when forging is done under dry conditions. Thus the discrepancy between the calculated and observed wear ratios cannot be attributed to reduced sliding loads when a lubricant is used.

If the analysis above is correct the observed wear when a lubricant is used is less than that calculated. This implies that <u>for a given amount</u> <u>of metal sliding past any point</u> on a die less metal removal occurs under lubricated conditions then under dry conditions. Since this cannot be attributed to a reduced load causing reduced scale penetration the reduction must be due to the lubricant physically reducing scale penetration as indicated in figure 89 (p 13).

Since the observed increase in wear when using a lubricant was by a factor of 1.63 compared with an expected factor of 5 the physical protection of the die surface by graphite must have reduced the wear at any point on the die by a factor of 5/1.63



## Figure 88

Die Surface Stress dubing Upset Forging With and Without Lubricant

So other verde <u>lor a gran he frances average a rest</u> the second content of the second content content

The realize of the bests on lubricated forping lead to interesting conclusions regarding the use of colleical graphics in practical forging conditions.

Where the forging shape is rather flat, so that forging approximates to the upsetting conditions used in the year test, the use of colloidal graphite could actually increase the total motal removed from a die by increasing the area over which sliding occurci.

Where however the forging has a deep impression so that the vertical disvalue as vertical inverse flow at an early stage, wear will be concentrated on the flash hands at the periphery of the forging. At this paint elident rather than sticking will occur whether a inbritant is used or not. Unler such conditions the amount of metal clicking over the land will depend only on the amount of flash throws and not on the inbritestics conditions. In such a situation the reduced wear per unit of metal eliding efforded by inbritantion will be beneficial in reducing wear on the land.

Discussions with a supplier of graphics labricants<sup>46</sup> indicated that improvements in die life were in fact not usually achieved by the use of lubrication for flat forgings. Emprevements in life have however been noted for other forging shapes<sup>39</sup>.

## 5.1.6 Mag influence of stock temperature on die wear

Figure 61 (p 78) shows the variation of the year with stock temporniums. It was suggested in souther Schol that it preserve wear by make was responcible for die wear then the year ocsuring under any forging could tions checke be proportional to the amount of scale on the forging stecks Also it was suggested that the panetration of scale, and hance the amount of wear, should be proportional to the yield strength of the forging stock. In addition to the above factors wear will also be influenced by the strength of the die surface which, in turn, will depend on the die surface temperature. Using the curves shown in figure 6, (p 13), an indication of the influence of stock temperature on die surface temperature can be obtained. Knowing the surface temperature the strength (6) of the die surface for any forging temperature can be found from figure 78 (p 105). The amount of wear occuring will be inversely proportional to the strength of the die surface.

Thus when forging at any given temperature it might be expected that the die wear occuring (W) would be proportional to the function S x Y/S where S is the amount of scale formed on the stock, Y the yield strength of the stock, and S is the strength of the die surface.

When considering the yield strength of the stock not only temperature but also strain rate must be taken into account, since at high temperatures the strength of steels is strain-rate sensitive.

Cook<sup>47</sup> has published curves showing the variation in yield strength of mild steel with temperature for natural strain rates between 1.5 and 100 seconds<sup>-1</sup>, and some of his results have been replotted in figure 90 (p131).

During the forging of slugs in the wear test the slug height was reduced from 0.75" to 0.200" so that the natural, or logarithmic strain, is given by  $\log(\frac{0.75}{0.20}) = \log 3.25 = 1.18$ .

Since the stroking rate of the press was 80 strokes per minute and the stroke length was 1" the press ram would accomplish the 1" forging stroke in  $\frac{60}{80}$ -seconds or  $\frac{2}{5}$  seconds. However forging occurred for only a fraction /of this period

- 130 -



Figure 39

Possible Machanism of Raduced Scale Penetration when Using Graphite Lubrication



Natural Strain Rate è - sec-1

## Figure 90

Variation of YS of Mild Steal with Strain Rate and Temperature - After Cocke<sup>44</sup> of this period given by 0.55 x  $\frac{1}{2}$  = 0.206 seconds [see figure 91 (p133)]. Thus a natural strain of 1.18 was achieved in 0.206 seconds so that the average strain rate was 1.18/0.206 = 5.75 seconds<sup>-1</sup>. A similar correction for strain rate effects should also be made to the strength value allotted to the die surface. This was not possible however since the relevant data were not available. The errors introduced however are likely to be small since at the temperatures under consideration (500 - 650°C) the influence of strain rate on strength is much lower than at temperatures in excess of 900°C.

Table 30 shows the amount of scale (S) formed on mild steel at temperatures between 900 -  $1200^{\circ}$ C together with the yield stress X at a strain rate of 5.75 seconds<sup>-1</sup> and the strength  $\mathfrak{S}$  of the die surface. The scaling figures are taken from data published in reference<sup>48</sup>, the value of X has been obtained from figure 90 (p131) and  $\mathfrak{S}$  has been obtained in the manner already explained.

Also shown in table 30 is the function  $Q = S \ge Y/S^2$  to which, as already stated, wear at any temperature should be proportional.

#### Table 30

## <u>Strength and Scaling Susceptibility of Mild Steel</u> and Die Surface Strength

|                                                  | 900   | 1000 | 1100 | 1200 |
|--------------------------------------------------|-------|------|------|------|
| Amount of Scale Formed (S) .001"/hr.             | 2.27  | 5.28 | 7.0  | 9.1  |
| Yield Strength (Y) tonf/in <sup>2</sup>          | 12.60 | 9.55 | 6.95 | 5.10 |
| Strongth of Die Surface (6) tonf/in <sup>2</sup> | 56    | 43   | 29   | 16   |
| Function Q (S x, Y)                              | .51   | 1,23 | 1.67 | 2.90 |

Figure 92 (p133) shows both the wear index and the function P in table 30 plotted against forging temperature. It can be seen that the general shape

/of the two



## Figure 91

Calculation of Strain Rate in Upsetting Slugs



## Figure 92

Wear Index and Function Q in Table 30 v. Stock Temperature
of the two curves is very similar up to 1100°C thus supporting the suggestion that the stock temperature influences die wear by its effect on the degree of stock scaling and the strength of the stock and die. Above 1100°C however the observed amount of die wear falls rapidly with increased temperature although the theoretical curve predicts that wear should continue to increase.

A possible explanation of this is that above 1100°C the nature of the scale may change so that it becomes softer and less abrasive.

Tholander and Blomgren<sup>49</sup> have studied the oxidation of mild steel in air and state that at temperatures below about  $1100^{\circ}$ C the main constituent of the scale is haematite (Fe<sub>2</sub>O<sub>3</sub>). Above  $1100^{\circ}$ C however they claim that a molten phase is formed and the oxides formed are magnetite (Fe<sub>3</sub>O<sub>4</sub>) and wistite (FeO). Garber and Sturgeon<sup>50</sup> have measured the hardness of oxides of iron and

report the following figures.

Hagmatite  $Fe_2O_3$  1030 Hv. Magnetite  $Fe_3O_4$  420-500 Hv. Wistite FeO 270-350 Hv.

It appears therefore that the rapid reduction in die wear as the forging stock temperature exceeds 1100°C might be associated with a change in the nature of the scale formed on the stock. It is interesting to note in this connection that Tholander<sup>51</sup> has predicted reduced die wear at high forging temperatures on the basis of his studies of scale composition.

Figure 92 (p133) shows that a reduction in forging temperature from 1250°C to 1050°C causes a threefold increase in die wear. It is possible that the wide variation in die life in forges mentioned in section 1.3 could, to a large extent, be due to variations in forging temperature. This seems quite feasible when it is remembered that many forge furnaces are not fitted with a means of temperature control.

### 5.1.7 The influence of forging stock on die wear.

= 135 -

Using arguments similar to those in the previous section it should be possible to predict the influence of forging stock on die wear in terms of the amount of scale (S) formed On the stock and the stock strength (Y) at the forging temperature.

Table 31 below shows this data for mild steel, En24 and En57 which were the three forging stocks investigated.

The ratio of wear (R) for any forging stock compared with that for mild steel should be given by the ratio  $\frac{S \times Y$  for any stock  $S \times Y$  for mild steel = R

Table 31 shows the predicted values of R for En24 and En57 together with the average values observed for the three dis materials (4, 6 and 9) tested using the different forging stocks. The wear of the three dis materials has been compared at an initial die hardness of 400 Hv30.

#### Table 31

| Material   | Scale formation \$ | Yield Strength Y             | Product Q | Wear Rat                   | tio R          |
|------------|--------------------|------------------------------|-----------|----------------------------|----------------|
| ÷ 2        | Cg/cm <sup>2</sup> | at 1100°C=Kg/mm <sup>2</sup> | - 5 x Y   | Rp<br>Predicted            | Ro<br>Observed |
| Mild Steel | 26.6               | 2.4                          | 38.2      |                            |                |
| En24       | 12.0               | 3.0                          | 36.0      | $\frac{36.0}{38.2} = 0.94$ | 1.50           |
| En57       | 6.6                | 4.5                          | 29.7      | $\frac{29.7}{38.2} = 0.80$ | 0,80           |

#### Influence of forging stock on die wear

The scaling figures used in table 31 are those published by Willingham & Williams<sup>52</sup> whilst the yield stress values have been taken from figures published by Unksov. Table 31 shows that whilst the agreement between the predicted and observed wear ratios for En57 and Mild Steel is very good this is not the case with the figures for En24 and Mild Steel. A practical observation made during many wear tests was that during upsetting some of the scale flaked off the hot slug and was ejected clear of the die area. It is likely therefore that the scale responsible for erosion is not the total amount of scale formed on the slug but only that proportion which adheres strongly during upsetting.

Willingham & Williams<sup>52</sup> have measured the "adhesion index" of scaled slugs in terms of the percentage of the total scale adhering to a 1" x 1" x 2" prism upset by 25% in height. The values quoted for Mild Steel, En24 and En57 were 31, 56 and 36% respectively.

If the product Q in table 31 is corrected for this scale adhesion factor the agreement between predicted and observed wear ratios is good for both En24 and En57, the values being,

Rp for En24 =  $\frac{36.0 \times 56}{38.2 \times 31}$  = 1.7 (of observed value of 1.5) Rp for En57 =  $\frac{29.7 \times 36}{38.2 \times 31}$  = 0.9 (of observed value of 0.8)

#### 5.1.8 Summary of the influence of forging variables on die wear

Before discussing the influence of die materials on die wear it is useful to summarize the extent to which the influence of forging variables on die wear has been explained.

A simple theory of wear, based on erosion of the die by scale particles derived from the forging stock and carried across the die face by stock, has been proposed.

Taking into account the mechanics of deformation during the upsetting of cylinders it has been possible on the basis of the proposed theory to predict the wear pattern formed on dies and the influence which lubrication has on both the extent and pattern of die wear.

It has also been possible to predict the effect of stock temperature on die wear in quantitative terms at least up to  $1100^{\circ}$ C.

In addition it has been shown that the influence of stock material on die wear can be predicted quantitatively to a fair degree of accuracy.

All the results discussed so far confirm that the mechanism of die wear is by erosion with any other wear mechanism playing a negligible role.

5.1.9 The influence of die material on wear

5.1.9.1 Method of comparing wear resistance for different die materials Method of comparing wear resistance for different die materials Since No 5 Die Steel (material 2) is so widely used in the drop forging

industry it is useful to compare the behaviour of other die materials directly with that of No. 5 Die Steel.

For this reason when comparing the wear of the die materials investigated this has been done in terms of a relative wear index (RWI). The RWI for any material is defined as follows:-

RWI - wear index of material at initial hardnes H wear index of No. 5 Die Steel at the same Hardness x 100 Table 32 below shows the RWI for the materials investigated at initial die

hardness of 300, 350 and 395 Hv30.

## Table 32

### RWI for Die Materials

|     | Material           | RVI at Hv30 = |       |     |  |  |  |  |  |
|-----|--------------------|---------------|-------|-----|--|--|--|--|--|
|     |                    | 300           | 350   | 395 |  |  |  |  |  |
| 2   | Plain C Steel      | 1.04:         | 125 - | 158 |  |  |  |  |  |
| 2   | No 5 Die Steel     | 100           | 100   | 100 |  |  |  |  |  |
| 3   | Cr Mn Ni Mo Steel  | 43            | 52    | 73  |  |  |  |  |  |
| 4   | En40C              | 45            | 45    | 45  |  |  |  |  |  |
| 5   | Mo Ni Cr V Steel   | 21            | 25    | 32  |  |  |  |  |  |
| 6   | Cr Mo W V Steel    | 45            | 4.7   | 51  |  |  |  |  |  |
| 7   | Ni Gr No Steel     | 42            | 49    | 61  |  |  |  |  |  |
| 8   | Cr Co Mo V W Steel | 23            | 30    | 41  |  |  |  |  |  |
| . 9 | Cr Ni Mo V Steel   | 14            | 21    | 32  |  |  |  |  |  |
| 10  | V Cr V Steel       | 21            | 23    | 26  |  |  |  |  |  |
| 11  | Cr Ma Ní N Steel   | 10            | 9     | . 6 |  |  |  |  |  |
| 12  | Cr Steel           | 110           | 123   | 149 |  |  |  |  |  |
| 13  | Cr Mo Steel        | 84            | 88    | 97  |  |  |  |  |  |
| 14  | Gr No Steel        | 57            | 64    | 75  |  |  |  |  |  |
| 25  | Gr No Steel        | 63            | 71    | 85  |  |  |  |  |  |
| 16  | Nimonic 90         | 554           | en .  | 20  |  |  |  |  |  |
| 17  | Nimocast 713       |               | â     | 11  |  |  |  |  |  |
| 18  | Inco 901           | ča            | 0     | 18  |  |  |  |  |  |

Figure 93 (p139) shows the RWI for all materials plotted as a function of initial die hardness.





Initial Die Hardnoss

0.4

# Figuro 93

Relative Wear Index v. Initial Die Hardness

### 5.1.9.2 Influence of tempering resistance on wear resistance

Wetter<sup>31</sup> showed that for the range of die materials which he investigated there was a close correlation between wear resistance and tempering resistance as shown in figure 16 (p 28).

Wetter used as a measure of tempering resistance the Larson ~ Miller parameter necessary to produce a tensile strength of 160 Kgf/mm<sup>2</sup> (100 tonf/in<sup>2</sup>). In the British forging industry such hard materials would only be used for small press dies and inserts machined before heat-treatment. The majority of dies are used at a tensile level of 80-85 tonf/in<sup>2</sup>.

Following Wetter's approach figure 94 (p141) has been plotted to show the RWI for materials at an initial die hardness of 395 Hv30 as a function of the tempering temperature necessary to produce a die hardness of 395 Hv30 ( $\pm$  82<sup>1</sup>/<sub>2</sub> tonf/in<sup>2</sup>).

Whilst there is clearly a correlation between wear resistance and tempering resistance in figure 94 it is not strong enough to make the measure of tempering resistance used a useful indication of wear resistance.

It is significant that three materials (5, 7 and 9) which fall at the bottom of the scatter band have very low  $(\frac{0.1}{0.2}\%)$  carbon contents. These materials thus have a low as quenched hardness and relatively low tempering temperatures will reduce the hardness to 395 Hv30. Thus for certain materials it appears that the method of assessing tempering resistance used by Wetter does not in fact give a proper measure of the potential high temperature stability of the die material.

Since it has been shown that dies are subjected to high surface temperatures during use it would seem more logical to use as a measure of tempering resistance the hardness of the die material after exposure to temperatures similar to those encountered during service.





Influence of Tempering Resistance on Vear Resistance

Relating the hardness of dies after use (figures 74, 75 and 76) to tempering curves suggests that effective surface temperatures between  $650-700^{\circ}$ C are encountered.

Figures 95 and 96 (pp143814) have been plotted to show the RWI at three initial die hardness levels as a function of the material hardness after tempering for two hours at 650 or 700°C.

The correlation between wear resistance and hardness after tempering at  $650^{\circ}$ C is poor. Again it is noticeable that low carbon materials (5, 7 and 9) lie at the lower end of the scatter band, presumably for the reason already explained.

Using the hardness after tempering at 700°C as a measure of tempering resistance produces a good correlation with wear resistance, only one material (7) falling very far from the curve drawn.

Considering the mechanism of wear proposed it would seem that the fundamental mechanical property which controls wear resistance is strength at working temperature. The fact that wear resistance correlates closely with hardness after tempering at 700°C suggests that hot strength at 700°C correlates closely with hardness after tempering. Figure 97 (p145) shows that this is indeed the case for the four die materials whose hot strength has been determined.

Figure 98 (p145) shows a plot of RWI against UIS at 700°C for the four materials already considered plus material 16 (Nimonic 90). The point for the nickel based alloy lies well off the curve through the other points.

This may be explained as follows. The nickel based alloys are poor conductors of heat compared with steels and consequently the surface temperature reached in these alloys during forging will be much higher than for steels. Thus the use of the tensile strength at 700°C as a measure of the

- 142 -









## Figure 96e

Influence of Tempering Resistance on Wear Resistance



# Figure 96c

Influence of Tempering Resistance on Mear Resistance



Hv30 After Tempering at 700°C

## Figure 97

Relationship Botween Hot Strength at 700°C and Hardness After Tempering at 700°C



Figure 98



- 245 -

wear resistance of Nimonic 90 is unrealistic and the value used in figure 98 should be the tensile strength at the surface temperature reached by this alloy.

An approximate calculation of the likely surface temperature for Nimonic 90, assuming that the surface of steel dies reaches  $700^{\circ}C_{\circ}$  indicates that a temperature as high as  $1000^{\circ}C$  may be reached. Details of the calculation are given in appendix  $4_{\circ}$ 

From the above discussion it is apparent that even though wear resistance is almost certainly controlled by the hot strength of the die material, the Fatter cannot be used as a comparative measure of wear resistance unless the working temperature at the die surface is known.

There is still therefore a need for comparative wear tests which automatically overcome the difficulty mentioned.

### 5.1.10 The influence of composition on wear resistance

Although it has been shown in the preceding discussion that wear resistance is determined by the hot strength of die materials it would be valuable for die steel development purposes if a direct relationship between wear resistance and composition could be established.

The wear test data have been analysed therefore to see whether such a relationship could be developed.

Before discussing the method of analysis used the possible manner in which alloying elements could influence wear resistance is considered.

### 5.1.10.1 Possible functions of alloying elements in promoting wear resistance

Since alloying elements appear to exert an influence on die wear through their effect on hot strength the manner in which they affect the latter property must be considered.

- 146 -

Basically the strength of an alloy steel, in the hardened and tempered condition, at any temperature will depend on the intrinsic strength of the matrix and the extent to which the matrix is hardened by precipitated phases. In the case of most of the steels considered the precipitated phases will be carbides.

Thus the strength of a die steel may be expected to depend on the amount and type of carbide formers present, the carbon content and the amount of alloying element in solid solution in the matrix.

Materials 12-15 were included in the test programme to investigate the relative effect of carbon, chromium and molybdenum on wear resistance.

Table 33 shows the composition and RWI for these alloys.

#### Table 33

| Material | Ço   | mposític | n            | RVI at 395 Hy30 |
|----------|------|----------|--------------|-----------------|
|          | C    | Cr       | Mo           |                 |
| 12       | o 32 | 4.6      |              | 149             |
| 13       | .35  | 4.9      | ₀57          | 97              |
| 14       | ₀35  | 9.5      | o <b>5</b> 9 | 75              |
| 15       | °25  | 9.6      | . 56         | 85              |

Wear Resistance of Alloys 12-15

An estimate of the influence of carbon on wear resistance may be made from the above wear test results for materials 14 and 15. Thus an increase in carbon content of 0.1% reduces the RWI by 10 units, so that 1% C is equivalent to 100 units reduction in RWI.

Similarly by comparing materials 12 and 13 the effect of 0.57 molybdenum is 52 units

i.e. 1% molybdenum g 91 units

Comparing materials 13 and 14 the influence of 4.6% chromium is 22 units i.e. 1% chromium = 5 units approximately.

From this simple preliminary analysis it appears that carbon and molybdenum have a strong influence on wear resistance, almost certainly through formation of carbides, whilst the influence of chromium is much weaker. Since the chromium additions in the alloys considered were fairly large it was considered that the influence of chromium on wear resistance could be due to either carbide formation or a solid solution hardening effect. The wear tests made on the carbon free iron-chromium alloys were included in the programme of tests to investigate the influence of solid solution hardening on wear resistance.

Table 34 shows the wear index for the iron-chromium alloys.

#### Table 34

| Alloy Composition | Wear Index  | Mean Wear Index |
|-------------------|-------------|-----------------|
| re – 5cr          | 1018, 956   | 987             |
| r0 - 9Gr          | 577。639。645 | 620             |
| Fo - 13Cr         | 338, 406    | 372             |

Wear Test Results for Iron-Chromium Alloys

Due to the fact that these alloys were very soft (180/280 Hv30) the wear tests were made by forging slugs to a thickness of 0.300" to reduce the load on the die and avoid deformation, therefore the above test results cannot be compared directly with any other wear tests.

Table 34 shows that even in the absence of carbon chromium exerts an effect on wear resistance, presumably through its solid solution hardening effect. This assumption is supported by plotting the wear resistance of the

- 148 -

/alloys

alloys against their hot-hardness as shown in figure 99 (p150). The hot hardness data have been taken from figures published by Tedman and Westbrook<sup>53</sup>.

It is clear from the above discussion that wear resistance will be affected both by the amount and type of carbide forming elements present in an alloy and by the alloying elements present in solid solution.

Data on all the 15 steels investigated have therefore been analysed to establish the relationship between wear resistance and composition. The Nickel based alloys, since they are hardened by the precipitation of intermetallic compounds in addition to carbides, have been excluded.

A statistical technique has been employed and the method of analysis is discussed in the next section.

#### 5.1.11 Method of analysing wear test data

The statistical technique used to analyse the wear data was that of linear regression analysis.

This technique may be used to fit a straight line relationship to a set of values of  $n_c$  and y by determining the slope b and the intercept a on the y axis of a line whose equation is  $y = a + bn_c$ 

The method minimises the sum of the squares of the differences between observed y values and those given by the line  $y = a + bx_o$ 

When more than one variable is involved, as in the present case, the equation to be determined takes the form

y = a + b1x1 + b2x2 oooooooo +b x

The enalysis was carried out on an Elliott 803 Computer using programme LS-17 for Correlation Matrix and Regression Analysis.





Wear Resistance of Fo-Cr Alloys as a Function of Hot Hardness

In the regression analysis part of the programme all the variables entered are considered and the regression equation is determined. An <sup>(p)</sup> test<sup>5k</sup> is then conducted on the variables collectively and if this is not significant at the 10% level the programme is ended.

If the "P" test is significant each variable is subjected individually to a "t" - test<sup> $\frac{3}{6}$ </sup> and these variables which are not found to be significant at the 10% level are rejected from the analysis.

Having removed any non-significant variables the "F" test is repeated on the remaining enes. If there is no significant change in the residual the regression equation is printed and the analysis carried out as before at the Fi 1% and 0.1% levels.

If however there is a significant change in the residual the variables removed from the analysis are reconsidered and the one having the greatest effect on the residual sum of squares is reinserted in the analysis. This procedure is repeated with the ' $F^{0}$  - test holds and the regression equation is printed and the next significance level is considered.

The computer cutput designates each variable and for each one chows the coefficient (bm), the standard error<sup>34</sup> of bn and the rathe of these quantities, i.e. the 't' value. Also printed are the complant a rad the number of degrees of freedom at each stage.

The final two columns of the cutput show the residual sub of squares and the residual mean square.

At each significance level the persentage sum of squares accounted for by the represeion equation is shown.

- 191 -

### 5.0.32 Teriebies concidered in rogeession analysis

None variables were initially enablesred in the repression analysis. These were

(1) The iron content of the alloy present as from-carbide designated Pet

(2) The chromium content of the alloy present as chromium carbide designated (2)

(3) The content of secondary hardening elements Mo. V. V and No prosent as carbido expressed in terms of a malybdenum equivalent and designated ([10]

(4) The total alloy content present in solid colution designated [SS]The regression analysis was then carried out to express the RWX at a given herdness in the form

RWI = a + b Pe + c Cri + d Moi + c (SS)

The values of the expressions in the square brackets were determined as follows.

Weiter's work<sup>30</sup> showed that the effect of tongsten and molybderum on die wear could be expressed in terms of a tungsten equivalent. It was decided therefore in the present analysis to express the tungsten, welybderum Vanadium and michium contents of any steel in the form of an equivalent molybdenum content. It was first assumed that the carbides formed by these elements were  $V_2C$ ,  $M_2C_3$  and NBC. A similar assumption was mode by Cuifts and Lamont<sup>55</sup> to calculate the as tempered hardness of alley steels from their composition.

The molybdonum equivalent of an element was then empropsed as the usight percentage of molybdenum which would combine with the same around of earbon as that in combination with the element under consideration. (Be total molybdenum equivalent of an alloy was given by the sum of the individual equivalents. It was further assumed that carbon in any steel would first combine with molybdenum. Thus the weight percentage of the molybdenum equivalent in combination with carbon [Mo] was calculated. In most alloys sufficient carbon was present for [Mo] to have the same value as the total equivalent molybdenum content.

In those alloys with carbon remaining after the equivalent molybdenum content was satisfied it was assumed that carbon was next taken up by chromium to form the carbide  $\operatorname{Cr}_{73}^{C_3}$ . In this way the value of [Cr] was calculated.

In the event of any carbon remaining after the chromium demand was satisfied it was assumed that Fe<sub>2</sub>C was formed and hence [Fe] was calculated.

This method of allocating the carbon to the various alloying elements is similar to that used by Crafts and Lamont<sup>55</sup>. Since these authors showed that the hardness of steels after tempering at  $700^{\circ}$ C could be expressed in terms of composition it is reasonable to expect that a similar approach will predict wear resistance since this has been shown to be correlated with hardness after tempering at  $700^{\circ}$ C

The solid solution variable [SS] was then determined as the sum of all alloying elements present, except iron, which were not combined with carbon.

Figurez100 and 101 (p 154) show the RWI at 395Hv30 plotted as a function of the total chromium content and total equivalent molybdenum content for all the steels investigated.

The trend line through the points in both figures suggests that the relationship between wear resistance and the elements concerned is not a linear one but is related to some fractional power of the element.

Because of this fractional powers of the variables [Cr] and [Mo] were investigated in the regression analysis performed.

Tables 35, 36, and 37 show typical computer outputs obtained for one particular regression analysis carried out.

- 153 -









R.W.I. v. Equivalent Molybdanum Content

1

# Table 35

|         |       | Var | Means      | Minimum    | Maximum   | Sigma     | PMeans |
|---------|-------|-----|------------|------------|-----------|-----------|--------|
| с       |       | 4   | .3682/ 00  | .1000/ 00  | .6500/00  | . 1542/00 |        |
| Si      |       | 2   | .4029/ 00  | . 1000/ 00 | . 1000/01 | .2407/00  |        |
| Mn      |       | 3   | .1103/ 01  | .2500/ 00  | .9800/01  | .2247/01  |        |
| Ni      |       | 4   | ·9706/ 00  | .0000/ 00  | .4800/01  | .1534/01  |        |
| Cr      |       | 5   | .5235/ 01  | .0000/ 00  | .2170/02  | • 5388/01 |        |
| Mo      |       | 6   | .9729/ 00  | .0000/ 00  | · 3000/01 | . 1088/01 |        |
| W       |       | 7   | .7647/ 00  | .0000/ 00  | .1000/02  | .2418/01  |        |
| v       |       | 8   | .2218/ 00  | .0000/ 00  | .1000/01  | .3263/00  |        |
| Nb      |       | 9   | - 5882/-01 | .0000/ 00  | . 1000/01 | .2425/00  |        |
| Co      |       | 10  | .1765/ 00  | .0000/ 00  | .3000/01  | .7276/00  |        |
| RWI     | (300) | 11  | .5065/ 02  | .1000/ 02  | .1100/03  | . 3178/02 |        |
| 61 -    | (350) | 12  | .5641/ 02  | .9000/ 01  | .1230/03  | . 3462/02 |        |
| 10      | (395) | 13  | .6788/ 02  | .6000/ 01  | .1580/03  | .4196/02  |        |
|         | (C)   | 14  | .3682/ 00  | . 1000/ 00 | .6500/00  | .1542/00  |        |
|         | (SS)  | 15  | .6078/ 01  | .8500/ 00  | .2900/02  | .7272/01  |        |
|         | (Mo)  | 16  | . 1681/ 01 | .0000/ 00  | .5600/01  | . 1827/01 |        |
|         | (Cr)  | 17  | .2005/ 01  | .0000/ 00  | .6500/01  | .2000/01  |        |
|         | (M8)  | 18  | .1826/ 01  | .1000/-03  | .5600/01  | .2008/01  |        |
|         | (Cr)  | 19  | .1931/ 01  | .1000/-03  | .6500/01  | . 1990/01 |        |
|         | (Fg)  | 20  | .1719/ 01  | .0000/00   | .1060/02  | . 3362/01 |        |
| 2       | (SS)  | 21  | .6268/ 01  | .8500/ 00  | .2900/02  | .7258/01  |        |
| and and | (m8)  | 22  | .9835/ 00  | .4643/-01  | . 1776/01 | .5769/00  |        |
| 2       | (Cr)  | 25  | . 1075/ 01 | .1000/-01  | .2550/01  | .9072/00  |        |
| Y       | (Cr)  | 24  | .9128/ 00  | .4643/-01  | .1866/01  | .7000/00  |        |
| 2       | (Cr)  | 25  | . 1295/ 01 | .2154/-02  | . 3483/01 | . 1170/01 |        |
|         |       |     |            |            |           |           |        |

|     |     |     |      |           |      |       |      |      |      |          |       |      | 7         | 51             | 9    | Pro o | <b>8</b> | 62   | 20                                                           | 23   | 22   | 23    | 24   | 5     |   |            |      |      |      |      |        |      |       |      |      |       |
|-----|-----|-----|------|-----------|------|-------|------|------|------|----------|-------|------|-----------|----------------|------|-------|----------|------|--------------------------------------------------------------|------|------|-------|------|-------|---|------------|------|------|------|------|--------|------|-------|------|------|-------|
|     |     |     |      |           |      |       |      |      |      |          |       | 5    | 340       | -537           | -580 | 017   | -580     | 043  | 226                                                          | -539 | -631 | N T   | 133  | 680   |   |            |      |      |      |      |        |      |       |      |      |       |
|     |     |     |      |           |      |       |      |      |      |          | 12    | 976  | 372       | - 533          | -580 | 063   | -572     | 085  | 563                                                          | -555 | -622 | 263   | 190  | 136   |   |            |      |      |      |      |        |      |       |      |      | 50    |
|     |     |     |      |           |      |       |      |      |      | Careford | 166   | 076  | 399       | -536           | -574 | 106   | -558     | 124  | 547                                                          | -558 | -602 | 212   | 244  | 181   |   |            |      |      |      |      |        |      |       |      | 24   | 972   |
|     |     |     |      |           |      |       |      |      | Oľ   | -224     | LOT   | -165 | -063      | 057            | 503  | -258  | 544      | -250 | 57.32                                                        | 081  | 339  | = 303 | =319 | -285  |   |            |      |      |      |      |        |      |       | 23   | 992  | 700   |
|     |     |     |      |           |      |       |      | 6    | -062 | 278-     | 728-  | -202 | 220       | -184           | 264  | H 28  | 454      | 025  | 32                                                           | -160 | 342  | 109   | 138  | 620   |   |            |      | ÷    |      |      |        |      | 22    | -459 | -424 | -489  |
|     |     |     |      |           |      |       | 60   | 536  | 615  | - 501    | - 507 | -509 | =086      | -073           | 865  | -321  | 915      | -390 | -333                                                         | -030 | 222  | -366  | -351 | -378  |   |            |      |      |      | ,    |        | 21   | -138  | 075  | 100  | 146   |
|     |     |     |      |           |      | dis . | 342  | -028 | 025  | -278     | -288  | -300 | -035      | 060-           | 652  | -286  | 589      | -288 | 172                                                          | 020  | 444  | -326  | -336 | -314  |   |            |      |      |      |      | 20     | 547  | -4427 | -225 | 2280 | Oyc   |
|     |     |     |      |           | 9    | -170  | 375  | 2110 | 480  | -453     | -425  | 765  | -678      | 200<br>200     | 29H  | -520  | 404      | -516 | -370                                                         | ELE  | 553  | 568   | -580 | -253  |   |            |      |      |      | 6T   | -295   | 272  | -532  | 958  | 916  | 084   |
|     |     |     |      | 5         | 971- | 23    | -124 | -107 | -107 | -377     | -386  | 404  | 8 1 0 1 1 | 00<br>00<br>00 | -261 | 606   | -266     | 621  | 442                                                          | 877  | -313 | 167   | 265  | 528   |   |            |      |      | 80   | 627- | 507-   | 160- | 893   | -464 | -451 | 1.72  |
|     |     |     | 3    | 390       | 423  | -213  | -255 | -163 | -163 | -382     | -385  | -394 | -362      | 669            | -347 | 060-  | -180     | -065 | 5000<br>5000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000 | 689  | 山田山  | -214  | -258 | 100 m |   |            |      | 22   | -417 | 466  | ~ 33 P | 252  | -482  | 965  | 929  | 2 BC  |
|     |     | 293 | CI S | 773.      | -283 | 5     | 2720 | 150- | -057 | -342-    | -365  | -336 | 230       | 82 M           | -247 | 80    | 242      | 269  | -103                                                         | 808  | -416 | 403   | 622  | 1463  |   |            | 16   | -489 | 978  | -529 | -40J   | -054 | 883   | 541  | -537 | 075   |
|     | 62  | 222 | -196 | -167      | 530  | -128  | 373  | OTTO | 232  | 036      | 0/14  | 032  | 300       | -116           | 331  | -209  | 308      | -228 | 244                                                          | 103  | 362  |       | 53   | 103   |   | 67)<br>(m) | -092 | 266  | 121  | 288  | 333    | 666  | -190  | 160  | 017  | 098   |
| 613 | 300 | 230 | 362  | and and a | 578  | 035   | -086 | 220  | 063  | 399      | 372   | 340  | 0-1       | 265            | 272  | 227   | 201      | 208  | 572                                                          | 269  | 398  | 272   | 305  | 244   | * | 265        | 272  | 227  | 201  | 208  | 582    | 269  | 398   | 272  | 305  | 02.2. |

2

Table 36

CORRELATION MATRIX N = 17

## Table 37

Regression Analysis

| Var   | В                                       | SE(B)           | T    | Const    | DF | RES SS   | res ms   |
|-------|-----------------------------------------|-----------------|------|----------|----|----------|----------|
| 13    |                                         |                 |      |          | 16 | .2917/05 | .1761/04 |
| 13    |                                         |                 |      |          | 13 | .3304/04 | .2541/03 |
| 21    | 3992/01                                 | .5575/00        | 7.16 |          |    |          |          |
| 22    | 6060/02                                 | .7747/01        | 7.82 |          |    |          |          |
| 24    | 1314/02                                 | .6304/01        | 2.08 | .1645/03 |    |          | 88.27%   |
|       |                                         |                 |      |          |    |          |          |
|       | 10.0% SIGN]                             | FICANCE LEV     | 'EL  |          |    |          |          |
|       | No Change                               |                 |      |          |    |          |          |
|       |                                         |                 |      |          |    |          |          |
| 1<br> | 5.0% SIGNI                              | FICANCE LEV     | EL   |          |    |          |          |
| 13    |                                         |                 |      |          | 14 | .4408/04 | .3149/03 |
| 21    | 3907/01                                 | .6190/00        | 6.31 |          |    |          |          |
| 22    | 5366/02                                 | .7788/01        | 6.89 | .1451/03 |    |          | 84.35%   |
|       | 4 00' 0 70117                           | 7701107 771     |      |          |    |          |          |
|       | 1.0% SIGNI                              | FICANCE LEV     | EL   |          |    |          |          |
|       | No Gnange                               |                 |      |          |    |          |          |
|       | O 1% STONT                              | FTCANCE IEV     | 167  |          |    |          |          |
|       | No Change                               |                 | 200  |          |    |          |          |
|       | 10 61101190                             |                 |      |          |    |          |          |
|       |                                         |                 |      |          |    |          |          |
|       | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | A PERSON OF THE |      |          |    |          |          |
|       | END OF ELI                              | MINATION        |      |          |    |          |          |
|       |                                         |                 |      |          |    |          |          |

Some of the variables shown (14-18) in table 35 are not discussed here since they formed part of an analysis not reported.

### 5.1.13 Results of the regression analysis

In most of the regression equations obtained the two most significant variables were [SS] and  $Moj^{\frac{1}{2}}$ . Whilst [Cr] to the fractional power of  $\frac{1}{2}$ or  $\frac{2}{3}$  appeared in the preliminary regression equation it was invariably not significant at the 5% level. The iron carbide term [Fe] was in all cases not significant at the 10% level.

This indicates that cementite, under the forging conditions used in the wear test, is not a stable enough carbide to impart a high degree of wear resistance. This is in line with the very poor performance of the plain carbon steel (material 1) in the wear tests.

The position with regard to chromium as a carbide former is not absolutely clear but it appears that it plays only a minor role in conferring wear resistance.

Table 38 below shows the regression equations obtained for RWI at hardness levels of 300, 350 and 395 Hv30, together with the sum of squares accounted for.

### Table 38

| Hardness Level<br>Hv30 | Regression Equation                              | Sum of Squares<br>Accounted For% |
|------------------------|--------------------------------------------------|----------------------------------|
| 300                    | RVI = 107.0 - 39 [Mo] <sup>‡</sup> - 2.9 [SS]    | · 79 <sub>°</sub> 95             |
| 350                    | RVI = 119.4 - 44 [Ma] <sup>1</sup> - 3.2 [SS]    | 82.45                            |
| 395                    | $RWI = 145.0 - 54 [Mo]^{\frac{1}{3}} - 3.9 [SS]$ | 84.35                            |

#### Regression Equations for RWI

Separate regression equations were determined for each hardness level to investigate whether the coefficients of the terms  $(Mo)^{\frac{1}{2}}$  and (SS) changed significantly from one hardness to another. This was thought to be

### - 158 -

/possible

possible if high initial tempering temperatures (low initial hardness) dispersed the carbides thus making them less effective in promoting wear resistance whilst the contribution of solid solution hardening to wear resistance would be expected to remain constant irrespective of the initial tempering treatment.

Reference is made to this effect later in section 5.1.14.

The success of the regression equations in predicting wear resistance from composition is shown in figure 102 (p160) in which the observed wear resistance for the die steels investigated is plotted against the predicted wear resistance. The regression analysis technique was also employed to predict the wear to be expected in any die steels in terms of composition and initial die hardness.

The following expression accounted for 81.34% of the sums of squares. Wear =  $1798 - 428 \left[ \text{Mo} \right]^{\frac{1}{3}} - 31.6 \left[ \text{SS} \right] = 1.8 \text{ H}$ 

Where H is the hardness on the Vickers scale.

All the terms in the above expression were significant at the 1% level. The relationship between the predicted and observed wear is shown in figure 103 (p161).

Some of the assumptions made to derive the regression equations were necessarily of an arbitrary nature.

In principle it would have been better to include all the elements present in the materials investigated in the regression analysis. Since however only 15 materials were used to provide the wear data, the inclusion of a large number of variables, each of which represents the loss of one degree of freedom in testing significance, would have made testing for significance more difficult. It was considered better therefore to group the elements as far as possible.



,

Agreement Botween Observed and Producted R.W.I. Values



Superfixes refer to die material

### Figure 203

Agreement Botwoon Obsorved and Predicted Wear Index

It is in this grouping that the arbitrary nature of the variables arises. The carbide forming elements were grouped according to the stability of the carbides as already explained<sup>55</sup>. In practice the elements considered would not be present in only one carbide since a good deal of substitution of one element for another is possible in carbides.

Thus the iron carbides present in the alloys would also contain chromium and molybdenum for instance, so that the influence of these elements should really be expressed by two coefficients, one representing the strength of the influence in stabilising the cementite and the other representing the influence of the carbide formed by the element in question. To separate the two effects however would require far more data than were available as well as a knowledge of the distribution of various elements in the carbides present.

Similarly some error will be introduced into the analysis by assuming that all elements present in solid solution have the same strengthening effect.

In spite of these difficulties, and the known errors introduced, the equations developed were quite successful in explaining the manner in which various elements influence wear resistance and the magnitude of the effects.

A more accurate assessment of the effect of individual elements could only be obtained by a comprehensive series of experiments on alloys specifically designed for the purpose.

Although the present analysis of composition on wear resistance is admittedly incomplete and therefore only approximate it does allow a good prediction of wear resistance to be made from composition alone. It also shows conclusively that stable carbide forming elements are of paramount impostance in developing wear resistance. In addition the contribution of solid solution strengthening to wear resistance has been demonstrated. The dependance of wear resistance on the cube root of the equivalent molybdenum Content is interesting to note since Nordberg and Aronsson<sup>57</sup> have shown that the hardness of a  $0.2C_{2}$ , 1.2Mm steel with niobium additions is linearly related to the cube root of the miobium content. A possible reason for this is discussed later in section 5.1.16.

### 5.1.14 The influence of initial die hardness on wear resistance

Figures 45 to 60 (pp 71-74) show that in general the wear resistance of the materials investigated increased with increasing initial die hardness.

The extent to which wear resistance depends on initial hardness is indicated by the slope of the regression lines given in table 16.

The slopes vary from - 9.44 for the plain carbon steel (material 1) to • 0.51 for material 9, and broadly speaking the dependance of wear resistance on hardness diminishes with increasing alloy content.

There would appear to be two possible explanations for this effect.

Firstly as the alloy content of a material increases the thermal conductivity of the material will decrease. This will lead to higher surface temperatures being reached during forging. Figures 69 = 72 (pp94 =97) show that as the tempering temperature of a die material is increased the initial die hardness has a diminishing influence on the hardness after tempering, which has been shown to correlate with high temperature strength.

Thus it is possible that as the alloy content of the materials increases the tempering of the surface during forging will increase and the effect of the initial hardness will be diminished.

~ 163 -

A second possible explanation is that in addition to the above effect the relative contribution made to wear resistance in high alloy materials by solution hardening is greater than in low alloy materials. The influence of the solution hardening effect will be independent of the initial tempering conditions of the material which influence only the carbide type, size and distribution. Thus for alloys with a high solid solution hardening contribution to wear resistance it is possible that the influence of initial hardness is reduced.

This second possibility is not supported by the regression equation developed to show how wear is influenced by composition and hardness nor by the separate regression equations at different hardness levels.

In the latter equations (table 38) the relative contributions made to wear resistance by carbide formers and solid solution hardening elements remain in the same proportion irrespective of the initial die hardness.

It appears therefore that the relationship between wear resistance and initial die hardness is more likely to be governed by the thermal conductivity of the die material.

#### 5.1.15 Wear of surface treated dies

The nitrided dies tested proved to have the most wear resistant surface of all materials. This is undoubtedly due to the stability of the nitrided surface at the working temperature. Figure 75 ( $p \mid 00$ ) shows that the surface hardness of nitrided dies was still above 750 Hv30 after use. Norën and Kindbom<sup>56</sup> have published curves which show that the hardness of nitrided surfaces is about 270 Hv30 at 700°C, which is about 2<sup>1</sup>/<sub>2</sub> times the hardness of most alloy die steels at this temperature.

It is almost certain therefore that nitrided surfaces resist wear by the prevention of penetration of scale particles into the die surface. Whilst Sulfinuz treatment of dies reduced the wear occuring the effect was less pronounced than with nitrided dies. This reduction in wear is again probably attributable to the production of a stable surface layer which reduces scale penetration.

The susceptibility of Sulfinuz treated surfaces to heat-checking and the fact that nitrided surfaces are much more wear resistant suggests that Sulfinuz treatment of dies is not likely to prove an attractive proposition to drop forgers.

### 5.1.16 Influence of microstructure on wear resistance

The regression equations relating wear to composition showed that wear resistance was governed principally by the amount of strong carbide forming elements present in a die material.

Such elements will influence mainly the type, amount and size of carbides present, and also the stability of carbides during the tempering which occurs in a wear test.

An attempt has been made therefore to investigate whether a quantitative relationship exists between wear resistance and microstructure.

The microstructures present in dies before and after testing were too fine to be resolved under an optical microscope. Attempts to obtain replicas, for examination under an electron microscope, from the worn region of dies were unsuccessful due to the irregular nature of the surface.

Since it has been shown that wear resistance correlates closely with the hardness of dies after tempering at 700°C [see figure 96 (p143)] the following procedure was adopted to investigate the relationship between microstructure and wear resistance.

Samples of materials 2, 4 and 9 were hardened to 350 or 400 Hv30 and retempered for  $\frac{1}{2}$  an hour at 700°C to simulate the tempering effects which occur during testing.

1 195

Figures 104 =105 ( $p_{167}$ ) show typical anaples of optical and electron micrographs obtained from such samples.

Ansell has shown on theoretical grounds and Greday and Lutts <sup>60</sup> have confirmed experimentally that the strength of steels containing a precipitated phase is proportional to the reciprocal of the square root of the inter-particle spacing.

Since wear resistance has been shown to depend on material strength it is interesting to investigate whether wear resistance is a function of inter-particle spacing. To measure the internarbide spacing an image of a photographic negative was projected onto a screen on which was drawn a square grid pattern. The interparticle spacing of carbides which intersected the grid lines was measured and converted to a true spacing from a knowledge of the magnification of the negative and the projected image.

Table 39 shows the spacings measured together with the wear index for the samples examined

| Material | Initial Hardness<br>-Hv30 | S <sup>3</sup><br>Microns <sup>-1</sup> | Wear Index<br>-in x 10 |     |
|----------|---------------------------|-----------------------------------------|------------------------|-----|
| 2        | 402                       | 0.40                                    | 1.58                   | 648 |
| 4        | 402                       | 0.33                                    | 1.74                   | 291 |
| 1/2      | 354                       | 0.36                                    | 1.67                   | 422 |
| 9        | 355                       | 0.31                                    | 1.80                   | 202 |

### Table 39

### Inter-carbide Spacing and RWI for Three Die Steels

59



Micrographs of No. 5 Die Steel H & T to  $402 \pm v30$ and retempered  $\frac{1}{2}$  hr. at  $700^{\circ}$ C.



Micrographs of En&CC H & T to 402 Hv30 and retempered 1 hr. at 700°C.



Micrographs of Material 9 H & T to 402 Hv30 and retempered ½ hr. at 700°C.
Figure 107 (p 17) shows wear index as a function of the reciprocal of the square foot of the intercarbide spacing.

The agreement between the predicted and observed effects is very good the correlation coefficient between the reciprocal of the square root of the intercarbide spacing and the wear index being =0.99. There is a further interesting observation regarding the close agreement between wear resistance and the theory of strengthening by a dispersed phase proposed by  $Anseit^{99}$ . Ansell has shown that in the case of an alloy containing spherical particles the strength of the alloy is proportional to the cube root of the volume fraction of the second phase particles.

Since the volume fraction of carbides will be proportional to the amount of carbide forming elements present, expressed in the regression equations as the equivalent molybdenum content  $(M_0)$ , Ansell's theory predicts that wear resistance should be proportional to  $(M_0)^{\frac{1}{2}}$  as was shown in section 5.1.13

### 5.2 Results of Works Trials

# 5.2.1. Agreement between observed die life in the forge and life predicted from laboratory tests.

Provided that erosive wear is the criterion of die failure in a production die the comparative data provided by the laboratory tests should be capable of predicting the relative lives of different die materials.

As an example the relative wear indices for No.5 Die Steel and En4OC at 395 Hw30 are respectively 100 and 45. Thus the laboratory tests suggest that the life of En4OC dies should be  $\frac{100}{45}$  i.e. 2.2 times that of No. 5 Die Steel dies.

Figure 108 (p174) shows the die life ratios obtained in the works trials as a function of the predicted life ratios. The observed life ratios plotted are taken from the data presented in table 27.



# Figure 107

Influence of Inter-Carbide Spacing on Near Resistance

In general the observed die life ratio in works trials fell below the value predicted from laboratory tests. It is noticable however that the highest life ratios obtained in works trials fell very close to the predicted values.

An analysis of die life data by Aston and Muir<sup>58</sup> has shown that die life tends to be a maximum when erosive wear is the cause of die failure rather than deformation, thermal cracking or mechanical cracking. It is possible that in only those cases showing the highest life ratic did the die fail purely due to erosive wear.

Although the works trials data are not extensive they serve to indicate that the laboratory wear test developed does correlate with service experience and is therefore useful in assessing potential die materials quickly and cheaply.

A criticism of previous inmestigations into potential new die steels was made in section 2.4 where it was pointed out that economic considerations were invariably neglected. The next section therefore deals with economic considerations.

#### 5.2.2 <u>Economic assessment of die materials studied</u>

The total costs involved in producing a die are composed of material cost and machining cost. For the majority of dies the machining costs are much greater, usually 5-10 times, than the material costs. This is true of both die blocks and die inserts.

The only reliable way of comparing the economic performance of different die materials is on the basis of die cost per forging. Thus the important parameters necessary to compare die materials are

- (1) the cost ratio of the two materials.
- (2) the machining to material cost ratio for each die material
- (3) the life ratio of the materials.

provided for the two boing they the mathematical cost for fillerent natorials are the computational 109 by 274 i shows how the superiod tile for preasure use of a presentation for interfall compared with these of the normal material, marior with the machiness to material dask toris for the standard material.

in on clear from figure 109 that when the methining to material cost train is high quite mederate improvements in die fils will justify the ale of relatively comparative materials.

Unfortunately figure (7) ever simplifies the problem involved in relating new die materials cance the work of die weat trials thered that usually due materials more resistant to year then No 5 Die Steel are also more difficult to machine.

This is to be expected since the unthrules of ever proposed is, in offect, a super-machining process. This suggeous that the very properties of a die theol which confict were resistance will reduce machinability. The proof importance of changes in machining costs in selecting die vaterials is illustrated in figure 210 (p 175 -...

This figure shows the increase in machining costs which can be tolerated, compared with the costs of machining No. 5 Die Steel, for the materials b, 6 and 9 as a function of the machining to material cost ratio for may die made from No. 5 Die Steel.

In drawing the curves shown in figure 110 the following values have been used for life and cost ratios.

| Katerial    | Cost ratio compared<br>with No. 5 Dia Steel | Life ratio compared<br>with Ne. 5 Die Steel |
|-------------|---------------------------------------------|---------------------------------------------|
| <u>É</u> t. | 1.34                                        | 2.53                                        |
| 6           | 2.29                                        | 2.2                                         |
| 9           | 2,87                                        | 2 - <b>8</b> 9                              |

The cost ratios are taken from the data given in table 26 whilst the



# Figure 108





## Figura 109

Influence of Machining to Material Cost Ratio for No. 5 Die Steel en Life Ratio Required for Economic Use of Other Materials



Machining/Matorial Cost Ratio for No. 5 Die Steel

#### Figure 110

Influence of Machining to Naterial Cost Ratio for No. 5 Die Steel on Allewable Increase in Machining Costs for Recommic Use of Other Materials Figure 110 shows very clearly the situations in which the various die materials can be used more economically than No. 5 Die Steel. All situations which results in points lying above a given curve represent an increase in die cost per forging whilst points lying below a curve represent a reduction in die cost per forging.

There are several points of particular interest in connection with the curves shown in figure 110.

Firstly it can be seen that the curves becomes asymptotic to some value of increased machining costs. Thus material 4 clearly can never be an economic replacement for No. 5 Die Steel if the machining costs increase by more than 30% when material 4 is used. It follows from this that the selection of die steels by an individual forger will be influenced to a considerable extent by the methods used for die production. Forgers with facilities for electro-spark machining of dies will find the problems associated with poorer machinability of the new die materials easier to overcome than forgers who must rely entirely on milling techniques for die production.

This point is highlighted by the results of the works trials numbered 14 and 17 in table 27 (pp109 & 110).

In the former trial the dies were sunk by spark-erosion and the sinking costs of the new material compared with No. 5 Die Steel showed no increase, so that the economic advantages occuring from the increased life of the new material were fully realised.

In the latter trial however, where die sinking was done by milling, the improved life obtained from the new material was insufficient to offset the increased die production costs.

- 176 -

A further important point shown by figure 110 is that reductions in die costs can only be achieved by careful selection of die steels suited to specific applications. This conclusion contrasts with the present industrial practice of selecting an "all-round" material to be applied to all jobs.

#### 5.2.3 Performance of alloys investigated

In all, fourteen potential die materials have been investigated. These comprised the steels 1-11 inclusive and the three nickel based alloys 15-18 inclusive.

In considering the application of any material the factors to be considered are,

- (a) cost of the material
- (b) wear resistance of the material
- (c) machinability of the material
- (d) other properties of the material such as room temperature strength and toughness

Although the hot strength and hence wear resistance of materials 11, 16, 17 and 18 is high the room temperature strength is relatively low compared with hardened and tempered mantensitic steels as shown in table 40

# Table 40

| Material |                 | UTS at 20°C<br>tonf/in <sup>2</sup> | .2% PS at 20°C<br>tcnf/in <sup>2</sup> | Ratio <u>22% PS</u><br>NTS |
|----------|-----------------|-------------------------------------|----------------------------------------|----------------------------|
| 2        | No. 5 Die Steel | 82.4                                | 76.0                                   | 0.92                       |
| 16       | Nimonic 90      | 80                                  | 52.0                                   | 0.65                       |
| 17       | Nimocast 713    | 55                                  | 48                                     | 0.87                       |
| 1,8      | Inco 901        | 78                                  | 58                                     | 0.74                       |

#### Mechanical Properties of Some Die Materials Investigated

Table 40 shows that the yield strength of the Nickel based alloys is low compared with mantensitic steels. This means that such alloys will be limited in use to applications where die stresses are relatively low.

A further drawback to the application of these alloys is their high cost and very poor machinability. Figure 109 ( $p_{174}$ ) showed that expensive die materials were best justified, where the machining costs of the present die materials were high compared with material costs. In such situations however the introduction of Nickel based alloys is likely to increase machining costs considerably and thus invalidate the use of such materials.

Calculations such as those used to produce figure 109 indicate that the use of Nickel based alloys as die materials will be very limited. Possible applications are as loose pegs in dies where loads are relatively low.

Similar arguments to those outlined apply to material 11. The one application in which this was tried as a die (works trial number 19) confirmed that its low room temperature strength prohibits its use as a die material, since the die collapsed after producing only a few forgings. So far as the magteneitic alloys are concerned all can develop sufficient strength for use as die materials.

Figure 79 (p106) indicates that some of the materials will prove too brittle for general application in hammer dies, as was confirmed in some of the works trials.

However they may be suitable as press dies. In the latter case their value must be assessed according to the relative cost and wear resistance, as indicated in section 5.2.2.

In those cases where erosive wear dictates die life in press dies the results of the present investigations suggest that the maximum reduction in die costs will be achieved by the use of nitrided dies, since the cost

# 178 -

/of nitriding

D.

of nitriding dies ( $\gg$ 1/= per pound) is very small compared with the improvement in life. The present practice of using material 6 as the base material for nitriding is open to question since material 4 is much cheaper and appears to behave just as well in the nitrided condition.

In the case of hammer dies the brittleness of many of the materials investigated (see figure 79) will limit their application as already stated. One material however, material 9, has been shown to possess very good wear resistance coupled with good impact properties, and should find widespread application in the drop forging industry.

- 179 -

## 6. CONCLUSIONS

(1) A method of wear testing of die steels has been developed which closely simulates the stress and temperature cycles to which production forging dies are subjected.

In the test, cylindrical slugs are upset forged between flat test dies. The wear occurring during a test has been expressed as a wear index (W.I.) which is proportioned to the amount of metal removed from a die, or a relative wear index (RWI), which is equivalent to the amount of wear on any material expressed as a percentage of that occurring on a reference material, No. 5 Die Steel, under the same conditions of test.

The wear resistance of the die steels assessed by the test has been shown to correlate closely with the performance of the steels under production forging conditions.

(2) Wear of dies has been shown to occur by abrasion of the die surface by scale particles derived from the forging stock. When forging mild steel the amount of wear occurring is sensitive to forging temperature since the latter affects the amount of scale formed on the stock (S), the yield strength of the stock (Y) and the die surface temperature, which in turn affects the yield strength of the die surface (6).

Between 900 - 1050°C the amount of wear on a die is quantitatively related to the function  $Q = S \ge X/S$ . Above 1050°C however the amcunt of wear falls rapidly below that predicted, due to a change in the nature of the scale. The wear at 1200°C is only about one third of that at 1100°c. (5) The influence of forging stock on die wear depends on the amount of scale formed (S), the adhesion index of the scale (A) and the yield strength of the stock (Y).

The amount of wear caused by a given stock is proportional to the product  $S \propto A \propto Y$  for that stock.

- (4) The influence of colloidal graphite lubrication on die wear has been shown to be more complicated than was hitherto assumed. In dies which are predominantly flat and where the forging operation approximates to free upsetting, as in the wear test developed, lubrication can increase the total wear on the die due to an increase in the area over which sliding and hence wear occurs. However in dies in which lateral movement of metal is restricted by vertical die walls lubrication can reduce the wear on the flash lands by mechanically protecting them from the abrasive action of scale particles.
- (5) Multiple regression analysis has been used to establish a relationship between the wear resistance and composition of die steels. The wear resistance depends on the amount of strong carbide forming elements V, Mo, V and Nb present as carbides and on the amount of other elements which contribute to solid solution hardening of the die steel matrix. The total amount of carbide forming elements has been expressed as an equivalent molybdenum content [Mo]. The following regression equations have been shown to predict closely the behaviour of a wide variety of steels.

(a) RWI at 300 HV30 =  $107 - 39 [Mo]^{\frac{1}{3}} - 2.9 [SS]$ .

(b) NWI at 350 Hv30 = 119 -  $44 \left[ M_{\odot} \right]^{\frac{1}{3}}$  - 3.2 [SS]. (c) RWI at 395 Hv30 = 145 - 54 [MO]^{\frac{1}{3}} - 3.9 [SS].

where [SS] is the sum of all elements present in solid solution. A further regression equation was developed to include the effect of initial die hardness on die wear. The equation derived was

where H is the initial die hardness on the Vickers scale.

- (6) Wear resistance has been shown to be correlated with microstructure. The amount of wear occurring is inversely proportional to the function  $1/d^{\frac{1}{2}}$  where d is the average intercarbide spacing in a die material after reheating to 700°C for 10 minutes.
- (7) The economic factors which govern the selection of die materials have been analysed and a method of calculating the effects on die costs of changing the die material has been presented. The economic factors involved are:-
  - (1) the die material cost
  - (2) the machining cost
  - (3) the die life

By using the method of assessment developed it is possible to predict the likely economic effects of changing from one die material to another.

(8) It has been shown that there are already in existence commercially available steels which if substituted for die steels presently in use will lead to substantial reductions in die costs under a wide range of forging corrections. The nickel base alloys whilst showing excellent wear resistance are likely to be limited in their application as die materials due to their low room temperature yield strength.

# References

| 10     | Approaches to Cheaper Forgings. A. C. Hobdell and<br>A. Thomas. Metal Forming. January 1969.                                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.     | The Potential of Nickel Based Alloys as Die Materials.<br>A. Thomas. Drop Forging Research Association<br>Report 1967.                                                                                    |
| 3.     | Die Block Handbook。 W. Sommers Ltd.                                                                                                                                                                       |
| 100    | Tool Steels. Roberts, Hamaker and Johnson. ASM.                                                                                                                                                           |
| 50     | A Statistical Investigation into Some Die Life Data.<br>R.R.P. Jackson and R. M. Adelson. B.I.S.R.A.<br>Confidential Report OR/17/60. March 1960.                                                         |
| 6.     | A Further Investigation of Factors Which Affect the Life<br>of Forging Dies. G. Littler. M.Sc. Thesis. Univer-<br>sity of Aston in Birmingham. September 1968.                                            |
| 7.     | "Uber die Beanspruchung von Schmiedegesenken durch Wärme"<br>G. Beck. Dr. Ing. Dissertation. Techn. Hochschule<br>Hennover 1957.                                                                          |
| 8.     | Warmrissbildung bei der Temperaturwechselbeanspruchung<br>von Warmarbeitswerkzeugen。 L. Kindbom。 Archiv。 fur<br>das Eissenhüttenwesen 35, 1964。                                                           |
| 9.     | A Thermocouple for Measurement of Temperature Transients<br>in Forging Dies. C. W. Vigor and J. R. Hornaday Jnr.<br>Temperature, Its Measurement and Control in Science<br>and Industry Vol. 3. Reinhold. |
| 10。    | En Metallografisk Undersökning av Strukturen i Gravyrtan<br>på Smidessankon. E. Tholander. Makanresultat SM<br>610525. Svøriges Mekanförbund Stockholm 1961.                                              |
| 1945 O | J. A. Heller and A. Y. Truskov. Stahl No. 5/6 1945.                                                                                                                                                       |
| 220    | Die Temperatur von Schmiedegesenken. Tomilin and Belskij<br>KuznStamp. Proizvod No. 9. 1962.                                                                                                              |
|        |                                                                                                                                                                                                           |

- 13. Materialpäfrestningar i Smidesverktyg. E. Tholander. Makanresultat 64503. May 1964.
- 14. An Engineering Theory of Plasticity. E. P. Unksov. Butterworths. London 1961.
- Mechanics of Plastic Deformation in Metal Processing.
  E. G. Thomsen, C. T. Yang and S. Kobayashi.
  McMillen. New York.
- 16. Die Berechnung der Kräfte und des Arbeitsbedarfs bei der Formgebung im Mildsamen Zustante der Metalle. A. Geleji. Akademiai Kiado. Budapest 1955.
- 17. Die Formgebung im Bildsamen Zustand. E. Siebel. Stahleisseen Düsseldorf 1932.
- 18. The High Speed Mechanical Forging Press. J. Foster. Metal Treatment and Drop Forging. December 1963.
- 19. D.F.R.A. Research Report RC/64/34
- 20. New Die Steel for Hot Deformation. G. A. Khasin and G. I. Parabina. Stal No. 4. 1944.
- 21. New Steels for Hot Forging Dies. P. G. Shishlakov. Standardizatsiya No. 4. 1962.
- 22. Steels for Forging and Pressure Casting Dies. G. V. Livshits. Stal No. 8. 1948 (H. Brutcher Translation No. 2164)
- 23. Investigation of New Die Steels for Hot Forging of Heat Resisting Alloys. A. P. Gulyaev et alia. Metallov. i Obr. Metallov No. 7. 1958.
- 24. Hopage, Völka and Tinti. Archiv fur das Eissenhüttwesen Vol. No. 17. 1943.
- 25. Alpha-Molybdonum Hot Work Die Steels. R. B. Corbett, J. A. Succopp and A. Feduska. Trans ASM Vol. 46.
- 26. Life of Forging Dies Raised by 3:1 Anonymous Inco Nickel Magazine.
- 27. The Present State of the Developments of Cold and Hot Working Steels. O. Dörrenberg and O. Milders. Stahl und Eissen 84 No. 26. 1964.

- 28. Hot Working Tools in Nimonic and Nimocast Alloys. Henry Wiggin Publication No. 3150.
- 29. Use of Radio-active Tracers in the Investigations of Wear in Drop Forging Dies. D. B. Smith, H. Southan and H. A. Whiteley. Metal Treatment and Drop Forging. April 1957.
- 30. Hard Chroming of Forging Dies and its Effect on Die Wear. K. Lange and H. Moinert. Workstattstechnik und Maschinenbau 45 No. 8. 1956.
- 31. Uber den Einfluss der Legierungselemente Volfram und Molybdan auf des Verschleissverhalten von Cr-W-Mo-V Gesenkstahlen. E. Wetter Dr.-Ing Dissertation Techn. Hochschule Hannover 1964.
- 32. The Influence of Die Hardness on the Wear of Drop Hammer Dies of a Cr-Ni-Mo Alloy Steel. E. Tholander. Euroforge Technical Committee Report May 1968.
- 55. The Influence of Die Temperature and Hardness on the Wear of No. 5. Die Steel Under Hot Forging Conditions. M.Sc. Thesis University of Aston in Birmingham. September 1968.
- 34. Untersuchung des Schmiedovorganges in Hammer und Presse insbewondere hinsichtlich des Steigens. H-J. Stüter Dr-Ing. Dissertation. Techn. Hoghschule Hannover 1959.
- 35. Hot Work Die Steels. Banns & Peckner Tool and Manufacturing Ragincer. May 1966 Vol. 56 No. 5.
- 36. Schwierwirkungen in Schwiedegesenken. H. Tolkien Dr.-Ing. Dissortation Techn. Hochschule Hannover.
- 57. Lubrication During Hot Forging of Steel. E. J. Breznyak and J. F. Wallace. Department of Metallurgy. Case Institute of Techn. Gleveland Chio.
- 58. Studies of Solid Film Lubricants for Extreme Temperatures. U.S. Air Force - Navy Industry Conf. February 17th-19th 1959. Lowis Research Centre NASA Cleveland Ohio.
- 39. Increased Forging Die Life, H. Chase. Iron Age. May 27th 1948.

40. Solid Lubricants and Surfaces. E. R. Braithwaite. Pergammon Press 1964.

- 41. Data Shects M10/5 and M66/9. Jessop-Saville Ltd.
- 42. A Suggested Mechanism of Hot Forging Die Failure. R. E. Ckell and F. Wolstencroft. Metal Forming. February 1968.
- 43. Private Communication with S.M.J. Ali. University of Birmingham.
- 44. Performance Characteristics of Petro-forge Mk1 and Mk2 Machines. L. T. Chan and S. A. Tobies. Proc. 9th Int. Machine Tool Design and Research Conference. September 1968.
- 45. Speed and Frictional Effects in Hot Forging. S. C. Jain and A. N. Bramley. Inst. Mech. Eng. Proc. 1967-68. Vol. 182 Part 1.
- 46. Private Communication with G. Carson. Graphoidal Developments Ltd.
- 47. True Stress Strain Curves for Steel in Compression at High Temperatures and Strain Rates. P. M. Cook. Inst. of Mech. Eng. Conf. 30th April - 2nd May. London.
- 48. Review of Oxidation and Scaling of Heated Solid Metals. HMSO Publication 1935.
- 49. Glödskalsbildning på stål vid Varmbearbetning.
  E. Tholander and S. Blomgrøn. Jerkontorets Annaler.
  Vol. 151 (1967) No. 1.
- 50. Garber and Sturgoon. Wire Industry 1961 March June 1.
- 51. Die Wear in Closed Die Forging. E. Tholander. Report to Euroforge Technical Committee. Brussels April 1967.
- R. C. Willingham and J. Williams B.I.S.R.A. Open Report DIS/18/65.
- 53. Hot Hardness Behaviour of Iron-Chromium Alloys. C. S. Tedmon and J. H. Westbrock. Trans ASM Vol. 60 1967.
- 54. Teach Yourself Statistics. R. Goodman E.U.P. 1957
- 55. Secondary Hardening of Tempered Mantensitic Alloy Steel. W. Crafts and J. L. Lamont. Metals Technology. September 1948.
- Structure of Nitrided Engineering Steels. T. M. Noren and L. Kindbom. Stahl und Eisen 78 1958.

- 57. Solubility of ENC in Austenite. H. Nordberg and B. Arensson. JISI Vol 205. December 1968.
- 53. Feators Affecting the Life of Drop Forging Dies J. L. Aston and A. R. Muir. JISI Tol. 207 Pert 2. Fobruary 1969.
- 59. Presipitation from Iron Base Alloys. C. S. Ansell. Metallurgical Society Conferences. AIME 28 251-279 1965.
- 60. High-Strength Freehpitetien Hardened Constructional S Steele. T. Greday and A. Lutto. C.N.F.M. No. 8 September 1966.

#### Appendix References

- M. Conduction of Heat in Solids. Carelaw and Jaegar. Onford Clarendon Freds 1948.
- A2. The Nimonic Series of High Temperature Alleys. Henry Wiggin & Co. Ltd.

#### APPENDIX I

# Clutch Circuits Used in Automatic Forging Press

During the early period of development of the automatic feeding mechanism for the forging press, occasional forging strokes were made whilst the tongs were still under the press.

To obviate this, an air circuit was designed which allowed the press clutch to engage only if the tongs were in a safe position under the heating coil. The circuit used initially is shown in Figure A1 ( $p_0A2$ ) and operated as follows.

When the tongs moved under the press, the lever  $L_2$  of value 5 was released, opening the line OM by air pressure applied through the path RqV. When the transfer tongs returned to the safe position under the coil, lever  $L_2$  was closed again and air passed through the path RPOML operating value  $V_3$  to allow air through path WHI to bring in the clutch by operating the cylinder C. At the same time, air operating at point T through the path RPOMT operated value  $V_2$  allowing the clutch cylinder to exhaust through path XFE.

When the clutch was engaged, the press ram moved down for the forging stroke and released lever  $L_1$  allowing air to pass through path ACS to change over valve  $V_2$  to open line DF. At the same time, air applied along path ACU changed over valve  $V_4$  to open line MN.

AI



# Figure A1

Pneumatic Circuit Used to Engage Press Clutch

.

- A2 -

When the press ram moved upwards after forging,  $L_1$  was again closed allowing air to pass along ABDFG, thus causing cylinder C to disengage the clutch when air passed through the path WKJ, the clutch cylinder exhausting through the path YMN.

This circuit worked reasonably well with only infrequent breakdowns due to failure of air valves. However, when these breakdowns did occur, the cause of the fault was generally difficult to locate. To improve the reliability of this part of the circuit and to ease fault finding, the electro-pneumatic circuit shown in Figure A2 (p. A5 ) was designed. The operation of this circuit was as follows.

The normal position of microswitches mounted on the transfer tongs and press ram was as shown in Figure A2 (p. A5 ).

When the tongs moved under the press, the relay coil  $S_1$  was energised closing contacts  $C_1$  and  $C_2$  and opening  $C_3$ . This relay coil was then held in the energised condition by the circuit through the ram microswitch and the closed contacts  $C_1$ .

When the tongs returned under the heating coil, solenoid  $S_3$  was energised through contacts  $C_2$  and actuated a solenoid-operated air value to bring in the press clutch allowing the ram to move down for the forging stroke.

When the ram moved the microswitch M<sub>2</sub> opened, de-energising coil  $S_1$ , thus opening  $C_1$  and  $C_2$  and closing  $C_3$ . When the ram returned to the "up" position, the air valve solenoid  $S_2$  was operated by the circuit through microswitch M<sub>2</sub> and contacts  $C_3$ , thus causing the clutch to disengage.

This circuit operated in a trouble-free fashion throughout the tests.

A3

#### APPENDIX II

#### Temperature Monitoring Circuit

Since the wear of test dies was very sensitive to forging temperature, particularly in the region of 1100°C, which was chosen as the forging temperature to maximise wear, it was necessary to monitor the temperature distribution achieved throughout a test.

Equipment was developed, therefore, which automatically recorded the number of slugs in each test which fell within three pre-selected temperature ranges. The circuit developed is shown in Figure A3 (p. A5 ).

The output from a Land Continuous Optical Pyrometer, focussed on the hot slug, was fed to a Pye Scalamp Galvanometer, the light beam of which was masked to a narrow slit of light.

On to the galvanometer scale, four photo-resistive light cells were fixed, one at the zero position on the scale and the other three at scale positions corresponding to the three pre-selected temperatures.

To illustrate the operation of the circuit, it will be assumed that the signal from the pyrometer deflects the galvanometer beam to a position between the second and third photocells (P2 and P3 in Figure A3 p. A5 ).

As the beam passes photocell P2, the contacts close and energise the operating coil on the counting relay, closing the first pair of contacts  $C_1$ . As the light beam passes P3 on the upward swing, a further pulse closes contacts  $C_2$  and opens  $C_1$ .





Electro-Proumatic Circuit Used to Engage Press Clutch





When the slug is removed from the view of the pyrometer, the galvanometer beam swings back to zero and, in so doing, operates P3 and P2 successively, thus leading to contacts C4 on the counting relay being closed when the light beam reaches P1. When the beam passes P1, a circuit is made through contacts C4 on the counting relay and the second counter coil S<sub>2</sub>.

When  $S_2$  is energised, the corresponding counter operates and the contacts  $K_2$  close. Closing of contacts  $K_2$  energises the release coil of the counting relay opening the contacts C4 and leaving the circuit ready for further operation on the next forging cycle.

A6

### APPENDIX III

#### A.III.1. Materials Selected for Trials

On the basis of laboratory tests, seven materials were selected as being worthy of investigation in works trials. The materials selected, and their compositions, are given in Table A1, which also indicates the approximate price of each material.

The prices quoted in the table call for some comment. The price of die blocks varies to some extent, with the size of the block and the quantity ordered. Furthermore, some of the steels listed in Table A1 are not standard materials and, therefore, their price is increased due to the need to produce small quantities of special compositions for die blocks.

In making economic comparisons between materials, it was felt that the die steel price used in cost calculations should be that which the drop forger would have to pay if he ordered dies to any of the specifications in Table A1. The prices quoted are, therefore, the current commercial prices at the time of the investigation.

AT

| Material   |                   | Composition       |       |        |      |     |                   | Approx. Price £/ton. |                   |            |     |              |
|------------|-------------------|-------------------|-------|--------|------|-----|-------------------|----------------------|-------------------|------------|-----|--------------|
|            |                   | C                 | si    | Ma     | Cr   | Ni  | Mo                | W                    | ۷                 | Nb         | N   |              |
| 2          | No. 5 Die Steel   | .6                | •3    | ۰6     | .6   | 1.5 | .25               | 60                   | <b>c</b> 122      | esp        | -   | 166          |
| 3          | Cr Mn Ni Mo Steel | •5                | ۰3    | 1.0    | 1.2  | 1.0 | <u>₀6</u>         | er,                  | .1                | 8          | en: |              |
| l <u>s</u> | En40C             | . <b>L</b>        | .3    | •6     | 3.0  | .4  | 1.0               | 85                   | .2                | <b>C</b> 3 | 89  | 222          |
| 5          | Mo Ni Cr V Steel  | .2                | •3    | ۰6     | 1.0  | 2.5 | 3.0               | 9                    | .25               | -          | 0   | 373          |
| 6          | Cr Mo W V Steel   | .33               | 1.0   | 03     | 5.0  | æ   | 1.5               | 1.5                  | •5                | 8          |     | 364          |
| 9          | Cr Ni Mo V Steel  | •1                | ۰3    | .7     | 12.0 | 2.4 | 1.8               | 2                    | • 35              | 8          | 12  | 476          |
| 11         | Cr Mn Ni N Steel  | • 5               | .1    | 9.8    | 31.7 | 3.9 | •                 |                      | 8                 | 60         | •5  | ? high       |
|            |                   | C                 | 51    | Mn     | Ni   | Cr  | Mo                | Ti                   | A1                | Co         | Fe  |              |
| 17         | Ninocast 713      | <u>.03</u><br>.30 | 1. OI | 1 . Om | bal  | 11  | <u>3.5</u><br>5.5 | .25<br>1.25          | <u>5.5</u><br>6.5 | bal        | 5.0 | 30/- per lb. |

# Table A1

### A.III.2 Method of Conducting Trials

Each forger who participated in the trials agreed to try one pair of die blocks or inserts in the material suggested. It was further agreed that, where the use of the trial material did not lead to any production difficulties or undue reduction in die life, the forger would use further blocks until a reliable average die life figure was established. It was suggested that, in most cases, at least six sinkings would be needed to obtain a reliable indication of die life.

In those firms where up-to-date die life records were available, the most recent performances of the normal die material were used to establish the average die life. Where such records did not exist, data on the normal material were collected concurrently with data on the trial material.

### A.III.3 Details of Individual Trials

#### Trial 1 Material 3

In this trial Material 3 was used for the production of a lever forging under a hammer. A detailed breakdown of die costs was not obtained, only the average die life and cost per forging as shown in table 27 being provided.

### Trial 2 Material 4

In this trial the experimental material 4 was used to make a vertical link by hammer forging. Only one impression was used, since only by careful attention to the dies were 4,000 forgings produced at an abnormally low production rate. This figure should be compared with about 7,5000 for No. 5 Die Steel.

Due to the trouble caused by cracking of the test dies, no more trials were made and no cost analysis of the trial has been made.

#### Trial 3 Matorial 4

The experimental material used in this trial was again material 4. Analysis of the trial results available is made difficult because connecting rod forgings were made in two different materials (ENI6 and ENI8) which were known from previous experience to give very different die lives.

The data supplied are set out in Table A2 below.

A9

# Table A2

0 3 63 45

| Impression No.         | Life  | Material forged |
|------------------------|-------|-----------------|
| ą                      | 8571  | EN16            |
| 2                      | 3411  | EN 18           |
| 3                      | 7900  | EN 16           |
| $l_k$                  | 6808  | 86              |
| 5                      | 8247  | f8              |
| 6                      | 8023  | 38              |
| 7                      | 8135  | 10              |
| 8                      | 5226  | EN 18           |
| 9                      | 6646  | en 16           |
| 10                     | 8511  | 89 ···          |
| 11                     | 8343  | 10              |
| 2 Q                    | 9309  | 2 <b>6</b>      |
| 13                     | 8293  | \$0             |
| ncon life for<br>EN 18 | 4:318 |                 |

# Performance of No. 5 Die Steel Dies

Petformance of Material 4

| Improssion No.         | Lifo                           | Material forged      |
|------------------------|--------------------------------|----------------------|
| 2<br>3                 | 5305<br>6251<br>8127           | EN 18<br>19<br>EN 16 |
| mean life for<br>EN 18 | атанстана<br>57775<br>сенестан |                      |

Normally four sinks are obtained from each die, but the trial die was found to be cracked around the dovetail after the third sink, and was therefore scrapped.

If data relating only to EN18 forgings are considered the following cost analysés shown in Table A3 can be made from details supplied.

# Table A3

# (a) Assuming dies in Material 4 will make only 3 sinks

|                               | No. 5 Die Steel                   | Material 4                        |
|-------------------------------|-----------------------------------|-----------------------------------|
| Cost of die blocks            | 10.0 units                        | 13.0                              |
| Sinking Cost                  | 58.7                              | 52 <sub>0</sub> 7                 |
|                               | (= 4 x cost of<br>one impression) | (= 3 x cost of<br>one impression) |
| Total die costs               | <u>68.7</u>                       | 65.7                              |
| Average die life              | 4318                              | 5778                              |
| Die cost par forging x 1000   | 68.7 x 1000<br>4318 x 4           | <u>65.7 x 1000</u><br>5778 x 3    |
|                               | <b>∞ 3₀98</b>                     | = 3.77                            |
| Ratio of labour/material cost | <u>587</u><br>10                  |                                   |
|                               | = 5.78                            |                                   |

A11

(b) Assuming dies in Material 4 will make 4 sinks

|                                       | No. 5 Die Steel                | Matorial 4              |
|---------------------------------------|--------------------------------|-------------------------|
| Cost of die blocks                    | 10.0 units                     | 13.0                    |
| Sinking cost                          | 58.7                           | 70.2                    |
| $(= 4 \times cost$ of one impression) |                                |                         |
| Total dis costs                       | 68.7                           | 83.2                    |
| Average die life                      | 4318                           | 5778                    |
| Die cost per forging x 1000           | <u>68.7 x 1000</u><br>4318 x 4 | 83.2 x 1000<br>5778 x 4 |
|                                       | = 3.98                         | ≈ 3.60                  |

The results of both the above analyses are shown in Table 27. Many more trials are required before it is certain to what extent the use of material 4 would affect the die cost per forging. This trial illustrates very well how difficult it is to detect potential cost reductions of the order of 10%.

The increased sinking cost for material 4 should be noted, the relative costs of sinking one impression being for No. 5 Die Steel 14.7 units, and for material 4 17.6 units.

#### Trial 4 Material 4

In this trial material 4 was used to produce small spanners by hammer forging. The average die life for No. 5 Die Steel was established as 15,047 forgings from records of the performance of 21 previous sinkings. The first three sinks in a pair of blocks in material 4 produced 19,385, 20,098 and 18,522 respectively. Trials are continuing and no cost unalysis has been attempted.

# Trial 5 Matarial 4

Material 4 in this trial was used for a protractor frame forging. In this case the machining costs for both No. 5 Die Steel and material 4 were said to be almost identical. Table A4 shows the data supplied on this trial.

|                                                   | No. 5 Die Steel                | Material 4                     |
|---------------------------------------------------|--------------------------------|--------------------------------|
| Cost of dies                                      | 10.0 units                     | 11.4                           |
| Cost of 1st sink                                  | 12.1                           | 12.1                           |
| Cost of 6 resinks                                 | 39.4                           | 39.4                           |
| Total die coste                                   | 61.5                           | 62.9                           |
| Avarage die life                                  | 1582<br>(2 sinks)              | 2571<br>(2 sinks)              |
| Die cost per forging x 1000<br>(based on 7 sinks) | <u>61.5 x 1000</u><br>1582 x 7 | <u>62.9 x 1000</u><br>2571 x 7 |
|                                                   | = 5°55                         | = 3.50                         |
| Ratio of labour/material cost                     | <u>53.5</u><br>10              |                                |
|                                                   | = 5.15                         |                                |

| AN | - She | 9 |   | 10 90 |
|----|-------|---|---|-------|
| 2  |       | 1 | 8 | A 73  |

# Trial 6 Material 4

In this trial material 4 was used to produce a combination square body. No cost details were obtained.

# Trial 7 Material 5

This was a trial carried out by a forger on his own initiative and the results were kindly made available to the author. The component was a press forged sleeve. Although No. 5 Die Steel was not the standard material for this die, trials were run on it to provide comparative data. Details of the trial are given in Table A5.

|                                     | No. 5 Die Steel              | Material 5                   |
|-------------------------------------|------------------------------|------------------------------|
| Cost of inserts                     | 10.0 units                   | 21.0                         |
| Cost of sinking                     | 36.6                         | 36.6                         |
| Total die cost                      | 46.6                         | 57.6                         |
| Moan die life                       | 12,000                       | 19,000                       |
| Mean die cost per forging<br>x 1000 | <u>46.6 x 1000</u><br>12,000 | <u>57.6 x 1000</u><br>19,000 |
|                                     | = 3°88                       | ≈ 3°03                       |
| Ratio of labour/material cost       | <u>36.6</u><br>30            |                              |
|                                     | ≈ 3°66                       |                              |

# Table A5

# Trial 8 Material 6

In this trial small hinge forgings were made three at a time on a hammer. Details were provided for six sinkings of a standard No. 5 Die Steel block, and six sinkings of a trial block in material 6.

Alt

Details of the trial are given below in Table A6.

| Sinking | Material 6 | No. 5 Die Steel |
|---------|------------|-----------------|
| 1       | 240,090    | 130,221         |
| 2       | 158,025    | 130,260         |
| 3       | 110,815    | 133,415         |
| 4       | 165,575    | 181,270         |
| 5       | 142,995    | 137,935         |
| 6       | 172,070    | 184,790         |

# Table A6

Sinkings 1 and 3 in the material 6 blocks were not considered representative, the latter due to a manufacturing fault in die sinking, and the formor because it was run beyond the normal limit in spite of difficulty in maintaining normal tolerances on the forging. For a similar reason sinkings 4 and 6 in No. 5 Die Steel were not considered representative. The remaining 4 sinkings in each material give average lives of 132,958 for No. 5 Die Steel and 159,661 for material 6.

A cost analysis of the two materials based on figures given by the forger is given in Table A7.

|                                                      | No. 5 Die Steel                | Material 6                       |
|------------------------------------------------------|--------------------------------|----------------------------------|
| Cost of die blocks                                   | 10.0 units                     | 22.3 units                       |
| Cost of sinking 8 impressions                        | 116.0                          | 116.0                            |
| Total die costa                                      | 126.0                          | 138.3                            |
| Average die life                                     | 132,958                        | 159,661                          |
| Forgings made in 8 impressions<br>= 8 x average life | 1,063,664                      | 1,277,288                        |
| Die cest per forging x 1000                          | <u>126 x 1000</u><br>1,063,664 | <u>138.3 x 1000</u><br>1,277,288 |
|                                                      | × 0,120                        | = 0°108                          |
| Ratio of labour/material cost                        | <u>116.0</u><br>10             |                                  |
|                                                      | = 11.6                         |                                  |

Table A7

The cost analysis presented here is a modified version of that used by the forger. These trials were initiated by the forger before any approach by the author and the results were kindly made available to him. The sinking cost quoted is based on the assumption that a total of eight sinkings would be possible in both materials.

The results obtained in this trial call for some comment. The reduction in die costs must be regarded as only very tuntatively established. As figure 2 (p. 7) shows, at high die lives such as occured in this trial, large variations in life are to be expected. Since the forgings are made in threes the Uie life' for use with Figure 2 is one third of that quoted above, i.e. about 50,000. Much more data on die life is needed before any confident pronouncement on the relative performance of material 6 can be made. In addition, the sinking costs for both materials have been taken as identical, because the dies were spark eroded. Had the impressions been willed, increased machining costs for material 6 would probably have led to a lower reduction in die costs, or even possibly an increase. This trial again illustrates very graphically how difficult it is to discover reductions in die costs of the order of 10%, although at first sight it may seem that such reductions could easily be determined.

#### Trials 9 and 10 Material 6

In these trials gear blank forgings of about 4<sup>‡</sup>" diameter were made on a 1500 ton press. The forging sequence used was one blow each in forming, moulding and finishing dies. In the trials only the finishing dies were replaced by the experimental material.

The top die was a more complex shape than the bottom die and had a shorter life. Since top and bottom dies were not worked in pairs, each die half has been considered as a separate trial. Trial 9 refers to the top diq and trial 10 to the bottom die. Details of the data collected are given below.

#### Trial 9 Top Die

Data were collected on two standard No: 5 Die Steel inserts, each of which produced five sinkings before being scrapped. Details of the cost and performance of these inserts are given in Table A8 below, together with details of the inserts in the experimental material.

A17

# Table A8

|                                     | Insort 1                     | Insert 2                     | Value<br>quoted in<br>Table 27 |
|-------------------------------------|------------------------------|------------------------------|--------------------------------|
| Cost of No. 5 Die Steel<br>insert   | 10.0 units                   | 11.1                         |                                |
| Cost of 1st sink                    | 17.2                         | 1401                         |                                |
| " " 1st resink                      | 7.2                          | 9.2                          |                                |
| 80 80 <b>2020</b> 89                | 6.5                          | 9.2                          |                                |
| 50 68 <u>Stroff</u> 83              | 6.4                          | 9.4                          |                                |
| 11 20 Ath 21                        | 6.5                          | 8.9                          |                                |
| Cost of repairs                     | 2.8                          |                              |                                |
| Total die costs                     | 56.6                         | 51.9                         |                                |
| Total forgings made                 | 29,415                       | 32,906                       |                                |
| Mean die life per<br>sinking        | 5,833                        | 6,581                        | 6,232                          |
| Neen die cost per<br>forging x 1000 | <u>56.6 x 1000</u><br>29,415 | <u>61.9 x 1000</u><br>32,905 |                                |
|                                     | # 1.92                       | ≈ 1 <u>.88</u>               | 1.90                           |
| Ratio of labour/<br>material cost   | <u>46.6</u><br>10            | <u>50.8</u><br>11.1          |                                |
|                                     | = 4.66                       | = 4057                       | 4.63                           |

# No. 5 Die Steel

# Trial material 6

Full cost dotails for this material are not available. The information provided was that the insert made 55,990 forgings in 7 sinkings at an average cost per forging of 1.46 (units as Table A8).

The following figures are, therefore, given in Table 27
Mean die life = 7,999 per sinking

Mean die cost per forging = 1.46

# Trial 10 Bottom Die

Data similar to that given above was collected for the bottom dies and is given in Table A9 below.

# Table A9

|                                      | Insert 1                     | Insort 2                   | Value<br>quoted in<br>Table 27 |
|--------------------------------------|------------------------------|----------------------------|--------------------------------|
| Cost of No. 5 Die Steel<br>insert    | 10,0 units                   | 10.5                       |                                |
| Cost of 1st sink                     | 12.1                         | 13.7                       |                                |
| " " 1st rezink                       | 6.5                          | 9.0                        |                                |
| n n 2md n                            | 6.4                          | 9. <b>0</b>                |                                |
| n n zre n                            |                              | 9.2                        |                                |
| e0 62 laten e9                       | en .                         | 8.6                        |                                |
| Total die costs                      | 25.0                         |                            |                                |
| Total forgings made                  | 20,585                       | 25,756                     |                                |
| Nean die 11fe por<br>sinking         | 6,861                        | 5,351                      | 5,918                          |
| Meen die cost per<br>forgings x 1000 | <u>35,0 x 1000</u><br>20,585 | <u>60 × 1000</u><br>25,756 |                                |
|                                      | = 1,70                       | 5 2.22                     | 1.96                           |
| Ratio of lebour/<br>material cost    | <u>25</u><br>10              | <u>49.5</u><br>10.5        |                                |
|                                      | = 2.50                       | ·= 4.71                    | 3.60                           |

5.8

### No. 5 Die Steel Bottom Dies

#### Trial material 6

The trial material for the bottom die insert was still in use at the time of writing. After five sinkings it has produced 67,733 forgings at an average cost of 1.02 units per forging.

The figures used in Table 27 therefore, are an average die life of 13,546 and a die cost per forging of 1.02 units.

For both top and bottom dies further testing would probably have only a slight effect on the figures given above. The % reductions in die costs quoted in Table 27 can, therefore, be taken as reasonably accurate.

#### Trials 11 and 12 Material 9

In these trials similar gear blank forgings to these in Trials 9 and 10 were produced. The forgings were about  $4\frac{1}{2}$ <sup>10</sup> diameter and were forged under identical conditions to those of Trials 9 and 10.

#### Trial 11 Top Dies

Dotails of the trial are given in Table A1C.

A20

|                                     | Insert 1                     | Insort 2                     | Valu@<br>quoted in<br>Table 27 |
|-------------------------------------|------------------------------|------------------------------|--------------------------------|
| Cost of No. 5 Die Steel<br>insert   | 10.0 unita                   | 10.1                         |                                |
| Cost of 1st sink                    | 16.1                         | 17.1                         |                                |
| n n 1st resink                      | 10.4                         | 11.9                         |                                |
| ii ii 2nd ii                        | 12.0                         | 10.4                         |                                |
| n n Jrd n                           | 9.4                          | 320 3                        |                                |
| 88 to Litze 88                      | 10.8                         | 9.4                          |                                |
| 13 10 5th 11                        | 10.8                         | 10.7                         |                                |
| 11 17 Gels 11                       | 9.5                          | æ                            |                                |
| Total die costs                     | 89.0                         | 80.7                         |                                |
| Total forgings made                 | 25,343                       | 23,146                       |                                |
| Meen die life por<br>sinking        | 3,620                        | 3,857                        | 3,730                          |
| Mean die cost par<br>forging z 1000 | <u>89.0 x 1000</u><br>25,343 | <u>80.7 z 1000</u><br>23,145 |                                |
|                                     | = 3.52                       | = 3.49                       | 3.50                           |
| Ratio of Labour/<br>material cost   | <u>79.00</u><br>10           | <u>70.6</u><br>10            |                                |
|                                     | = 7.90                       | = 7.06                       | 7.48                           |

Table A10

# Experimental material 9

The top die insort in this material made 45,282 forgings in seven sinkings at an average cost per forging of 2.70 units. The average die life per sinking was, therefore, 6,469

# Trial 12 Bottom Dieg

Datails of this trial are given in Table A11.

# Tablo A11

# No. 5 Die Steel

|                                     | Insert 1                     | Insert 2                     | Value<br>quoted in<br>Table 27 |
|-------------------------------------|------------------------------|------------------------------|--------------------------------|
| Cost of No. 5 Die Steel<br>insert   | 10.0 units                   | 10,2                         |                                |
| Cost of 1st sink                    | 12.0                         | 12.6                         |                                |
| " " 1st reaink                      | 5.9                          | 7.2                          |                                |
| ce co 201d es                       | 6.1                          | 6.3                          |                                |
| 11 10 3rd 11                        | 6.5                          | 5.0                          |                                |
| 53 EB 4288 EB                       | 6.5                          | 5.9                          |                                |
| ee 17 5th 11                        | 6.0                          | 7.7                          |                                |
| 60 60 Gtzz 60                       | 5.9                          |                              |                                |
| Total die costs                     | 58.9                         | 54.9                         |                                |
| Total forgings made                 | 32,746                       | 33 <sub>2</sub> 088          |                                |
| Noan die life per<br>sinking        | 4,678                        | 5,514                        | 5,064                          |
| Menn die oost per<br>forging x 1000 | <u>58.9 x 1000</u><br>52,746 | <u>54.9 x 1000</u><br>33,038 |                                |
|                                     | = 1.80                       | 2 1.66                       | 1.73                           |
| Ratio of labour/<br>waterial cost   | <u>48.9</u><br>10            | 44.7                         |                                |
|                                     | = 4.89                       | = 4.57                       | 4.63                           |

# Experimental material 9

This insert made 53,097 forgings in six sinkings for a mean life of 8,849 forgings per sinking. The die cost per forging was quoted as 1.84 units.

#### Trial 13 Material 9

In this trial inserts were used to make a medium-sized connecting rod by hammer forging. The trial insert in material 9 was used only for the finishing impression. Die life data for 25 No. 5 Die Steel inserts was provided. The average value for the 25 inserts has been taken as the die life for No. 5 Die Steel.

Only one trial insert had been tested at the time of writing. A cost analysis for the two material is given in Table A12.

Although only one result is available for this material the analysis made in section A.III.4 of this appendix shows that a substantial reduction in die costs can confidently be expected on further testing.

| 900 500 - 900 <b>600 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900 - 900</b> | No. 5 Die Steel             | Material 9                   |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|
| Cost of die inserts                                                                                                      | 10.0 units                  | 25.0                         |
| Cost of sinking                                                                                                          | 36.6                        | 36.6                         |
| Cost of repairs                                                                                                          | 11.7                        | 5.8                          |
| Total die costa                                                                                                          | 58.3                        | 67.4                         |
| Average die life                                                                                                         | 5,219                       | 13,547                       |
| Mean die cost per forging<br>x 1000                                                                                      | <u>58.3 x 1000</u><br>5,219 | <u>67.4 x 1000</u><br>13,547 |
|                                                                                                                          | = 11.17                     | = 4.97                       |
| Ratio of labour/material cost                                                                                            | <u>48.3</u><br>10           |                              |
|                                                                                                                          | = 4.83                      |                              |

Table A12

#### Trial 14 Material 9

In this trial inserts were used to produce rather larger connectingrods than in the previous trial. The forgings were again made under a hammer. Die life data, from which the mean life has been obtained, were provided for twelve pairs of inserts in No. 5 Die Steel. Table A13 below gives the cost analysis for this trial.

As explained in section A.IXI.4 it is possible that much of the cost reduction could disappear if the single value for die life obtained on motorial 9 is an anomalcusly high one.

|                               | No. 5. Die Steel             | Material 9                    |
|-------------------------------|------------------------------|-------------------------------|
| Cost of inserts               | 10.0 units                   | 25.9                          |
| Cost of sinking               | 54.6                         | 54.6                          |
| Cost of repairs               | 14.5                         | 21.8                          |
| Total die costs               | 72.1                         | 102.3                         |
| Average die 1419              | 21, 197                      | 40,554                        |
| Die cost per forging z 1000   | <u>79.1 x 1000</u><br>21,197 | <u>102.3 x 1000</u><br>40,564 |
|                               | = 3.73                       | a 2,52                        |
| Ratio of labour/material cost | <u>69.1</u><br>10            |                               |
|                               | = 6.91                       |                               |

Table A13

### Trial 15 Material 9

In this trial a large hook-shaped forging was produced by hammer forging, using normalised and tempered carbon steel dies (No. 1 Die Steel). The experimental material was material 9. Very surprisingly, in view of other results with material 9, the top die deformed very badly after producing only slightly more forgings than the carbon steel dies. The bottom die, however, had retained its shape very well and showed almost no evidence of wear.

The only explanation which can be offered at the moment for this behaviour is the fact that large quantities of oil were used to lubricate the top die. It is possible that ignition of this oil caused the surface of the top die to reach very high temperatures, and thus caused it to deform badly.

This trial was the only one in which material 9 failed to show a substantial increase in die life.

## Trial 16 Material 9

The forging selected for this trial was the same protractor frame as that used in trial 5. The data given for the performance of No. 5 Die Steel have been used again in this trial. Details of the trial are given in Table A14 below. The cost analysis has been based on the assumption that a die block produces a total of 7 sinkings.

A25

| Tal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ole | A14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| And And Address of the Owner, which the |     | and the second se |

|                             | No. 5 Die Steel                 | Material 9                                |
|-----------------------------|---------------------------------|-------------------------------------------|
| Cost of dies                | 10.0 units                      | 27.0                                      |
| Cost of 1st sink            | 12。1                            | <b>12</b> °1                              |
| Cost of 6 resinks           | 39.4                            | <b>39</b> • <b>4</b>                      |
| Total die costs             | 61.5                            | 78.5                                      |
| Average die life            | 2, <b>310</b><br>(4 sinks)      | <b>4,480</b><br>(1 sink)                  |
| Die cost per forging x 1000 | <u>61.5 x 1000</u><br>2,310 x 7 | $\frac{78.5 \times 1000}{4.480 \times 7}$ |
|                             | ≈ 3°81                          | = 2°20                                    |
| Ratio labour/material cost  | <u>51.5</u><br>10               |                                           |
|                             | = 5.15                          |                                           |

### Trial 17 Material 9

In this trial a gear end casing was made by hammer forging. The die life for No. 5 Die Steel dies was quoted by the forger as 3,000 forgings per sink. At the time of writing 3 sinkings of the trial material 9 had produced 4,055, 4,113 and 4,532 forgings for an average life of 4,230.

Full details of machining costs could not be obtained and, therefore, the cost analysis shown in Table A15 has been based on machining times which were supplied.

| Ta             | b       | 10         | A    | 15             |  |
|----------------|---------|------------|------|----------------|--|
| Contractory of | 0212/22 | COLOR PORT | 1000 | Contraction of |  |

|                                   | No. 5 Die Steel                                  | Material 9                                       |
|-----------------------------------|--------------------------------------------------|--------------------------------------------------|
| Cost of dies                      | 10.0° units                                      | 28.7                                             |
| Cost of 1st sink                  | 9.4                                              | 15°4                                             |
| Cost of 5 resinks                 | 21.0                                             | 36.8                                             |
| Total die costs                   | 40.4                                             | 90.9                                             |
| Average die life                  | 3,000 (quoted)                                   | 4,230 (3 sinks)                                  |
| Die cost per forging<br>x 1000    | $\frac{40.4 \times 1000}{6 \times 3,000} = 2.24$ | $\frac{90.0 \times 1000}{6 \times 4,230} = 3.58$ |
| Ratio of labour/<br>material cost | $\frac{30.4}{10.0} = 3.04$                       | - · ·                                            |

As Table A15 shows, the increased life of material 9 failed to compensate for increased machining costs. The forger involved in this trial reported that the top die in material 9 was far more difficult to machine than No. 5 Die Steel, whilst the bottom die was not much different even though the two dies had the same Brinnel figure. This was the only trial where adverse reports on the machinability of material 9 were made.

# Trial 18 Material 17

In this trial a small gear blank forging was made on a press, using material 17 as the trial material.

Only estimated machining costs and material costs were available, so that the cost analysis given in Table A16 must only be regarded as an approximate one.

#### Table A16

|                                   | Normal Material 6                        | Material 17                                |
|-----------------------------------|------------------------------------------|--------------------------------------------|
| · Cost of dies                    | 10.0 units                               | 82.7                                       |
| Machining cost                    | 65.5                                     | 65.5                                       |
| Total die cost                    | 76.5                                     | 148.2                                      |
| Average die life                  | 15,000 (quoted)                          | 26,700 (2 inserts)                         |
| Die cost per forging<br>x 1000    | $\frac{76.5 \times 1000}{15,000} = 5.10$ | $\frac{148.2 \times 1000}{26,7000} = 5.50$ |
| Ratic of labour/<br>material cost | $\frac{66.5}{10} = 6.65$                 |                                            |

In this trial the increased die life has not quite compensated for the large increase in material cost.

# Trial 19 Matorial 11

In this trial material 11 was used to make a disc by press forging. After only about 200 forgings the dies had opened out so much that they were producing out of tolerance forgings.

#### A.III.4 Reliability of Test Data

In a provious section of this thesis it was pointed out that it is dangerous to rely on limited data to draw conclusions regarding die performance. Since the percentage reduction in die costs quoted in the last row of Table 27 is based in some instances on the result of a single trial, it is necessary to examine the reliability of this data.

A28

An indication of the reliability can be obtained in the following way.

For a given forging, die life is usually distributed normally about a mean value as shown in Figure 1. A measure of the 'spread' of life about the mean value is the standard deviation  $\mathscr{O}$ . It is a property of the normal distribution curve that 70% of all observations lie in the region between the mean value  $\mathscr{A}$ .

During the works trials, collection of data allowed an approximate relationship between mean die life and standard deviation to be established as shown in Figure 2.

The effect of this so far as two trials are concerned, in which only a single figure is available for die life of the trial material will be considered. Taking as examples, Trials 14 and 16, and neglecting the 15%chance that the observed life in each of these trials could be above the true mean plus the standard deviation, then the most pessimistic view that can be placed on the trials is that the observed life lies at point A in Figure A3 i.e. at the mean value plus one standard deviation. New, from Figure 2 the approximate value of 5% in each trial is know so that the lowest likely mean value of die life (B in Figure A3) in each trial can be calculated.

Thus, for Trial 14 :-

observed life = 40,564 approx.d (from Fig. 5) = 12,000 lowest likely mean life = observed life - S = 40,564 - 12,000 = 28,564

Thus, it is reasonably certain that the mean die life in this trial will not be less than about 28,500. Similarly, for Trial 16:-

129



# Figure A4

.

Using this method, the lowest likely value for mean die life has been calculated for the trials in which a reduction in die costs is indicated, but where only single observations of die life are available. Using this value of mean die life, the percentage reduction in die costs per forging has been recalculated, and is shown in column 3 of Table A17 below. For comparison, the values given in Table 27 are also included in Table A17.

Table A17

|           | % Reduction i | n Die Costs  |
|-----------|---------------|--------------|
| TFLAL NO. | From Table 27 | Recalculated |
| 23        | 55            | 40           |
| 24        | 52            | <u>l</u> ts  |
| 26        | 32            | 242          |

Table A17 thus shows that substantial reductions are almost certain to occur in Trials 13 and 16 on further testing. However, reductions in costs in Trial 14 could conceivably be quite small if the only available figure for die life is much higher than will normally be encountered.

#### APPENDIX IV

#### Calculation of Die Surface Temperatures

Carslaw and Jaegar<sup>A1</sup> have examined the problem of a semi-infinite solid, subjected to a constant heat flux Fo per unit time per unit area at the surface, whose initial temperature is zero.

They derived the following expression for the die surface temperature after exposure for t seconds to the heat flux.

$$T_{2L} = 0 = \frac{2 F_0}{K} \frac{(vt)^2}{(\tau \tau)}$$

| where | T <sub>x</sub> = 0 | 0              | the temperature at the surface of the |
|-------|--------------------|----------------|---------------------------------------|
|       |                    |                | semi-infinite solid.                  |
|       | Fo                 | 6              | the heat flux per unit area per unit  |
|       |                    |                | time.                                 |
|       | V                  | gan a          | the thermal diffusivity of the solid. |
|       | 5                  | 90             | time of heating.                      |
|       | K                  | Color<br>Color | the thermal conductivity of the solid |
| đ     |                    | 22             | 3.142                                 |

The temperature reached by the surface of a Nimonic 90 die was estimated as follows.

Assuming that the temperature of steel dies reaches  $700^{\circ}$ C for a contact time (t) of 0.5 secs. (see Figure 33 p. 51 ), the value of the heat flux Fo can be calculated using the following values for the thermal constants of steel.

v = .12, K = .1 both in cgs units.

Using the values indicated:

$$700 = \frac{2 \text{ Fo}}{.1} \left(\frac{.12 \text{ x}}{3.142}\right)^{\frac{1}{2}}$$
 which gives Fo = 254

During forging using Nimonic 90 dies, it is reasonable to assume that the heat flux is the same as when forging with steel dies. Thus, knowing Fo and the thermal constants for Nimonic 90,  $T_{X,\Xi}$  o can be colculated.

Reference A2 gives the following det& for Nimonic 90

K = .045 (average value from 50 -  $800^{\circ}$ C) v =  $\frac{K}{Sp}$  =  $\frac{.045}{.11 \times 8.18}$  = .0495 where S = specific heat p = density

Using the above data, the die surface temperature is given by

$$T_{x=0} = \frac{2 \times 254}{.045} + \frac{(.0495 \times .5)^{\frac{1}{2}}}{(3.142)}$$

= 1000°C