
Distribution of anti-cancer drugs in solid tumours studied by MALDI-MSI.

BATUBARA, Afnan.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20623/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20623/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


SH E FFIEL D  HALLAM U N IV EK SI! Y 

LEARNING CENTRE 

COLLEGIATE CRESCENT  

SHEFFIELD S 1 0  2B P

102 141  943 5



ProQuest Number: 10701270

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701270

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Distribution of Anti-Cancer Drugs in Solid Tumours Studied by MALDI-MSI

Afhan Batubara

A thesis submitted in partial fulfilment o f the requirements o f  Sheffield Hallam University for

the degree o f  Doctor o f Philosophy

April 2015



Acknowledgments

First and above all, I praise God, the almighty for providing me this opportunity and granting 

me the capability to proceed successfully.

Second, I warmly thank and appreciate my mother and father for their material and spiritual 

support in all aspects o f  my life.

I also would like to thank my brothers and sister for they have provided assistance in numerous 

ways.

Also, my sincere appreciation goes to my supervisor Professor Malcolm Clench whose guidance, 

careful reading and constructive comments was valuable. His timely and efficient contribution 

helped me shape this into its final form and I express my sincerest appreciation for his assistance 

in any way that I may have asked. I am also deeply thanks my second supervisor from the 

University o f Bradford, Professor Paul Loadman for his invaluable advice and supervision at the 

initial stages o f  this study. Professor Chris Sutton also encouraged me in this topic.

Finally, I would like to thanks member o f the mass spectrometry group at Sheffield Hallam 

University, Many thanks to Dr. Laura Cole, Dr. Leesa Ferguson, Dr. Bryn Finders, Dr. Jill 

Newton, Dr. Philippa Hart, Dr. Robert Bradshaw, Christopher Mitchell and Ekta Patel for their 

help and support.



Abstract

Vascular disrupting agents (VDAs) have been used in treatment o f  many cancers. 5, 6 - 

dimethylxanthenone-4-acetic acid (DMXAA) is a low molecular weight drug o f  the flavonoid 

group which has an anti-vascular effect in tumours causing endothelial cell apoptosis and 

activation o f cytokines.

A study employing matrix assisted laser desorption ionisation-mass spectrometry (MALDI-MS) 

imaging to examine LS174T colorectal adenocarcinoma xenografts following administration o f  

DMXAA has been conducted to study the distribution o f anti-cancer drugs and to explore 

markers o f  efficacy and resistance. Initial work established the limit o f  detection /quantitation o f  

DMXAA in tissue. The drug limit o f  detection (LoD) is determined as 10 ng/ml and the drug 

lower limit o f  quantitation (LLoQ) is 45 ng/ml. MALDI images were recorded from LS174T 

colorectal adenocarcinoma xenografts removed from immunodeficient mice following treatment 

with with 27.5 mg/kg DMXAA. These indicated that the drug was distributed mainly in the 

centre o f tumour 4h post-treatment, whilst it was distributed around the periphery 24h post

treatment.

A study o f  lipid expression in treated tumors demonstrated that washing tissue sections with 150 

mM ammonium acetate solution (NH4AC) improved the intensity o f  lipids signals in both 

negative and positive ion mode. These images also indicated that sphingomyelins (SM) and 

phosphatidylcholines (PC) lipid species were highly expressed in cancerous tissue.

A thin layer chromatography-matrix assisted laser desorption ionisation-mass spectrometry 

(TLC-MALDI-MS) experiment has been carried out for the analysis o f  phospholipids extracted 

from the treated xenograft tumours. The lipid extracts were separated into 6 spots on the TLC 

plate. These were identified as lysophosphatidylcholines (LPC), sphingomyelins (SM), 

phosphatidylcholines (PC) and phosphatidylethanolamines (PE). The TLC-MALDI-MS data 

indicated that LPC were highly expressed in the 4h and 24h post-treated tumour samples 

compared to the control. An increase in expression o f  LPC lipids in solid tumours treated with 

DMXAA has been demonstrated and shown to be localised in the central area o f  the tumour.

Mass spectrometry imaging was also used to characterise proteins and peptide signal in tumours 

after treatment with DMXAA. Histone H2A peaks at 944 m/z were highly expressed in the 

region o f the tumours. In addition, a characteristic increase in the Hb P chain at 1274.74 m/z in 

the 24h post-treated tumour has been seen. The data obtained from PCA has shown that the 

levels o f  certain proteins changed over the different tumour time point.
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Chapter 1
General Introduction



1 Introduction

1.1 Microenvironment of a solid tumour
Normally solid tumours consist of three specific regions; cancer cells, non-transformed stromal 

cells, blood vessels and the interstitium. Cancerous and stromal cells form the major parts of 

solid tumours and cover more than 50% of the tumour volume; whereas, blood vessels which 

nourish both the stromal and cancer cells in tumours cover up to 10% of the tumour volume. The 

remaining tumour volume is covered by the interstitium which provides the nutritional and 

structural framework for the tumour to grow (Jain, 1994). The blood vessels of a tumour mainly 

consist of veins/venules in the inner part of tumour and a few arteries /arterioles in the peripheral 

part of tumour. Therefore, the difference in artery / vein pressure is low in the central region of a 

tumour but it is high in the peripheral region. This might be expected to lead to a lower blood

flow in the centre and a higher blood flow in the periphery of the tumour. In fact, the distribution

of blood vessels within a tumour depends on the tumour size and location. Small tumours are 

usually spread by surrounding vessels and further growth is initiated by formation o f new micro

vessels. In terms of their blood supply solid tumours can be thought of as containing three 

regions: a vascular necrotic region with no vasculature, a semi-necrotic region (which contains 

capillaries and pre and post capillaries) and a stable perfuse region containing many venous 

vessels and a few arteriolar vessels (Danquah et al., 2011).
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Drug re s is ta n c e
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Figure 1.1 Schematic o f the tumour microenvironment showing tumour cells and the extracellular matrix 

(ECM) surrounding a capillaiy. Hypoxia and acidity increase with distance from blood vessels resulting 

in increasing drug resistance from the tumour periphery to the vascular core (Image Adapted and 

reproduced from Danquah et al., 2011).

The heterogeneity in the intramural vascular structure leads to uneven drug distribution within 

solid tumours. In addition tumour blood vessels are generally leaky due to the discontinuity of 

the endothelium (Danquah et al., 2011).When tumours grow the need for an oxygen supply is 

increased. This is due to increased cell proliferation and growth within the tumour which require 

high amounts of oxygen. Hypoxia is defined as an area of low oxygen levels. It is a characteristic 

hallmark of solid tumours because of the imbalance between oxygen supply and consumption 

(Brown & Wilson, 2004). About 50-60% of solid tumours display a heterogeneous distribution 

of hypoxic regions within the tumour. Such characteristic hypoxic regions in tumours are 

generated because of the abnonnal tumour vasculature structure, previously described. This 

reduces the blood flow and limits the delivery o f oxygen within the tumour (Danquah et al., 

2011). Therefore, increased resistance to radiation therapy and chemotherapy in solid tumours 

arise due to the presence of these hypoxic regions (Rapisarda and Melillo., 2009).
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1.2 Tum our vs. Normal tissues
Tumour tissue is characterized by the uncontrolled proliferation of cells. In the early stages of 

tumour growth, the blood supply to the tumour tissue area mainly comes from the vessels which 

surround the normal tissue. When a tumour exceeds a critical mass, it develops its own blood 

supply. Studying tumour vascular structure is of great interest in cancer treatment and targeted 

drug delivery to tumour sites. Tumour vasculature differs from normal tissue vasculature in 

many aspects (Narang and Varia., 2011).

• Tumour vasculature is mainly characterized by the lack of smooth muscle cells and 

pericytes in vessel walls, no lymphatic drainage, an irregular basement membrane, 

discontinuous endothelial lining. Also, tumour vessels have complex branching patterns 

compared to normal blood vessels. Furthermore, the growth of tumour vasculature is 

poorly regulated. Nevertheless; the factors controlling tumour vascular growth are similar 

to that of normal tissue.

• The border of tumour-normal tissue is usually highly vascularised while the interior parts 

of the tumour could be avascular.

• The vessel diameter and the branching structure in tumour vasculature are different from 

the normal vasculature for e.g. tumour shows abnormal structure and function, twisted 

and poorly organized blood vessels which make the vessels “leaky” and it has hence been 

identified as a good target for cancer therapy.
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As shown in Fig. 1.2 A and Fig. 1.2 B, the arteries, veins and capillaries in normal tissue are 

uniformly arranged forming an evenly distributed compact network. This distribution o f  vessels 

in normal tissue is important for normal blood flow without any obstruction. On the other hand, 

Fig. 1.2 C shows that the vascular network in tumour appears haphazard with high vascular 

density in certain regions and a complete lack o f vasculature in others. This irregular structure in 

tumour vasculature causes a resistance to blood flow (Narang and Varia., 2011).

500gm 500 pm 500 pm

Figure 1.2 2D images of (A) normal subcutaneous arteries and veins follow a sub-divisional tree-model, 

(B) normal capillaries are uniformly arranged forming a compact network, and (C) The tumor vascular 

network is irregular with high tortuosity (Image adapted from Gazit et al., 1995).

Since vascularisation in tumour tissue tends to be heterogeneous and it shows some regions with 

high blood flow while others are avascular when a drug is administrated it can be distributed 

mainly around the outer well perfused regions o f  solid tumours and less distributed in central 

avascular tumour regions (Narang and Varia 2011).
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Therefore, developing methods for assessing tumour blood flow or perfusion characteristics such 

as markers of hypoxia can help clinicians to predict the response or select a more aggressive 

alternative therapeutic approach (Serkova et al., 2011)

1.3 Vascular targeted therapies
The process of new blood vessel formation is known as angiogenesis. It is an essential process 

for the spreading and growth of solid tumours. Numerous cancer treatments are focused on the 

dependency of tumour cells on new blood vessels for growth and metastatic spread. Currently 

the widespread interest in targeting tumour vasculature represents a new era in the treatment of 

cancer. Varieties of novel vascular targeted agents have been developed and are currently under 

clinical consideration. These novel agents differ from the cytotoxic drugs that normally used in 

the treatment of solid tumours.

Vascular targeted therapies are divided into two distinct types of agent: Firstly, the anti- 

angiogenic agents and secondly, the vascular-disrupting agents (Fig. 1.3). Anti-angiogenic agents 

work by mainly inhibiting the formation of new blood vessels. Therefore they have a defensive 

action which require chronic administration and are of particular benefit in early stage or 

asymptomatic metastatic disease (Siemann et al., 2005). In contrast vascular-disrupting agents 

mainly target the endothelial cells and pericytes of the already established tumour blood vessels 

causing ischemia and necrosis of tumour blood vessels (Girdlelli et al., 2009). Therefore, these 

agents are given acutely and they show more immediate effects against advanced disease 

(Siemann et al., 2005).
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Figure 1.3 Classification o f vascular targeted therapies (Image adapted and reproduced from Siemann et 

al, 2005).

Vascular disrupting agents (VDAs) are divided into two types: ligand-directed VDAs and small 

molecules. Ligand-directed VDAs contain targeting and effector moieties which are linked 

together, but their clinical effects are limited because of their cost and the lack of specificity and 

toxicity. Usually targeting moieties involve antibody, peptide or growth factors directed against 

a marker that is specifically up-regulated in tumour endothelial cells (such as antigens involved 

in angiogenesis, thrombosis, and vascular remodelling processes). The effector moiety, however, 

directly induces thrombosis by killing endothelial cells or causes thrombosis indirectly, by 

attacking tumour vessels, or by causing shape changes in endothelial cells and hence causing a 

blockage of tumour blood vessels (Thorpe 2004).
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Small molecule VDAs are in a more advanced stage of clinical development in comparison to 

the ligand directed VDAs. They can again be divided into two groups; the tubulin-binding agents 

and the flavonoids. The synthetic flavonoids work through induction of local cytokine 

production (Danquah et al., 2011), while tubulin binding agents work at the colchicine binding 

site of the p-subunit o f endothelial tubulin (Hinnen & Eskens., 2007). This binding results in 

depolymerisation of microtubules and disorganisation of actin and tubulin (Hinnen & Eskens., 

2007). The resulting disruption of the endothelial cytoskeleton causes a conformational change 

which leads to a loss of blood flow. Combretastatin A4 phosphate (CA4P) is an example of 

typical tubulin binding agent (Fig 1.4) (Vincent et al., 2005).
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Figure 1.4 Example o f the target and drug o f the vascular targeted therapies ( Image adapted and 

reproduced from Siemann et al., 2005).



Preliminary results have reported that these agents are active and safe for the treatment of 

advanced solid tumours, however, the responses of tumours to VDAs delivered as a single agent 

was poor (Gridelli et al., 2009). The combination of VDAs with cytotoxic chemotherapy, 

extemal-beam radiotherapy and radio-immunotherapy has, in contrast, given an excellent 

response in animal models (Gridelli et al., 2009). This is believed to be because the co

administered agent targets peripheral tumour cells, in the so called "viable rim".

1.4 Mechanism of action of vascular disrupting agent (VDAs)
In contrast to anti-angiogenic drugs anti-vascular drugs mainly target tumour blood vessels that 

have already formed. VDAs can however act not only on tumour vessels but also on normal 

vessels, with a risk for subsequent ischemic complications. This effect is in fact minimal since 

the structural difference in the endothelium of tumour vessels compared with that of normal 

vessels allows a selective vascular shutdown. Normally, in tumour vasculature there is a high 

rate of endothelial cell proliferation, absence of pericytes, abnormalities of the basement 

membrane and increased vascular permeability (Gridelli et al., 2009). Also, tumour vessels are 

structurally disorganized, thin-walled with obstructed blood flow (Gridelli et al., 2009). In 

addition, the irregular vessel diameters in a tumour lead to high resistance to blood flow. 

Therefore, tumours can be affected by small decreases in perfusion pressure which might not 

affect normal tissue (Kakolyris et al., 2000, Tozer et al., 1990).

VDAs consist of a large group of compounds which mainly target endothelial cells and act on 

several pathways. Endothelial cells depend mainly on a tubulin cytoskeleton for their motility, 

invasion, attachment, alignment, and proliferation (Denekamp., 1982). VDAs change the 

endothelial cell shape by causing a disruption of the cytoskeleton and cell-to-cell junctions o f the 

cells. They also induce necrosis of tumour cells by inhibiting blood flow and reduce the amount 

of oxygen and nutrient supply to the tumour (Gridelli et al., 2009).
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These effects increase the permeability to proteins and increase the interstitial fluid pressure, 

which reduce the vessel diameter and leads to plasma leakage as a result of increased blood 

viscosity and decreased blood flow (Gridelli et al., 2009). Furthermore, the basement membrane 

components are exposed and become activated through contact with platelets which trigger a 

vascular shutdown. All these events selectively occur in tumour endothelial cells only. 

Therefore, VDA activity is considered as being cytotoxic rather than cytostatic (Hinnen & 

Eskens., 2007).
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Figure 1.5 The main principle o f anti-vascular therapy ( Image adapted and reproduced from (Baguley., 

2003).
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Whilst VDAs are new and promising targeted agents, it has been reported in preclinical models 

that although the centre of the tumour becomes necrotic, a characteristic rim around the 

periphery o f tumour remains (Fig. 1.6). This rim o f tumour cells is less responsive to VDAs and it 

survives because it derives nutritional support from nearby normal blood vessels.

A  V a s c u l a r  d iE r u p t in g  
a g e n t s

Viable rim

Central necrosis Vascular disrupting 
agents

Figure 1.6 The mechanisms o f action o f vascular disrupting agents (A): Vascular disrupting agents are 

mainly targets established tumour blood vessels o f large solid tumours causing vessel occlusion and 

necrosis in the central part o f the tumour and a viable rim around the peripheiy o f tumour (Image 

adapted from Gridelli et al .,2009).

1.5 Types of Vascular disrupting agents (VDAs)
VDAs have been divided into two types: small molecule and ligand directed VDAs. In this 

project the focus will be on small molecule VDAs which are currently in preclinical and clinical 

development (Hinnen & Eskens 2007).
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1.5.1 Ligand-Directed VDAs

The mode of action of this type of VDA involves the use of ligands that bind selectively to 

components of tumour blood vessels and which occlude those vessels. Ligand-directed VDAs 

are composed of targeting and effector moieties that are linked together. The targeting moieties 

include antibodies, peptides or growth factors against a marker that is selectively up regulated in 

tumour tissue endothelial cells (O’Hanlon 2005 and Siemann et al 2004).

The antigens involved in angiogenesis, thrombosis, and vascular remodelling and cell adhesion 

molecules are usually up-regulated in tumour compared to normal tissue vessels (Thorpe., 2004). 

The effector molecule can directly induce thrombosis, kill endothelial cells or cause shape 

changes in endothelial cells that then physically block tumour vessels (Thorpe ., 2004). Research 

is trying to identify these receptors to target them with drugs, monoclonal antibodies, or gene 

therapy but the clinical development o f these agents is limited due to the cost, toxicity, and a lack 

of specificity (Gridelli et al., 2009).

1.5.2 Small Molecule VDAs

Small molecule VDAs are mainly divided into two groups; The first type is known as tubulin- 

binding agents which work by induction of local cytokine production and the second type is 

synthetic flavonoids (Hinnen & Eskens 2007).

1.5.2.1 Tubulin-Binding Agents

Tubulin binding agents mainly work at the colchicine-binding site of the P-subunit of endothelial

tubulin. They cause depolymerisation of microtubules and disorganisation o f actin and tubulin.

As a result, disruption of the endothelial cytoskeleton occurs which leads to conformational

changes and loss of blood flow. CA4P is a typical microtubule-destabilising agent and it

selectively disrupts the VE-cadherin/b-catenin complex which interferes with cell-cell contact

(Vincent et al., 2005). The loss o f cell-cell contact leads to increased vascular permeability and

increased interstitial pressure as well as loss of blood flow.
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Additionally, losses o f cell-cell contact may results in the exposure of abnormal basement 

membrane which causes an induction of the coagulation cascade with subsequent thrombus 

formation. Indeed, tumour endothelial cells are more susceptible to the activity of tubulin- 

binding agents than endothelial cells of normal tissue (Chaplin and Dougherty., 1999).

1.5.2.2 Synthetic flavonoids (DMXAA)

5, 6-Dimethylxanthenone-4-acetic acid (DMXAA) is an active analogue of flavone acetic acid 

which causes DNA damage to endothelial cells and induces apoptosis in preclinical models 

(Corbett et al., 1986). Flavone acetic acid was found to induce haemorrhagic necrosis of murine 

tumours but it was inactive in clinical trials (Smith et al., 1987, Kerr and Kaye., 1989). There 

was an attempt to develop more active analogues of flavone acetic acid through testing their 

ability to induce haemorrhagic necrosis after 24 h in murine colon tumour cells (Dvorak and 

Gresser., 1989). Xanthenone-4-acetic acid was the initial compound to be tested along with a 

series of derivatives which were synthesised and evaluated (Fig. 1.7). The most active of these 

was DMXAA which showed an excellent experimental anti-tumour activity (Rcwcastle et al., 

1991). DMXAA had a well tolerated anti-tumour action in phase I clinical trials, and it was 

therefore combined with conventional therapies in a number of successful phase II clinical trials 

(Gabra., 2006). However when it moved to phase III clinical trials, the same responses were not 

observed and the clinical development of DMXAA has been halted (Buchanan et al., 2012).
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Figure 1.7 Structure o f DMXAA and its synthesized compounds (Image adapted from Baguley., 2003).

1.6 M echanism of action of DMXAA
5, 6-Dimethylxanthenone-4-acetic acid (DMXAA) is a low molecular weight drug which has a 

striking anti-vascular effect in experimental tumours (Baguley., 2003). It is mainly acts on 

vascular endothelial cells through a cascade of events causes induction of tumour haemorrhagic 

necrosis. These events include both direct and indirect effects. The indirect effect involves the 

release of vasoactive agents, such as serotonin, tumour necrosis factor (TNF-a), cytokines and 

nitric oxide (NO) from host cells (Baguley., 2003). In addition, 5-hydroxyltryptamine (5-HT) is 

released by platelets as a response to vascular damage (Baguley et a l ., 1997).Therefore, tumour 

blood flow decreases and 5-HT levels increase. Indeed, the exact mechanism of action of 

DMXAA is unknown but its activity involves pathways which lead to up regulation of the 

nuclear transcription factor (NfxB) as well as production of TNF-a and other cytokines (Ching et 

al., 2002).
14



Furthermore, NO is produced in response to DMXAA resulting in increase blood flow and 

vascular permeability as well as increasing the effects of TNF-a and 5-HT. The way in which 

these forces oppose each other is still unknown (Thomsen et al., 1991).
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Figure 1.8 The vasoactive event o f DMXAA. The drug has a direct effect causing a release o f 5- 

hydroxyltryptamine (5HT) by platelets and indirect effect by production o f TNF-a and other cytokine in 

tumour tissue. 2-3h after drug administration a release o f 5FIT occurs and after 6h a release o f nitric 

oxide occur (Image adapted from Baguley., 2003).

The molecular mechanism of action of DMXAA includes activation of NFkB in monocytes, 

vascular endothelial cells, and other tumour cells. This activation can mediate the direct effects 

of DMXAA on vascular endothelial cells and also lead to cytokine synthesis in host and tumour 

cells. NFkB is known to be the main transcription factor which causes production of TNF and is 

involved in the synthesis of interferons and other cytokines (Karin & Benneriah., 2000). The 

range of cytokines and chemokines produced in response to DMXAA is consistent with the
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involvement o f  NFkB (Cao et al., 2001). Also DMXAA can stimulates the enzyme that 

phosphorylates the inhibitor o f NFkB (IkB kinase) in a pathway linked to NFkB activation 

(Philpott et a l ., 2001). This enzyme complex, include a subunit, ap subunit, and ay subunit in 

which it catalyses phosphorylation o f  the inhibitory IkB protein causing an enzyme degradation. 

The active NFkB are then translocated to the nucleus (Karin & Benneriah., 2000).

DMXAA induce the stimulation o f TNF synthesis through various agents, such as endotoxin, 

interleukin 1, okadaic acid, and phorbol myristate acetate which involved in activation o f  IkB 

kinase by a different pathway. Therefore, p subunit is considered as a possible target for 

DMXAA (Philpott et a l ,  2001).

Earlier studies have stated that DMXAA can reduce tumour growth in several mouse tumour 

models by two phases. The first phase effect was initiated by macrophages which release 

significant amounts o f  TNF-a and NO (Ching et al., 1992). The release o f  cytokines results in 

hemorrhagic necrosis in tumours. The second phase response were initiated by migration o f  

activated tumour-specific CD8+ T-cells due to secretion o f  chemokines, such as CCL2 (MCP-1), 

CXCL10 (IP-10) and CCL5 (RANTES) induced by DMXAA in mouse macrophages and 

dendritic cells (Ching et al., 1999). Phase I and phase II clinical trials have proven the clinical 

benefits o f DMXAA in humans. In fact, the exact mechanism in which DMXAA exerts its anti

tumour action has been attracting researcher attention. It has been demonstrated that DMXAA  

can act on both endothelial cells and leukocytes particularly macrophages and dendritic cells in 

murine systems. DMXAA induces the secretion o f large amounts o f  pro-inflammatory cytokines 

and chemokines such as TNF-a, IL-6, IP-10, and interferon-b) from macrophages (Sun et al.,

2011).

16



1.7 MALDI imaging in drug distribution
In the early stage of drug development, drug and metabolite distribution studies have 

traditionally been carried out in animal tissues using a range of techniques. MALDI-MSI is a 

technique that has been used for imaging the distribution of a range of drugs and metabolites in 

whole body sections and in a variety of applications since its development as a protein imaging 

technique by Caprioli et al. in 1997. The first study using MALDI that was performed to directly 

study a pharmaceutical compound in animal tissue was published by Troendle et al., 1999. 

MALDI quadrupole ion trap mass spectrometry was used to detect the anticancer drug paclitaxel 

in a human ovarian tumour and the antipsychotic drug spiperone in spiked sections of rat liver 

tissue (Troendle et al., 1999). The Caprioli group reported a study of the distribution of anti

tumour drugs in mouse tumour tissue and rat brain sections (Reyzner et al., 2003). This paper is 

generally regarded as the first MALDI-MSI paper to study drug distribution. A study of the 

distribution of the bio-reductive anticancer drug AQ4N in H460 lung tumour xenografts showing 

imaging of the prodrug and its reduced active fonn in one experiment along with imaging the 

distribution of ATP and showing the inverse correlation with the active reduced form of the drug 

in regions o f hypoxia was reported by Atkinson et al., 2007.

Stockli et al., 2007 described some of the practical aspects of obtaining MALDI-MSI data for 

drug and metabolite distributions in whole body sections and have reported on some of the 

limitations of the technique (Stockli et al., 2007). In addition, the Caprioli group extended this 

approach by combining their own work on protein imaging to produce whole body images which 

shown the location of drug, drug metabolites and endogenous markers for various organs of the 

body (Shahidi et al.,2006).
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1.8 Lipids and Colon cancer
Currently, colon cancer has become a major cause of mortality and morbidity. Aging is one of 

the factors that increases the incidence of colorectal cancer. Environmental factors such as diet, 

high intake of animal protein and fat with a low intake of fibre are also thought to increase the 

risk of colon cancer (Shimma et al., 2007). Many studies have also focused on identifying bio

molecules differentially expressed in cancerous and normal tissues as biomarkers (Alessandro et 

al., 2005, Westra et al., 2004). Others concentrate on phospholipids, which are an important 

constituent of cell membranes and are important molecules to be investigated especially in colon 

cancer. It is suggested that the characteristics o f cell membranes can be determined by analyzing 

phospholipids (Cullis et al., 1991). Previous studies have demonstrated that cancerous tissue 

contains high levels of total amounts of all phospholipids with altered phospholipids composition 

of the membrane (Dueck et al., 1996, Dobrzynska et al., 2005). All these studies indicated that 

phospholipids can be used, as a useful marker for the detection of colon cancer.

Profiling biological molecules on tissues using matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI-MS) can identify subtypes of phospholipids. Furthermore, accurate mass 

MS can profile fatty acids which can be considered as a part of phospholipids. This area o f study 

has been extended to visualize the distribution of individual biomolecules in a tissue section 

using mass spectrometry imaging (MSI).

In the study of Shimma et al, the distribution of two types of phospholipids was visualized to be 

differentially expressed between the cancerous and normal areas (Shimma et a l, 2007).
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Gao et al, reported that Lysophosphatidylcholine (LPC) level can be considered as a clinical 

diagnostic indicator of pathophysiological changes which occurred by anti-tumour action of 

flavonoid derivate, l-(3-chloro-4-(6-ethyl-4-oxo-4H-chromen-2-yl) phenyl)-3-(4-chlorophenyl) 

urea (3D). In this study, three LPCs including Lyso PC (18:1), Lyso PC (20:3) and Lyso PC 

(20:4) were increased by 1:40 times in cells treated with potent anti-tumour agent (3D). This 

increase of LPC level is due to increase oxidative stress caused by (3D) anti-tumour agent which 

lead to lipid peroxidation and formation of LPC (Gao et a l, 2014). In contrast, levels of three 

PCs were significantly decreased (p<0.05) in 3d treated HepG2 cells, including PC (14:0/0:0) 

and PC (20:0/4:0)] and one phosphatidylcholine (PC) (15:0/20:5). The decrease in PC level 

indicated the lesions of cell membrane occurred by potent anti-tumour agent (3D) (Gao et al, 

2014).

1.8.1 The effect of antibody directed and anti-vascular combination therapies on LS174T 

colorectal xenografts tum our 

Solid tumours have an extremely heterogeneous pathophysiology; therefore, for successful

treatment a combination of therapeutic strategies may be required. In order to optimize

combination therapies detailed information on how tumours respond to the individual treatments

are required. The use of antibody-directed therapy such as carcino-embryonic-antigen (CEA) in

colorectal carcinomas is the most selective strategy for anti-cancer treatment and targets a

therapeutic moiety of the tumour (Jain., 1998, Pedley., 1996). Targeting the tumour vasculature

is however, also seen as a promising option. Anti-vascular therapy in fact has many advantages

over direct tumour cell targeting therapy: it is easily accessible; resistance issues are rare and it is

applicable to all types of solid tumour.
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A range of tumour parameters has been studied which either influence or can be influenced by 

anti-vascular therapy. These parameters include blood vessel distribution, perfusion status, 

hypoxia and apoptosis (Pedely et al., 2002). Fluorescence images o f tumours have shown that 

the viable regions of the tumour contain an abundant supply of blood vessels that were mainly 

perfused whereas hypoxia was found in the more central regions of the tumour which contain 

less or no perfused blood vessels (Fig. 1.9) (Pedely et a l ., 2002).
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Figure 1.9 Fluorescence images for a typical untreated (control) colorectal xenogra ft tumour (LSI 741) 

Stained for the following (left to right): blood vessels (anti-CD31, red), perfusion (Hoechst 33342, blue), 

and hypoxia (pimonidazole, green). The relative distributions o f three biologic parameters shows that 

most o f the remaining viable regions contain well-perfused blood vessels (red & blue) with hypoxia 

(green) developing away from the vessels and adjacent to necrosis. H&E stained section fo r morphology, 

showing viable (V) and necrotic (N) tissue (Image adapted from Pedely et al., 2002).
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Pedley et al demonstrated that the addition of an anti-vascular agent to antibody-directed therapy 

can be a curative treatment because the two therapies treat specific regions of the tumour with 

different patho-physiologies (Pedley et al., 2002). In this study the antibody targeted therapy was 

targeted at the viable tumour tissue in the well oxygenated "viable rim" of the tumour with the 

poorly vascularised central tumour region receiving less antibody (Fig 1.10). Therefore, the 

combination of antibody-directed therapy with a treatment that attacks the tumour centre is 

extremely essential.

Tumour morphology Antibody distribution

Figure 1.10 Antibody-directed therapy demonstrated in the section o f a colorectal xenograft tumour (A) 

H&E section o f untreated tumour showing well-perfused region (P), poorly perfused (H), and necrotic 

(N).(B) Radioluminograph o f labelled anti-CEA antibody (blue colour) showing how 

radioimmunotherapy effectively treated the outer, well-oxygenated tumour periphery only (Image adapted 

from Pedely et al, 2002)
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It has been demonstrated that the addition of anti-vascular drugs such as DMXAA and CA4 to 

antibody-directed therapy had a greater effect than any other combination therapy (Lash et al., 

1998, Chaplin et al., 1999). In addition, a study of LS174T colorectal adenocarcinoma 

xenografts showed that there are still some fairly large areas of viable tumour remaining at the 

periphery o f such a tumour after treatment with anti-vascular drug, while, the central tissue 

exhibited extensive regions of dead or dying tumour (Pedley et a l ., 2002).

1.8.2 Exploring phospholipids distribution in tissue using MALDI imaging mass 

spectrometry

Profiling of lipids species represents an attractive field especially for novel cancer biomarker 

discovery. There is growing evidence suggesting that membrane lipids play a vital role in the 

carcinogenesis process (Sparvero et al., 2012, Meriaux et al., 2010). Lipids are important cell 

membrane molecules and have critical physiological roles in: regulation of energy metabolism, 

cellular signalling and the trafficking of immune cells (Quehenberger et al., 2011, Femandis et 

al., 2007). In fact, disordered lipid metabolism at the cellular level is now recognised as a 

hallmark feature across a variety of cancer subtypes (Smith et al., 2008).

MALDI mass spectrometry imaging (MALDI-MSI) is considered to be a rapidly advancing 

technique for intact tissue analysis. It allows simultaneous localization and quantification of 

biomolecules in different histological regions of interest which can offer a novel insight into the 

biochemistry of the tumour-micro environment (TME) (Mimezami et al., 2014). Initially, 

MALDI-MSI studies focussed on the localization of proteins which have higher mass-to-charge 

(m/z) ratio. The application of MALDI-MSI for the study o f biomolecules at the lower m/z range 

such as metabolites and lipids is more challenging due to the matrix-analyte cluster peaks which 

can interfere with the detection of low molecular weight compounds (Inoue et al., 2011).
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The current staining methods for lipid detection and localisation including Nile Red, Oil Red O 

or osmium tetroxide can be applied to frozen sections to reveal the distribution of a specific lipid 

classes. However, they do not provide any information about the distribution of individual lipids 

in the way that MALDI -  MSI is able to (Goor et al., 1986).

So far a limited number o f studies have applied MALDI - MSI technique to identify specific 

lipid signatures with respect to colorectal cancer (CRC). Shimma et al, identified region specific 

lipid profiles in CRC liver metastasis samples obtained from a single patient (Shimma et al., 

2007). Also, Thomas et al, 2013 found a panel of lipid-based biomarkers to be up- and down 

regulated in CRC liver metastases. These preliminary studies have highlighted the potential of 

lipid profiling in the identification of disease relevant lipid signaures for biomarker discovery 

(Mimezami et al., 2014).

1.9 Introduction To Mass Spectrometry Imaging (MSI)

Mass Spectrometry Imaging (MSI) is a technique which displays the 2D structures of chemical 

abundance and it has been used in biological and non-biological analyses of surfaces since the 

60s (Cameron et al., 2012). It also allows the spatial distribution of the specific molecule to be 

determined. Conventional imaging techniques such as optical imaging, positron tomography, 

electron microscopy; atomic force microscopy and scanning tunnel microscopy are able to 

generate multidimensional pictures with a spatial resolution that can approach the atomic scale or 

femto-second temporal resolution. However, most of these techniques are unable to identify the 

presence of specific analytes in the images without labelling; therefore, they only provide partial 

chemical information. In contrast, the various MSI techniques can satisfy many of these 

challenges. This is due to the fact that in MSI the molecular mass of analyte, depending only on 

the atomic composition of the molecule, is used as the bases of detection.
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This allows the detection and imaging of known and unknown analytes without need to develop 

a specialized label which sometimes can be difficult to produce. Also, MSI uses the analytical 

power of mass spectrometry (MS) to produce chemical images illustrating the distribution of 

both known and unknown molecules in a sample (Rubakhin et al., 2005).MSI is able to measure 

the composition and abundance of molecules within an area of fixed dimension in a region 

specific manner. In MSI, data is represented as an x/y coordinate set for a given mass-to-charge 

(m/z) signal. The full imaging MS data set presents information in a 2+n dimension space 

(x/y/in), where n is the number of m/z signals detected during the course of MS data acquisition 

and i represent the intensity of the signal which is proportional to the abundance of the 

corresponding molecule and can be visualized as shades of grey or with different coloured 

schemes. An intensity plot or image can be constructed of each m/z value (Chaurand 2012).

1.9.1 Basic Principles of Mass Spectrometry Imaging (MSI)

A mass spectrometer measures the mass-to-charge ratio (m/z) of an ionised atom or molecule 

and it is mainly composed of three major partsi an ion source, a mass analyzer and an ion 

detector (Fig .1.11). The major concept of mass spectrometric analysis is that the analyte must be 

transferred from the condensed phase to the gas phase and then ionized, separated in a vacuum 

and detected. The analyte desorption and ionization mainly occurs in the ion source. Then the 

generated ions are separated according to their mass to-charge ratio in the mass analyzer and are 

finally detected by the ion detector (Rubakhin et al., 2005).
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Figure 1.11: Three Basic Components o f mass spectrometer (Image adapted and reproduced from

Cameron et al, 2012).

1.9.1.1 The Ion Source

The ion source is mainly responsible for applying a charge to the molecules to produce 

ionization. The most common ion sources used in biological mass spectrometry are Electrospray 

Ionization (ESI) and Matrix-Assisted-Laser-Desorption/Ionization (MALDI) (Cameron et al., 

2012). In MALDI laser irradiation is used to desorb analyte ions from the sample surface. In ESI 

the analyte is introduced into the gas phase and ionized during the evaporation of a highly 

charged aerosol of a volatile solvent containing the analytes (Rubakhin et al., 2005). Other 

desorption/ionization methods are also currently used for MSI such as secondary ion mass 

spectrometry (SIMS), desorption electrospray ionization (DESI), and laser ablation (LA) with 

post-ionization (Cameron et al., 2012) (See Table 1.1).
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1.9.1.2 The mass analyser

Once ionization process occurs, the ions are transferred into the mass analyser. The mass 

analyser is primarily responsible for separating the ions generated from the ion source. Ions are 

mainly selected according to their mass, charge and shape. The commonly used mass analyzers 

in MSI are the Time-of-Flight (TOF), ion trap and Orbitrap (Cameron et a l., 2012).

1.9.1.3 The detector
The detector is the last part of a mass spectrometer and it is responsible for generating signals 

from ions separated by the mass analyzer. These signals reach the data processing computer 

where they are processed to mass spectra, chromatograms or images.

1.10 Ionization approaches for imaging
Currently three desorption/ionization techniques are routinely used in MSI: SIMS, MALDI and 

desorption electrospray ionization (DESI). Other MS techniques such as laser ablation coupled to

inductively plasma mass spectrometry (ICP-MS) are increasingly gaining popularity (Chaurand.,

2012).

1

Types of 
MSI

Ionization
source

Mass
analyzer

Optimal
analytes

Mass range 
(Da)

Spatial 
resolution (pm)

MALDI UV/IR laser 
Soft ionization TOF

Lipids, peptides, 
proteins, 

small molecules
0-50,000 5

SIMS Ion gun 
Hard ionization

TOF
Magnetic

sector
Orbitrap

Lipids, small 
peptides, 

small molecules
0-2000 0.5-1

DESI Solvent spray 
Soft ionization

Orbitrap Lipids, peptides, 
small molecules

0-2000 100

Table 1:1 Comparison o f different ionization approaches in MSI (Weaver and Hummon et al, 2013).
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1.10.1 MALDI

The MALDI technique was introduced in the second half o f  1980s by Karas and Hillenkamp 

(Karas and Hillenkamp 1988) and Tanaka and co-workers (Tanaka et a l., 1988). It is one o f  the 

most powerful methods that are used to ionize intact biological molecules and is classified as a 

soft desorption/ionization method. After the development o f  MALDI, it was adapted to imaging. 

This MSI technique was first used for biological tissue imaging by the Caprioli group (Caprioli 

et al., 1997) and this is generally held to be a major advance in the field o f  biological MS 

(Rubakhin et al., 2005). To date MALDI MSI is the most widely used o f  the MSI techniques. 

MALDI itself is performed by mixing the analyte molecule o f  interest with a matrix solution 

(Hillenkamp et al., 1991). Matrices are usually small organic acids with conjugated double bond 

systems.

The role o f  the matrix is to facilitate the absorption o f  the ionizing laser. Once the mixture is 

added onto the target plate and the solvent is evaporated, matrix: analyte co-crystals are formed. 

The irradiation o f  these crystals with a pulse of, generally UV but sometimes IR, laser light 

generates the desorption/ionization event (Fig. 1.12). Then, the resulting ions are analyzed by 

MS (Chaurand., 2012). MALDI can be performed in a vacuum or at atmospheric pressure. The 

UV or IR laser pulses excite the matrix, causing a rapid and localized heating and the subsequent 

ejection o f  neutral and charged molecules.
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M atrix m olecu les

Figure 1.12 Schematic representation o f MALDI ionization process, showing the analyte molecule 

(purple dot) Co-ciystallized with matrix molecules (blue color), the laser beam fire at the mixture causing 

the desorption and ionization process o f both analyte and matrix molecule (Dass., 2007).

MALDI can be used to generate both; positive and negative ions. In positive ionisation mode, the 

sample is kept on a positively charged metal substrate and the mono-protonated [M + H] + 

species are mainly generated.

However, in negative ionisation mode the deprotonated [M - H]~ ions are mostly generated. 

Little fragmentation of analyte molecules occurs during the MALDI desorption process (Stoeckli 

et al. 2001, Garden and Sweedler .,2000). The MALDI technique allows the ionisation of several 

types of molecules including lipids, peptides and proteins. In 1995 by Gusev and co-workers 

(Gusev et al., 1995) demonstrated that it was possible to analyse samples directly from thin layer 

chromatography (TLC) plates by MALDI and hence it could be argued provided the inspiration 

for much subsequent work.
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1.10.1.1 Sample preparation and m atrix selection for MALDI analysis

Sample preparation is usually a critical part in any experiment. Protocols for the examination of

tissue by MSI require the tissue samples to be sliced into very thin sections. In the MALDI

technique, the tissue samples are subject to sectioning on a cryostat with a temperature below -

20°C (Amstalden et al., 2010). Sample thickness is an important factor in MSI because the

amount of material available for ionization depends on tissue thickness. Also, sometimes the

media used in the cryo-sectioning process such as Optimal Cutting Temperature (OCT) are not

suitable for MSI samples, because background interferences with MALDI MSI image are

produced. Following tissue sectioning, the samples are mounted onto an appropriate MALDI

target, depending on the instrument type these might be conductive plates or indium-tin-oxide

(ITO) coated slides.

Additional sample preparation issues need to be considered before running the MSI experiment; 

washing procedures which can remove any artifacts and salts from the tissue section and enhance 

the matrix crystallization (Amstalden et al., 2010), might be required. Choosing the washing 

procedures depends mainly on the analyte of interest and therefore, it is important to choose a 

washing procedure that is able to enhances the analyte signal and remove the suppressing 

interference species.

In MALDI-MSI the matrix is applied in such a way as to allow the matrix/solvent mixture to 

extract a sufficient amount of analyte for ionization. Enough matrix is required for optimal 

ionization. The acidic matrix chemicals are used with solvents such as methanol, ethanol, 

isopropanol or acetonitrile.
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Different types of matrix are available and some of them are more compatible with certain 

classes of molecule than others. For example, 2,5-dihydroxybenzoic acid (DHB) is 

recommended for the analysis of lipids sample and small peptides while sinapinic acid (SA) is 

commonly used for analysis of large proteins sample (Kaletas et al., 2009). In addition, a-cyano- 

4-hydroxycinnamicacid (a-CHCA) can cause some interference in the lower mass regions due to 

the fragmentation of the matrix material itself and hence is often mixed with additives such as 

ammonium salts, citrates or phosphates to remove the interference signals and to improve 

sensitivity (Smirnov et al., 2004). After being coated with layers of the MALDI matrix, mass 

spectra are acquired by firing the laser across the sample in a raster pattern. The chemical images 

of the distribution of one or more analytes according to m/z values can then be produced using 

appropriate software (Rubakhin et al., 2005).
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Figure 1.13 A schematic diagram outlining the general steps in the MSI sample preparation workflow 

(Image adapted and reproduced from Kaspar et al., 2011).
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Matrix Mass

(Da)

Applications

2,5-Dihydroxybenzoic acid (DHB) 154 Lipids, small peptides ,carbohydrates and nucleotides

a-cyano-4-hydroxycinnamic acid (HCCA) 189 Peptides, small proteins,lipids,glycoprotein’s and

nucleotides

3,5-Dimethoxy-4-hydroxycinnamic acid (SA) 224 Large proteins, glycoprotein’s and hydrophobic proteins

4,6 Trihydroxyacetophenone (THAP) 186 Oligo-nucleotides

3-Hydroxypicolinic acid (3-HPA) 139 Oligo-nucleotides

Picolinic acid 123 Oligo-nucleotides

2,6- Dihydroxyacetophenone (DHAP) 152 Phospholipids and large proteins

Nicotinic acid 123 Protein and oligo-nucleotides

Table 1:2 Types o f MALDI matrices and their applications (Weaver and Hummon et al., 2013).

1.10.1.2 M atrix application for MALDI analysis

Matrix application is the most critical step in MALDI-MSI (Weaver and Hummon et al., 2013). 

Matrix application procedures are divided into manual methods such as spraying with an 

airbrush, TLC sprayer or dipping the tissue sections into matrix containing solutions and 

automated methods. Automated devices can fall into two classes: spotting devices and spraying 

devices. Higher reproducibility can be achieved by using automated sprayer methods (Schwartz 

et al., 2003 and (Kaletas et al., 2009). There are many commercial devices developed for matrix 

application both matrix spotters (e.g. the Labcyte Portrait 630, 1190 Borregas Avenue 

Sunnyvale, CA, USA) which can apply small droplets of matrix solution in a controlled array 

onto the tissue and matrix sprayers such as the ImagePrep device (Bruker Daltonics) which 

utilizes vibrational vaporization of the matrix with a piezo-electric spray head to spray a fine 

coating of matrix onto the tissue.
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Spraying allows a high spatial resolution of up to 25 pm with a good spectra quality to be 

obtained. Another robotic matrix sprayer is the TM-sprayer (Leaptec) in a heated capillary is 

used with a pneumatic spray that moves in defined patterns over the tissue section. Automatic 

sprayers are more reproducible than manual pneumatic sprayers (Walch et al., 2008). The size of 

the matrix crystals deposited on the tissue is a significant factor especially in determining the 

spatial resolution and avoiding large volumes of matrix solvent is critical to maintain optimal 

spatial resolution particularly when performing MSI on small samples (Weaver and Hummon et 

a l , 2013).

1.10.1.3 MALDI imaging modes

There are several modes of imaging acquisition that can be used in MALDI- MSI. The first mode 

is a laser or ion microprobe imaging mode. The ion microprobe mode works by sequentially 

analysing an array of discrete points as the microprobe beam is scanned across the sample 

surface in a raster pattern typically with micron or submicron dimensions.

Then, the individual mass spectra are acquired for each point and stored digitally. By using 

specially designed software which enables the selection of an analyte signal from the array of 

mass spectra and plots the intensity of the signal for each individual point in a 2D array. The 

signal intensity is presented as a colour scale which creates an ion image of analyte distribution. 

This method is imaging in a point-by-point manner. The second mode is the ion microscope 

mode (e.g. the camera mode) in which a chemical images are created in manner similar to optical 

imaging. In this mode MSI uses desorbed (sputtered) ions from the sample to generate an image. 

Then the ions are separated by the specialized ion optics which preserves the relative position of 

these ions in the plane of the sample surface. Finally, the ions are detected in a spatially resolved 

manner and a chemical image is generated. Each of these two MSI methods is produces different 

types of data (Rubakhin et al., 2005).
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1.10.2 Secondary ion mass spectrom etry (SIMS)

MALDI MSI has been widely used to obtain information about the distribution of large proteins 

and peptides at limited spatial resolution. Secondary ion mass spectrometry (SIMS) imaging has 

to date been mainly concerned with the imaging of much smaller analytes such as lipids, 

metabolites and pharmaceuticals at high spatial resolution compared to MALDI or (desorption 

electrospray ionisation (DESI) (Weaver and Hummon et al., 2013).

Historically SIMS was used to study solid surfaces and thin films by sputtering the surface of the 

specimen with a focused primary ion beam and collecting and analyzing the ejected secondary 

ions by MS (Pacholski and Winograd., 1999). In conventional SIMS the primary ion source 

requires high vacuum conditions (<10'6 torr) and uses monatomic, polyatomic, or cluster ion 

beams (Tempez et a l, 2004-Hand et al., 1990). These primary ions are accelerated and focused 

by an electric field to form a continuous ion beam that is normally pulsed to produce an 

ionization event. The diameter of the ion beam can vary from a few hundred micrometers to tens 

of nanometers according to the application used.

The primary ions induce a chain of binary collisions on the sample surface in which the analyte 

atoms and molecules located within a few nano-meters of the impact point are affected 

(Postawa., 2004). As a result, some of the analyte atoms and molecules are ejected from the 

surface of the sample into the gas phase in the form of charged and neutral particles (Fig. 1.14). 

There are two modes of operation in SIMS. The first mode called static SIMS and the second 

mode is called dynamic SIMS. In static SIMS analysis, the primary ion beam is pulsed and kept 

at very low energy level. However, this type of ion beam allows for detection of larger species 

but at lower sensitivity (Lanni et al., 2012).
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In order to be sure that each spectrum is acquired from undamaged sample, a very low primary 

ion doses are used that damage less than 1% of the sample surface area. This dose of primary 

ions is known as “the static SIMS limit” and this differentiates static SIMS from dynamic SIMS 

(McDonnell et al., 2007, Lanni et al., 2012). In contrast, dynamic SIMS is used to create a 3D 

images and it use ion dosages beyond the static limit. Dynamic SIMS tends to yield only atomic 

and small fragment ions; therefore, during imaging of the distributions of large molecules in 

biological specimens the static mode is mainly used (Rubakhin et a l, 2005).
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Figure 1.14 Schematic representation o f secondary ion mass spectrometiy (SIMS), showing the primary 

ion beam hitting the sample causing the production o f secondcuy ion (Image adapted from Rubakhin et 

al., 2005).
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1.10.3 Electrospray Ionization (ESI)

The electrospray ionization technique (ESI) was first successfully applied in the mid 1980s by 

Fenn and co-workers (Fenn et a l, 1989) to study large organic molecules. The first 

demonstration of two-dimensional ESI-MSI was presented by Ford and VanBerkel in 2004 by 

using a surface sampling probe. This work was continued with several investigations and 

enhancement to produce a true MSI (Modestov et a l, 2001, Wachs and Henion., 2001) 

technique. In ESI, an aerosol of highly charged droplets containing volatile solvents and analytes 

is formed in an electric field (Fig. 1.15). These formed droplets are then reduced as a result of 

solvent evaporation and explosions until the charged and neutral analyte molecules are introduce 

into the gas phase. Basically, the first step in the ESI process is the formation of a Taylor cone in 

which the ESI droplets are emitted. The ESI ionization source is operated at atmospheric 

pressure and it used to ionize proteins and large peptides to produce multiply protonated or 

deprotonated ions as well as ions with sodium and potassium adducts.

Analytes with multiple charges can complicate the spectral interpretation because the single 

analyte might be represented as multiple charge states. The currently available mass analysers 

can analyse multiply charged ions as the distribution of m/z often exceeds 2500 - 3000. ESI is 

considered as a soft ionization technique which is used to characterise little or no analyte 

fragmentation (Rubakhin et a l,  2005).
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Figure 1.15 Schematic representation o f an electro-spray ionization source (ESI), showing the formation 

o f taylor cone and the production o f charged droplets, (Image adapted from Rubakhin et al., 2005).

1.10.4 Desorption Electrospray Ionisation (DESI)

Recently, Cooks and his team have introduced a new method called desorption electrospray 

ionization (DESI) (Cooks., 2006). This method enables the acquisition of chemical images of 

untreated surfaces (Takats et a l, 2004). MALDI and SIMS imaging techniques require the 

sample to be in a vacuum chamber, while DESI is performed in ambient conditions and doesn’t 

require the addition of matrix solution. In, DESI the ion is directly produced from the sample 

surface by a small jet of electrostatically charged solvent located at the angle to the sample 

surface. Then, the second collection tube is used to collect the ions produced after the jet of 

solvent extracts them from the sample surface (Vickerman., 2011).

DESI is a soft ionization technique; therefore a little fragmentation of the analytes occurs.
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In DESI the ionization reactions occurring in the gas phase are similar to the ones that occur in 

conventional ESI. Therefore, the spectra obtained by DESI are multiply charged and similar to 

those obtained in an ESI experiment (Vickerman., 2011, Cooks., 2006). It has been shown that 

DESI isable to ionise a wide range of analytes ranging from drugs, polymers, proteins and lipids 

(Vismeh et al., 2012). In addition, VanBerkel et al., has applied DESI for line scanning of thin- 

layer chromatography plates in which the spatial localization of several drugs such as 

acetaminophen and aspirin separated on a normal-phase silica gel TLC plate was demonstrated 

(VanBerkel et a l ., 2005). Finally, the rapid analysis time and the ability to couple various types 

of mass analysers to DESI ionization source make it an attractive technique for tissue imaging of 

all kinds (Weaver and Hummon et al., 2013).
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Ion transfer line
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Figure 1.16 Schematic representation o f the principle o f desorption electrospray ionization technique 

(DESI), showing the spray o f charged droplets which is directed to the sample causing the production o f  

gaseous ions o f analytes (Image adapted from Dass., 2007).
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1.11 Mass Analysers
The mass analyser is the most important part of the mass spectrometer. The performance of the 

mass spectrometer is dependent mainly on the design of the mass analyser. The mass analyser 

has two basic functions: Firstly; it separates all ions according to their mass-to-charge (m/z) ratio 

and secondly; it focuses the resolved mass ions at a single focal point. Also, the mass analyser 

has the ability to maximize the transmission of all ions that come from the ion source. Basically, 

a mass analyser can distinguish the movement o f the charged particle from another ion according 

to the differences in their momentum, kinetic energy, and velocity (Dass., 2007). They can be 

divided into two groups: The beam analysers and the trapping analysers. In the beam analysers, 

the ions leave the ion source in a beam and pass through the analyzing field to the detector.

While, in trapping analysers the ions are trapped in the analyzing field after being formed in the 

analyser itself or being injected from an external ion source (Glish and Vachet., 2003). There 

have been different types of mass analysers developed and the most popular designs include 

time-of-flight (TOF), quadrupole (Q), quadrupole ion trap (QIT), and ion mobility (Dass., 2007).

1.11.1 Tim e-of -Flight mass spectrometer

1.11.1.1 Linear Time-of-flight

Practically, the time-of-flight (TOF) mass spectrometer is considered as the simplest mass 

analyser. The TOF mass analyser mainly separates ions based on their velocity. All ions are 

formed at the same time and placed in the ion source and then accelerated through a fixed 

potential into the TOF drift tube. The ions with the same charge obtain the same kinetic energy 

after acceleration and the ion with lower m/z achieves higher velocities than the ion with higher 

m/z ions. Ion velocities are inversely linked to the square root of m/z.

After the acceleration of ions, they travel through a fixed distance typically 0.5-2.0 metres 

before reaching the detector. The m/z o f the ion can be determined by measuring the time it takes 

to reach the detector after the ion formation.
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Early TOF mass spectrometer were rarely used for routine MS experiments, however, the 

development of new pulsed-ionization techniques such as MALDI lead to a revival in TOF in the 

1990s. Modem TOF mass analysers can offers mass resolution in thousands and it mass 

accuracies in the tens of parts per million (ppm) (Glish and Vachet., 2003).

Laser Pulse

Field free regionExtraction
region

Sample plate

Figure 1.17 Schematic o f linear time-of-flight mass analyser, ions with initial velocity spreading to a 

different extent in the field-free environment o f the extraction region; the slower-moving ions appear 

behind the faster moving ions. After the ions are produced, it accelerated in acceleration region by 

applying pulse into the field-free flight tube in which the ions are separated according to their velocity. In 

the field free region, the lighter ions (orange dots) travel faster than the larger ions (blue dots) and 

therefore it reach the detector first (Image adapted and reproduced from Dass., 2007).
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1.11.1.2 Reflectron Time-of-flight

In the reflectron TOF mass analysers, the ion travels through one flight distance and it then 

enters an electrostatic mirror (reflectron) which causes the ion to turns around and sends it down 

a second flight distance to the detector. The main function of the reflectron is to adjust the small 

differences in the velocities o f ions with the same m/z. Therefore, the reflectron increases the 

resolution of TOF mass spectrometry (Fig. 1.18). The combination of high m/z range and 

compatibility with pulsed-ionization methods has made TOF the most commonly used mass 

analyser for MALDI experiments (Glish and Vachet., 2003).

Reflection TOF mass spectrometer

Reflecting
VbttageLaser

Detector

Figure 1.18 Schematic o f Reflectron time-of-flight mass analyser, ions (purple dots) o f the same mass 

but with more kinetic energy will enter the reflectron more deeply compared to the ions (blue dots) with 

lower kinetic energy which result in reaching the second detector at the same time (Image adapted and 

reproduced from  http://msr.dom.wustl.edu/mass-analyzersj.
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1.11.2 Quadrupole Mass Filter

The quadrupole mass analyser was used as the mass analyser of choice especially for gas 

chromatography MS (GC/MS) and liquid chromatography MS (LC/MS) in the 1980s and 1990s. 

In quadrupoles, much lower voltages are used to accelerate the ions from the source to the 

analyser (2-50 V versus kV) compared to sector and TOF analysers (Glish and Vachet., 2003). 

Basically, the quadrupole consists of four parallel metal rods. The mass separation occurs by the 

constant movement of ions through a high-frequency oscillating electric field that is formed by 

applying direct-current (dc) and radio-frequency (rf) potentials to these electrodes. Ions of a 

specific m/z value pass through the geometry of quadrupole rods and reach a detector (Dass., 

2007). The size of the quadrupole and the rf frequency are usually kept constant so the ions of 

different m/z can be consecutively allowed to reach the detector by increasing the magnitude of 

the rf and dc voltages. The quadrupole is in fact still considered as the instrument of choice for 

the combination of mass spectrometry with a range of separation techniques (Glish and Vachet., 

2003). The basic principles of the quadrupole mass analyser are shown in the schematic below 

(Fig. 1.19).
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Figure 1.19 Schematic representation o f quadrupole mass analyser, the systems contain four parallel 

cylindrical metal rods. The ions generated in the ionization source are accelerated in the Z-direction by a 

low voltage and enter the quadrupole area. Voltage o f the same polarity is applied to diagonally-opposite 

poles and opposite voltage polarity is applied to adjacent poles. When a combination o f direct current 

voltage U and high-frequency current voltage V is applied to each pole (where, co is frequency and t is 

time), ions ( red dots) with a specific mass-to-charge ratio (m/z) maintain a stable oscillation and pass 

through the quadrupole to the detector. While, the oscillations o f ions with other m/z values (blue dot) 

become unstable causing them to collide with the poles and removed from the system (Image adapted 

from 'www. shimadzu. co. uk).

1.11.3 Quadrupole Ion-Trap mass spectrometer

The quadrupole ion trap (QIT) mass analyser consist of an electric field that is mainly formed in 

three dimensions in which ions are trapped (Glish & Vachet., 2003). The mass separation in a 

QIT is brought about by initially trapping all ions in the trapping space in which an oscillating 

electric field is formed within the boundaries of a three-electrode structure. The mass spectrum is 

acquired (and mass separation produced) by changing the applied rf field in order to eject ions 

sequentially from the trapping field.

The three-electrode structure of a QIT consists of a doughnut-shaped central ring electrode and 

two identical end-cap electrodes, each with a hyperbolic geometry (Fig. 1.20).
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One of the end-cap electrodes contains a small gap in which an externally formed ion beam can 

enter the trap. Whereas, the other end-cap electrode contain several gaps used for the ejection of 

ions into a detector (Dass., 2007). The three-dimensional quadrupole field is formed by applying 

a potential to the ring electrode and maintain the end-cap electrodes at ground potential. This 

created quadrupole field forces the ions with a broad m/z range to be trapped within the 

boundaries of the electrodes. Then, helium is introduced into the trap to cool the ions 

collisionally and to confine them in the centre of the trap. By increasing the magnitudes o f the dc 

and rf voltages and the frequency of the rf  signal ions with higher m/z values become 

sequentially unstable in the axial direction and ejected out of the trap for external detection. The 

mass spectrum of the trapped ions is obtained by using this mass-selective instability (also 

known as mass-selective axial ejection) mode of mass analysis (Dass., 2007).
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Figurel.20 Schematic o f quadrupole Ion trap mass analyser, shown a donut shaped ring electrode 

sandwiched between two end-cap electrodes. An ionization unit is located at the entrance and a detector 

at the exit (Image adapted from www.shimadzu.co.uk).
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1.11.4 Ion Mobility Spectrometry and Ion Mobility Mass Spectrometry

The ion mobility (IM) spectrometer is considered as a hybrid instrument which combines IM

separation with a conventional mass spectrometry system. An IM spectrometer uses gas-phase

mobility rather than m/z ratio to separate ions (Wu et al., 1998, Clemmer and Jarrold., 1997).

The mobility of ions can be measured under the influence of a gradient electrical field and

depends mainly on an ion’s collision cross section and net charge. The IM spectrometer consists

of two regions: a reaction region and a drift region. Both regions contain a series of unifonnly

spaced electrodes connected through a series of high resistors to provide uniform electric field

strength. The two regions are separated by an electrical shutter. The buffer gas is circulated into

the drift tube. The ions are generated in the reaction chamber and then enter the drift region by

opening the electrical shutter for a short period. With the influence of an electrical field, the ions

drift into the drift tube in which separation occurs according to size-to-charge ratio. The mobility

of ions is as a result o f combined effect of ion accelerated by the electric field and the retardation

occurs by collisions with the buffer gas. A detector is placed at the end of the drift region fur the

detection of the separated ions (Eiceman and Stone., 2004).

Ion mobility separation can be coupled with a quadrupole or TOF mass analyser in which the IM 

is used purely as an ion pre-separation device and the quadrupole or TOF mass analyser is used 

for separation by m/z and as the detection device (Laboda., 2006 , Srebalus and Clemmer., 

2001). The MALDI ion source has been coupled to IM-MS type instruments for the analysis of 

proteins and tryptic peptides (Laboda., 2006, Ruotolo et al., 2002). IMS has also been applied for 

the detection of drugs, chemical reagents, and enviromnental pollutants; size distribution of 

aerosol particles; structure information of gas-phase clusters; and conformational studies of 

proteins and oligonucleotides (Srebalus et al., 2001, Clemmer et al., 1997).
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Figure 1.21 Schematic representation o f ion mobility spectrometiy (Image adapted and reproduced 

from Dass., 2007).

1.12 Mass detector

1.12.1 Electron multiplier

The electron multiplier or secondary electron multiplier (SEM) is the most commonly used ion 

detector in mass spectrometry. It works via secondary electron emission and consist of a series of 

dynodes (16 or 20) that are connected together through a chain of resistors of equal value. About 

(-3000 V) voltage is applied between the first dynode (the conversion dynode) and the last 

dynode (the anode) and each dynode is maintained at a higher positive potential than the 

previous one. So when a beam of fast moving ions hits the conversion dynode, several secondary 

electrons are emitted. Then the emitted electron hits the second dynode in which several more 

secondary electrons are emitted for each electron. This process is repeated in subsequent 

dynodes causing an amplification o f secondary electrons at each successive stage. Finally, 

amplification of the cascade electron current that arrives at the anode is used to provide an 

excess of 107 electrons for each incident ion. This detector can be used in an analog or pulse 

counting mode. Also, this detector is characterised by fast response time, high sensitivity, and 

high gains (Dass., 2007).
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1.13 The M ajor Methodologies Used for the Separation of Lipids

1.13.1 Overview

Currently mass spectrometry is one o f the key methods that are successfully used for lipid 

analysis (Lin et al., 2014). However, NMR spectroscopic methods are considered to be powerful 

tools in lipid research regardless of their relatively low sensitivity. NMR has many advantages 

such as it doesn’t require a previous extraction when it used under in vivo conditions. Also, it is 

able to locate the position of double bonds within a given lipid which can help in the 

differentiation between cis and trans isomers (Gunstone, 1993).

Another particular powerful method is 3 IP NMR in which it can be exclusively used in the 

analysis o f phosphorous containing compounds (Spyros et al., 2000). This method allows the 

differentiation and quantification of all phospholipids (PL) classes within a single spectrum 

based on the differences in their head group (Schiller et al., 2007). The main advantage of 3 IP 

NMR is that it doesn’t require an extraction of the sample of interest with organic solvents but 

that the sample can be directly solubilised in the detergent and this prevents losses of 

phospholipids (PL). A limitation of the technique is however that the spectra of 3 IP NMR are 

normally recorded in the presence of a suitable detergent (e.g. sodium cholate) in which it 

suppress the aggregation of PL resulting in severe line-broadening and loss of resolution 

(NouriSorkhabi., 1996). Many different methods of lipid analysis based on chromatographic and 

spectroscopic methods have been established e.g. high performance liquid chromatography 

(HPLC). These are summarised in Table 2:1.

High performance thin layer chromatography (HPTLC) is generally considered to be a versatile 

and reliable technique for lipid analysis. It is known as an extremely powerful tool and can be 

applied to all relevant lipid classes of physiological and diagnostic interest including apolar 

cholesteryl esters, triacylglycerols to highly polar poly-phosphoinositides. Furthermore, HPTLC 

can speed analysis in comparison to other chromatographic techniques (Fuchs et al., 2011).
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Method Principles Advantages Disadvantages

Thin-layer
chromatography (TLC)

High-performance liquid 
chromatography (HPLC)

Gas chromatography 
(GC)/GC/MS

Soft ionization mass 
spectrometry

t n / l J V  1N1V1K.

3 IP NMR

Separation is achieved on 
stationary phase normally 
silica gel due to the 
polarity differences of the 
analytes

Separation on stationary 
Phase under high pressure 
by elution with different 
solvents

Separation of volatile 
compounds on a carrier 
gas. Detection often 
performed by means of 
mass spectrometry

MALDI and ESI MS 
enable the characterization 
o f lipids without major 
analyte fragmentation

densities lead to different 
chemical shifts o f the 
observed nucleus within a 
given compound

Differences in electron 
densities lead to different 
chemical shifts o f the 
observed nucleus within a 
given compound

TLC is quite inexpensive 
and fast. Variations of the 
mobile phase enable 
separation of even 
complex mixtures. 
Different staining can 
beeasily performed

High quality separations 
are achievable. Also 
applicable on a preparative 
scale. Coupling with MS is 
well established.

Highly established in fatty 
acid analysis. Automated 
devices are commercially 
available

Both techniques are highly 
sensitive and enable direct 
analyte detection.
Handling is normally quite 
simple

R  o c i p q I K ;  o i l  o t * a
J-/U01VU11 j  UiX ll|XlUO uic

detectable. Correlation 
(2D) experiments can be 
performed to obtain further 
information, for instance to 
differentiate isomers. 
Interaction studies (e.g. 
with proteins) can be 
easily performed

Direct absolute 
quantitation is possible. 
Isomeric lipids can be 
differentiated.

Oxidation o f unsaturated 
Lipids occur if the TLC plate 
is stored for a while since a 
large (lipid) surface is 
exposed to atmospheric 
oxygen. Preparativ 
applications are limited

More time-consuming and 
expensive than TLC.
Detection of saturated lipids 
(lack of UV absorptions) is 
difficult. Post-column 
derivatisation is challenging

Only volatile compounds can 
be analyzed. Thus, 
derivatisation of the analyte is 
required

Ion suppression may occur; 
different lipid classes are 
detectable with strongly 
different sensitivities. 
Impurities affect spectral 
quality significantly

Complex spectra are obtained 
if mixtures are analyzed. Very 
limited sensitivity (13C) and 
need of deuterated solvents. 
Expensive equipment

Only lipids containing 
phosphorous are detectable. 
Limited sensitivity. Expensive 
equipment

Table 1:3 Important techniques for lipid analysis and their advantages and disadvantages (Fuchs et al., 

2011).
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1.14 Introduction to TLC-MALDI Coupling
Thin layer chromatography (TLC) was known since about 1938. In 1975, one major progress 

was achieved when HPTLC was introduced to allow separations with much higher quality and 

higher sensitivity. Then in 2001, an additional improvement was also achieved by the 

introduction of Ultra-Thin-Layer Chromatography (UTLC) which allows even more efficient 

separations. Currently, a wide range o f pre-coated TLC plates are commercially available to 

allow reproducible, time-saving separations. In the past, there were considerable attempts to 

combine TLC with mass spectrometry (MS). However, TLC coupling with MS became first 

really successful with the invention o f the soft ionization and desorption MS techniques such as 

MALDI and DESI as previously described (Fuchs et al., 2011). TLC-MALDI MS has been 

applied for the analysis of different kinds of polymers, including peptides and proteins (Gusev et 

al., 1995), nucleotides (Isbell et al., 1999), glycol sphingolipids (Guittard et al., 1999), 

lipopolysaccharides (Therisod et al., 2001) and styrene oligomers (Matsumoto et al., 1999, 

Matsumoto et al ., 2001). Low-molecular- weight compounds such as dyes (Mehl et al., 1997, 

Mehl and Hercules., 2000, Bristow and Creaser., 1995), drugs (Nicola et al., 1996) and 

pesticides (Vermillion-Salsburg et al., 1999). TLC-MALDI-MS has many advantages over other 

methods of analysis:

(a) There is no need to extract the sample from the TLC plate before analysis which helps to 

avoid the risk of losing some material upon the extraction process.

(b) The analysis can be perfonned very fast, therefore the risks of sample alteration by oxidation, 

can be reduced.
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(c) A higher resolution is achieved compared to the visual inspection of the TLC plate. The 

achievable MS resolution is determined mainly by the laser spot size that is normally about 

50pm which means that 20 individual MALDI mass spectra can be recorded from a TLC spot of 

a diameter of 1mm and this could resolve different components that could never be resolved by 

common staining protocols (Fuchs et al., 2011).

Mass spectrometric detection can bring additional information complementary to the 

chromatographic process, in which it improves the certainty of identification and the specificity 

of detection. The evolution of TLC-MS has been slow compared with LC-MS (Poole., 2003). 

Coupling TLC with MS greatly increases the information content and effective separation 

capabilities of TLC because chromatographically overlapping analytes can be resolved using MS 

detection. Also, TLC-MALDI takes the advantage of the high sensitivity (femtomole-attomole 

range) of MALDI which can ionize both low and high molecular weight compounds without 

significant fragmentation. It has been shown that a better spatial resolution and sensitivity is

o  r>h -i m  r n r l  t t  tFa r\ i  1i  r T T P  MMfV. A/ T A T  TAT ^ o o o
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spectrometry (SIMS) (Busch et al., 1992, Doherty and Busch., 1989) and fast-atom 

bombardment (FAB) (Monaghan et al., 1992, Oka et al., 1993). MALDI is more applicable than 

direct laser desorption ionization (LDI) (Fanibanda et al., 1994 , Kubis et al., 1989) because the 

fragmentation of larger analytes is reduced in MALDI in comparison to these other techniques.

1.15 MALDI and proteomic biom arker studies
Proteomic experiments involve several well established methods which work to resolve and 

analyse complex mixtures of proteins derived from cells and tissues. However, the resolving 

power of these methods can be affected by the diversity and dynamic nature of the proteome 

(Westont et al., 2004).
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The proteome is defined as the sum o f  all proteins in an organism, a cell, organelle or a body 

fluid. Since the proteome is a highly dynamic system it includes much more information than the 

genome. The major application o f  proteomics is to study disease related biomarkers which are 

over or under expressed. These will help to differentiate between healthy and diseased samples 

for earlier diagnosis and can give an insight to the advancement o f  the case (Rifai et a l., 2006). 

The understanding o f  cancer process relies mainly on the identification o f  diagnostic biomarkers 

such as proteins which are correlated to disease states or represent a potential therapeutic targets. 

In fact, stress protein i.e. heat shock proteins families and some membrane proteins were found 

to be involved in tumour progression and considered as potential novel chemotherapeutic targets 

(Scriven et al., 2007, Matsumoto et a l., 2000). Therefore, studying the distribution o f  protein 

biomarkers and monitoring the changes occur in their expression during tumour development has 

attracted much attention.

The MALDI-MSI technique allows direct screening o f  proteomic information from a tissue 

section without need o f a specific target. This can help to identify target proteins that related to 

tumour progression. Many papers have reported on the usefulness o f  the MALDI technique for 

the direct analysis o f  proteins in biological tissue sections by plotting their spatial distribution 

within different regions o f  tissue section (Chaurand et a l., 2001, Lemaire et a l., 2007). In 

addition, MALDI-MSI has been used to explore the changes in protein profiles within tumour 

tissue sections and also the changes occur in response to therapeutic agents (Stoeckli et a l., 2001, 

Reyzer et a l., 2004). Such studies prove that MALDI-MSI can be used to distinguish between 

cancerous and normal tissues highlighting the benefit o f  the technique for rapid characterisation 

o f a disease at the protein level.

Protein sample pre-treatment in direct MALDI-MSI is often carried out by the use o f  in situ 

digestion to increase the amount o f  protein information and improve the detection o f  some 

proteins (Djidja et a l., 2009).
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Lemaire et al., 2007 have been reported a strategy which facilitates and improves the 

identification and localisation o f  proteins within samples by combining in situ micro-digestion 

and in situ extraction o f proteins in formalin-fixed paraffin embedded (FFPE) tissue sections 

(Lemaire et al., 2007, Stauber et al., 2008 ). Another study has reported the use o f  in situ 

digestion on frozen tissue sections which allowed the identification o f  many signals within rat 

brain tissue sections (Shimma et al, 2006, Groseclose et al, 2007). Djidja et al. reported that 

protein signals show different profiles in tumour and necrotic regions in terms o f  signal 

intensities and that the necrotic area was found to be rich in the m/z range between 4000 and 

10,000 compared with the tumour region. In addition, some signals were mostly detected in the 

tumour area such as m/z 6904.6 and 7673.4 which correspond to haemoglobin alpha (Djidja et 

al., 2009). Furthermore, histones have been reported as good targets for MALDI-MSI in tumour 

tissue sections (Reyzer et al., 2004, Chaurand et al., 2004).

A study o f  Cole et al, 2011 reported the use o f MALDI-MSI to study the effect o f treatment with 

CA-4-P vascular disrupting agent on mouse VEGF120 tumours. In this work the suspected 

pharmacological response o f haemorrhaging to treatment with CA-4-P has been investigated. 

Also, the MALDI-MS image shows an increase in haemoglobin (Hb) signal along with other 

peptides such as actin at m/z 1198 and histone 2A at 944 m/z after treatment with CA-4-P. This 

increase in tissue haemoglobin is due to the vascular damaging properties o f  CA-4-P which 

cause a disruption o f  the capillary, endothelial cell necrosis and leakage o f  blood cells into 

tumour tissues.

Examples o f  protein biomarkers observed by MALDI-MSI along with the m/z o f  the peptides 

used for their identification in in-situ digestion experiments are listed in Table 1.4.
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Protein assignment Observed m/z with MALDI - 

MSI

Molecular function

Actin, aortic smooth muscle 1198.7

1790.9

Cell mobility

Actin, cytoplasmic 1 1954.1 Cell mobility

Albumin 1467.8

Estrogens receptor beta 837.4 Nuclear hormone

Fibroblast growth factor 13 844.5
Nervous system development

Haemoglobin subunit alpha 958.6
1361.7
1529.7

944.5

Gene regulation

Histone H2A 2104.2
2915.6

Gene regulation

Histone H2B 

Histone H3

901.5
1743.8

788.5
831.5 
1032.6
1489.9

Gene regulation

Histone H4
1325.7
1466.8

Gene regulation

High mobility group protein pi 1944.9 DNA binding

Metastasis associated protein 2 2428.2 Regulation of gene expression as repressor 
and activator

Table 1:4 List o f some observed peptides by direct MALDI-MSI analysis following in situ digestion 

(Djidja et al., 2009).
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1.16 Scope of this thesis

1.16.1 Aims of the study

The main aim of the study reported in this thesis was to use Matrix Assisted Laser Desorption 

Ionisation - Mass Spectrometry Imaging (MALDI-MSI) to study the distribution, effect and fate 

of anti-cancer drugs, in particular DMXAA in xenograft tumours. A xenograft model of an LS 

174T human colorectal adenocarcinoma cell line was used in this study and the tissue samples 

were analysed for markers of efficacy/resistance using both MALDI-MSI and conventional TLC 

and proteomic techniques. The project was a collaborative one between the Biomedical Research 

Centre at Sheffield Hallam University and The Institute of Cancer Therapeutics, The University 

of Bradford.

Chapter 2 describes the use o f MALDI-MSI to study the distribution of anti-cancer drugs, 

DMXAA, in LSI 74T xenograft tumours. The mass spectrometry imaging experiment o f drug 

distribution was carried out along with drug limit of detection /quantitation study on tissue. The 

interpretation of histological and imaging data is also presented.

Chapter 3 presents data on MALDI-MSI analyses of phospholipids induced by DMXAA 

treatment in dosed and control LS 174T xenograft tumours. In addition, the application of a 

tissue washing technique using NH4Ac to improve the analysis of phospholipids in both positive 

and negative ions modes is described in this chapter.

Chapter 4 introduces the method of direct TLC coupling with MALDI mass spectrometry for 

the analysis of extracted phospholipids from xenograft tumours treated with the vascular 

disrupting agent, DMXAA. MALDI MS/MS analysis was used to confirm and identify the 

structure of the phospholipids. PCA and PCA-DA statistical analysis of these data is also 

described in this chapter.
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Chapter 5 characterisation o f the proteins induced by DMXAA treatment in LSI 74T xenograft 

tumours using MALDI-MSI was carried out to determine the treatment response. The method o f  

in situ tissue tryptic digestion is described in this chapter. Further data analysis using 

bioinformatics software (MASCOT) and the statistical software MarkerView to identify 

differences in the expression o f  protein between different time courses is also presented.

Chapter 6 presents a summary o f  the whole work performed in this thesis, along with 

concluding remarks and recommendations for future studies.
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Chapter 2
Analysis of DMXAA in Dosed Xenograft Tumours
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2 Introduction

Over the past 20 years the concept o f targeting tumour vasculature, especially in cancer therapy, 

has been rapidly developed. The endothelial cells lining tumour blood vessels are the main target 

for anti-vascular agents and they respond in less than 1 hour by increasing their permeability; 

this results in a subsequent decrease in blood flow (Jain., 1988, Milosevic et a l., 1999). The 

induction o f apoptosis is initiated after between 12 and 24 h. The continuous cessation o f  tumour 

blood flow leads to the development o f  haemorrhagic necrosis in the tumour which is a critical 

step in the action mechanisms o f  anti-vascular drugs. To increase the efficacy o f  anti-vascular 

therapy, it must be selective for tumour vascular endothelium. Tumours show extensive 

heterogeneity in blood flow and those vessels with low rates o f  flow are particularly sensitive to 

the effects o f anti-vascular agents (Baguley & Bruce., 2003).

DMXAA (5,6-dimethylxanthenone-4-acetic acid) is a low molecular weight drug which 

selectively destroys established tumour blood vessels. As mentioned earlier in the introductory 

chapter, DMXAA acts on vascular endothelial cells through a cascade o f  direct and indirect 

events which lead to the induction o f  tumour haemorrhagic necrosis. DMXAA selectively arrests 

blood flow in murine tumours within 30 minutes after its administration (Zwi et al., 1994, Lash 

et al., 1998). Images o f hypoxic tumour tissue from mice treated with DMXAA show the onset 

o f hypoxia as a result o f inhibiting the blood flow (Siim et al., 2000).

Preclinical studies have reported that vascular disrupting agents (VDAs) can cause rapid and 

significant effects which lead to dose-dependent tumour necrosis in a matter o f  hours or days. To 

date, phase I clinical trials have reported interesting results. However, only a few VDAs have 

entered phase II and III trials, either as a single drug or used in combination with other forms o f  

chemotherapy.
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VDAs readily induce central tumour necrosis but leave a viable rim at the periphery; the reasons 

for this are still being investigated. Perhaps for this reason, the responses o f tumours to VDAs 

delivered as single agents are poor; however, combination therapies which also targets peripheral 

tumour cells can give better results (Gridelli et al., 2009).

DMXAA is unable to induce delay in the growth o f  some human xenograft tumours because o f  

the rapid repopulation o f  cells from a viable rim o f  tumour cells nourished by intact blood 

vessels (Baguley et al., 2002). However, several murine tumours have shown no evidence o f  

viable cells in tumour sections taken 24 h after treatment; this reveals that DMXAA can, in 

favourable situations, induce complete responses (Philpott et al., 1995). This may reflect 

differences in host responses; or simply indicate that anti-vascular agents which penetrate the 

tumour tissue may also diffuse to blood vessels on a tumour’s periphery (Baguley & Bruce, 

2003).

A variety o f  analytical methods have been used for DMXAA quantification, such as reversed- 

phase HPLC with fluorescence detection (Zhou et al., 1999). Each o f  these methods has some 

advantages and disadvantages. A rapid and sensitive analytical method for the determination o f  

DMXAA concentrations in mouse plasma, based on LC/MS/MS, and with electrospray positive 

ionization has been developed. The method is quantitatively accurate over concentrations 

ranging from 5 to 3000 ng/mL which is sufficient for measuring plasma pharmacokinetics in 

mice after a single intra-peritoneal administration o f DMXAA (Zhang et al., 2007).

The use o f  MALDI-MSI to study two separate classes o f  anti-cancer agent has been previously 

reported. A  study o f  the bio-reductive drug, AQ4N, in solid tumours was carried out using 

MALDI-MSI (Atkinson et al., 2007) and a study o f  Vinblastine in whole animal sections was 

carried out using MALDI-MSI in combination with ion mobility separation (Trim et al., 2008).
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These experiments have shown the power of MALDI-MSI in such studies. The lower limit of 

quantitation (LLoQ) is known as the minimum concentration which determined with acceptable 

accuracy and precision. However, the limit of detection (LoD) can be defined as the amount 

which could be detected with a signal-to- noise ratio of 3 (Zhou et al., 1999).

In this Chapter determination of the lower limit of detection /quantitation study of DMXAA drug 

on tissue is performed and an investigation o f the use of MALDI-MSI to study the distribution of 

DMXAA, in LS 174T xenograft tumours at different time points are reported.

2.1 Materials and methods

2.1.1 Chemicals

a-Cyano-4-hydroxycinnamic acid (CHCA) matrix, ethanol (EtOH), methanol (MeOH) 

trifluoroacetic acid (TFA) and the drug (5,6-dimethylxanthenone-4-acetic acid, DMXAA) were 

purchased from Sigma-Aldrich (Gillingham, Dorset, UK).

2.1.2 Preparation of DMXAA dosed Xenograft tumours

Male, immune-deficient, nude mice, between the ages of 8 and 10 weeks, were used (n = 9) that 

is (n = 3) for each time point. Mice received a Harlan 2018 diet (Harlan, Blackthorn, UK) and 

water ad libitum, and were kept in cages in an air-conditioned room with regular alternating 

cycles of light and darkness. This work has been done in the Institute of cancer therapeutic, 

university o f Bradford under a United Kingdom Home Office Project License, following the UK 

National Cancer Research Institute Guidelines for the Welfare of Animals guidelines (Workman 

et al., 2010).
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Under brief general inhalation anesthesia, 2-3 mm3 fragments of LS174T colorectal 

adenocarcinoma were implanted subcutaneously in the right abdominal flank. Once the tumour 

volumes reached approximately 500 mm , the mice (n = 6) were treated with a 27.5 mg/kg 

concentration of DMXAA via intra-peritoneal (i.p.) administration. At both 4 hours and 24 hours 

post-treatment, three mice were euthanised and tumours were excised, snap frozen and stored at - 

80°C until use. Tumours were also taken from an untreated control group (n=3).

2.1.3 Tissue preparation

Frozen xenograft tumours (n=l) from each time point were sliced into (12 gm) thickness using a 

Lecia CM 1850 cryostat (Leica Microsystems, Milton Keynes, UK) set at -20 °C. Then, tissue 

sections (n=l) from each time point were mounted on to conventional microscopic glass slides 

for analysis by mass spectrometry; these were stored at -80°C in a freezer prior to analysis. The 

glass slide was then optically scanned in a Nikon Super Cool scan 500ED scanner (Nikon 

Corporation, Tokyo, Japan) to produce an optical image.

Figure 2.1: Image o f the Cryostat machine used in the experiment
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2.1.4 Modification of matrix solvent

In order to optimise the extraction of the drug from the tumour tissue sections, different 

concentrations of matrix solvent were tested. About 5 mg/ml of a-CHCA matrix was dissolved 

in different concentrations ranging from 50% to 80% of solvent (MeOH / water) with 0.1% TFA 

and 50% to 80% of solvent (EtOH / water) with 0.1% TFA. Solutions were then vortexed until 

the matrix dissolved. Matrix solutions had to be used within one day of preparation.

2.1.5 Drug limit of detection / quantitation study on tissue

Drug limit of detection / quantitation studies on tissue were performed by preparing a dilution 

series of the drug from a 1 mg/ml stock solution of DMXAA. The concentrations prepared ranged 

from 10, 50, 100 and 150 to 250 ng/ml of DMXAA. About 0.5 pL of each concentration was 

spotted on a section of control tissue and spray-coated with 5mg/ml alpha-cyano-4- 

hydroxycinnamic acid (a-CHCA) matrix dissolved in 70:30% ethanol: water with 0.1% TFA.

2.1.6 Matrix deposition and analysis of DMXAA from a dosed xenograft tumour

2.1.6.1 Matrix application

The tissue sections were spotted with 5 mg/ml (aCHCA) matrix dissolved in 70:30 % ethanol: 

water with 0.1% TFA using the Portrait™ 630 Multi-spotter (Labcyte, Sunnyville, CA) 

automated pneumatic sprayer.

2.1.6.2 Instrumentation

The glass slides were cut to (12 pm) thickness and mounted into a MALDI target plate holder 

(Applied Biosystems / MDS Sciex, Concord, Ontario, Canada) using double-sided tape. The 

analyses were perfonned using a hypbrid quadrupole-time of flight mass spectrometer with an 

orthogonal MALDI ion source, a "Q-Star Pulsar-/" instrument (Applied Biosystems, Foster City, 

California, USA).

76



A high repetition Neodymium-doped Yttrium Vanadate (Nd: YV04) laser with a laser repetition 

rate o f 5 KHz (Elforlight Ltd, Daventry, Northamptonshire, UK) was used (Trim et al., 2010). 

Mass spectra and images were acquired in a positive ion mode at a spatial resolution of 200 pm x 

200 pm in full scan MS mode and MS/MS mode. Then, images were generated using Biomap

3.7.5.5 imaging software (www.maldi-msi.org).

2.1.6.3 Haematoxylin and Eosin staining

After imaging, the tissue sections were retained for Haematoxylin and Eosin (H&E) staining to 

be compared with the MALDI image. Each section of tissue was washed with 5ml of 100% 

ethanol to remove the matrix from the tissue. Then, the tissue section was rehydrated using a 

series of graded alcohols. Each section was immersed in 100% ethanol for 5 minutes, followed 

by a further 5 minutes in 95%, 80% and 70% ethanol. The rehydrated tissue section was then 

washed with tap water for 5 minutes to remove the ethanol. Afterwards, the tissue section was 

deposited in a rack filled with haematoxylin for 5 minutes to stain the nucleus with a blue-purple 

colour. Then, the tissue section was rinsed with tap water for 10 minutes to remove the 

Haematoxylin. The section was then dipped 3 times in a ja r  containing 0.1% HC1 and then into 

tap water 3 to 4 times. Before staining with Eosin, the tissue section was dipped 3 times in a ja r  

containing 0.1% NaOH and then into tap water 3 to 4 times. Eosin stains the eosinophilic 

structure pink. The tissue section was immersed in Eosin for 3 minutes and then dehydrated in 

100% ethanol with 0.1% acetic acid 5 times. This was followed by 2 washes in 100% ethanol 5 

times each and another 2 washes in acetone 5 times each. Finally, the dehydrated section was 

then placed in xylene until it mounted with DPX and cover slipped.
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2.2 Results and discussion

2.2.1 Modification of matrix solvents for method optimisation

The matrix chosen for the MALDI-MSI analysis plays a vital role in the desorption and 

ionization of analyte from tissue. Therefore, different concentrations of matrix solvent were 

used. Varying the concentrations of the matrix solvents added during matrix deposition might 

affect drug detection. In this study, two types o f matrix solvent were used at varying 

concentration ranges with a-CHCA matrix.

A 0.5 pi of DMXAA drug was spotted onto the tissue and then spiked with 0.5 pi of a-CHCA 

matrix dissolved in varied concentrations of matrix solvent ranging from 50% to 80% of solvent 

(MeOH / Water) + 0.1% TFA and 50% to 80% of solvent (EtOH / Water) + 0.1% TFA. Fig.

2.2 shows that a strong spot of the DMXAA drug on the tissue was observed when 70% EtOH / 

H20  + 0.1 TFA was used as a matrix solvent (Fig. 2.2). However, no drug spot was detected 

when concentrations of 50%, 60% and 80% Et/H20  and 50%, 60%, 70% and 80% Me / H20  

were used as matrix solvents. Therefore, the 70% EtOH / H20  + 0.1 TFA was chosen as the 

matrix solvent for future experimentation.

The fonnation of clear concise spot could be explained by the fact that matrix solution contains a 

polar solvent, such as EtOH which will cause droplet of matrix solution to be spread on the 

surface of the tissue reflecting low surface tension and lead to the formation of matrix crystals 

from the outer rim of the deposited solution.
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Figure 2.2: MALDI image showing 0.5 p i o f DMXAA spot (red) on tissue spiked with 0.5 p i o f a-

CHCA matrix in 70%Et/H2O + 0.1 TFA. The intensity o f  signal increase from red colour to white.

2.2.2 Drug limit of detection / quantitation study on tissue

To determine accurately the limit of detection / quantitation of the drug on tissue, the following 

concentrations of the drug (250, 100, 150, 50 and 10 ng/ml) were applied on different areas of 

tissue sections against a blank (matrix). Then the matrix solution (ocCHCA 5mg/ml dissolved in 

70% EtOH / H2O + 0.1 TFA) was applied to each spot. Fig. 2.3 shows that the DMXAA was 

clearly observable at a concentration of 250 ng/ml right down to the lowest concentration of 10 

ng/ml. Also, the image shows that visually the limit of detection (LoD) of DMXAA is 

approximately 10 ng/ml.

79



Figure 2.3: MALDI-MSI image shows a blank spot (matrix) and different spots o f DMXAA on tissue at 

concentrations ranging from 10-250 ng/ml. The intensity o f signal increase from blue colour (low signal) 

to white colour (high signal) as shown in scalebar.

Fig. 2.4 shows the MALDI - Mass spectra constructed from each spot o f drug at concentration 

ranges from 250, 150, 100 and 50 ng/ml, as shown in Fig. 2.3. It was observed that the intensity 

of the peaks increased as the concentration increased. Intense signals of the drug were observed 

at concentrations of 250, 150 and 100 ng/ml (see Fig. 2.4 c, d and e) while Fig 2.4 a displays the 

spectrum with the lowest intensity peak at a concentration of 10 ng/ml.
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Figure 2.4: MALDI/TOF MS spectra acquired directly from different concentration o f drug spotted on 

tissue section: (a) peak o f 10 ng/ml concentration o f drug, (b) peak o f 50 ng/ml concentration o f drug, (c) 

peak o f 100 ng/ml concentration o f drug, (d) peak o f 150 ng/ml concentration o f drug and (e) peak o f 250 

ng/ml concentration o f drug at 283 m/z.

Fig. 2.5 below shows the calibration curve constructed from region of interest (ROI) of each spot 

of drug at concentration ranges from 250, 150, 100, 50 and 10 ng/ml, as shown in Fig. 2.3. The 

intensity of each concentration was determined and plotted against the concentration range from 

10 to 250 ng. The calibration curve shows a linear response (R2=0.564) from 10 to 100 ng/ml. 

The result from 150 - 250 ng/ml was excluded since they caused the graph to plateau. The 

intensity of matrix peak at 175 m/z is used as a blank. From the calibration curve we can say that 

the limit of detection (LoD) is approximately 10 ng/ml and lower limit o f quantitation (LLoQ) is 

45 ng/ml.
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Figure 2.5: Calibration curve produced from the exported region o f interest (ROI) o f different 

concentration o f DMXAA on tissue. The intensity o f signal is plotted against different concentration o f  

DMXAA. The calibration cur\>e shows a linear response (X  =0.564) from 10 to 100 ng/ml. The result 

from 150 - 250 ng/ml was excluded since they caused the graph to plateau.

2.2.3 Analysis of DMXAA from a dosed xenograft tum our using MALDI-MSI

Before imaging, MALDI spectra were acquired in full-scan MS mode (Fig. 2.6) and MS/MS

mode (Fig. 2.7). The MALDI-MS spectrum shows an intense peak for the protonated molecule

[M+H]+ of the DMXAA drug at 283 m/z.
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Figure 2.6: MALDI-MS spectrum o f DMXAA showing the [M+H] peak at 283 m/z and the 

corresponding a CHCA matrix peaks.
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The MALDI-MS/MS spectrum below shows the precursor ion at 283 m/z and major product ions 

at 237 m/z and 209 m/z (Fig. 2.7).
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Figure 2.7: MALDI-MS/MS spectrum o f DMXAA showing the product ions at 237 m/z , 209 m/z and the 

corresponding precursor ion at 283 m/z.

The MALDI-MS images of the distribution of the matrix and the drug from the DMXAA treated 

xenograft tumours, following a 4h treatment perfonned on the Q-star mass spectrometer, are 

shown below in Fig. 2.8.

84



drug layer at 283.2 m/z after 4h treatment matrix layer at 173 m/z image of division of matrix layer at 173 m/z
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Figure 2.8: The MALDI-MS images o f the drug at 283.2 m/z after 4h treatment, matrix layer at 173 m/z 

and the overlaid image o f matrix peaks at 173 m/z divided by drug peaks at 283.2 m/z . The outline o f the 

tumour is shown in red. Blue colour gives low intensity o f signal while orange white colours indicates 

high intensity o f signal as shown in scalebar.

The MALDI-MS images, performed on the Q-star mass spectrometer, of the distribution of the 

matrix and the drug from xenograft tumours following a 24h DMXAA treatment are shown 

below in Fig.2.9.
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Figure 2.9: The MALDI- MS images o f the drug at 283.2 m/z after 24h treatment, matrix layer at 191 m/z 

and the overlaid image o f matrix peaks at 191 m/z divided by drug peaks at 283.2 m/z. The outline o f the 

tumour is shown in red. Blue colour gives low intensity o f signal while orange white colours indicates 

high intensity o f signal as shown in scalebar.
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Fig. 2.10 below shows the MALDI-MS image of the DMXAA drug distributed within the tissue 

after 4 hours of treatment.

Figure 2.10: MALDI-MS image showing the distribution o f the drug (red area) in the middle o f the 

tumour at 283.2 m/z after 4h treatment. The outline o f the tumour is shown in the mass spectral image in 

red. Blue colour gives low intensity o f signal while orange white colours indicate high intensity o f signal 

as shown in scalebar.

The MALDI image (shown in Fig. 2.10) of the 4-hour, post-treated xenograft tumour at 283 m/z 

shows that the drug was located mainly in the central region of the tumour.
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Figure 2.11: MALDI-MS image showing the distribution o f the drug (red area) in the periphery o f the 

tumour at 283.2 m/z after 24h treatment. Blue colour gives low intensity o f signal while orange white 

colours indicates high intensity o f signal as shown in scalebar.

The MALDI image of a 24h post-treated xenograft tumour (Fig. 2.11) shows that the drug was 

primarily distributed in the periphery of the tumour. Hence, as part of its mechanism of action, 

the drug tends to migrate to the periphery of the cancerous tissue following vascular damage.



2.2.4 Haematoxylin and Eosin staining

Haematoxylin and Eosin (H&E) staining of 4h and 24h DMXAA-treated xenograft tumour 

tissues was carried out after MS analysis in order to find a correlation between the MALDI 

image and the H&E stained section. As initial observation made (Fig 2.12-2.13) was that, the 

overall tissue structure is partly destroyed and quite damaged. This is probably due to the snap 

freeze process of the tissue and the damage occurred after MS analysis which makes it difficult 

to identify specific features from the H&E stained section.

However the Haematoxylin and Eosin stained sections of the 4h post-treated xenograft tumour, 

shown in Fig 2.12, do present an area of necrotic tissue (blue colour cells) in the centre of the 

tumour, reflecting the effect of the vascular disrupting agent and a viable rim on the periphery of 

the tumour can be seen.

These observations are similar to those observed in the study of (Gridelli et al., 2009). These 

workers found that treatment with VDAs causes a necrosis in the centre of a tumour with a 

characteristic rim around its periphery. This could be explained by the fact that blood vessel 

occlusion, which progressed to complete vessel breakdown with haemorrhaging into the tumour 

and induced blood vessel destruction, lay between 4h and 5h post DMXAA for an LS174T 

xenograft tumour. Also, around 70 -75%  inhibition of blood flow was observed in a 4h post 

DMXAA administration in colorectal xenograft tumour (Pedley et al., 1999).
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Necrotic —=

Viable rim _<

Figure 2.12: Haematoxylin and Eosin (H&E) stained sections o f a 4h post- treated xenograft tumour at 

MagX200, showing a viable tissue rim on the edge and necrotic cells (blue colour).

Fig. 2.13 below shows an H&E stained section o f a xenograft tumour following 24h DMXAA 

treatment: areas of haemorrhaging, which gives a pink colour to the tissue, along with necrotic 

cells (nuclei stained blue) can be observed.

Mag X200
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M ag X200

Figure 2.13: Haematoxylin and Eosin (H&E) stained section o f 24h post DMXAA at MagX200, showing 

haemorrhagic area (pink colour) with presence o f necrotic cells (nuclei stained blue).

The development of tumour haemorrhagic necrosis following 24h treatment with DMXAA could 

be as a result of damage of blood vessels occurred drug which leads to rupture of the vessel and 

extravasation of erythrocytes into the surrounding tissue (Baguley & Bruce., 2003).
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2.3 Conclusion
In the study o f  optimal conditions for the MALDI-MSI o f  DMXAA in tissue a matrix 

comprising ccCHCA 5mg/ml dissolve in 70% EtOH / H2O + 0.1 TFA matrix solvent gave 

better results compared to the other matrix solvents tested and was therefore considered as the 

matrix o f choice for this study’s experiment. The limit o f  detection /quantitation study showed 

that the anti-cancer agent, DMXAA, could be detected in a range o f  10 ng/ml to 250 ng/ml on 

tissue. From the calibration curve the drug limit o f  detection (LoD) is determined as 10 ng/ml 

and the drug lower limit o f  quantitation (LLoQ) is 45 ng/ml. The MALDI image o f  the 4h post

treated xenograft tumour at 283 m/z showed that the drug was located mainly in the central 

region o f  the tumour, while the MALDI image o f the 24h post- treated xenograft tumour showed 

that the drug was primarily distributed in the periphery o f  the tumour. Hence, as part o f  the 

mechanism o f action, the drug tends to migrate to the periphery o f  the cancerous tissue following 

vascular damage.

An H&E stained section o f a 4h post-treated xenograft tumour showed a necrotic area with a 

viable rim in the tumour’s periphery; this is a characteristic feature o f  VDA treatment. Also, the 

H & E  stained section o f  the 24h post-treated xenograft tumour showed some areas area o f  

haemorrhage (pink colour) with some necrotic cells (nuclei stained blue).
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Chapter 3
Analysis of Lipids in DMXAA treated LS 174T Xenograft 

Tumours using MALDI-MSI

96



3 Introduction

Lipids consist of different groups of molecules such as triacylglycerides, phosphoglycerides, 

sterols and sphingolipids that play important roles in cellular processes including membrane 

synthesis, metabolic regulation and immunity (Gschwind et ah, 2002, Coussens et al., 2002). 

Phosphoglycerides, sterols and sphingolipids are the major structural components of biological 

membranes. Lipids also play a vital role in signalling processes and can work as second 

messengers and as hormones (Santos & Schulze, 2012). There is increasing evidence that cancer 

cells show some alterations in lipid metabolism which in turn affects the synthesis of 

membranes, the synthesis and degradation of lipids involved in energy homeostasis, and the 

signalling functions of lipids. These changes in lipid metabolism may affect different cellular 

processes, such as the growth, proliferation, differentiation and motility of cells (Santos & 

Schulze, 2012).

Diet
mobilisation from <te novo fatty aod

adipose tissue synthesis

X  X
Fatty acids

Membrane Membrane Lipid droplet NAOPH C holesterol 
sy n th e sis  saturation form ation oxidation lipid horm ones
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C eil grow th an d  O xid ative  S u rviva under R ed o x  Proliferation an d

proliferation s tr e s s  e n e rg y  s tr e s s  b a la n ce  in vasion
resistance

Figure 3.1: Lipids are involved in many aspects o f cancer development. Fatty-acid synthesis is stimulated 

by oncogenic signals and increased mobilisation from adipose tissue, resulting in an increased 

availability o f lipids in cancer cells. Some o f the potential functions o f an altered lipid metabolism in 

cancer cells include: growth and proliferation, survival under oxidative and energy stress, support o f  a 

high-glycolytic rate by promoting redox balance, and the stimulation o f signalling pathways which lead 

to proliferation and invasion (image adapted from Santos & Schulze, 2012).
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Examination o f  the lipid composition o f tissue has been proposed as a method to determine 

response to chemotherapy (Todor et a l., 2012). In addition, the characterisation o f  lipidomic 

profiles in cancerous tissue can offer a new area o f  discovery for markers o f  diagnosis, prognosis 

and therapeutic efficacy (Mimezami et al., 2014).

3.1 Phospholipids and Cancer
Phospholipids are an important part o f  the cell membrane; they determine the membrane’s 

structure. Data in the literature demonstrate that human colon cancer shows an increased amount 

o f phospholipids (Dueck et al., 1996). This increased amount o f  phospholipids results from the 

enhanced cell membrane synthesis associated with accelerated neoplastic cell replication (Ruiz- 

Cabello & Cohen, 1992). Over 50 years ago, it was noted that neoplastic tissues are able to 

synthesise lipids in a manner similar to embryonic tissues (Medes et al., 1953). Since then, 

several studies have shown that tumour cells can reactivate de novo lipid synthesis (Menendez & 

Lupu, 2007). Some cancers, such as breast and prostate, show increased expressions o f  fatty acid 

synthase (FASN), suggesting that fatty-acid synthesis has a vital role in cancer pathogenesis (Li 

et al., 2000,Yoon et al., 2007). The mechanisms which are responsible for increases in 

phospholipids may vary depending on the nature o f  the cell, the cell’s growth phase and its 

malignancy. The greatest changes in the content o f  phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) were seen in the first phase G l, o f the cell cycle (Jackowski, 

1996, Jackowski, 1994). Earlier reports were confirmed by the observations o f  Dueck et al., 

1996; these show that the content o f  PC in normal mucosa or lesions o f  colorectal cancer cells is 

higher than other phospholipids while the PC content is still higher in cancer cells compared to 

the normal mucosal cells.
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The presence o f  an altered PC metabolism in cancerous tissue is well known and this has in fact 

been used to develop in vivo magnetic resonance spectroscopy (MRS) for tumour localisation 

across a variety o f  cancer subtypes (Klomp et a l., 2011, Wilson et al., 2009, Venkatesh et al., 

2012).The anionic phospholipids in tumour vessels can be considered as markers for tumour 

vessel targeting and imaging (Ran et al., 2002).

Sphingomyelin (SM) is an important content o f plasma membranes and it is the main source o f  

the free ceramide and sphingosine found in membranes which have powerful second messenger 

properties (Hannun, 1997, Chao, 1995).

Ceramide

OH

D-eiythro-sphingosinc

Figure 3.2: Structures o f sphingomyelin (Image adapted and reproduced from Hsu and Turk, 2000)

Since ceramide and sphingosine are known as regulators o f  cell growth, differentiation and 

apoptosis (Duan & Nilsson, 2009), one current research question is whether the metabolites from 

dietary or membrane SM affect the cell cycle o f  the gut epithelium under normal and 

tumorigenic conditions, and whether sphingolipid metabolites regulate normal proliferation and 

differentiation in cell progenitor compartments and cells’ fate (Duan & Nilsson, 2009). More 

than two decades ago, analytical studies identified differences in sphingolipid composition 

between tumour tissue and normal tissue in the gastrointestinal tract.
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For example, in the study by Dudeja et al. (1986), an injection of dimethylhydrazine (a colonic 

chemical carcinogen) into an animal resulted in an increased amount of SM in colonic tissues, 

together with a reduction of Sphingomyelin phosphodiesterase (SMase). This indicated a 

decrease in SM hydrolysis prior to malignant transformation (Dudeja et al., 1986). Multiple 

factors may account for the changes o f SM and ceramide in colonic tissues, including the de 

novo biosynthesis of sphingolipids, the hydrolysis of SM by different sphingomyelinases, and 

the glycosylation of ceramide. Furthermore, SM was able to enhance the chemotherapeutic 

effects of anti-cancer drugs both in vivo and in vitro (Modrak et al., 2000). However, the 

hydrolysis of sphingolipid to ceramide is a key procedure for such anticancer effects (Duan & 

Nilsson, 2009).

The aim of the work presented in this chapter is to identify changes in phospholipids in response 

to DXMAA treatment in LS 174T xenogaft tumours in mice using MALDI-MSI and MALDI- 

MS profiling.

3.2 Materials and methods

3.2.1 Chemicals

a-Cyano-4-hydroxycinnamic acid (CHCA) matrix, ethanol (EtOH), trifluoroacetic acid (TFA) 

and ammonium acetate (NH4Ac) were purchased from Sigma-Aldrich (Gillingham, Dorset,UK).

3.2.2 Tissue preparation

LS174T colorectal adenocarcinoma xenografts grown in male immune-deficient mice were 

treated with 27.5 mg/kg DMXAA. The control (before treatment) and 4 h and 24 h post

treatment tumours were excised. The full detail o f xenograft preparation was explained in more 

detail in Chapter 2, section 2.1.2. MALDI-MS imaging experiments were carried out on 12 pm 

cryosections sections using a Lecia CM 1850 cryostat (Leica Microsystems, Milton Keynes, UK) 

set at - 20°C. Then, tissue sections (n=l) from each time point were mounted on to conventional
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microscopic glass slides; these were stored at - 80°C in a freezer prior to lipid analysis by 

MALDI.

3.2.3 Lipid washing with ammonium acetate (NH4Ac)

For washing studies, serial tissue sections were obtained. Tissue sections were then washed with 

150 mM ammonium acetate solution (NH4Ac). The sections were either completely immersed in 

a coplin jar containing cold (4°C) NH4Ac for 30 seconds, or they were gently dipped three times 

(dips of 10 seconds each) in the cold NH4Ac. Then, the sections were dried in a vacuum for 20 

minutes before running in MALDI-MS for profiling of phosphocholine (PC) and sphingomyelin 

(SM) species in the tissue samples.

3.2.4 M atrix Coating

After drying, tissue sections were spray-coated with 5 mg/ml oc-CHCA matrix dissolved in 70% 

ethanol/LbO + 0.1 TFA using a Suncollect automated pneumatic sprayer (Sun Chrom, 

Friedrichsdorf, Germany) in a series of layers; approximately 5 coats were applied.

Figure 3.1: Image o f tissue coated with matrix in the Suncollect automated pneumatic sprayer (Sun 

Chrom, Friedrichsdorf Germany).
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3.2.5 Mass spectrom etry imaging of phospholipids and data analysis

The tissues glass slides were cut to size and mounted onto a glass slide MALDI target holder

(Applied Biosystems / MDS Sciex, Concord, Ontario, Canada) using double-sided carbon tape. 

For lipid analysis, imaging experiments were performed in positive and negative ion modes 

using a Q Star Pulsar I Quadrupole/Time of Flight Mass (QTOF) Spectrometer (Applied 

Biosystems / MDS Sciex) with an orthogonal MALDI ion source (Applied Biosystems, Foster 

City, California, USA). MALDI images and spectra were acquired in the range of 200 to 1200 

m/z at 200 pm x 200 pm spatial resolution and with laser frequency of 5KHz. The images were 

then converted into Analyst 7.5 file format using oMALDI server 5.1 software. These were then 

analysed using Biomap 3.7.5.5 imaging software (www.maldi-msi.org).

3.2.6 Haematoxylin and Eosin staining

After imaging, the tissue sections were retained for Haematoxylin and Eosin (H&E) staining so 

that they could be compared with the MALDI image. Each section of tissue was washed with 

5ml of 100% ethanoi to remove the matrix from the tissue. Then, the tissue section was 

rehydrated using a series of graded alcohols. Each section was immersed in 100% ethanol for 5 

minutes, followed by a further 5 minutes in 95%, 80% and 70% ethanol. The rehydrated tissue 

section was then washed with tap water for 5 minutes to remove the ethanol. Afterwards, the 

tissue section was deposited in a rack filled with Haematoxylin for 5 minutes to stain the nucleus 

a blue-purple colour. Then, the tissue section was rinsed with tap water for 10 minutes to remove 

the Haematoxylin. The section was then dipped 3 times in a jar containing 0.1% HC1 and then 

into tap water 3 to 4 times. Before staining with eosin, the tissue section was dipped 3 times in a 

jar containing 0.1% NaOH and then in tap water 3 to 4 times. Eosin stains the eosinophilic 

structure pink.
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The tissue section was immersed in eosin for 3 minutes and then dehydrated 5 times in 100% 

ethanol with 0.1% acetic acid. This was followed by 2 washes of 5 times each in 100% ethanol 

and another 2 washes o f 5 times each in acetone. Finally, the dehydrated section was then placed 

in xylene until cover slipped.

3.3 Results and discussion

3.3.1 Lipid washing with ammonium acetate (NELAc)

Spectra were acquired in both positive and negative ion modes for lipid analysis before and after 

washing the tissue with 150 Mm N H 4 A C .  Fig.3.3 shows a representative mass spectrum image 

of phospholipids analysed in positive ion mode at a range o f 700 to 750 m/z before and after the 

tissue had been washed with ISOmMNFLAC. Fig.3.4 shows a mass spectrum image of 

phospholipids analysed in negative ion mode at a range of 800 to 900 m/z before and after 

washing the tissue with 150mM N H 4 A C .

Figure 3.3: Positive ion MALDI-MS spectrum a) without washing and h) after washing the tissue with 

150 mM NH4AC.The spectrum shows phospholipid peaks in a range o f 700-750 m/z. The red marks shows 

lipid peaks which enhanced by 150 mM NH4AC washing.
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Figure 3.4: Negative ion MALDI-MS spectrum a) without washing and b) after washing the tissue with 

150 mM NH4 AC. The spectrum shows phospholipid peaks in a range o f800-900 m/z; the peak at 885 m/z 

is identified as PI.

This study’s data from the direct profiling of tissue lipids o f sections washed with 150 mM 

ammonium acetate ( N H 4 A C )  in both positive and negative ion modes revealed that incorporating 

an ammonium acetate wash into the sample processing improved and enhanced the S/N ratio in 

the subsequent mass spectrometry analysis. Also, more phospholipids species were detected, 

which could be as a result o f desalting and removing contamination from the tissue which 

occurred after washing the tissue with 150 mM N H 4 A C  (Wang et al., 2011). In addition, data 

from the negative ion mode analysis revealed that the peak at m/z 885 and other peaks showed a 

5-fold increase in intensity after washing with N H 4 A C .  This allowed for a better identification of 

lipids in negative ion mode compared to spectra obtained before washing.
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This result is in agreement with the study of Angel et al. (2012) in which they found that 

washing the tissue with ammonium acetate significantly improved sensitivity for negative ion 

mode lipid imaging. It also produced a nearly 5-fold increase in the total ion current which 

allowed the imaging and identification of glycerophospholipids, as well as sulfatides and 

gangliosides; in the negative ion mode (Angel et al., 2012). This proves that NH4Ac washing 

was successful in this study.

3.4 Mass spectrometry imaging of lipids

3.4.1 Analysis of phospholipids in positive ion mode

For lipid analysis, images were obtained in both positive and negative ion modes in the m/z 

range of 200-1200. Fig.3.5 shows a typical positive ion mode full scan spectrum and image of 

24h, 4h post-treated xenograft tumours, as well as control tissue in a range of 700 -800 m/z. The 

peak at 703.38 m/z [M+H]+ was identified as SM (16:0) and was highly expressed in the 4h 

compared to 24h tumour tissues and control tissue.

SM [M+H]

m/2

Figure 3.5: MALDI-MS spectrum and image showing the distribution o f sphingomyelin [M+H] at 

703.38 m/z in positive ion mode. Blue colour gives low intensity o f signal while orange white colours 

indicates high intensity o f  signal as shown in scalebar.
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Figure 3.6 shows a positive ion mass spectrum and image of sodiated sphingomyelin at 725.30 

m/z [M+Na]+identified as SM (16:0) + Na. It is also highly expressed in 4h compared to 24h 

tumour tissues and the control tissue.
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Figure 3.6: MALD1-MS spectrum and image showing the distribution o f sodiated sphingomyelin 

[M+Na] at 725.30 m/z in positive ion mode. Blue colour gives low intensity o f signal while orange 

white colours indicates high intensity o f signal as shown in scalebar.

Fig. 3.7 below shows a positive ion mass spectrum and image of Phosphocholine at 734.30 m/z 

[M+H]' identified as PC (32:0). This is also highly expressed in the 4h and 24h tumour tissues 

compared to the control tissue.
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Figure 3.7: MALDI-MS spectrum and image showing the distribution o f phosphocholine [M+H] at 

734.30 m/z in positive ion mode. Blue colour gives low intensity o f signal while orange white colours 

indicates high intensity o f signal as shown in scalebar.

Based on the obtained data which is presented above, it appears that tumour tissue exhibits 

increased absolute intensities for the signals of SM (16:0) at m/z 703 and 725 when compared 

with normal tissue. This observation is in agreement with the study of Shimma et al. (2007) 

which showed that MALDI-MS/MS analysis of human colon cancer liver metastasis in normal 

and cancerous areas suggested that SM (16:0) accumulated in cancer cells.

This could be explained by the fact that an inflammatory response is linked to the production of

cytokines such as TNF-alpha which affects the metabolism of phospholipids. TNF-alpha and IL-

1 alpha/beta can induce phospholipases and sphingomyelinases; this leads to the hydrolysis of

phosphatidylcholine and sphingomyelin-synthesising enzymes (Meriaux et al., 2010). Therefore,

in serous cancer, the over production of ascites can be related to the overproduction of

phosphatidylcholine and sphingomyelin caused by stimulating TNF alpha (Meriaux et al., 2010).
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3.4.2 Analysis of phospholipids in negative ion mode

Images and spectra were also obtained in negative ion mode in the range of approximately 200 to 

1100 m/z for lipid analysis. Fig. 3.8 shows a single negative ion MALDI-MS spectrum taken 

from control tissue. Prominent phospholipid peaks were assigned, according to the lipid map 

database, to the following: phosphatidylcholine (PC) (P-39:0) [M-H]‘at 814.80 m/z, PC (0-40:0) 

[M-H]~ at 830.80 m/z; phosphatidylinositol phosphate (PIP) (33:9) [M-H]" at 885.38 m/z; 

phosphatidylinositol (PI)(O-48:0) [M-H]' at 1019.82 m/z and PI (P-50:2) [M-H]'at 1041.81 m/z.
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Figure 3.8: Single negative ion MALDI-MS spectrum o f control tissue showing phospholipid peaks in a 

range o f800 to 900 m/z.
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Fig 3.9 shows a single negative ion MALDI-MS spectrum taken from a 4h post-treated xenograft 

tumour. Prominent phospholipid peaks were assigned, according to the lipid map database, to the 

following: phosphatidylinositol phosphate (PIP) (22:0) [M-H]' at 748.99 m/z;

phosphatidylcholine (PC) (P-39:0) [M-H] ' at 814.80 m/z, PC (O-40:0)[M-H]' at 830.80 m/z, 

(PIP) (33:9)[M-H]'at 885.38 m/z ; phosphatidylinositol(PI) (0-48:0) [M-H]' at 1019.82 m/z and 

PI (P-50:2) [M-H]"at 1041.81 m/z.

150rriMnegfcpld_4h_roiplot ♦

Figure 3.9: Single negative ion MALDI-MS spectrum o f 4h post-treated tumour tissue showing 

phospholipid peaks in a range o f800 to 900 m/z.
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Fig.3.10 shows a single negative ion MALDI-MS spectrum taken from a 24h post-treated 

xenograft tumour. Prominent phospholipid peaks were assigned, according to the lipid map 

database, to the following: phosphatidylcholine (PC) (P-39:0) [M-H]' at 814.80 m/z and (PIP) 

(33:9) [M-H]'at 885.38 m/z.
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Figure 3.10: Single negative ion MALDI-MS spectrum o f 24h post-treated tumour tissue showing

phospholipid peaks in a range o f800 to 900 m/z.

In order to allow direct comparison, Fig. 3.11 show the overlaid negative ion MALDI-MS 

spectra of control, 4h and 24h post-treated xenograft tumours, in a range of 800 to 900 m/z. The 

spectrum taken from the 4h post-treated xenograft tumour shows the highest signal of 

phospholipids species compared to the 24h post-treated and control spectra.

1 SDrriMriei3lipid_24_roiplot ♦

1 1 0



In contrast, the spectrum taken from the 24h post-treated xenograft tumour showed a lower 

signal of phospholipid species compared to the 4h post-treated tumour. This finding is similar to 

results in the study of McPhai et al. (2015) which found a significant decrease in total choline in 

vivo following 24-hour post-treatment with 21mg/kg DMXAA (McPhai et al., 2015). The 

reduction in PC in the 24h post-treated tumour could be a result of the vascular-disrupting 

activity of DMXAA.
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Figure 3.11: Overall negative ion MALDI-MS spectra o f control (red colour), 4h (green colour) and 24h 

(Blue colour) post-treated xenograft tumours showing phospholipid peaks in a range o f 800 to 900 m/z. 

Peaks were assigned according to their masses to the following: phosphatidylcholine, PC (P-39.0) [M- 

H f at 814.80 m/z; PC (O-40:0)[M-H] ' at 830.80 m/z; PE (P-44:3)[M-Hf at 836.80 m/z; and PIP 

(33:9)[M-Hf at 885.38 m/z.

I l l



Fig. 3.12 presents MALDI-MSI images showing the distribution o f a number o f  different 

phospholipids in control, 4h and 24h post-treated xenograft tumours. The image at 748.9 m/z 

was assigned to (PIP) (22:0) [M-H]- ; the image at 788.4 m/z was assigned to PS (37:8) [M-H]. 

The image at 814.6 m/z was assigned to PC (P-39:0) [M-H]- and it showed a reduced intensity in 

the 24h post-treated xenograft tumour compared to the control and 4h post-treated xenograft 

tumours. Also, the image at 830.9 m/z, which was assigned to PC (O-40:0)[M-H] - , showed a 

reduced intensity in the 24h post-treated xenograft tumour compared to the control and 4h post

treated xenograft tumours. This observation confirms the results obtained from the spectra 

presented in Fig. 3.11 which show that PC was decreased in the 24h post-treated tumour 

compared to the 4h post-treated tumours. This suggests that this decrease is a result o f  the 

vascular-disrupting activity o f  DMXAA.

The image at 836.9 m/z was assigned to PE (P-44:3) [M-H]- . This also shows a decrease in 

intensity in the 24h post-treated xenograft tumour. The image at 885.4 m/z was assigned to (PIP) 

(33:9) [M-H]' while the image at 1019.9 m/z corresponded to PI (0-48:0) [M-H] -  and the 

image at 1041.9 m/z was assigned to PI (P-50:2) [M -H]- .

Overall the image data in this study show a decrease o f  PC and PE in the 24h post-treated 

xenograft tumour compared to the 4h post-treated tumour. This finding is in agreement with the 

study o f  McPhai et al. (2015) which found that the membrane associated phosphodiesters (PDE) 

consisted o f  glycerophosphoethanolamine and glycerophosphocholine, which are products o f  

membrane degradation; was significantly depleted within tumour tissue 6 and 24 hours post

treatment with 21 mg/kg DMXAA (McPhai et a l., 2015).
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Figure 3.12: Negative ion MALDI-MSI images with the corresponding H&E stained tissue sections 

showing the up and down regulation o f phospholipids o f interest: (PIP) phosphatidylinositol phosphate, 

(PS) phosphotidylserine, (PC) phosphatidylcholine, (PE) phosphatidylethanolamine and (PI) 

phosphatidylinositol in control, 4h and 24h xenograft tumours after treatment with DMXAA. The principal 

lipid class called PIP3 was identified at 885.4 m/z and it present at much higher abundance in cancerous 

tissue. The 748.9 m/z was assigned to (PIP) (22:0) [M-H] ; the 788.4 m/z was assigned to PS (37:8) [M- 

H]. The 814.6 m/z was assigned to PC (P-39.0) [M-H] and the 830.9 m/z was assigned to PC (O- 

40:0)[M-H] which shows a down-regulation in the 24h post-treated xenograft tumour compared to the 

control and 4h post-treated xenograft tumours. Blue colour gives low intensity o f signal while orange 

white colours indicate high intensity o f signal as shown in scalebar.
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Table 3.1 below shows a comparision of the calculated mass and the experimentally observed 

mass for each of the lipids based on the lipidmap database.

Observed 
Mass Units

Accurate 
Mass Units

Delta
Units

Abbreviation Formula Ion

885.3898 885.3597 .0301 PIP(33:9) C42H63Q 16P TM-H r

887.3891 887.3753 .0138 PIP(33:8) C^H^OjftP [M-H]'

1019.8220 1019.7897 .0323 PI(O-48:0) C57H 112O 12.P [M-H]'

1041.8320 1041.7740 .0580 PI(P-50:2) O59H.110O 12P [M-H]'

Table 3.1: Comparison o f obseiwed mass and measured mass taken from the spectra shown in Figure 

3.11. This shows the possible lipid species identified using fhttp://www.lipidmaps.org>) by comparing the 

mass o f obsetwed ions to the matched mass within a mass error o f  +/- 0.05 Dalton. The difference 

between observed mass and accurate mass is known as delta units.

3.4.3 Haematoxylin and Eosin Staining

Haematoxylin and Eosin (H&E) staining of control, 4h and 24h post-treated xenograft tumor 

tissues was carried out after phospholipids were imaged using MALDI-MSI to find a 

correlation between the MALDI image and the H&E stained sections.
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Fig 3.13 shows the H&E stained section of the control untreated xenograft tumour. Due to the 

snap freeze process, the tissue shows its structure has been damaged or even destroyed; making 

it difficult to identify a specific feature from the H&E stained section.

Figure 3.13: H&E stained section o f the control untreated xenograft tumour at Mag X200, tissue shows 

uniformed appearance o f cells (blue) with connective tissue (red).

Fig. 3.14 shows the Haematoxylin and Eosin stained sections of the 4h post-treated xenograft 

tumor. An area o f both necrotic and viable cells is located in the core of the tumour tissue, while 

a characteristic viable rim can be located on the tumour’s periphery.

The observation above is similar to that of McPhai et al. (2015) which showed that HT29 

tumours presented a viable rim and a large central area of necrosis 6  hours after treatment with 

21 mg/kg DMXAA (McPhai et al., 2015).
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Viable rim —

Figure 3.14: H&E stained section o f the 4h post-treated xenograft tumour at MagX200 and showing an 

area o f necrotic and viable cells in the centime o f the tumor and a viable rim in the tumour's periphery.

Fig. 3.15 shows an H&E stained section of the 24h post-treated xenograft tumours with 

widespread necrosis on the tumour’s periphery. This is known as a disorganised region since it 

has less blue staining.

Necrotic
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Wide spread necrosis

Mag X I00

Figure 3.15: H&E stained section o f the 24h post-treated xenograft tumour at Mag X I00. It shows an 

extensive area o f widespread necrosis in the tumour’s peripheiy.

3.5 Conclusion

The addition of N H 4 A C  washing results in better images of lipids in positive and negative ion 

modes; it also enhances the signal’s abundance. For lipid analysis, images were obtained in both 

positive and negative ion modes at a range of 200-1200 m/z. In positive ion mode, two classes of 

sphingomyelin SM (16:0) at 703.38 m/z, 725.30 and PC (32:0) at 734.30 m/z, were highly 

expressed in tumours tissue compared to the normal tissue. Spectra and images in negative ion 

mode showed a decrease in PC and PE in the 24h post-treated xenograft tumour compared to the 

4h post-treated.
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Chapter 4
Analysis of Lipids in Dosed Tumours by TLC-MALDI-MS

122



4 Introduction

5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a flavonoid type drug which has an 

antivascular effect on tumours causing endothelial cell apoptosis and activation o f  cytokines 

resulting in necrosis at the tumour core and is classed as a vascular disrupting agent (VDA) 

(Rustin et a l., 2003). The degree o f  DMXAA-induced tumuor haemorrhagic necrosis is 

significantly correlated with increased tumuor vascular permeability, decreased functioning 

tumour blood vessels and increased plasma 5-hydroxyindoleacetic acid (5-HIAA) concentrations 

(McKeage et al., 2006). DMXAA has been evaluated as monotherapy in phase I trials and was 

assessed in a number o f  successful phase II trials, where it was used in combination with 

paclitaxel/carboplatin for the treatment o f non-small cell lung cancer (NSCLC). Whilst 

subsequent phase III trials were unsuccessful, DMXAA remains an interesting compound for the 

study o f  the biochemical effects o f  VDA.

Gao et al. have recently demonstrated that one pharmacodynamic response to treatment with 

flavonoid agents is an increase in the amount o f  lysophosphatidylcholine (LPC) type lipids. In 

their study, conducted using HepG2 cells and a novel flavonoid compound synthesised in their 

own laboratory, LPC levels were increased 40 fold in treated cells compared to the control group 

(Gao et al., 2014). LPC are a class o f cellular metabolite comprising a phosphocholine head 

group and one fatty acyl side chain. The fatty acyl side chain can be o f  differing chain lengths. 

LPC levels can be considered as a clinical diagnostic indicator o f  pathio-physiological changes 

(Gao et al., 2014). They can be formed during oxidation at the sn-2 fatty acid o f  PCs by reactive 

oxygen species (ROS) (Catala., 2009). The increase in oxidative stress caused by flavonoid type 

molecules has been reported to lead to lipid peroxidation which causes an increase in LPC 

expression. Since the mitochondria are one o f  the most important organelles for energy 

transduction within the cell which support cellular survival they are a vulnerable intercellular 

target to ROS.
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Thus, Gao et al (2014) proposed that the effect they observed indicated mitochondrial 

dysfunction and increased oxidative stress which would affect cellular metabolism and finally 

lead to cellular anti-proliferation i.e. an anti-cancer effect.

In this follow up study, here we are interested in developing methodology to study changes in 

lipid expression in treated xenografts by MALDI-MSI. The aim was to use this as means o f  

correlating the distribution o f DMXAA to its pharmacodynamic response. This is o f  particular 

interest since changes in phosphocholine containing lipids are also observable in vivo using 3 IP 

magnetic resonance spectroscopic imaging (MRSI) (Glunde et a l., 2011). However concerns 

arose that without some additional analysis o f  the lipid composition o f  the xenografts, the data 

set obtained from the MALDI-MSI experiments would be too complex to allow biological 

meaning to be extracted.

A number o f methods for the analysis o f  lipids exist. TLC was one o f the earliest forms o f  

chromatography used for lipid analysis and is still widely used today. It is often used as a sample 

preparation step to separate lipids by class prior to subsequent analysis using HPLC or mass 

spectrometry (Fuchs et a l., 2011). TLC-MALDI-MS coupling combines the simplicity o f  TLC 

analysis with the detection capabilities o f MS and allows scanning o f a TLC plate within a few  

minutes (Busch., 1996). This combined method has been applied for analysis o f  complex lipid 

mixtures such as extracts from stem cells (Fuchs et al., 2008). Unlike other techniques, the 

sample can be stored within the TLC plate and chromatograms can be obtained anytime. Whilst 

the literature contains some reports on the direct coupling o f  TLC with MALDI-TOF-MS for the 

analysis o f  polar molecules (Crecelius et al., 2004) and glycolipids (Ivleva et al., 2005- 

Nakamura et al., 2006) there is so far only one paper describing the direct mass spectrometric 

analysis o f  phospholipids on a TLC sample plate (Rohlfmg et al., 2007) and no reports o f  its 

combination with MALDI-MSI.
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In this paper, we describe the use of TLC-MALDI-MS for the analysis of phospholipids 

extracted from DMXAA treated xenograft tumors. Lipid class separation is perfonned by TLC- 

MALDI-MS to reduce the complexity of the data set to be studied, to aid identification of 

specific lipids and to indicate to us target lipid signals for study by MALDI-MS imaging. 

Subsequent to the TLC-MALDI-MS experiments MALDI-MS imaging was carried out on 

xenograft sections and images showing changes in distribution of LPC identified from the TLC- 

MALDI-MS experiments produced.

4.1 Experimental

4.1.1 Materials

Chloroform (CHCI3), ethanol (EtOH), methanol (CH3OH), acetonitrile (ACN) and acetone 

(CH3)2CO) were all HPLC grade and obtained from Sigma-Aldrich (Gillingham, Dorset, UK). 

Acetic acid (CH3COOH), a-cyano-4-hydroxycinnamic acid (CHCA) matrix, amido black stain, 

sodium chloride (NaCl), lithium chloride (LiCl) and trifluoroacetic acid (TFA), were all obtained 

from Sigma-Aldrich (United Kingdom). The water used was deionized water which was 

generated in house. TLC was performed on 20 x 20 cm aluminum backed plates coated with 0.2 

mm layer of silica gel 60 F254 ( Merck, Gennany).

4.1.2 Tissue Sample Preparation

A detailed description of the preparation of the tissue samples can be found in Chapter 2, Section 

2 . 1.2 ).

4.1.3 Lipid extraction

Lipids were extracted from tissue according to the Folch extraction method (Folch et al., 1957) 

by initially homogenizing the weighed xenografts with an appropriate volume of, C H C I 3  /  

C H 3 O H ,  (2:1, v/v) to yield a solvent: tissue ratio of 20:1 v/w. After dispersion, the whole 

mixture was agitated for 20 min in an orbital shaker at room temperature. Phase separation was 

induced by adding deionized water (1.5 ml).
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Afterward, the homogenized mixtures were centrifuged at low speed (2000 rpm) to separate the 

two phases. The upper phase was removed and the entire lower chloroform phase (along with 

washings) which contained the lipids was collected into a glass tube and evaporated to dryness 

under a nitrogen stream and weighed.

The weights of the dried extracts were: 109.0 mg control (n=l), 108.3 mg 4h sample (n=l) and 

226.0 mg 24h sample (n=l). The final extracts were then dissolved in an appropriate volume of 

CHCI3 / CH3OH, (2:1, v/v) to yield a lmg/ml solution.

4.1.4 TLC Separation

Lipid extracts (1 pi) were applied onto an aluminum backed TLC plate (20 x 20 cm) coated with 

a 0.2 mm layer of silica gel as stationary phase. Then TLC plate was developed in a TLC 

chamber using CHCI3, methanol, water, and acetic acid (30:15:2:4, v/v/v/v) as mobile phase one. 

When the solvent front had reached half the way up the plate, the plate was removed and air 

dried. After that, a second mobile phase was employed (acetone, acetonitrile, CHCI3, 5:4:2 v/v/v) 

and the plate developed to the top. Following this the plate was removed from the TLC chamber 

and air dried. The lipid spots were visualized using 0.5% amido black 10 B stain in 1M NaCl.

4.1.5 Coupling TLC with MALDI- MS

a-CHCA matrix (5 mg/mL) was dissolved in 70% ethanol /water (v/v). 0.2% TFA (v/v) was then 

added. The developed TLC plate was cut in two parts to fit onto the MALDI target plate and 

adhered to a MALDI target using double sided tape. The TLC plates were spray coated with 

aCHCA matrix using a “ Suncollecf’ (SunChrom, Friedrichsdorf, Germany) automatic 

pneumatic sprayer. Four layers of the 5 mg/mL a-CHCA matrix were applied at a flow rate of 5 

pl/min using the "slow" spray pass setting of the instrument.

126



4.1.6 TLC-MALDI-MS

Mass spectra together with the high resolution images were recorded directly from the TLC plate 

using a Waters MALDI high-definition MS (HDMS) SYNAPT G2 mass spectrometer (Waters 

Corporation, Manchester, UK). A spatial resolution of 150 pm x 150 pm was employed with the 

instruments Nd:YAG laser being fired at lkHz. A full description of the MALDI SYNAPT™ 

HDMS instrument has been reported (Pringle et al., 2007). Analysis was performed in positive 

ion mode and mass spectra were collected over the range of 2 0 0  to 1 2 0 0  m/z following initial 

calibration with a standard solution of polyethylene glycol (PEG). All images were processed 

using HDI imaging software (Waters Corporation, Manchester, UK). After acquisition, the data 

were recalibrated using the polyethylene glycol (PEG) signal at 701.3935 m/z as a lock mass and 

centroided prior to the generation of accurate mass peak lists. Assignment of structure was then 

made by searching the accurate centroided m/z values against the lipid map database 

(http://www.lipidmaps.org) and comparing the mass of the observed product ions to the matched 

mass in the database with mass tolerance of 0.05 Th to confirm the structure of the lipids. All 

TLC-MALDI-MS experiments were carried out in triplicate.

4.1.7 Quantitative Analysis of the TLC/MALDI/MS Data

The region of interest (ROI) peak list data were exported from the spots assigned to LPC and m/z 

PC from the 3 replicate TLC/MALDI/MS analyses. The intensities were then imported into 

Prism software for data analysis.

4.1.8 MALDI-MS imaging of LPC in LS174T colorectal adenocarcinoma

12 pm sections of tumour were cut using a Leica CM 3050 cryostat (Leica Microsystems, Milton

Keynes, UK) and stored at -80°C prior to analysis by MALDI-MSI. The sections were spray 

coated with a-CHCA matrix using a “ Suncollecf' (SunChrom, Friedrichsdorf, Germany) 

automatic pneumatic sprayer. The sections were coated with four layers of a-CHCA matrix at 

5mg/ml with a flow rate of 5 pl/min using the "slow" spray pass setting of the instrument.
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The high resolution MALDI-MS images of LPC in the control, 4h and 24h post-treatment 

xenograft tumours were acquired simultaneously, to allow direct comparison, using a MALDI 

high-definition MS (HDMS) SYNAPT G2-HDMS™ system (Waters, Manchester, UK). Data 

were acquired over the range o f 2 0 0 - 1 2 0 0  m/z at a spatial resolution of 150 pm x 150 pm.

4.1.9 Statistical Analysis of Imaging Data

Principal components analysis - Discriminate Analysis (PCA-DA) was carried out using the 

MarkerView™ statistical analysis package (Applied Biosystems/MDS Sciex, Concord, Ontario, 

Canada). Ten Spectra were randomly selected from the imaging data set collected for each of the 

time points. The spectra were imported into the MarkerView™ software with a mass tolerance of 

0.1 amu (i.e. the bin size the data was grouped into), and a minimum signal count of 0.5. PCA- 

DA was carried out using Pareto scaling. Pareto scaling uses the square root of the standard 

deviation as a scaling factor to reduce the dominance of large scale intensity changes in high 

abundance ions (Eriksson & Johansson., 1999). These may mask the variation in lower 

abundance ions during PCA-DA. The overall outcome of PCA-DA is greatly affected by the 

masking of the underlying relevant information by high intensity ions. D1 verses D2 was chosen 

for display since these components resulted in the highest overall degree o f separation of the 

spectra within the PCA-DA scores plots 50.2% and 49.8% respectively.

4.1.10 MS/MS Experiments

To form lithiated adducts of GPC species, LiCl (42mg) was dissolved in 10 mL 70:30 EtOH: 

H20, 0.2% TFA v/v/v, with a-CHCA (lOOmg) being added to the solution to give a final matrix 

solution of 10 mg/ml a-CHCA (0.2% v/v TFA) in lOOmM LiCl. 0.5 pi of this matrix solution 

was mixed with 0.5 pi of lipid extract and spotted onto the MALDI target plate. MALDI-MS/MS 

spectra were acquired directly from each spot of the precursor ions selected at 502,709 and 766 

m/z using a modified MALDI quadrupole time-of-flight Q-Star Pulsar-iTM (Applied Biosystems 

/ MDS Sciex, Concord, ON, Canada).
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This instrument has been modified by incorporation of a variable repetition rate (up to 20 kHz) 

Nd: YV04 laser. These modifications have been described elsewhere (Trim et a/., 2010). Data 

were acquired in positive ion mode with laser energy of 4.2 pJ and laser repetition rate of 5 kHz. 

During acquisition the collision energy was increased from 30 to 40 eV. The chemical structures 

of lipids that have been previously identified using the Lipid Maps data base were compared 

with the chemical structures of product ions produced in individual MS/MS spectra to confirm 

identity.

4.2 Results and Discussion

The PCA-DA scores and loadings plots obtained from the analysis of the 30 (3x10) MALDI 

mass spectra recorded from the surface of control, 4 hours and 24 hours post DMXAA treatment 

LS174T colorectal adenocarcinoma xenografts samples are shown in Fig 4.1.a and Fig 4.1.b, 

respectively. As might be expected using PCA-DA the spectra from each of the time points 

group extremely well in the scores plot (Fig.l.a), examination of the loadings plot (Fig.l.b) 

indicates those signals that are associated with each time point. It can be clearly seen that signals 

at 782.57, 725.56, 756.56, 518.32 m/z and 616.17 m/z are associated with the 24 hour time point. 

These are therefore likely to be associated with the effects of DMXAA treatment. Tentative 

assignments based on a search of the LIPID MAPS database for the signals at m/z 782.57, 

725.56, 756.56 and 518.32 were made assigning the signals to SM, PC and LPC signals 

respectively. The signal at m/z 616.17 was tentatively identified as arising from the haeme group 

(of haemoglobin) based on previous experience.
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b) Loadings for D1 (50 2  X)  versus D2 (49 8 X],  Pareto (DA)
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Figure 4.1 (a-b) (a) PCA-DA Scores plot showing the grouping between the control (blue), 4h (Red) and 

24h (green) xenografts tumour and (b) Loadings plots obtained from the analysis o f 30 (3 xlO) MALDI 

mass spectra recorded from the surface o f control, 4hours and 24 hours post DMXAA treatment LSI 7 4T 

colorectal adenocarcinoma xenografts samples.

The MALDI image of the TLC plate obtained from the separation of lipids extracted from 

control and LS174T colorectal adenocarcinoma xenografts treated with DMXAA 4 and 24 hours 

after treatment is shown in Fig 4.2. As can be seen the lipid extract was separated into 6  spots. 

The first 4 spots were tentatively identified, using the mass to charge (m/z) ratio o f significant 

peaks within mass spectra obtained from each spot, as arising from LPC, SM, PC and PE 

respectively, whilst the other two spots were considered as unknown. For each class o f lipid, the 

intensity of a representative signal was chosen to produce the coloured spots shown in Fig 4.2 as 

described below.

131
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m/z 722.70

m/z 738.70

PC m/z 782.59

SM m/z 725.58

IPC m/z 518.35

(a) (b)

Figure 4.2 (a-b) Images o f phospholipids extracted from control, 4h and 24h post DMXAA treatment 

LS174T colorectal adenocarcinoma xenografts by TLC. (a) MALDI-MSI image showing phospholipids 

separated according to retention value (RF). LPC (red spot) represent signals arising from 518.35 m/z, 

R f = 0.19. SM at 725.58 m/z (green spot), Rf=  0.28. PC at 782.59 m/z (purple spot), R f — 0.47. Unknown 

1 at 738.70 m/z (blue spot), R f  = 0.80. Unknown 2 at 722.7 m/z (green spot), R f=  0.85 and unknown 3 at 

700.42 m/z (red spot), R f=  1.0. (b) Photograph o f the TLC plate (stained with 0.5% amido black 10 B in 

lMNaCl), and prior to matrix deposition for analysis by MALDI-MSI.

Summed MALDI mass spectra were obtained from each spot by defining it as a region of 

interest (ROI) in the imaging software. The summed MALDI mass spectra recorded from the 

LPC spots of the control, 4h and 24h post-treated samples are shown in Fig. 4.3.
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In Fig.4.3 it can be seen that the most abundant signals arising from the spots at Rf = 0.19 in the 

control, 4h and 24hr post-treatment samples were the peaks at 496.36 m/z and 518.34 m/z. These 

two peaks showed an increased signal in the 24h post-treatment sample compared to the 4h post

treatment and control tumour.

LPC at m /z  518_c_roip lot ♦ 
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Figure 4.3 MALDI mass spectra exported from the spots absented on the TLC plate shown in Figure 1. 

Each spot has been defined as a "region o f interest" (ROI) in the instrument software and the summed 

mass spectrum from the region exported o f spectrum from the spot at Rf=  0.19
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Fig. 4.4 shows the summed MALDI mass spectra recorded from the spots at R f = 0.28 in the 

control, 4h and 24h post-treated samples. Clearly observable in these data are peaks at 703.59 

m/z tentatively assignable (Table 4.1) to SM (d 18:1/16:0 [M+H]+) and the corresponding 

[M+Na]+ ion at 725.58 m/z. These two peaks were of higher relative abundance in the 4h post

treated sample compared to the control sample and 24h post-treated sample. The signal at 725.58 

m/z identified as arising from the [M+Na]+ adduct of SM 16:0/18:1 is shown as a green spot in 

Fig 4.2.
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Figure 4.4 MALDI mass spectra exported from the spots observed on the TLC plate shown in Figure 1. 

Each spot has been defined as a "region o f interest" (ROI) in the instrument software and the summed 

mass spectrum from the region exported o f spectrum from the spot at R f — 0.28.
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Fig. 4.5 displays the summed MALDI mass spectra obtained from the PC spots at Rf = 0.47 of 

the control, 4h and 24h post-treated samples. In this data set, notable are signals observed at 

756.55 m/z which can be assigned (Table 4.1) to PC (16:0/16:0 [M+H]1), 760.63 m/z which can 

be assigned to PC (16:0/18:1) [M+H]+ and 782.57 m/z which can be assigned to PC (16:0/18:1) 

[M+Na]+. The signal at 782.57 m/z identified as arising from the [M+Na]+ adduct of PC 

16:0/18:1, is shown as a purple spot in Fig 4.2.
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Figure 4.5 MALDI mass spectra exported from the spots observed on the TLC plate shown in Fig. I. Each 

spot has been defined as a "region o f interest" (ROI) in the instrument software and the summed mass 

spectrum from the region exported o f spectrum from the spot at R f=  0.47.
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The outputs obtained from the database searching o f  peak lists via lipid maps 

(www.lipidmaps.org) are shown in Table 4.1 The peak at 496.36 m/z was tentatively identified 

as arising from the [M+H]+ ion o f  LPC (16:0/0:0) and the signal at 518.35 m/z was identified as 

arising from the corresponding [M+Na] + adduct. This is the signal shown as a red spot in Fig

4.2. This signal is also observable (as a faint red spot underlying the purple PC spot), in the PC 

region o f  the plate. However, here it probably arises via the fragmentation o f  PC lipids which 

contain a 16:0 side chain, as this produces a fragment ion isobaric with the LPC 16:0 signal.

This demonstrates the advantage o f  using TLC/MALDI/MS to separate the lipid classes as in 

the MS imaging data alone it would not be possible to distinguish the LPC signal from this 

fragment ion.

Input

Mass

Matched

Mass

Carbons Double

bonds

Abbreviation Formula Ion

496.35 496.34 16 0 LPC (16:0/0:0) C24H51NO7P [M+H]+

518.34 518.32 16 0 LPC (16:0/0:0) C24H5oN 07PNa [M+Na

703.59 703.57 16 0 SM (d l8:1/16:0) C39H80N2O6P [M+H]+

725.55 725.55 16 0 SM (d l8:1/16:0) C39H79N206PNa [M+Na

756.55 756.55 32 0 PC (16:0/16:0) C4oH80N 0 8PNa [M+Na

760.63 760.58 34 1 PC (16:0/18:1) c 42h 83n o 8 [M+H]+

782.57 782.56 34 1 PC (16:0/18:1) C42H82N 0 8PNa [M+Na

Table 4.1 Some o f the Major Phospholipids identified from TLC-MALDI-MS Analysis o f extracts of  

LS174T colorectal adenocarcinoma xenografts by searching accurate mass centroided peak lists from 

each TLC spot against the lipid map database (http://www.lipidmaps.org) with 0.05 Th mass tolerance.
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The spot at Rf = 0.80 has been tentatively assigned to PE type lipids. This assignment is on the 

basis of the largest signal observed, 738.70 m/z, which has been assigned to the [M+Na] ' adduct 

of PE (16:0/18:2).(This is the signal shown as a blue spot at Rf = 0.8 in Figure 4.2). The 

confident assignment of PE proved difficult, however, due to low intensity of the "PE" signals. 

This has been previously explained as an affect caused by the acidity of the PE head group 

compared to PC species (Fuchs et al., 2007).

The effect of DMXAA treatment on the expression of LPC (16:0/0:0) (represented by m/z 

518.35) and PC (16:0/18:1) (represented by m/z 782.59) in control, 4h and 24h post-treated 

sample was investigated, The intensities of these signals was extracted from three replicate 

TLC/MALDI/MS analyses and these data are shown in Fig 4.6.

In ten sity

Figure 4.6 Shows the comparison o f (mean ± SD) o f the intensities o f signals arising from spot o f LPC 

(16:0,0:0), 518.35 m/z from the control, 4h post-treated and 24h post-treated sample, extracted from  

TLC/MALD/MS analyses ,n=3 (technical replicates).
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As shown in Fig 4.6 an increased expression of LPC (16:0/0:0) was observed in 24h post-treated 

sample compared to 4h post-treated and control sample. In contrast it can be seen that the 

expression of PC (16:0/18:1) is decreased in 24h post-treated sample compared to 4h post-treated 

and control sample Fig. 4.7.

Intensity 4

Figure 4.7 Shows the comparison o f (mean ± SD) o f the intensities o f signals arising from spot o f PC 

(16:0,18:1), 782.59 m/z from the control, 4h post-treated and 241i post-treated sample, extracted from  

TLC/MALD/IMS analyses, n=3 (technical replicates).

The reduction in the amount of PC in the 24h post-treated sample compared to 4h post-treated 

and control sample could also be as a result o f the vascular-disrupting activity of DMXAA. It has 

been reported that a significant decrease in total choline occurs 24-hour post-treatment with 21 

mg/kg DMXAA (McKeage et al., 2006). The decrease of PC levels and increase of LPC levels 

following treatment has been related to a decline in mitochondrial function (Gao et al., 2014).
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In order to give further confirmation o f  the structural assignment, MS/MS experiments on 

selected species were undertaken. As described in the experimental section, LiCl was added to 

the MALDI matrix a-CHCA for MS/MS experiments. Performing MS/MS analyses on lithium 

adducts can provide more structural information in comparison to the MS/MS analysis o f  

protonated adducts since the [M+Li]+ ions are more susceptible to collisionally induced 

dissociation (Hsu et al., 2004). Fig 4.8 (a-c) shows representative MALDI MS/MS product ion 

spectra generated from lithiated adducts o f  lipid species. In Fig.4.8a, the MALDI MS/MS 

product ion spectrum o f  502.51 m/z, tentatively identified as the [M+Li]+ ion for LPC (16:0/0:0), 

the significant feature is the abundant peak at 443.33 m/z [M+Li-59]+ which arises from loss o f  

N(CHs)3. The high relative abundance o f  this signal compared to the [M+Li-183]+ signal at 

313.31 m/z is a characteristic feature o f  MS/MS spectra o f  LPC lipids compared to two acyl 

chain containing PC species (Hsu et al., 2004). The identity o f  this species was therefore 

confirmed as LPC (16:0/0:0). Fig. 4.8b shows the MALDI MS/MS product ion spectrum o f  m/z 

709, tentatively identified as the [M+Li]+ ion for SM (18:1/16:0). Significant product ions are 

observed at 650.54 m/z, corresponding to the neutral loss o f  trimethylamine ([M + Li] - 

N(CH3)3), 526.54 m/z ([M + Li]+-183) corresponding to loss o f  cholinephosphate and 520.53 m/z 

([M+Li]+ - 189) corresponding to loss o f  lithium cholinephosphate respectively. The product ion 

at 264.28 m/z can be identified as arising from a d l8:1 side chain and that at 280.25 m/z as 

arising from a 16:0 side chain (Hart et al., 2011, Hsu & Turk., 2000). The identity o f  this species 

was therefore confirmed as SM (18:1/16:0). Fig. 4.8c shows the MALDI MS/MS product ion 

spectrum o f 766 m/z, tentatively identified as the [M+Li]+ ion for PC(18:1/16:0). Significant 

product ions were observable at 707 m/z, corresponding to the loss o f trimethylamine ([M + Li]+- 

N(CH3)3), m/z 583 ([M + Li]+ - 183) corresponding to the loss o f cholinephosphate and 574 m/z 

([M+Li]+ - 189) corresponding to the loss o f lithium cholinephosphate respectively. The product 

ions at 451 m/z and 425 m/z may reflect losses o f  trimethylamine plus the 16:0 (palmitic acid)
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side chain and trimethylamine plus the 18:1 (oleic acid) side chain, respectively. The identity of 

this species was therefore confirmed as PC (16:0/18:1 (Hsu et al., 1998).
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Figure 4.8 (a-c) Positive ion MALDI product ion mass spectra o f the lithium adducts o f signals identified 

as arising from (a) LPC (16:0/0:0) [M+Li]+ 502 m/z (b) SM (18:1/16:0) [M+Li]+ 709 m/z (c) PC 

(16:0/18:1) [M+Li]+ 766.8 m/z.

Fig 4.9 (a-b) shows the MALDI-MSI images obtained from control, 4h and 24h post-treated 

DMXAA treated LS174T colorectal adenocarcinoma xenograft tumour samples. Fig. 4.9 a 

shows the distribution o f  LPC (16:0/0:0) [M+H]+ at 496.34 m/z and Fig. 4.9b shows the 

distribution o f  LPC (16:0/0:0) [M+Na]+ at 518.34 m/z. These images confirm the initial PCA- 

DA experiments, the TLC-MALDI-MS analysis and the extracted expression data shown in 

Fig.4.3. Taken together these demonstrate unambiguously that LPC levels were higher in the 24h 

post-treatment samples compared to 4hr post-treatment sample and control tumours.
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Figure 4.9 MALDI-MSI images o f control (C), 4h and 24h post DMXAA treatment LS174T colorectal 

adenocarcinoma xenografts (a) the distribution o f LPC (16:0/16:0) [M+H],496.34 m/z and (b) the 

distribution o f LPC (16:0/16:0 ) [M+Na]+, 518.34 m/z. Blue colour gives low intensity o f  signal while 

orange white colours indicates high intensity o f signal as shown in scalebar.

These findings are in agreement with the study carried out by Gao et al., on HepG2 cells (Gao et 

al., 2014). In that study, one pharmacodynamic response observed following treatment o f HepG2 

cells with a novel flavonoid agent was an increase in the amount of LPC type lipids. Gao et al 

proposed that such observations indicated increased oxidative stress, and hence mitochondrial 

dysfunction, within the cells. This affected cellular metabolism and they proposed that this 

would finally lead to cellular anti-proliferation i.e. an anti-cancer effect (Gao et al., 2014).

In the study reported here, observation of increased LPC expression in the LS174T colorectal 

adenocarcinoma xenografts following treatment with DMXAA can be explained as a result of 

reactive oxygen species (ROS) release during DMXAA induced apoptosis and is hence a 

pharmacodynamic marker of DMXAA action.
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These results demonstrate that the increase in the amount o f  LPC in the treated tumours provides 

a clinically diagnostic indicator o f response to treatment with a vascular disrupting agent, such as 

DMXAA which could be exploitable by an in vivo imaging technique i.e. 3 IP MRSI (Glunde et 

a l ., 2011).

4.3 Conclusions

This study investigated the expression o f  phospholipids in DMXAA treated LS174T colorectal 

adenocarcinoma xenografts. Different lipid classes with various fatty acid chains such as SM, PC 

,LPC and PE were identified by MALDI-MS and MALDI-MS/MS analyses o f  TLC separated 

compounds. It could be seen clearly in the data that LPC were highly expressed in the 24h post

treatment sample compared to 4h post-treatment sample and the control. PC in contrast were 

decreased in 24h post treated sample compare to 4h and control samples. This increase o f  the 

amount o f  LPC is believed to be due to the anti-tumour effect o f  flavonoid drugs causing 

mitochondrial dysfunction and increased lipid peroxidation (Gao et a l., 2014). The increase in 

the amount o f  LPC therefore provides a clinically diagnostic biomarker o f response to treatment 

with DMXAA which could be exploitable in the future by an in vivo imaging technique i.e. 3 IP 

MRSI.
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Chapter 5
Analysis of Protein Induction in DMXAA treated LS 174T 

Xenograft Tumours
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5 Introduction

An increased number o f  molecule-targeted anti-cancer therapies have been established and are in 

the process o f  clinical development (Reyzer et al., 2004) and therefore the study o f biomarkers 

that enable the prediction o f  therapeutic responses o f  tumours to anti-cancer therapies is o f  

particular interest. The use o f  proteomics to study disease-related biomarkers by the over or 

under-expression o f  certain peptides can help to distinguish between healthy and diseased 

samples and thus aid the early diagnosis o f disease (Rifai et a l,  2006).

Protein profiling using matrix-assisted laser desorption/ionization/imaging mass spectrometry 

(MALDI-IMS) provides a new technology which enables the generation o f  protein profiles and 

images directly from tissues from freshly frozen tissue sections (Caprioli et al., 1997; Chaurand 

et al., 2002). Around 400 distinctive signals from intact proteins, which are highly representative 

o f  the local proteome, are usually observable in the m/z range from 2000 to 100, 000 (Chaurand 

et al., 2002).The generated data can be analysed to identify markers that are indicative o f  the 

biological processes which are occurring in the tissue (Yanagisawa et al., 2003). In situ 

enzymatic digestion o f proteins has also been demonstrated to be useful in proteomic analysis 

using MALDI-MSI. In contrast to the study o f  intact proteins this provides direct protein 

identification and localisation from the tissue section without the need for fractionation or the 

extraction o f proteins from the tissue section (Djidja et al., 2009).

Vascular disrupting agents (VDAs) are a promising class o f  anti-cancer drug (Kanthou & Tozer, 

2008). 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a small molecule vascular-disrupting 

agent that has recently completed phase 1 clinical trials (Kerr & Kaye, 1989). As described in 

Chapter 1 o f  this thesis, DMXAA induces tumour necrosis factor (TNFa) causing vascular 

collapse and the haemorrhage o f a tumour’s blood vessels (Watanabe et al., 1988).
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The overall anti-vascular effects of DMXAA lead to the occlusion and collapse of a tumour’s 

blood vessels with the onset of haemorrhagic necrosis and tumour cell death triggered by 

prolonged ischemia. In addition, the cytostatic response provoked by DMXAA causes a large 

area of central necrosis and leaves a viable rim of cells at the tumour periphery (Siemann et al., 

2004). As a result of its demonstrated anti-tumour action, the clinical development of DMXAA 

would now be assisted by the identification of biomarkers that show response to treatment with 

the drug (Galbraith et al., 2002).

Histone acetylation plays a vital role in controlling gene expression and influences the 

transcriptional control of many genes such as tumour suppressor genes. The deacetylated 

histones are usually associated with inactive non-transcribed DNA (Luo & Dean, 1999). It has 

been demonstrated that abnormal epigenetic transcriptional suppression is associated with a 

variety of tumour types (Brown & Strathdee., 2002). Drug induced protein changes, that indicate 

inhibition of cell proliferation or cell death, following vascular-targeted therapy would therefore 

characterise both the response to treatment and resistance mechanisms (Reyzer et al., 2004).

In this Chapter the use o f MALDI-MS profiling and MALDI-MSI imaging to observe the spatial 

distribution of peptides, as well as identifying protein biomarkers that are induced by DMXAA 

treatment such as histone, actin and haemoglobin. The aim of this work was to see if biomarkers 

of action/resistance could be observed by the using these techniques.

5.1 Materials and methods

5.1.1 Chemicals

oc-Cyano-4-hydroxycinnamic acid (CHCA), aniline (ANI), ethanol (EtOH), chloroform 

(CHC13), acetonitrile (ACN), octyl-a/b-glucoside (OcGlc), tri-fluoroacetic acid (TFA), 

ammonium bicarbonate, haematoxylin, eosin, xylene and DPX mountant were purchased from 

Sigma-Aldrich (Gillingham, Dorset, UK). A modified sequence grade trypsin (20 pg 

lyophilised) was obtained from Promega (Southampton, UK).
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5.1.2 Preparation of xenograft tumours

Male, immune-deficient, nude mice were subcutaneously implanted with a suspension of 

LS174T colorectal adenocarcinoma cell line in the right abdominal flank. Tumour was allowed 

to reach approximately 500 mm before treatment with 27.5 mg/kg of DMXAA. The mice were 

killed and the tumours excised at various times after treatment.

5.1.3 Experimental groups

Tumour (4h after treatment), (n=3); tumour (24h after treatment), (n=3); and controls (no 

treatment, saline i.p), (n=3).

5.1.4 Tissue preparation

Frozen tumours were sliced into 12 pm thick tissue sections using a Lecia CM 1850 cryostat 

(Leica Microsystems, Milton Keynes, UK) set at -20°C. Then, tissue sections were mounted onto 

polylysine glass slides; these were stored at -80°C in a freezer prior to analysis.

5.1.5 In situ tissue digestion and trypsin deposition

The tissue samples were removed from the freezer and allowed to dry for 5 minutes at room 

temperature. Then, the tissues were initially washed with 70% and 90% ice cold ethanol for 1 

min and left to dry completely. The slides were then immersed in chloroform for 10 seconds 

before the application of trypsin. In situ tissue digestion was performed using trypsin solution 

prepared (using lyophilised trypsin) at 20 pg/ml. The trypsin solution was made by the addition 

of 50 mM ammonium bicarbonate (NH4HCO3) pH 8 , containing 0.5% octyl-a/b-glucoside 

(OcGlc); this was based on a protocol by Cole et al. (2011). The “ Suncollect”  (SunChrom, 

Friedrichsdorf, Germany) automatic pneumatic sprayer was used to deposit the trypsin in a series 

of layers (approximately 5 layers). Then, sections for MALDI-MS and MALDI MSI were 

incubated overnight in a sealed glass coplin jar containing 50% methanol: 50% water at 37°C 

and 5% C 0 2.
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5.1.6 Matrix application

The matrix oc-CHCA was mixed with equimolar amounts of aniline: i.e. one ml of 5 mg/ml cc- 

CHCA solution contained 2.4 pi of aniline. Matrix solutions were then dissolved in ACN: water: 

TFA (1:1:0.2 by volume) and sprayed onto the tissue sections using the Suncollect (SunChrom, 

Friedrichsdorf, Germany) in a series of layers (approximately 5 layers). The method parameters 

were based on those of Cole et al. (2011).

5.1.7 Direct protein analysis by MALDI-MSI

MALDI-MSI data were acquired directly from the digested tumour tissue sections 

in the positive ion mode using an HDMS SYNAPT™ G2 system (Waters Corporation, 

Manchester, UK) operating in imaging mode with laser repetition rate of 200 Hz and an m/z 

range between 600 to 2200 at 150 pm spatial resolution. Instrument calibration was performed 

using a mixture of polyethylene glycol (Sigma-Aldrich, Gillingham, UK) ranging between m/z 

100 to 3000 Da (Djidja et al., 2010). Images were generated and reconstructed using HDI 

imaging software. Peptide mass searches of histone, actin and haemoglobin were performed 

against the Swissprot database to identify tryptic sequences.

5.1.8 Data pre-processing and statistical analysis

In order to carry out a statistical analysis, data lists were exported as text files from the Analyst 

QS program (Applied Biosystems / MDS Sciex, Concorde, Ontario, Canada). Text files were 

then imported into SpecAlign software (Oxford, UK) and the resulting data were processed as 

follows: baseline subtraction, smooth, remove negative, denoise, normalise TIC, generate 

average spectrum, spectral alignment, and PAFFT correlation method (max. shift 20).

The resulting data were exported as text files and then re-imported into Marker View software

1.2 (Applied Biosystems / MDS Sciex , Concorde, Ontario, Canada) in order to perform 

Principle Component Analysis (PCA) and Partial Least Squares Discriminant Analysis 

(PLSDA).
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In the Marker View software, a minimum requisition response of 0.1, a mass tolerance of 0.1 and 

a maximum number of peaks o f 10,000 were selected (Cole et al., 2011). PCA and PLSDA 

analyses were performed using MATLAfC (Matrix Laboratory) (Math Works, Inc., Natick, 

MA486USA).

Figure 5.1: Method o f data collection for statistical analysis, showing four matrix droplets deposited on 

each tissue sections. Spectra were collected in triplicate from each matrix droplet using MALDI-MSI.

Statistical data collection was performed by acquiring triplicate spectra from all droplets at each 

time point using MALDI-MSI (Fig. 5.1).

5.1.9 Haematoxylin and Eosin staining

Tissue sections were stained with H & E staining after MALDI imaging for a comparative study. 

The tissue sections were rehydrated using a series of graded alcohols, immersed in haematoxylin 

for 5 minutes, and then rinsed in tap water. The sections were then dipped three times in 0.1 % 

HC1 followed by water and also three times in 0.1% NaOH followed by water. The sections were 

stained with Eosin for three minutes and then dehydrated. Finally, the sections were placed in 

xylene until the cover slipped (this method is described in more detail in Chapter 2, Section

Laser Shots

M atrix d rop le t

2 .2 .6 .3).
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5.2 Results and Discussion

5.2.1 MALDI/MS and MALDI/MSI imaging of the in situ tissue tryptic digest protein in 

the LS 174T xenograft tum our

MALDI/MS and MALDI/MSI profiling and imaging of the in situ tissue’s tryptic digest protein 

in the LS 174T xenograft tumour were performed using HDMS SYNAPT™ G1/G2 system 

(Waters Corporation, Manchester, UK). Fig. 5.2 shows a mass spectrum of the peptide mass 

fingerprint acquired after in situ digestion of the control tumour. The peptide peak at 944.43 m/z 

was identified as histone H2A according to the UniprotKB / Swiss-port search, as seen in Fig.

5.2.

Figure 5.2: Peptide mass fingerprint acquired from the control tumour. A number o f peptide peaks were 

observed from an in situ tissue tryptic digest at an m/z range from 900 to 1520. The peak at 944.45 m/z 

was identified as Histone H2A.
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Histone H2AX (H2a>.) (Histone H2A X)

• Chain Histone H2AX at positions 2 -143 [Theofelical pi 10 74 .'Mw (average mass) 1501141 Mw (monoisotopic mass) 15002 40)
miss position #MC artif.modification(s) modifications peptide sequence

2915 5876 44-72 0 VGAGAPVYLAAVLEYLTAEI LELAGNAAR
23994747 97-120 1 LLGGVT1AQGGVLPNIQAVL LPKK
2271 3798 97-119 0 LLGGVTIAQGGVLPNIQAVL LPK
2172 2247 79-96 2 IIPRHLQLAIRNDEELNK
17190288 22-36 2 AGLQFPVGRVHRLLR
1692.9027 83-96 1 HLQLAIRNDEELNK
1666 9248 19-33 2 SSRAGLQFPVGRVHR
1586 9965 77-89 2 TRIIPRHLQLAIR
1534 7860 129-143 2 APAVGKKASQASQEY
1517 8295 17-30 2 SRSSRAGLQFPVGR
1397 8110 120-134 2 KSSATVGPKAPAVGK
1397 8110 121-135 2 SSATVGPKAPAVGKK
1336.7596 22-33 1 AGLQFPVGRVHR
1329 8477 79-89 1 IIPRHLQLAIR
12746964 19-30 1 SSRAGLQFPVGR
1269 7161 121-134 1 SSATVGPKAPAVGK
1242 7065 34-43 2 LLRKGHYAER
1011 4741 135-143 1 KASQASQEY
§44 5515 55-56 6 AGLQFPVGRJ
951 6104 31-37 h VHRLLRK
883 5836 76-82 2 KTRDPR
883 3792 136-143 0 ASQASQEY
874 4992 120-128 1 KSSATVGPK
861 3948 90-96 0 NDEELNK
860.4373 37-43 1 KGHYAER
850 5257 83-89 0 HLQLAIR

847 4744 2-10 2
ACET 2 610 973 5944 
PHOS 2 927 4544

SGRGKTGGK

793.5155 31-36 1 VHRLLR

Figure 5.3: The peptide sequence obtained from Uniprot KB /  Swiss-port search o f Histone H2A at 

944.53 m/z.

Fig. 5.4 shows a spectrum of the peptide mass fingerprint obtained from the in situ tryptic digest 

of the 4h post-treated LS 174T xenograft tumour. The Histone H2A peak was observed at 944.45 

m/z along with other peptide peaks.
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Figure 5.4: Peptide mass fingerprint acquired from the in situ tryptic digest o f the LS 174T xenograft 

tumour (4h after treatment with DMXAA). A number o f peptide peaks were obseiwed in an m/z range from  

900 to 1300. The peak at 944.45 m/z was identified as Histone H2A.

Fig. 5.5 shows a spectrum of the peptide mass fingerprint obtained from the in situ tryptic digest 

of a 24h post-treated LS 174T xenograft tumour. A Histone H2A peak was observed at 944.45 

m/z and a Haemoglobin beta 1 chain (Hbp) peak at 1274.62 m/z as identified by a UniprotKB / 

Swiss-port search (see Fig. 5.6). The increase in the intensity of the Hbp peak is clearly seen in 

the 24h post-treated DMXAA spectrum.
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Figure 5.5: Peptide mass fingerprint acquired from the in situ tryptic digest o f the LS 174T xenograft 

tumour (24h after treatment with DMXAA). A number o f peptide peaks were observed from 900 to 1280 

m/z, such as a Histone H2A at 944.45 m/z and H b fl at 1274.62 m/z.
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Ydu bevfc selected HC01_M0USt p0208#)ffom UmFroKQ'Swiss Proi:

Hemogtob r subunit beta-1 (Beta-1-glohin) (Hemoglobin beta-1 chain) (Hemoglobin beta-major chain) 1

. Cham Hemoglobin subunit beta-1 at positions 2 -147  [Theoretical pi 7 25 
mass position #MC anlf.motitTicatlon(s) modifications

Mw (average mass) 15708 99 / M\v (mona sctopic mass) 1569911 
peptide sequence

2989.6443 106-133 1 MSO: 110 3005.6393 LLGNMIVIVLGHHLGKDFTP AAQAAFQK

2821 5657 97-121 1 MSO: 110 2837 5605 LHVDPEfJFRLLGNMMVLG HHLGK
2712 4253 122 147 2 DFTPAAQA4FQKWAGVATA LAHK/H
2601 2765 42-66 2 MSO: 56 2617 2714 YFDSFGDLSSASAIVGNAKV KAHGK

2558.3361 19-41 1 PHOS.21 2638.3161 VNSDEVGGEALGRLLWYPW “QR
25152034 84-105 1 GTFASLSELHCDKLHVDPEM FR
2412.3033 122-145 1 DFTPAAQAAFQKWAGVATA LAHK
2278 2302 63-83 2 AHGKKVTTAFNDGLNI HDSL K

2218.0920 10-31 1
PHOS.21 2298.0720 
SUCC: 18 2318.1620

AAVSCLWGKVNSDEVGGEAL GR

2208 0G41 42-62 1 MSO: 50 2224 0590 VFDSFGDLSSASAIMGNAKV K

1980 9007 42-60 0 MSO: 56 1996 8955 YTDST CDLSSASAIMCNAK
18850177 67413 1 K’l/rTAFNDGI NHI DSI K

1827.9421 2 18 1 SUCC: 18 1928.0121 VHL1 UAfcKAAVSCLWGK
1756.9228 68-83 0 VITArNDCLNHLDSLK
17140193 106-121 0 MSO 110 1730 0145 11GNMIVIVI GHHI GK
1436.800B 134 147 1 WAGVAIALAHKYH
1407.6573 84 96 0 GTFASLStLHCUK
1302 6284 19-31 0 PHOS 21 1382 6084 VN5DEVGGCALGR
1 fid>a 1 » .1 » n DFTPAAOAAFOK

| 1274 7255 3241 0 LLWYiAATQR
1136 6786 134-145 0 WAGVATALAHK
1126 5639 97-105 0 LHVDPENFR

934.4815 10 18 0 SUCC: 18 1034.5515 AAVSCLWGK
912 4785 2-9 0 VHLTDAEK
767 4885 61-67 2 VKAHGKK
639 3936 61-66 1 VKAHGK

Figure 5.6: The peptide sequence obtained from the Uniprot KB /  Swiss-port search o f Hbfdl at 1274.72 

m/z.

MALDI-MSI images were acquired at a spatial resolution of 150 pm x 150 pm using a HDMS 

SYNAPT™ G1/G2 system (Waters Corporation, Manchester, UK). MALDI-MSI imaging was 

performed to investigate the peptide distribution within tissue sections of control, 4h and 24h 

post-treated tumours. The MALDI/ MSI images of the peptide distribution in the control tumour 

are shown in Fig. 5.7. The peaks at 944 m/z and 1032 m/z were identified based on a theoretical 

digest as Histone H2A and Histone H3. Also, the peaks at 1198 m/z and 1325 m/z were 

tentatively assigned to Actin and Histone H4.
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Figure 5.7: The MALDI/MSI images showing the distribution o f peptides in the control tumour: (a) 

Histone H2A at 944 m/z; (b) Histone H3 at 1032 m/z;(c) Actin at 1198 m/z; and (d) Histone H4 at 1325 

m/z. Blue colour gives low intensity o f signal while orange white colours indicates high intensity o f signal 

as shown in scalebar.
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Fig. 5.8 shows the MALDI / MSI images of the peptides in the LS 174T xenograft tumour (4h 

post-treatment with DMXAA). Here, masses were identified according to the theoretical digest 

as follow: Histone H2A at 944 m/z; Actin at 1198 m/z; Hbpi at 1274 m/z; and Hbp chain at 

1302 m/z.

Histone 2A at m/z 944

A v ’ t j !
v  V>- *■'. - 

/
4 h o u rs  p o s t 

DMXAA

m /i: 944 4 33 d t  70.52 Inrtensiy 568

i
000

Actin a t m /z 1198

•u . V

4 h o u rs  p o s t 

DMXAA

tW:: 1 1 9 8 4 8 2 8 ct: 93.22 Intensity:161

H em oglobin beta chain a t m /z 1302

4 h o u rs  po st 

DMXAA

PHI

1
rr4 ::1302 .5064c)t89.15 Intensity: 242

Figure 5.8: The MALD1/MSI images showing the distribution o f peptides in the LS 174T xenograft 

tumour 4h after treatment with DMXAA:(a) Histone H2A shows a strong signal at 944 m/z; (b) Actin at 

1198 m/z; (c) Hbflchain at 1274 m/z; and (d) Hb/3 chain at 1302 m/z. Blue colour gives low intensity of 

signal while orange white colours indicates high intensity o f signal as shown in scalebar.
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From the images observed of the 4h post-treated DMXAA xenograft tumour (Fig 5.8), the image 

of Histone H2A (Fig 5.8a) showed an intense signal of histone the centre of the tumour tissue 

while other peptides, such as Actin (Fig 5.8b), Hbpl chains (Fig 5.8c) and Hbp chains (Fig 5.8d) 

showed less intense signals in tumour.

A ctin at m /z 1198lli.stone 2 A at m /z 944

i24 hours post 
DMXAA

24 hours post 

DMXAA

m/z: 1198.5967 d t  86.48 Intensity 165m/z 94'1.4428 dt: 70 35 Intensity: 845

H em oi’lob in  b e ta  1 a t  i n / z l274 H em o g lo b in  b e ta  ch a in  a t  in//. 1302

24 hours post 

DMXAA

m/z: 1302,5332 *  8917  Intensity 331

24 hours post 
DMXAA

m/z. 1274.6267 d t 93.34 Intensity 371

Figure 5.9: The MALDI/MS1 images showing the distribution o f peptides in the LS 174T xenograft 

tumour 24h after treatment with DMXAA.fa) Histone H2A shows a strong signal at 944 m/z; (b) Actin at 

1198 m/z; (c) Hbj31 chain at 1274 m/z; and (d) Hb/3 chain at 1302 m/z. Blue colour gives low intensity o f 

signal while orange white colours indicates high intensity o f  signal as shown in scalebar.
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Fig. 5.9 shows the MALDI / MSI images o f the peptides in the LS 174T xenograft tumour 24h 

post treatment with DMXAA. The masses were identified according to the theoretical digest as 

follow: Histone 2A at 944 m/z; Actin at 1198 m/z; Hbpi at 1274 m/z; and Hbp chain at 1302 

m/z.

The tumour shows a high level o f expression o f Histone H2A in the centre o f  the tissue 

following the 24h treatment with DMXAA. Also, Hbpl and Hbp chains were highly expressed 

at the tumour’s periphery.

On the whole, the MALDI-MSI images show an increase in the distribution o f Histone H2A at 

944 m/z in both the 4h and 24h post-treated xenograft tumours. This observation is in agreement 

with the previously reported study o f  Djidja et al. (2009) which stated that a signal o f  Histone 

H2A at 944 m/z was found in both the necrotic and tumour regions o f  an MCF7 breast tumour 

xenograft (Djidja et al., 2009).

In addition, the increase in the relative intensity o f  haemoglobin peptides at 1274 m/z and 1302 

m/z in the spectra and image o f  the 24h post-treated xenograft tumour could be a result o f  the 

vascular damage produced by DMXAA. The study o f  Cole et al. (2011) observed a similar effect 

but with a different kind o f anti-vascular drug as their study related that the increase in tissue 

haemoglobin might be expected as a result o f  the vascular damaging properties o f  CA-4-P which 

causes disruption o f the 3D capillaries, necrosis in endothelial cells, and a leakage o f  blood cells 

into tumour tissues (Cole et a l., 2011).
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5.2.2 PCA and PLSDA statistical analysis of an LS 174T DMXAA treated xenograft 

tumour

PCA (Principal Component Analysis) data analysis of an LSI 74T xenograft tumour in the in 

situ tryptic digests was performed to detect intrinsic clustering and to identify protein signals 

characteristic of different regions of tumours.

PCA is an unsupervised method that describes the overall spread within a dataset by 

summarising sample variations as a series of ‘latent variables’ (LV) (Trygg et al., 2007).

Fig. 5.10 shows the score plot resulting from the PCA analysis o f an in situ tryptic digests of LS 

174T xenograft tumour. The resulting score plot describes the grouping and variability of the 

spectra at each tumour time-point. The PCA loading plot is shown in Fig. 5.11 and shows the 

distribution and separation of the m/z peaks according to the groupings previously assigned by 

the score plot shown in Fig. 5.10. It is obvious from the data obtained from the loading plot that 

the Haemoglobin (3 chain (Hbp) peak at 1274.74 m/z is characteristically assigned to the 24h 

post-DMXAA region; this finding confirms the previously acquired result from the spectra and 

image of the 24h time-point. In addition, several peaks of Histone H2A at 944 m/z and Actin at 

1198 m/z were seen in the 24h region.
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Figure 5.10: The score plot produced by PCA showing the grouping and variability o f the spectra o f each 

tumour time-point. The control was allocated a blue colour, the 4h post-DMXAA a green and the 24h 

post-DMXAA a red colour.
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Figure 5.11: The loading plot with information on m/z peaks in relation to the grouping described in the 

PCA score plot. The peak at 1274.74 m/z is assigned to the 24h post-DMXAA time-point and it 

corresponds to the Haemoglobin ft chain.

For a more detailed analysis, Partial Least Squares Discriminate Analysis 

(PLS-DA) was carried out. PLS methods are an extension of PCA and are used to maximise the 

discrimination between the observed groups (Mirnezami et al., 2014).
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Fig. 5.12 shows the PLSDA regression vector plot between the control/saline and the 4h post- 

DMXAA treated group from an in situ tryptic digest of an LSI 74T xenograft tumour. A Histone 

H3 peak at 1032.57 m/z was seen in the 4h post-DMXAA treatment compared to the control 

group.
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Figure 5.12: The regression vector plot o f the PLSDA analysis o f the in situ digest o f an LSI 74T 

xenograft tumour comparing the control/saline and 4h post-DMXAA treated groups. A Histone H3 peak 

is noticeable in the 4h post-DMXAA time-point.
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Fig. 5.13 shows the regression vector plot for the control/saline and 24h post-DMXAA treated 

group from the in situ tryptic digest of an LSI 74T xenograft tumour. A marked increase in 

Histone 2A at 944.53 m/z, Actin at 1198.84 m/z and the Haemoglobin (3 chain peak at m/z 

1274.74 were seen in the 24h post-DMXAA time-point. The increase in the Hb p chain in the 

24h post-DMXAA sample emphasised the data previously obtained from the MALDI-MS and 

MALDI-MSI profiling and imaging of a 24h post-DMXAA LS 174T xenograft tumour (Fig. 5.5 

& Fig. 5.9).
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Figure 5.13: The regression vector plot o f PLSDA analysis o f  the in situ digest o f an LSI 74T xenograft 

tumour comparing the control/saline and 24h post-DMXAA treated groups. The increase in Histone H2A 

at 944.53 m/z, Actin at 1198.84 m/z and some Haemoglobin peaks at 1274.74 m/z are visible in the 24h 

post-DMXAA time-point.
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Fig. 5.14 shows the regression vector plot of the 4h post-DMXAA and 24h post-DMXAA 

groups from the in situ tryptic digest of an LSI 74T xenograft tumour. This shows that the 

markers of necrosis / hemorrhaging (Histone 2A) at 944.53 m/z and the Haemoglobin p chain 

peak at 1274.74 m/z were relatively increased in the 24h post-DMXAA time-point compared to 

the 4h post-DMXAA time-point. Another marker of hemorrhaging the heme peak at 616.1 m/z is 

also clearly increased at the 24hr time point.
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Figure 5.14: The regression vector plot o f  the PLSDA analysis o f the in situ digest o f the LSI 74T 

xenograft tumour comparing the 4h post-DMXAA and 24lt post-DMXAA treated groups. The increase in 

Histone H2A at 944.53 m/z and the Haemoglobin peak at 1274.74 m/z can be seen in the 24h post- 

DMXAA time-point compared to the 4h post-DMXAA.
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Finally, the characteristic increase of the Histone H2A peak at 944 m/z and the Haemoglobin 

peak at 1274.74 m/z in the PCA and PLSDA data of the 24h post-treated tumour might be as a 

result of the haemorrhagic necrosis occurring in the 24h xenograft tumour following DMXAA 

treatment. The same effect has been described in the study of McPhail et al. (2005).

5.2.3 Haematoxylin and Eosin staining

Haematoxylin and Eosin (H&E) staining of xenograft tumour tissue at each time-point was 

performed after MALDI-MSI protein imaging in order to carry out an optical observation and 

correlation study. Fig. 5.15 shows the H&E stained sections of xenograft tumour 4h post- 

DMXAA treatment. The effect of the vascular disrupting agent can be clearly seen as there are 

areas of necrotic and viable cells in the centre of the tumour tissue with a viable resistant rim at 

the tumour’s periphery.
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Figure 5.15: Haematoxylin and Eosin (H&E) stained sections of: a) Mag X I00 and b) MagX200 view o f 

the xenograft tumour 4h post-DMXAA treatment. We can see the effect o f  drug following 4h post- 

treatment; there is a viable rim which shows some living cell, also there is an area o f necrosis and viable 

cells in centre o f tumour.

Fig. 5.16 shows the H&E stained sections of xenograft tumour 24h post-DMXAA treatment. An 

increase in the area of total necrosis (nuclei stained blue) with some haemorrhaging (pink colour) 

can be seen following 24h DMXAA treatment.
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M ag X200

Figure 5.16: Haematoxylin and Eosin (H&E) stained section o f a 24h post DMXAA Xenograft tumour at 

MagX200 showing an extensive area o f wide spread necrosisfnuclei stained blue) and some hemorrhagic 

area ( pink colour).

Collectively, the data from the MALDI-MSI imaging and the PCA statistical study, combined 

with the histological analysis of tumours, support the action mechanism of DMXAA which 

causes necrosis in the centre of the tumour with a viable rim at the tumour's periphery.
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5.3 Conclusion

MALDI/MS and MALDI /MSI profiling and imaging were used to investigate protein induction 

with DMXAA treatment o f an LS 174T xenograft tumour. A method o f  in situ tryptic digest was 

used. The spectra and images o f 4h and 24h post-DMXAA treatments showed some Histone 

H2A peaks at 944 m/z which were highly expressed in the region o f the tumour. In addition, a 

characteristic increase in the Hb p chain at 1274.74 m/z in the 24h post-treated tumour was seen; 

this is indicative o f  haemorrhagic necrosis occurring due to the effect o f  DMXAA. The data 

obtained from the loading plots o f  PCA highlighted several peptide signals, including peptides at 

944, 1198, 1274 m/z. These were identified as Histone H2A, Actin and Hb p chain respectively 

and were characteristically found in the 24h post-DMXAA region. The results o f  Haematoxylin 

and Eosin staining further confirmed the effect exerted by the anti-vascular drug.
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6 Conclusions

This study demonstrates the ability o f  Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry Imaging (MALDI-MSI) to study the distribution o f anti-cancer drugs, 5, 6 

dimethylxanthenone-4-acetic acid (DMXAA) in LSI 74T xenograft tumours. The thesis also 

focuses on the response o f  tumours to drug therapy by studying phospholipids and protein levels 

in DMXAA treated xenograft tumours. In addition, the methodology o f  TLC-MALDI coupling 

has been developed for the analysis o f  phospholipids extracted from DMXAA treated xenograft 

tumours.

The ability to map drug distribution in tissues whilst retaining compound specificity is a major 

challenge. MALDI-MSI not only has the potential to allow rapid direct analysis o f  compounds 

from tissue surfaces without the need for radiolabelling, but it also allows greater compound 

specificity than may be achieved with conventional tissue imaging approaches.

The work presented in Chapter 2 relates to the main objective o f  this thesis: i.e., to study the 

distribution and fate o f anti-cancer drugs, in particular DMXAA, in dosed LS 174T xenograft 

tumours using MALDI-MSI. It was shown in this work that the use o f  matrix solvent containing 

70% EtOH / H2O + 0.1 TFA improves the sensitivity and detection o f DMXAA by MALDI- 

MSI; this was therefore selected as the matrix solvent o f  choice for this study. MALDI-MSI was 

used to determine the limit o f detection / quantitation o f  DMXAA in tissue and it was detected in 

a range o f  10 ng/ml to 250 ng/ml. The drug limit o f  detection (LoD) is determined as 10 ng/ml 

and the drug lower limit o f  quantitation (LLoQ) is 45 ng/ml.

MALDI images were recorded from LS174T colorectal adenocarcinoma xenografts removed 

from immunodeficient mice following treatment with with 27.5 mg/kg DMXAA. These 

indicated that the drug was distributed mainly in the centre o f  tumour 4h post-treatment, whilst it 

was distributed around the periphery 24h post-treatment following vascular damage.
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Finally, the characteristic feature o f  VDA treatment was revealed in the H&E stained sections o f  

a 4h post-treated tumour where a necrotic area could be seen in the center o f  the tumour with 

viable cells at the tumour’s periphery. Also, the H&E stained sections o f a 24h post-treated 

tumour showed an area o f haemorrhage with widespread necrosis at the tumour’s periphery, 

demonstrating the vascular damage occurred by DMXAA.

Profiling biological molecules on tissues using MALDI-MSI can identify subtypes o f  

phospholipids. This area o f  study was extended to visualise the distribution o f  phospholipid 

subtypes in a tissue section using mass spectrometry imaging (MSI). The analysis o f  

phospholipids using MALDI-MSI in both positive and negative ion modes was described in 

Chapter 3. The addition o f  a 150 mM NH4AC wash step into the sample preparation procedure 

resulted in better images o f  lipids and it also enhanced the abundance o f  signals. In positive ion 

mode, the phospholipids at 703.38 m/z [M +H]+ and 725.30 m/z [M+Na]+ were identified as SM 

(16:0). These molecules were found to be highly expressed in tumour tissue compared to the 

control. In addition, spectra and images o f  phospholipids in negative ion mode showed a 

significant decrease in PC and PE in the 24h post-treated tumour. Finally, the MALDI images o f  

phospholipids were correlated with H&E stained tissue sections.

An increasing number o f  diseases are recognised to be accompanied by alterations in the lipid 

composition. TLC has been classically used for routine separations and for identifying the 

individual lipids. However, i f  an unknown spot appears, the only qualitative information that can 

be obtained from it is the retention factor (Rf) value. In Chapter 4, a methodology employing 

TLC-MALDI-MS coupling was developed for the analysis o f  phospholipids extracted from 

DMXAA treated xenograft tumours.
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This method has demonstrated the ability to obtain spectral information and to identify lipids 

with different acyl compositions from a single spot on the TLC plate without the need for 

staining, thus illustrating the potential applications of TLC - MALDI in lipid analysis. Different 

lipid classes with various fatty acid chains, such as SM, PC and LPC, were identified using 

MALDI-TOF MS analysis of TLC separated compounds. An increase in the expression of LPC 

in solid tumours treated with DMXAA was demonstrated and shown to be localised in the 

central area of the tumour. The conversion of phospholipids species to their lithiated adducts to 

facilitate their identification by MALDI MS/MS analysis was demonstrated. Finally, PCA and 

PCA-DA of MALDI-MSI data sets were used to confirm the results obtained using TLC- 

MALDI-MSI.

Characterising proteins will help to determine both the treatment responses and resistance 

mechanisms in tumours. In the work reported in Chapter 5, mass spectrometry imaging was 

used for this purpose. Protein analysis using MALDI-MSI was carried out after in situ tissue 

tryptic digestion. MALDI-MSI spectra and images revealed some proteins connected with 

necrosis, such as Histone H2A; this was found in both 4h and 24h post-treated tumours. The 

gross haemmoragic response elicited by the anti-vascular drug, DMXAA, was demonstrated by 

the significant increase in the Hb p chain peptide peaks at 1274.74 m/z in the 24h post-treated 

tumour. Furthermore, the use of PCA, PCA-DA and PLSDA has been used to classify each 

protein type to a different tumour time courses. H&E stained sections of the tumour samples has 

been correlated with the MALDI images and the statistical data.

6.1 Suggestions for future work

For the drug distribution study, complementary staining, such as immunohistochemical staining 

might be required in order to identify biomarkers o f vascular collapse and any signs of necrosis.
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Also, information on microscopic structures in tissues, such as the cell density and necrotic 

fraction o f tumours, would be useful to determine tumor aggressiveness. Moreover, changes in 

cell density and necrotic fraction during and after treatment may reflect tumour response 

(Hendry & W est, 1997). Methods for measurement o f cell density and necrosis in tumors are 

used to monitor tumor response to therapy (Zhao et a l,  1996-Poptani et al., 1998).

Apoptosis which is a type o f  cell death is usually evaluated by electrophoretic or colorimetric 

methods that measure DNA fragmentation in the nuclear extracts (Nicoletti et a l,  1991/ Many 

methods are available for the measurement o f  apoptosis however the ‘gold standard’ method to 

identify apoptotic cells based on their morphological features using microscopy by using 

immunohistochemistry with an antibody against the active form o f caspase 3. Caspase 3 is a 

cytosolic enzyme that is activated only in cells that undergo apoptosis (Hadjiloucas et a l ., 2001). 

A study on pharmacological mechanism o f  flavonid derivate has been focused on cell and gene 

levels and there is little information about its metabolomics study (Gao et a l., 2014). Therefore, 

further biological experiments which measure reactive oxygen species (ROS) can confirm the 

mitochondrial dysfunction occurred by the anti-tumour effect o f  flavonid derivate.

Despite the major advances in the field o f  tumour angiogenesis, little attention has been 

considered to the permeability o f  blood vessels in tumours (McDonald and Baluk., 2002). The 

leakiness o f tumour vessels is well documented in experimental tumour models and in human 

cancer, but the exact mechanism is poorly understood. The cellular basis o f  tumor vessel 

leakiness, endothelial barrier function o f blood vessels, monitoring tumour vessel leakiness, 

mediators o f  endothelial leakiness, consequences o f  tumour vessel leakiness, genomic analysis o f  

vascular targets, targeting drugs to tumour vessels, and therapeutic manipulation o f  tumour 

vessels need more understanding (McDonald and Baluk., 2002). Therefore, method such as 

intravital measurements o f  tumour blood flow and vessel leakiness, in vivo phage display and 

magnetic resonance imaging could contribute to this understanding.
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Also, the number o f  xenografts tumours need to be increase in order to do some statistical work. 

The further employment o f  a high resolution MALDI-MSI technique, such as ion mobility 

spectrometry (IMS) especially for lipid analysis in both positive and negative ion modes, could 

allow more lipid species to be identified; it might also improve the sensitivity o f  lipid detection 

and remove any matrix interference by using the drift time technology.

Further consideration might be given is to use LC/MS techniques to obtain some quantitative 

information about drugs and lipids in tumours.

Further phospholipid analysis using 3 IP PNMR, in addition to TLC-MALDI techniques, are 

recommended to allow the differentiation o f  phospholipids based on their head groups, and to 

locate the position o f double bonds within a given lipid in a single spectrum.

For protein analysis, a further optimisation o f sample preparation and method for in situ tissue 

digestion might be required to identify more protein biomarkers.
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