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Abstract

Diabetes is a complication of metabolism where the glucose control system of the 
human body is impaired and cannot preserve the blood glucose levels in the normal 
range. This research investigated the relationship between abnormally low glucose 
levels (hypoglycaemia) and cardiac function in human subjects with Type 1 diabetes. 
The aim o f the research was to detect the onset o f spontaneous nocturnal hypoglycaemia 
indirectly through analysis o f the subject's Electrocardiogram (ECG). The research 
hypothesis follows from previous studies, that suggested changes in ECG morphology, 
in particular prolongation of the QT interval and flattening o f the T-wave, during 
hypoglycaemia.

The research methodology involved ECG feature extraction and classification of 
extracted features into euglycaemic (normal glucose levels) and hypoglycaemic 
categories. A number o f time-domain ECG features were evaluated and a few ECG 
annotation algorithms were investigated for detection of onsets, peaks and offsets o f the 
ECG components. Autoregressive (AR) modelling was also employed as a means of 
describing and characterising post-QRS ECG segments. ECG segment classification 
was carried out using Multi-layer Perceptron (MLP) neural networks. Statistical 
classifiers were also employed namely, Linear Discriminant Analysis (LDA) and the k- 
Nearest Neighbour (kNN).

This research proposed a new methodology for detection of spontaneous nocturnal 
hypoglycaemia by combining time-domain characterisation and classification of the 
post-QRS ECG segment. Two novel ECG features were introduced to characterise T- 
wave morphology. MLPs achieved better classification o f ECG feature vectors 
compared to LDA. Also ECG representation by AR coefficients was marginally 
superior to individual ECG features, according to classification performance by LDA. 
Finally a Knowledge-Based System (KBS) was d esigned f  or ECG monitoring during 
the night. It was developed and tested on  o ffline data in  a m anner that simulated an  
online monitoring scenario. The system was able to detect ECG abnormalities related to 
spontaneous nocturnal hypoglycaemia and to raise an alarm if  necessary. In its optimal 
configuration, the system correctly monitored 30 out of the 32 recorded nights 
(originating from 19 patients) while there were 2 false alarms. This performance 
corresponds to accuracy, sensitivity and specificity o f 93.75%, 100% and 91.30% 
respectively.

The main contribution to knowledge from this research was successful detection o f the 
onset of spontaneous nocturnal hypoglycaemia indirectly, using solely ECG 
information. This result supports the hypothesis stating that spontaneous hypoglycaemia 
affects the cardiac function and is manifested on the ECG. A. detailed analysis o f the 
ECG signal for the detection of hypoglycaemia was carried out in the thesis. ECG 
features were extracted and assessed as predictors o f the clinical condition. A number of 
approaches for ECG representation and classification (MLP, kNN, LDA) were 
examined and compared. Moreover, a KBS capable of achieving satisfactory monitoring 
performance on offline data from diabetic patients was designed. It was found that ECG 
changes in response to hypoglycaemia were short-time transients and incorporation of 
temporal information in the classification system caused significant improvement in 
performance. Successful continuation of this work may lead to a hypoglycaemia- 
detection system for the bedside.
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Chapter 1

Introduction

1.0 Introduction

The aim of this thesis was to investigate the relationship between hypoglycaemia and 

cardiac function and to attempt detection of the onset o f nocturnal hypoglycaemia, in 

Type 1 diabetic patients, indirectly through analysis o f their Electrocardiogram (ECG). 

The research focused on the development and use o f feature extraction and signal 

classification techniques in order to analyse the ECG signals. This chapter presents the 

biomedical background to the study, the motivation behind this research and the 

detailed objectives set. It also presents the goals reached and outlines the structure o f the 

thesis.

1.1 Biomedical Background

This section provides theoretical background on the medical condition o f diabetes and 

the complication o f hypoglycaemia. It also describes the architecture o f the human heart 

and the processes o f depolarisation and repolarisation o f cardiac cells. It includes 

information about electrocardiography and the electrocardiogram and discusses the 

relationship between hypoglycaemia and cardiac function.

1.1.1 Diabetes and Hypoglycaemia

Diabetes is derived from the Greek word “diabainein” (SiaPaivsiv) meaning “to pass” 

because in a specific form of diabetes (diabetes mellitus) glucose is passed through the 

body and out with the urine. Diabetes is a complication o f metabolism where the 

glucose control system is impaired and is not able to maintain the blood glucose in the 

normal physiological range.

Insulin is the hormone that serves to lower glucose levels and is produced by the 

pancreas. The complication of diabetes and the root cause of most of the damage it does

1



is related to excess glucose in the blood. This happens because the cells of the pancreas 

do not produce sufficient amounts of insulin. Because o f the insufficient amount of 

insulin the glucose cannot be controlled effectively. The only treatment to the absence 

of insulin is to replace it. This is done by injection or by infusion through an insulin 

pump.

Hypoglycaemia is the opposite complication i.e. not enough sugar in the blood, which is 

a dangerous situation since glucose is needed to maintain brain function. Severe 

hypoglycaemia can lead to coma and even death. There is strong circumstantial 

evidence that hypoglycaemia can cause overnight death in young adults and children, a 

syndrome known as “Dead in Bed” [Campbell 1991]. The mechanism of such deaths 

remains unclear but may be cardiac related.

The form of diabetes in which the urine contains glucose matter is called diabetes 

mellitus. There are two different types o f diabetes mellitus:

• Type 1 d iabetes o r i nsulin-dependent d iabetes i s a s evere, a cute form  o f  d iabetes 

caused by lack of production of insulin. The disease, which typically appears in 

childhood or adolescence, is characterized by increased sugar levels in the blood and 

urine, excessive thirst, frequent urination, acidosis and wasting.

• Type 2 diabetes or non-insulin-dependent diabetes is a chronic form of diabetes that 

typically appears in  1 ate adulthood and i s exacerbated b y obesity and an inactive 

lifestyle. In this type of diabetes the patient develops insulin resistance and is not 

able to effectively use the insulin produced by the pancreas. At onset this disease 

often has no symptoms, is usually diagnosed by tests that indicate glucose 

intolerance, and is treated with changes in diet and an exercise regimen.

Diabetic patients need to monitor their glucose levels and act appropriately to keep them 

in the normal range, which lies between 4 and 8 mmol/lt approximately. Patients have 

the choice to keep their glucose levels as close as possible to this range or to allow their 

glucose to vary in a wider range than the normal. In order to perform tight glycaemic 

control, they need to monitor their glucose levels in the blood at regular intervals and to 

inject regular small quantities of insulin before meals. In Type 2 diabetes they can diet 

or use oral medication.

2



Quality o f  Glucose Control It has been shown [DCCT 1991] that tight glycaemic 

control in patients with insulin-dependent diabetes mellitus has the advantage of 

reducing the frequency and progression o f serious long term complications to the 

patient, compared to loose control; the drawback being that hypoglycaemia, a short term 

complication, i s m ore frequent [ Davis 1998]. T he p atients a re t herefore faced b y t he 

dilemma o f whether (i) to set higher glucose targets and achieve reduced risk of 

hypoglycaemia but increase the risk of long term diabetic complications or (ii) to set 

lower glucose targets and reduce the risk of long term complications but increase the 

risk o f hypoglycaemia.

Because many patients nowadays try to achieve tight control, there is a greater need for 

a continuous glucose-monitoring device or a hypoglycaemia-detection device. Such a 

device may also help diabetic patients who fail to achieve tight control for 

psychological reasons such as the fear of hypoglycaemic episodes. Patients often allow 

their glucose to run high because o f fear of the other extreme, that o f hypoglycaemia.

Clinical studies o f  hypoglycaemia. Spontaneous hypoglycaemia occurs naturally when 

the glucose o f the diabetic patient drops to abnormally low levels and is difficult to 

study clinically because it is relatively infrequent. However, some studies have utilised 

experimental hypoglycaemia which is caused artificially by infusing controlled amounts 

o f insulin to a non-diabetic subject and “clamping” the blood glucose at an abnormally 

low value (e.g. 2.5 mmol/lt) for a short period of time. Experimental hypoglycaemia has 

been found to introduce more prominent changes on the ECG [Marques 1997] 

compared to spontaneous hypoglycaemia. The spontaneous hypoglycaemic events used 

in this research were nocturnal and the subject was asleep whereas in experimental 

studies the subject is normally kept awake, in a supine and relaxed position.

1.1.2 Architecture of the heart

The cardiovascular system is responsible for the rapid transport o f oxygen, water and 

nutrients around the body and the rapid washout o f metabolic waste products like 

carbon dioxide. It also plays a vital role in temperature regulation, by delivering heat 

from t he core o f  t he b ody t o t he s kin. It c onsists o f: a p ump ( the h eart), a s eries o f  

distributing and collecting tubes and an extensive system of thin vessels that permit 

rapid exchange between the tissues and the vascular channels.
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The heart organ is the muscular pump of the cardiovascular system that drives the blood 

around the body. The human heart consists of two muscular pumps in series, the right 

and left ventricles (Figure 1.1). Each pump is filled from a reservoir, the right or left 

atrium. The right ventricle propels blood through the lungs for exchange o f oxygen and 

carbon dioxide (pulmonary circulation) and the left ventricle simultaneously propels 

blood to all the other tissues of the body (systemic circulation). Unidirectional flow 

through the heart is achieved by the appropriate arrangement o f effective flap valves. 

Although the cardiac output is intermittent, continuous flow to the periphery occurs by 

distension of the aorta and its branches during ventricular contraction (systole) and 

elastic recoil o f the walls o f the large arteries with forward propulsion o f the blood 

during ventricular relaxation (diastole).

Sinus node

Semi p re fe re n tia l-^  
internodal pathways I RA\ LA

AV node-------

Bundle of His'
Right bundle- 
branch

Left bundle 
branch

RV LV

Intraseptal barrier-
Lower right---------
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Figure 1.1: The left and right atria (LA, RA) and ventricles (LV, RV) o f the heart [McLachlan 1981]

The outstanding feature of the heart’s function is its ability to initiate and maintain a 

rhythmical beat. As with all muscle, the heart contracts in response to an electrical 

impulse which spreads throughout its surface, reaching the contractile muscle cells. It is 

the spread of this impulse which the electrocardiogram records, not the muscular 

contraction which follows [McLachlan 1981].

Depolarisation and repolarisation of myocardial cells

The depolarisation and repolarisation o f the heart muscle will be described in a cellular 

level. The two terms will be defined for an isolated cell o f the cardiac muscle. Consider 

the resting muscle cell being in a state of electrical equilibrium with positive charges on 

the outer surface of its membrane and negative charges on the inner surface. In this 

resting state the cell is said to be polarised and remains stable until it is stimulated.



In response to a stimulus the cardiac cell begins to depolarise. The charges on the outer 

surface of the cell become negative and those on the inner surface become positive. This 

change in polarity does not happen instantly for the whole cell surface. It starts from the 

point where the stimulus was received and propagates along the cell as seen in Figure 

1.2. The advancing boundary o f change is called the activation front. Once the electrical 

charge has changed polarity, throughout the cell, then depolarisation has finished and 

the cell is said to be depolarised.

+
*1*

Polarized cell

Stimulus VI +  +  4 * - f  4 *
Activation front

Stimulus Depolarized cell

Figure 1.2: Illustration o f  the depolarisation process [McLachlan 1981]

The inverse process is called repolarisation and metabolic energy is required for it to 

take place. Once the cell is completely depolarised it must be returned to its polarised 

state in preparation for the next depolarising stimulus. In the case of repolarisation the 

advancing boundary o f change is called repolarisation front. The repolarisation o f the 

ventricles is the cardiac process of interest in this thesis. As will be mentioned in more 

detail later in the chapter, hypoglycaemia has been observed to cause a delay in 

ventricular repolarisation which has been associated with the risk o f cardiac 

arrhythmias.

1.1.3 Electrocardiography and the electrocardiogram

Electrocardiography is used as a method for studying the action of the heart muscle. It 

can be defined as the procedure o f making graphical records o f the variations in 

electrical potential caused by electrical activity o f the heart muscle and detected at the 

body surface.



The ECG lies among the most widely used signals in biomedical practice. It describes 

the electrical activity of the heart. The standard ECG consists o f 12 leads but the 3-lead 

ECG was used instead, as it was sufficient for this work (Section 3.2.1). The latter 

consists of three leads in an anatomically orthogonal configuration which are referred to 

as XYZ leads, similar to the coordinate axes used in geometry [Berbari 2000].

The utilisation of only three leads was probably due to the fact that technology used by 

early investigators was limited in the number of low-noise amplifiers available and the 

relatively slow speed o f computers [Berbari 2000]. Reducing the number o f leads from 

12 to the orthogonal (XYZ) set o f three leads seemed to be a reasonable compromise 

from both computing and physiological standpoints [Berbari 2000]. The anatomical 

locations for the XYZ leads are presented in Figure 1.3.

X +

R e f .

Figure 1.3: Anatomical locations fo r the XYZ leads [AMA 1988]

The figure depicts an idealised male torso with the 6 electrodes (X+, X-, Y+, Y-, Z+, 

Z-) forming the orthogonal lead set, plus a reference electrode. It is obvious from the 

graph that the three electrode pairs form three axes. The Z+ electrode is located at the 

same level as the X lead and is placed on the anterior chest. The Z- electrode is placed 

on the reflection of the Z+ electrode on the patient's back.
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Morphology of the electrocardiogram

A typical ECG cycle consists o f three waves namely the P wave, the QRS complex and 

the T wave as shown in Figure 1.4. A U wave following the T wave is sometimes 

present on ECG cycles. The R peak is the peak with the highest amplitude in an ECG 

cycle.

P-R
Interval

QT
Interval

ST i 
Segment

QRS
Duration

Figure 1.4: A typical ECG cycle [Gholam-Hosseini 1998]

The time duration between two successive R peaks denotes the instantaneous heart rate. 

The P wave corresponds to the atrial depolarisation, the QRS complex to the ventricular 

depolarisation and the T wave is due to the ventricular repolarisation o f the 

myocardium. Figure 1.5 shows the mapping o f each wave to the corresponding cardiac 

event and the corresponding regions in the heart.

A number o f key time-intervals can also be identified in Figure 1.4. The time-intervals 

related to this research are: the QRS duration, the ST segment and most importantly the 

QT interval. The latter is very widely used in the biomedical community and is defined 

as the interval from the Q point to the end of the T wave.
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Figure 1.5: Relationships between the cardiac events and the waves o f the ECG cycle [McLachlan 1981]

1.1.4 Effect of potassium and adrenaline on the cardiac function

Cardiac function is affected by both variations in potassium and adrenaline, beyond the 

normal range. The fundamental importance o f potassium ions in the cellular mechanism 

of muscle contraction is that variations in their concentration beyond the normal range 

in the intracellular fluid may be expected to influence the clinical ECG [McLachlan 

1981]. When cellular potassium levels are depleted, ST segment depression takes place 

and also a prominent U wave blended with a flat T wave gives a false impression of a 

prolonged QT interval [McLachlan 1981]. Under hypoglycaemia serum potassium often 

falls to low levels due to a combination o f high insulin concentrations and the effects of 

sympathoadrenal activation [Harris 2000].

Adrenaline causes lengthening of the QTc interval and a decrease in plasma potassium 

(K+), when infused into healthy subjects at concentrations comparable to those seen 

during moderate hypoglycaemia [Cryer 1980]. Although adrenaline causes a drop in 

plasma potassium, Lee et al [Lee 2003] have shown that disturbed cardiac repolarisation 

as a result of increases in circulating adrenaline, released due to hypoglycaemia, occurs 

independently of extracellular potassium.
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1.1.5 Relationship between hypoglycaemia and cardiac function

During hypoglycaemia, the counter-regulatory responses of the human body cause a fall 

in potassium and the release of adrenaline, which delays the Ventricular Repolarisation 

process (VR) in the heart. These changes may be reflected on the ECG by changes in T 

wave morphology. A hypothesis has been formulated stating that there is a relationship 

between abnormally low glucose levels and cardiac function. In more detail, 

hypoglycaemia can cause abnormal cardiac repolarisation and an attendant risk of 

cardiac arrhythmia [Robinson 2004].

This hypothesis is based on preliminary evidence from a number o f studies [Heinemann 

1995, Marques 1997]. Marques et al [Marques 1997] have shown that experimental 

hypoglycaemia prolongs the ventricular repolarisation o f the heart, causing the 

development of cardiac arrhythmias. Although the hypothesis is supported by 

experimental results, sufficient evidence is necessary to demonstrate the hypothesis for 

spontaneous events o f nocturnal hypoglycaemia. Early studies demonstrate agreement 

with the hypothesis for spontaneous nocturnal events. Robinson et al [Robinson 2004] 

have recently shown that the QTc interval lengthens significantly during spontaneous 

nocturnal hypoglycaemia bu t the increase i s generally 1 ess than that observed during 

experimental episodes.

Since hypoglycaemia is believed to affect the cardiac function, then its onset is expected 

to be reflected on the ECG. Hypoglycaemia can affect the ST segment and the T wave

i.e. the ventricular repolarisation o f the heart. More specifically the T wave becomes 

flattened and prolonged under hypoglycaemia and often another wave, the U wave, is 

present. Figure 1.6 illustrates potential changes on the ECG due to dropping glucose. 

The illustration in the figure originates from real data. Each pair o f graphs corresponds 

to a different time instant and the graphs are successive in time from top left to bottom 

right. At each time instant the left-hand-side graph demonstrates a truncated T wave and 

the right-hand-side graph depicts the glucose level up to the current time instant. The 

portion of the ECG cycle prior to the T wave is not shown. It is obvious from the graph 

that dropping glucose to abnormal levels (below 3 mmol/lt approximately) * causes 

significant changes on the T wave. The T wave amplitude drops significantly while the 

symmetry of the same wave changes slightly. Moreover the temporal location o f the T 

peak is slightly moved to the right. The end of the T wave is also shifted slightly to the 

right a nd i ts e xact p osition b ecomes m ore a mbiguous c ompared t o t he i nitial n ormal
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trace. The shifting of the end of the T wave to the right also causes a proportional 

increase in QT interval since its end point is defined by the end of the T wave.

T w ave Blood G lucose T w ave

T wave

o
E
S 3

Blood Glucose

Blood Glucose

T w ave

T w aveT w ave
55

2

T w ave Blood G lucose
5

T w ave T w ave
5 5

Blood Glucose

Blood G lucose

Blood G lucose

Blood G lucose

Figure 1.6: Illustration o f changes in T wave with dropping glucose [URL JJ.

Since hypoglycaemia may be reflected on the ECG and may introduce cardiac 

arrhythmias, the investigation of this biomedical signal is proposed as an indirect means 

o f detection o f this medical condition. If the changes in the ECG can be automatically 

identified, this may provide a warning of hypoglycaemia or o f a potentially pro- 

arrhythmogenic condition.

It is emphasised that the manifestation o f hypoglycaemia on the ECG is more likely to 

be due to the high circulating adrenaline affecting the cardiac function rather than due to 

the abnormally low glucose affecting it. Therefore this research is practically attempting 

to d etect t he c ardiac changes c aused b y t he c ounterregulatory responses t riggered b y
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hypoglycaemia. This is a secondary effect. The direct effect would be if  abnormally low 

glucose was directly affecting the cardiac function.

1.2 Motivation behind the research

Diabetes is one o f the most common causes of severe morbidity and disability in the 

United Kingdom, affecting approximately 1.5 million people. In spite o f improvements 

in insulin therapy around 40% of patients develop serious long-term complications. It 

has been shown that the incidence of these complications can be significantly reduced if 

blood glucose control is tightly maintained [DCCT 1993]. However, patients who 

attempt intensive insulin therapy are three times more likely to suffer a severe 

hypoglycaemic episode, which can lead to coma or death. Consequently, fear of 

hypoglycaemia is probably the main reason why patients fail to achieve tight control of 

blood glucose. Furthermore, the symptoms of hypoglycaemia cannot be recognised by 

young patients or if  the patient is asleep and this has been implicated in the sudden 

overnight death o f patients with diabetes, perhaps due to the development o f cardiac 

arrhythmias [Tattersall 1991].

While early diagnosis o f diabetes is known to be critical to its treatment, good 

management remains the only means to avoid complications o f the disease. Since 

diabetes is patient managed, information, decision support and alarm tools are 

particularly valuable to diabetic patients. The ideal solution for detection o f 

hypoglycaemia would be the development of a transcutaneous or non-invasive sensor, 

which could monitor glucose concentrations continuously. Although recent 

technological advances offer the promise of a transcutaneous sensor in the medium to 

long term, there are still formidable technological problems to overcome [Ireland 2000] 

and the initial cost may prohibit widespread use.

In context with the aforementioned points, this research work investigates the possible 

manifestation o f hypoglycaemia on the patient's electrocardiogram. Such a 

manifestation may contribute in demonstrating a clear relationship between spontaneous 

nocturnal hypoglycaemia and delayed ventricular repolarisation and hence it may aid 

the explanation of the mechanisms behind the "Dead in Bed" syndrome. The possibility 

of producing an alarm system for hypoglycaemia, based solely on secondary responses 

caused by dropping of glucose to abnormally low levels is also examined. Until an 

affordable and robust transcutaneous or non-invasive glucose sensor can be



manufactured, an alarm system based solely on monitoring the ECG may partly solve 

the problem of detection of the onset o f nocturnal hypoglycaemia.

1.3 Detailed objectives

The detailed objectives of this research programme are given below:

1. To formulate a hypoglycaemia detection methodology based solely on information 

from the ECG. The methodology will involve an ECG preprocessing, a feature 

extraction and a classification/inference stage.

2. To extract ECG features that will be able to quantify the suspected cardiac changes 

introduced by hypoglycaemia. This involves the re-use and fine-tuning o f existing 

features besides the introduction o f new ones. Emphasis is given on the introduction 

o f features for assessment and characterisation of T wave morphology.

3. To select optimal feature combinations to be used for classification o f normal and 

hypoglycaemic ECG traces.

4. To compare both neural and statistical classifiers in the task o f discriminating 

between normal and hypoglycaemic ECG traces.

5. To design and develop a classification system that can distinguish normal ECG 

waveforms from ECGs reflecting hypoglycaemia-induced cardiac arrhythmias. The 

system should address overnight monitoring of patients for detection of possible 

hypoglycaemic events.

6. To design a Knowledge-Based System (KBS) to be used as the classification engine 

of the patient monitoring system, making use o f existing knowledge from human 

experts. To compare the KBS against the neural and statistical classifiers, regarding 

their ability to carry out the classification/inference task within the patient 

monitoring system.

7. By combining all research findings to attempt an assessment of the hypothesis 

suggesting a relationship between hypoglycaemia and cardiac function.

8. To assess the feasibility o f detection o f hypoglycaemic events and hypoglycaemia- 

induced arrhythmias using a specialised ECG monitoring system.

1.4 Contribution to Knowledge

The main contribution to knowledge from this research was successful detection o f 

spontaneous nocturnal hypoglycaemia in some Type 1 diabetic patients. This result 

supports the hypothesis stating that hypoglycaemia affects the cardiac function (Section 

1.1.5). There was strong evidence o f such a relationship for the case o f experimental
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hypoglycaemia. The results from this research support the hypothesis for the  c ase o f  

spontaneous hypoglycaemia where more subtle ECG changes occur and their detection 

is more challenging.

During the process of achieving this result, we have proposed a methodology for 

implementing a diagnostic system to be used in hypoglycaemia monitoring. The system 

consists of an ECG representation stage in cascade with a classification stage, discussed 

in Chapter 4. In the ECG representation stage, each ECG cycle is characterised by the 

parameters extracted from it. In the classification stage these parameters are 

distinguished into those corresponding to euglycaemia (normality) and hypoglycaemia. 

The proposed system was implemented as an early software prototype. It was tested on 

offline data from Type 1 diabetic patients experiencing spontaneous nocturnal 

hypoglycaemic episodes.

Detailed analysis o f the ECG signal was carried out, for examination o f the above 

relationship. In more detail:

• A number of time-domain ECG features were extracted for describing the cardiac 

changes occurring under hypoglycaemia. Novel ECG features were introduced 

besides reusing and modifying existing ones.

o Two novel ECG features, inspired from the third and fourth central moments 

used in statistical theory, were introduced for the evaluation o f T wave 

symmetry and morphology, 

o The concept behind an existing feature that has been used, among other 

features, as a predictor of the Long QT Syndrome [Benhorin 1990] was 

borrowed and modified accordingly to produce a third feature for assessing 

T wave symmetry. The new feature was based on the ratio o f the two areas 

under the T wave to the left and right of the T peak.

• A comparative study of geometric methods for marking the T wave end was carried 

out using data from Type 1 diabetic patients.

• AutoRegressive (AR) coefficients were employed for the description of the post-R 

segment. This approach was chosen as an alternative ECG representation technique 

to that of segmenting the ECG cycle by extraction o f ECG features.

• Data analysis on the available dataset highlighted the existence of high inter-patient 

variability. This suggested that the performance of a monitoring system would be 

boosted by allowing customisation to the specific patient to be monitored.
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Significant differences in ECG behaviour were also observed among different night- 

recordings o f the same patient (day-to-day variability) which suggests that a robust 

monitoring system should also be made adaptive to ECG changes as time elapsed. 

Hypothesis testing (Student’s t-test) on all ECG features extracted, proposed that 

different features may be robust predictors of hypoglycaemia among different 

patients. The occurrence of hypoglycaemia may not be sufficiently described using 

the same features on all patients.

• Investigation o f the ECG and glucose profiles also indicated that the ECG responses 

to hypoglycaemia are expressed in the form of transient events and hence, the 

incorporation of a temporal dimension in a classification system would be essential 

for robust detection of the condition.

• Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN) were assessed for 

the classification of extracted ECG features. Both approaches o f producing global 

classifiers, to be used on large groups o f patients, and also producing classifiers 

customised for individual patients were followed. Patient-oriented customisation 

yielded a significant improvement in performance.

• Statistical classifiers, namely the k-Nearest Neighbour (kNN) and Linear 

Discriminant Analysis (LDA) were also assessed regarding their ability to classify 

the extracted ECG features.

• A Knowledge-Based System (KBS) was designed for monitoring and classifying 

offline data from diabetic patients in a manner that simulated an online patient- 

monitoring scenario. Two versions of the KBS were produced, namely a version 

based on Crisp Set Logic and a version based on Fuzzy Logic. The two systems 

were using the same rule-base. The Fuzzy Inference System (FIS) was introduced 

because o f its ability to provide a degree o f certainty when raising hypoglycaemic 

alerts. Employing a knowledge-based approach yielded the highest performance 

among all the classification techniques considered. This system was able to 

accurately monitor patients that were consistent with the initial hypothesis i.e. 

exhibiting QT prolongation and T wave flattening during hypoglycaemia. A 

significant difference o f the KBS compared to the neural and statistical classifiers 

was that it incorporated temporal information, while the latter were performing 

static pattern classification.

2 i.e. no time-stamps
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• A methodology was proposed for making the monitoring system adaptive as time 

elapsed. Adaptivity in our case meant that the definitions o f QT prolongation and T 

wave flattening (and also the definitions of normal QT and T wave) were changing 

as time elapsed.

• By means of the performance o f the KBS, it was demonstrated that two ECG 

features were sufficient for detecting the condition on those patients who manifested 

both QT prolongation and T wave flattening under hypoglycaemia. More features 

could be used in the future for achieving more robust monitoring across the patient 

population.

• Development o f the KBS also contributed in formulating the vague knowledge of 

the basic ECG changes under hypoglycaemia in the form of rules o f natural 

language. This was informative for medical researchers and provided feedback to 

the clinical experts who formulated the initial hypothesis and contributed the initial 

guidelines for the knowledge-base.

To the best o f our knowledge, this work lies among the first studies attempting to detect 

the onset of spontaneous nocturnal hypoglycaemia indirectly through analysis o f the 

patient's ECG. Novel datasets are used that consist o f both the ECG traces and the 

accompanying glucose data. Online ECG databases, available for research purposes in 

the World Wide Web contain ECG data only, without glucose information. A number o f 

researchers have been carrying out studies [Marques 1994, 1997], [Ireland 1998, 2000], 

[Harris 2000], [Lee 2003], [Robinson 2004], with specialised ECG-glucose datasets but 

the analysis was carried out from a clinical viewpoint.

A lot o f engineering studies have been carried out focusing on ECG signal processing 

and classification for cardiac diagnostics and arrhythmia detection3 but this is among the 

first ones looking at the quantification of ECG changes related to hypoglycaemia- 

induced arrhythmias for the detection of the symptomatic status o f hypoglycaemia.

1.5 Structure o f the thesis

The structure of the thesis, following this first chapter, is outlined below:

3 A small sample o f  such studies is: [Xiong 1 983], [Shibahara 1 984], [Yang 1 994], [Kundu, Nasipuri 

1994], [Kennedy 1997], [Heden 1997], [Simon 1997], [Hu 1997], [Al-Fahoum 1999], [Lagerholm 2000], 

[Acharya 2004], [Kundu 2000].
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Chapter 2 presents the necessary theoretical background to support this work. Firstly it 

covers ECG signal processing (including pre-processing and noise reduction) and then 

discusses standard and abnormal ECG morphologies. Following these, ECG feature 

extraction and significant point detection is presented. Autoregressive modelling is also 

presented. Chapter 2 also provides theoretical background on the classification 

techniques employed. This includes brief Neural Network theory, theory on Linear 

Discriminant Analysis and the k-Nearest Neighbour classifier, background on 

Knowledge Based Systems and finally Fuzzy Logic theory.

Chapter 3 presents the biomedical resources used in this research. This mainly includes 

the patient data on which the studies were based. Moreover, the data acquisition 

equipment and data acquisition protocol are presented.

Chapter 4 presents the overall methodology used in this work followed by the feature 

extraction results. The ECG-specific software tools used for algorithmic development 

are presented. Moreover the way o f combining the various techniques for producing the 

overall system for hypoglycaemia detection is given. The remaining o f the chapter 

presents the results from the feature extraction of ECG signals. A number o f automatic 

algorithms designed for ECG annotation are presented. A subset o f these algorithms is 

utilised in a comparative study o f  four g eometric methods for T end annotation. The 

ECG features produced, including two novel ones introduced, are presented and 

assessed. AR modelling, as a means of ECG representation is also included.

Chapter 5 presents the static pattern classification results produced. Classification is 

based on either individual ECG features or AR coefficients. ANN, LDA and kNN 

results from a number of approaches are presented. Both the approaches o f producing 

global and patient-oriented classifiers are outlined.

Chapter 6  presents a knowledge-based monitoring system for hypoglycaemia detection 

during the night. The architecture of the knowledge based system used, including its 

rule base is presented. Results are produced both when applying crisp and fuzzy logic in 

the system.
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Chapter 7 summarises and concludes the thesis. The contribution o f this study is 

presented and the unsolved problems are discussed. Also some long-term research 

challenges and unsolved problems that impeded this study are discussed. Finally the 

way forward is considered and recommendations for further work are given.
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Chapter 2

Theoretical Background and Review of the Literature

2.0 Introduction

In this chapter the theoretical background relevant to the techniques applied in this 

study, is provided. It presents detailed information on Electrocardiography, extending 

the discussion of Chapter 1, and also presents ECG signal processing including noise 

reduction, automatic ECG annotation and ECG features. Next, a review o f relevant 

biomedical equipment used for ECG and glucose monitoring is provided. Moreover, 

theory on intelligent systems is presented, including neural networks and knowledge- 

based systems. Statistical classifiers are also discussed.

2.1 Noise considerations related to ECG signals

Electrocardiogram recordings suffer greatly from various sources of noise. One of these 

is 50 Hz powerline interference, and its harmonics, together with electronic noise 

inherent in all electronic devices. Muscle noise (the signal known as ElectroMyoGram 

(EMG)) is another noise source. It is introduced by the movement o f the skeletal 

muscles of the chest wall during respiration but may also be due to movement o f other 

peripheral muscles [Marques 1994].

The first type of noise mentioned can be reduced by performing a good skin preparation 

before placing the electrodes, by using shielded cables and by avoiding proximity to the 

sources o f 50 Hz, e.g. fluorescent lights, monitors etc. Good amplifier design with 

modem electronic components is usually adequate for limiting inherent noise. 

Remaining noise due to powerline interference can be reduced using a notch filter set at 

50 Hz.

18



2.2 The Signal Averaged ElectroCardioGram (SAECG)

Even when being cautious to perform good data acquisition, noise problems will still 

exist, mainly due to the EMG signal. Averaging is often necessary and is used to further 

reduce the noise levels. Successive ECG records are aligned and then averaged to 

produce the Signal Averaged ECG (SAECG). The averaging process attenuates the 

stochastic components and amplifies the deterministic components in the signal. As 

each beat is added, the noise is reduced in the signal-averaged recording. This is the 

primary reason for using the signal-averaging method because very low-level signals 

are usually masked in noise and standard ECG techniques are not adequate for 

recording these very low-level signals.

Theoretically the square root of the number of beats averaged will be the factor by 

which the noise is decreased [Berbari 2000]. If 100 beats are averaged, then the noise 

will be reduced by a factor of 10. In practice this is only approximate because the 

characteristics of the noise may vary over time. Although averaging helps to reduce 

noise, one of the disadvantages of averaging successive ECG records is that distortion 

may be introduced and useful information lost. This happens because the noise-free 

ECG is different from cycle to cycle since it is a dynamic signal. The signal-averaging 

process would not introduce distortion in the ideal case where the ECG signal would be 

stationary and contaminated by random noise.

The way signal averaging is carried out is demonstrated in Figure 2.1. The diagram 

represents each ECG cycle by a piece-wise linear representation (only the QRS is 

represented and the P & T waves are 

not drawn). An exaggerated noise 

component is drawn on each ECG 

cycle. Successive ECG cycles are 

collected and aligned and then they 

are added and averaged. The 

averaged signal at the output of the 

summation operator, in Figure 2.1, 

is drawn with a smaller noise 

component in the post-QRS region 

to demonstrate the reduction in 

noise levels.

JLJLJL- • • JL

2A_
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Figure 2.1: Demonstration ofsignal averaging process 
[Berbari 2000]
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In order to carry out the above alignment and averaging process, the QRS complex of 

each cycle must be detected. Detecting QRS complexes is generally easy since it is the 

component of the ECG cycle with the highest amplitude. But simply using an amplitude 

criterion to detect the QRS may lead to false detections of premature ventricular 

contractions (PVC) or T waves with high amplitude, as QRS complexes. This 

introduces the need for QRS selection in order to discard false detections of premature 

ventricular contractions or T waves with high amplitude. An example of a PVC beat 

occurring between two Normal Sinus Beats (NSB) is shown in Figure 2.2 (top graph).

Alignment is done using a fiducial point on the QRS complex upslope (Figure 2.2 

bottom graph). The fiducial point is a detection point that acts as a time reference in the 

alignment process. The shape of the 

QRS is used to determine the 

fiducial point. A more simplified 

approach would be to use the QRS 

amplitude or the magnitude of the 

first derivative at the R peak 

[Berbari 2000] but these do not 

contribute to a highly accurate 

alignment process since other 

components can be mistaken for the 

QRS as mentioned earlier. Using the shape of the QRS is superior because it eliminates 

all other ECG components (PVCs, high T waves), noisy beats and motion artefacts 

[Berbari 2000]. Moreover it allows fine alignment of the QRS complexes for the 

averaging process.

A number of assumptions are made and a number of conditions need to be met for a 

successful averaging process [Marques 1994]:

1. The ECG signal and the noise should be independent.

2. The noise probability distribution function must remain constant throughout the 

recording period, i.e. it must exhibit stationarity.

3. The contaminating noise must have a Gaussian distribution.

4. The signal o f interest must be periodic and associated to a timing reference.

NSB NSB NSB

TBMPLATB
BEAT

TBMPLATB
INTERVAL

Figure 2.2: PVC between two normal beats (top graph) 

and fiducial point (bottom graph) [Berbari 20001
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The averaging technique is effective in removing EMG noise since the respiratory and 

cardiac cycles are not synchronous [Marques 1994]. Electronic noise is random and 

may be reduced or eliminated by employing narrow bandwidths. However, the 50 Hz 

noise may sometimes not be completely eliminated, since its probability density 

function is not Gaussian and therefore will never average to zero [Marques 1994]. Use 

o f a notch filter before the averaging process may solve this problem.

2.3 ECG components and the morphology o f the ECG

As mentioned in Chapter 1, a typical ECG cycle consists o f three main components 

namely the P wave, the QRS complex and the T wave. Besides the above three, more 

components can be identified on a typical cycle. A full list o f them (including the above 

three) is given below:

1. P wave which corresponds to the atrial depolarisation of the myocardium.

2. QRS complex defined by the following points on the ECG: Q, R and S. The QRS 

complex corresponds to the ventricular depolarisation o f the myocardium. The R 

peak is the peak with the highest amplitude in a normal ECG cycle. The time 

duration between two successive R peaks denotes the instantaneous heart rate.

3. ST segment, which is a segment o f electrical inactivity post the QRS.

4. J point (starting point o f the ST segment).

5. J80 point (ending point of the ST segment, located at 80msec interval from the J 

point).

6 . R104 point located at 104 msec interval from the R peak.

7. T wave which corresponds to the ventricular repolarization o f the myocardium. .

8 . U wave which is not part of a typical ECG cycle and is only present under certain 

circumstances. Presence of U waves has been reported under hypoglycaemia 

[Lazarra 1992], [Ireland 2000]. .

2.3.1 Types of T wave morphology

A few different types o f T wave morphology can be encountered and will be presented 

in this section. Different morphologies may have different clinical significance. Robust 

feature extraction algorithms must be able to annotate records even when non-standard 

morphologies occur. The shape o f a normal T wave is given in Figure 2.3. Under certain 

circumstances, inverted T waves occur. They are similar in shape to the normal T waves 

with .the difference that they are inverted, i.e. the orientation o f the T wave is opposite to 

that o f the P wave and QRS complex. ECG cycles containing inverted T waves are
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Apart from the above morphologies, a U wave is 

sometimes present after the T wave as mentioned briefly in 

Chapter 1. This wave may exist as a separate entity or may 

be fused with the T wave. Detection and characterisation of 

this wave is desirable in ECG processing. An ECG 

waveform exhibiting an exaggerated U wave is presented 

in Figure 2.6.

Figure 2.4: A single inverted T wave (left) and a train o f inverted T waves (right)

Figure 2.5: Biphasic (+ve/-ve) T wave

Figure 2.6: U wave present after the T wave

T UJave

presented in Figure 2.4. Finally biphasic T waves can also be encountered. These 

consist of a positive and a negative peak in succession. Either the positive (characterised 

as biphasic +ve/-ve) or the negative wave (biphasic 

-ve/+ve) can occur first. The combination of these two 

waveforms produces an undulation as seen in Figure 2.5.

Figure 2.3: Normal T wave

T-YVave Inversion

U W ove
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2.3.2 ECG characteristic points

Besides the previously discussed ECG components, a number o f ECG characteristic 

points (sometimes referred to as "ECG significant points") need to be detected on each 

cycle. Such points are mainly the onsets, offsets and peaks o f the three main waves (P, 

QRS, T). These characteristic points are necessary for the process o f extracting ECG 

features as it will be discussed later. The characteristic points that need to be detected in 

the context o f this research are: the R peak, the QRS onset and offset, the T peak and the 

T w ave o nset a nd o ffset. M oreover, d etection o f  t he p eak, o nset a nd o ffset o f  t he U 

wave, if  present, are useful. This type of wave is not always present or if  it is, it can be 

fused with the T wave so its detection is not always possible.

Detecting the end of the T wave has, for many years, been a big problem in the research 

community. Under noise conditions, existence of U waves or other abnormalities, the 

end o f the T wave can be very ambiguous and even manual marking by clinical experts 

can be difficult.

Manual vs Automating ECG Marking. The marking of time intervals on ECG cycles is 

done manually by cardiologists. ECGs on paper were used in the past, but nowadays 

computer screens are mostly used where the cardiologists set cursors to mark certain 

features and intervals. (ECGs were recorded in the past using a heated stylus that was 

marking strips o f propagating paper.) Manual measurement is essential but not 

sufficient. Some o f the problems associated with it are that: it is labour intensive, it 

introduces the problem of inter-observer variability and it does not give systematic 

results compared to automatic methods. Automatic algorithms have the following 

advantages: they produce systematic measurements, they need less resources (time, 

researchers) to be carried out, and they allow the design and use o f automatic, online 

monitoring systems where the presence of a medical expert is not possible.

2.3.3 Automatic detection of the ECG characteristic points

A number o f algorithms for detection of the ECG characteristic points will be presented 

below. Some of these focus only on detection o f a specific component (mainly the R 

and T peaks) while others can be applied for detection o f more than one component.

Although the end of the T wave is the last point in the sequence o f significant points, it 

will be reported first since it is among the most important points to mark for detection o f '
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hypoglycaemia and a challenge to detect especially in the presence of noise or other 

abnormalities. A review of a number of algorithms for detecting the end of the T wave 

will be discussed in the following section.

Automatic detection of the end of the T wave

Annotating the end of the T wave on an ECG cycle is necessary for measuring time 

intervals such as the QT. This can be done both manually and automatically. The 

manual method is the current “gold standard”. A number of automatic methods also 

exist. Marking the end o f the T wave is not always an easy task. Very often the point 

where the T wave ends is not very clear. The presence of a fused U wave is one of the 

cases where the detection of the T wave end is difficult.

Probably the simplest and most obvious approach for marking the end of the T wave is 

the one that uses the cross-section of the T wave downslope with the isoelectric line 

(flat baseline) to mark Tend- The weakness of this method is that in some cases, there is 

no crossing of the T wave downslope with the isoelectric line. Various methods for 

marking the end of T have been investigated in a number of papers. The most important 

algorithms are covered in this section:

1. Tangent Method (or MSI: Maximum Slope Intercept) [Ireland 1998, 2000], 

[McLaughlin 1995, 1996]

This method finds the point of the T wave downslope having the steepest tangent 

and marks the end of the T wave at the point where the steepest tangent line meets 

the isoelectric line. The characteristic of this method is that it relies only on a single 

point on the ECG trace for deciding where the T ends.

2. Peak Slope Intercept (PSI) [McLaughlin 1995, 1996]

This method uses the peak of the T 

wave and the point of the T wave 

having the steepest tangent to define 

a straight line. The intersection of 

this line with the isoelectric line 

marks the end of the T wave. The 

way this method works is illustrated 

in Figure 2.7. The peak of the T 

wave and the steepest tangent point 

are marked with circles on the
Figure 2.7: Demonstration o f  the PSI method

24



graph.

3. Fitting Method [McLaughlin 1995, 

1996]

The third method fits a 1st order 

polynomial on the downslope of the T 

wave. Again the intersection of the 

fitted straight line, with the isoelectric 

line, marks the end o f the T wave. The 

line fitted by this method on the T 

downslope can be seen in Figure 2.8.

: Dem onstration of fitting a straight (ins (first order polynomial) in lh«  and of th e  T wsve :

Figure 2.8: Demonstration o f  the fitting method

Threshold method (TH) [McLaughlin 1995,1996]

This method marks the end of the T 

wave by using a threshold level set at a 

fraction (e.g. 0.1) of the T wave 

amplitude. The intersection of the 

threshold level with the T wave marks 

the T end. This concept is illustrated in 

Figure 2.9 (top graph) where the 

threshold level is depicted by a dashed 

horizontal line.

Differential Threshold method (DTH)

[McLaughlin 1995, 1996]

The Differential Threshold method 

works similarly to the Threshold method

with the difference that the signal used is the 1st derivative of the ECG trace instead 

of the trace itself. In both algorithms, threshold crossing points are determined using 

a left to right scan of the data from the T peak. Moreover the T peak and the 

threshold level are calculated relative to the isoelectric level. Figure 2.9 (bottom 

graph) illustrates the 1st derivative of the ECG trace, the threshold level chosen and 

the location where T end is identified.

Wings algorithm

T hreshold

TH

QT

Differential
threshold

DTH

QT

Figure 2.9: Illustration ofTH  (top) and DTH  
(bottom) [McLaughlin 1995, 1996]
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In 1999 Daskalov and Christov [Daskalov 1999] presented their algorithm named as 

“Wings algorithm” for detection o f the end of the T wave. The algorithm is also able 

to detect the T peak. It works by calculating the “wings” function obtained at each 

successive sample of the search interval of the current ECG cycle. The “wings” 

function is given by the product o f two adjacent segments forming “wings” each 40 

msec in length. The wings are calculated in sequence at each signal sample o f the 

search interval. The search interval starts at the isoelectric point at the end o f QRS4 

and reaches the end of the record. The minimum value o f the wings function 

corresponds t o t he T p eak. T he a lgorithm i s a Iso c apable o f  d etecting b iphasic T 

waves. The T. wave end is chosen as the point having the smallest angle between 

wings o f 1 0  msec length in the post-Tpeak region.

7. Algorithm by Vila et al

In 2000 Vila et al [Vila 2000] introduced a new TU complex detection and 

characterisation algorithm. Their work builds on previous research on modelling T 

waves using A ction Potentials ( APs) [ Wohlfart 1 987, M alik 1 989, P adrini 1 995]. 

According to the authors the most complete approach for such modelling was 

proposed by Padrini [Padrini 1995] which is capable of modelling combinations of 

T and U waves. The authors extend on Pardrini’s work by employing a two-stage 

process for TU wave detection and characterisation. The first stage is modelling 

using Action Potentials differences and the second stage involves annotations on the 

modelled signal, instead of using the original one, using classic threshold detection 

algorithms such as those mentioned above.

8 . Neural Network algorithm by Bystricky and Safer

In 2002 Bystricky and Safer [Bystricky 2002] developed a neural network algorithm 

to mark the T wave end. It is based on a 2-layer Multilayer Perceptron (MLP) 

trained on the Physionet QT database. As far as we are aware this is the only neural- 

network-based algorithm for T end annotation.

Automatic Detection of the R peak

A number o f R peak detection algorithms have been developed. Among the established 

algorithms, the one by Pan and Tompkins [Pan 1985] with some modifications [Laguna 

1990] was also used for this research work. Other well-known R detection algorithms 

are the Baida algorithm [Baida 1977] which is included in a commercial ECG analysis

4 The above isoelectric point i s defined as the rightmost post-QRS s ample satisfying a 1 inearity and a 

slope condition defined in their paper [Daskalov 99].
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system by HP, and the ARISTOTLE algorithm [Moody 1982]. Li et al [Li 1995] 

presented a wavelet algorithm for detecting the QRS complex while the algorithm is 

also able to detect other components such as P and T. In  2002 Saxena et al [Saxena 

2002] developed a new wavelet for detection of the QRS complex.

At the early stages of this research program a basic R detection algorithm was 

developed and used as part of the feature extraction process.

“ecgpuwave” - Automatic Threshold Based Detector (TD) of Waveform 

limits

The “ecgpuwave” algorithm was designed by Laguna et al [Laguna, Thakor 1990], 

[Laguna 1994] and took its name from the name o f the command that invokes it in a 

UNIX shell. It is able to detect the onsets and ends of the P, QRS and T waves. It can 

work on all leads o f the standard 12-lead ECG and also in all 3 leads o f the orthogonal 

ECG. It also classifies QRS complexes as normal or abnormal and T waves as normal, 

inverted, monophasic and biphasic. The QRS detection is carried out using the Pan and 

Tompkins algorithm [Pan 1985] with modifications by Laguna as mentioned earlier.

The detection of the ECG significant points is a two-stage process. Firstly the algorithm 

uses a differentiated and low-pass filtered version of the ECG signal to detect each beat 

and then the waveform boundaries are located in each lead. This algorithm has been 

written in FORTRAN, is open-source and is distributed under the GNU General Public 

License (GPL) [URL 2]. It is available as part of the Physio toolkit from Physionet.

2.4 ECG features

A number o f ECG features can be extracted in the time domain, some o f them being 

related to or based on the ECG components that were described above. The QT interval, 

the time interval from the onset of the QRS complex to the end of the T wave, is 

probably the most important parameter for indicating the onset o f hypoglycaemia. It 

describes the duration o f ventricular depolarization and repolarization. Several studies 

on the effect of hypoglycaemia on the QT interval have been carried out [Harris 2000, 

Ireland 1998, 2000]. An illustration of the QT interval is given in Figure 2.10. QT 

intervals longer than 440 msec in lead V5 are considered abnormal (Long QT syndrome) 

[Benhorin 1990].
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Other useful intervals are: the QRS 

duration, which describes the duration of 

ventricular depolarization, the PR 

interval, the RT interval, the ST segment 

etc. Although the QT interval can be an 

indicator of spontaneous hypoglycaemia, 

more sophisticated parameters will have 

to be extracted from the ECG for better 

detection o f this medical condition. In 

the time domain the parameters that are 

proposed are describing the morphology and shape of the T wave. Some of the 

parameters that are proposed, besides the QT interval, are the following:

■ T wave amplitude, also shown in Figure 2.10 above as Tmax.

■ Baseline T wave amplitude (at the beginning of measuring period) to current T wave

amplitude.

■ Area under the T wave.

■ Symmetry of the T wave. The 3rd and 4th moments (skewness & kurtosis) are

proposed for the evaluation o f symmetry.

■ Presence o f U wave following the T wave.

■ Ratio of R peak to T wave peak.

■ Time to peak T wave amplitude.

■ Rate of change of T wave amplitude.

■ Baseline drifts between records or within a record.

2.4.1 QT and other time-interval correction

The QT interval may vary because of changes in the RR interval (the instantaneous 

heart rate). We are only interested in QT variation due to hypoglycaemia or other 

arrhythmias and not in variation due to changes in heart rate. To cater for this, many 

investigators normalize the QT interval to make it independent of HR. The most 

commonly used correction formula is Bazett’s [Bazett 1920] formula which is given 

below:

QTc = QT/V RR eq" (2.1)

>4
P-R

Interval Interval

ST :
Segment

>4

QRS

Figure 2.10: ECG features

28



According to this formula the heart-rate-corrected interval (QTc) is derived by dividing 

QT by the square root of the instantaneous HR. A few other methods of QT correction 

exist [Puddu 1988, Rautahaiju 1993, Ahnve 1985]. Correction-for heart rate is usually 

applied on the QT interval but it could also be used for other time intervals such as the 

RT, the ST, etc as it will be seen later.

2.4.2 Benhorin’s features for detection of Long QT syndrome

In 1990 Benhorin et al [Benhorin 1990] had introduced seven new ECG features to 

identify patients with known long QT syndrome (QT>440msec in lead V5). The features 

quantify various components of the post-QRS ECG segment on all leads o f the standard 

ECG. The features were used to distinguish between normal subjects and Long QT 

Syndrome sufferers. Although this study was very significant in introducing novel 

features for classification between patients and normal subjects, it did not achieve 

detection of the symptomatic status o f Long QT Syndrome sufferers, i.e. detection of 

the onset of QT prolongation. The latter problem needs to be solved in order to achieve 

monitoring of patients.

The features (with feature names given in brackets) are:

1) Early duration (SoTmc): HR corrected S wave offset (So) to T wave absolute 

maximal amplitude (Tm) interval.

2) Late duration (TmTo): Tm to T wave offset (To) interval.

3) Rate (t.A25-75): the time to accumulate the mid-50% of total absolute repolarisation 

area from its 25% to its 75% value.

4) Total Area (Atot): Total absolute repolarisation area from So to the end of 

repolarisation signal or to the next P onset (whichever occurred first).

5) Symmetry Ratio (SR): T wave area symmetry ratio; the ratio between the integrated 

area over SoTm and TmTo intervals, SR= SoTm/TmTo eq11 (2.2)

6 ) Late phenomena (%A@To): % of Total area (Atot) accumulated at To. This is the 

ratio of the repolarisation area from So to To upon the repolarisation area from So to 

the end o f the ECG cycle: %A@To = 100 * (Area from So to To) / Atot eqn (2.3)

7) Heterogeneity (SoTm_sd): the standard deviation of SoTm interval in the precordial 

leads. This feature describes the dispersion o f the SoTm feature among the 

precordial leads.
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All v ariables were m easured i n 1 ead V 5 e xcept SoTm_sd w hich w as calculated from 

measurements i n p recordial 1 eads 4 t o 6 . Heart rate correction w as c arried o ut u sing 

Bazett’s formula.

2.5 Review o f Glucose and ECG Monitoring Equipment

This section includes the review of the literature on the biomedical equipment related to 

this research. This includes glucose monitoring devices and ECG acquisition and 

analysis equipment.

2.5.1 Hypoglycaemia Detection and Glucose Monitoring Equipment

Two types o f devices are discussed in this section: hypoglycaemia detection devices and 

glucose monitors. Hypoglycaemia detection devices are designed to detect the onset of 

hypoglycaemia but cannot necessarily measure the glucose levels o f a patient. On the 

other hand, glucose monitors can produce glucose measurements and, if  suitable alarms 

are programmed into them, they can also be used to detect the onset o f hypoglycaemia 

and hyperglycaemia.

Hypoglycaemia detection devices

One of the approaches used in hypoglycaemia detection devices is to utilise the 

peripheral physiological responses to falling blood glucose (e.g. sweating), and then 

develop methods of measurement and the software to recognize these patterns. "Sleep 

Sentry" [Hansen 1993, URL 3] was an early commercial device that was detecting such 

physiological responses by monitoring skin conductance and temperature as an index o f 

diaphoresis and skin blood flow but was not widely established because o f a high 

number o f false alarms. Although not widely established, Sleep Sentry remains in the 

market [URL 3].

Hastings et al [Hastings 1998] also presented a hypoglycaemia detector that was using 

peripheral physiological responses to falling blood glucose. This detector was presented 

as a prototype software engine for a hypoglycaemia detector. It was using skin 

conductance and heart rate as inputs while two additional inputs (snoring and ECG) 

were proposed for future versions of the system.
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G lucose m on ito ring  devices

Early measurement of glucose was achieved using urine-reactive strips. Currently, urine 

glucose testing is not recommended as the sole method for monitoring blood glucose 

[Kirk 1998]. The desire to improve glycaemic control has led to the use of blood- 

reactive strips to measure capillary blood glucose levels. Initially, these blood glucose 

strips were interpreted by colorimetry through visual readings and optionally by 

reflectance photometry [ADA 1995]. The first blood glucose monitor using reflectance 

photometry was the Ames Reflectance Meter (ARM) [Bernstein 2002]. The first patent 

for this meter was issued in September 1971. An early ARM prototype is depicted in 

Figure 2.11.

Figure 2.11: Early ARM prototype

All current home glucose monitoring systems use either reflectance photometry (first- 

generation systems) or an electrochemical process (second-generation systems) 

[Fleming 1994]. In both types of systems, an enzyme that catalyzes the glucose reaction 

within the test strip is used.

The introduction of first-generation blood-reactive meters led to more accurate readings 

while the devices became easier to use. Some disadvantages that later devices were 

challenged to solve are the long processing time for glucose measurement, the
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requirement of a large drop of blood, the large size of the ' device and the limited 

memory features [Kirk 1998], [Foster 1999].

Second-generation b lood g lucose m onitors m easure a n e lectrical c harge g enerated b y 

the glucose-reagent reaction. The electrochemical principle employed can be either 

amperometry or colorimetry. Amperometry meters did not solve the problem of using a 

small blood sample, since only a small portion o f the blood sample is utilised. However, 

colorimetry meters solved this problem by utilising all o f the sample glucose and 

converting it to an electrochemical charge that is measured. The latter approach is also 

insensitive to temperature and haematocrit variations while amperometry devices were 

suffering from such variations. Finally, an invaluable contribution by 2nd-generation 

colorimetry monitors is the possibility o f using alternative sites (e.g., arm or thigh) to 

obtain blood samples. At these sites, capillaries and nerve endings are less numerous; 

therefore, a more sensitive measurement technology was necessary to provide virtually 

painless blood glucose testing [Mehta 2002].

Interstitial flu id  sampling. A later approach to glucose sensing is to sample the 

interstitial fluid (ISF), i.e. the fluid that exists among the tissue cells. A few devices 

have been produced that follow this approach. MiniMed Inc [URL 4] has produced the 

MiniMed Continuous Glucose Monitoring System (CGMS) [Gross 2000, Steil 2000] 

which is an invasive sensor that measures glucose levels by sampling the glucose in the 

interstitial fluid. A probe is inserted in the subcutaneous tissue o f the tummy area and 

measures glucose in the tissue. This sensor is used for data acquisition in this research 

and will be presented in greater detail in Chapter 3.

The limitation of the MiniMed CGMS system is that it employs an invasive approach 

which could, depending on the size o f the probe used, be a.degrading factor in the 

quality o f life of the patient using it. Another device, the GlucoWatch [URL 5] by 

Cygnus Inc [URL 6 ] achieves non-invasive monitoring. It monitors glucose levels non- 

invasively by reverse iontophoresis (electroosmosis) [Rao 1995, Tamada 1995]. It is 

worn like a wristwatch and applies a small electric current to the skin, which is used to 

collect glucose molecules that exist between cells, through the skin in gel disks inside 

the watch. The glucose levels are then translated into electrical signals.
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The next step in blood glucose monitoring is the development o f non-invasive (3rd- 

generation) meters, in which the sample is obtained without direct interaction with body 

tissues [Mehta 2002]. These future meters will perform measurement remotely using 

various characteristics (e.g., spectral, optical, thermal, electromagnetic). The most 

promising prototypes use radiation technologies i.e. Near Infra-Red (NIR) spectroscopy, 

Far Infra-Red (FIR) spectroscopy, radiowave impedance, and optical rotation of 

polarized light.

2.5.2 ECG Acquisition and Analysis Equipment

Numerous devices have been developed for acquisition, analysis and monitoring of 

ECG signals. Modem electrocardiographs can capture ECG data from all 12 leads o f the 

standard ECG. They perform appropriate pre-processing to remove noise and artefacts 

from various sources. Many of them also offer interpretation of ECG traces and hence 

can diagnose various cardiac rhythms or arrhythmias. A selection o f the latest devices is 

presented in this section.

ECG monitoring devices could be categorised as trolley-based, computer-based and 

portable devices. Seca is among the companies producing trolley-based ECG 

monitoring equipment. It produces 3 ECG monitors (CT3000i, CT6 i, CT8000P) [URL

7]. The Seca CT6 i, incorporating interference filters and being capable o f producing 12 

Channel interpretive ECG, is depicted in Figure 2.12 [URL 7]. CARDIOVIT and GE 

Medical Systems are also manufacturing a number of trolley-based electrocardiographs.

Computer-based ECG equipment as the name 

implies is based on a personal computer (PC). 

The recorded ECG is transferred, in real-time, 

to the PC via an appropriate interface and the 

relevant software is used to display, store and 

process the ECG traces.

An example of an interfacing link is the 

CardioView ECG-PC Link from 

Micromedical Industries which connects to the PC Serial Port. It is depicted in Figure 

2.13 next to a PC.

, *

Figure 2.12: Seca CT6i ECG monitor
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Advancing handheld-computer technology has allowed the realisation of portable ECG 

monitors based on palmtop computers. Such an example is the PocketView ECG [URL 

8 , 9] shown in Figure 2.14. Biolog 3000i (Figure 2.15) is another handheld 

electrocardiograph, though not based on a palmtop computer. Besides the standard 

features that modem electrocardiographs posses it is able to display and record instant 

12 lead ECG by placing the Biolog directly on to the patient’s chest (i.e. no leads 

involved). MINISCOPE MS-3 [URL 10] is another portable device recording 

Emergency 1-Channel ECG.

OIOIOC'k m

Figure 2.13: CardioView ECG-PC Link Figure 2.14: PocketView Figure 2.15: Biolog

CardioSoft and CardioView 3000 are software packages that can be mn on a PC and 

can perform collection, analysis, review, and printing of ECGs. Besides the above two 

more generic packages, some more specialised software packages have been developed 

by GE Medical Systems, that contain software algorithms for in-depth processing of 

ECGs. Such packages are: 12SL ECG Analysis Program, Acute Cardiac Ischemia 

Time-Insensitive Predictive Instrument (ACI-TIPI) and Signal-Averaged High 

Resolution P-Wave (Phi-Res) Analysis.
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2.6 Statistical Classifiers

Statistical classifiers were considered in order to allow comparisons with neural 

classifiers, presented in later sections. The statistical classifiers used were Linear 

Discriminant Analysis (LDA) and k-Nearest Neighbour (kNN). LDA works by 

minimising the Mahalanobis distance [MathWorks Statistics] which is a multivariate 

measure of the separation of a data set from a point in space. The Mahalanobis distance 

is a very useful way of determining the "similarity" of a set o f values from an 

"unknown" sample to a set of values measured from a collection of "known" samples. 

This distance measure was introduced in 1936 by P. C. Mahalanobis, hence the name of 

this statistic.

The statistical distance or Mahalanobis distance between two points x = (xi,..., xn) and 

y = (yi,...,yn)T in the n-dimensional space 9tn is defined as:

d(x, y) = ( (X - y)T S' 1 (x - y) ) 1/2 eq" (2.4)

where S represents the within-group covariance matrix, lowercase letters in bold denote 

vectors or matrices and the superscript “T” denotes the transpose operation.

Another measure o f distance that can be used for classification is the Euclidean 

distance.
T X

The Euclidian distance between two points x = (xi,..., xn) and y = (yi,...,yn) in the n- 

dimensional space 9tn is defined as:

d(x, y) = ( (x, -  yi)2 + ... + (x„ -  yn)2 ) I/2 = ( (x- y)T (x- y) ) 1/2 eq"(2.5)

The Euclidean distance is a geometric distance measure as opposed to a statistical 

distance measure and in certain application domains can be inferior to the Mahalanobis 

distance when used as a classifier. In such applications the Mahalanobis distance is 

superior because it takes the distribution of the points into account.

Some o f the advantages of the Mahalanobis distance are:

1. It takes into account not only the average value but also the variance and the 

covariance of the variables measured.

2. It accounts for ranges of acceptability (variance) between variables.

3. It compensates for interactions (covariance) between variables.

4. It is dimensionless.
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E uclidean

Figure 2.16: Comparison o f Mahalanobis vs Euclidean classifier

The difference between the 

Mahalanobis and the 

Euclidean distance is 

illustrated graphically in the 

2 -dimensional scatter 

diagram presented in Figure 

2.16. It is obvious that the 

cluster of data points on the 

scatter diagram is best 

described using the 

Mahalanobis distance

which considers an elliptical boundary compared to the circle around the mean point X 

used by the Euclidean distance. Let us consider the example where the data-points with 

mean X (that occur within the two boundaries) comprise, the training set of a 

classification problem and the points A and B shown in the figure are two unknown 

samples. The Euclidean distance of points A and B from the mean X is approximately 

the same. This means that point A is just as likely to be classified as belonging to the 

group, as point B. However, the Mahalanobis distance will classify point A to be more 

likely to belong to the known group since it lies on the trend-line of the known group, as 

described by the major axis of the ellipsoid. The limitation of the Euclidean classifier is 

that it does not take into account the variability of the values in all dimensions.

The kNN classifier mentioned earlier uses the Euclidean distance metric. Let us 

consider an n-dimensional space and a finite set S  c  5Rn. S  is the training set, i.e. the 

set of known sample points. The class of an unknown point (query point) q, q e  is 

determined according to its neighbouring points in the training set. The parameter k  of 

the kNN classifier can, in theory, be set to any positive integer. It defines the number of 

neighbouring points from the training set, to be used in determining the class of a query 

point q. For example, for k=l the class of q will be determined by the class o f the point 

in the training set having the shortest Euclidean distance from q. Expressing this 

mathematically, the 1-NN classifier will find the element p  e S  such that: 

d(p,q) < d(r,q), V r e S , r ^ p ,  eqn (2.6)

where d(x,y) is the Euclidean distance between two points x and y, with x, y  e  9tn.
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For k=3, three neighbouring points will be used in determining the class of q and the 

chosen class will be determined by majority voting. For a two-class classification 

problem, the operation of the kNN classifier can be illustrated in Figures 2.17 and 2.18. 

Figure 2.17 depicts the 2-dimensional scatter diagram for the variables x and y. One 

class is marked by circles and the other by squares.

y

o o

X

Figure 2.17: Scatter diagram o f y  vs x with each class marked with either circles or squares [URL 11]

Figure 2.18 depicts a section of the above scatter diagram after zooming in. The figure 

illustrates how the class of the unknown query point marked with a is determined by 

the kNN classifier in the cases of k= 1 (LHS graph) and k=3 (RHS graph).

° n * i

Figure 2.18: 1-NN classification (LHS) and 3-NN classification (RHS) [URL 11]

In the specific example presented above, the classification result is different for the two 

values of k. Using 1 neighbour, the query point is classed as being a member of the 

class of squares while using 3 nearest neighbours, it is classed as belonging to the class 

of circles. Choice of the number of nearest neighbours to be used can be a very 

important factor in classification performance.

When using an even number of neighbours a tie can occur, i.e. there are equal numbers 

of neighbours in each class. In order to get an output from the kNN classifier, the tie 

needs to be broken. One way to break the tie is to choose randomly between the classes



in the tie. Alternatively the tie can be broken by taking in account extra information 

from the nearest neighbour (i.e. shortest Euclidean distance) to the query point. In that 

case the nearest neighbour is used to determine the class. Using odd values o f k is 

another way to avoid ties between classes.

An advantage o f the kNN classifier is that the decision boundary can be arbitrarily 

complex. For instance, the classifier can operate not only under circumstances where 

non-linear decision boundaries exist but also in cases where a class exists within another 

class etc. A drawback of the kNN classifier is that it does not construct a generalised 

representation o f the learnt classes. Instead, all the training examples are kept in 

memory and classifying any new point can be very computationally expensive. This is 

because the Euclidean distance o f any new point from all points in the training set must 

be calculated.

In our case, the computational cost o f the kNN was not an issue. The feature vectors fed 

as inputs and also the length o f the datasets used were small and the algorithm executed 

in short time.

2.7 Artificial Intelligence

Artificial Intelligence (AI) is a branch of computer science concerned with the design 

and implementation o f programs which are capable o f emulating human cognitive skills 

such as problem solving, visual perception and language understanding [Jackson 1990].

Artificial Neural Networks (ANN) and Knowledge-Based Systems (KBS), including 

Fuzzy Inference Systems (FIS), constitute the Artificial Intelligence techniques 

considered in this work; for the classification o f ECG traces. Theoretical background on 

the above techniques is given in the following sections.

2.7.1 Artificial Neural Networks (ANN)

The main classifiers considered in this research were artificial neural networks. A 

number of definitions have been proposed that describe what constitutes a neural 

network but there is no convergence to a single generally accepted definition. One of 

the eloquent definitions available is given overleaf.
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According to Haykin [Haykin 1994] a neural network can be defined as a massively 

parallel distributed processor that has a natural propensity .for storing experiential 

knowledge and making available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Intemeuron connection strengths known as synaptic weights are used to store the 

knowledge.

Artificial neural networks are also referred to as connectionist models, and their field of 

study is alternatively termed 

parallel distributed processing, 

neurocomputing or artificial neural 

systems [Rumelhart 1986,

Simpson 1990]. The inspiration of 

artificial neural networks 

originates from observations of the 

operation of biological nervous 

systems. The Central Nervous 

System (CNS) in the human body consists of the brain and the spinal cord. The 

Peripheral Nervous System (PNS) serves for communication with the rest o f the body. 

The brain is the central information processing and control unit. The smallest processing 

element of the brain is the neuron. The human brain consists of an estimated 1011 nerve 

cells, or neurons [Gurney 1997]. A biological neuron is depicted in Figure 2.19. It 

consists of the cell body, synapses, dendrites and axon. The cell body is the core o f the 

neuron. The dendrites are the inputs to the neuron while the axon is its only output. The 

output (axon) of a given cell serves as an input to other neurons in the brain. A synapse 

is the point where the axon from one neuron connects to a dendrite of another. The 

synapse determines the strength of such a connection (synaptic strength) and varies with 

time and through the learning process.

Cot! body
Axon

Signal flow  

E=t> Input

Output

Figure 2.19: A biological neuron [Gurney 1997]
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The computational neuron

The biological neuron can be abstracted into the computational neuron as depicted in 

Figure 2.20.

ne!
f{net)

Figure 2.20: Computational neuron Figure 2.21: Neuron with activation function

The neuron in Figure 2.20 receives 5 inputs (xj-xf). Each input is multiplied by a scaling 

factor, the network weight. The network weights simulate the effect of the synaptic 

strengths encountered in biological neurons. The weighted versions of the inputs are 

summed to produce a resultant (net) input to the network. For the neuron depicted in the 

figure, the output equals the net input. Alternatively a mathematical function can be 

used to translate the net input to an output value. The function used to perform such a 

mapping is termed "activation function" and can be seen as the neuron transfer function. 

A neuron incorporating an activation function i f  (net)) is depicted in Figure 2.21.

Typical activation functions are: step, linear, saturated linear, logistic sigmoid, 

hyperbolic tangent, etc. The activation function is also referred to as squashing function 

because most activation functions "squash" the value o f the net input to the interval [0  

1] or [-1 1], depending on the span of the function values on the.y-axis.

The first formal definition of an artificial neuron was proposed in 1943 by McCulloch 

and Pitts [McCulloch 1943]. It is known as the McCulloch-Pitts neuron (MCP) or 

threshold-logic unit (TLU). It receives binary inputs and has a step activation function. 

The drawback of this architecture is that its weights need to be adjusted by the user, for 

a given task to be performed. They also have to be known for a given classification 

problem, i.e. the mapping from the problem domain to the neuron internal parameters 

must be known. The MCP neuron is not capable of learning by example and adapting 

itself in an automated manner.

40



In 1962 Rosenblatt introduced his Perceptron [Rosenblatt 1962], a single-neuron neural 

network that was able to learn by experience and adjust its weights autonomously. It 

was similar to a MCP neuron in many ways and its innovative feature was that it was 

able to learn by experience. The differences between the Perceptron and the MCP 

neuron are that the Perceptron is not restricted to binary inputs and that it incorporates a 

learning algorithm. Apart from these they are very similar and the single-neuron 

network depicted in Figure 

2.21 can illustrate both a MCP 

and a Perceptron providing that 

the activation function is a step 

function.

Consider a linearly-separable 

two-dimensional classification 

problem as shown in Figure 

2.22. A two-class classification 

problem is termed as linearly- 

separable if  the two classes can be separated by a straight line in 2D, a plane in 3D or an 

(N-l)-dimensional hyperplane in the case of an N-dimensional classification problem. A 

Perceptron is always capable of classifying linearly-separable .data by finding a linear 

decision boundary. It is guaranteed to find a solution in finite time if one exists, i.e. if  

data is linearly-separable (Perceptron Convergence Theorem [Minsky 1969, 1988]).

The Perceptron learning rule (weight-update rule) is given by the equation:

w j ( t + l )  =  Wj(t) + rj e (t )  Xi(t) e q 11 (2.7)

where:

❖ r| is the learning rate (0<rj<l)
t h

♦♦♦ Wj(t) is the network weight of the i input at time instant t

❖ e(t) is the error defined as: e(t) = X ja( t )  -  Xjd( t )  eqn (2.8)

superscripts a  and d  stand for actual and desired network outputs respectively. The 

permitted values for e(t) are {-1,0,1}
t h

♦> X j (t )  is the input value received at the i input at time instant t
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Figure 2.22: 2-class linearly separable classification
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The MuItiLayer-Perceptron

The MuItiLayer-Perceptron (MLP) is a neural network architecture consisting of 

multiple layers of simple perceptrons incorporating non-linear activation functions.

X i  X 2 Y

0 0 0

0 1 1

1 0 1

1 1 0

X i

A

Y  =  X i  ©  X 2

I .  I1 2  /

Figure 2.23: Illustration o f  theXORproblem  
(including truth table)

1

In 1969 Minsky and Papert 

published a book entitled 

"Perceptrons: an introduction to 

computational geometry"

[Minsky 1969] where they 

stressed that a single-neuron 

neural network could not solve 

the XOR problem, depicted in

Figure 2.23. The book had a negative influence and impeded neural network research 

for some years [Wilkes 2001, URL 12]. Research actions in solving the XOR problem 

lead to the introduction o f multilayer networks consisting of more than one neuron 

organised in different layers. The XOR problem can be solved using three perceptrons, 

each one trained separately, as seen in Figure 2.24.

Figure 2.24: Three-neuron network solving theXOR problem 

Perceptrons 1 and 2 are classifying the two sub-problems constituting the XOR problem 

using two straight lines and neuron 3 is combining the tasks o f the first two neurons to 

achieve classification of the XOR problem. Using such a configuration to solve the 

XOR problem is not practical since each network has to be trained separately to solve 

each sub-problem and there is no algorithm achieving automated learning for the 

network as a whole. Perceptrons 1 and 2 are in principle separate neural networks 

performing a pre-processing task for the 3rd neural network.
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One of the architectures introduced to solve the above problem was the MLP. The 

requisites for an MLP are:

❖ Each processing element must have a non-linear activation function.

♦♦♦ Each activation function must be differentiable throughout its range.

❖ A method of credit assignment is necessary to distribute the error at the output 

throughout the network.

An MLP having N inputs and no outputs is depicted in Figure 2.25. It is a two-layer

network where Wjk are the weights 

between the inputs and the hidden 

layer (1st layer) and wy are the 

weights between the hidden layer 

yL and the output layer (2nd layer). It 

must be noted that the left-most
V*,

layer (input layer) depicted is not 

an active layer and is only used as a 

buffering layer to transfer the 

Figure 2.25: Two-layer multilayer perceptron inputs to the hidden layer. This is

why the network depicted is a two-layer and not a three-layer network. Multilayer 

Perceptrons are trained using the backpropagation method which is based on a 

generalisation of the Perceptron learning rule. Standard backpropagation is a gradient 

descent algorithm. There are a number of variations on the basic algorithm which are 

based on various standard optimisation techniques.

MLPs are alternatively termed feedforward neural networks because o f the forward- 

only flow of information from input to output, i.e. no feedback loops. They are also 

backpropagation neural networks because of the backpropagation of error from output 

to input, as dictated by their learning algorithm.

Neural Network Learning

There exist three paradigms of neural-network learning namely supervised learning, 

unsupervised learning and reinforcement learning.

Supervised learning is characterised by supervision by a teacher. The teacher possesses 

the knowledge required in a specific problem domain and gives feedback to the neural 

network regarding its performance. Such feedback (error signal) is used by the network
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during the training process in order for the network parameters to be adjusted for 

optimal performance. Examples o f supervised neural networks are the simple and multi­

layer perceptrons presented earlier.

In contrast to the supervised learning approach, the other two paradigms do not involve 

a teacher in their learning process. In reinforcement learning the learning of an input- 

output mapping is performed through continued interaction with the environment in 

order to minimise a scalar index of performance [Haykin 1994]. Although there is no 

teacher, an  external critic i s used toeonvert a prim ary r einforcement s ignal received 

from the environment into a higher quality reinforcement signal.

Unsupervised or self-organised learning does not require a teacher or critic to oversee 

the learning process. Learning is based on a task-independent measure o f the quality of 

the r epresentation t hat t he n etwork h as t o a chieve. S uch n etworks are u sed fo r d ata- 

mining.

Review of the use of ANNs for Biomedical Applications

One o f the great motivations behind moving towards automated ECG interpretation and 

diagnostics is that manual analysis of long-term (24 h) ECGs is labour-intensive and 

prone to inter-observer variability. Computer techniques have been developed in order 

to facilitate visual analysis, e.g. by condensed printouts of various signals and trends 

[Lagerholm 2000]. With this type of presentation the operator usually can analyze a 24- 

hour recording in 20-40 minutes provided that no complex arrhythmias exist 

[Lagerholm 2000]. The use o f automated systems for detection o f arrhythmias 

considerably reduces the amount o f time the operator needs to spend. Several 

commercial systems are available for long-term ECG analysis [Lagerholm 2000]. 

However, their performance deteriorates markedly when noise and artefacts are present 

and, as a consequence, an excessive number o f  beat classes is  created which require 

considerable manual editing [Lagerholm 2000]. Artificial neural networks have 

significantly contributed in the process o f automating ECG diagnostics. They have been 

widely used for characterisation of cardiac signals and a few such studies are reported in 

this section.

Kennedy et al [Kennedy 1997] employed ANNs (MLPs) for detection of Acute 

Myocardial Infarction. The diagnosis o f acute myocardial infarction in patients with
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chest pain is one o f the challenges of emergency medicine while early diagnosis is 

critical. In their paper [Kennedy 1997] they report overall accuracy, sensitivity and 

specificity o f 91.8%, 91.2% and 90.2% respectively when ANNs were tested on unseen 

data. Linear Discriminant Analysis classification results on the same dataset were 81%, 

77.9% and 82.6%. Using another test dataset from another hospital yielded ANN results 

o f 73.6%, 52.4%, 80% and LDA results of 65.1%, 28.5% and 76.9%. Examples o f other 

researchers that used ANNs for detection of myocardial infarction are [Yang 1994] and 

[Heden 1997].

Besides the MLP, other ANN architectures have been employed for ECG diagnostics. 

Simon and Eswaran [Simon 1997] designed an ECG classifier using Decision-based 

neural networks. The system was aimed at detecting the following cardiological 

conditions: Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), 

Anterior wall Myocardial Infarction (AMI), Posterior wall Myocardial Infarction (PMI) 

and normal ECG. Al-Fahoum et al [Al-Fahoum 1999] used radial basis function neural 

networks, combined with wavelet transformations, for classifying cardiac arrhythmias. 

Unsupervised neural networks have also been employed. Hu et al [Hu 1997] used Self- 

Organising Maps (SOM) and Learning Vector Quantisation (LVQ) to construct a 

patient adaptable ECG classifier. Lagerholm et al [Lagerholm 2000] have also used 

SOM to perform clustering o f ECG complexes.

Apart from ECG trace classification, neural networks have also been used for noise 

removal from ECG data [Paul 1997] and for ECG characteristic point detection 

[Bystricky 2002], e.g. for the detection of the T wave end-.

A number o f researchers have also investigated the Heart Rate Variability (HRV) signal 

for diagnosis o f certain conditions; and ANNs have been employed in such studies. 

Acharya et al [Acharya 2004] have used MLPs for Heart Rate Variability (HRV) 

analysis with the aim to classify cardiac beats into eight categories (normal sinus 

rhythm (NSR), left bundle branch block (LBBB), pre-ventricular contraction (PVC), 

atrial fibrillation (AF), ventricular fibrillation (VF), complete heart block (CHB), 

ischaemic/dilated cardiomyopathy and sick sinus syndrome (SSS)).

To conclude it is emphasised that neural networks have been very successful and widely 

used for ECG diagnostics. It has been shown that ANNs for specific issues can perform
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better than both experienced cardiologists and ruled-based criteria [Lagerholm 2000], 

e.g., in detecting acute myocardial infarction from the ECG [Heden 1997]. A first 

generation o f ANNs have also been implemented in commercial electrocardiographs 

[Yang 1994].

2.7.2 Knowledge-Based Systems

In the 1960’s, early researchers in Al believed that the best approach to problem solving 

was the development and use o f general purpose problem solvers, that would be able to 

offer solutions in a wide variety o f fields [Patterson 1990]. The limitations o f such 

systems, that were based only on a few laws or axioms, led to the introduction of 

knowledge-based systems. It was realised that the use o f systems incorporating 

specialised expert knowledge in a specific domain was a much more powerful way to 

tackle complex problems. Feigenbaum [Feigenbaum 1977] emphasised that the real 

power o f an expert system comes from the knowledge it possesses rather than the 

specific inference schemes and other formalisms it employs.

A knowledge-based system is any system which performs a task by applying rules of 

thumb to a symbolic representation o f knowledge, instead of employing more 

algorithmic or statistical methods [Jackson 1990].

An expert system is a computer program that represents and reasons with knowledge of 

some specialist subject with a view to solving problems or giving advice [Jackson 

1990]. Expert systems form a subset o f the broader family of knowledge-based systems. 

In contrast to expert systems, a knowledge based system, although based on human 

knowledge, does not necessarily incorporate any expertise in  the specific domain of 

application.

Two more definitions, presented below, are useful as part o f the discussion o f KBS:

♦♦♦ Knowledge acquisition is the transfer and transformation o f potential problem­

solving expertise from some knowledge source to a program [Buchanan 1983].

♦♦♦ Knowledge representation is concerned with the way in which information might be 

stored in the human brain, and the possibly analogous ways in which large bodies of 

knowledge can be formally described for the purposes o f symbolic (non-numeric) 

computation [Jackson 1990].
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The most common form of architecture used in knowledge-based and expert systems is 

the rule-based system [Patterson 1990]. According to this approach, the knowledge 

representation is achieved using rules of natural language. Rules consist of an 

antecedent ( "IF" p art) and a consequent ("THEN" part). Examples o f  such IF-THEN 

rules are given below:

IF temperature is HOT, AND moisture is HUMID THEN comfort is VERY LOW.

IF Blood Pressure is VERY H IGH THEN raise alarm AND prescribe medication

Linguistic values are presented in bold. Variable names are given in italic. The first rule 

involves two variables in the antecedent combined by an "AND" operator, while in the 

output only one variable is used. This example could be used for modelling the comfort 

o f a human being in a specific location. The second rule includes only one variable in 

the antecedent but its consequent gives two outputs. The output of the rule is related to 

actions to be taken and resembles more a decision-making/control scenario rather than a 

modelling scenario. Significantly more complex rules, having a large number of 

variables in the antecedent and consequent parts can be employed.

Brief History of KBS and Expert Systems

A basic block diagram of an Expert System is depicted in Figure 2.26:

USER

Input

Output I/O Interface

Editor

Explanation m odulo

W orking M emory

Figure 2.26: Illustration o f  an Expert System [Patterson 1990 pp331]

The first expert system was DENDRAL, developed at Stanford University in the late 

1960s [Patterson 1990]. This system was capable of determining the structure o f
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chemical compounds. DENDRAL used heuristic knowledge obtained from experienced 

chemists. During tests, DENDRAL discovered a number of structures previously 

unknown to expert chemists.

Shortly after DENDRAL was completed, the development of MYCIN began at Stanford 

University [Patterson 1 990]. MYCIN w as an  expert system for diagnosing infectious 

blood diseases and determining a recommended list o f therapies. MYCIN’s 

performance improved over several years as more knowledge was incorporated in the 

system. Tests had indicated that MYCIN’s performance had reached or exceeded that of 

experienced physicians.

Two other early expert systems used in medical diagnostics were PUFF and 

INTERNIST. PUFF [Aikens 1983] was a diagnostic expert system for pulmonary 

diseases based on MYCIN. INTERNIST [Pople 1975], developed in the 1970s, was a 

medical diagnosis tool that contained nearly 100,000 relationships between symptoms 

and diseases. More recent expert systems used in biomedicine were BTDS, RESAC and 

a system for detection of breast cancer. BTDS (Brain Tumours Diagnostic System) 

[Wang 1990] was developed to aid in diagnosing the causes of brain tumours from 

computed tomography pictures. RESAC (Real Time Expert System for Advice and 

Control) [Linkens 1990], [Greenhow 1993] provided interactive advice and control 

during surgery. It focused specifically on the control o f anaesthesia and had been 

embraced by human anaesthetists as they were confident to follow its suggestions. 

Finally, M orio et a l [Morio 1 989] developed an  expert system for early detection o f  

breast cancer. The system could undertake a conversation with a woman who was 

anxious about breast cancer. After listening to her symptoms, the system would present 

its conclusions and suggest courses of action to be taken.

Examples of early expert systems in other fields included PROSPECTOR, a system for 

assisting geologists in the discovery o f mineral deposits, and R1 (aka XCON), a system 

used by the Digital Equipment Corporation to select and configure components of 

complex computer systems [Patterson 1990].

Expert Systems have been very useful in formulating the knowledge o f human experts. 

In many fields there are only a few human experts and because o f their rarity, the 

workload can be too much for them. For instance, in the case o f industrial plant fault
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diagnostics, a human expert may have to overlook many plants in different geographical 

locations. Coding the knowledge o f such an expert to an ES allows duplication o f the 

human expert’s knowledge to many locations. The ES can also be used to  train new 

experts and will be a tool that will never retire as is the case with human experts. Upon 

retirement o f a human expert, the knowledge will be lost if  not passed on to other 

humans.

Expert Systems and more broadly Knowledge-Based systems have also been used for 

ECG interpretation in order to achieve accurate diagnosis through modelling o f the 

physician’s ability in diagnosing ECGs. A small sample o f such studies is: [Stockman 

1976], [Xiong 1983], [Mylopoulos 1983], [Shibahara 1983], [Tsotsos 1987], [Kundu 

1993], [Kundu, Nasipuri 1994], and [Kundu 1994].

2.7.3 Fuzzy Logic Theory

Fuzzy sets and fuzzy logic theory were introduced by Zadeh [Zadeh 1965]. The strong 

point about fuzzy systems is that they can combine human expertise together with 

sensory measurements and mathematical models. This section will present background 

and terminology of the field of Fuzzy Logic.

Classical (crisp) Sets and Fuzzy Sets

If  Q is the universal set, or universe o f discourse, containing all the possible elements 

involved in a particular problem, a crisp set A within Q is a set that has clear 

boundaries. Its elements have a w ell defined property. There are three m ain ways of 

defining a crisp set A. These are:

a. The list method where A is defined by listing all o f its members.

b. The r ule m ethod w here A i s d efined b y s pecifying t he p roperties t hat e ach o f  i ts 

members must have.

c. The membership method where a membership function Pa(x) is introduced to 

denote whether an element x belongs to A or not. In crisp sets, this membership 

function is a discrete one and can only take two values, either 0 or 1. This is 

illustrated below:

eqn (2.9)
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Because o f this crisp membership, crisp sets are unable to describe certain situations 

such as when sets do not have clear boundaries i.e. an element may belong to more than 

one set. To overcome this, fuzzy sets were introduced.

A fuzzy set A is a set where the membership of any element x of the universal set in A is

every element x the pair (x, PaM ) can be formed containing the element and its 

corresponding membership degree. In general for a fuzzy set A we can write:

fuzzy set A and to what extent. It determines a degree of certainty i.e. degree of truth. 

This should not be confused with the probability of x belonging to the set A.

Types of Membership Functions

Three types o f membership functions will be considered in this project. Two of them, 

the triangular and trapezoidal, are piecewise linear functions. The third type is the 

Gaussian membership function which is used for extra smoothness but is more complex 

in shape.

a) Triangular membership function 

MaOO

The shape of the triangular membership function, as seen in Figure 2.27, is described by 

the following straight line equations:

described by a continuous membership function taking values in the interval [0, 1]. For

A = {(x,paM) I x  eQ} eqn(2.10)

The value of the membership function Pa(x) determines if  the element belongs to the

1

0
x - a l al < x < a 2

x<a.

a2 < x < a 3

x > a 3

eqn (2.11)
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b) Trapezoidal

i

X

Figure 2.28: Shape o f a trapezoidal membership function

The shape of the trapezoidal membership function, as seen in Figure 2.28, is described 

by the following straight line equations:

x < a,

A (*) =

0
x - a ,

ax < x < a 2

a2 < x < a 3

a3 < x < a 4

eqn (2.12)

0 x > a A

c) Gaussian

(x ~ c)2
It is given by the formula: jlia( x )  = exp(-- ~ )

2a
eq11 (2.13)

where c denotes the centre of the bell-shaped curve and a  denotes the standard 

deviation.

Crossover Point

Consider Figure 2.29 below containing two trapezoidal (left-most and right-most) and a 

triangular membership function (middle). This figure is used to illustrate the concept of 

the crossover point. The points where the membership functions meet (at X = {25, 75}) 

are called crossover points. The degree of membership at the crossover points is, in this 

case 0.5 but this is not necessarily the case in fuzzy systems.
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Figure 2.29: Illustration o f  the crossover point

The importance o f the crossover point is that it marks the point at which, for a particular 

membership function, the certainty o f belonging changes. For membership degrees 

higher than the crossover point the certainty o f belonging to a particular membership 

function is higher than the certainty of not belonging. For membership degrees lower 

than the crossover point the opposite happens for the certainty of belonging.

Logical Operators

Boolean L ogic operators can be applied on crisp sets. The standard and most widely 

used ones are the intersection, union, and complement operators. These operators are 

defined below in terms of Set Theory. If we consider two crisp sets A and B and the 

universal set Q  then the definitions are of the form:

1. The Intersection operator (AND)

A c \B  = { x \ x  e  A and x  e B} eqn (2.14)

2. The Union operator (OR)

A kjB = {x\xEi A o r  x g B} r eqn (2.15)

3. The Complement operator (NOT)

A = {x\x<£ A, x e  Q} eqn (2.16)

For two binary variables A and B the truth tables for the AND, OR and NOT operators 

are given below:
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Table 2.1: Truth table fo r  AND 
operator

Table 2.2: Truth table fo r OR 
operator

Table 2.3: Truth table for  
complement operator

A B AND
0 0 0
0 1 0
1 0 0
1 1 1

A B OR
0 0 0
0 1 1
1 0 1
1 1 1

A NOT
0 1
1 0

Boolean Logic operations can also be used to manipulate and combine fuzzy sets. For 

two fuzzy sets A and B the above three operators take the form:

1. Intersection (or conjunction) operator (AND)

= Md(x) A f t W  . eq" (2.17)

2. Union (or disjunction) operator (OR)

M a v b ( x )  =  M a ( x ) v M b ( x )  eq" (2.18)

3. Complement operator (NOT)

r i  ( * ) = 1 -  V a (*) eq" (2-19)

A fuzzy intersection operator can be implemented by a "minimum" or a "product" 

operator. For two fuzzy sets A and B, the expression "A fl B" (or "A AND B") can be 

implemented as min(A,B) or prod(A,B). Similarly the union operator (A U B) can be 

implemented using a "maximum" operator max(A,B).

Figure 2.30 illustrates the three operators for the cases of two-valued logic (crisp logic) 

and multivalued logic (fuzzy logic). It can be seen that in the latter case, the sets A and 

B are represented as membership functions and the figure depicts how the classical 

operators are applied on fuzzy membership functions.
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Mulli'valued
logic

AND
min(A,B)

OR
mox{A/B)

NOT
n-A)

Figure 2.30: Illustrates the logical operators for crisp andfuzzy logic [MathWorks Fuzzy]

Fuzzification and Defuzzification

■ Fuzzification is the conversion of a numeric input into a fuzzy input. It maps a crisp 

input x  g Q into a fuzzy set A in Q. Set A can be a fuzzy set, like the ones discussed 

earlier in the chapter, or a fuzzy singleton. The membership function for a fuzzy 

singleton is as follows:

i.e. the membership is 1 only at the point xj and zero elsewhere.

■ Defuzzification is the conversion of a fuzzy quantity into a crisp quantity. Several 

defuzzification methods exist such as: the maximum membership, the mean of 

maxima, the centre o f gravity methods etc.

Fuzzy Rules Processing

The two different types of fuzzy rules processing are the Mamdani-type and the 

Sugeno-type. The general form of the two types of rules is given below:

Mamdani: R1: IF xi is An  and X2 is Aa  and ... and xm is Ajm THEN y\ = Bj, eqn (2.21) 

Sugeno: R1: IF xi is An and X2 is Aj2 and ... and xm is Ajm

THEN yj = f(xh x2, x m), eqn (2.22)

1 if  x = Xi 
0 otherwise

eqn (2.20)

where:

■ (xi, X2, ... xm) are the inputs to the system,

■ y is the output



■ Aii, Aj2, Aim, Bj are linguistic labels such as: zero (ZE), negative small (NS), positive 

big (PB) etc.

■ f(xi X2, . . xm) = Co + C1X1 + C2X2 + ... + cnxn , i.e. a linear function
• i L

■ R denotes the i rule in the rule-base.

■ i = 1, 2, ... M , where M is the number of rules.

An example of each of the above two types of rules, for a SISO system (e.g. static 

exercise bicycle keeping constant heart rate), would be:

Mamdani: IF heart rate is positive-big (PB) THEN make pedal torque positive-small 

(PS).

Sugeno: IF heart rate is positive-big (PB) THEN make pedal torque equal to 1 Nm.

It can be seen that in the Mamdani-type of fuzzy rules processing, both the antecedent

(IF) and the consequent (THEN) parts are fuzzy while in Sugeno-type the consequent 

part is not fuzzy but a linear mathematical function. This means that in the latter there is 

no defuzzification operation.

A Mamdani-type controller can be seen in Figure 2.31 below: •

Fuzzif n Defuzzif n plant

Fuzzy 

Rule Base

Fuzzy inference 

engine

Figure 2.31: Mamdani-type fuzzy controller and plant 

For a Sugeno-type controller the figure would look very similar with the difference that

the defuzzification box would not be present. The “Fuzzy Rule Base” block shown in

Figure 2.31 represents the knowledge about the process under investigation.

Fuzzy systems using the Sugeno-type of fuzzy rules processing are alternatively termed 

fuzzy TSK (Takagi-Sugeno-Kang) [Takagi 1985] systems from-the names o f the people 

that introduced it. The physical meaning of the Sugeno-type rule presented earlier is that 

when the input variable x  is constrained to the fuzzy range characterised by the IF part 

of the rule, the output is a linear function of the input variables. The TSK fuzzy system
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can be viewed as a piecewise linear function, where the change from one piece to the 

other is smooth rather that abrupt [Wang 1997]. This makes the TSK. fuzzy system 

appropriate for piecewise linear modelling. Piecewise linear modelling is a non-linear 

modelling approach that uses multiple linear models. The problem is divided into 

partitions and a linear model is fitted in every partition. A simple fuzzy logic system 

example illustrating the concepts presented above is provided in Appendix B.

2.8 Summary

This chapter provided the relevant theoretical background needed to support this thesis. 

It presented information on Electrocardiography and the ECG signal. It discussed ECG 

preprocessing issues including noise removal and focused on the production of the 

Signal-Averaged ECG (SAECG) signal used in this study. It also discussed the process 

of ECG feature extraction that will be used to produce features that quantify the cardiac 

changes related to hypoglycaemia. ECG features that were used in a clinical study for 

identification of patients with the Long QT syndrome were presented. AutoRegressive 

modelling and the use of AR coefficients were also discussed as an alternative way, to 

that o f feature-extraction, for ECG representation.

A review o f relevant biomedical equipment was also presented. This review-addressed 

the practical problem of measuring glucose and detecting hypoglycaemia in relation to 

the relevant devices. Since the ECG is involved in our approach o f detecting 

hypoglycaemia, ECG monitoring devices were also presented. The section mainly 

focused on commercial devices as opposed to prototypes. Hypoglycaemia detection 

systems and also glucose monitoring equipment, both early and modem versions, were 

discussed. A few different types o f commercial ECG monitors were also included. By 

considering this section it is realised that there is no established solution for 

hypoglycaemia detection, in the form of a continuous non-invasive monitoring system. 

The methodology for hypoglycaemia detection proposed in this thesis could, if  

appropriately enhanced and extended, contribute in the solution o f this problem.

Moving to the classification part of this work, statistical classifiers that would be 

appropriate for ECG trace classification were discussed. Such classifiers were the 

Mahalanobis and k-Nearest Neighbour. Moreover, Artificial' Neural Networks were 

presented including early architectures, as well as the MLP which lies among the most 

widely used. The use o f ANN in biomedical classification problems and specifically in
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the domain of ECG diagnostics was reviewed. A number of successful and promising 

studies employing ANN were included. Knowledge-based systems were discussed next, 

including both Expert Systems and Fuzzy Inference Systems. A review o f such systems 

for ECG diagnostics was also included and their importance was emphasised.

To conclude this chapter, it is stressed that ECG feature extraction has been extensively 

carried out in previous studies and appears to be a wise choice to employ it in this thesis 

for ECG representation. Moreover Artificial Intelligence techniques, both ANN and 

KBS, have been successful in medical diagnostics and will be used in this thesis to 

achieve ECG classification into normal traces and those corresponding to 

hypoglycaemia. The next chapter will present the data acquisition equipment and the 

dataset utilised in this work.
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Chapter 3

Data Acquisition Method and Datasets

3.0 Introduction

This chapter provides information about the data used in this project and also the data 

acquisition equipment utilised. Data-sets consist o f paired samples o f ECG records and 

their corresponding glucose levels. Data from spontaneous hypoglycaemia were used in 

this project. They originated from Type 1 adult diabetic patients recruited by the 

Diabetic Clinic of the Royal Hallamshire Hospital in Sheffield.

3.1 Online ECG Databases

The "Physionet" [URL 13] resource for research on physiological signals contains a 

large number (approximately 19) o f online databases [URL 14] o f ECG signals 

accompanied by annotations by clinical experts. A few o f these databases were relevant 

to this research, namely the European ST-T Database [Taddei 1989, 1991, 1992], the 

Long-Term ST Database [Jager 1996, 1998, CiC98, 2000, 2003] and the QT database 

[Laguna 1997]. The drawback of using such databases was that there was no glucose 

information to accompany the ECG records. Moreover the data of the online databases 

were not necessarily originating from diabetic patients. These created the need for 

customized ECG-glucose acquisition for this work and other related research. The data 

acquisition equipment and data-set are described in the following sections.
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3.2 Data Acquisition Equipment

3.2.1 Portable Ambulatory System for ECG acquisition

It is advantageous to record ECG signals using an ambulatory system at the patient's 

own environment instead of doing so in a hospital. A portable ambulatory system 

(Hypoglycaemia On-line Monitoring Ensemble (HOME)) [Harris 2000] has been 

developed for the needs of the diabetic clinic at the Royal Hallamshire Hospital. A 

Hewlett Packard (HP) 200LX pocket PC attached to a single channel high gain 

amplifier with a serial data interface has been used, as seen in Figure 3.1.

Figure 3.1: Hypoglycaemia On-line Monitoring Ensemble (HOME)

It can record high resolution Y-lead ECG data for 1 minute every 15 minutes. It was 

used to record data overnight to aid the studies on nocturnal hypoglycaemia. The 

recording time was limited to a maximum of 10 hours by the battery life of the ECG 

recorder and the memory of the HP computer. Acquisition was starting at 23:00 and 

finishing at 7:00. The data was downloaded to a PC in the morning where off-line 

processing such as fdtering and signal averaging could take place.

ECG data were recorded only from the Y-lead of the high resolution 3-lead orthogonal 

ECG. Ideally all three leads of the orthogonal ECG or all twelve leads of the standard 

ECG would be recorded. This was not done because of limited processing power and 

storage space in the HOME system. It was assumed that glucose variations are affecting 

the whole of the heart which means that less leads could be used. Moreover the flow of 

current in the heart is downwards hence most changes will happen on the Y-lead. Hence
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it was assumed that changes in the cardiac function due to hypoglycaemia would be 

satisfactorily reflected on the Y-lead so data from just this lead would be sufficient.

3.2.2 MiniMed Continuous Glucose Monitoring System (CGMS)

The optimal way of measuring a subject’s glucose is by taking a blood sample. This can

be done by pricking the finger or, when

repetitive sampling is necessary, by

taking blood through an intra-venous

(i.v.) cannula. For the data-sets used in

this research, frequent sampling was

necessary hence an i.v. cannula would

have been used. This is only convenient

for studies held in a hospital environment

but is not possible for studies carried out

in the patient’s home. The Medtronic

MiniMed CGMS system, shown in

Figure 3.2, is a portable glucose meter
Figure 3.2: MiniMed glucose meter

that was used to overcome this problem.

A probe is inserted in the subcutaneous tissue of the tummy area and measures glucose 

in the tissue every 5 minutes. The probe is inserted upon a visit in the hospital and the 

patient can go home with the sensor and carry out his/her normal daily routine.

The difference is that MiniMed CGMS is not measuring glucose in the blood stream but 

in the interstitial fluid (ISF) i.e. the fluid in the connecting tissue between cells. 

Although ISF glucose readings closely mimic blood glucose readings, the latter is the 

optimal and most valid way of measuring glucose.

A limitation with measuring glucose in the subcutaneous tissue is that there exists a 

time-delay in glucose variations between the blood stream and the tissue which is 

approximately 10 minutes. It has been reported to be 9 minutes in humans [Hoss 2001], 

and between 5 and 12 minutes in canines [Rebrin 2000]. The delay is corrected by the 

software that accompanies MiniMed. Such a time-delay may be variable and could 

possibly depend on the rate of change of glucose. It is expected to be smaller in slow 

changing blood glucose but is expected to increase if the glucose is changing rapidly.
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The above time-delay is another reason why ISF glucose readings are inferior to blood 

glucose readings, since the accuracy of the delay correction could be questioned.

Another limitation of the MiniMed glucose meter was that the minimum value it could 

record was 2.2 mmol/lt. There were cases where the glucose was falling below this 

value but these were only recorded as 2.2 mmol/lt. This is illustrated in Figures 3.5 

(RHS) and 3.8 for two o f the patients. For patient 202 (Figure 3.5) the glucose variable 

was saturated at the minimum value o f 2.2 mmol/lt for records 41-58. The same 

happened for records' 18-29 and 31-33 of patient 204. In many cases, interesting 

dynamics o f the glucose variable may have been lost because of this since any variation 

below 2.2 mmol/lt was recorded as 2.2 mmol/lt. Severe hypoglycaemic events, 

sometimes reaching 1.5 mmol/lt or less, could not be identified because o f this 

limitation. All hypoglycaemic events below 2.2 mmol/lt had to be treated as having the 

same severity.

The MiniMed CGMS system has to be calibrated using samples obtained from the 

blood s tream b y u se o f  a f  inger-prick t est. T hree b lood s amples p er d ay are n eeded. 

Calibration takes place at midnight. Calibration o f the sensor should not happen during 

or close to an acquisition period since this could introduce disturbances on the glucose 

readings5.

MiniMed CGMS has been approved by the U.S. Food and Drug Administration (FDA) 

but it was advised that glucose readings by CGMS were intended to supplement, not 

replace, blood glucose information obtained using standard home glucose monitoring 

devices. Moreover, the FDA panel advised that, values o f glucose produced by the 

CGMS should not be used to make therapeutic decisions [URL 15].

More than 100 papers have been published, assessing various aspects o f the CGMS 

system and its use in various types o f studies. A number o f papers6 have been published

5 Calibration at 0:00 overlapped, in our case, with the recording period (23:00-7:00). The calibration time 

was not customisable in the CGMS used in this study. In order to overcome this problem, the CGMS 

clock was shifted by 12 hours so that calibration would occur at 12 noon. The only drawback of this is 

that the time signatures in the spreadsheet produced, containing the captured data, had to be corrected.

6 [Gross 2000] , [Cheyne 2002], [Gross and Ter Veer 2000], [Gross and Mastrotrotaro 2000], [Monsod 

2002], [Zavalkoff 2002], [Rebrin 1998], [Sharp 2001], [Shin 2002], [Steil 2000]
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that focused on the accuracy o f the sensor. Gross [Gross 2000] reports good agreement 

of the CGMS to blood glucose meter values, under conditions of home use, in patients 

selected by their physicians as candidates for continuous monitoring. Unexplored areas 

of the sensor behaviour should obviously exist; Cheyne [Cheyne 2002] reports that 

"studies suggest that subcutaneous glucose levels closely mimic blood glucose levels 

with a lag time of only a few minutes. However, no studies have been published to show 

how well the sensor performs during sustained or in recovery from hypoglycaemia."

Although issues about the agreement of MiniMed readings and blood glucose readings 

can be raised, it must be realised that MiniMed CGMS is a niche glucose sensing 

system and very valuable for research purposes. It lies among the only two devices that 

have been approved by the FDA, the other being the GlucoWatch [URL 5] by Cygnus. 

The CGMS system is an invaluable tool for recording glucose profiles under 

circumstances, such as home self-monitoring, where no other means o f measurement is 

available.

3.3 Dataset

The dataset used contains data on spontaneous hypoglycaemia. Forty three Type 1 adult 

diabetic patients were recruited for two successive nights, with one patient returning for 

a second acquisition which yields a total o f 44 recordings. Unfortunately, not all data 

recorded were usable. A few o f the nights recorded could not be used due to various 

problems such as failure of the ECG or glucose sensor, corrupted data due to noise and 

other artefacts and also due to human errors by the patients in'handling the equipment 

when not accompanied by a physician or nurse. A summary o f all patients constituting 

this dataset is included in Appendix A.

The ECG data were recorded at the patient’s home using the HOME system presented 

earlier. One-minute worth o f beat-to-beat recording was captured every 15 minutes 

using a sampling frequency of 125 Hz. Each one-minute recording was signal-averaged 

to produce a single SAECG cycle. Signal averaging was performed using the ECGLAB 

toolbox, based in MATLAB, which will be presented in Chapter 4. Blood glucose was 

recorded by the MiniMed CGMS system. The above acquisition was carried out for two 

successive nights, each night contributing a maximum of 33 SAECG cycles, and 

produced a data-set o f paired ECG-glucose readings.
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The profile (background info) and raw ECG data for each patient was stored in 3 binary 

files: one main file containing the ECG data and two complementary files containing 

additional information (metadata). The file extension for these three files was ".horn". 

The file containing the raw ECG data had a filename with the prefix "ecg" followed by 

the patient number (e.g. 202), followed by the ".horn" extension. The other two files had 

prefixes "Dsgn" & "Exp" and the remaining part o f the filename was the same as before. 

To load the data for a given patient into the ECGLAB toolbox, all three files had to be 

present. (For patient 204 these would be: Dsgn204.hom, Ecg204.hom and 

Exp204.hom.) When the data of a patient was filtered, signal averaged and annotated, 

the results were stored in a MATLAB ".mat" file. Summary information for the 

Sheffield data-set is presented in Table 3.1 followed by presentation o f the ECG and 

glucose profiles o f sample patients.

Table 3.1: Summary information fo r  the data-set

number of subjects' 43 + 1

number of ECG leads 1 bipolar (YY' lead)

number of records per night ~33

number of nights per patient 2

ECG acquisition equipment HOME system (125 Hz sampling freq)

glucose sensing method MiniMed CGMS

Features extracted from (raw/SAECG) SAECG

The ECG cycles for patient 202 are given in Figures 3.3 and 3.4 for nights 1 and 2. The 

ECG traces for each night are superimposed and plotted with different colours. These 

two figures present the ECG changes during each night. More importantly, they provide 

a clear presentation of the day-to-day intra-patient variability. There are extreme 

differences in both the P and T waves between the two nights. The T waves o f the 

second night have lower amplitudes while the QRS complexes o f the night are higher 

than those o f night one. In addition, the ST segments o f the second night are almost flat 

whereas the ST segments for the first night have a steep slope and are fused with the T 

wave upslope.
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Figure 3.3: ECG traces for 202-nightl (202A)
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Figure 3.4: ECG traces for 202-night2 (202)

The above two figures give a clear indication of the challenges involved in classifying 

ECG traces, corresponding to euglycaemia and hypoglycaemia, even in the case of 

using a single patient (i.e. no inter-patient variability).

The glucose profiles for the two nights of patient 202 are presented in Figure 3.5.
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Figure 3.5: Glucose profiles for 202-night 1 (LHS) and 202-nigh2 (RHS)

The horizontal dashed line marks the hypoglycaemic threshold at 3 mmol/lt. It can be 

seen in the two figures that the first night started as hyperglycaemic (with glucose at

10.2 mmol/lt) since it was exceeding the upper threshold of 8 mmol/lt. There was a 

steep descent o f the glucose concentration during this night. The glucose profile of the 

second night was very different. The night started with glucose being at the low-end of 

the euglycaemic range (low-end defined as 4 mmol/lt) and went into a long period of 

hypoglycaemia. These two different glucose profiles o f patient 202 give some reasoning 

for the big ECG differences between the two nights.

Based on patient 202 besides some other patients, it was observed that night-recordings 

starting with glucose concentrations at the low band of the euglycaemic range often 

exhibited flat ST segments. On the other hand, some night-recordings starting'with 

higher glucose concentrations exhibited steep ST segments often fused with the T wave 

upslope. These observations were deduced by visually assessing the ST segments as 

opposed to using a feature extraction algorithm. Some example-cases are presented 

below.

Both nights of patient 223A had flat ST segments. Night-1 started at 3.6 mmol/lt with 

glucose increasing during the night while night-2 started at 3.48 mmol/lt and went 

through a long period of hypoglycaemia. Both nights of patient 229 had flat ST 

segments and they both went into hypoglycaemia. The first night started at 4 mmol/lt 

and the second started as hypoglycaemic with glucose concentrations at 2.26 mmol/lt.

Both nights o f patient 228A had quite flat ST segments although the glucose

concentration at the start o f both nights was high, being just over the hyperglycaemic

threshold of 8 mmol/lt. Night-1 went into hypoglycaemia towards the end o f the
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recording. Night-2 did not go into hypoglycaemia but had big glucose fluctuations. This 

patient was the only exception having flat ST segments while the glucose was high at 

the start of both night-recordings.

An example of a night-recording starting as hyperglycaemic (at 17.4 mmol/lt) that 

exhibited steep ST segments fused with the T upslope was 201A-nightl, depicted in 

Figure 3.6.

sam ple  number

201A-night1

Figure 3.6: ECG traces for 201A-nightl

The second night of this patient started as hyperglycaemic, at 10.12 mmol/lt, and also 

exhibited steep ST segments. Another example of steep ST segments in combination 

with high glucose concentrations at the start of the night was 205-night2, starting 

slightly over 8 mmol/lt.

The ECG traces of patient 204 are presented in Figure 3.7. This patient experienced 

very clear T wave flattening and QT prolongation in response to hypoglycaemia. Such 

ECG changes are the ones dictated by the research hypothesis. The glucose profile of 

this patient is presented in Figure 3.8.
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Figure 3.7: ECG traces for 204 
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Figure 3.8: Glucose profile for 204 

ECG-glucose profiles for more patients of the dataset are presented in Appendix A.

3.4 Summary

This chapter focused on the presentation of the data acquisition equipment used and the 

dataset utilised in this study. The equipment consisted of the CGMS glucose sensor and 

the custom-made ECG acquisition system (HOME). The data-set contains events on
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spontaneous hypoglycaemia. Relevant details and the relevant paper publications o f the 

studies under which the datasets were generated, were presented. Some comments and 

observations on the nature o f the ECG and glucose profiles included in the dataset were 

provided. The next chapter focuses on ECG feature extraction presenting both the 

methodology and results.

68



Chapter 4

Feature Extraction and Analysis of Signal-Averaged 

Electrocardiogram Signals

4.0 Introduction

This chapter presents the methodology and results related to the feature extraction 

process undertaken in this research. Firstly the MATLAB toolbox (ECGLAB) that was 

used as the main software platform for ECG processing is introduced. The issue of 

defining an appropriate hypoglycaemic threshold is then raised, followed by the 

presentation o f the overall methodology for developing a hypoglycaemia detection 

system. The sub-processes and components o f the overall system are then outlined, 

namely the feature extraction and classification o f ECG traces. The classification of 

ECG traces is grouped into two different approaches: (i) the approach o f using static 

pattern classification of ECG features with no temporal information incorporated 

(Chapter 5) and (ii) the approach o f classifying ECG traces based on the time series o f 

the ECG features used (Chapter 6).

ECG representation was carried out by either using direct ECG feature extraction or by 

AutoRegressive (AR) modelling. The former describes each ECG trace using time- 

interval or morphological features and the latter represents each ECG trace by means of 

AR coefficients. S ection 4.4.1 presents the relevant algorithms that are necessary for 

detection o f the ECG characteristic points. Once the ECG characteristic points have 

been defined, a comparative study of geometric methods for annotation o f the T wave 

end is included. Then the assessment o f morphology of the T wave is presented. Next, a 

number of ECG features are presented and some analysis o f their usefulness in relation 

to hypoglycaemia is carried out. Following these, the autoregressive modelling of post- 

QRS ECG segments is discussed. This is an alternative approach to that o f using 

individual ECG features, for ECG representation.
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4.1 TheECGLAB® toolbox

ECGLAB® [Ireland 2001] is a custom-made ECG processing toolbox, running in 

MATLAB that has been developed by RH Ireland for the needs of the studies on 

spontaneous and experimental hypoglycaemia7. ECGLAB has a graphical user interface 

and it can display raw and Signal-Averaged ECGs. It allows signal averaging to be 

performed provided that the corrupted records are discarded manually, and allows 

markers to be set manually on the Signal-Averaged ECG (SAECG) records. This 

toolbox was also used in this research, as a tool for viewing and annotating ECGs and 

mainly as a platform for developing new algorithms, implemented in MATLAB. Two 

screenshots from ECGLAB are presented in Figures 4.1 and 4.2.

Set 1 Record 21 at 04.01

i/WI
18 20 22 24 2612 1614

seconds 

Set 1 Record 22 at 04.16

A veraged B eat (blue). 1 st deriv (black) & 2nd deriv (green)

Figure 4.1: ECGLAB screenshot displaying raw (beat- Figure 4.2: ECGLAB screenshot displaying a 

to-beat) ECG SAECG cycle with 2nd derivative information

plotted (green) and vertical markers set.

The left figure displays raw ECG trains before the averaging process while the right 

figure displays a SAECG cycle with second derivative information plotted in green and 

with vertical markers (red vertical lines) set by the user to mark the Q, S and T end.

4.2 Choice of hypoglycaemic threshold

In order to define the medical conditions of euglycaemia (normality) and 

hypoglycaemia, for the purposes of this research, a hypoglycaemic threshold must be 

selected. A threshold lying in the interval [2.5 3.5] mmol/lt has been used in various 

studies. A threshold of 3.5 mmol/lt has been used by Harris et al [Harris 2000], while a 

threshold of 2.5 has been used by Robinson et al [Robinson 2004] in their studies on

7 E C G L A B  w as developed  externally  and is not d is tribu ted  as a  com m ercial too lbox  w ith  the M A T L A B  

softw are package (M athw orks Inc).
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hypoglycaemia. In our case, thresholds of 2.5 and 3 mmol/lt were used. The choice o f a 

threshold to define hypoglycaemia is not an easy one to make. A threshold had to be 

chosen bearing in mind that the data from the two classes would have to be classified by 

a neural or statistical classifier which is not the same situation with that of a clinical 

study. The threshold should be chosen so that the task of the classifier would be eased. 

The two classes formed should be distinguished just by using ECG features 

corresponding to these two classes. In some cases, data belonging to the ambiguous 

range of glucose values between euglycaemia and hypoglycaemia was excluded in order 

to show more abrupt changes of ECG features between the two classes. This transition 

region between euglycaemia and hypoglycaemia was normally in the interval (2.5 4) 

mmol/lt when a threshold of 2.5 mmol/lt was used and in the interval (3 4) mmol/lt 

when a threshold of 3 mmol/lt was used.

A second threshold was also necessary; this is the threshold between euglycaemia and 

hyperglycaemia which is the condition of abnormally high glucose levels. The choice of 

such a threshold is not very critical compared to the hypoglycaemic threshold. After 

consulting our medical collaborators this was chosen to be 8 mmol/lt.

4.3 Hypoglycaemia Detection Approach

In this research work, a methodology was proposed according to which a diagnostic 

system can be implemented for hypoglycaemia monitoring. The proposed approach for 

hypoglycaemia detection is presented in Figure 4.3.

! Provided only " 
! during training •' 
• of classifier '

Classifier

Glucose
info

E C G
represent11

* Class 1: Normal ECG

« Class 2 : Abnormal ECG

Figure 4.3: Feature Extraction and Classification System

The proposed system consists of an ECG representation stage in cascade with a 

classification stage. After the appropriate preprocessing and filtering, the ECG is fed to 

the ECG representation stage. (The system as depicted in' Figure 4.3 receives a 

preprocessed and filtered ECG and hence an ECG preprocessing stage is not presented
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as part o f the system.) In the representation stage, the ECG signal is described 

numerically in an appropriate manner so that it can be classified in the following stage. 

Two approaches were used; the first one was to extract ECG features to be used for 

ECG representation and the second was to achieve ECG representation by means o f AR 

coefficients. The output o f the representation stage (ECG features or AR coefficients) 

was fed to the classifier, either a neural network (Multi-Layer Perceptron (MLP)), a 

statistical classifier (Linear Discriminant Analysis (LDA) or k-Nearest Neighbour 

(kNN)) or a knowledge based system (expert system or fuzzy inference system). During 

the test/monitoring phase, the classifier would classify the input vector fed as either 

normal or abnormal corresponding to hypoglycaemia. In the training phase, glucose 

information would also be available for the classifier. The glucose variable informs 

about the euglycaemic/hypoglycaemic state. It is used to provide the targets for the 

supervised classifiers (MLP, LDA, kNN) or alternatively to aid the construction o f the 

rule base of the KBS.

4.4 ECG representation by extraction o f ECG features

This s ection presents the  feature extraction o f  ECG signals. Feature extraction i s the 

process o f extracting parameters (or features) from a recorded signal. In our case 

features are devised to  describe certain physiological responses on  the  ECG. Feature 

extraction can take place in the time domain, which was the focus of this thesis, in the 

frequency domain, or simultaneously in both the time and frequency domains using 

time-ffequency localisation techniques such as the Short-Time Fourier Transform 

(STFT). In the time domain, both time-interval and morphological features can be 

extracted. Time-interval features simply describe the duration of a component o f the 

signal while morphological features can describe aspects such as the symmetry, the area 

under a curve, the presence or non-presence of a component.

4.4.1 ECG characteristic points

As discussed in Section 2.3.2, each ECG cycle consists of a number of ECG 

characteristic points (sometimes referred to as "ECG significant points"). The 

characteristic points most relevant to this research are: (i) the Q point, R peak, S point, 

which are the onset, peak and offset o f the QRS complex and (ii) the T onset, T peak 

and T offset. These characteristic points are necessary for the process o f extracting ECG 

features since the definition of ECG features is based on these points.
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Detection of the ECG characteristic points

All algorithms discussed in this section were designed to work on SAECGs since the 

feature extraction process was carried out solely on SAECGs. Raw (beat-to-beat) ECGs 

were only used to produce the signal-averaged cycles and feature extraction of the raw 

cycles was not carried out. Therefore, the algorithms were not tested on raw ECG 

signals as this was beyond the scope of study.

Automatic detection of the R peak

This algorithm detects the temporal location of the R peak in SAECGs. Although 

established algorithms exist for the detection of the R peak [Baida 1977], [Moody 

1982], o ur o wn c ode w as d eveloped. T his w as done firstly b ecause m ost e stablished 

algorithms are proprietary and were not found freely available at the time that this 

algorithm was developed and secondly because design o f such an algorithm provided a 

deeper insight into ECG feature extraction. Annotation o f the R peak was necessary for 

all ECG features using this ECG characteristic point in their definition (i.e. RT, RTapex 

features). The R detection algorithm developed for this project is given below in
o

pseudocode form:

LOAD current ECG record
Calculate 1st derivative of EGG record
FIND min & max of 1st deriv and store min_deriv_index & 
max_deriv_index
Calculate difference: min_deriv_index - max_deriv_index 
IF difference > 80msec

Reduce min_deriv_index by 40msec
END
FIND new min of 1st deriv (after above reduction)
FIND max of portion of ECG lying between max_index & min_index (this 
is the R peak)

In the pseudocode, “min_deriv_index” and “max_deriv_index” describe the temporal 

location of the extrema of the 1st derivative. The difference (min_deriv_index -

8 Operations such as: calculating the length of arrays, calculating sampling intervals, printing messages in 

MATLAB command window etc are not included in the pseudocode since they are straightforward 

operations that do not contribute in the understanding of the operation of the algorithm.
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max_deriv_index) is positive for upright QRSs and negative for inverted QRSs. If  the 

difference is greater than 80 msec then the min and max indices found will not 

correspond to the QRS complex. The 80 msec threshold was chosen after investigation 

on our dataset.

The min and max indices correspond to the points of inflection (2nd derivative = 0) to 

the left and right o f the R peak. If a T wave higher than the QRS complex exists then its 

peak and its points of inflection may be detected instead o f those of the QRS. By 

calculating the difference between the two points o f inflection it is inferred whether they 

belong to the T wave or the QRS complex. The T wave being a wider wave in time, 

with a 1st derivative not being as steep as that o f the QRS, will have points of inflection 

further apart than the QRS will.

ECG annotation algorithms are normally tested by comparison to manual annotations 

produced by clinical experts. Manual R peak annotations on our dataset were not 

available so the R detection algorithm had. to be assessed by visual inspection9. Visual 

inspection involved the assessment of the accuracy of an annotation superimposed on 

the current ECG trace and displayed on the visual display unit. The R detection 

algorithm presented here was tested visually on all ECG traces used in the studies 

carried out in this work and was annotating correctly the R peaks.

The objective for our R detection algorithm was to design a method that would work 

satisfactorily on the data used in this project as opposed to producing a robust R 

detection algorithm to be used for generic R annotation. Hence our algorithm was not 

tested on other ECG datasets.

A SAECG record (p203rec41) is presented in Figure 4.4. It depicts the detection o f the 

R peak (marked by a black dashed line) on an ECG record that includes a T peak higher 

in amplitude than the R peak. The 1st and 2nd derivative information are also plotted in 

black and green respectively.

9 carried out by C Alexakis
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Figure 4.4: ECG trace exhibiting a T wave higher than the QRS. R peak annotated correctly by the R
detection algorithm

By employing criteria based on the 1st derivative of the ECG signal, the algorithm 

correctly recognised the R peak, even in the presence of a T wave higher than the QRS 

complex. In a normal ECG cycle, the QRS is the component with highest amplitude and 

hence easy to detect. The algorithm was not tested on beat-to-beat ECG traces. The 

latter may be more difficult to annotate as there is more contamination by noise.

Algorithm for detection of the temporal location of the T peak

This algorithm detects the temporal location of the T peak in SAECGs. The T detection 

algorithm can detect the peak in the following cases:

1. normal T waves

2. inverted T waves

3. biphasic T waves

The algorithm was able to detect more than one T peak. In the case o f biphasic T peaks 

the algorithm detects two peaks, one in the positive and one in the negative phase. 

(Inverted and biphasic T waves were discussed in Section 2.3.1.) The algorithm was 

tested on SAECG traces from our dataset, having a sampling frequency o f 125 Hz. The 

pseudocode for the algorithm is given overleaf.
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LOAD current ECG record
LOAD x coordinate of R peak (i.e. R peak temporal location, 
calculated by R detection algorithm)
CALCULATE 1st and 2nd derivative of the ECG record loaded
PERFORM a forward search to find the 1st point of inflection to the
right of the R peak
CALCULATE RIO4 point
FIND which is the rightmost between R104 and 1st inflection point 
SET as startpt (starting point for T peak search) the rightmost 
point found
Set T peak search interval from starpt up to 12 0msec before the end 
of the ECG trace

FIND all possible T peaks (both +ve & -ve peaks are considered)
STORE in descending order all possible T peaks in peaks_array

% CHECK T peak candidates found for validity 
number_of_valid_j?eaks = 0 % initialise to 0 
loop_counter = 0 % initialise to 0 
WHILE number_of_valid_peaks < 2 

INCREMENT loop_counter
GET current T peak candidate (according to loop_counter) from 
peaks_array (i.e. peaks_array(loop_counter))
FIND points of inflection immediately to the left and right of T 
peak
CALCULATE temporal difference between points of inflection found 

ACCEPT T peak candidate based on conditions below:
■1. Existence of points of inflection to the left and right of the 

T peak.
2. change of sign of 1st derivative immediately to the left and 

right of T peak candidate.
3. inflection point temporal difference e [16 .121] msec
4. inflection point Voltage difference < 400 mV
5. absolute value of 2nd derivative at T peak > 2mV 

END of WHILE
STORE T peak candidate with highest absolute amplitude

The algorithm works by scanning the post-QRS section o f  the SAECG trace, i.e.

detection of the R peak is a pre-requisite for this algorithm. The forward search starts at

the R104 (104 msec to the right of R peak) or at the first point of inflection after the R
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peak, whichever occurs later. The T peak search ends 120 msec before the end o f the 

ECG trace.

Once a T peak candidate is found, the following acceptance criteria are applied to 

decide whether the identified peak is valid:

1. Existence o f points o f inflection to the left and right of the T peak candidate.

2. Change of sign o f 1st derivative immediately to the left and right of T peak 

candidate.

3. Distance between the left and right points o f inflection lying in the interval [16 121] 

msec. (The left and right points of inflection considered are the ones immediately to 

the left and immediately to the right of the T peak.)

4. Voltage difference (i.e. y axis difference) at the points of inflection must be smaller 

than 400 mV.

5. The absolute value o f the 2nd derivative o f the ECG trace at the x coordinate where 

the prospective T peak appears must be greater than 2 mV. (This criterion is 

necessary to distinguish between ECG components (such as small undulations) that 

comply with the above criteria but have a very small absolute value for the 2nd 

derivative at the peak detected.)

If a second T peak is detected that complies with the above criteria, it is kept only if  it 

exceeds 60% of the amplitude of the highest peak. The highest peak is considered to be 

the main T peak. Figure 4.5 illustrates an example o f correct T annotation in a record 

where the ST segment has greater absolute amplitude than the T peak.

The figure depicts the ECG trace in blue and the 2nd derivative signal in green. Dotted 

blue vertical markers denote the position of the points o f inflection to the left and right 

o f the T peak. The vertical green marker denotes the position o f the T peak. Despite the 

fact that the ST has greater amplitude than the T peak, the algorithm has correctly 

identified the latter.
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Figure 4.5: T annotation for patient 216 record 41. (BLUE: ECG trace, GREEN: 2nd derivative)

T wave End Detection

As stressed in Chapter 2, detection of the end of the T wave constitutes a major 

algorithmic problem in the field of ECG annotation due to the ambiguity of location of 

the T wave end under noisy signal conditions, disturbed post-T-wave baselines and the 

like. A number of existing geometric methods were adopted to perform T end 

annotation for the needs of this work, namely the tangent method (Maximum Slope 

Intercept or MSI), the Peak Slope Intercept (PSI) and the Fitting method. A brief 

theoretical background for these algorithms was given in Chapter 2 (Section 2.3.3). The 

above three algorithms were implemented in MATLAB using the ECGLAB toolbox as 

a platform.

Tangent Method or Maximum Slope Intercept (MSI)

This method finds the point of the T wave downslope10 having the steepest tangent and 

marks the end of the T wave at the point where the steepest tangent line meets the 

isoelectric line11. The pseudocode for the tangent method is given overleaf.

10 or upslope in the case o f  an inverted T  w ave

11 horizontal line at 0 volts
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LOAD current ECG record
LOAD T peak coordinates
CALCULATE 1st and 2nd derivative

IF T wave is normal (i.e. upright)
FIND minimum of 1st derivative on T downslope

ELSEIF T wave is inverted
FIND maximum of 1st derivative on T downslope

END

CALCULATE the point where the tangent line meets the isoelectric
line to find temporal position of T end.
STORE T end coordinates

After the algorithm is executed, the R coordinates and the T end coordinates are used to 

calculate the RT interval according to the tangent method.

Peak Slope Intercept (PSI)

This method marks the end of the T wave according to the intersection o f the isoelectric 

line with the line defined by the T peak and the point of maximum slope (inflection 

point) on the T wave downslope. The pseudocode describing the PSI method for 

marking the T wave end is given below:

LOAD ECG cycle
LOAD T peak coordinates
CALCULATE 1st and 2nd derivative

IF T wave is normal (i.e. upright)
FIND minimum of 1st derivative on T downslope 

ELSEIF T wave is inverted
FIND maximum of 1st derivative on T downslope

END

CALCULATE the point where the straight line (defined by the T peak
and the point of inflection on the T downslope) 
isoelectric line to find temporal position of T end. 
STORE T end coordinates

meets the
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After the algorithm is executed, the R coordinates and the T end coordinates are used to 

calculate the RT interval according to the PSI method.

First order fitting method (FTP

This method marks the end of the T wave by fitting a straight line on the T downslope. 

The T end is defined as the point where the line fitted meets the isoelectric line. In the 

implementation o f the method for the needs o f this work the range of data on which the 

straight line was fitted spanned from T peak up to the point o f inflection on the T 

downslope. The pseudocode for this algorithm is given below:

LOAD ECG cycle
LOAD T peak coordinates
CALCULATE 1st and 2nd derivative
FIND point of inflection on T downslope

SELECT range of fit from Tpeak to point of inflection on T downslope
Fit a 1st order polynomial in a least-squares sense (using polyfit
function)

CALCULATE the point where the fitted straight line meets the
isoelectric line to find temporal position of T end.
STORE T end coordinates

In a similar manner a second order polynomial can be fitted. Fitting polynomials of 

higher orders is not advisable since such polynomials will closely follow the shape of 

the T wave downslope and may mask any prolongations o f the QT interval. A second 

order fitting method was included in the RT comparative study presented in Section 

4.4.2.

The MSI method relies on a single point on the T downslope to define the T wave end 

while the PSI method relies on two points and the fitting method relies on a whole 

section o f the downslope. The fact that the MSI method only relies on one point does 

not mean that it is inferior to the other algorithms. Reliance on a single point may 

appear as if  the algorithm will be more sensitive to noise but in practice the algorithm 

proved to be robust, as it will be seen in the section where the algorithms are compared.

The following section presents a comparative study o f geometric methods for T wave 

end detection, and is directly related to the RTc, RTapexc and QTc features.
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4.4.2 Comparative study of geometric methods for marking the end of the T 

wave

A comparative study o f three geometric methods used to mark the end o f the T wave is 

presented in this section. By geometric methods we refer to algorithms that work on the 

T downslope using geometric criteria such as tangent lines or fitting o f best straight 

lines for marking the end o f T. The first 3 algorithms described in chapter 2 (msi, psi, 

fit) are considered to be such methods. These methods comprise relatively simple 

approaches, in concept, for marking the end of T. The motivation for this study was to 

assess these algorithms specifically on our data and compare the algorithms in the

context of hypoglycaemia detection using the ECG. Moreover the tangent method has
12 . . .been used, in a semi-automatic way , by our medical collaborators in their clinical

studies on the manifestation o f hypoglycaemia on the ECG. Therefore, assessment of 

this method and comparison with other similar methods would be useful to them as 

well.

Five methods were considered in total. This includes the aforementioned three plus a 2nd

order fitting method and a manual method for benchmarking the automatic ones.

Manual marking of the end of T is the current gold standard. The manual marking o f the
1 2ECG records was performed by a biomedical scientist familiar with ECG annotation. 

The RT interval was used14, instead o f the traditionally used QT, in order to assess the 

various algorithms. This is because identifying automatically the Q point on the ECG 

can be a difficult task to perform especially in the presence of noise. The R point (the 

peak of the QRS complex) can be detected a lot more easily and accurately than the Q 

point. Moreover it is obvious that the RT interval still describes satisfactorily the 

duration of ventricular repolarisation so it can be used as a predictor of this arrhythmia. 

A few other researchers, e.g. [Porta 1994, 1998], have also considered the RT instead o f 

the QT. The RT is defined as the time interval from the R peak to the end o f the T wave.

12 The T end marking was semi-automatic in the sense that a tangent line was used as a visual aid when 

performing manual T end annotation.

13 Cath Davies from the Royal Hallamshire Hospital in Sheffield.

14 R detection was automatic and T end detection was done manually by Cath Davies.
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Methodology for the comparative study

All t he a lgorithms w ere i mplemented i n M ATLAB u sing t he'E CGLAB t oolbox a s a 

platform. The manual marking, in order to be blinded, was carried out on a blank 

computer screen with no labelled axes or any sort o f visual aids. The second order 

fitting m ethod w as i ncluded b ecause i t h ad n ot been found t o h ave b een t ried i n t he 

literature. A second order polynomial would follow more closely the T wave downslope 

and it was suspected to partly mask the prolongations in the RT. However, the range of 

the T wave downslope used for fitting was small which means that the second order 

fitting algorithm would not closely follow the downslope. We wanted to test this 

algorithm and investigate the extent to which it could demonstrate prolongations in RT 

or QT. Moreover it was easy to include the second order method in the study since its 

implementation was largely based in the first order method. The way that the second 

order fitting method works is by fitting a second order polynomial on the downslope of 

the T wave. The root of the polynomial that occurs to the right of the T peak marks the 

end of the T wave i.e. the end is marked as the point o f intersection o f the polynomial 

with the isoelectric line to the right of the T peak. The other root, occurring to the left of 

the T w ave i s i gnored. In t his s tudy t he r ange o f d ata o n w hich t he p olynomial w as 

fitted, ranged from the T wave peak to the point o f steepest tangent on the T wave 

downslope. This was the case for both the first and second order fitting methods.

The above T end detection algorithms were examined and compared using a few 

different approaches. Firstly the graphs of RTs over time were inspected visually for 

each algorithm. This way it was seen how each method behaved and the level o f offset 

(baseline level) o f each one was identified. Identifying the offset indicated the degree o f 

over/under-estimation of the RTs by each algorithm. Correlation coefficients were also 

used in order to identify the correlation between each o f the methods. Bland-Altman 

plots [Bland 1986] were used in order to examine the level o f agreement between the 

manual and each other method.

It has to be noted at this point that the RT intervals used in this study were not corrected 

for heart rate. This was because we were interested in comparing the performance o f the 

algorithms. The algorithms were assessed according to how well they resembled the 

manual method and not according to how well they correlated with glucose or how well 

they could predict certain cardiac arrhythmias. So heart-rate-correction was not 

considered necessary. But even if correction had been applied, it would not have
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introduced any change since all RTs would have been corrected using the same 

algorithm. RT intervals from all algorithms would have been divided by the same 

number (RTc = RT / VRR) according to Bazett’s correction formula [Bazett 1920]. This 

would effect as a form of normalisation which was not necessary.

C o m p ara tiv e  S tudy  R esults

The diabetic patients used for this study were: 201 A, 203, 204, 205, 207, 208, 209, 215, 

216, 222 and 227. Data exists for two nights (normally 66 records) for all patients 

except 204 and 222 which gave single-night records due to problems during data 

acquisition. This means that approximately 660 ECG cycles were used in this study. 

Patients having inverted or biphasic T waves were not included in the study. Figure 4.6 

illustrates the RT intervals produced by the five different methods for the first night of 

subject 207. It can be seen that the manual method produced the longest RTs and the 

second order fitting method produced the shortest.

legend

C ircles: m anual 
D iam onds: fit 
R eddots: psi 
B luedots: m si 
Stars: fit2nd

Figure 4.6: R T  intervals by the 5 algorithm s fo r  207-night 1 

For each RT measurement method used, the mean and standard deviation of the RT 

values over all patients and all nights were calculated. This gives an indication of the 

overestimation or underestimation of the RT interval by each method. The results are 

shown in the bar chart below (Figure 4.7):
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mean & std of 5 RT methods over all nights for 11
patients
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Figure 4.7: Mean and standard deviations across all patients, fo r the 5 Tend annotation methods 

Bars labelled with odd numbers correspond to the mean values, while bars labelled with 

even numbers correspond to standard deviations. The table incorporated in the figure 

informs about the exact height of the bars.

It can be seen from Figure 4.7 that the manual method gives the longest RTs followed 

by the first order fitting method, then by the peak slope intercept method, the maximum 

slope intercept method (tangent method) and then by the second order fitting method 

(man>fit>psi>msi>fit2nd). The psi and fit methods gave very similar results. This i s 

also apparent from the correlation coefficients between psi and fit.

Exceptions. The level of offset of the RT interval identified by each algorithm was 

different but consistent across patients (man>fit>psi>msi>fit2nd). Nine exceptions were 

observed, in the above result, out of the 660 records considered. They occur in the 

following patients, among the 11 patients used:

■ Patient 205-night 1: psi and fit longer than manual for records: 2, 3, 5.

■ Patient 205-nght2: psi and fit longer than manual for records: 51, 54, 57, 59.

(For record 42 fit is slightly longer and psi is shorter than manual. This record was 

not considered among the exceptions.)

■ Patient 227-night2: psi and fit longer than manual for records: 39 and 46.

(For record 50 fit is slightly longer and psi is slightly shorter than manual. This 

record was also not considered among the exceptions.)

Agreement among first derivatives of the RT methods

Although the first derivatives of all the methods agree in most o f the cases, i.e. all the

methods ascend, descend and change direction in the same way, there have been
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observed some exceptions to this. One example is record 22 of patient 208-nightl. The 

RT drops for the manual and second order fit method but rises for psi and fit. It almost 

stays the same for msi. This is highlighted in Figure 4.8 below.

14 '6  18 20 22 24 26
record #

Figure 4.8: RT by psi and fit increases while it decreases for manual and fit2nd

legend 
circles: m anual 
d iam onds: fit 
reddots: psi 
b luedots: msi 
stars: fit2nd

C o rre la tio n  coefficients

Correlation coefficients were calculated for all methods. Correlation matrices were 

produced for the 11 subjects. Each correlation matrix contains the correlation coefficient 

of each RT measurement method with all the other RT methods. As an example, the 

correlation matrix for patient 205 is given in Table 4.1 below:

Table 4.1: correlation coefficients for patient 205

p205 man msi psi fit fit2nd

man 1 0.948 0.8255 0.8125 0.6062

msi 0.948 1 0.8515 0.8326 0.557

psi 0.8255 0.8515 1 0.9986 0.5112

fit 0.8125 0.8326 0.9986 1 0.511

fit2nd 0.6062 0.557 0.5112 0.511 1

Each method has a different offset but the differences between the methods are not 

exclusively due to a difference in offset. This can be seen from the correlation 

coefficients between the different methods. If the differences between the methods were
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purely due to offset then the correlation coefficients would be equal to 1. But this is not 

the case as seen in Table 4.1.

It must be mentioned here that the correlation coefficient p can only identify linear 

relationships between two variables. Even if  the correlation coefficient does not indicate 

so, a non-linear relationship may exist. Looking at the correlation o f the manual 

methods with all the other methods, it was observed that: the msi method had the 

highest c orrelation w ith t he m anual m ethod for 7 o ut o f  1 0 p atients. F or t he o ther 3 

patients the fit2nd method had the highest correlation with the manual method.

The following rankings o f the correlations, from highest to lowest, were observed 

between the manual and the other methods:

■ p(man,msi) > p(man,psi) > p(man,fit) > p(man,fit2nd), for 3 patients

■ p(man,msi) > p(man,fit2nd) > p(man,psi) > p(man,fit), for 3 patients

■ p(man,fit2nd) > p(man,msi) > p(man,psi) > p(man,fit), for 2 patients

Comparison of T end methods using Bland-Altman plots

J. M. Bland and D. G. Altman [Bland 1986] have developed a visual method for 

assessing agreement between two methods o f clinical measurement. This method was 

included in this study to aid in the comparisons o f the different RT algorithms. As 

stressed by Bland and Altman [Bland 1986], the concept o f good correlation should not 

be confused with the concept of good agreement. Two measurement algorithms 

measuring the same quantity should ideally agree in the readings they produce and not 

just correlate well with each other. So generally the Bland-Altman plot is a more useful 

tool than the correlation coefficient p when trying to identify agreement between two 

methods.

A Bland-Altman plot for comparing two measurement methods is basically a scatter 

diagram. Each point of the x-axis is the average value between each pair o f 

measurements produced by the two methods studied. Each point o f the y-axis describes 

the difference between the pair of measurements. A scatter diagram of the differences vs 

the average values is produced. Horizontal lines marking the mean and the ±2sd 

(standard deviation) limits are also included.
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Bland-Altman plots give an idea of how the difference and the spread o f readings 

between two methods change as the average RT between the two methods changes. The 

Bland-Altman p lots t hat c ompare t he m anual m ethod w ith a 111 he o ther m ethods, fo r 

patient 201, are given in Figure 4.9.
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Figure 4.9: Bland-Altman plots for patient 201A 

The top-left plot examines the agreement between the manual method and the msi 

method and the top-right examines the agreement between the manual and the psi. The 

bottom-left compares the manual with the fit method and the bottom-right the manual 

with the fit2nd method. The x-axis displays the average RT between the two methods 

compared while the y-axis displays the difference in RT between the manual and the 

corresponding automatic method. The dashed lines mark the mean and ±2sd limits. For 

patient 201A all the data points, but one, lie within the 2sd limits. This happens for all 

four plots o f this patient. It can be seen that the difference between the manual and each 

other method increases as the average RT increases. This means that the disagreement 

between the manual and each automatic method in turn increases as the length o f RT to 

be measured increases. This piece of information is not provided by the correlation 

coefficient. To remove this trend from the graphs a logarithmic transformation can be 

used, before the data is plotted.

It is apparent from the graphs that the mean difference (marked by the middle dashed

line) lies well above zero in all the cases. This is because of the different levels o f offset

in the methods. If  the agreement between the manual and each other method was very
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close, then the mean-difference-line should lie very close to zero. The best agreement is 

found for patient 204 and for the psi and fit algorithms. For most o f the patients the 

magnitude of the difference is quite significant compared to the magnitude o f the RT 

intervals. Because Bland-Altman plots comprise a visual method for assessing 

correlation and agreement, correlation coefficients were also useful since they express 

the level of correlation numerically.

Final discussion on comparative study

The manual method gave the longest RTs for all patients and all nights. There were 9 

cycles as exceptions to this, out of the 660 cycles studied. The tangent (msi) method 

was the one that correlated mostly with the manual method according to what the 

correlation coefficient indicates. The psi and fit methods correlate very well with each 

other. The correlation coefficients between the two are the highest ones observed in the 

study. The performance of the first order fitting method could possibly be improved by 

changing the portion of the T downslope used to fit the best straight line. Different 

ranges could be used to optimally tune the algorithm. This was not undertaken due to 

time constraints. Another fact observed was that the differences between the algorithms 

were not purely due to offset as the correlation coefficient indicated.

There was a need to choose a T end detection algorithm to be used as part of the feature 

extraction process. The automatic tangent method was chosen as the method to use. 

This method correlated the highest with the manual method which is the current gold 

standard. Moreover the semi-automatic version of the tangent method has been already 

used for manual feature extraction by medical experts [Ireland 1998, 2000] which 

indicates that this method is already accepted in the medical community.
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4.4.3 Evaluation of the Symmetry and Morphology of the T wave

One of the main motivations in performing ECG feature extraction was to quantify the 

level of symmetry and the morphology of the T wave. A number of features were 

proposed and the relevant algorithms used to extract these features were designed. 

Three novel features were introduced: the Half-Areas Ratio, the T wave skewness and 

the T wave kurtosis feature. The latter two features were inspired from the 3rd and 4th 

central moments, used in statistical theory to evaluate the symmetry and peakedness of 

distributions. In our case the definitions o f skewness and kurtosis were adopted to 

evaluate the morphology o f the T wave.

Half-Areas Ratio (HAR) algorithm

This algorithm was designed for producing a basic symmetry ratio for the T wave. The 

ratio of the areas to the left and right of the T wave was used and the feature was termed 

HAR (Half-Areas Ratio). A similar symmetry feature had been used in the past by 

Benhorin e t a l [Benhorin 1 990] to  evaluate the symmetry o f  the T wave. B enhorin's 

Symmetry R atio ( SR) w as d ifferent t o o ur v ersion ( HAR) a nd w as i nvolving t he S T 

segment. As mentioned in Section 2.4.2, Benhorin's symmetry ratio was defined as the 

ratio between the integrated area over SoTm and TmTo intervals (SR= SoTm/TmTo). In 

our case we wanted to avoid involving the ST segment in the quantification, o f T wave 

symmetry. A symmetry measure was introduced that involved only the T wave portion, 

enclosed by T onset and offset. The Half-Areas Ratio algorithm calculates the ratio of 

the areas to the right and left o f the T peak and can give us a simple measure o f the 

symmetry o f the T wave. The HAR feature is given by the formula:

HAR= AreaRHs / AreaLHS

If the two areas are equal then the ratio is 1. If the area to the right o f T peak (AreaRHs) 

is greater than AreaLHS then the ratio is greater than 1 and vice versa15. Figure 4.10 helps 

illustrate the concept behind the algorithm. Assuming an upright T wave, the two areas 

involved are calculated as follows: the left-hand-side area (AreaLHs) is left-delimited by 

the vertical line going through Tonset, right-delimited by the vertical line going through

15 Benhorin's symmetry used a ratio of the LHS upon the RHS area. We chose the inverse (RHS/LHS) so 

that the HAR value would increase for T waves skewed to the right and decrease for T waves skewed to 

the left. This is in agreement with how the skewness of a distribution works and allows easier inspection 

of feature values by a human observer.
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T peak, bottom-delimited by the isoelectric line and top-delimited by the ECG portion 

corresponding to the T wave upslope. Replacing the Tonset by Toffset and the T wave 

upslope by the downslope produces the definition of the right-hand-side area (A reals)-

HAR = AreaRHs / AreaLHS

Figure 4.10: Truncated T  wave to demonstrate Half-Area Ratio

Figures 4.11 and 4.12 illustrate two T waves from patient 202-nightl (202A) that 

possess the extreme values of HAR for the given patient. The onset and offset o f the T 

wave were calculated by the tangent method (msi).
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Figure 4.11: T wave of202A record 14 having a HAR value o f 0. 547
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Figure 4.12: T wave o f202A record 16 having a HAR value o f  0.6605

The HAR variation for this night shows only subtle changes. All T waves in the night 

possessed a LHS area, greater than the RHS area. The change in T wave symmetry 

according to HAR was small although the above night contained hypoglycaemic 

records.

The HAR feature is dependent on the onset and offset annotations o f the T wave. Using 

different algorithms to mark the onset and offset of the T wave will yield different 

values of the feature. For instance, if  we consider two identical T waves, with the 

second T wave having its end located a few msec to the right compared to the first T 

wave, then the HAR value will be different for the two waves although they will have 

the same symmetry. In order to investigate the sensitivity o f HAR to the annotation 

algorithms, the feature was calculated, based on 3 different annotation algorithms.

Figure 4.13 illustrates the HAR feature values from patient 209 when the T wave offset 

is calculated in turn by the three algorithms (msi, psi, fit) described in Section 4.4.1.
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HAR feature based on 3 different T end detection algorithms
(patient 209)
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Figure 4.13: HAR fea ture based on 3 different T  end detection algorithms (patient 209)

The T onset is calculated by the msi algorithm (tangent method) to avoid introducing 

algorithmic variations on the annotation of the onset. This allows investigation o f the 

effect o f the use of different offset algorithms. It can be seen on the graph that the HAR 

profile depends on the annotation algorithm used. Even if  the same algorithm is used for 

annotation o f onset and offset, the existence o f some variation will be possible. For 

instance, the behaviour o f the tangent method will be different on the T upslope and 

downslope because they have different slopes. The following section discusses 

approaches that were followed in order to reduce the dependence o f the HAR algorithm 

on the T onset/offset annotations.

Reducing the dependence of HAR on the T onset/offset annotations 

A number of steps were taken to make the HAR feature ( and also the s kewness and 

kurtosis features, presented later) as independent as possible to the T onset/offset 

annotations. One approach was to make the feature dependent on only one annotation, 

either the. onset or offset, instead of two. This could by achieved by defining the onset 

and offset of the T wave in such a way that they would lie at the same amplitude (in 

mV). This would define a horizontal threshold level and only the portion of the T wave 

above this threshold would be used for symmetry/morphology calculations. This would 

contribute in overcoming variations of the HAR feature due to the onset/offset 

annotations being at different amplitudes. The point (either onset of offset) being at the 

highest amplitude was extrapolated (i.e. projected) at the other side o f the T wave. For 

instance, if  the T offset was at a higher amplitude than the T onset, then the T offset
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would be extrapolated on the T upslope and would define a new onset for the wave (T- 

onsetextrap).

The opposite was done when the onset was at a higher amplitude than the offset; in that 

case the onset was extrapolated on the other side. What is achieved by the extrapolation 

process is that the value of each of the three symmetry/morphology features depends 

only on  o ne annotation ( either o nset o f  o ffset) r ather than two. T he n ew o nset/offset 

defined by projection from the other side o f the wave, would only be used for the 

purposes o f calculating the HAR feature and the other two features assessing symmetry 

(skewness, kurtosis). The extrapolated onset/offset would not be used for calculating 

other features e.g. time interval ones (T-duration etc).

The above process is illustrated in Figure 4.14.
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Figure 4.14: An illustration o f extrapolating the T onset on the T downslope (p209 record 6) 

The figure shows the projection o f T onset on the T downslope. The T onset annotation 

lies at a higher amplitude than the T offset so it is the one to be projected on the other 

side to define a horizontal threshold level. The extrapolated-HAR (HARx) feature for 

this T wave will be calculated based on T-onset and T-offsetextrap. When the T wave 

offset lies at a higher amplitude it is extrapolated on the T upslope to define a new 

onset.
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A second approach used to evaluate the symmetry of the T wave based on the HAR 

feature, with no dependence on the onset and offset annotations, was to use the point o f 

inflection on the T downslope to define the horizontal level. Only the portion of the T 

wave above this horizontal level was used to calculate the symmetry o f the wave.

In the approaches using a horizontal level to set a lower threshold for selecting the T 

wave portion for morphology calculations, we were faced by problems due to low 

sampling rates of the ECG signal. The closest ECG samples to the horizontal threshold 

chosen, had a significant difference in amplitude between them, as illustrated in Figure 

4.15 and would almost never lie at the same horizontal level. This partly d efeats the 

purpose of using a horizontal level as a step to improve the T wave morphology 

calculations. Although the difference in amplitude between the onset and offset 

annotations is reduced, it is not eliminated. Even for high sampling rates, the amplitudes 

o f the offset and extrapolated onset, or vice versa, will be similar but not identical. In 

the case of our dataset the sampling rate was low (125 Hz) and the above problem was 

more prominent. One solution to this would be to use interpolation for upsampling the 

data to a higher sampling rate. Due to the low sampling rate in our dataset, the amount 

of interpolation needed was high and this was, in some cases, causing some distortion to 

the signal. Although the distortion was not severe, the approach of interpolating was not 

followed. T wave symmetry changes can be subtle and even the slightest distortion due 

to interpolation could contaminate the features.

Boxplots are presented in Figure 4.16 to allow comparisons o f the three versions of the 

HAR feature. The boxplot [Tukey 1977] is a very useful tool for data inspection and 

will be used in the remaining of the chapter as part o f the ECG feature analysis. A box 

represents the inter-quartile range (mid-50% of the data) while the median is also 

marked with a line across the smaller dimension of the box. The whiskers display the 

extent of the remaining o f the data. Outliers are represented by "+" as seen on the graph. 

The notches in the box are a graphic confidence interval about the median o f a sample. 

Box plots do not have notches by default. The use of notches is a feature o f the boxplots 

produced by the Statistics toolbox [MathWorks Statistics] in MATLAB.
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Figure 4.15 compares the three versions of the HAR feature for the conditions of 

normality16 and hypoglycaemia. The LHS graph presents the raw  feature, the middle 

one presents the HAR feature after projection of the T onset or offset on the other side 

(HARx) and the RHS figure presents the HAR feature when the T wave portion used is 

selected by the point of inflection of the downslope (HARxIP). It can be seen that all 

three features have similar behaviour. In all three cases there are big differences 

between euglycaemia and hypoglycaemia and the feature changes appear to be 

statistically significant, according to the notches plotted. There is no overlap o f the 

notches for the boxplots corresponding to normality and hypoglycaemia. 

Hypoglycaemia also appears to have significantly larger ranges of values compared to 

normality. Comparing the normal records for all three features, it is seen that all three 

boxes are quite symmetric with the raw HAR feature having the largest range. 

Comparing the hypoglycaemic records for all three features, it is observed that the 

HARx and HARxIP features are significantly skewed to the left (i.e. bottom in this plot) 

compared to the raw HAR feature which is slightly skewed to 'the right (i.e. top in this 

plot).
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Figure 4.15: Boxplots fo r the 3 versions o f the HAR feature for patient 203 (both nights):

(a) HAR, (b) HARx, (c) HARxIP

16 Including hyperglycaemic data if present.
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Although the above boxplot was informative about the behaviour of the HAR feature, it 

does not provide temporal information. In order to investigate the dynamic changes with 

respect to time and in relation to the changing glucose, Figure 4.16 is provided. The top 

graph presents the three versions of HAR vs time. The bottom graph presents the 

glucose levels. Two successive nights for this patient are given. The vertical dashed line 

in black splits the two nights. The horizontal dashed line in black, at the bottom graph 

marks the hypoglycaemic threshold of 3 mmol/lt.
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Figure 4.16: HAR features and glucose level versus time fo r  2 successive nights o fpa tien t 203

The 3 versions of the HAR feature have similar performance with the HARx and 

HARxIP being very close together. The graph indicates that this feature, in all its 

versions, is a very informative one in relation to hypoglycaemia detection. The first 

night was hypoglycaemic while the second was normal (including some hyperglycaemic 

records). The HAR feature (all three versions) had very small variation for the second 

night (RHS of the vertical dashed line) while it had great variation during the first night 

which was hypoglycaemic as can be seen from the glucose profile in the bottom graph.

It is emphasised that the performance of the various ECG features, as predictors of

hypoglycaemia, is expected to vary from patient to patient. The HAR feature for patient

227 (both nights) is presented in Figure 4.17. It can be seen that there are clear changes
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between the two clinical conditions, but the changes are not as prominent as those of 

patient 203 presented in Figure 4.16. Comparing the three versions of the HAR feature 

for patient 227, it is observed that the HARx was the worst version of the feature 

judging by the overlap that the notches of the boxplot have.
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Figure 4.17: Boxplots fo r  the 3 versions o f  the HAR feature fo r  patient 227 (both nights):
(a) HAR, (b) HARx, (c) HARxIP

Assessing T wave symmetry using the concept of skewness

As part of the efforts to devise algorithms that will assess the T wave morphology, an 

algorithm was designed that uses a normalised form of the 3rd central moment 

(skewness) to assess the symmetry of the T wave. An analogy was formulated that was 

considering and assessing the symmetry o f T waves in a similar way to how the 

symmetry of a statistical distribution is described by the normalised 3rd central moment. 

Skewness is calculated by dividing the 3rd central moment, about the mean, by the cube

E(x  —
of the standard deviation as described by the formula: Y' = ---------------------------eq"(4.1)

s

where E  denotes the “expected value” operator.

This is the skewness of a random variable X  with sample mean x and sample standard

deviation s . It d escribes t he sy mmetry o f  t he d istribution o f  X .  S kewness i s n egative

when the distribution is skewed to the left and positive when it is skewed to the right. A
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skewness of zero corresponds to a perfectly symmetric (i.e. Gaussian) distribution. 

Skewness in this study is not used for quantifying the symmetry of the distribution of a 

given ECG f  eature b ut r ather t o evaluate t he s ymmetry o f  t he T w ave shape. T he T 

wave shape resembles the shape o f a bell-shaped distribution which justifies the choice 

o f the concept o f skewness to assess the symmetry o f the T wave.

In order to evaluate its symmetry, the T wave component is truncated from the rest o f 

the ECG trace and is treated as a functional form. Its shape is treated as if  it is the shape 

o f the frequency curve o f a, highly-sampled, discrete distribution. The skewness o f this 

functional form is calculated and, effectively, we obtain a measure o f symmetry o f the T 

wave. (We utilise the term frequency curve instead o f probability curve because the T 

wave curve originates from a sampled signal and, more importantly, it is not normalised
17to have unity area underneath .)

Let us consider a random variable X. f(x) is the frequency of occurrence o f X  at value x
+00

and Jx - f ( x ) d x  ' eqn(4.2)
—oo

describes the area under the frequency curve. When the curve is normalised to have
+00

unity area underneath ( Jx • f { x ) d x - 1 ) then f(x) is referred to, as the probability
-oo

density function (p.d.f.) o f x.

In our case, and in order to calculate the symmetry o f the T wave, X  describes the time 

(x-axis variable) and f(x) the corresponding voltage o f a given sample o f the ECG trace 

(y-axis variable). Using this analogy and for an analogue ECG signal, equation 4.2

Toffset

becomes: j t-ECG(t)d t  eq11 (4.3)
Tonset

where t describes the time at any time instant and ECG  describes the corresponding 

amplitude of the ECG trace (only for the T wave portion o f the ECG) for this time
i=Toffset

instant. In the discrete domain this can be written: ^  U • ECG{ti) eqn (4.4)
i=Tonset

Using this analogy, we are calculating the normalised 3rd central moment o f the T wave 

sample points about the T wave peak and this leads to a new ECG feature for T wave 

symmetry evaluation. The analogy used is illustrated in Table 4.2:

17 The term probability curve refers to continuous distributions with unity area underneath.
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Table: 4.2: Analogy introduced to allow calculation o fT  wave skewness and kurtosis

Analogy

statistical theory assessment of T wave morphology

random variable X discrete time tt (sampling instants at which T 

wave is sampled)

frequency of occurrence of X, (f(A)) T wave portion of ECG signal, ECG(t) (mV)

mean of X temporal position of T wave peak

variance of X 2nd moment of ECG sample points around the T 

wave peak

standard deviation o fX square root of the 2nd moment of ECG sample 

points around the T wave peak

skewness of the distribution of X 3rd moment of ECG sample points around the T 

wave peak normalised by the cube of the standard 

deviation

kurtosis of the distribution of X normalised 4th moment of ECG sample points 

around the T wave peak

According to the analogy, the mean value of the distribution corresponds to the T peak. 

The standard deviation formula expresses the square root o f the 2nd moment o f the ECG 

sample points around the T peak (cjjpeak), and the skewness expresses the normalised 3rd 

central moment around the T peak, trpeak denotes the temporal position o f the T wave 

peak. The algorithm assessing the kurtosis of the T wave is based on the same analogy 

and will be discussed in Section 4.4.3.

According to the above analogy, the skewness formula becomes:
N

'Y.ifi-tTpeckf -ECG(ti)
T skewness = —------^-------------------- / a w *3 eq" (4.5)

i= 1

( t i  — tTpeak) 2 ’ ECG(ti)
M  *-------------------- ' eq" (4.6)where o r Peak =

| /=1

The analogy w as based o n equations from population statistics (using true mean and 

standard deviation) as opposed to the equations from sample statistics. When using 

equations from sample statistics, and for a sample of N points, the denominator for the
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N N

above equations would be ^  ECG(ti) -1  instead of ^ E C G ( t i ) , i.e. one degree of
i i

freedom (DOF) would be subtracted. Our situation although being only an analogy to a 

statistical problem, resembles a problem where the whole population is considered 

instead of a sample of the population. The T wave is abstracted as the shape o f a true 

distribution and not as a sample distribution producing an estimate of the true 

distribution o f the population. Each T wave shape assessed, purely describes itself and is 

not an estimate of any other T wave.- In other words, we know the temporal position of 

the T wave peak instead of calculating it from the T wave data, which is analogous to 

knowing the true mean o f a distribution, in a statistical problem.

The behaviour o f the skewness algorithm was tested experimentally. The choice o f the 

exact form o f the skewness equation being the one originating from population 

statistics, was also tested. A perfectly symmetric T wave was constructed to investigate 

the above. This was an artificially synthesized T wave but was based on real ECG data. 

The upslope of a nearly symmetric T wave (p203 record7) was chosen and its mirror 

image, along the vertical, was produced. The two shapes were joined together to 

produce a perfectly symmetric T wave. This is shown in Figure 4.18.
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Figure 4.18: artificially synthesized T wave, exhibiting perfect symmetry

The HAR feature for this T wave was 1 as expected. The skewness feature (SKEW) for 

this wave for N -l DOFs (i.e. sample statistics) was -6 .983M O'17 while it was 

-6.9821-10'17 for N DOFs (i.e. true population statistics). It can be seen that the
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difference between the two values of skewness is negligible. Values o f skewness in the 

order o f 1 0 '17 are practically zero, which demonstrates that the skewness algorithm 

assessed correctly the perfectly symmetric T wave corresponding to a theoretical 

skewness value of zero. It also demonstrated that the choice o f the number o f DOFs did 

not affect the result. This is due to the fact that the T wave shape assessed was not 

normalised to have unity area. Normalising to unity area leads to a value o f skewness in 

the order of 10' 15 when using N -l DOFs, while the skewness values using N DOFs
1 7remains in the order o f 1 O' .

The skewness algorithm needs the T onset and T offset annotations in order to function. 

The onset and offset specify the subsection of the ECG trace to be used. The skewness 

algorithm for calculating the symmetry o f the T wave is illustrated in Figure 4.19 that 

displays two truncated T waves o f calculated skewness -0.049 and 0.352 respectively. 

The data originates from patient 204 and the traces illustrated in the figure are records 9 

and 26 respectively which exhibited the extrema of skewness for this patient. The T 

wave in record 9 is slightly skewed to the left according to the skewness algorithm 

while the T wave in record 26 is skewed to the right. The green line marks the T peak 

while the black dashed lines to the left and right of the peak mark the onset and offset o f 

the wave respectively. Taking in account the T onset and offset it is apparent from the 

figures that the LHS graph looks quite symmetric while the RHS one is skewed to the 

right. Obviously the calculation of skewness depends heavily on the annotation o f the T 

wave onset and offset. For instance if the T wave offset on the RHS graph above was 

marked a few msec to the left o f its current position, the value o f skewness calculated 

would appear to be less positive.

Figure 4.19: (LHS) p204rec9 (skew=-0.065); (RHS) p204rec26 (skew= 0.291)

In order to analyse this phenomenon, the skewness was calculated for each record o f 

patient 204 using 3 different T end annotations by 3 different algorithms, namely MSI
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(tangent method), PSI and FIT. This was a similar analysis to the one assessing the 

effect o f the T onset and offset annotations on the HAR feature. In order to allow 

comparisons of the effect o f T end, the T onset was calculated by the MSI algorithm in 

all three cases. We are focusing on the effect of T end annotation on the calculation of 

skewness rather than the effect of T onset annotation because the former is the one that 

constitutes a more difficult algorithmic problem. Annotating the T onset is an easier task 

since the waveform is likely to be less affected and distorted by dropping glucose. 

Hence it is crucial to choose a T end detection algorithm that releases the full potential 

of the skewness feature in evaluating the symmetry for the wave. For instance an 

algorithm that overestimates the QT interval, i.e. it marks the end o f T always to be to 

the right o f where it should be, will tend to present the T wave being skewed to the right 

which will mask the real symmetry of the wave.

The skewness calculated using the three T end algorithms is tabulated in Table 4.3. The 

table includes the record numbers and the glucose levels as well.

Table 4.3: Skewness based on three different algorithms of T end detection

rec gi skew msi skew psi skew fit
5 8.48 0.183 0.632 0.632
6 8.48 0.302 0.415 0.415
7 7.09 0.233 0.451 0.451
8 5.08 0.017 0.177 0.177
9 5.41 -0.049 0.282 0.282

10 5.66 -0.031 0.022 0.022
11 6.14 0.014 0.091 0.091
12 5.23 0.273 0.388 0.388
13 4.91 0.040 0.300 0.400
14 4.69 0.023 0.202 0.202
15 4.06 0.047 0.112 0.112
16 4.09 0.052 0.138 0.138
17 2.82 0.225 0.475 0.475
18 2.20 0.259 0.503 0.503
19 2.20 0.228 0.559 0.648
20 2.20 0.179 0.357 0.357'
21 2.20 0.220 0.436 0.544
22 2.20 0.301 0.631 0.631
23 2.20 0.272 0.364 0.364
24 2.20 0.040 0.133 0.218
25 2.20 -0.023 0.128 0.128
26 2.20 0.352 0.470 0.586
27 2.20 0.306 0.419 0.419
28 2.20 0.181 0.289 0.289'
29 2.20 0.274 0.386 0.386
30 2.76 0.222 0.556 0.658
31 2.20 0.035 0.122 0.122
32 2.20 -0.009 0.138 0.138
33 2.20 0.040 0.187 0.187
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The contents of the table are also presented as a graph in Figure 4.20.
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Figure 4.20: Skewness according to three different algorithms of T end detection

It can be seen that the skewness calculated by the peak-slope-intercept (PSI) algorithm 

matches very closely the skewness calculated by the fitting algorithm (FIT). The dc 

component of the skewness calculated by the tangent method (MSI) is significantly less. 

According to this algorithm the T wave appears to be negatively skewed (i.e. to the left) 

in more samples than with the other two algorithms. The other two algorithms 

overestimate the RT interval and hence they cause most T waves to be assessed as 

skewed to the right.

In order to aid the investigation of the effect of the T end annotation on the calculation 

of skewness, the correlation coefficient between glucose and the values of symmetry by 

the three different T end annotation algorithms (MSI, PSI and FIT) is calculated. The 

correlations are tabulated in Table 4.4.

Table 4.4. Correlation coefficients between glucose and skewness, based on three different

algorithms.
correl(gl,msi) correl(gl,psi) correl(gl,fit)

glucose -0.1311 -0.0041 -0.05814

The correlation coefficients calculated are very low for all algorithms but they suggest 

that the skewness calculated by the MSI algorithm correlates less badly with the glucose 

variable.
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Advantages of the skewness feature (SKEW) over the HAR feature

Both these features are used to assess the symmetry of the T wave. A question could 

easily be raised as to why use the skewness feature and what are the advantages o f this 

feature over the simpler HAR feature. The limitation o f the HAR feature is that it 

quantifies symmetry simply by using the areas o f the T wave halves to the left and right 

of the T peak. This feature will not detect the asymmetry o f a wave whose halves to the 

left and right o f the T peak have the same area. On the other hand, the skewness feature 

does not depend on the areas for assessing the symmetry and will distinguish the 

asymmetry in the above example. This can be easily understood by considering the 

simple illustration in Figure 4.21. The illustration depicts a piecewise linear 

representation o f the T wave. The LHS o f the T wave is defined by a right-angle 

triangle and the RHS by a trapezium joined with a right-angle triangle that simulates the 

case when the T wave is skewed to the right. The points corresponding to the T onset, 

offset and p eak are m arked o n t he figure. B ye onsidering the 1 engths m arked o n t he 

figure (arbitrary units) the HAR value can be calculated:

AreaLHs =  (9*10)/2 = 45

AreaRHs = (10 + 2)*6/2 + (9*2)/2 = 45

HAR = AreaRHs / A re a ls  = 1

Calculating the skewness of the piecewise linear T wave18 we get 0.7804, which is 

significantly different to a skewness value o f zero that would correspond to a perfectly 

symmetric T wave. The above value for skewness proposes a significantly skewed to 

the right, T wave. It can be easily concluded that the HAR feature will fail to 

demonstrate the a symmetry o f  any T w ave that p ossesses e qual areas t o the 1 eft and 

right of its peak. This introduces a need for a feature that will be able to identify such an 

asymmetry. The proposed skewness feature demonstrates that it can identify such 

asymmetries.

The skewness feature could prove a useful one in detecting T wave changes under 

hypoglycaemia b ut i t s hould n ot r eplace t he H AR f  eature. T he t wo f  eatures m easure 

different quantities and could both be used in order to obtain a more complete measure 

of the morphology of the T wave.

18 The shape in the figure was sampled at 0.0001 intervals for calculation of the skewness value.
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T peak

T onset

T offset

Figure 4.21: Piecewise linear representation o f the T wave for comparison o f HAR and SKEW

Reducing the effect o f T onset/offset annotations on the SKEW feature 

The approach that was u sed for reducing the dependency of the HAR f  eature on the 

onset and offset o f the T wave was also applied in the case o f the SKEW feature. Three 

versions o f the feature w ere produced: the raw feature (SKEW), a version where the 

onset or offset was extrapolated on the other side o f the wave (SKEWx) and a version of 

the feature that was using the point o f inflection on the T downslope to define the 

portion of the T wave to be used (SKEWxDP). Boxplots are presented in Figure 4.22 to 

allow comparisons of the three flavours of the feature.

p227

w  -0.6

normal hypo
(a)

normal hypo
(b)

normal hypo
(c)

Figure 4.22: Boxplots fo r the 3 versions o f the SKEWfeature fo r  patient 227 (both nights) (a) SKEW, (b)
SKEWx, (c) SKEWxIP
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It can be seen from the graph that all versions of the feature have quite similar 

behaviour. The range and inter-quartile range increases in all three cases, under 

hypoglycaemia. For this patient, choice o f one of the three features to be used will not 

be crucial to the performance of a classification system.

Assessing T wave morphology using the concept of kurtosis

The kurtosis o f a statistical distribution is calculated by the formula:

p 2 = E{X~i X)i eqn (4.7)
s

This is the kurtosis of a random variable X with sample mean x  and sample standard 

deviation s. It describes the degree o f peakedness of a distribution, defined as a 

normalized form o f the fourth central moment. A distribution with a high peak is called 

leptokurtic (y2>0 ), a flat-topped curve is called platykurtic (72 < 0), and the Normal 

distribution is called mesokurtic (72=0 ). 72 is the kurtosis excess [Kenney 1951] defined 

as kurtosis minus three (72 = P2 - 3). Since the kurtosis o f the Normal distribution is 3, 

using the kurtosis excess is more convenient since it is zero-valued for the Normal 

distribution. This justifies the subtraction o f the value of 3 and the convenience o f using 

the kurtosis excess quantity instead of the kurtosis.

Similarly to the skewness feature, the concept of kurtosis was not used for assessing the 

shape o f a distribution but instead for assessing the T wave shape through the analogy 

introduced earlier. Again the T wave component is truncated from the rest o f the ECG 

trace and its shape is assessed in the same way that the probability curve o f a probability 

distribution is assessed using the kurtosis formula from statistical theory. The calculated 

kurtosis of a given T wave gives a measure o f the morphology of the T wave.

According to the analogy b etween the shape of a distribution and the T wave shape, 

presented in Table 4.2, the kurtosis formula becomes:

Y J ( h - t T p c a k ) ‘'  -ECG(t>)
T kurtosis = —------ ---------------------/ arpect4 eq" (4.8)

'ZECGiU)
I

Similarly to the equations used for calculation of skewness, this is the equation 

corresponding to true population statistics (when the true mean p and true standard 

deviation a  are used).
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Figure 4.23 illustrates the T waves corresponding to the minimum (LHS) and maximum 

(RHS) kurtosis for patient 204.

Figure 4.23: (LHS) p204rec22 (kurt=2.224) and (RHS) p204rec24 (kurt= 2.464)

It is observed that the range of the kurtosis feature is very small (0.239) compared to its 

mean value (2.385) but even differences in skewness of around 0.2 correspond to very 

differing T wave morphologies as seen in the above figure. If we calculate the kurtosis 

excess, it will be -0.615 for record 22 and -0.536 for record 24 which informs us that 

both T wave shapes are classed as platykurtic.

The approach used for reducing the effect of onset and offset annotations on the 

symmetry features were also applied to the kurtosis excess feature. The three versions of 

the kurtosis excess feature are compared in the boxplot presented in Figure 4.24.

The figure suggests significant changes for all three versions o f the feature in response 

to abnormal glucose changes. The limits of the inter-quartile ranges change significantly 

between normality and hypoglycaemia. The figure also suggests that T waves become 

more platykurtic under hypoglycaemia which is in line with the research hypothesis.
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F igure 4.24: B oxplots f o r  the 3 versions o f  the kurtosis excess fea tu re  f o r  p a tien t 203 (both

nights)

4.5 ECG features

Time-domain ECG features were extracted and used in order to represent ECG traces 

for classification to be carried out. From a theoretical point o f view, such ECG features 

were discussed in Section 2.4. Some o f the features listed below have been presented 

already in this chapter in the sections where the relevant algorithms for extracting them 

were presented. The ECG features that we considered, assessed and used were:

1. RR: this is an instantaneous measure of Heart Rate. Heart Rate variations are 

possible under hypoglycaemia and hence the RR was considered as a feature.

2. RT: time interval from R peak to T wave end. The corrected version o f this interval 

(RTc) was mainly used.

3. RTc: Heart-Rate-corrected RT interval. This was chosen instead of QTc in order to 

avoid possible variation due to the Q point detection process. The R peak is easier to 

detect than the Q point and hence the annotation o f the former is expected to be 

more robust.

4. RTapex : time interval from R peak to T wave peak. The corrected version o f this 

interval (RTapexc) was mainly used.
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5. RTapexc: Heart-Rate-corrected RT interval. In certain studies, the RTapexc was 

used instead o f the RTc in order to avoid possible variation due to the T end 

detection process. Detection o f the T wave end can suffer from noise and artefacts 

and becomes difficult under T wave flattening and presence o f U waves. In order to 

avoid such problems, the RTapexc was used to investigate whether it can still 

highlight effectively the delayed VR process.

6 . T-duration (Tdur): time duration from T onset to T offset.

7. T-durationc (Tdurc): Tduration corrected for heart rate.

8 . T amplitude (Tampl): amplitude of the T wave from the isoelectric (0 Volts) level. 

This is a significant feature since changes in T amplitude are related to changes in 

plasma potassium that occur under hypoglycaemia. The T wave amplitude is 

expected to reduce under hypoglycaemia. Alternative ways of calculating the T 

amplitude would be to use the ST segment as a reference instead o f the isoelectric 

level. Other approaches would be to use the ratio of Tampl/Rampl in order to 

achieve some form o f normalisation o f the Tampl values.

9. T-area: Area under the T wave. The area is enclosed by the ECG trace, the 

isoelectric line and the vertical lines defined by the T onset and offset markers.

10. T wave Symmetry (Half-Area Ratio (HAR)). This is a measure o f symmetry o f the 

T wave. It was used because T wave symmetry changes are observed under 

hypoglycaemia. This feature was discussed in detail in Section 4.4.3.

11. T wave skewness. This is an alternative measure of T wave symmetry, as mentioned 

earlier. It was inspired by the 3rd central moment from statistical theory used to 

calculate the skewness of distributions. In  this study it is not used as a statistical 

measure but using an analogy it is used to assess the symmetry o f the T wave.

12. T wave kurtosis. This feature was used to assess the peakedness of the T wave and 

was also inspired from statistical theory and more specifically the 4th central 

moment. Again it is not used as a statistical measure but, using the analogy, it is 

used to assess the flatness of the T wave peak.

When extracting the above features, the R and T peaks were detected using the

algorithms p resented i n this c hap ter. T he T o nset a nd o ffset w ere d etected u sing t he

tangent m ethod ( msi). A n e xample o f  t he s et o f  f  eatures e xtracted i n m ost s tudies is

given in Table 4.5.

109



Table 4.5: Extracted ECG features fo r  patient 204

Record gi HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc RTapex RTapexc

5 8.48 84.55 291.38 345.89 100.88 119.75 206.62 1536.83 1.49 1.03 -0.33 232.00 275.41

6 8.48 83.30 294.13 346.57 107.02 126.10 248.57 1937.30 1.48 1.16 -0.15 232.00 273.36

7 7.09 86.97 297.79 358.54 105.79 127.37 226.08 1737.40 1.18 0.77 -0.44 240.00 288.96

8 5.08 85.81 297.92 356.28 122.20 146.13 368.19 3304.47 0.86 -0.27 -0.60 240.00 287.01

9 5.41 86.70 291.59 350.52 122.20 146.89 404.66 3636.03 0.98 -0.11 -0.60 232.00 278.88

10 5.66 95.56 283.54 357.83 118.78 149.90 362.94 3133.20 0.69 -0.74 -0.55 232.00 292.79

11 6.14 86.46 292.87 351.57 123.78 148.59 409.12 3766.22 0.72 -0.60 -0.51 240.00 288.10

12 5.23 86.77 293.65 353.14 106.16 127.66 201.02 1606.02 0.95 0.43 -0.53 240.00 288.62

13 4.91 87.77 296.20 358.25 121.81 147.33 391.82 3514.68 1.26 0.51 -0.53 232.00 280.60

14 4.69 84.48 297.87 353.44 125.63 149.07 435.32 3962.74 0.83 -0.32 -0.60 240.00 284.78

15 4.06 89.98 285.42 349.52 119.86 146.78 391.05 3453.42 0.76 -0.47 -0.56 232.00 284.11

16 4.09 92.30 277.29 343.92 104.57 129.70 271.56 2161.09 0.78 -0.40 -0.61 232.00 287.74

17 2.82 88.12 291.84 353.69 92.68 112.32 132.84 912.46 1.17 0.74 -0.45 240.00 290.86

18 2.20 90.40 295.01 362.11 98.98 121.49 154.70 1153.99 1.26 0.87 -0.33 240.00 294.59

19 2.20 86.86 290.00 348.94 100.46 120.88 168.75 1275.51 1.40 1.02 -0.32 232.00 279.15

20 2.20 89.10 282.57 344.34 97.13 118.37 171.53 1229.85 1.07 0.49 -0.61 232.00 282.72

21 2.20 92.09 290.14 359.45 98.57 122.11 155.88 1159.65 1.58 1.16 -0.25 232.00 287.42

22 2.20 88.53 291.86 354.53 104.14 126.50 157.15 1185.12 1.36 1.09 -0.36 232.00 281.82

23 2.20 92.31 294.11 364.81 97.73 121.22 127.94 962.25 1.22 . 0.88 -0.37 240.00 297.69

24 2.20 84.16 300.01 355.33 121.76 144.21 432.17 3982.23 1.05 0.17 -0.53 240.00 284.25

25 2.20 86.82 297.47 357.82 123.14 148.12 446.38 4002.90 0.92 -0.19 -0.60 240.00 288.69

26 2.20 84.54 294.02 349.00 98.69 117.15 162.38 1193.52 1.26 1.03 -0.30 240.00 284.88

27 2.20 91.03 294.74 363.06 100.72 124.06 179.40 1262.76 1.16 0.82 -0.32 240.00 295.62

28 2.20 86.74 288.66 347.07 96.63 116.19 162.56 1184.09 0.94 0.22 -0.62 240.00 288.57

29 2.20 88.92 292.33 355.87 104.35 127.04 215.67 1766.22 0.87 0.25 -0.57 240.00 292.17

30 2.76 87.17 290.94 350.69 105.43 127.08 208.13 1608.22 1.34 0.96 -0.40 232.00 279.64

31 2.20 86.15 302.17 362.07 123.68 148.20 404.52 3757.61 0.72 -0.56 -0.55 248.00 297.16

32 2.20 90.59 289.88 356.19 123.52 151.77 390.61 3531.06 0.91 • -0.19 -0.60 232.00 285.07

33 2.20 88.88 294.15 358.01 124.84 151.94 413.89 3782.15 1.04 0.14 -0.56 232.00 282.37

Boxplots presenting the ECG features for patient 227 (both nights) are presented in 

Figure 4.25. The versions of the features where no heart-rate-correction was applied 

were excluded from the graph. In each subplot the LHS box corresponds to normality 

while the RHS corresponds to hypoglycaemia. The y-axis label informs about the ECG 

feature plotted. This subject shows moderate feature changes under hypoglycaemia and 

it can be seen that the biggest changes occur for the morphological features (HAR, 

SKEW, KURTexc).
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F igure 4.25: Boxplots f o r  9  E C G  fea tures, f o r  pa tien t 227  (both nights)

Box plots o f the RTc, T amplitude and HAR features for all patients are presented in 

Figures 4.26, 4.27 and 4.28. These plots allow for inspection of the variation in feature 

ranges across patients. Inter-patient and intra-patient variability is apparent in the 

figures.
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F igure 4.26: Boxplots f o r  the RTc fea tu re  across a ll pa tien ts
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F igure 4.27: Boxplots f o r  the Tampl fea tu re  across a ll pa tien ts
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4.5.1 Tests of significance on the ECG features change between the 

conditions of euglycaemia and hypoglycaemia

In order to check for statistical significance in the feature changes due to 

hypoglycaemia, hypothesis tests were carried out. Two-sample t-tests at the 5% level of 

significance were employed for each ECG feature considered. For each feature, the null 

hypothesis Ho stated that the changes in the mean value between hypoglycaemia and 

normality were not statistically significant. The alternative hypothesis Hi stated that the 

changes in the mean value were significant i.e. the mean was different between the 

conditions o f normality and hypoglycaemia. Two-tailed tests were carried out, which 

means that the alternative hypothesis was describing changes in mean in both directions 

(greater or smaller).

The tests were carried out separately for each patient. Only patients that contributed data 

representative of both clinical conditions (euglycaemia and hypoglycaemia) were 

included in the tests. Outliers were removed using the 3 SD criterion prior to the tests. A 

hypoglycaemic threshold o f 3 mmol/lt was used to distinguish .between hypoglycaemia 

and euglycaemia. Before proceeding any further in the discussion it is important to bear 

in mind that the t-test assumes a Normal distribution in the data. The t-test results can be 

doubted if  the features do not follow the Normal distribution.

Table 4.6 contains the t-test results for all ECG features considered. A value o f 1 

denotes that the outcome of the t-test indicated rejection o f the null hypothesis at the 5% 

level o f significance i.e. the mean values corresponding to normality and 

hypoglycaemia were different. A value o f 0 denotes acceptance o f the null hypothesis. 

The column labelled “sum” in the table contains the sum of each row. For each ECG 

feature included, the t-tests gave different results across patients. Calculating the sum of 

each row gives an indication o f the number o f patients for whom the changes in a given 

feature were statistically significant. The best features according to this m etric were, 

RTc and SKEWx. For these features, the t-test indicated that statistically significant 

changes occurred in 4 out of 7 patients.
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Table 4.6: t-test results at the 5% level o f  significance fo r  7 patients

patient p202 p203 p204 p209 p212 p227 p244 sum
HR 1 0 0 0 0 0 1 2
RTmsi 1 1 0 0 0 0 1 3
RTcmsi 1 1 0 0 1 0 1 4
Tdur 1 1 0 0 0 1 3
Tdurc 0 0 0 1 0 1 2
Tampl 1 1 1 0 0 0 3
Tarea 1 1 0 0 0 0 1 3
HAR 0 1 0 0 0 0 1 2
SKEW 0 1 0 0 0 0 1 2
KURTexc 0 1 0 0 0 . 1 2
RTapex 1 1 0 0 0 0 1 3
RTapexc 1 1 0 0 1 0 3
HARx 0 1 1 0 0 0 1 3
HARxlP 0 1 0 0 0 1 1 3
SKEWx 1 1 1 0 0 0 1 4
SKEWxIP 0 1 0 0 0 1 0 2
KURTexcx 1 1 0 0 0 0 0 2
KURTexcxlP 0 1 0 0 0 1 1 3

The t-test results give indications that a single feature combination cannot be used to 

detect hypoglycaemia in all patients. Different features may have to be used to detect 

the onset of hypoglycaemia in different patients. Different components o f the ECG will 

be affected by hypoglycaemia in different patients. A typical example o f the above is 

the presence of U waves under hypo. Presence o f a U wave could be an indication of 

hypoglycaemia but does not happen in all patients. It can be seen on the table that for 

patient 203, fifteen features exhibited statistically significant changes in response to 

hypoglycaemia. On the other hand, for patient 209 the changes in all features studied 

were statistically insignificant. Such a result is possible since some patients can be 

asymptomatic during hypoglycaemia. Specifically for the case o f patient 209, the result 

has to be treated with caution since the sample size for the hypo group was extremely 

small (n=4 for hypo and n=50 for euglycaemia) and the t-test is probably not accurate.

4.6 AutoRegressive Modelling (AR) o f post-R ECG traces

This section presents the approach of representing the ECG traces using Autoregressive 

(AR) models. This type of ECG trace representation was used as an alternative to the 

approaches that used ECG features. The autoregressive coefficients computed were 

used to describe the modelled ECG traces. This approach has been used in other studies 

for detection o f certain cardiac arrhythmias [Srinivasan 2002]. In this study it was used 

for the detection of the delayed ventricular repolarisation often exhibited during 

hypoglycaemia. Under hypoglycaemia, and due to the T wave flattening, the AR model
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parameters are expected to be different because o f the smaller undulations existing in 

the data (post-R segment) to be modelled.

An nth order AutoRegressive (AR) model is a linear recursive model described by the 

difference equation:

y (k  + l) = - ^ a i * y ( k - i  + l) + e(k + \) +J3, k , n e t f  eqn (4.9)
/=i

where e(k) denotes a noise parameter and P  denotes an offset parameter.

For an nth order model, the output y  at sample number k+1 is modelled as the sum of n 

scaled versions o f previous values o f the output plus a noise component and an offset 

component. The estimates o f the optimal model parameters (a/ and p) that achieve 

minimal error need to be calculated. The Least Squares (LS) algorithm can be used to 

find the estimates of the optimal model parameters. It works by minimising the sum of 

the squares of the model errors.

In matrix form we can write: Y = O x  B eqn (4.10)

Each row of vector Y contains the LHS of eq11 (4.9) for a different value of k :

> ( 2 ) ax

X 3) a2

The vector B contains the model parameters:

an
y (k  + 1)_ p  _

If the number of elements in Y is denoted by N  then, the TV by (w+1) matrix ® has the 

form:

~ -y { l) o   o l '

- y (  2 ) - y (  1)   o 1

_-y(k)  - y { k - 1)   - y { k - n )  1 _

By multiplying the TV by («+l) matrix ® with the («+l) by 1 vector B , we get an N  by 1 

column vector where each row is the RHS of the AR model presented in eqn (4.9).
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The least squares estimate is obtained by minimising the sum of the squares o f the 

model errors. The mean squared error (MSE) is calculated as follows:

MSE = ±- ' jT (y t - y ? ) 2 eq"(4.11)
™  k = l

where %  is the actual output at sample instant k  and y  ” is the modelled version of the

output at the same sample instant, calculated by multiplying the row of matrix <D

corresponding to k  with the column vector B containing the model parameters.

In matrix form, eq11 (4.11) is written as:

MSE = — ( r - O B / t y - O B )  eq"(4.12)
N

Solving with respect to B we get:

B = (<D7'<D)'1a>7>  eq" (4.13)

The vector B contains the estimates o f  the optimal model parameters. AR modelling 

was used in this thesis as an alternative to the feature extraction process presented 

earlier, for the representation of ECG traces.

tViWhen modelling the ECG signal, the general form of an n order AR model takes the 

form:

ECG{k + \) = - Y ^ m . E C G ( k - i  + \) + e(k + \) + P, k , n e H  eq” (4.14)
/=1

ECG(k+l) is the ECG amplitude, in mV, at sample k+1. The ECG section to the right 

of the R peak and until the end o f the trace was used because this is the section affected 

by hypoglycaemia. The Least Squares (LS) algorithm was used to find the estimates of 

the optimal model parameters. A 3rd order AR model was employed which yields four 

model parameters (aj, a2 , a3 and p). Figure 4.29 illustrates a SAECG trace together with 

its modelled version using a 2nd order AR model.

The whole ECG cycle is plotted (solid blue) but only the post-R peak section is 

modelled (dotted black). It must be noted that the model order was set to 2 only for the- 

purposes o f generating the Figure (4.29) illustrating the modelling process. Using a 3rd 

order model or higher would cause the solid and dotted lines to almost overlap so the 

differences would not be visible.
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Apart from the illustration in Figure 4.29, all the ECG modelling was carried out using a 

3rd order AR model. The correlation coefficient between actual and modelled ECG trace 

was for all but one patient greater than 91% with an average of 95% across patients. The 

model order can be increased so that each ECG trace is more closely modelled but this 

will produce extra model parameters that the classifiers have to handle and classify. 

Emphasis was placed on making the model simple and hence keeping the classification 

task simple.
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Figure 4.29: Actual (solid) vs modelled

The classification results in the approach o f modelling the ECG by means o f AR 

coefficients are presented in Section 5.2.5. Linear Discriminant Analysis was used for 

classifying the AR coefficients into two groups corresponding to euglycaemia and 

hypoglycaemia.

4.7 Conclusion

This chapter focused on the representation o f ECG traces by means o f ECG features. 

The feature extraction algorithms and the features introduced and used were presented. 

The feature extraction process was put in the context o f the overall methodology 

proposed. This process precedes the classification process in the hypoglycaemia 

detection methodology proposed. The ECG features extracted are fed to a classifier for 

detection o f the abnormal clinical condition. Annotation algorithms for detecting the R
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and T peaks and also the T onset and offset were implemented in MATLAB. A 

comparison o f T end annotations was carried out. Three novel ECG features were 

introduced for assessment of the T wave morphology. The visual inspection and 

statistical analysis carried out on all the features considered, indicated the existence of 

inter-patient and intra-patient variability. Moreover there were indications that a fixed 

set o f features may not be able to effectively represent the ECG cycles o f all patients. 

Certain features are useful for certain patients depending on the dynamics of each 

patient’s ECG signature. The next chapter focuses on the classification o f ECG traces 

using neural and statistical classifiers.
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Chapter 5

Classification of Signal Averaged Electrocardiogram 

Signals using Artificial Neural Networks and Statistical
Classifiers

5.0 Introduction

This chapter contains Methods and Results for the classification of SAECG signals 

using artificial neural networks (ANN) and statistical classifiers. Feed-forward neural 

networks (multi-layer perceptrons (MLP)), Linear Discriminant Analysis (LDA) and 

k-Nearest Neighbour (kNN) classifiers were used for classification. A number of 

different approaches to classification are presented and discussed. The chapter is 

structured as follows: initially the data-set used is addressed followed by the 

preprocessing methodology for the data used. Following that, the neural network 

architecture is discussed detailing all the necessary aspects o f using MLPs for ECG 

trace classification. After that, the statistical classifiers (LDA and kNN) are presented 

and the approach used for evaluation of performance of all classifiers is given.

Moving into the Results section, the classification studies carried out during the initial 

phase of the research are first presented together with an assessment of the ECG 

features inspired by Benhorin’s work [Benhorin 1990] and extracted semi-automatically 

in ECGLAB. The use o f various feature combinations is presented. Then the focus 

moves to the individual-patient-oriented classification studies where emphasis is given 

on customising the system for individual patients in order to tackle inter-patient 

variability problems. Statistical classifiers are also included in these studies. Next the 

use of ECG representation by Autoregressive Modelling coefficients is presented and 

LDA classification results are given. Final results in the chapter involve the use o f 

improved preprocessing combined with utilisation o f a reduced set o f ECG features.
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5.1 Methodology

5.1.1 Data

Data from the dataset presented in Section 3.3.1, were used in the classification studies. 

The approach according to which the data were partitioned into training and test sets is 

presented below. Issues related to inter-patient variability are also discussed.

5.1.2 Preprocessing

A number of preprocessing steps were followed to aid the classification process. Firstly, 

data points o f each ECG feature were removed as outliers if  they did not lie within 3 

standard deviations from the mean. This was carried out separately for each ECG 

feature used19 since the various ECG features had different ranges of values (Section 

4.5). Outliers can occur because of noise or other artefacts, or due to bad performance of 

the feature extraction algorithms upon an ambiguous ECG trace. It is essential to 

remove outliers, since they can degrade the performance o f the ANNs. If  outliers are 

present they can contaminate the range o f the feature values and once normalisation is 

applied, the useful information will be squashed to a significantly smaller range, leading 

to loss o f useful information.

A second pre-processing step was to normalise the data in the interval [-1 1]. This was 

also done separately for each feature, because o f the differences in range among 

features. The various features were describing different quantities and hence their range 

o f values was different. For instance, some features were measuring amplitudes in mV 

and others were describing time intervals in msec. For each feature, the samples 

available were mapped linearly from the original space to [-1  1].

The next pre-processing step was to remove the baseline value (i.e. the dc component) 

from each ECG feature. This was not applied in all studies carried out. For the studies 

aiming to p  roduce a g lobal c lassifier b y f  orming d atasets t hat i ncluded d ata f  rom a 11 

patients, baseline removal was essential in reducing inter-patient variability. The first 

recorded sample of every night was considered the baseline and it was subtracted from

19 i.e. the mean and standard deviation used in the outlier removal criterion were calculated separately for 

each feature.
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all the samples. Alternatively the mean value o f all samples can be used as the baseline. 

Using the mean has some disadvantages and was not preferred in our case. First o f all 

using the mean is not convenient for online classification. Using a mean value as the 

baseline, requires some portion o f the data fed to the system to be used for calculation 

o f the mean before classification can start. For the offline classification studies included 

in this thesis, the first value baseline is normally a good sample and is always 

euglycaemic, since all accepted nights were starting with the patient having normal 

glucose levels. On the other hand, the mean value can be contaminated by artefacts and 

will vary depending on whether hypoglycaemic samples are contained in the night.

Figure 5.1 illustrates the preprocessing stages that were included in the ECG-trace- 

classification process. The baseline-removal stage succeeds the outlier-removal stage 

but is not depicted since it was not included in all studies.

I ECG

ECG Feature Preprocessing '

OUTLIER
REMOVAL

FEATURE
EXTRACTOR

CLASSIFIERNORMALISATIONEGG Features

Figure 5.1: Preprocessing o f  ECG features before they are fed'to the classifier

5.1.3 Formation of data-sets (training and test files)

Two approaches were followed in the formation o f data-sets. According to the first one, 

a number o f patients were mixed together to form the datasets. This approach suffers 

from problems related to inter-patient variability. The behaviour o f the ECG signal and 

hence the baseline, mean, standard deviation, range etc, o f ECG features varies from 

patient to patient. This was highlighted in Figures 4.28 and 4.29 for two o f the ECG 

features considered. This variation undermines the generalisation ability o f the 

classifiers. Variability among patients may be due to variation in many parameters such 

as: age, gender, duration of diabetes, level o f glycaemic control, fitness level and so on.

Among t he above p arameters, t he o nly o ne t hat w as t aken i n a ccount when forming 

datasets was the gender o f the patient. The gender is a binary parameter (either male or 

female) so it was a lot easier to take it in account when forming datasets. And more 

importantly, there are indications that the gender is a factor that may affect the baseline 

value of some ECG features. Healthy females are found to have longer QTc intervals
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compared to healthy males [Molnar 1996]. Datasets were formed by using data from all 

patients and alternatively, using only male and only female patients in order to avoid 

variations due to gender and also attempt to investigate the effect o f the gender. The 

variation in the remaining parameters (e.g. age, duration o f diabetes etc) were not taken 

into account since this was beyond the scope of this research.

To overcome inter-patient variability problems a second approach was also followed 

according to which a different neural-network/statistical-classifier was used for each 

patient o r i n s ome c ases f  or e ach n ight. T his o vercomes t he p roblem o f  i nter-patient 

variability by allowing a classifier to be customised to a specific patient. The problem 

with the second approach is that the data available are significantly reduced. As 

mentioned in Section 3.3.1 presenting the dataset, a maximum of two nights is available 

per patient which gave a maximum of 6 6  S AECG records. 6 6  patterns were not the ideal 

amount for training and querying an ANN but the advantage was that the only problem 

to be overcome was intra-patient variability since inter-patient variability was 

eliminated. C onsidering the trade-off b etween having 1 onger datasets and eliminating 

inter-patient variability, it was clear that the latter was more important. Such a choice 

was a significant step towards improving classification performance. In order to make 

maximum use of the data available, 5-fold cross-validation was applied. The 

partitioning o f data in training and test sets, under cross-validation was repeated each 

time a neural network was re-trained from different random initial conditions. This is 

advantageous over the approach of generating the cross-validation groups only once and 

then training the networks from different initial conditions. Since the cross-validation 

groups were formed many times after shuffling o f the feature vectors, the formation of 

training and test files was unbiased.

According to cross-validation the data was partitioned in groups. 5-fold means that 5 

groups o f approximately equal size were used i.e. each cross-validation group consisted 

of 20% of the total data available. Care was taken so that each group contained equal 

number o f euglycaemic and hypoglycaemic feature vectors. Four groups were merged 

together (i.e. 80% of the data) to form the training file for the classifier and the 

remaining 20% was reserved for testing. The process was repeated five times so each 

group would be left out once, and the classification results were averaged over 5. 10- 

fold cross-validation is also a very common alternative but only leaves 1 0 % o f the data 

out for testing each time. In a datafile of 6 6  pattern vectors this means approximately 6 -
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7 vectors. In our case and in order to maximise the size o f the test data, 5-fold cross- 

validation was chosen. This process will be further discussed in the Results section 

(5.2.2).

5.1.4 Neural Network Classifiers

The Neural Network Architecture chosen for this research was the Multi-Layer 

Perceptron (MLP) presented in Section 2.7.1. We needed a supervised neural classifier 

and t he M LP was a n o bvious c hoice s ince i t i s an e stablished a nd v ery widely u sed 

architecture. Moreover the MATLAB neural network toolbox was available which 

contains extensive tools (mainly in the form of various pre-processing and training 

algorithms) for the MLP. Networks w ere trained by the batch gradient-descent back- 

propagation algorithm. The neural network toolbox (versions 3.0.1 (R ll)  and 4.0.2 

(R13)) of MATLAB (MathWorks Inc) was used in all the neural networks that were set 

up.

Neural network size

Neural networks consisting o f one hidden layer were trained. The number o f neurons in
20the hidden layer were variable in the interval [2 5] or in some cases in [2 10] 

depending on the study carried out. The network size was fixed during training. Each 

neural network was trained 4 or 9 times (depending on the range of allowed hidden 

neurons in each study) with a different number of neurons in the hidden layer each time.

Neural network initial conditions

The initial weights and biases o f ANNs were initialised to random numbers. Training a 

network more than once from different random initial conditions can yield different 

results as ANNs are very sensitive to initial conditions. In most cases, a hundred 

networks o r m ore w ere trained f  or t he s ame configuration a nd t he b est o nes c hosen. 

This was done to overcome the sensitivity of the network performance to random initial 

conditions.

Output of the neural networks

Two approaches were followed regarding the type o f the neural network output. In the 

first case the neural network was presented with the continuous glucose data as a target

20 hidden layer sizes in [2 10] were only used in the studies producing global classifiers, where the 

datasets were longer.
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for training (Section 5.2.1) while in the second one the glucose was coded into two 

classes, a normal and a hypoglycaemic class21. The output o f the ANNs was not simply 

interpreted as normal or hypoglycaemic. A third class was considered. This is the class 

of undetermined classifications. The output of the neural network is a real number 

which varies from - 1  to 1 (since the activation function used was a hyperbolic tangent, 

as discussed later). In order to map the output of the neural network to the “normal” 

class or to the “hypoglycaemic” class, a threshold had to be considered. The most 

straightforward value to choose for this threshold was zero. The simplest approach of 

mapping would be to assign anything greater than zero to the “hypoglycaemic” class 

and anything below to the “normal” class i.e. the equivalent o f using a hard-limiter 

activation function. This mapping though will not show us the cases where the network 

was unable to choose between the two classes (i.e. output stuck around zero). A better 

approach is to use the dual-threshold method and map output values greater than a 

chosen number (0.5 or 0.8 for instance) to “hypoglycaemic” and those smaller than the 

chosen number (e.g. -  0.5 or -  0.8) to “normal”. This way a third group, that of 

undetermined classifications (“don't-know” outcomes), is created. The number o f times 

that the ANN output lies in the region of undetermined classifications will give us an 

idea of how clearly it can distinguish the two classes. If the network maps many input 

patterns to the undetermined region, then there is an indication that it cannot separate 

the two classes easily. The partitioning o f the above three classes is illustrated in Figure 

5.2.

plot of classification pts superimposed on the theoretical activatior

hypoglycaemic

0.6

0.4

0.2

Undetermined classifications

- 0.2

-o.e
normal

-0.E

Figure 5.2: Output activation function with mapping to the 3 classes (normal, hypoglycaemic, 
undetermined) shown. Dots denote data points lying on each class

21 in some studies the normal (euglycaemic) class also contained hyperglycaemic data while in other 

studies the inclusion of strictly euglycaemic data was tried.
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Activation functions

Hyperbolic tangent activation functions were used both for the hidden and the output 

layers. The hyperbolic tangent (tansig) we used is smoother than the built-in one 

contained in the MATLAB neural network toolbox. It has the same shape as the built-in 

logistic sigmoid (logsig) function contained in the toolbox and is given by the formula: 

y  = 2 / ( l  + exp(-n)) - 1  instead of y  = 2/(1 +exp(-2*n))-l which is the default function. 

The largest the value of the gain inside the exponential term, the steeper the transition 

will be between the two extremes. The modified tansig, being smoother in slope, gives 

more candidates in the undetermined region. This means that the two classes must be 

more clearly separated by the network when using the modified tansig compared to the 

built-in one, so that they will not fall into the undetermined region.

Training parameters

The training algorithm used was batch gradient descent with or without momentum and 

with or without a variable learning rate (functions "traingd" and "traingdx" in the 

MATLAB neural network toolbox). When momentum was used it was chosen among 

values in the interval [0.1 0.7]. When a variable learning rate was used its initial value 

was set to 2 , its increment was calculated by multiplying with 1 .0 2  and its decrement by 

multiplying with 0.7.

5.1.5 Statistical classifiers

Statistical classifiers were also considered in order to allow comparisons with ANNs. 

The main statistical classifiers used were Linear Discriminant Analysis (LDA) and the
9 9k-Nearest Neighbour (kNN). LDA works by minimising the Mahalanobis distance as 

discussed in Section 2.6. The k-Nearest Neighbour (kNN) was using a Euclidean 

distance metric (Section 2.6). The same ECG features that were fed into the ANN were 

used in LDA and kNN. Classification was binary into normal and arrhythmic records. 

Cross-validation was applied to achieve better use o f the data available. Partitioning of 

the data into training and testing was exactly the same as for the ANN.

5.1.6 Measurement and Analysis of Performance

The accuracy of classification on its own is not sufficient to describe the performance of 

the classifiers. More aspects o f performance are considered and the performance metrics

22 The LDA classifier was implemented using the "classify" command o f  the statistics toolbox in MATLAB
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used are: accuracy, hitrate (sensitivity), false-alarm-rate, specificity (true-negatives-

ratio) and missed-hypos (false-negatives ratio).

They are defined as:

>  Accuracy or concordance = tp + tn / (tp+tn+fp+fn) (eq11 5.1)

>  Sensitivity or Hitrate = tp / (tp+fn) (eqn 5.2)

>  False-alarm-rate = fp / (fp +tn) (eq11 5.3)

>  Specificity (TNratio) = tn / (tn + fp) (eqn 5.4)

>  Missed-hypos = fh / (fn + tp) (eq11 5.5)

where tp, tn ,fp  and fn  stand for: true positives, trite negatives, false positives and false 

negatives respectively. Positive refers to hypoglycaemia while negative refers to 

euglycaemia. True positives are those classifications o f the ANN where the real class is 

positive and the ANN also classified the ECG as positive. Similarly for the other three 

quantities:

True Negatives (TN): answer = NO, network said NO 

False Positives (FP): answer = NO, network said YES 

False Negatives (FN): answer = YES, network said NO

The above four quantities are summarised in Table 5.1 known as the confusion matrix:

Table 5.1: Confusion matrix

Classifier YES Classifier NO

Actual YES TP FN

Actual NO FP TN

Accurate classifiers produce as few FP and FN as possible. In other words a good 

classifier w ill give a confusion matrix w ith large numbers on  the m ain diagonal and 

very small numbers on the second diagonal.

Sensitivity (hitrate) describes the number of arrhythmic traces classified correctly while 

false-alarm-rate describes the number of normal traces that were classified as 

arrhythmic (i.e. false alarms). Specificity (TNratio) describes the number o f normal 

traces classified correctly while missed-hypos describes the number o f arrhythmic traces 

classified as normal, i.e. the number of hypoglycaemic events that were missed . By 

combining equations (5.1) and (5.5) the relationship between sensitivity and missed-

23 The terms sensitivity and hitrate w ill be u sed interchangeably throughout the text. Similarly f  or the 

terms specificity and TNratio.
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hypos is revealed: sensitivity = 1 -missed-hypos. Combining equations (5.3) and (5.4) 

it is shown that specificity and false-alarm-rate also sum to 1 : specificity = 1 - fa lse -  

alarm-rate.

5.2 Results Section

Classification results from a number of approaches and classification “recipes” are 

presented in this section. The various studies are presented in chronological sequence to 

show the development process of the ECG classification. Classifiers trained on global 

datasets are compared against classifiers tailored to the dynamics of specific patients. A 

number of different ECG feature combinations are compared while both neural and 

statistical classifiers are used.

5.2.1 Glucose level inference from ECG features

As has already been mentioned, most classification studies carried out in this research 

were binary, for identifying ECG traces into normal and arrhythmic. Besides these 

studies, the approach of inferring the approximate glucose level of the patient through 

the ECG was attempted. This was a very optimistic attempt and was carried out at the 

early stages of the research. The possibility o f achieving a mapping between ECG and 

glucose was examined. The neural networks used were required to produce output 

values corresponding to the continuous level of glucose of the patient. By consulting the 

ECG, the MLP should infer the level o f glucose o f the patient at the time. O f course, 

this goes beyond our research hypothesis. The hypothesis assumes an existing 

relationship between the ECG and abnormally low glucose while this study examined 

whether the glucose could be inferred from the ECG regardless o f whether it was 

abnormally low, normal or abnormally high.

In terms o f the data needed, the advantage o f such an approach where modelling o f the 

ECG-glucose relationship is attempted, is that maximal use o f the data available is 

possible. We do not necessarily need many hypoglycaemic nights. The study could be 

carried out on purely normal nights. This is because we are trying to infer the absolute 

glucose levels from the ECG. If this modelling was possible, having a good range of 

glucose levels, even if  they did not lie in the hypoglycaemic band, could be enough to 

train a neural network.
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This approach did not produce useful results as the objective set was extremely 

optimistic. Although there are indications towards a relationship between abnormally 

low glucose and hypoglycaemia, it is highly unlikely that the ECG strongly correlates 

with the glucose variable outside hypoglycaemia. Numeric results from this approach 

are not presented and this study is reported only in the form o f a short discussion. The 

neural network simply failed to learn on the training data so numeric results cannot be 

presented.

5.2.2 Classification of ECG traces by MLPs trained on multiple patients, 

using ECG features extracted semi-automatically

In this study multi-layer perceptrons were used to classify ECG features extracted semi- 

automatically. The ECG features were extracted from ECG traces corresponding to 

euglycaemia and hypoglycaemia and hence distinguishing the two classes o f feature 

vectors successfully would lead to detection o f the two clinical conditions.

The feature extraction is classed as semi-automatic because the T end was marked 

manually but using a tangent line as a visual aid (i.e. use of the tangent method) and 

based on the above annotation of the T end, a number of features based on Benhorin's 

paper [Benhorin 1990] (presented in Section 2.4.2) were extracted. The Q and S 

markers were set manually (with no visual aids) by the human expert performing the 

annotations. The human expert was Cath Davies from the Royal Hallamshire Hospital 

(RHH) in Sheffield.

ECG Features used

Fifteen features were extracted from ECG traces using ECGLAB, based on the semi­

automatic annotation by the human expert. The 15 features extracted along with their 

brief definition are given below:

1. RR -  instantaneous Heart Rate

2. QT -  time interval from Q point to T wave end

3. QTc -  Heart-Rate-corrected QT

4. QRS -  QRS duration, from Q point to S point

5. QRSc -  QRS corrected for heart rate

6 . SoTm -  time interval from S point to T wave maximal amplitude (i.e. T peak)

7. SoTmc -  SoTm corrected for heart rate

8 . TmTo -  time interval from T peak to T wave end
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9. Time Area (25%) to Area (75%) - the time to accumulate the mid-50% of total 

absolute repolarisation area from its 25% to its 75% value

10. Total Area - Total absolute repolarisation area from S point to T end

11. Symmetry - T wave area symmetry ratio (SR); the ratio between the integrated area 

over SoTm and TmTo intervals. (SR= SoTm/TmTo)

12. % o f Total Area to To -  Total Area accumulated at To

13. (Area o f ToUo)/Area of TmaxUo) -  area under ECG from Tend until Uend upon 

area from T peak to Uend

14. %Tmax/Tbaselinemax -  ratio o f current T amplitude upon T amplitude at the start 

o f the night

15. %Tmax/Rmax - ratio of T amplitude upon R amplitude

Out o f the total number o f 15 features produced, the following were used: RR, QT, QTc 

(corrected by Bazett's formula), Benhorin’s T wave symmetry (SR) and 

%Tmax/Tbaselinemax. The features were selected because they were believed to be the 

most significant clinically. RR was used because variations in heart rate are expected in 

a hypoglycaemic event. QTc is a classical predictor o f delayed VR among the clinical 

community [Harris 2000], [Ireland 1998, 2000]. The uncorrected version o f QTc (QT) 

was also used to investigate its usefulness as a feature and also to provide clues towards 

the quality of heart-rate correction24. The symmetry of the T wave can be seen visually 

to be affected under hypoglycaemia hence a feature describing the symmetry was 

included. Finally the T amplitude (described by the %Tmax/Tbaselinemax feature) is 

expected, to drop under hypoglycaemia due to the changes in potassium.

The remaining features extracted semi-automatically in ECGLAB were not used. The 

features excluded were: QRS, QRSc (corrected for heart rate), SoTm, SoTmc (corrected 

for heart rate), TmTo, Time Area (25%) to Area (75%), Total Area, % of Total Area to 

To, (Area of ToUo)/Area o f TmaxUo), %Tmax/Rmax. After performing visual 

inspection, these features were identified as either not informative or not robust i.e. the 

extraction algorithm had poor performance and was not reliable. Some o f the features 

were informative but were highly correlated with other features that were used. For 

instance the %Tmax/Rmax feature had almost identical behaviour to the

24 The RR and QT were fed instead of the QTc in some cases, in order to test whether the neural network 

could detect QT changes that were uncorrelated to hear rate.
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%Tmax/Tbaselinemax feature so only the latter was used in this study. An example of 

this can be seen in Figure 5.3 that depicts the two features (%Tmax/Tbaselinemax and 

%T max/Rmax) for patient 202A.
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Figure 5.3: BLUE: Tmax/Tbaselinemax (top) and Tmax/Rmax (bottom) 

BLACK: trend line (polynomial fitted)

The top graph presents the %Tmax/Tbaselinemax feature (in blue) during the night and 

the bottom graph the %Tmax/Rmax (in blue). Polynomials are fitted (black lines) in 

both cases in order to mark the trend of the feature. Trendlines, although not necessary 

in this graph since the features have very similar behaviour, were used during the 

process o f visual inspection and this is the reason why they are included in this figure. It 

can be concluded from the figure that the two features have similar behaviour. The main 

difference is that the two features have a different baseline value and different range 

which can be seen by inspecting the marks of the two y-axes. Some subtle differences 

also exist. For instance the two features have slightly different behaviour around record

10. The top feature has a flat segment while there is a negative peak in the bottom one. 

A few more such subtle differences can be observed on the figure. Despite these 

differences, the two features have very similar behaviour.

Regarding the QRS (and QRSc) feature, it describes the ventricular depolarization o f 

the heart and is not very useful for the detection o f hypoglycaemia; hypoglycaemia 

affects the ventricular repolarisation process. Moreover, the QRS feature extracted by 

ECGLAB was not very robust. Figure 5.4 (top graph) depicts the QRS feature during
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the night, for patient 201A-nightl. The bottom graph presents the glucose profile for 

that night. It can be seen that the feature values oscillate between two levels which do 

not seem to be related to glucose.
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Figure 5.4: BLUE: QRSfeature (top) and glucose profile (bottom). BLACK: trend line (polynomial
fitted)

The SoTmc feature (along with its uncorrected version) were not used because they 

were found not to convey any useful information regarding hypoglycaemia. Figure 5.5 

depicts this feature along with the glucose profile, for patient 204. This patient 

experienced a hypoglycaemic episode around the middle o f the night and until the end 

of the acquisition.
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Figure 5.5: BLUE: SoTmc feature (top) and glucose profile (bottom.)BLACK: trend line (polynomial

fitted)
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Figure 5.6 depicts the TmTo feature (top graph) for the 2nd night of patient 203. The 

glucose profile is depicted in the bottom graph. It can be seen on the graph that the 

feature does not appear to be correlated to glucose.
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Figure 5.6: BLUE: TmTo feature (top) and glucose profile (bottom)

BLACK: trend line (polynomial fitted)

Figure 5.7 depicts the (Area of ToUo)/(Area of TmaxUo) feature (top graph) for the 

first night of patient 209. The glucose profile is depicted in the bottom graph. It can be 

observed on the graph that the feature does not appear to be correlated to glucose.
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Figure 5.7: BLUE: (Area ofToUo)/(Area o f  TmaxUo) feature (top) and glucose profile (bottom)
BLACK: trend line (polynomial fitted)
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It is noted that some of the features excluded may be useful predictors o f 

hypoglycaemia. They were excluded from this study because they were less important 

and useful than the features used. Poor performance o f a feature not used may be due to 

weaknesses o f the feature extraction algorithm or its implementation in MATLAB and 

not due to the concept behind the feature being weak. Higher sampling rates may also 

reveal useful variations in some time-interval features that were excluded.

Correlation coefficients

The correlation coefficient (p) was used to calculate correlations between ECG features 

and glucose in order to gain an insight on the interrelationships between the cardiac 

function and the glucose variable. Correlation matrices containing the correlations 

between glucose and all features w ere calculated. Examples o f  these correlations are 

given in Table 5.2 for three o f the patients o f the dataset:

Table 5.2: Correlation Coefficients fo r  207-night 1 (a), 209-night 1 (b) and 201A-nightl (c)

_____________(a)___________________________(b)___________________________(c)_____________
201Anght1 g lu c o s e

g lu c o s e 1

H eart R a te 0.318
T im e A rea  (25% ) to  A rea  
(75% ) 0.292
QT 0.277
T otal A rea 0.276

Q T c 0.266
Q R S c 0.245
(A rea o f  T o llo ) /A r e a  o f  
T m a x U o ) 0.233
S y m m etry 0.212
S oT m 0.209
% of T ota l A rea  to  T o 0.169
% T m ax/R m ax 0.134
S o T m c 0.114
% (T m ax)/(T  b a s e l in e  m ax) 0.062

T m T o 0.024

Q R S 0.012

209nght1 g lu c o s e

g lu c o s e 1

Q T c 0.315

% of T otal A rea  to  T o 0.267
Q R S c 0.25
QT 0.238

T m T o 0.216
% T m ax/R m ax 0.193

H eart R a te 0.183
S o T m c 0.178
S y m m etry 0.133
S oT m 0.109
Q R S 0.097
T otal A rea 0.054
% (T m ax)/(T  b a se lin e  m a x ) 0.049
(A rea o f  T o U o )/A rea  o f  
T m axU o) 0.026
T im e A rea  (25% ) to  A rea  
(75% ) 0.018

207nght1 g lu c o s e

g lu c o s e 1
(A rea o f  T oU o )/A rea  o f  
T m axU o) 0.822

QT 0.8
HR 0.773
T otal A rea 0.754
T im e A rea  (25% ) to  A rea  
(75% ) 0.744
Q R S 0.62

Q R S c 0.425
S o T m c 0.372
Q T c 0.348
T m T o 0.271
% of T otal A rea  to  T o 0.197
% (T m ax)/(T  b a se lin e  m a x ) 0.167
S y m m etry 0.133

S o T m 0.032

% T m ax/R m ax 0

The features are sorted in descending order according to the magnitude of the 

correlation coefficient. The remaining columns o f the correlation matrices are not 

included; only the relationships with glucose are presented. By referring to the 

correlation matrices, the relationships among all the features can be examined. It must 

be stressed that the correlation coefficient is very useful but not the ultimate method for 

identifying correlated data, since it can only identify linear relationships. It is useful
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when p identifies a relationship but if  it fails to show a relationship, it does not 

necessarily mean that one does not exist.

It was found that the rank of features was not very consistent across patients. This was 

observed by considering all the nights studied and is also apparent in the above tables. 

For 207-nightl the most correlated feature to glucose was “ (Area of ToUo)/(Area of 

TmaxUo)” while it was the QTc for 209-nightl and the Heart Rate for 201A-nightl. 

The Heart Rate was the only feature consistently ranked highly (top-ranked for 6  out o f 

13 nights studied).

Figure 5.8 presents a 2-dimensinal scatter diagram of %Tmax/Rmax vs QTc. On the 

graph, dots denote euglycaemic (normal) ECG feature vectors (pairs o f QTc - 

%Tmax/Rmax values) and circles denote hypoglycaemic feature vectors. Two classes 

can be formed on the graph: a euglycaemic (Class A) and a hypoglycaemic (Class B). 

However, the two clinical conditions (euglycaemic, hypoglycaemia) cannot be 

distinguished by a linear or non-linear decision boundary. The situation is more 

complex than that and non-linearly enclosed areas (clusters) are needed. An example o f 

an ambiguous point is encircled in the graph. It would be extremely difficult for a 

classifier using only the above two features to distinguish between the two clinical 

conditions for the encircled point. More features would be needed as inputs to the 

classifier to help classify such ambiguous cases. Alternatively, an MLP with two hidden 

layers w ould, i n t heory, b e a ble t o c lassify t he c ases w here a c lass o f  one t ype ( e.g. 

euglycaemia) exists within a class of another (e.g. hypoglycaemia); the class within a 

class problem.
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F igure 5.8: Scatter diagram  - %Tmax/Rmax vs QTc

Scatter diagrams of higher dimensions (greater than 3) cannot be visualised easily and 

hence visual inspection is not a sufficient technique for feature selection.

ECG Feature Combinations

A number of ECG features were used in different feature combinations. Selection o f the 

features was carried out by taking in account the clinical significance o f features besides 

using information from visual inspection. The latter approach was used for exclusion of 

a number of features that were not useful. The number of features fed was 3 in most 

cases. The 1st derivatives o f the features were also included, in most cases, giving a total 

of 6  features. The f  eatures combinations used, consisting of 3 features and their first 

derivatives were:

• RR, QT, QTc

• RR, QTc, Symmetry

• RR, QTc, %Tmax/Tbaselinemax
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• RR, Symmetry, %Tmax/Tbaselinemax

• QTc, Symmetry, %Tmax/Tbaselinemax

Another combination used, consisting o f four features, not including 1st derivatives was:

• RR, QTc, Symmetry, %Tmax/Tbaselinemax.

The first derivatives were excluded in order to reduce the number o f inputs to the 

classifier from 8  to 4. The reason behind using the 1st derivatives o f the features is 

illustrated in Figure 5.9.
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Figure 5.9: Illustration o f  two sample points considered under a static and dynamic context

The derivative value supplied with the feature value informs whether the feature was 

increasing or decreasing. The two sample points in Figure 5.9 are the same in a static 

context but not in a dynamic context. At the LHS sample point the feature value 

increases whereas it decreases for the RHS sample point. This information could be 

useful in our case. It had been stressed in the biomedical background discussion 

(Chapter 1) that T wave flattening and QTc prolongation are observed under 

hypoglycaemia. The opposite changes most likely do not convey useful information. 

Therefore feeding the derivative signal to the classifiers may help in ignoring feature 

changes, to the opposite direction, that are unrelated to hypoglycaemia.
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Results from various feature combinations

Twenty one Type 1 adult diabetic patients from the dataset were included in the study 

each one contributing a maximum of two nights. Each night can contribute a maximum 

o f 33 SAECG cycles. 34 nights were acceptable out o f a total of 42. 275 SAECG traces 

were available out of a total o f 1122 after preprocessing and data selection. The 

classification details are tabulated in Table 5.3 below:

Table 5.3: Parameters fo r  classification based on semi-automatic features

Classification parameters
Patients: Adult typel diabetics
ECG leads used: YY' from 3-lead orthogonal ECG
Feature extraction: Semi-Automatic
T wave onset method: not used
T wave offset method: tangent method (semi-automatic)
ECG features used: RR, QT, QTc, Symmetry of T wave, 

%Tmax/Tbaselinemax in various 
combinations

Baseline removal method: 1st value baseline only in %Tmax feature
Number of output classes: 2  (euglycaemic -  hypoglycaemic)
Hypoglycaemic threshold: 2.5 mmol/lt or 3.5 mmol/lt
Euglycaemic range: [4 8 ] mmol/lt
Hypoglycaemic range: [2.2 2.5] mmol/lt (according to 2.5 mmol/lt threshold) 

[2.2 3.5] mmol/lt (according to 3.5 mmol/lt threshold)

Ranges excluded: (2.5 4) & (8  +co) (according to 2.5 mmol/lt threshold) 

(3.5 4) & (8  +co) (according to 3.5 mmol/lt threshold)

cross-validation method: 5-fold
outlier removal: mean ± 3SD
Number of hidden layers: 1

Number o f neurons in hidden layer: Variable in [2 10]
Glucose sensing method: MiniMed CGMS

Results Using Features: RR, QTc, Symmetry o f T wave, %Tmax/Tbaselinemax 

The classification results of the global classifier produced are presented in Table 5.4. 

The table presents training and test metrics (accuracy, sensitivity, specificity, ratio of 

undetermined classifications). The assessment of undetermined classifications is rated 

separately for the hypoglycaemic (undetermined-positives labelled as “und p” on the 

table) and euglycaemic (undetermined-negatives labelled as “und n” on the table) cases. 

Although the training accuracy is high, the test accuracy is unsatisfactory being less 

than a random classifier (i.e. 50% accuracy). The main reason for the poor performance 

is probably due to inter-patient variability. Further discussions on the issue of inter-
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patient variability will be presented later in the chapter when various studies will be 

combined.

Table 5.4: Classification results for all male patients combined

malemlp_9_mc=0.1#1 hypo@2.5, RR, QTc, Symmetry of T wave, %Tmax/Tbaselinemax (no derivatives)

Xval tp tn fp fn und p und n normal hypos accuracy hitrate tnratio undet ratio
1 125 122 2 2 8 14 138 135 90.48% 98.43% 88.41% 8.06%
2 99 121 5 8 29 11 137 136 80.59% 92.52% 88.32% 14.65%

5 3 125 126 3 2 10 7 136 137 91.94% 98.43% 92.65% 6.23%
4 101 118 2 5 30 17 137 136 80.22% 95.28% 86.13% 17.22%
5 123 127 4 2 10 6 137 135 91.91% 98.40% 92.70% 5.88%

mean:
std:

87.03%
6.08%

96.61%
2.66%

89.64%
2.91%

10.41%
5.19%

1 17 69 142 15 1 14 225 33 33.33% 53.13% 30.67% 5.81%
2 10 149 66 23 1 8 223 34 61.87% 30.30% 66.82% 3.50%

te
sl 3 29 79 124 5 0 12 215 34 43.37% 85.29% 36.74% 4.82%

4 14 70 134 11 7 21 225 32 32.68% 56.00% 31.11% 10.89%
5 7 144 59 24 3 22 225 34 58.30% 22.58% 64.00% 9.65%

mean:
std:

45.91%
13.67%

49.46%
24.65%

45.87%
18.03%

6.94%
3.19%

Figure 5.10 contains graphs of the 4 input features fed to the classifier (top 4 graphs) 

and the glucose variable (bottom graph), for the whole of the dataset used. The first half 

of the dataset (LHS) corresponds to hypoglycaemia (the glucose variable fluctuates 

around 2.2 mmol/lt) and the second half (RHS) corresponds to euglycaemia.

ECG features (top 4 graphs) and glucose (bottom)

QTc
0.5

0.4

0.3

0.2
250150 200100 HR

150

F  100

e
250100 150 200a Symmetiy

6t
4

2

0
250200100 %Tmax/Tbaselinemax 150500

400

v 200
a

250100 150 200glucose
Gu
6
4

2
250200100 Sample number 150o 50

Figure 5.10: Four input features fe d  to the classifier (top 4 graphs) and glucose (bottom graph)
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The classification results for the RR, QT, QTc feature combination are presented in 

Table 5.5.

Table 5.5: Results fo r RR, QT, QTc features (including 1st derivatives)

Xval
malemlp_9_mc=0.1#1~1 
tp tn fp fn und p und n normal hypos accuracy hitrate tnratio undet ratio

1 85 131 3 24 32 4 138 141 77.42% 77.98% 94.93% 12.90%
2 97 117 7 24 20 15 139 141 76.43% 80.17% 84.17% 12.50%

'to 3 70 106 4. 55 15 24 134 140 64.23% 56.00% 79.10% 14.23%
4 48 69 53 72 19 8 130 139 43.49% 40.00% 53.08% 10.04%
5 89 80 49 34 17 9 138 140 60.79% 72.36% 57.97% 9.35%

mean:
std:

64.47%
13.82%

65.30%
17.02%

73.85%
17.76%

11.81%
2.04%

1 0 196 31 31 1 7 234 32 73.68% . 0.00% 83.76% 3.01%
2 0 195 36 34 0 3 234 34 72.76% 0.00% 83.33% 1.12%

te
sl 3 1 162 57 28 5 7 226 34 62.69% 3.45% 71.68% 4.62%

4 21 132 81 11 2 16 229 34 58.17% 65.63% 57.64% 6.84%
5 12 128 93 17 6 14 235 35 51.85% 41.38% 54.47% 7.41%

mean:
std:

63.83%
9.40%

22.09%
29.96%

70.18%
13.82%

4.60%
2.63%

Comparison of feature combinations
25Table 5.6 presents the classification train and test accuracy for 5 feature combinations . 

The optimal number of neurons in each case is recorded. Classification results were 

produced for both hypoglycaemic thresholds. Therefore the table allows comparisons of 

both the feature combinations and the hypoglycaemic thresholds.

Table 5.6: Comparison o f  feature combinations and hypo thresholds

HrQTQTc HrQTcSymm HrQTcTmaxTbas Q TcSy mmTmaxTbas HrSymmT maxTbas

hypo@2.5 # of neuron 9 7 7 6 8
train acc 0.645 0.601 0.643 0.611 0.711

test acc 0.638 0.560 li||P ;(523 i|||| 0.550 0.506
diff: tr-tst 0.006 0.041 0.120 0.061 0.206

HrQTQTc HrQTcSymm HrQTcTmaxTbas QTcSy m m Tm axTbas

hypo@3.5 # of neuron 7 9 8 10
train acc 0.545 0.596 0.797 0.783

test acc 0.398 0.465 0.478 0.464
diff: tr-tst 0.147 0.131 0.319 0.319

Comparing the feature combinations, consisting o f groups of 3 ECG features and their 

corresponding derivatives, it was found that the combination which gave the highest test

25 The RR, Symmetry, %Tmax/Tbaselinemax combination is not included in the table for the 3.5 thresh 

since it was not simulated.
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accuracy was the one consisting o f  the RR, Q T and QTc features. This combination 

yielded a training accuracy of 64.5% and a test accuracy o f 63.8%. Although there were 

combinations with higher training accuracies, the above one gave the highest test 

accuracy. However, this result has to be treated with caution. By inspecting the table 

more carefully it is realised that the sensitivity was 0 % for two o f the cross-validation 

groups and just 3.45% for a third one. This yields a very low average sensitivity 

(22.09%). This is compensated by a high value of specificity (70.18%) which raises the 

accuracy to 63.83%. Although this combination contributed the highest accuracy, 

detection of positives (hypo events) was poor.

In general, the feature combinations gave very similar results for each hypoglycaemic 

threshold which makes it difficult to select the best one. The optimal feature 

combination cannot be concluded easily. Since the performance is not satisfactory, it 

will not be too crucial and necessary to select the best feature combination. For the 2.5 

mmol/lt threshold it was RR, QT, QTc according to the test accuracy as already 

mentioned. Giving emphasis on  the training accuracy, the best combination w as RR, 

Symmetry, %Tmax/Tbaselinemax. However, this combination gave the lowest test 

accuracy and this indicates that the neural network may have overfitted on the training 

data. It also had the 2nd largest number o f hidden neurons. Comparing the two 

hypoglycaemic thresholds, it is concluded that the one at 2.5 mmol/lt was a better 

choice according to the performance o f the classifiers. The test accuracies for the 3.5 

mmol/lt were very low, being worse than a random classifier. The disadvantage o f the 

2.5 mmol/lt threshold is that it contributes less hypoglycaemic patterns than the 3.5 

threshold26.

Looking at the size o f the hidden layer, it varied slightly among the various 

configurations. In all the above feature combinations, the best results were achieved by 

the networks having a large number of hidden neurons; i.e. number of neurons lying in 

the upper half o f the [2  1 0 ] interval.

26 This effectively leads to reduction of the data that can be used. In most cases the hypo class was the one 

contributing less data than the euglycaemic class. Since equal numbers of training patterns from both 

clinical conditions were used, the hypo class was the one determining how much training data could be 

used.
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5.2.3 Per-patient classification based on automatically extracted ECG 

features

The approach o f producing a classifier tailored for each patient was followed since 

previous studies (including the study presented in Section 5.2.2) indicated that the 

performance of global classifiers is unsatisfactory. In this per-patient study 6  patients 

were used. This was because the rest of them were not suitable for a per-patient study. 

For such a study each patient must contribute data representative o f both clinical 

conditions (euglycaemia and hypoglycaemia). This is necessary for training the 

classifiers since they have to be trained on sufficient data from both conditions in order 

to be able to distinguish them in the future. Only 6  patients from the dataset possessed 

the above characteristic.

ECG features

ECG features were extracted in a fully automatic way. The features used were RR, RTc 

(a subsection o f QTc), Total Area under the T wave, and HAR (a symmetry measure of 

the T wave). These features were extracted automatically, in ECGLAB, from the 

Signal-Averaged ECG cycles27. RTc is the corrected version o f RT produced by the 

formula: RTc = RT/VRR (Bazett’s formula) [Bazett 1920]. This correction is applied in 

order to decorrelate the RT interval from the RR (instantaneous heart rate). The Q point 

detection was manual in the previous study. In this study the R point was used instead 

of the Q point and the annotation was carried out using an automatic algorithm as 

opposed to using manual annotations. Q detection is more error-prone to R detection 

hence the choice o f the latter. The RT interval still describes the ventricular 

repolarisation process and hence it is a valid alternative to the QT. It has been used in 

the past by Porta et al [Porta 1994, 1998].

The detection o f the end o f the T wave was carried out using a fully automatic version 

o f the tangent method (msi). Testing of the automatic tangent.method was carried out
9o t

using visual inspection by the researcher . The onset of the T wave was marked using 

the intersection of the ECG trace with the isoelectric line. Unlike the downslope o f the T 

wave, the T upslope almost always crosses the isoelectric line. This means that using the

27 The features used in this study were different to the features extracted semi-automatically by the human 

expert (Cath Davies) working in RHH.

28 Charilaos Alexakis.
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intersection of the T upslope with the isoelectric line was an acceptable algorithm for T 

onset detection. Such an algorithm though, could not be used for the T end detection 

because in the event of no crossing of the downslope with .the isoelectric line, the 

algorithm would not provide an annotation for the T end.

Neural Network Classifiers

In this study a different neural network was used for each patient in order to overcome 

inter-patient variability problems. Global classifiers (i.e. classifiers trained on many 

subjects) were not produced and the baselines o f the ECG features used were not 

removed (by subtraction o f the 1st value o f each night). This was because the removal o f 

baseline was considered necessary mainly when producing a global classifier, in order 

to normalise the ranges of the features by removing offsets.

Five-fold cross-validation was used in order to maximise the data-sets. This means that 

five classifiers were produced that were trained on different subsections of the data 

available and the classification performance averaged. This procedure of training 5 

neural networks was repeated many times from different initial conditions and the best 

networks were chosen. 1750 networks were trained for each subject. This is broken 

down as: 70 different random initial conditions times 5 different hidden layer sizes 

times 5 different networks due to cross-validation. This task demanded a lot o f 

processing power and many hours of simulation. This is a big disadvantage o f neural 

networks over statistical classifiers such as LDA whose execution time is negligible.

The hidden layer size varied in [2 5]. For each o f the above configuration four networks 

were trained each one with a different number o f hidden neurons variable in [2 5]. This 

was attempted in order to identify the optimal network size for this classification 

problem. Table 5.7 shows a summary of the classification parameters.
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Table 5.7: Parameters for per-patient classification o f automatically extracted ECG features

Classification param eters
Patients: 202, 204,’ 212, 216, 227, 229 (Adult typel 

diabetics)
ECG leads used: YY' from 3-lead orthogonal ECG
Feature extraction: Automatic
T wave onset method: intersection of T upslope with isoelectric 

line
T wave offset method: tangent method (fully automatic)
ECG features used: RR, RTc, Total Area under T wave, HAR 

(Symmetry of T wave)
Baseline removal method: none
Number of output classes: 2  (euglycaemic -  hypoglycaemic)
Hypoglycaemic threshold: 2.5 mmol/lt
Euglycaemic range: (2 .5  +oo)

Hypoglycaemic range: [2.22.5]
Ranges excluded: none (in order to maximise the amount of 

data used)
cross-validation method: 5-fold
outlier removal: mean ± 3SD
Number of hidden layers: 1

Number of neurons in hidden layer: Variable in [2 5]
Glucose sensing method: MiniMed CGMS

The classification results for the six patients are presented in Table 5.8.

Table 5.8: Training and test classification results for six diabetic patients

training testing
patient accuracy hitrate specificity accuracy hitrate specificity

202 89.30% 82.13% 96.47% 70.38% 72.92% 69.29%
204 78.47% 100.0% 77.22% 61.12% 67.00% 61.43%
212 79.00% 100.0% 79.00% 74.92% 75.76% 93.33%
216 73.97% 85.44% 69.26% 73.86% 86.21% 42.67%
227 88.95% 95.69% 92.29% 57.82% 58.86% 76.00%
229 86.47% 90.64% 88.72% 64.14% 43.33% 66.71%

mean 82.70% 92.32% 83.83% 67.04% 67.35% 68.24%
std 6.40% 7.53% 10.34% 7.05% 14.88% 16.70%
min 73.97% 82.13% 69.26% 57.82% 43.33% 42.67%
max 89.30% 100.0% 96.47% 74.92% 86.21% 93.33%

The accuracy, hitrate (sensitivity) and specificity are tabulated for the training and

testing data. The table also presents summary results (mean, standard deviation, range). 

The average train and test accuracies are 82.70% and 67:04% respectively. The 

accuracy on unseen data is not impressive but shows that the use o f neural networks for 

classification can be a promising approach. The highest test accuracy was observed for 

subject 212 (74.92%) and the lowest for 227 (57.82%).
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By considering the results from Section 5.2.2 and the results from this section, some 

observations are made regarding the use of a global classifier as opposed to the use of 

classifiers customised per patient. It is obvious that this section’s results are 

significantly better. The training accuracy for the global classifier is higher than the 

average training accuracy of the per-patient study but the generalisation on unseen data 

is very poor and in some cases worse than a random classifier. It is possible that the 

high performance on the training data may be due to overfitting. This study indicates 

that the approach o f producing a custom classifier for each patient can overcome the 

severe inter-patient variability problems.

It must be noted here that not all the parameters, involved in the above two 

classification studies, were kept the same in the two studies. Some o f the ECG features 

used were different. Two different algorithms for the calculation of the T wave 

symmetry were used in the two studies (Benhorin’s symmetry vs HAR). Also the total 

area under the T wave was used in this study instead of the %Tmax/Tbaselinemax 

feature used in the global classifier study. Moreover the RTc interval was used in this 

study while QTc was used in the study o f Section 5.2.2. Although different, these 

features describe the same cardiac process, and the main difference is a change in 

baseline29. Finally, the RR feature was exactly the same for both studies.

The other factor that could have affected the performance is that the maximum number 

of hidden neurons allowed in this study was 5 instead of 10 used in the global classifier 

study. This means that the strength of the neural networks was restricted more in the 

current study which is a step towards prevention of overfitting leading to better 

performance on unseen data.

29 Although the main difference is the change in baseline, ambiguous Q point detection can introduce 

further differences. On the other hand R point detection is straight-forward and does not introduce 

problems in the comparison of the two features.
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5.2.4 Comparison of two feature combinations for the per-patient 

classification of automatically extracted ECG features, by neural and 

statistical classifiers

This study was a continuation of the work presented in Section 5.2.3. A few more 

diabetic patients were recruited and added to the dataset and some additional ECG 

features were used. Moreover, Linear Discriminant Analysis (LDA) was employed in 

order to provide a comparison between neural and statistical classifiers.

11 subjects from the dataset were included in this study, since more patients were made 

available for analysis after the completion of the previous studies. Five ECG features 

were used in this study namely: RR, RTc, T wave amplitude (Tampl), T wave skewness 

(skew) and T wave kurtosis (kurt). These features were extracted using automatic 

algorithms. The onset and end of the T wave were detected using the tangent method.

The 5 ECG features produced were combined in two. combinations o f 4 features namely 

RR, RTc, Tampl, skew and RTc, Tampl, skew, kurt. This was so because it was decided 

to keep the number of input features to a minimum. Feature vectors consisting of more 

than 4 features w ere not used. Neural networks were trained using the above feature 

combinations and comparisons were made in order to identify the best one.

Both ANNs and LDA were used for classification with five-fold cross-validation 

applied in both cases. Classifiers customised per patient were produced as before. The 

classification process was almost the same in this study and the one presented in Section 

5.2.3, as can be seen in Table 5.9 that summarises the classification parameters. The 

only differences were the different features and the different numbers o f patients used. 

Neural network and LDA classification results for the 11 subjects and for the feature 

combination of RTc, Tampl, skew, kurt are given in Tables 5.10 and 5.11 respectively. 

Similarly for the feature combination o f RR, RTc, Tampl, skew, the ANN and LDA 

results are given in Tables 5.12 and 5.13.

30 using the Mahalanobis distance metric
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Table 5.9: Parameters fo r per-patient classification

Classification parameters
Number o f output classes: 2 (euglycaemic -  hypoglycaemic)
Hypoglycaemic threshold: 2.5 mmol/lt
Euglycaemic range: (4 81
Ranges excluded: (2.5 41 & (8 +oo)
ECG leads used: YY' from 3-lead orthogonal ECG
Feature extraction Automatic
ECG features (or feature combinations) 
used:

■ RR, RTc, Tampl, skew

■ RTc, Tampl, skew, kurt
outlier removal m ean± 3SD
Number o f hidden layers 1

Number o f neurons in hidden layer Variable in [1 5]
Glucose sensing method: MiniMed CGMS
Baseline removal method None
Patients Adult typel diabetics

Table 5.10 (LHS): ANN classification results (RTc Tampl skew kurt) and Table 5.11 (RHS): LDA 
Classification results (RTc Tampl skew kurt)
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202 89.82 100 89.26 71.52 73.85 74.29 202 83.42 86.99 79.85 69.62 72.58 62.86
203 93.78 98.46 89.1 87.5 90.46 73.33 203 91.35 92.05 90.64 82.92 86.52 65.33
204 77.08 100 77.22 58.33 62 58.67 204 70.56 66.11 75 50.67 26.67 74.67
208 88.3 94.86 90.33 66 71 66 208 73.4 70.17 76.63 63.67 46.67 80.67
212 83.5 100 79 77.66 85.45 83.33 212 100 100 100 89.96 92 40
216 79.15 93.89 70.07 76.82 85.61 39.33 216 77.28 82.28 72.28 69.88 71.67 63.33
220 83.89 97.78 83.89 65.19 70.87 5G 220 68.89 90.83 46.94 87.1 89.77 0

223A 82.19 96.19 79.76 69.11 84 68.33 223A 64.9 76.86 52.95 56.25 84.76 34.72
227 93.17 100 89.33 62 65.86 68.67 227 65.95 51.14 80.76 44.09 39.33 58.67
229 78.21 81.88 78.21 64.19 60 65.14 229 79.68 87.18 72.18 36.33 45 35.51
244 86.67 100 86.67 73.28 80.6 58 244 87.78 97.78 77.78 83.44 90.68 38.67

mean 85.07 96.64 82.99 70.15 75.43 64.1 mean 78.47 81.94 75 66.72 67.79 50.4
std 5.79 5.38 6.59 8.36 10.41 12.17 std 11.24 14.75 14.92 18.24 23.95 23.18
min 77.08 81.88 70.07 58.33 60 39.33 min 64.9 51.14 46.94 36.33 26.67 0
max 93.78 100 90.33 87.5 90.46 83.33 max 100 100 100 89.96 92 80.67

By comparing Tables 5.10 and 5.11 it can be seen that the neural network results were 

superior to those from Linear Discriminant Analysis. The sensitivity and specificity on 

unseen data were 75.43% and 64.1% respectively for the ANN while they were 67.79% 

and 50.4% for LDA. Looking at the standard deviation, across patients, o f the 

classification metrics it is realised that the ANN had more uniform performance across 

patients. In the case o f LDA there was greater variation in the performance o f the 

classifier among patients.
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Table 5.12 (LHS): ANN classification results (RR RTc Tampl skew) 

Table 5.13 (RHS): LDA Classification results (RR RTc Tampl skew)
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202 82.13 93.96 75 75.08 79.46 72.86 202 85.07 90.51 79.63 75.91 84.08 58.93
203 90.64 96.92 84.36 86.83 90.46 72.67 203 88.21 90.64 85.77 75.67 76.22 72.67
204 76.94 97.78 78.89 62.94 66 61.9 204 64.58 74.17 55.00 56.22 84.67 32.38
208 87 96.94 86.52 59.44 67.78 58.33 208 69.17 51.76 86.57 59.69 37.11 85.00
212 90 96 88 76.96 83.02 83.33 212 98.00 100.00 96.00 66.91 67.86 43.33
216 83.9 94.12 74.93 71.3 79.5 39.33 216 83.90 84.56 83.24 67.48 70.30 54.67
220 81.67 100 83.89 63.91 72.62 30 220 64.86 93.33 36.39 93.43 95.82 20.00

223A 87.86 98.1 87.38 63.92 67.62 63.89 223A 60.10 70.14 50.05 50.59 68.93 34.44
227 84.62 99 80.81 60 70.65 62 227 73.52 78.90 68.14 56.82 56.58 57.33
229 89.87 86.51 96.92 65.62 38 70.33 229 82.12 95.38 68.85 46.52 58.00 44.63
244 88.75 95.28 91.11 85.67 89.29 84 244 89.58 95.56 83.61 84.06 88.43 58.67

mean 85.76 95.87 84.35 70.15 73.13 63.51 mean 78.10 84.09 72.11 66.66 71.64 51.10
std 4.31 3.64 6.71 9.79 14.46 16.64 std 12.29 14.31 18.33 14.51 16.85 18.66
min 76.94 86.51 74.93 59.44 38 30 min 60.10 51.76 36.39 46.52 37.11 20.00
max 90.64 100 96.92 86.83 90.46 84 max 98.00 100.00 96.00 93.43 95.82 85.00

Tables 5.12 and 5.13 show that for the feature combination o f RR, RTc, Tampl, skew 

the ANN also gave superior classification compared to LDA. The test accuracy was 

70.15% for the ANN and 6 6 .6 6 % for LDA. The standard deviation, across patients, o f 

the classification metrics was again greater for the case of LDA.

Comparing the ANN classification results it can be seen that the two feature 

combinations consisting of four features each (RR-RTc-Tampl-skew & RTc-Tampl- 

skew-kurt) gave very similar results. The training accuracy differed by 0.69% while the 

test accuracy was identical (given two significant digits). Comparing the two classifiers 

used it is summarised that for both feature combinations the ANN were superior to 

LDA. There was a difference of approximately 4% on the test accuracy, in both cases.

5.2.5 LDA classification of ECG traces modelled by AutoRegressive 

Modelling

This section presents the classification results when the ECG traces were represented by

the coefficients of Autoregressive (AR) models. This type o f ECG trace representation

was used as an alternative to the approaches where the ECG traces were segmented and

ECG features were produced. As mentioned in Section 4.6, a third order AR model was

employed which yields four model parameters (ai, a2, a3 and P). The AR parameters (3
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coefficients and offset) were classified by LDA. The classification results are given in 

Table 5.16.

Table 5.16: Classification o f  AR coefficients by LDA
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P202 84.52 82.06 13.01 86.99 17.94 76.52 93.33 64.76 35.24 6.67

p203 99.17 100.0 1.67 98.33 0.00 88.58 91.23 21.43 78.57 8.77

p204 97.78 95.56 0.00 100.0 4.44 66.85 56.67 24.76 75.24 43.33

p208 93.98 91.17 3.20 96.80 8.83 85.03 87.50 18.67 81.33 12.50

p216 78.01 89.26 33.24 66.76 10.74 71.39 75.20 46.67 53.33 24.80

p220 79.44 100.0 41.11 58.89 0.00 89.99 91.70 70.00 30.00 8.30

p223A 83.67 86.57 19.24 80.76 13.43 65.20 86.00 64.29 35.71 14.00

P227 82.26 82.71 18.19 81.81 17.29 59.75 64.95 55.33 44.67 35.05

P229 82.82 73.46 7.82 92.18 26.54 52.86 31.67 44.43 55.57 68.33

P244 93.19 88.61 2.22 97.78 11.39 52.77 47.06 10.67 89.33 52.94

mean 87.49 88.94 13.97 86.03 11.06 70.89 72.53 42.10 57.90 27.47

std 7.77 8.33 14.11 14.11 8.33 13.89 21.58 21.73 21.73 21.58

min 78.01 73.46 0.00 58.89 0.00 52.77 31.67 10.67 30.00 6.67

max 99.17 100.0 41.11 100.0 26.54 89.99 93.33 70.00 89.33 68.33

Figure 5.11 presents a comparison of the two approaches o f ECG representation, i.e. 

using ECG features and alternatively using AR coefficients to describe each cardiac 

cycle. The results in the case of using ECG features originate from the study presented 

in Section 5.2.4. The bars in Figure 5.13 represent training and test accuracy. Labels 

“ECGfeat-NNET” and “ECGfeat-LDA” correspond to the approaches o f using ECG 

features classified by neural networks and linear discriminant analysis respectively. AR- 

LDA corresponds to the approach o f using AR coefficients for ECG representation 

classified by linear discriminant analysis. The AR coefficients were not classified using 

neural networks due to time constraints. Comparing the LDA classification results for 

the two ECG representation approaches it is observed that the AR modelling yielded 

higher training and test accuracy. This gives some indication that the approach o f 

modelling whole segments of interest of the ECG cycle is a promising one for detecting 

subtle cardiac abnormalities related to hypoglycaemia.
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Figure 5.11: Summary results fo r  the two ECG representation approaches

5.2.6 Investigation of improved preprocessing on the classification of ECG

traces represented by the RTc and T amplitude features

This section presents a study where less ECG features were fed to the classifier but 

extra preprocessing was applied. Only the main two ECG features that were quantifying 

the changes dictated by the research hypothesis were used. The main changes are 

broken down to delayed Ventricular Repolarisation and flattened T waves. Therefore 

the two main features involved are the RTc (or alternatively QTc) and the T wave 

amplitude. The extra preprocessing step involved Moving Average filtering. The aim  

was to test whether using additional preprocessing techniques would improve the 

performance and whether it would allow reduction of the number of input ECG features 

needed. This section also discusses the effect of fluctuations and transient ECG feature 

changes on the classification performance. Classifiers used were tailored to the needs o f 

each patient and global classifiers were not used. The details o f this classification study 

are summarised in Table 5.17.
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Table 5.17: Classification param eters

Classification Parameters
Patients: 202 (both nights), 203-night1, 204, 212- 

night2, 227 (both nights), 244-nightl 
(Adult typel diabetics)

ECG leads used: YY' from 3-lead orthogonal ECG
Feature extraction: Automatic
T wave onset method: tangent method (fully automatic)
T wave offset method: tangent method (fully automatic)
ECG features used: RTc, Tampl
Baseline removal method: none
Number o f output classes: 2  (euglycaemic -  hypoglycaemic)
Hypoglycaemic threshold: 2.5 mmol/lt or 3 mmol/lt
Euglycaemic range: (2.5 +oo] mmol/lt (according to 2.5 mmol/lt threshold) 

(3 + 0 0 ]  mmol/lt (according to 3 mmol/lt threshold)

Hypoglycaemic range: [2.2 2.5] mmol/lt (according to 2.5 mmol/lt threshold) 

[2.2 3] mmol/lt (according to 3 mmol/lt threshold)

Ranges excluded: none (in order to maximise the amount of data used)
ECG features used: RTc, Tampl
cross-validation method 2 -fold

(data was partitioned to train and test set and this 
partitioning was repeated 1000 times after 
randomising the data each time)

outlier removal mean ± 3SD
Glucose sensing method: MiniMed CGMS

Effect of ECG feature fluctuations and transient ECG feature changes on 

Classification Performance

Pattern classification as it was carried out up to this point of the thesis, suffers from a 

number o f problems discussed here. This section analyses how the fluctuations of ECG 

features are degrading classification performance. ECG feature values sometimes 

fluctuate significantly and this is unrelated to hypoglycaemia. Moreover, some ECG 

features change in value as hypoglycaemia occurs but often the change is a short-term 

one and the feature values recover to their previous ranges associated with euglycaemia, 

although the patient remains in hypoglycaemia. Such feature changes will be referred to 

as “transient ECG feature changes”. The ECG features undergo changes in magnitude 

along with the onset o f hypoglycaemia but such changes are transients and the feature 

values do not settle to a steady-state level for the duration of the hypoglycaemic period. 

Before the hypoglycaemic period finishes the feature values often return to their original 

values. This introduces ambiguity since the same feature magnitude can be encountered 

both under euglycaemia and hypoglycaemia. This phenomenon is illustrated in Figure
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Figure 5.12: Tampl (LHS) and RTc (RHS) graphs (solid lines) including MA values (dotted lines) fo r
subject 204

The LHS graph presents the Tampl feature (solid) and the RHS graph, the RTc feature 

(solid). The dotted lines describe the moving average o f the two features. The vertical 

dashed line marks the onset o f hypoglycaemia. Records to the left o f the dashed line are 

normal while records to the right are hypoglycaemic. It can be seen on the Tampl graph 

that there is a sharp drop around the onset of hypo. The low Tampl value is preserved 

for a w hile b ut f  or r ecords 2 4 a n d 2 5 t h e v  alue o f  t he f  eature r etums t o a mplitudes, 

similar to those before the hypo event. This change happens although the patient 

remains in hypoglycaemia. A classifier will associate high T amplitudes (around 400- 

450 mV) with euglycaemia and later on it will be presented with similar amplitudes that 

correspond to hypoglycaemia. Such ambiguity is confusing the classifier and making its 

task very difficult. Extra ECG features added may resolve the ambiguities and improve 

classification.

Looking at the RTc graph, similar problems exist. The signal has a lot o f fluctuations 

and this again causes ambiguities between feature values corresponding to euglycaemia 

and hypoglycaemia. For instance, record 13 has a similar value to record 19 although 

they correspond to two different clinical conditions. These ambiguities need to be 

overcome and the useful information in the feature extracted. For instance, the feature 

has an upward trend as the patient goes into hypoglycaemia which is useful for 

detection of the condition. Also there is a significant increase in feature value for a 

couple of successive sampling instants around the onset of hypo. However, i f  static 

pattern classification is carried out then this significant event will be masked by similar 

feature values occurring before and after it in the night.
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Table 5.18 presents training and test classification results for patient 204 using LDA 

when only RTc and Tampl are used as inputs. The data was partitioned to training and 

test and classification was carried out by LDA. This process was repeated 1000 times 

and average performance calculated. This approach was chosen over the use of 5-fold 

cross-validation because in the latter case the cross-validation groups were very small 

for calculation o f statistics. Splitting the data in half (i.e. 2-fold cross-validation) 

maximised the size of the train and test sets. Since this was repeated many times, and 

the classifiers were assessed on the average performance, we were confident that the 

data-set formation was not biasing the classification in any way. A hypoglycaemic 

threshold of 2.5 mmol/lt was used to define euglycaemia and hypoglycaemia.

Table 5.18 p204 LDA classification results using RTc and Tampl (raw features, no exclusion o f  records) 

fo r  a hypoglycaemic threshold o f 2.5 mmol/lt

TRAIN TEST
accuracy hitrate specificity accuracy hitrate specificity

mean 71.67% 55.29% 86.00% 56.43% 43.86% 69.00%
std 10.31% 22.49% 10.99% 10.77% 21.99% 24.79%

It can be seen from the table that the metrics on the test data are poor with an accuracy 

of 56% approximately. Poor performance on this patient is due to the existence of 

ambiguous variations o f the ECG features during the night that are confusing the 

classifier. Specifically on the Tampl feature, there are samples with similar amplitude 

that correspond to both clinical conditions and hence the classifier fails to distinguish 

between the two; this was discussed earlier and illustrated in Figure 5.14.

In order to investigate the effect o f the fluctuating ECG features on the classification 

performance, the ambiguous records according to the Tampl feature were removed. The 

records removed were: 5, 6 , 7, 12, 24, 25, 31, 32, 33 and LDA classification was 

repeated. The removal o f these records is not set up aiming to improve the numbers in 

the classification performance. The justification for the removal of these records is as 

follows:

• records 5-7 are the first 3 records o f the night corresponding to the transitional 

period of the patient f  ailing asleep and including the early stages o f sleep. These 

records can introduce ECG feature variations that are related to the transition into 

sleep but which are unrelated to hypoglycaemia.
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• record 1 2 , although not an outlier, is a record where a big change in feature value 

happens and is unrelated to hypoglycaemia. In some o f the studies, such changes are 

assumed to be insignificant since they only occur at one sampling instant. This 

record could be suppressed during preprocessing and set to the value of the previous 

sample or a moving average value.

• Records 2 4 and 2 5 b  elong t o t he h ypoglycaemic p art o f  t he n ight b ut t he T ampl 

values correspond to levels o f magnitude encountered under euglycaemia. These 

samples are removed in order to investigate the impact of such ambiguous records 

on the classification performance.

• Records 31-33 were removed for the same reason as records 24, 25.

The LDA classification results after removing the ambiguous feature vectors are 

tabulated in Table 5.19 (the results with the ambiguous records included, which were 

already presented in Table 5.18, are included again for easy comparisons). As it was 

expected, the results significantly improved after removal o f the ambiguous records. 

The test accuracy increased from 56.4% to 81.2%.

Table 5.19: p204 LDA results using RTc and Tampl (with ambiguous records excluded)

TRAIN TEST
accuracy hitrate specificity accuracy hitrate specificity

am biguous mean 93.70% 94.00% 93.40% 81.20% 85.80% 76.60%
excluded std 8 .0 0 % 9.64% 1 0 .6 6 % 12.08% 18.04% 28.58%
raw mean 71.67% 55.29% 8 6 .0 0 % 56.43% 43.86% 69.00%

features std 10.31% 22.49% 10.99% 10.77% 21.99% 24 79%

Moving Average Filtering

Manually removing ambiguous records was not a practical preprocessing step. In order 

to systematically tackle problems of ambiguous feature vectors, an extra preprocessing 

step was added before the classifier. This step involved calculating the moving average 

profile of each feature. This produced the necessary filtering that suppressed some of 

the fluctuations that were causing problems. The equation of the Moving Average filter
th

used is given below in its generic form for an n order filter:

y(k) =

i=\ - , f o r n < k  n , k e W eqn 5.7a

/ = i fo r  n > k  w e X +, & e K + a  k >  1 eqn 5.1b

eqn 5.1c
k - 1 

x(k), fo r  k = 1

x(k) is the raw feature value at sample k, and y(k) is the MA filtered version.
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It can be seen from the above equations that if  there are not enough previous values to 

fill the moving window then a smaller window is used with as much data there is 

available. Figure 5.13 shows the graph o f the raw Tampl feature (top) and the graphs of 

the filtered versions of Tampl using MA filters of a length 3 (middle) and 5 (bottom).

Tampl feature: raw (top), filtered with MA lengh 3 (middle), filtered with MA lengh 5 (bottom)
500

5  400

o  300

H 200

100
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3515 25 3010 20

record number
5

Figure 5.13: raw Tampl feature (top) and its filtered versions using MA filters o f  a length 3 (middle) and
5 (bottom).

A moving window is used and the mean value of the data in that window is calculated. 

The classification process could be run multiple times with different window sizes in 

order to tune the length o f the window by trial and error. In-depth investigations on the 

optimal window size were not c arried out. M A filters o f  1 ength 3 and 1 ength 5 w ere 

tried. A length 3 MA filter was used since it gave better results in terms of classification 

accuracy. The classification results for the length 5 filter are not included. The LDA 

classification results for p204 when using the length-3 MA filter are given in Table 

5.20. It must be noted that all the data that the patient contributed were used; no records 

were excluded.

Table 5.20: p204 LDA results using RTc and Tampl (after applying MA length 3 (on all records))

(hypoglycaemic threshold =2.5)
TRAIN TEST

accuracy hitrate specificity accuracy hitrate specificity
mean 89.39% 89.73% 89.09% 82.36% 83.27% 81.46%
std 7.31% 7.75% 9.10% 10.84% 21.28% 20.73%
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The results are very close to those obtained when the ambiguous records were removed. 

Looking at the test data, the classification accuracy is very similar in both cases being 

higher when using MA filtering. The sensitivity has decreased but this is compensated 

by a greater increase in specificity.

Once there were indications that MA filtering could improve the classification 

performance, it was utilised in the classification process for a number o f patients. Two 

hypoglycaemic thresholds were used. Classification was carried out for both 

hypoglycaemic thresholds to allow comparisons. The LDA classification results for the 

8 patient-nights using MA preprocessing and the hypoglycaemic threshold set at '2.5 

mmol/lt are given in Table 5.21.

Table 5.21: LDA results fo r  hypo thresh=2.5, with length 3 MA preprocessing

TRAIN TEST
patient accuracy hitrate specificity accuracy hitrate specificity
p202A 95.10% 97.10% 80.90% 66.70% 95.90% 37.60%
p2 0 2 8 8 .1 0 % 93.50% 8 6 .2 0 % 83.30% 81.90% 84.80%
p203night1 81.30% 59.60% 87.10% 59.10% 38.60% 79.60%
p204 89.40% 89.70% 89.10% 82.40% 83.30% 81.50%
p2 1 2 nght2 80.10% 77.80% 92.60% 68.40% 77.30% 59.50%
p227night1 79.20% 85.40% 65.90% 63.80% 80.90% 46.70%
p227night2 87.60% 90.20% 83.40% 78.60% 80.90% 76.30%
p244night1 85.90% 91.50% 79.50% 76.70% 8 6 .0 0 % 67.50%
mean 85.80% 85.60% 83.10% 72.40% 78.10% 66.70%
std 5.40% 1 2 .0 0 % 8 .2 0 % 9.10% 16.90% 17.30%

Classification is repeated for a threshold o f 3 mmol/lt and the results are tabulated in 

Table 5.22.

Table 5.22: LDA results fo r hypo thresh=3, with length 3 MA preprocessing

TRAIN TEST
patient accuracy hitrate specificity accuracy hitrate specificity
p202A 89.90% 91.80% 81.30% 6 8 .2 0 % 8 6 .2 0 % 50.20%
p2 0 2 99.00% 1 0 0 .0 0 % 98.90% 83.70% 69.20% 98.10%
p203night1 81.50% 60.70% 87.00% 57.90% 37.80% 78.10%
p204 92.10% 88.40% 94.20% 79.30% 67.20% 91.50%
p2 1 2 nght2 76.10% 74.60% 83.60% 64.50% 72.80% 56.10%
p227night1 80.90% 87.50% 69.60% 67.70% 82.30% 53.10%
p227night2 86.80% 91.10% 82.50% 77.00% 78.80% 75.30%
p244night1 8 6 .0 0 % 91.70% 79.60% 76.70% 8 6 .1 0 % 67.30%
mean 86.50% 85.70% 84.60% 71 90% 72.60% 71.20%
std 7.20% 12.30% 9.00% 8.70% 15.80% 17.80%

Comparing the two hypoglycaemic thresholds when using the MA-length3 filter, it is 

observed that the results are very similar. The only easily observable difference is in the 

test sensitivity and specificity. For the threshold at 3 mmol/lt, the sensitivity and

155



specificity have similar values while for the 2.5 mmol/lt the sensitivity is significantly 

greater than the specificity. These variations average out so the accuracy figures for the 

two hypoglycaemic thresholds are very similar. These can be visualised in the bar chart 

depicted in Figure 5.14.

Comparison of hypoglycaemic thresholds (3 vs 2.5 mmol/lt) 
when LDA is used with MA3
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accuracy hitrate specificity

® LDA RESULTS FOR hypo 
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■ LDA RESULTS FOR hypo 
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Figure 5.14 Comparison o f  hypoglycaemic thresholds

Concluding on the best hypoglycaemic threshold is not an easy task especially when 

only considering the metric of classification accuracy on unseen data. Although the two 

thresholds gave similar results, the one at 3 mmol/lt is selected for further use since it 

yielded more balanced performance towards euglycaemia and hypoglycaemia; that is, 

sensitivity and specificity were very close in value. The threshold at 2.5 mmol/lt gave 

very good performance in detecting hypo events but the performance in terms of 

detecting euglycaemic events was significantly lower.

Continuing the analysis of the effect o f the introduction of MA filtering, the LDA 

classification results when no MA pre-processing is carried out and for a hypoglycaemic 

threshold of 3 mmol/lt are given in Table 5.23.
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Table 5.23: LDA results for hypo threshold=3 (no MA preprocessing)

TRAIN TEST
patient accuracy hitrate specificity accuracy hitrate specificity
p202A 93.00% 96.80% 75.60% 69.20% 94.20% 44.20%
p2 0 2 79.00% 1 0 0 .0 0 % 75.90% 65.80% 58.70% 73.00%
p203night1 81.80% 63.30% 86.70% 62.70% 44.70% 80.70%
p204 78.00% 67.90% 83.50% 61.10% 49.50% 72.60%
p2 1 2 nght2 84.80% 82.00% 98.90% 68.90% 79.70% 58.20%
p227night1 62.50% 56.50% 72.80% 49.50% 46.70% 52.30%
p227night2 64.30% 49.60% 79.00% 49.20% '35.40% 63.00%
p244night1 81.20% 74.20% 89.30% 70.00% 64.80% 75.10%
mean 78.10% 73.80% 82.70% 62.00% 59.20% 64.90%
std 1 0 .2 0 % 18.20% 8.70% 8.50% 19.70% 12.60%

By inspecting Table 5.23 it is realised that the classification results without employing 

MA preprocessing are significantly inferior. The test sensitivity and specificity are 

59.2% and 64.9% whereas they were 72.6% and 71.2% respectively when MA (length 

3) was used. It can be concluded that the MA preprocessing step significantly improved 

performance by dealing with ambiguities in the ECG features and masking fluctuations 

unrelated to hypoglycaemia. Hence the task o f the classifier was simplified 

significantly.

In order to allow further comparisons, a k-Nearest Neighbour (kNN) classifier was also 

employed as a benchmark for the LDA. A squared-Euclidean distance metric was used 

in the kNN. The kNN classifier was implemented using the “knnclassify” M file from 

the MATLAB bioinformatics toolbox. The number o f nearest-neighbours in the 

classifier were set to 3 or 5 and we settled to k=3 since it gave better performance. The 

process of partitioning the data into training and testing was the same as with the LDA 

process. That is, the data was partitioned to training and testing sets and then fed to the 

kNN classifier; this process was repeated 1000 times and averages calculated.

Neural networks were not used in this classification study due to lack o f processing 

power and time constraints. The kNN classification results'w ith and without MA 

preprocessing for a threshold of 3 mmol/lt are tabulated in Tables 5.24 and 5.25 

respectively.
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Table 5.24: kNN results (k-3) fo r  hypo threshold=3, with length 3 MA preprocessing

TRAIN TEST
patient accuracy hitrate specificity accuracy hitrate specificity
p202A 91.38% 98.33% 60.10% 63.78% 87.30% 40.27%
p2 0 2 94.47% 63.30% 99.15% 74.52% 50.03% 99.00%
p203night1 82.04% 29.90% 95.95% 45.13% 1 .0 0 % 89.25%
p204 82.30% 71.38% 88.25% 69.92% 57.75% 82.08%
p2 1 2 nght2 83.96% 95.67% 25.45% 52.41% 92.80% 12.03%
p227night1 86.80% 91.75% 78.31% 75.09% 85.72% 64.47%
p227night2 84.64% 84.50% 84.79% 66.38% 66.90% 65.85%
p244night1 86.50% 89.60% 82.96% 70.91% 74.03% 67.79%
mean 86.50% 78.10% 76.90% 64.80% 64.40% 65.10%
std 4.40% 22.90% 24.00% 10.70% 29.70% 27.90%

Table 5.25: raw kNN RESULTS (k=3) FOR hypo thresh-3
TRAIN TEST

patient accuracy hitrate specificity accuracy hitrate specificity
p202A 86.08% 98.84% 28.63% 46.90% 91.67% 2.13%
p2 0 2 94.32% 57.40% 99.86% 69.00% 39.20% 98.80%
p203night1 85.73% 36.40% 98.88% 53.00% 13.63% 92.38%
p204 84.31% 72.75% 90.61% 61.64% 47.62% 75.67%
p2 1 2 nght2 83.66% 95.54% 24.28% 52.41% 93.68% 11.15%
p227night1 71.27% 85.74% 46.46% 41.10% 62.83% 19.37%
p227night2 77.79% 87.80% 67.79% 55.70% 67.69% 43.71%
p244night1 77.42% 84.94% 68.83% 62.49% 72.33% 52.64%
mean 82.57% 77.43% 65.67% 55.28% 61.08% 49.48%
std 6.99% 21.13% 30.15% 8.99% 26.95% 37.07%

Using MA preprocessing in cascade with the kNN classifier improved the performance 

compared to when feeding the raw ECG features. The accuracy on unseen data 

increased from 55.28% to 64.8%. Further comparisons between the two classifiers will 

be presented in the Discussion Section (5.3).

Using a dynamic threshold to assess the magnitude of the ECG features

As indicated earlier, using the raw ECG feature values has the disadvantage that 

ambiguous events occur that confuse the classifiers. Besides using the MA signal 

instead o f the raw one, an alternative approach was to use the raw ECG feature data but 

subtract the current MA value from the current feature value. This way the feature 

values would not be filtered (smoothed) which is what the MA process does, but at the 

same time, the fluctuations would be suppressed. Subtracting the MA value from the 

feature v alue effectively c ompares t he c urrent f  eature v alue w ith a m oving t hreshold 

provided by the MA value. This, in theory, should absorb some o f the fluctuations and 

reduce the reliance of the classifier on raw feature values.
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The way this normalisation process works is that instead o f using the raw feature values 

as the criterion o f whether the ECG trace corresponds to normality or hypoglycaemia, 

the feature is compared to a dynamic threshold. The dynamic threshold equals the MA 

value at the current sampling instant. To put it simply, each input that the classifier 

receives is produced by comparing the current ECG value to a dynamic threshold (MA 

value) instead o f using the absolute magnitude o f the feature. So the classifier would 

have to classify the difference o f the current feature value from the current MA value. 

The transformed ECG features for subject 204 are given in Figures 5.15 (Tampl) and 

5.16 (RTc).
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4000 

>  3000 - 

®  2000 -

=5. 1000

27 28 2918 19 20 21
=  -1000

-2000

-3000

record

Figure: 5.15 Transformed (normalised) Tampl feature fo r  subject 204
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Figure: 5.16 Transformed (normalised) RTc feature fo r  subject 204
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It can be seen that after the normalisation by subtracting the M A  signal, the features 

fluctuate around zero. This new transformed range o f feature values would be useful if 

data were mixed together to produce global datasets for global classifiers to be trained 

on. However, this transformation will not guarantee the elimination of inter-patient 

variability.

LDA classification results using this approach (ECGfeat -  MA) are presented in Table 

5.26. A hypoglycaemic threshold of 3 mmol/lt was used and the MA window size used 

to calculate the dynamic thresholds was set to 3 as in the previous studies.

Table 5.2 6: LDA results fo r  hypo thresh~3, adaptive features (ECGfeat-MA3) preprocessing

TRAIN TEST
patient accuracy hitrate specificity accuracy hitrate specificity
p202A 80.57% 83.79% 6 6 .8 8 % 56.13% 82.10% 30.17%
p2 0 2 87.40% 80.93% 88.32% 69.43% 51.95% 86.90%
p203night1 77.60% 62.13% 81.73% 56.14% 34.13% 78.15%
p204 71.28% 33.20% 92.05% 51.13% 19.27% 83.00%
p2 1 2 nght2 82.10% 82.31% 81.10% 58.61% 77.45% 39.78%
p227night1 6 6 .8 8 % 64.07% 71.71% 49.62% 55.30% 43.93%
p227night2 73.23% 65.89% 80.56% 61.95% 50.34% 73.56%
p244night1 62.27% 63.84% 60.47% 39.69% 43.66% 35.71%
mean 75.17% 67.02% 77.85% 55.34% 51.77% 58.90%
std 8.34% 16.46% 10.72% 8 .8 6 % 20.80% 23.61%

By inspecting the above table, it is realised that this preprocessing step did not live up to 

the expectations. The results appear to be worse than when the raw ECG features were 

used. In order to investigate the reasons behind the unsatisfactory performance o f the 

new preprocessing step, a number o f scatter diagrams of Tampl versus RTc were 

plotted. F igure 5.17 p resents s uch a s catter d iagram w hen t he r aw f  eature v alues a re 

used. Figures 5.18 and 5.19 present the scatter diagrams when MA filters o f length 3 

and 5 were used, respectively. Finally, Figure 5.20 presents a scatter diagram when the 

dynamic threshold is used, based on a MA-length3.
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Tampl vs RTc for p204 (raw values)
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Figure 5.17: Tampl vs RTc scatter diagram for raw ECG feature values o f  patient 204

Tampl vs RTc for p204 (MA3)
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Figure 5.18: Tampl vs RTc scatter diagram fo r  MA3 filtered ECG features (patient 204)
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Tampl vs RTc for p204 (MA5)
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Figure 5.19: Tampl vs RTc scatter diagram for MAS filtered ECG features (patient 204)

Tampl vs RTc for p204 (MA3 subtracted)
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Figure 5.20 Tampl vs RTc scatter diagram for normalised ECG features by subtracting the MA3 signal
(patient 204)

It i s easily observed b y comparing t he s catter d iagrams t hat filtering t he d ata w ith a 

length-3 MA filter gave the most clear-cut sub-classes on the 2D classification surface. 

With the exception of two data-points, the two classes can be distinguished by a linear 

decision boundary. This leads to only two misclassifications (missed-hypo events) that 

lie in the euglycaemic class. Using a MA-length5 filter also gives useful results though 

they are inferior to when using a window of length 3. The two classes are closer 

together and more difficult to distinguish.

Using a dynamic threshold gives a classification task that is significantly more difficult

to solve. The main euglycaemic sub-class occurs within the hypoglycaemic class. Using
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the raw feature values also leads to a situation that is difficult to classify. To summarise 

the classification results presented earlier, a bar chart is given in Figure 5.21.

Symmary of classification results (hypo threshold = 3mmol/lt)
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F igure 5.21: Summary o f  preprocessing-classification  approaches

The best results were produced using the combination of MA (length 3) preprocessing 

and LDA. The second best approach was again using MA (length 3) preprocessing but 

followed by a k-Nearest Neighbour (k=3) classifier. The kNN classifier gave better 

results than the LDA when raw features were fed and also when the dynamic threshold 

was used.

Using a dynamic threshold defined by the current feature value minus the current MA 

value proved to be worse than using the raw ECG features! In principle, the dynamic 

threshold should be superior because it would lead to adaptivity in response to cardiac 

changes during the night. The results demonstrated that this was not the case in practice. 

However the idea o f a dynamic threshold was successfully used as part o f a monitoring 

system for hypoglycaemia detection, which will be presented in Chapter 6 . The 

advantage o f the system presented in Chapter 6  was that it was also using temporal 

information in combination with dynamic thresholds. This combination was effective in 

improving performance.

5.3 Discussion

In this chapter, pattern classification of time-averaged ECG signals was carried out. 

This is a static process since no time stamps were used for the feature vectors fed to the 

classifier. In the studies incorporating MA preprocessing, although we did not feed a
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variable conveying temporal information to the system, we were effectively including 

some information from  the temporal dimension since the filtering process effectively 

provided information about the samples previous to the one classified at each 

classification epoch. The same was done in the studies where the derivative o f an ECG 

feature was used. The first derivative value was accompanying each ECG feature fed 

and was effectively providing information about the previous ECG sample. The 

derivative value used was providing information on whether the previous sample was at 

a higher/lower amplitude and by how much. The best results from this chapter reached a 

classification accuracy on unseen data of approximately 72%. This figure is promising 

and is improved in Chapter 6 . Further improvements yielding robust detection of 

hypoglycaemia could lead to an online monitoring system for the bedside.

5.4 Conclusion

This chapter presented a number o f classification studies for distinguishing between 

ECG traces corresponding to the conditions o f euglycaemia (normal glucose levels) and 

hypoglycaemia. Multi-layer perceptrons were used along with statistical classifiers 

(LDA and kNN). A number of approaches towards tackling the problem were presented. 

Classifiers trained on global datasets versus classifiers tailored to the dynamics o f 

specific patients were investigated. It could safely be concluded that producing a 

customised system for the needs of a given patient would be the best approach towards 

tackling the problem; the reason being the great inter-patient variability. Even if  a 

globally trained classifier could solve the problem, it would be expected that a 

customised classifier would introduce a further improvement in performance.

A brief study on ECG trace representation by AR coefficients instead o f the use o f ECG 

features gave promising results and could be investigated further in the future. This was 

not done due to time constraints and also because it was thought that the quite recent 

approach of Action Potential modelling [Wohlfart 1987, Vila 2000] o f ECG signals 

would be more suited to this work compared to AR modelling. Hence it would be wiser 

to perform further work on ECG trace representation by Action Potentials instead o f 

doing so by AR coefficients. This is because the process o f modelling by Action 

Potentials is more plausible biologically.

Finally, the use o f extra preprocessing techniques that would aid in solving ambiguities 

in magnitude o f ECG features corresponding to both clinical conditions, were
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investigated. The best approach proved to be using the Moving Average signals instead 

of the raw ECG features. The approach of using a dynamic threshold to assess the 

normality o f an ECG feature failed and gave results inferior to those when using the raw 

features.
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Chapter 6

A Knowledge-Based Monitoring System for 

Hypoglycaemia Detection

6.0 Introduction

This chapter focuses on the design of a monitoring and alarm system for detection o f the 

onset of spontaneous nocturnal hypoglycaemia. Firstly it discusses the differences from 

previous classification approaches (MLP, LDA and kNN presented in Chapter 5) and 

then it presents the ECG features used and the way monitoring w as carried out. The 

adaptivity o f the system to ECG feature changes as time elapses is discussed and the 

rule-base is presented. The system was realised as an Expert System (using Crisp Logic) 

and also as a Fuzzy Inference System (using Fuzzy Logic). Both systems are presented, 

along with monitoring results, and their differences are highlighted.

6.1 Overview o f monitoring system

The approach for detection of spontaneous nocturnal hypoglycaemia presented in this 

chapter differs from the classification approaches presented in Chapter 5, in that it 

simulates a patient monitoring scenario. The data available are o f course offline, but the 

approach is very similar to that where a patient is monitored online on his bedside. The 

data are treated as if  they were online data. The main difference to previous approaches 

is t hat t emporal i nformation i s i ncorporated t o t he s ystem. In p revious studies, s tatic 

pattern classification was carried out i.e. no temporal information was included. What 

was classified consisted of feature vectors corresponding to the two conditions 

(euglycaemia and hypoglycaemia) and the classifier was trying to recognise patterns 

and classify the feature vectors correctly. In this study each feature vector was fed to the 

system while the system was also using information from previous feature vectors in 

order to detect changes in the behaviour o f the cardiac signal. In other words, the 

temporal dimension was also included and taken in account in the inference process.
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This system was based on incorporation o f basic knowledge by human experts. The 

Knowledge Base was constructed from vague guidelines by our medical collaborators 

besides our observations on the dataset. A number of basic rules were used to achieve 

monitoring o f the patients. The initial Knowledge-Based System (KBS) produced was 

based on traditional Crisp Set Logic and will be referred to as "Expert System" (ES) 

since this term has been used in the field o f AI to describe KBS based on Crisp Set 

Logic. A n  alternative version o f the system was also produced that was using Fuzzy 

Logic. The Fuzzy Inference System (FIS) produced was using exactly the same rule- 

base as the ES. The FIS possessed the additional advantage that it could produce a 

degree o f certainty to support the decision inferred. This degree o f certainty was 

describing the strength o f an alarm if  one was raised and, in the case o f no alarm raised, 

the extent to which the alarm sounding threshold was approached. Such information is 

useful for patients and clinicians using diagnostic systems.

The monitoring system is outlined in Figure 6.1. It has four inputs and three outputs. 

More information about the architecture will be given in Section 6.7.

Tampl

Diabetic State

RTapexc

Tampl risk

Tampl risk

R Tapexc risk

RTapexc risk

Adaptive Know ledge-Based  
System

Figure 6.1: Illustration o f  the KBS
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6.2 Dataset

The data used in this approach originated from the dataset on spontaneous 

hypoglycaemia presented in Section 3.3.1. The fact that the hypoglycaemic events are 

nocturnal and spontaneous makes this dataset suitable for a realistic monitoring study. If 

an online monitoring system was to be produced to monitor abnormal glucose levels by 

inspection of the ECG then it would be aimed at detecting spontaneous events only 

while the subject would be asleep. Such a system is not addressing the monitoring of 

patients when they are awake. The ECG traces used were signal-averaged (SAECG) as 

opposed to beat-to-beat in line with classification studies presented in chapter 5, also 

using SAECGs.

6.3 ECG features

Two ECG features were fed to the monitoring system. One o f the features was the T 

wave amplitude (Tampl) and the other feature was a time interval feature, either 

RTapexc or RTc, describing the VR duration. RTapex is the time interval from the R 

peak up to the T peak (T apex) and RT the interval from R peak to T-end. Both these 

features were corrected for heart rate using B azett's formula (eq11 2.1) to produce the 

RTapexc and RTc features where the suffix "c" stands for' "corrected". Either the 

RTapexc or the RTc feature was fed to the system and comparisons o f the effect o f each 

feature in system performance were carried out.

The reason for choosing the RTapexc feature, as an alternative to the RTc feature, is the 

lack o f a robust and well-established T-end detection algorithm. As it has been stressed 

earlier, despite the large amount o f research effort that has been devoted to the design o f 

a robust algorithm, the gold standard in T-end detection is still the manual annotation by 

a human expert. The RTapex feature has the advantage o f not using the T-end 

annotation in its definition. The drawback of this feature is that it will not describe late 

VR phenomena that may be reflected on the T-downslope. A prolongation in the QT 

interval will be manifested to a lesser extent on the RTapex feature compared to the RT. 

Although the T downslope is o f great interest and the RTapex is incapable o f 

representing the behaviour of this downslope, it was chosen because o f issues of 

robustness. Weaknesses in T-end annotation algorithms may cause variations in QT and 

RT features that have no clinical significance and could be confusing in a classification 

or monitoring situation.
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This led us to investigate the alternative of choosing a less informative but more robust 

feature. Besides testing the monitoring system when either using the RTc or the 

RTapexc features, the uncorrected versions (i.e. no heart-rate correction) of these 

features were also tested. The RTc and RTapexc feature profiles for patient 205-night 1 

are presented in Figure 6.2 to allow comparisons of the two definitions o f describing 

VR duration. The top figure presents the raw values o f RTc (blue) and RTapexc (black). 

The middle graph presents the values for the two features after the baseline (1st value o f 

the night) has been removed. This was done to aid comparisons of the variations of the 

two features. The bottom graph contains the glucose variable for that night, with the 

dashed horizontal line denoting the 3 mmol/lt hypoglycaemic threshold. It is apparent 

that this patient did not go into hypoglycaemia.
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Figure 6.2: RTc and RTapexc fo r  205-night I

The other feature chosen besides RTapexc was the T amplitude, as mentioned earlier. 

This choice was because depletion in plasma potassium due to counter-regulatory 

responses occurring during hypoglycaemia affects in many cases the T wave by a drop 

in its amplitude, as discussed in Section 1.1.5. T wave flattening is apparent in many 

studies related to hypoglycaemia and is very frequently encountered in our datasets.
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The number o f input features used was kept small in order to achieve low complexity of 

the rule-base and the prototype system in general. The reason for choosing two features 

was to be in line with the main clinical hypothesis upon which this thesis is based. 

According to the hypothesis, only features quantifying the QT prolongation and T wave 

flattening would be used. The features used were Tampl and a time interval feature 

describing VR duration (either RTapexc or RTc). The above two features were chosen 

because o f their clinical significance. They both reflect the counter-regulatory responses 

that can be encountered under hypoglycaemia. RTapexc (and also RTc) is related to the 

release o f adrenaline and T amplitude to the drop in potassium. Therefore choosing to 

avoid features based on the T-end annotation leads to the use o f the above two features. 

In theory, RTapexc (or RTc) and T amplitude should be sufficient in quantifying the 

flattening and prolongation of the T wave occurring under hypoglycaemia, which 

constitutes the main assumption o f this work. ST segment changes and U wave 

morphology changes are extra events that may occur under hypoglycaemia and could be 

incorporated in the system as part of future work.

6.4 Monitoring

The pre-requisite for patients used in this monitoring study was that they should have 

had healthy glucose levels at the time they went to bed. Both hypoglycaemic and 

euglycaemic nights were used. Successful monitoring on an euglycaemic night would 

mean that an  alarm should not b e r aised. S uccessfiil m onitoring o n a hypoglycaemic 

night would mean the detection of the onset of hypoglycaemia as closely as possible to 

the time it occurred. Once an alarm had been raised the monitoring would stop since the 

patient would have woken up. In a real monitoring situation the patient would treat 

himself (e.g. with carbohydrates) to restore the glucose levels to normal and go back to 

bed. The system would be reset and start monitoring again. A post-alarm continuation 

o f monitoring was not considered in this study in order to simplify the problem and also 

because the duration o f each night-recording (8  hours) was not enough to allow 

resuming the monitoring process. Also* since the data used was not online data, i f  an 

alarm was raised this would not correspond to the patient waking up. This means that 

there would be no restoration of glucose to normal levels after the alarm. Consequently, 

the cardiac function would not have been fully restored. This makes it an unrealistic 

situation to be used for monitoring.
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6.5 Moving Window Applied on ECG Features to Achieve 

Adaptivity

During the monitoring process, abnormal changes in feature value as time elapsed were 

detected by comparison to an adaptive threshold. This threshold was based on a moving 

average value. A moving window was used containing a few samples prior to the 

current time instant. In some versions of the system, this was combined with a moving 

value o f the standard deviation, calculated from the same moving window, to define an 

accepted range (Healthy Band) o f feature values.

The equation o f the Moving Average filter used is given below in its generic form for 

n order: .

x(k) =

i=1 ■ , fo r n < k  n , k e W
k - \

/ ' = !

k ~  1 

0 , fo r  k  = 1

, f o r n > k  « e K +,A:eK+ A k > \

eqn 6 .1  a

eqn 6 .1b 

eqn 6 .1c

x(k) is the raw feature value at sample k, and x(k)  is the MA filtered version.

The equation for the calculation of the Moving value o f the Standard Deviation (MSD)
• this given below in its generic form for n order:

y(k) =

Xixik-o-mr
/=i

n — l
- , f o r n < k  n,k g KH

k -1

/ = i

0 , for  k g {1,2 }
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eqn 6.2a

eqn 6 .2 b 

eqn 6.2c

x(k) is the raw feature value at sample k  and x(k)  is the MA value at sample k  

calculated from the moving window that spans up to x(k-1). y(k) is the standard 

deviation of the feature values that lie in the moving window. This standard deviation is 

not the deviation from a static mean but the deviation from the moving average.
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In equations 6.1 and 6.2 presented above, the moving window does not include the

current sample, i.e. the right-hand-side limit of the window is the sample previous to the 

current one. Inclusion of the current sample in the moving window was also tested.

The only difference in equations 6.3 and 6.4 is the “+1” component in the numerator,

the current sample is discussed in Section 6.13.

For the T amplitude feature, a significant event related to the onset o f hypoglycaemia 

would be an abnormal drop in amplitude while for the RTapexc feature we would look 

for an abnormal increase in feature value (corresponding to QT prolongation). This 

means that opposing changes in the two features are significant. A drop in T amplitude 

below the moving average value would be a significant event (risk factor) 31 and 

similarly for an increase in RTapex value. For an alarm to be raised, two successive in 

time significant events in both features are necessary. The use o f two successive 

significant events was needed to avoid changes in feature value that would correspond 

to artefacts or other brief cardiac events unrelated to hypoglycaemia.

When the current sample is included in the window, the equations take the form:

n

, f o r n < k  n , k e t f + eqn 63a
n

, f o r n > k  n e K+,&e X+ A k  > 1 eqn 63b  

eqn 63c
k - 1 

0 , fo r  k - 1

n

^ { x ( k - i  + \ ) - x ( k ) Y

n - 1
, fo r  n < k  n,k e  K+ eqn 6Aa

/=1 , f o r n > k  n g  K + , & g  X+ A k  > 2 eqn 6.4b
( k - 1 ) - 1  

0 , fo r  k  g  { 1 , 2 } eqn 6.4c

which causes the current sample to be included in the window. The effect o f including

31 An abnormal feature change will be referred to a "potential risk", "risk factor", or "significant event" 

interchangeably throughout the chapter and without further clarification.
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Looking for significant events independently in each of the two features would lead to 

many false alarms. There were cases where abnormal changes in only one feature would 

be observed that were not related to hypoglycaemia. There are even cases where 

abnormal changes even in both features were unrelated to hypoglycaemia. Such an 

example is the first night o f patient 205 presented in Figure 6.5 (Section 6.10). This 

patient exhibits both T flattening and RT prolongation which are unrelated to 

hypoglycaemia and this causes a false alarm. Using just one feature would mean that 

many m ore c ases o f  feature c hanges u nrelated t o h ypoglycaemia w ould 1 ead t o f  alse 

alarms. To ensure that the changes were genuine, they were expected to happen in both 

features.

An alarm accurately raised at record 17 for patient 204, is illustrated in Figure 6.3. The 

graphs show the actual feature values, together with the moving average values (dotted 

lines). The vertical dashed lines mark the record where the alarm was raised.

The use of the moving average criterion was necessary for detection o f significant 

changes in feature value. Because o f inter-patient variability, an absolute threshold that 

if  exceeded would raise an alarm, could not be used. Also because of intra-patient 

variability during the night, the baseline at the start o f the night or any other fixed value 

could neither be used as a threshold that when exceeded corresponds to a significant 

event. An adaptive threshold, that would be changed as night progressed, had to be used 

to detect significant events. This was realised in practice as early approaches o f using a 

non-adaptive KBS did not achieve satisfactory performance. The term “non-adaptive 

KBS” means that the thresholds used are static and hence the system uses a fixed 

definition o f euglycaemia and hypoglycaemia. On the other hand, adaptive thresholds 

mean that the definitions o f euglycaemia and hypoglycaemia change as time elapses.
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Figure 6.3: Tampl (LHS) and RTapexc (RHS) graphs (solid lines) including MA values (dotted lines) for
subject 204



A reason justifying why adaptive thresholds were necessary to define the abnormal 

events is the apparent prolongation in QT, and hence RTapex, during sleep. Molnar et al 

[Molnar 1996] have studied the diurnal pattern o f QTc and observed lengthening of 

QTc during sleep. Moreover an increase in T amplitude for a few samples at the 

beginning of sleep was observed in some patients of our dataset. This can be clearly 

seen for patient 204 in Figure 6.3 and patient 203 in Figure 6.4 presented in Section 

6.10. If such an initial increase in amplitude occurs and later there is a drop due to 

hypoglycaemia, the drop may cause the feature to have similar values as those at the 

start o f the night. So if  the baseline at the start o f the night was used as a threshold this 

would mean that the significant event due to a drop in feature value, could not be 

detected. However, an adaptive threshold will closely follow the dynamics o f the T 

amplitude and RTapexc variables. It will mask the acceptable dynamic changes and 

help identify the abnormal ones.

6.6 Tuning o f Window Size

The length of the window used for calculation o f the moving average was varied and an 

optimal value was chosen. It was varied from a length of 1 sample up to 5 samples for 

both features. This was done by an exhaustive search o f all combinations while testing 

the performance o f the alarm system. The optimal values were different for a few 

patients although groups of patients having the same optimal values could be identified. 

The differences in optimal window sizes among patients should not be an obstacle for a 

custom alarm system that would be trained on the patient to be monitored prior to the 

monitoring period. An alarm system tailored to a specific patient can be permitted to 

learn and adjust for a period of time prior to the start o f monitoring. The width o f the 

Healthy Band (HB) was also tuned for optimal performance as will be discussed in 

Section 6.11.

6.7 Rule-Base

As shown in Figure 6.1, the system has 4 inputs and 3 outputs. Two of the inputs are the 

two ECG feature values (Tampl and RTapexc) at the current sample and one o f the 

outputs (Diabetic State) represents the alarm state. The rest o f the inputs and outputs 

refer to the significant events related to previous samples. The potential-risk outputs are 

fed back to the system as inputs and are used in the next monitoring epoch.

174



The two principal rules used for monitoring are presented below:

1. I F  (Tampl is flattened) a n d  (Tampl_prev is flattened) 
a n d  (RTapexc is prolonged) a n d  (RTapexc_prev is 
prolonged) THEN (DiabeticState is hypo)

2. I F  (Tampl is normal) o r  (Tampl_prev is normal) o r  

(RTapexc is normal) o r  (RTapexc_prev is normal) THEN 

(DiabeticState is eugly)

The suffix "_prev" stands for previous sample before the current one. "flattened" is 

defined as: Tampl < TamplJVLA, where Tampl_MA is the moving average o f Tampl, 

based on a window size selected for optimal performance. Similarly, "prolonged" is 

defined as: RTapexc > RTapexc_MA, where RTapexc_MA is the moving average of 

RTapexc, based on a window size tuned for optimal performance. If the Diabetic State 

is "hypo" then an alarm is raised. In all other cases the Diabetic State is "eugly" i.e. the 

night is euglycaemic.

If  the combination of moving average and moving value of standard deviation is used, 

as will be discussed in Section 6.11 onwards, then "flattened" is defined as: Tampl < 

(Tampl_MA - Tampl_MSD) where Tampl_MSD is the moving value o f the standard 

deviation of Tampl and "prolonged" is defined as: RTapexc > RTapexc_MA + 

RTapexc_MSD, where RTapexc_MSD is the moving SD of RTapexc. It is emphasised 

that the system is adaptive to changes of ECG features only. The rest o f the inputs and 

also t he o utputs o f  t he sy stem a re s tatic. T he w indow u sed to e  alculate the M A a nd 

MSD values is kept fixed during monitoring. For the Tampl and RTapexc inputs a 

number o f past values, dictated by the window size, are stored in internal registers for 

calculation o f the MA and MSD values o f each epoch. Besides the inputs to the KBS, 

the MA and MSD values are also used in the inference process and are illustrated with 

arrows, at the top o f the block diagram, in Figure 6.1.

The two principal rules were provided for illustrating the concept behind the monitoring 

approach. They were presented for purposes o f better readability since they were 

compact. The actual rule-base used in the system consists of eight rules since not all the 

eventualities are covered in the two principal rules. The latter present only how the 

Diabetic State output is calculated, but not the other two outputs. The expanded rule-
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base fully complies with the compact rules presented above and is the one that 

corresponds to the system presented in Figure 6.1.

The exact rule-base, representing the knowledge o f the system, is presented below:

1. I F  (Tampl is flattened) a n d  (Tampl_risk is high) a n d  

(RTapexc is prolonged) a n d  (RTapexc_risk is high) THEN 

(DiabeticState is hypo)
2 .  I F  (Tampl is normal) o r  (Tampl_risk is low) o r  (RTapexc 

is normal) o r  (RTapexc_risk is low) THEN (DiabeticState 
is eugly)

3 .  I F  (Tampl_risk is low) a n d  (Tampl is normal) THEN

(Tampl_risk is low)
4 . I F  (Tampl_risk is low) a n d  (Tampl is - flattened) THEN 

(Tampl^risk is high)
5 . I F  (Tampl_risk is high) a n d  (Tampl is normal) THEN

(Tampl_risk is low)
6. I F  (RTapexc_risk is low) a n d  (RTapexc is normal) THEN

(RTapexc_risk is low)
7 .  I F  (RTapexc_risk is low) a n d  (RTapexc is prolonged) THEN 

(RTapexc_risk is high)
8. I F  (RTapexc_risk is high) a n d  (RTapexc is normal) THEN

(RTapexc_risk is low)

Rules 1-2 perform monitoring o f the patient’s ECG. Rules 3-8 are used for evaluating 

potential risk factors from previous feature samples. They increase the potential risk o f a 

feature if  the current feature value appears abnormal while the previous one appears to 

be normal or decrease the potential risk when the opposite happens. The weighting for 

all rules was set to 1 for both the ES and the FIS.

A look-up table is provided (Table 6.1) to demonstrate how the system works. It 

presents the input-output mappings for a simplified system using only two inputs, being 

the ECG features, and only one output being the Diabetic State. Since the actual system 

has four inputs it cannot be illustrated as a two-dimensional look-up table. The 

simplified system does not use information about the potential risks from previous 

samples and hence the number of inputs is reduced to two.
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Table 6.1 Look-up table for two-input KBS (excluding potential-risk inputs)

RTapexc 
Tampl ^

normal prolonged

normal euglycaemia • euglycaemia
flattened euglycaemia hypoglycaemia

It must be noted that abnormal feature values to the other extreme (i.e. elevated T waves 

or shortened RTapexc intervals) are treated as normal since they are not known to be 

related to hypoglycaemia.

6.8 Hypoglycaemic Threshold Used and Quantitative Evaluation 

o f KBS Performance

In order to assess the performance of the monitoring system, the threshold defining the 

onset of hypoglycaemia needed to be defined. This was discussed in Section 4.2. In 

contrast to the classification studies, in this chapter, the onset of hypoglycaemia was 

defined using two different hypoglycaemic thresholds, one at 3 mmol/lt and another one 

at 2.5 mmol/lt. The onset according to both thresholds is tabulated in the results 

sections. This is because there is no single answer for which is the optimal 

hypoglycaemic threshold to be used. Various research studies have considered different 

thresholds as discussed in Section 4.2. Some patients could be symptomatic at 3 

mmol/lt, while others would have to drop lower for changes on the ECG to be 

manifested. ( There could e ven b e e  ases w here t here i s n o m anifestation o n t he E CG 

which is when our main research assumption would not hold leading to inability of 

hypo detection.) For this reason both thresholds are presented so each case can be 

judged individually. The abbreviation "eugly" in the 3rd column o f the results-tables 

means that the night was euglycaemic. On the last column labelled "perf' a summary of 

the performance o f the system is given. The following abbreviations are used to 

describe the performance which in some cases is also given descriptively:

❖ CA: Correct Alarm, i.e. True Positive (TP), used to denote correctly raised alarms

❖ CE: Correctly monitored Euglycaemic night i.e. True Negative (TN)

❖ FA: False Alarm for a night i.e. False Positive (FP)

❖ MH: Missed Hypo for hypoglycaemic night where no alarm was raised (i.e. False 

Negative)

For the version of the system incorporating the MSD criterion the result tables contain a 

few extra columns as will be seen in Table 6.3.
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Two sets of results for each version of the system are presented. A global KBS system 

was produced which is tuned in such a way so as to perform optimal monitoring for all 

patients. In order to improve performance, the KBS system was further tuned to achieve 

customisation per patient. Such an approach is preferable since it achieves higher 

performance. Moreover it is still realistic for monitoring because, when a real-life 

monitoring system is produced it is feasible for it to be tuned on the patient to be 

monitored, for a period o f time, before the actual monitoring starts. The rule-base, 

representing the knowledge o f the system, was identical in both cases (global and 

custom KBS). The only parameters that were tuned were the window sizes for the two 

features and also the width of the Healthy Band as it will be seen in the version of the 

system incorporating moving values o f the standard deviation.

Analysis o f performance on the hypoglycaemic nights is not as straightforward as for 

the euglycaemic nights. For the latter, if  no alarm is raised this means correct 

monitoring and when the contrary happens it means a false alarm. But when assessing 

the performance on hypoglycaemic nights the outcome is not binary (correct-alarm or 

missed-alarm). There are cases where an alarm is raised with a small deviation, in time, 

from the onset o f hypoglycaemia. The cost of such a deviation must be assessed in each 

case. Such events are also presented descriptively, instead of just using percentages, in 

the results tables of this chapter.

The analysis o f how early or late an alarm was raised, was carried out in terms of 

sample numbers and not in terms o f the actual time duration. In the dataset used, ECG 

data were recorded every 15 minutes during the night so an alarm two samples early or 

late corresponds to half an hour in time which is a significant duration for a monitoring 

system, making it look inaccurate. However this is only due to the fact that the data 

were recorded every 15 minutes. This is the maximum temporal resolution o f the 

dataset. So if  an alarm is raised just one sample late this means 15 minutes late which is 

not a limitation of the alarm system but a limitation of the dataset. Such an alarm is 

actually the second best result after a "spot on" detection. In a different situation with 

more frequent sampling, one sample early or late would mean a shorter period o f time. 

In order to be fair in the assessment o f the alarm system, the analysis is considering 

inaccuracies in terms o f sample numbers and not in terms o f time duration. This means 

that we are not assessing limitations due to the temporal resolution o f the dataset but 

only assessing the limitations of the monitoring system.
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6.9 Approved patients from the dataset

This section discusses the choice of the patients from the dataset that were included in 

the study and gives justification for patients excluded. It also presents the assumptions 

formulated for certain patients. It must also be clarified here that the serial numbers for 

the ECG traces were 1-33 for the first night o f a patient and 34-66 for the second night.

The datafiles not included in the study are listed below:

4* 208nghtl was not included because the night started in hypoglycaemia.

4- 216nghtl was not included because hypoglycaemia started very early (glucose 

dropped below 2.5 mmol/lt at record 4). This made it very difficult for the KBS to 

perform monitoring since there was not enough healthy data for the system to start 

defining its normal and abnormal thresholds.

4- 216nght2 was not included because hypoglycaemia also started early (glucose 

dropped below 2.5 mmol/lt at record 39 i.e. the sixth record in the night). Moreover 

the glucose was fluctuating i n and out o f  hypo throughout the night. The patient 

went in and out of hypo 5 times.

4- Patient 220 (both nights) was not included because the ECG exhibited many 

inverted T waves. Because the temporal position o f a normal T peak varies from that 

o f the peak of an inverted T wave, the transition from a normal T wave to an 

inverted and vice versa meant fluctuations in the time-interval feature describing the 

QT which can be confusing for the monitoring system. Once more sophisticated 

ECG features could be incorporated in the system, this patient could be included in 

future studies.

4*- Both nights of patient 223 started as hypoglycaemic so this patient was excluded.

4- Patient 225 (both nights) was rejected because of extremely bad quality of the ECG 

recording.

4=- Patient 226 (who only contributed a single night) could not be used because o f the 

existence of many ambiguous components in the ECG. The patient exhibited 

biphasic T waves, non-standard ST segments and, in certain records, almost 

inexistent T waves.

4  229nghtl was not used because the onset o f hypo happened very early (record 2 ), 

with the patient recovering for a while and then going hypo again.

4*- 229nght2 started as hypo so it was also rejected.

4  Both nights of patients 234 were rejected because of the bad quality o f the ECG.
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Apart from the excluded patients an assumption had to be made for one o f the approved 

patients:

For patient 201A (night 2) the glucose dropped below 3 mmol/lt (it did not go below 2.5 

mmol/lt) at the last record of the night (record 6 6 ). This night was classed as 

euglycaemic and this late event was ignored. Since there was no data past this event it is 

unknown what happened after that and also the glucose did not drop below 2.5 mmol/lt 

which would constitute a stronger candidate to be classed as hypoglycaemic event to 

take into account. The biomedical scientist performing data acquisition and ECG 

annotation in the Diabetic Clinic o f the RHH32 had also classed this night as 

euglycaemic. In clinical studies a night would normally be defined as hypoglycaemic 

only if  the glucose was in the hypoglycaemic region for a significant period o f time (i.e. 

30 minutes).

6.10 Monitoring Results using MA

The performance of the alarm system when only the MA criterion was used is tabulated 

in Table 6.2. The table contains the following information: the patient number and 

corresponding night, the record at which the onset of hypoglycaemia occurred, the 

record at which the alarm was raised, the optimal MA window sizes for the two features 

and the assessment of performance (“perf”). “TamplWS” stands for Tampl-WindowSize 

and similarly for RTapexcWS. When the hypoglycaemic-onset entry of the table 

(“hypo-onset@rec”) is zero the night was euglycaemic. Similarly when the alarm output 

(“alarm@rec” field) is zero, no alarm was raised by the system. It must be stressed here 

that the current feature value at each time instant was included in the calculation o f MA. 

Alternatively, the adaptive statistics can be calculated using a window spanning up to 

the previous sample, as will be seen in later sections.

The table contains the results from the customised monitoring systems. Global results 

are not presented for this early system. Both a global and a set o f customised monitoring 

systems will be given in Section 6.11 presenting the system that incorporates the MSD 

criterion. The total nights monitored were 32, contributed by 19 patients. An alarm was 

classed as acceptable if  it satisfied any of the two hypoglycaemic thresholds considered 

(2.5 mmol/lt or 3 mmol/lt). Out of the 32 nights used, 12 nights were monitored 

accurately out o f which, 3 were hypoglycaemic, with the alarm being raised at the

32 Cath Davies
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correct sample number by the KBS, and 9 were euglycaemic where no alarm was raised 

by the monitoring system. This means that the accuracy, sensitivity and specificity of 

the KBS were 37.5%, 33.3% and 39.13% respectively. There were also 14 nights where 

a false alarm occurred and 6  nights where hypoglycaemic events were not detected.

Table 6.2: Performance o f  alarm system based on RTapexc and T amplitude featrures

# patient hypo
onset@rec

alarm@rec TamplWS RTapexcWS perf

1 201Anght1 eugly 0 3 2 CE
2 201Anght2 66(<3) 0 3 2 CE
3 202nght1(202A) 23(<3),

24(<2.5)
26 4 3 CAwithin2

4 202nght2(202) 41 (<2.5) 41 3 2 CA
5 203nght1 11 (<2.5) 20 3 2 CAwithin9
6 203nght2 eugly 0 3 2 CE
7 204 (nghtl) 17(<3),

18(<2.5)
17 3 2 CA

8 205nght1 eugly 26 3 2 FA
9 205nght2 eugly 48 3 2 FA
10 207nght1 eugly 0 2 2 CE
11 207nght2 eugly 43 2 2 FA
12 208nght2 eugly 64 3 2 FA
13 209nght1 eugly 20 4 4 FA
14 209nght2 50(<3),

55(<2.5)
50 4 4 CA

15 210 (single night) eugly 0 3 2 CE
16 212nght1 eugly 12 3 2 FA
17 212nght2 58(<3),

59(<2.5)
45 5 2 CAwithin13

18 215nght1 eugly FA
19 215nght2 eugly FA
20 218nght1 eugly 0 4 2 CE
21 218nght2 eugly 0 4 2 CE
22 221 (single night) eugly 8 3 2 FA
23 222 (single night) eugly 0 3 2 CE
24 p227nght1 21 (<3), 

22(<2.5)
20 2 4 • CAwithinl

25 p227nght2 39
(<2.5mmol)

44 2 3 CAwithin5

26 p230nght1 eugly 14 3 2 FA
27 231 nghtl eugly 14 3 2 FA
28 231nght2 eugly 45 3 2 FA
29 232nght1 eugly 14 3 2 FA
30 232nght2 eugly 0 3 3 CE
31 p244nght1 18(<2.5)

23(<2.5)
22 2 5 • CAwithinl

32 p244nght2 eugly 41 2 5 FA

If we consider a deviation from the hypoglycaemic onset of up to and including 2 

samples as acceptable then there are 3 more hypoglycaemic nights monitored correctly 

giving a total o f 15 nights where the alarm system performance was acceptable with the 

sensitivity reaching 6 6 .6 %. Such nights were: 202A (alarm 2 samples late), 227nghtl
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(alarm 1 sample early) and 244nghtl (alarm 4 samples after a very brief hypoglycaemic 

event and 1 sample before the main hypoglycaemic onset).

A discussion o f a few interesting cases of patients will be presented here. For patient 

203 (night 1) which is  ahypoglycaemic night, the alarm is  raised 1 ate by 9 samples 

(hypo occurs at record 11). This happens because there is no manifestation of an 

abnormal event on the ECG at the onset of hypoglycaemia. Regarding the T amplitude 

feature, the opposite o f what is expected happens. That is an increase in amplitude of 

the T wave. It can be seen in Figure 6.4 presenting the actual (solid) and Moving 

Average (dotted) profiles for the Tampl feature that there are 4 successive increases in T 

amplitude from record 9 up to record 13. This means that no flattening is manifested in 

the proximity o f record 11 which is when hypoglycaemia occurs. The vertical dashed 

line on the figure marks the record where the alarm was raised.
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Figure 6.4: Tampl fo r 203nghtl showing delayed alarm (  9 samples)

Investigating the glucose profile it is realised that the night started as hyperglycaemic 

with the glucose at 12.24 mmol/lt at the start o f the night (record 7). By record 11, i.e. 

within an hour, the glucose had dropped to 2.2 mmol/lt. This is a very steep descent, 

going from one extreme (hyperglycaemia) to the other (hypoglycaemia). This very rapid 

drop in glucose could give an explanation as to why hypoglycaemia is manifested on 

the T amplitude feature, and detected by the KBS, very late. A rapid drop in glucose is 

expected to take longer before affecting the heart. On the other hand, the delay between 

slow changing glucose and the subsequent effect on the heart is expected to be shorter 

[PD2].
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For patient 205 (night 1) a false alarm is raised because a drop in T wave amplitude,

below the MA value, 

p205nghti occurs for records 25

and 26 and also a 

prolongation in

RTapexc, above the MA 

value occurs for these 

records as seen in

Figures 6.5 and 6 .6 .

(Abnormal changes in 

the two features also 

happen for record 27 but 

this does not affect 

anything since the alarm 

has been raised from the 

previous record.) These 

changes were very 

similar to the changes 

that, happen during a

hypoglycaemic event, 

which is why an alarm 

was raised. It seems 

impossible to avoid this

false alarm using a
Figure 6.6: RTapexc graph for 205nghtl showing alarm @ rec26 monitoring system based

only on the above two features. There is a lot of fluctuation in both features that cannot 

be masked simply by using the MA criterion, and this leads to a false alarm.

Figure6.5: Tampl graph for 205nghtl showing alarm @  rec26
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In Section 6.5 it was stressed that an alarm system based on only one ECG feature 

would not be robust. The above alarm system was also assessed when only the T 

amplitude feature was used. For subjects 202 (night 2) and 204 it detected 

hypoglycaemia correctly while it was within the three samples for subject 209 (night 2). 

Such a system though has many false alarms. This was expected but assessment o f a 

system based only on the T amplitude feature was carried out to see whether some
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hypoglycaemic events occurring in the dataset, would be detected. The next section will 

present a monitoring approach using moving values o f mean and standard deviation.

6.11 Monitoring System using MA and MSD

6.11.1 Monitoring Results

An improved approach based on the system presented in Section 6.10 was to 

incorporate the moving value o f the standard deviation o f the feature values in the 

system. In that case a significant event will occur if  a feature value lies outside the mean 

± standard deviation (SD) region. For the T amplitude feature, a reduction in amplitude 

below mean - SD is significant while an increase above mean + SD is ignored since 

only the flattening o f the T wave has clinical significance. The opposite holds for the 

RTapexc feature where we are monitoring increases in feature value above mean + SD 

while RTapexc shortening below mean - SD is ignored. At each monitoring epoch the 

standard deviation was calculated from exactly the same moving window of data as the 

mean.

The main difference between the monitoring system presented in this section and the 

one using MA only (Section 6.10) was the inclusion of the MSD criterion. All other 

aspects o f the system were the same (inputs, outputs, rule-base etc).

The moving window in the MA system was including the current feature value at the 

instant o f monitoring for calculation o f the mean. In  the MA&MSD system both the 

approaches o f including and not including the current sample were tested. Further 

experimentation (outlined in Figure 6.10) included the assessment o f the RTc feature 

instead of the RTapexc and also the use of the uncorrected versions o f both the RTc and 

the RTapexc features. Moreover the approach of freezing the window values once a 

potential risk occurred, in order to make the alarm system more sensitive to feature 

changes, was tested as will be described in Section 6.13. Finally the Receiver Operating 

Characteristic (ROC) approach was employed as presented in Section 6.11.2 in order to 

further improve the performance o f the global KBS by tuning its parameters.
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The accuracy, sensitivity and specificity of the global KBS using MA and MSD were: 

78.13%, 22.22% and 100% respectively33. The results from the customised systems per 

patient are tabulated in Table 6.3. Apart from the standard fields, the table also contains 

the values o f the optimal parameters (Window Sizes and Healthy Band Widths) for each 

patient. “scTampl” is a scaling factor by which the standard deviation is multiplied so 

that the width of the Healthy Band can be varied. The default parameter is 1 which 

effectively uses MA±MSD as the Healthy Band. Similarly for “scRTapexc”. The entries 

o f the table highlighted in bold denote cases where the parameters o f the custom system 

differ from those o f the global system.

In most cases, more than one set o f tuning parameters corresponds to the optimal 

performance tabulated for each patient. For instance, for patient 202-night2, the 

acceptable parameters ranged in 1, 1, [0.5 2], [0.5 0.7] for TamplWS, RTapexcWS, 

scTampl and scRTapexc respectively34. Wherever there was agreement between the 

global and the custom parameters, the global parameters were shown in Table 6.3. This 

was done in order to identify the maximum number o f patients showing agreement to a 

global set o f parameters.

A significant improvement in performance of the system was observed once the 

standard deviation criterion was incorporated. The reason behind the improvement is the 

fact that an acceptable range o f feature values was defined at each sampling instant. A 

significant event occurred only if  the feature magnitude exceeded this range. According 

to the previous approach where only the moving average was used, any reduction below 

the mean in the case o f T amplitude or increase for RTapexc would be a significant 

event. This leads to many false alarms because a lot of fluctuation in feature values 

occurs and such fluctuation is not necessarily corresponding to hypoglycaemia. A 

typical example o f a false-alarm being rectified by the inclusion o f MSD is 205-nightl 

that was discussed in Section 6.10. The system using MA-falsely raised an alarm 

because T wave flattening and QT prolongation was observed. The improved system 

was able to infer that the above flattening and prolongation was within acceptable 

ranges.

33 Current sample not included in moving window and freezing of window not allowed.

34 For scTampl and scRTapexc a range of values is given.
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Table 6.3: Alarm system results using MA & MSD (for RTapexc and Tamplfeatures)

MA & MSD R e s u l t s  (not including current sample and no freezing of Window allowed)

No patient gi<3 gl<2.5 alarm@rec perf TamplWS RTapexcWS scTampl scRTapexc
1 p201Anght1 0 0 0 CE 1 4 1.9 0.7
2 p201Anght2 66 0 0 CE 1 4 1.9 0.7
3 p202A 23 24 10 CAwithin13 1 1 1.9 0.7
4 p202 41 41 41 CA 1 4 1.9 0.7
5 p203nght1 11 11 18 CAwithin7 4 1 0.7 0.5
6 p203nght2 0 0 0 CE 1 4 1.9 0.7
7 p204 17 18 17 CA 1 4 1.9 0.7
8 p205nght1 0 0 0 CE 1 4 1.9 0.7
9 p205nght2 0 0 0 CE 1 4 1.9 0.7

10 p207nght1 0 0 0 CE 1 4 1.9 0.7
11 p207nght2 0 0 0 CE 1 4 1.9 0.7
12 p208nght2 0 0 0 CE 1 4 1.9 0.7
13 p209nght1 0 0 0 CE 1 4 1.9 0.7
14 p209nght2 50 55 50 CA 5 2 0.9 0.9
15 p210 0 0 0 CE 1 4 1.9 0.7
16 p212nght1 0 0 0 CE 1 4 1.9 0.7
17 p212nght2 58 59 50 CAwithin8 4 2 1 1
18 p215nght1 0 0 0 CE 1 4 1.9 * 0.7
19 p215nght2 0 0 0 CE 1 4 1.9 0.7
20 p218Anght1 0 0 0 CE 1 4 1.9 0.7
21 p218Anght2 0 0 0 CE 1 4 1.9 0.7
22 p221 0 0 0 CE 1 4 1.9 0.7
23 p222 1 0 0 CE 1 4 1.9 0.7
24 p227nght1 21 22 21 CA 2 5 1 0.7
25 p227nght2 39 39 39 CA 1 4 0.7 0.7

26 p230nght1 0 0 0 CE 1 4 1.9 0.7
27 p231nght1 0 0 0 CE 1 4 1.9 0.7
28 p231nght2 0 0 0 CE 1 4 1.9 0.7
29 p232nght1 0 0 0 CE 1 4 1.9 0.7
30 p232nght2 65 0 0 CE 1 4 1.9 0.7

31 p244nght1
18
23

18
23 10 CAwithin8 1 1 0.5 0.5

32 p244nght2 0 0 | 0 I CE 1 4 1.9 0.7

The summarised results (accuracy, sensitivity and specificity) o f the customised systems 

were: 87.5%, 55.56% and 100% respectively. Once customisation o f the system is 

allowed, the performance (predominantly the sensitivity) increases significantly. Out of 

the 32 nights used, originating from 19 patients, all 23 euglycaemic nights were 

monitored accurately. Out of the 9 hypoglycaemic nights, 5 were monitored accurately 

with the alarm being raised in the exact sample where the onset o f hypoglycaemia 

occurred. For the remaining of the hypoglycaemic nights, alarms were still raised but 

subject to a time-deviation from the onset o f hypoglycaemia. For 203-nightl the alarm 

was raised late by 7 sampling instants. For 212-night2 and 244-nightl the time- 

deviation was 8 samples and for 2 0 2 A it was 13 samples.
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It must be stressed here that any patients not complying with the clinical assumptions of 

this work will not comply with the rule-base used in the monitoring system. Such 

patients will not exhibit QT prolongation and T wave flattening under hypoglycaemia 

and will not be monitored successfully by the system. Although this may be a problem 

for a low-glucose-monitoring point o f view, it is not one from a hypoglycaemia-related 

arrhythmia-detection p oint o f  v iew. P atients n ot e xhibiting t he a bove c hanges o n t he 

ECG are probably exhibiting normal VR (i.e. normal cardiac function) and may not be
o r

in danger o f arrhythmia or sudden death although the glucose is very low .

The fact that the KBS yields low sensitivity does not mean that it is inadequate as a 

monitoring system. From the above discussion it becomes apparent that the KBS will 

raise alarms only for those patients exhibiting the assumed ECG changes. Patients not 

exhibiting the changes will, probably, not be in danger. The fact that the KBS raises 

alarms at the correct sample for a few subjects verifies the fact that it is an adequate 

system for monitoring. The KBS uses the minimal amount of input ECG features. 

Further improvements in performance will require the inclusion o f more features, 

characterising ST segment changes and the presence or not o f U waves.

6.11.2 Receiver Operating Characteristic (ROC)

The parameters of the KBS (width of healthy bands, and window sizes) were tuned by 

applying the Receiver Operating Characteristic approach which is a graphical method 

for simultaneously maximising the sensitivity and specificity by selecting appropriate 

values o f the parameters of the system. The ROC curve when varying the width o f the 

healthy band36 is presented in Figure 6.7. The horizontal axis corresponds to "1- 

specificity" while the vertical one corresponds to "sensitivity". Optimal performance 

occurs for data-points as close as possible to the top left-hand comer o f the figure. The 

value of the corresponding scaling parameter (that adjusts the width of the healthy band) 

is plotted next to each data-point. There is a trade-off between high sensitivity and high 

specificity and ROC allows choice o f the best pair given the requirements o f the user o f 

the technique. All 4 parameters (window sizes and healthy bands independently for 2 

ECG features) were tuned by ROC. Such an ROC graph is depicted in Figure 6 .8 .

35 Very low glucose may not necessarily mean abnormally low glucose, from the arrhythmogenesis point 

of view.

36 in the case where the same width is used for both features
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Figure 6.8: Receiver Operating Characteristic fo r  tuning four parameters
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All possible combinations of the 4 parameters were used in the ROC analysis. The 

window sizes varied in the interval [1 5] and the scaling factors adjusting the healthy 

band, in [0.5 2]. The graph looks “messy” because the area o f the graph is swept up and 

down because of the variation of multiple parameters. The optimal set o f parameters can 

easily be identified by zooming in. The ROC graphs were plotted in the MATLAB 

environment that was allowing the user to zoom in and read the parameters next to the 

coordinate point o f interest on the graph. Figure 6.9 illustrates a section of an ROC 

graph after zooming in to read the parameters o f interest. In many cases more than one 

set o f tuning parameters were yielding the same performance causing overlapping 

points on the graph.

0.55

0.5

0.45

1.91.30.4

0.35

0.3
8S2.E I.66

Figure 6.9: ROC graph after zooming-in.

For a number of different configurations o f the KBS, there were many parameter- 

combinations yielding pairs in the bottom right comer o f the ROC graph . In a 

classification problem this corresponds to very bad classification performance. 

Nevertheless, such a classifier can be very useful when inverting its output. In our case, 

although many pairs occurred in the bottom-right comer, this was not useful because the 

KBS performs monitoring in time, as opposed to static pattern classification and 

therefore its output cannot be inverted.

37 A weak classifier, will have data-points on the 45 degress line of the ROC graph, corresponding to 50% 

sensitivity and 50% specificity (i.e. a random classifier).
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6.12 Outline o f experiments

As mentioned earlier, a number of experiments were carried out in the development 

process o f the knowledge-based monitoring system with some o f them having been 

presented already. Before proceeding any further in the discussion o f these experiments, 

a diagrammatic outline is given in Figure 6.10 to aid the reader in following the 

presentation.

Expert System  

Fuzzy Inference System  

RTapexc
Alternative 
Features

Architecture <

Knowledge-Based 
Monitoring System

RTapex

Global

Customised per patient
Tuning

Number of risk factors 
needed to raise alarm 3

Freezing window
No

Yes

RHS limit of moving window <
Previous sample 

Current sample

Figure 6.10: Outline o f  experiments carried out during the KBS development.

The i ssues t hat appear i n t he figure t hat h ave n ot b een d iscussed yet are: t he u se o f  

alternative versions of the time-interval feature that describes VR duration (RTapex, RT 

etc), the use o f fewer risk factors as a requirement to raise an alarm, and the approach of 

freezing the window once a risk factor has occurred.

6.13 Modifications o f KBS (FreezeW, up2current)

Besides adjusting of the monitoring system by means o f varying the WS and HB 

parameters, a few more techniques were attempted in order to increase the performance. 

Such experimentation was carried out only on the MA&MSD system, since this was the 

main system produced for patient monitoring.

One dilemma encountered was whether to include the current feature value, at each 

sampling instant, in the calculation o f the MA and MSD values or to use a window o f 

past data spanning up to the previous sample. Inclusion o f the current sample causes the
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system to be less sensitive in feature changes over time. For'instance a sharp increase in 

feature value from one sample to the next is more likely to be detected as abnormal if 

the current value is not included in the window. Including the current high value will 

affect the value o f the MA and MSD and this high increase will be masked to some 

extent. Both options described above were attempted. The MA system presented in 

Section 6.10 was using a window that included the current value. On the other hand, the 

KBS yielding the results presented in Table 6.3 (MA&MSD) did not include the current 

sample in the moving window. Comparing the two approaches for the MA&MSD 

system led to the conclusion that exclusion o f the current sample in the moving 

windows was the optimal approach. The monitoring results were inferior to those 

presented in Table 6.3 so they are not presented here.

Another idea that was implemented into the system was to “freeze” the MA and MSD 

values, once a significant event would occur i.e. to keep the window stationary. This 

would make the system more sensitive to abnormal features changes. The way this 

approach worked was to keep the current values of MA and MSD fixed for either 

feature once a potential risk would be raised. These values would be kept in a buffer for 

as long as potential risks were detected. The window would continue to move only if  

the potential risks would be reset to zero. After implementing this approach it was 

realised that it made the system very sensitive to feature changes and did not really 

introduce an improvement in performance. Results from this approach are again not 

included since they were inferior to those tabulated in Table 6.3.

6.14 Feature combinations including RTapex, RT and RTc

Further experimentation with the KBS led to the use o f alternative features, instead of 

the RTapexc, that also produce estimates of the VR duration. The input ECG features to 

the system were always kept to two and Tampl was always one o f them. The RTapexc 

feature was replaced in turn, by RTapex, RT and RTc in equal tests o f the monitoring 

system. RTapex and RT are the uncorrected versions (i.e. no decorrelation from the RR 

interval) o f RTapexc and RTc respectively.

It has already been stressed that the RTc is a superior predictor o f delayed VR compared 

to RTapexc since it also describes late VR phenomena reflected on the T downslope that 

RTapexc cannot describe. The only reason that the RTapexc was initially used in the
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38system was the caution towards the robustness of the T wave end annotation algorithm 

used. Using the RTapexc feature we were more confident that the feature changes 

would exclusively be due to a cardiac event, whereas with the RTc feature they could 

either be due to a cardiac event or due to a weakness o f the algorithm under more 

difficult circumstances (i.e. noise, artefacts etc). In later stages o f development o f the 

KBS, the RTc feature was used instead o f RTapexc to test the quality o f the former as a 

VR predictor besides testing the performance o f the T-end annotation algorithm.

The experimentation with the RTc feature did not improve the global KBS. However, 

when considering customised-per-patient systems it helped identify a few hypos more 

closely. For subject 202A hypoglycaemia started at records 23-24. It w as detected at 

record 18 (5-6 samples early) when using RTc while it was detected at record 10 when 

using RTapexc. Therefore the use of the RTc feature, although not achieving detection 

o f the hypo, gave an alarm closer to the onset o f hypoglycaemia. For 203nghtl, when 

RTc was used the hypo was detected at record 15 (only 4 samples late). When RTapexc 

was used the earliest it could be detected was record 18 (7 samples late). For 212nght2, 

the alarm was still raised at record 50 when RTc was used and the chosen parameter 

combination (TamplWS, RTapexcWS, TamplHB, RTapexcHB) for RTapexc was (4, 2, 

1, 1) while the closest one when RTc was used was (4, 2, 1, 0.9). For 244nghtl the hypo 

could not be detected at all when the RTc feature was used. When RTapexc was used, 

an early alarm was raised at record 10 (8  records early). When assessing the system on 

“spot on” alarms the use of RTc did not yield any improvement. However, if  a deviation 

o f up to 5 samples was considered as acceptable, then the use of RTc increased the 

sensitivity from 55.56% to 77.78%.

Besides the experimentation with the RTc interval, the RT and RTapex features were 

examined. These tests were carried out to see how useful the heart-rate-correction was. 

It had been observed that the correlation coefficient between RTapexc and RR did not 

reach satisfactorily low values, which means that the HR correction did not manage to 

decorrelate t he t wo v ariables v ery w ell. A ccording t o t he c orrelation c oefficient, H R 

correction was better for the RTc interval compared to the RTapexc. Doubts about the 

quality o f HR correction led to the use o f the uncorrected, versions o f the features. After

38 Throughout the study of producing a KBS system, the tangent method was used to annotate T wave 
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extensively testing the system, it was concluded that the uncorrected versions did not 

introduce any improvements.

In order to be concise and not overcrowd this section with tabulated results, the 

experimentation with the extra features described above was only presented 

descriptively, outlining only the improvements introduced and excluding the remaining 

results.

6.15 Using three significant events to raise alarms

Up to this point, the rule-base of the monitoring system was such that it would require 

two successive significant events (potential risks) in both features to raise an alarm i.e. 4 

significant events in total. In an attempt to make the system more sensitive to alarms, 

the scenario where only 3 events would be enough was examined. Such events would 

either be two potential risks from the previous cycle and one on either feature on the 

current cycle (2 + 1) or one potential risk from the previous cycle and two, on both 

features, on the current cycle (1+2). This means that instead of four, three o f the events 

that t he s ystem w as 1 ooking f  or i n i ts p revious version w ould b e e  nough t o r  aise a n 

alarm. The results using this analysis are presented below for the RTapexc and the RTc 

features39.

When the RTapexc feature was used the following improvements were observed:

1. For 202A the hypo was detected at record 19 and also at record 26 depending on the 

choice o f tuning parameters (hypo onset was at records 23-24). This is a significant 

improvement compared to when using 4 significant events (very early alarm at 

record 1 0 ).

2. For 203-nightl the alarm was raised at record 17 i.e. the use o f only 3 events raised 

■ the alarm one sample closer to the onset o f hypo (at record 1 1 ).

3. For 212-night2 the alarm was raised at record 51 which is again one sample closer 

to the onset o f hypo compared to the use o f 4 events.

4. For 244-nightl the alarm was raised at record 22 i.e. 4 samples after the onset o f a 

brief period of hypo and one sample before the onset o f the main hypo period. This 

is a significant improvement.

39 For the configuration where current sample not included in moving window and freezing of window 

disabled.
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If a deviation of up to 2 samples is acceptable then the use o f 3 significant events for the 

RTapexc feature increased the sensitivity from 55.56% to 77.78%. This improvement in 

sensitivity is the same quantitatively with that achieved by the use o f RTc instead of 

RTapexc when 4 significant events were used.

The results when the RTc feature was used along with 3 significant events, are analysed 

in more depth and the full set o f results for the customised ES are presented in Table 

6.4. A gain t he r esults i n b old d enote d epartures o f t he t uning p arameters f  rom t hose 

values corresponding to the global KBS.

Table 6.4: Alarm system results (forfeatures: RTc, Tampl) when using 3 significant events

patient Pl<3 gi<2.5 alarm@rec perf TamplWS RTcWS scTampl scRTc
p201Anght1 0 0 0 CE 5 1 2 1.7
p201Anght2 66 0 0 CE 5 1 2 1.7
p202A 23 24 27 CAwithin3 5 1 1.7 1.7
p202 41 41 37 CAwithin4 5 1 2 1.7
p203nght1 11 11 15 CAwithin4 5 1.7 1.7
p203nght2 0 0 0 CE 5 1 2 1.7
p204 17 18 18 CA 5 1 2 1.7
p205nght1 0 0 0 CE 5 1 2 1.7
p205nght2 0 0 0 CE 5 1 2 1.7
p207nght1 0 0 0 CE 5 1 2 1.7
p207nght2 0 0 0 CE 4 1 2 1.7
p208nght2 0 0 0 CE 5 1 2 1.7
p209nght1 0 0 0 CE 5 2 1.7
p209nght2 50 55 53 CAwithin2 5 1.8 0.7
p210 0 0 0 CE 5 -| 2 1.7
p212nght1 0 0 0 CE 4 1 2 2
p212nght2 58 59 58 CA 3 2 0.8
p215nght1 0 0 0 CE 5 1 2 1.7
p215nght2 0 0 0 CE 5 1 2 1.7
p218Anght1 0 0 0 CE 5 1 2 1.7
p218Anght2 0 0 0 CE 5 1 2 1.7
p221 0 0 0 CE 5 1 2 1.7
p222 0 0 0 CE 5 2 1.7
p227nght1 21 22 21 CA 5 1 0.9 1.7
p227nght2 39 39 39 CA 5 1 0.9 1.7
p230nght1 0 0 6 FA 5 1 2 1.7
p231nght1 0 0 0 CE 5 1 2 1.7
p231nght2 0 0 0 CE 5 1 2 1.7
p232nght1 0 0 0 CE 5 1 2 1.7
p232nght2 0 0 0 CE 5 1 2 1.7
p244nght1 18 18 21 CAwithin3 5 1.4 1
p244nght2 0 0 41 FA 5 1 2 1.7

When alarms are classed as correct only if  they are raised on the exact record o f hypo- 

onset then the accuracy, sensitivity and specificity o f the system are: 78.13%, 44.44%,
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91.30% respectively. However if  alarms raised within 4 samples are classed as 

acceptable then the accuracy and sensitivity reach 93.75% and 100% respectively.

The use o f 3 significant events made the system more sensitive to ECG feature changes. 

Although the detection o f hypos was improved, two false-alarms were raised in 

euglycaemic nights. Such nights were p230nghtl and p244nght2. Specifically for the 

case o f p230nghtl the alarm happened too early, that is at record 6  while the first valid 

record o f the night was record 4. This means that the system had only two past samples 

available to use for setting the thresholds used for monitoring. If  a restriction would be 

set for monitoring to start later, e.g. after the fifth record o f the night so that the system 

would have a chance to adapt, this false alarm could be avoided.

Regarding the hypoglycaemic nights, the following improvements were observed when 

using 3 significant events:

1. For p202A the hypo was detected at record 18 (in agreement with the case where 4 

significant events were used) and also at record 27 depending on the choice of 

tuning parameters. The alarm at record 27, which is the closest to the onset o f hypo, 

could not be produced when 4 events were used.

2. For p203nghtl the alarm was still raised at record 15 i.e. the use of only 3 events did 

not introduce any improvement.

3. For p212nght2 the alarm was raised at record 58 which is a significant improvement 

since the blood glucose dropped below 3 mmol/lt at that exact record.

4. For 244nghtl the alarm was raised at record 21 i.e. 3 samples after the onset o f a 

brief period of hypo and 2 samples before the onset of the main hypo period. Use of 

three significant events also resulted in a valuable improvement since no alarm was 

raised at all when 4 events were used.

If  a deviation o f up to 4 samples is acceptable then the use o f 3 significant events for the 

RTc feature increased the sensitivity from 55.56% to 100%, as mentioned earlier.
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6.16 A Monitoring System Incorporating Fuzzy Logic

During the process o f the development of the monitoring system, Fuzzy Logic was also 

considered. A Fuzzy Inference System (FIS) can be seen as a generalisation o f an expert 

system where continuous degrees of membership, as opposed to binary ones, are used. 

This feature makes Fuzzy Logic a powerful tool due to the smooth transition from one 

membership function to the next. As mentioned in Section 2.5.1, previous work on 

hypoglycaemia detection by a FIS was encountered in the work o f Hastings et al 

[Hastings 1998] who presented a prototype hypoglycaemia detector that was using 

peripheral physiological responses (sweating and HR) to falling blood glucose.

The expert system used for monitoring, in previous sections, was converted to a FIS. 

The rule-base o f the system was kept the same but fuzzy logic was introduced to replace 

the crisp logic previously used. This introduced the advantage that, when an alarm was 

raised it would be raised with a degree of certainty in the interval [0.5 1]. Similarly for 

the cases where no alarm was raised the output would lie in [0 0.5) and the user would 

be able to see how close to the threshold of 0.5 the output had reached. Providing a 

degree of certainty when raising an alarm and also informing how close to an alarm the 

system has reached, when one is not raised, is u seful for clinicians and users o f the 

system. Such a degree o f certainty was also produced for the Tampl and RTapexc 

potential risk outputs besides the “Diabetic State” output.

A "Mamdani" system was used where both the antecedent and the consequent parts of 

each rule are fuzzy. The MATLAB fuzzy logic toolbox (ver 2) was utilised. The 

characteristics o f the system are given in Table 6.5 presented below:

Table 6.5: FIS parameters

type: Mamdani

AND Method: min

OR Method: max

Implication Method: min

Aggregation Method: max

Defuzzification Method: centroid
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The system is very similar to the expert system presented earlier. The only difference is 

that fuzzy logic is introduced. The inputs and outputs are kept the same. The fact that 

the rule-base is also the same justifies the reason why a Mamdani system was used.

6.16.1 Membership Functions (MFs)

Triangular and trapezoidal membership functions (MFs) were used throughout. Three 

MFs were used for the Tampl and RTapexc inputs. The left-most and right-most MFs 

were trapezoidal while the middle one was triangular. For the rest of the variables, two 

trapezoidal MFs were used. An illustration of the MFs for Tampl (LHS) and RTapexc 

(RHS) can be seen in Figure 6.11. The linguistic values used to label the MFs are

ele\a tednormalflattened

0.8

0.6

0.4

0.2

prolongedshortened normal

E 0.6

ffl 0.4

0.2

190 200 210 220 230 240 250 260 270 280
Tampl

250 270 280 290
RTapexc

300

Figure 6.11: MFs fo r Tampl (LHS) and RTapexc (RHS) 

apparent in the figures. For Tampl they are: "flattened", "normal" and "elevated" and for 

RTapexc: "shortened", "normal" and "prolonged". In line with the rule-base o f the 

Expert System, only Tampl magnitudes belonging to the "flattened" MF and RTapexc 

magnitudes belonging to the "prolonged" MF would raise an alarm. The universe of 

discourse of Tampl is in mV while for the RTapexc it is in msec.

The system was adaptive, similar to the Expert System, and the MFs were updated on 

every monitoring epoch based on the calculated MA and MSD. The shapes o f the MFs 

was kept fixed (i.e. triangular, trapezoidal) but the positions of the peaks (or flat 

segments) and also the slopes were varied. For the two ECG features (Tampl, RTapexc) 

using 3 MFs, the middle one (triangular) had its peak at the MA value calculated for 

that monitoring epoch and the cross-over points left and right o f the peak occurred at 

MA-MSD and MA+MSD. The LHS and RHS trapezoidal MFs were reaching a 

membership degree of 1 at MA-2*MSD and MA+2*MSD respectively. The MFs for the
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potential-risk variables and also the “DiabeticState” output had a universe of discourse 

in [0 1] and a cross-over points at 0.5 and were not adapted during monitoring.

Tuning o f window sizes and healthy bands was carried out in the same way as in the 

Expert System. When the healthy band width was tuned, the cross-over points for the 

middle MF would lie at MA-k*MSD and MA+£*MSD where k  is the scaling factor 

used to achieve variable MF width. In such a case, the LHS and RHS trapezoidal MFs 

were reaching a membership degree of 1 at MA-2*£*MSD and MA+2*A*MSD 

respectively. The MFs for the potential-risk variables and also the “DiabeticState” were 

not adapted as already mentioned.

The 3D surface for inputs Tampl and RTapexc and for the DiabeticState output is 

shown in Figure 6.12. The inputs and outputs relating to the potential risks are not 

included in order to achieve visualisation in 3 dimensions.

The 3D surfaces look identical because the axes are adjusted separately for each graph 

to allow better visualisation. The adaptivity of the FIS can be seen if the range of the 

axes in the two graphs is observed. For both input features the healthy range is smaller 

at the time of the alarm

p202 - rec35 p202 - rec41

RTapexc RTapexc

Figure 6.12: 3D surface fo r 2 input ECG features and DiabeticState output, at the start o f  the night
(LHS) and at the time o f  the alarm (RHS)

Table 6 .6  contains the linguistic values used to label the MFs of all the variables used in 

the system. The column labelled “middle MF” does not have a linguistic value for the 

variables using only 2 MFs.
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Table 6 6: Linguistic values o f  all MFs

variable LHS MF middle MF RHS MF

Tampl flattened normal elevated

RTapexc shortened normal prolonged

Tampl_risk low high

RTapexc_risk low high

DiabeticState low high

6.16.2 Fuzzy Results

The performance of the fuzzy monitoring system is presented in Table 6.7. The table 

layout is similar to previous tables containing results on the Expert System. The only 

difference is that the outputs are not binary but continuous in the interval [0 1]. The 

threshold of 0.5 separates the two classes of euglycaemia and hypoglycaemia in the 

DiabeticState output. The same threshold separates the two classes of low and high risk 

in the other two outputs. The alarm strength at each sampling instant is presented at the 

. relevant column. The system presented in Table 6.7 is the global FIS for parameters (1, 

4, 1.9, 0.7) for (TamplWS, RTapexcWS, TamplHB, RTapexcHB)40. It corresponds to 

the Expert System presented in Table 6.3. Features Tampl and RTapexc were fed and 

the same tuning parameters were used. Also in both systems, the moving window did 

not include the current value and also freezing o f the moving windows was not allowed 

while 4 significant events were needed to raise an alarm. The extra fields in Table 6.7, 

which were not included in Table 6.3 are “alarm strength”, “TamplRisk” and 

“RTapexcRisk”. “alarm strength” corresponds to the “DiabeticState” output and the 

other two refer to the potential risks, from the previous record, associated with features 

Tampl and RTapexc.

As expected the results produced by the two systems (ES and FIS) are exactly the same, 

since the only difference was the introduction o f Fuzzy Logic. The enhancement that the 

FIS introduced was the fact that a degree o f certainty for the alarm output and the 

potential-risk outputs is provided at every monitoring epoch. This is very useful in 

quantifying the possible risk of hypoglycaemia onset both when an alarm is raised and

40 The tuning parameters are not tabulated since they are fixed (global system presented) and also because 

of space considerations on the page.
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when otherwise. Since the results were the same, further discussion specifically on the 

performance o f the FIS will not be provided in this section.

Table 6.7: Fuzzy monitoring system performance

No pat gi<3 gl<2.5 alarm@rec alarmstrength TamplRisk RTapexcRisk perf
1 p201Anght1 0 0 0 0.33 0.37 0.54 CE
2 p201Anght2 , 66 0 0 0.35 0.42 0.37 CE
3 P202A 23 24 0 0.37 0.47 0.48 MH
4 p202 41 41 41 0.5 0.53 0.6 CA
5 p203nght1 11 11 0 0.44 0.64 0.54 MH
6 p203nght2 0 0 0 0.37 0.5 0.5 CE
7 p204 17 18 17 0.51 0.5 0.61 CA
8 p205nght1 0 0 0 0.5 0.58 0.47 CE
9 p205nght2 0 0 0 0.35 0.5 0.42 CE
10 p207nght1 0 0 0 0.34 0.4 0.42 CE
11 p207nght2 0 0 0 0.36 0.5 0.49 CE
12 p208nght2 0 0 0 0.35 0.5 0.39 CE
13 p209nght1 0 0 0 0.38 0.61 0.5 CE
14 p209nght2 50 55 0 0.33 0.42 0.39 MH
15 p210 0 0 0 0.33 0.5 0.37 CE
16 p212nght1 0 0 0 0.35 0.36 0.43 CE
17 p212nght2 58 59 0 0.35 0.54 0.36 MH
18 p215nght1 0 0 0 0.33 0.5 0.37 CE
19 p215nght2 0 0 0 0.34 0.37 0.42 CE
20 p218Anght1 0 0 0 0.43 0.59 0.64 CE
21 p218Anght2 0 0 0 0.37 0.52 0.5 CE
22 p221 0 0 0 0.35 0.5 0.43 CE
23 p222 0 0 0 0.44 0.47 0.62 CE
24 p227nght1 21 22 0 0.37 0.41 0.5 MH
25 p227nght2 39 39 0 0.35 0.39 0.6 MH
26 p230nght1 0 0 0 0.34 0.39 0.47 CE
27 p231nght1 0 0 0 0.33 0.39 0.5 CE
28 p231nght2 0 0 0 0.34 0.38 0.42 CE
29 p232nght1 0 0 0 0.43 0.64 0.61 CE
30 p232nght2 0 0 0 0.34 0.52 0.38 CE
31 p244nght1 18 18 0 0.37 0.63 0.5 MH
32 p244nght2 0 o I 0 0.36 0.38 0.44 CE

6.17 Discussion

A concluding discussion on the research direction of producing a KBS for 

hypoglycaemia monitoring is presented in this section.

6.17.1 Knowledge-Based Monitoring System versus Neural Networks

The approach presented in this chapter significantly improved the performance o f the 

task o f detecting the onset o f spontaneous nocturnal hypoglycaemia. The use o f a 

Knowledge-Based approach proved superior to neural (MLP) and statistical (LDA and
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kNN) classifiers previously used. This is due to two main reasons. First, the 

incorporation o f temporal information into the KBS so that the system was consulting 

previous ECG feature samples besides the current ones when inferring the symptomatic 

status o f a patient; and second, the incorporation o f human-expert knowledge.

The incorporation o f temporal information meant that the problem tackled was no 

longer a static pattern classification problem as in the case of MLPs, LDA and kNN but 

a time-series analysis problem with the system being adaptive as time elapsed. This 

gave a competitive advantage to the KBS in performing better. As seen in the data used 

in this project, a lot of transient events occur due to dynamic changes o f the ECG signal. 

The pattern classifiers were unable to make use o f these transients and the opposite 

effect was seen; that o f confusing the classifier due to the varying baselines o f the 

feature vectors used. It is suspected that the performance o f ANNs would be 

significantly improved upon the incorporation o f the time variable. This was not 

possible with the existing datasets since the amount of data was not sufficient for 

training time-lagged neural networks. Bearing in mind that the data fed to an ANN 

should ideally be representative of all classes to be classified it becomes obvious that in 

our dataset the data is further reduced when using ANNs because not all the 

euglycaemic nights, which are a lot more than the hypoglycaemic, can be used. On the 

other hand, when using the Knowledge-Based approach, the system can be assessed on 

all data available since no euglycaemic nights are left out.

The other reason for giving the KBS a competitive advantage was the incorporation of 

human-expert knowledge. Not only had this made it possible to produce a working 

system using a dataset significantly smaller to what a time-lagged neural network would 

require, but it also guided the system in identifying only the significant ECG changes 

and ignoring the useless ones. This comprises a typical problem in neural network 

research. The ANN must decide on its own what comprises structure and what noise in 

the data which is a very difficult task and requires very lengthy datasets to achieve this. 

For the case o f the KBS the rule-base dictated, for instance, that abnormal T wave 

elevations could be ignored and similarly for abnormal RTc shortening. It also dictated 

that abnormal changes, in the right direction, had to be successive in time. This 

knowledge was extremely useful in boosting the performance o f the monitoring system.
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Besides the above arguments, the use of a KBS had the advantage that it required tiny 

amounts of processing power during its development, compared to ANNs. ANNs 

required a large amount o f time to train. This was because a different ANN was 

produced for each patient and also because multiple ANNs were trained for a given 

patient each one starting from different random initial conditions. Taking into account 

that a few ECG feature combinations were fed to the ANNs, the time taken to train all 

the ANNs needed was multiplied by the number o f feature combinations used.

Another p roblem w ith n eural n etworks w as t he danger o f  o verfltting. T here a re h igh 

chances, in the process of training ANNs, to produce a not so useful ANN that cannot 

generalise well on unseen data. Overfitting was not a problem with the KBS. Even 

when the system was customised to a specific patient, the internal structure was 

meaningful to a human observer. This transparency of the system would allow an 

observer to study why a KBS is performing well on a given patient but not on another 

one.

Finally the incorporation of human-expert knowledge was very useful for researchers in 

the field, especially clinicians. A rule-base allows them to understand how the system 

operates, and also trust it is doing a wise thing. ANNs, being -black-box models, were 

often faced with extreme caution and mistrust in the biomedical community; this is not 

the case for KBS. Besides the fact that the knowledge o f the KBS is formulated in a 

meaningful way for human-experts it is also useful in validating clinical assumptions. In 

our case, a clinical assumption was provided41 by our medical collaborators, this 

assumption was then formulated in a rule-base and successful use o f this rule-base 

provided the necessary feedback to the clinicians to support and strengthen their 

assumption.

A drawback o f using Knowledge-Based systems is that the expert knowledge must be 

available and it must be successfully coded into the system. The knowledge acquisition 

and the knowledge representation processes in the KBS context can be difficult tasks to 

perform.

41 That of the flattening and prolongation of the T wave under hypoglycaemia

202 .



6.17.2 Detection of the onset of hypoglycaemia versus detection of life 

threatening arrhythmias.

The findings o f this research regarding ECG analysis and monitoring can either be 

directed towards addressing the problem of the detection of the onset of hypoglycaemia 

or towards tackling the problem of hypoglycaemia-related life threatening arrhythmias. 

These two problems are related since severe nocturnal hypoglycaemia may lead to 

cardiac arrhythmias.

The first challenge seems a lot more difficult since monitoring the levels o f glucose is 

attempted indirectly through analysis of the patient’s ECG. Abnormally low glucose 

causes adrenaline release and potassium depletion which both affect the ECG and it is 

only through these ECG changes that the drop in glucose can be detected. I f  there is no 

manifestation of the dropping glucose on the ECG, then the abnormal drop cannot be 

detected. This is a problem for a hypoglycaemia-detection system since the hypos not 

reflected on the ECG will not be detected. However, the cost of not detecting these 

hypos is suspected to be very low from an arrhythmia-prevention point o f view. This is 

because abnormally low glucose not causing delayed VR will probably not be 

dangerous as it will probably not lead to arrhythmogenesis. Hence a system detecting 

only those hypos that are manifested on the ECG could be useful in preventing 

nocturnal deaths of diabetics related to the “Dead in Bed” syndrome.

Investing further research effort in the system proposed in this chapter may lead towards 

a monitoring system for “Dead in Bed” prevention. The KBS produced was in many 

cases able to raise an alarm at the correct sample. If  a fatal cardiac arrhythmia is to be 

developed, even a late alarm can be invaluable in saving the patient. There are a few 

examples from the dataset where patients (202, 204, 227, 244) were under 

hypoglycaemia for a few hours with the glucose being at 2 .2  mmol/lt or below42 and the 

person remained healthy. The most prominent case was that o f 202-night2 where the 

patient was at 2.2 mmol/lt for 4.5 hours and below 3 mmol/lt for 5.5 hours and remained 

healthy. This gives an indication that even an alarm raised a few hours late could be 

invaluable in saving the patient from the occurrence of fatal cardiac arrhythmias. A long 

period of hypoglycaemia will probably have to occur before the genesis o f a dangerous

42 The actual values below 2.2 are riot known because of a limitation of the MiniMed sensor as it was 

stressed in section 3.2.2.
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arrhythmia and in that long period of hypoglycaemia there is high probability that ECG 

changes will occur, in the form of T flattening and QT prolongation, which will be 

detected by the monitoring system.

6.17.3 Patient-Oriented Customisation

As mentioned earlier in the chapter, two approaches were followed in producing a KBS. 

A global KBS was produced that was aimed at having optimal performance when 

monitoring all patients i.e. it was challenged to tackle both inter-patient and intra-patient 

variability in the ECG features. Moreover, customised systems were used for the 

elimination o f inter-patient variability. These customised systems would focus on the 

dynamics of the specific patient to be monitored. This was expected to improve 

performance. The customisation involved the adjustment o f the Window-Size and 

Healthy-Band parameters. All other aspects o f the system were fixed.

A global system would be more useful in producing a generic model for the monitoring 

problem discussed. Such a generic model is useful academically. However tackling the 

real-life problem of patient monitoring will require customised systems. The increased 

performance of the customised systems on the dataset contributed in validating their 

use.

6.17.4 Static Pattern Classification Performance versus Monitoring System 

Performance

The performance o f the monitoring approach was superior to that o f the pattern 

classification approaches. However, this is not easily visible on the performance metrics 

because the performance is assessed differently in the two cases.

This becomes apparent by comparing two sets o f results from the KBS and the MLP. 

The results from the customised KBS presented in Table 6.3 were: 87.5%, 55.56% and 

100% for accuracy, sensitivity and specificity respectively43. The MLP classification 

results (on unseen data and when MLPs were customised per patient) from Section 5.2.4 

were 70.15%, 75.43%, 64.10% for accuracy, sensitivity and specificity respectively.

43 when not including current sample in moving windows, with no window freezing allowed and when 

assessing alarms as acceptable only if  they were raised on the exact sample.
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From the above metrics, the KBS results look superior in terms of the specificity only. 

However, they are superior in terms of the sensitivity as well.

Quantifying performance in the Monitoring studies is different to that applied in Pattern 

Classification. In the monitoring studies, performance is assessed on a patient-night by 

patient-night basis. In the classification by MLPs and LDA the performance is assessed 

on a pattern (i.e. ECG feature vector) by pattern basis. In the monitoring study, a patient 

is either monitored correctly or not, i.e. binary outcome. On the other hand, when using 

MLPs and LDA the accuracy per patient lies in the interval [0 100]%. To produce the 

overall performance metrics, for the MLPs presented above, the per-patient metrics are 

averaged.

The above discussion becomes clearer once a patient is inspected. The MLP test results 

for 204 were 58.33%, 62.00% and 58.67% for accuracy, sensitivity and specificity 

respectively. The KBS raised an alarm on the correct record for this patient. If  patient 

204 is analysed on a pattern by pattern basis then the KBS will give a sensitivity and 

specificity o f 100%. Similarly for patient 227 (both nights merged together) the MLP 

yielded 62.00% 65.86% 68.67% while the sensitivity and specificity (on both nights) 

would be 100% by the KBS. Similarly, whenever a euglycaemic night was monitored 

correctly by the KBS the metrics would be 100% whereas the MLP result was always 

inferior.

In order to be able to compare the performance of the MLP and KBS approaches, the 

KBS performance will have to be assessed on a pattem-by-pattem basis and the results 

averaged. This was not followed since assessing the performance o f the KBS in a 

pattem-by-pattem basis is not very informative in a monitoring study.

6.17.5 Optimal KBS Configuration and Optimal ECG Features

The monitoring system configuration according to which the moving window was 

frozen once a potential risk occurred, in an attempt to make the system more sensitive to 

abnormal changes, did not introduce an improvement. Similarly the inclusion o f the 

ECG feature values from the current monitoring epoch into the moving window, did not 

introduce any improvement.
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Regarding the ECG features, the use of the uncorrected versions of RTapexc and RTc 

did not yield any improvement in the performance o f the system. The optimal results 

were produced by employing heart-rate correction on the features describing VR 

duration (RTapexc, RTc). As mentioned earlier, the customised KBS results when using 

the RTapexc were 87.5%, 55.56% and 100% for accuracy, sensitivity and specificity 

respectively. The use of the RTc instead of the RTapexc did not improve these results 

when assessing spot-on alarms. However, if  a deviation o f 5 samples is considered 

acceptable when assessing alarms, the use of the RTc increased the sensitivity from 

55.56% to 77.78%.

The requirement o f three significant events (risk factors) for an alarm, instead o f four, 

gave the following metrics: 78.13%, 44.44%, 91.30% when alarms are classed as 

correct o nly i f  t hey are raised o n t he e xact r ecord o f  h ypo-onset. H owever i f  a larms 

raised within 4 samples are classed as acceptable then the metrics reach 93.75%, 100% 

and 91.30%.

6.18 Conclusions

This chapter focused on the design of a Knowledge-Based System for the detection o f 

the symptomatic status o f patients experiencing spontaneous nocturnal hypoglycaemia. 

In this chapter the research focus moved from ECG pattern classification to monitoring 

o f patients by monitoring o f their ECG during the night. Offline monitoring o f patients 

from the dataset was carried out in an approach simulating an online monitoring 

situation. The system was monitoring the time-series of two ECG features (T amplitude 

and VR duration) and was adapting itself as time elapsed. The KBS was realised both as 

an Expert System and a Fuzzy Inference System.

A s hort R ule-Base w as p roduced t o f  ormulate t he K nowledge-Base o f  t he sy stem. It 

consisted o f eight rules. Such a Rule-Base can be very useful for clinical experts and the 

fact that the one developed in this work is very concise allows easy inspection by 

clinicians. The Knowledge-Base of the system was based on the clinical hypothesis 

(presented in Section 1.1.5) according to which abnormally low glucose encountered in 

hypoglycaemia is reflected on the ECG in the form of T wave flattening and QT 

prolongation. The performance of the monitoring system strongly supports this 

hypothesis raising optimism for its validation, once more data can be captured to allow 

future research.
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The need for customised systems on each patient to be monitored was emphasised 

during this work. The research task o f producing a monitoring system can be facilitated 

significantly o nee i nter-patient v ariability c an b e o vercome. T his c an b e a chieved b y 

producing a tailor-made monitoring system aimed at the specific patient to be 

monitored. To achieve this, a future monitoring system based on the prototype 

presented in this chapter will need a period of learning and customisation on the patient 

to be monitored before the actual monitoring will start.

Although the proposed system focused on the detection of the symptomatic status o f 

hypoglycaemia, it could also be a candidate after certain modifications in tackling the 

task of detecting the onset of cardiac arrhythmias leading to Sudden Death. If  a 

monitoring system for Sudden Death was to be produced based on the approach 

presented in this chapter, then it should be tuned only to detect excessive ECG changes 

otherwise many false-alarms would be raised.

Further discussion of the impact of the Knowledge-Based monitoring system on the 

initial aims and objectives of this doctorate work will be presented in the next chapter 

(Chapter 7) which will conclude the thesis and provide recommendations for further 

work.
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Chapter 7

Final Discussion, Conclusions and Further Work

7.0 Introduction

This thesis focused on the investigation of the relationship between hypoglycaemia and 

cardiac function and also the detection o f the onset o f hypoglycaemia using solely ECG 

information. This chapter summarises and concludes the thesis. First o f all it presents 

the main research challenges related to the physiological conditions addressed. It 

discusses the extent to which the goals initially set were achieved and the impact they 

have on the investigation of the clinical problem addressed. It proposes a way forward 

for further investigation o f the problem by outlining a number o f suggestions.

7.1 Discussion o f Research Challenges

This section discusses various issues that make this research work a challenging study 

and many o f the serious obstacles encountered during this project. Some o f the 

obstacles could not be fully tackled in this research work and are subject to further 

investigation. The challenges are organised in  subsections according to  their relevant 

areas.

7.1.1 Issues related to Data Acquisition and Dataset

A novel dataset was used as a basis for this research work and allowed some new 

insights into the relationship between hypoglycaemia and the ECG. It was observed that 

the ECG changes due to hypoglycaemia were short-time transients (Sections 5.2.6 and 

6.14.1). This suggests the inclusion of temporal information in the classification system. 

Unfortunately the data available was not sufficient for training, time-lagged neural 

networks44. Such neural networks require long recordings of data. Because o f this, only 

static neural classifiers (i.e. no time stamps), were used which is believed to have 

caused a compromise in performance.

44 Networks receiving time-series inputs.
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Another issue was that the two conditions studied, i.e. euglycaemia and hypoglycaemia, 

were not equally represented in the recordings since the hypoglycaemic events in the 

dataset were spontaneous. There is a significant advantage in investigating spontaneous 

hypoglycaemia namely that it is a realistic complication as opposed to experimental 

hypoglycaemia which is artificially induced. The drawback is that since the diabetic 

patients had to experience hypoglycaemia naturally, there were more recordings 

containing normal events than hypoglycaemic. Referring back to the task o f training 

neural classifiers, the training data used should be representative of all conditions to be 

classified. The existence of less hypoglycaemic records did not allow maximal use of 

the data and restricted in some cases the size o f the training files.

As mentioned in Section 3.1, there exist a number of online databases [URL 13] 

containing ECG records with annotations from human experts. In many research 

projects, such databases are the only source o f data. Many researchers use these 

databases to design and evaluate feature extraction algorithms, classify cardiac beats 

etc. In our case such databases were not useful since the accompanying glucose data at 

the time the ECG was captured was not recorded. Moreover, the data on the online 

databases did not generally originate from diabetic patients, i.e. the patient group we 

were studying. Therefore, special acquisition of both ECG traces and glucose data was 

necessary in our case. Our data was less than what researchers working on online 

databases would have available. Moreover, online databases often contain manual 

annotations on the ECG cycles from more than one clinical expert, which were not 

available in our case.

The glucose sensor had a limitation which was that the minimum value it could record 

was 2.2 mmol/lt (Section 3.2.2). There were cases where the glucose was falling below 

this value but it was only recorded as 2.2 mmol/lt. In many cases, interesting dynamics 

o f the glucose variable may have been lost because o f this.

Another limitation of MiniMed CGMS was that it was recording glucose in the 

subcutaneous tissue (interstitial fluid) while the standard approach is to record glucose 

in the blood stream. .Recording glucose in the subcutaneous tissue is not optimal in 

terms of accuracy since the readings may differ from those of blood glucose. Moreover 

there is a delay, o f approximately 10  minutes, between subcutaneous tissue glucose and 

blood glucose. The MiniMed software is programmed to automatically correct this
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delay but the effectiveness o f this correction could be an issue to be investigated and 

could be affecting the studies carried out using MiniMed. The existence o f a delay 

between interstitial fluid glucose and blood glucose may have affected to some extent 

our studies although the impact on our results cannot be quantified easily.

Due to processing power, memory size and battery life considerations the HOME 

system was only capturing the YY’ orthogonal lead from the 3-lead ECG. Although the 

most prominent ECG changes due to hypoglycaemia are expected to be manifested on 

the YY* lead, recording o f more leads would be useful. This is mainly because the 

dispersion of ECG features across ECG leads is a useful feature and can provide extra 

information. A popular dispersion feature is the QT dispersion (QTd) that was found to 

be informative in the detection o f the Long QT syndrome [Benhorin 1990].

Due to the memory considerations in the HOME system, the ECG was only recorded 

every 1 5 minutes although glucose readings were available every 5 minutes and this 

obstructed the full use o f all the glucose data available. Moreover, having more frequent 

ECG records during the course o f the night would probably have improved the 

performance of the Knowledge-Based monitoring system. Hypoglycaemic events were 

in many cases detected by the system a few samples later or earlier than the actual 

onset. Having more frequent ECG recordings during the night would have reduced the 

time-deviation o f alarms from the actual hypo onset. Nowadays, new trends in hardware 

technology allow for more storage at low cost which is promising for acquisition of 

more data and making better use of each patient recruited. Such hardware 

considerations will be discussed in the future work section of this chapter.

7.1.2 Cardiac function

Delay between changing glucose and cardiac function

This research investigates the relationship between cardiac function and abnormally low 

glucose levels in Type 1 diabetic patients. Assuming that such a relationship exists, it is 

suspected that there will be a delay between the changing blood glucose and the 

subsequent effect on the cardiac function. The glucose will have to drop to abnormally 

low levels for a period o f time before the cardiac function will be affected. This delay is 

undefined [PD1, PD2] and for the studies in this research it was assumed to be zero. For
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the KBS which incorporated the temporal dimension, the delay can be reflected on the 

time-deviation between alerts given and the actual onset o f hypoglycaemia.

The delay may depend on the rate o f change of the glucose [PD2] which complicates 

the relationship between glucose and cardiac function even further. For sudden glucose 

changes there may be a longer delay, while there may be a shorter one for smooth 

changes. The slower the change in glucose, the faster the corresponding manifestation 

of changing glucose on the cardiac function will be, since the heart will be affected 

sooner by slow changing glucose [PD2]. Faster changes in glucose will take longer to 

fully manifest on the cardiac function.

Transient cardiac changes in response to hypoglycaemia

Another issue that complicates the research question is that the changes in cardiac 

function that have been observed in response to hypoglycaemia do not reach a steady 

state for the duration of hypoglycaemia. In most cases, transient changes are observed. 

For instance, the value of a certain ECG feature might change after the onset of 

hypoglycaemia and later on this feature will recover its initial approximate value 

although the hypoglycaemia will still be present. This is illustrated in Figure 7.1.
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Figure 7.1: T wave amplitude over time (top graph) & Glucose profile over time (bottom graph)

The figure shows a significant feature change for records 17-23 followed by a recovery 

in feature magnitude although the glucose level remains at abnormally low values. The
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feature magnitude drops again at record 26 followed by a further recovery in its 

magnitude towards the end of the recording period.

7.1.3 Reduced counterregulatory responses in subsequent hypoglycaemic 

events

It has been clearly established [Davis 1991, 1992], [Heller 1991] that repeated exposure 

to hypoglycaemia can reduce counterregulatory responses to subsequent hypoglycaemia 

by as much as 50% in healthy humans and Type 1 diabetic subjects [Davis 2000], 

[Cryer 1992]. Table 7.1 from [George 1995] quantitatively presents four different 

bodily responses to experimental hypoglycaemia obtained during three hypoglycaemic 

events on days 1, 3 and 8 o f the study.

Table 7.1: Quantitative representation o f  bodily responses on subsequent hypoglycaemic events

Adrenaline Sweat Tremor Symptoms
Day 1 ++++++ ++++ ++++++
Day 3 +++ ++ ++++ +++
Day 8 ++++ +++ ++++ +++++

The study involved 8 non-diabetic subjects over 8 days. Focusing on the adrenaline 

response to hypoglycaemia, which is the most related to cardiac function, it is clear that 

the response is reduced on the second hypoglycaemic event (Day 3) while it has partly 

recovered on the third hypoglycaemic event o f Day 8 . The study concluded that the 

physiological responses to hypoglycaemia are affected differentially by antecedent 

hypoglycaemia with sweating and adrenaline responses remaining impaired for at least 

5 days [George 1995].

The above characteristic o f the human body may have degraded the accuracy o f the 

static pattern classifiers used in this study and also the performance of the Knowledge- 

Based monitoring system. Future monitoring systems for hypoglycaemia detection 

should be calibrated according to the frequency o f hypoglycaemic events the patient is 

experiencing. The occurrence of a hypo event should be stored in memory and taken 

into account as part of the detection of subsequent onsets 'o f hypoglycaemia. For 

instance the sensitivity o f the system to feature changes should be altered depending on 

how many hypo events have occurred in the past days. After a hypoglycaemia-free 

period has elapsed, e.g. 5 days according to [George 1995], then the system would be 

reset to its default sensitivity towards ECG feature changes.
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7.1.4 Feature extraction

One of the great challenges in ECG feature extraction is identifying robustly the end o f 

the T wave either manually or automatically. The current gold standard is manual 

annotation by a human expert. However manual annotation can still be an ambiguous 

task under non-standard signal conditions. A number of automatic algorithms have been 

developed for marking the T wave end but no automatic algorithm can yet be accepted 

as a gold standard. This research focused on T wave morphology analysis and marking 

the T wave end was an essential task in the process. The problems in the inexistence o f 

a robust algorithm affected this research. Time constraints did not allow the research to 

focus on the design o f a robust T wave end algorithm so existing algorithms had to be 

used. The problem of marking the T-end robustly under all signal conditions and 

confidently undertaking the annotation tasks that clinical experts still carry out remains 

unresolved and subject to further investigation.

Manual T end annotation and the use o f existing T end annotation algorithms is 

sufficient for many feature extraction tasks. However, in our case very accurate 

annotation of the T end is required so that even the most subtle QT variations can be 

uncovered and hence the existence of an accurate algorithm is essential.

Robust detection of the Q point is another problem to be overcome. This point is often 

masked in noise. In this research this was overcome indirectly by using the R point 

instead o f Q. The QT interval is one o f the main ECG features used and, since the R 

point was used to replace Q, the RT interval was considered instead of the QT. The RT 

interval is sufficient for this research since it still describes the process o f ventricular 

repolarisation. Although the QT feature has been used traditionally, the RT interval is 

also encountered in the literature [Porta 1994,1998].

7.1.5 Heart-rate-correction

Heart rate correction is another area requiring further investigation. The QT interval is a 

subsection o f the RR interval (the instantaneous heart rate) and hence the two are 

correlated. In hypoglycaemic studies, among other studies, the changes in the QT 

interval must be examined in isolation to changes in heart rate. Prolongations in QT are 

significant but they have to be genuine and not due to a prolongation in RR. Therefore 

there is a need to decorrelate the RR and QT intervals and produce a heart-rate- 

corrected QT interval (QTc). A few approaches [Puddu 1988, Rautahaiju 1993, Ahnve
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1985] have been proposed and the most commonly used is Bazett’s formula [Bazett 

1920] which is also used in this research as mentioned earlier. None o f the correction 

algorithms are 100% accurate and the QTc is found to still be correlated to the heart 

rate. Low quality o f correction can be a limiting factor in the effective use o f the QT 

(and RT) interval. Advancements in the field of hear-rate-correction will be constructive 

for our research as well as for the wider area of ECG signal analysis.

7.1.6 Diurnal pattern of QTc

The QT and QTc intervals undergo dynamic changes over 24 hours which is another 

issue t o b e t aken i nto a ccount w hen a ttempting t o a s s e s s Q T c p  rolongation. T he Q T 

varies, not only with heart rate, but also with gender [Lepeschkin 1951] and with time 

o f day [Sarma 1990], [Ong 1993]. Molnar et al have concluded that there is a distinct 

transient increase in QTc during the first hour after awakening, when the longest hourly 

mean QTc o f the day occurs [Molnar 1996]. Concluding their paper [Molnar 1996 

pp82], they also suggest that: “caution should be exercised when categorizing a single 

clinically measured QTc interval as prolonged. The occurrence o f long QT intervals in 

normal subjects underlines the importance o f assessing the .QT interval within the 

clinical context.”

By considering the above findings it becomes obvious that the diurnal pattern o f QTc is 

another characteristic that needs to be addressed when designing monitoring systems for 

the detection o f hypoglycaemia. Treating the QTc interval as a static variable that would 

only change due to hypoglycaemia or other clinical conditions is not a sufficient 

approach. The healthy diurnal variation of QTc must be taken into account.

7.2 Summary o f Achievements

The contribution to knowledge from this research was a detailed analysis o f the ECG 

signal for further examination of the relationship between cardiac function and 

spontaneous hypoglycaemia and also for the detection o f the latter indirectly through 

the ECG. The main achievement of the thesis was the demonstration of the relationship 

between spontaneous hypoglycaemia and cardiac function in Type 1 diabetic patients. 

This was demonstrated mainly by detection o f the onset of hypoglycaemia using solely 

information from the ECG signal. When assessing alarms as Correct only if  they were 

raised at the exact time o f hypo-onset the optimal configuration o f the KBS yielded the 

following monitoring results: 78.13%, 44.44%, 91.30% for accuracy, sensitivity and
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specificity respectively (Section 6.12.5). However if alarms raised within 4 samples 

from the hypo-onset were classed as acceptable then the metrics reached 93.75%, 100% 

and 91.30% for accuracy, sensitivity and specificity respectively (Section 6.12.5). These 

results were achieved after fine-tuning the KBS for the needs o f each patient as stressed 

in chapter 6 .

A number o f approaches for ECG representation and classification were examined. In 

more detail:

A comparative study of geometric methods for marking the T wave end was carried out 

using data from Type 1 diabetic patients (Section 4.4.2). It was concluded that among 

all the algorithms studied, the tangent method was the one that correlated the most with 

the annotations from the clinical expert. Based on this finding, the tangent method was 

chosen for annotation o f the T end.

A number o f ECG features were extracted and assessed (Section 4.5). Two novel ECG 

features, inspired from the third and fourth central moments of statistical theory, were 

introduced for the evaluation of T wave symmetry and morphology. The concept 

behind an existing feature was modified accordingly to produce a third feature for 

assessing T wave symmetry. The new feature was based on the ratio o f the two areas 

under the T wave to the left and right o f the T peak. Two-tailed t-tests (Section 4.5.1) 

run separately for each patient, indicated that the above three features assessing T wave 

morphology underwent statistically significant changes between the conditions of 

euglycaemia and hypoglycaemia in some patients.

AutoRegressive (AR) modelling was employed for characterisation o f post-QRS ECG 

segments (Section 4.6). The use of AR coefficients was investigated for modelling the 

ECG segment o f interest (from the R peak to the end o f the cycle). Comparisons 

revealed that the use of the AR approach for ECG characterization gave similar results 

to the use o f ECG features.

The Multi-Layer Perceptron (MLP) Neural Network was assessed for the classification 

of the extracted ECG features in a number o f studies (Chapter 5). The MLP 

performance was compared against the Mahalanobis classifier (Linear Discriminant 

Analysis). The k-Nearest Neighbour (kNN) classifier was also assessed (Section 5.2.6).
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It was found that the MLPs had slightly better performance than LDA. However, a 

significant advantage o f using statistical classifiers is that the user does not need to 

involve in the laborious process o f tuning a neural network architecture for optimal 

performance. Moreover, the processing power needed for the use of the aforementioned 

statistical classifiers was, in our case, significantly less compared to that required for 

training neural networks.

A methodology was proposed according to which a diagnostic system can be 

implemented for hypoglycaemia monitoring. This consists o f an ECG representation 

stage in cascade with a classification stage as was presented in Chapter 4. Following the 

proposed methodology, a Knowledge-Based System (KBS) was designed for 

monitoring offline data from diabetic patients in a manner that simulated an online 

patient-monitoring scenario (Chapter 6 ). Two versions of the system were produced 

namely an "expert system" and a system based on fuzzy logic. Employing a KBS 

yielded the highest performance among all the techniques used. This system was able to 

monitor correctly, patients that were consistent with the initial hypothesis i.e. exhibiting 

QT prolongation and T wave flattening during hypoglycaemia. A significant difference 

of the system compared to the neural and statistical classifiers was that it incorporated 

temporal information, while the latter were performing static pattern classification. 

Through the above system, it was demonstrated that two ECG features were sufficient 

for detection o f hypoglycaemia in those patients that manifested both QT prolongation 

and T wave flattening in response to abnormally low blood glucose.

Moreover, the above system contributed in formulating the vague knowledge o f the 

principal ECG changes under hypoglycaemia in the form of rules o f natural language. 

This was informative for medical researchers and provided feedback to the clinical 

experts who formulated the initial hypothesis and contributed the initial guidelines for 

the knowledge-base.

An interesting result was that the diagnostic performance reached in this research work 

was achieved by using only one ECG lead. The Y lead from the 3-lead ECG was used 

since it is placed in the direction of maximal flow of current through the heart. Using 

more information from more leads is expected to increase the performance as it will be 

highlighted in the discussion of directions for future research (Section 7.4).
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Finally, data analysis on the available datasets highlighted the existence o f high inter­

patient variability (Section 4.5). This suggests that the performance o f a monitoring 

system would be boosted by allowing customisation to the specific patient to be 

monitored. Differences in ECG behaviour w ere also observed among different night- 

recordings o f the same patient which suggests that a robust monitoring system should 

also be made adaptive to ECG changes as time elapsed. Moreover it should be able to 

start monitoring from a number of different initial conditions, i.e. different ECG 

signature at the start o f the night, without this affecting its performance.

Hypothesis testing (Student’s t-test) on all ECG features extracted, proposed that apart 

from the inter-patient variability, different features may be robust predictors o f 

hypoglycaemia among different patients (Section 4.5.1). The condition of 

hypoglycaemia may not be sufficiently manifested using the same features on all 

patients.

Investigation o f the ECG and glucose profiles also indicated that the ECG responses to 

hypoglycaemia are expressed in the form of transient events (Sections 5.2.6 and 6.14.1) 

and hence, the incorporation of a temporal dimension in a monitoring system will be 

essential for robust detection o f the condition.

7.3 Addressing the Research Question

The main conclusion o f this thesis is that there exists a relationship between 

spontaneous hypoglycaemia and cardiac function in some patients. This is in line with 

the observations and conclusion of a clinical study focusing on QTc interval changes in 

response to spontaneous hypoglycaemia [Robinson 2004]. In our work it is also 

demonstrated that hypoglycaemia is reflected on other ECG features studied, besides the 

QTc and that the onset o f hypoglycaemia can in many cases be detected automatically 

through analysis of the ECG.

This above relationship was initially established in studies of experimental, i.e. 

artificially induced, hypoglycaemia. The fact that the same relationship holds, although 

more subtly, in the case of spontaneous hypoglycaemia is a significant result with 

possible impact towards the investigation o f unexplained nocturnal deaths o f young 

diabetic patients.
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Besides the strengthening o f the research hypothesis, we conclude that we can detect the 

onset of hypoglycaemia, subject to a time-deviation, in those patients that exhibit T 

wave flattening and QT prolongation. Detection of the condition with a time-deviation 

o f up to one hour45 from its onset is perfectly legitimate [PD1]. This is an important 

result since it is achieved purely by using information from the ECG. Clinical studies 

have focussed on the assessment of the cardiac changes due to hypoglycaemia and also 

on the correct discrimination between patients with the Long QT syndrome and healthy 

control subjects. However, this to the best of our knowledge is the first time that 

detection of the symptomatic status of hypoglycaemia is attempted purely by analysis of 

the ECG.

Regarding the design of a patient monitoring system for hypoglycaemia, we have 

identified and proposed that such a system must be adaptive as time elapses and tailored 

to the patient to be monitored. Adaptivity is necessary to overcome day-to-day intra­

patient variability (due to QTc diurnal pattern, frequency of hypos affecting responses 

to subsequent hypos etc). Customisation per patient is necessary to overcome problems 

due to inter-patient variability (variations in gender, age, fitness level, duration of 

diabetes, level of glycaemic control and so on). Customisation per patient may involve 

the selection of the ECG features to be used since there are indications that different 

features may by related to hypo for different patients. Ideally feature selection should be 

automated and be done online and adaptively rather than a priori since it is likely that 

features manifesting the onset of hypo could in some cases be affected by the day-to- 

day variability o f the patient.

7.4 Further Work

This section proposes a few directions for further work that were either not materialised 

in this research program or they comprise a logical continuation o f the work carried out 

in this thesis.

A sensible step in further work would be to use more features in the knowledge-based 

monitoring sy stem. T his w ould a llow t he v alidation o f  g enuine ECG c hanges d ue t o 

hypoglycaemia, leading to suppression o f some false alarms and detection o f hypo 

events subject to a shorter time-deviation. Moreover it would aid detection o f hypo

45 i.e. 4 samples in the current dataset.
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events associated with very subtle ECG changes that may not be sufficiently reflected 

on the QTc and T amplitude features, i.e. in the cases where hypoglycaemia is almost 

asymptomatic. Features assessing the symmetry and morphology o f the T wave, 

developed in this research, will be useful additions to the system. The RR interval 

(instantaneous heart rate) and also features characterising U waves and ST segment 

changes would be very informative. Generally, improvements in the field o f ECG signal 

processing, involving both ECG annotation and heart-rate correction algorithms, are 

expected to positively influence our research.

7.4.1 Action Potential modelling

Modelling o f t  he T a n d U  w aves u sing A ction P otentials i s a p owerful a pproach f  or 

ECG characterisation and may prove promising for investigation o f the manifestation of 

hypoglycaemia on the ECG. A number o f studies have been carried out on Action 

Potential modelling of ECGs [Wohlfart 1987, Malik 1989, Padrini 1995, Vila 2000]. 

Action potentials could be used for modelling o f the ECG segment o f interest and then 

traditional feature extraction could be carried out on the modelled signal, which is less 

noisy than the original one. Alternatively the model parameters describing the T and U 

waves could be investigated to identify whether they differ between the conditions of 

euglycaemia and hypoglycaemia. The latter is particularly interesting as a direction for 

future work. Results from the Autoregressive modelling o f ECG traces, presented in this 

thesis, indicated that the modelling o f whole segments of the ECG cycle is a promising 

approach. Action Potential modelling has the advantage, over AR modelling, that it is a 

biologically plausible approach and hence further improvement in performance is 

anticipated.

7.4.2 Beat-to-beat ECG analysis

Signal-averaged ECG (S AECG) cycles were exclusively used in this research work. The 

investigation o f the raw (beat-to-beat) ECG cycles could be a direction for further work. 

Such an investigation would look for significant events due to hypoglycaemia than were 

not reflected on the SAECG cycles as they may have been filtered out through the 

averaging process. The challenge of using beat-to-beat cycles is that the level o f noise is 

very high and any type of processing, such as annotation and feature extraction is 

extremely difficult and requires very robust algorithms.
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7.4.3.Using more ECG leads

The diagnostic performance reached in this research was achieved by using only one 

ECG lead. As stressed earlier, the Y lead is the best choice when using a single-lead 

system. Incorporating more leads from the standard 12-lead ECG is expected to 

improve performance and will allow the use of extra ECG features based on the 

dispersion across the ECG leads o f the features already used (e.g. QTc dispersion). 

Moreover, the availability o f more leads allows the application o f Blind Source 

Separation (BSS) techniques for reducing the level o f noise and artefacts that 

contaminate the ECG. Application of BSS techniques for noise reduction could lead to 

the reduction of the level of Signal-Averaging applied. This is desirable since the raw 

signal is more informative and because the Signal-Averaging process can introduce 

distortion. In  addition, application o f  B SS for reduction o f  motion artefacts from the 

skeletal muscle could possibly allow use of the monitoring system while the patient 

would be awake. The current system is not addressing the monitoring o f patients while 

they are awake. There was no data available to perform such testing but performance is 

expected to be lowered due to the increased amount o f muscular activity in the skeletal 

area.

7.4.4 Baseline wandering

Baseline wandering on the beat-to-beat ECG signals has been observed in our dataset. A 

question is raised as to whether the existence of baseline wandering conveys a message 

related to the existence o f hypoglycaemia. The baseline wandering was only 

investigated by visual inspection and it was hard to draw any conclusions as to whether 

it is a predictor o f hypoglycaemia. An interesting direction for further work would be to 

devise algorithms that can quantify the level of baseline wandering and then investigate 

the importance of wandering to the detection of hypoglycaemia.

7.4.5 Datasets

The current dataset constitutes the current state of the art in the studies o f the 

relationship between hypoglycaemia and cardiac function. To the best o f our knowledge 

this lies among the first datasets using continuous glucose monitoring, besides ECG 

recordings, i n t he s tudies o f  n octumal h ypoglycaemia. H owever, a cquisition o f  m ore 

data will be a significant enhancement to the study.
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ECG traces recorded more frequently during the night will probably increase the 

chances o f the current system in giving a hypoglycaemic alert within shorter time from 

the actual onset. In the current dataset, an alarm raised with one sample deviation 

corresponds to 15 minutes in time but this is only due to the time-resolution o f the 

dataset. Moreover, data capture from more leads is very informative as stressed earlier. 

Current trends in glucose sensing technologies allow increased range of glucose values 

recorded. The GlucoDay continuous glucose monitoring system by Menarini 

Diagnostics [URL 16] allows recording o f glucose levels down to =1.1 mmol/lt which is 

very informative for investigation of severe hypoglycaemic events. The glucose meter 

used in this study could not record glucose concentrations below 2.2 mmol/lt (Section 

3.2.2) and may have masked the severity o f some hypoglycaemic events detected.

More data will be necessary for further testing o f the existing monitoring system and 

also in the process of upgrading and improving it. More data will also be essential when 

embarking on the research direction o f using time-lagged neural network architectures 

for patient monitoring. Such architectures require extensive datasets. Using time-lagged 

neural networks is promising for detecting transient changes that we may have not been 

able to observe and formulate in the rule-base produced.

Upon satisfactory performance, the functionality o f the system can be extended so that it 

can be attached to diabetic patients and perform online monitoring. Extensive testing 

will also be necessary followed by the necessary modifications before a monitoring 

system can be approved for patient use.

Regarding the existing ECG acquisition hardware (HOME system) it could be improved 

by upgrading the battery, internal memory etc, because at the moment not all the 

glucose data available per patient recruited is used46. Current technology can also offer 

new devices with increased capability in affordable prices. Modem palmtop computers 

with 12-lead ECG interfaces are available in the market. Current technology 

significantly facilitates acquisition at the patient’s own environment. When the HOME

46 A MiniMed CGMS probe used for subcutaneous glucose measurements lasts for at least 3 days. 

However, each acquisition of the dataset was including only two nights worth of ECG which means that 

not all the glucose data available could be used. Moreover, the glucose variable was sampled every 5 

minutes while ECG was captured every 15 minutes. Because of this not all the glucose samples during a 

given night were used.
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system was implemented the ECG interface attached to it had to be custom-designed for 

the needs o f the research while today it can be bought off-the-shelf and has significantly 

reduced size. Such devices were presented in Section 2.5.2.

7.5 Final Remarks

This thesis focused on the analysis and interpretation of SAECG signals for the 

detection o f spontaneous nocturnal hypoglycaemia. A number o f approaches for ECG 

representation were employed and some novel ECG features were introduced. The 

modelled ECGs were classified according to their corresponding glucose levels. Besides 

the approaches used for static ECG pattern classification (ANN, LDA and kNN), a KBS 

was designed to perform patient monitoring. It was developed and tested on offline data 

in a manner that simulated an online monitoring scenario. The KBS was rule-based and 

the knowledge-base was formulated within guidelines from clinical experts.

To conclude the chapter it is stressed once more that analysis of the ECG is a promising 

approach for the detection of the symptomatic status of hypoglycaemia in Type 1 

diabetic patients. For a few patients studied in this work, hypoglycaemia could be 

detected at the exact sample it occurred during the night only by looking at the patient’s 

ECG. This is an important result and provides new insights on the effects of 

hypoglycaemia on the cardiac function.

Further improving the performance of the monitoring system may lead to a commercial 

alarm system in the long term future. Such a system could be used for nocturnal 

hypoglycaemia detection or for the detection of Sudden-Death-related cardiac 

arrhythmias. The software engine behind such a monitoring system could be used in any 

clinical situation where ECG is already captured and could be incorporated in 

commercial ECG monitors.
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Appendix A: Dataset used
The data used in this thesis originated from Type 1 diabetic patients. The demographic 

details for the patients are given in table A. 1.

Table A. 1: Summary demographics

patient code sex DOB age @ test durn of diabetes(yrs) H bAlc (%)
201 m 24/08/1979 21 . 3 9.2
202 f 17/01/1948 53 26 8.9
203 m 06/01/1980 21 8 8.1
204 f 09/10/1952 48 23 8.5
205 f 32
207 m 09/12/1965 36 4 months
208 m 10/07/1973 27 16 7.6
209 m 03/11/1938 62 24 11.3
210 f 05/02/1972 29 21
211 f 27/03/1981 20 8
212 f 11/07/1970 30 17
215 m 14/02/1974 27 26
216 f 25/01/1946 55 22
218 m 08/02/1961 40 26
219 m 15/11/1964 36
220 22 3
221 m 18/09/1975 . 26 2.5
222 m 09/07/1963 38 18
223 f 24/08/1983 18 2
225 m 14/05/1961 40 13
226 m 17/10/1973 28 5
227 f 10/10/1959 42 27
228 f 03/02/1963 39 23
229 m 20/11/1981 20 3
230 f 08/01/1962 40 12
231 m 62 36
232 m 35 29
244 m 06/12/1979 23

“H bA lc” presented in the last column o f the table, is a measure o f the quality o f glucose 

control. H bA lc lies around 5% for healthy non-diabetic subjects while it is higher for 

diabetic patients. The higher the value, the poorer the quality o f glucose control.

The ECG and glucose profiles for a subset of the patients are presented at the remainder 

of this appendix. ECG-glucose profiles for patients 202 and 204 have already been 

presented in Chapter 3. The ECG data for patient 201A (night 1 and night2) are given in 

Figures A .l and A.2. The ECG traces for each night are superimposed and plotted with 

different colours. The glucose profiles are presented in Figure A.3.
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Appendix A: Dataset used

201A-night1

sa m p le  n u n b e r

Figure A. 3: Glucose profiles fo r  201A night 1 (LHS) and night2 (RHS)

Figure A. 2: ECG traces superimposedfor patient 201A-night2
p201A-night1 p201A-night2

-600* 1 1 1 1 1 1-----------------------------------
0 20 40  60 80 100 120 140

sam p le  number

Figure A .l: ECG traces superimposedfor patient 201A-nightl

201A-night2

 1------------------- 1------------------- 1------------------- 1------------------- 1------------------- r
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ECG and glucose profiles are given in Figures A.4-A.6 for patient 205.

40  50
sam p le  num ber

p205-njjit1 

1---------------

Figure A.4: ECG traces superimposedfor patient 205-nightl

p205-night2

i ------------------- 1------------------- 1------------------- 1------------------- 1------------------- 1------------------- 1-------------

Figure A. 5: ECG traces superimposed for patient 205-night2
p205-night1 p205-night2

£
E

7035 45 55 6540 50 60
record num ber

Figure A. 6: Glucose profiles fo r  205 night I (LHS) and night2 (RFIS)
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ECG and glucose profiles for patient 207 are given in Figures A.7-A.9.

p207-night1

I

sam p le  num ber

Figure A. 7: ECG traces superimposedfor patient 207-night 1
p207-ncpt2

sa m p le  n irnber

Figure A. 8: ECG traces superimposedfor patient 207-night2
p207-night1 p207-night2

25 350 10 15
record num ber

20 305

£
E

I
O)

35 40 45 50 55 60

Figure A. 9: Glucose profiles for 207 night 1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 209 are given in Figures A. 10-A. 12.

80 100 
sam p le  n im b e r

p209-night1 

T--------

g
I

p2Q9r-.(p!2
Figure A. 10: ECG traces superimposedfor patient 209-night1

80 100 
sa m p le  n u n b e r

Figure A .ll: ECG traces superimposedfor patient 209-night2

E 4.5 
E

8  4

p209-night2

Figure A. 12: Glucose profiles fo r 209 night 1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 212 are given in Figures A. 13-A. 15.

p212-n ght1 

 1--

50
sa m p le  number

Figure A. 13: ECG traces superimposedfor patient 212-night 1

■3 500

Figure A. 14: ECG traces superimposedfor patient 212-night2
p212-night1 p212-night2

E
E

i

record num ber

8

7.5
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5
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4
355 15 20 25 300 10

Figure A. 15: Glucose profiles for 212 night 1 (LHS) and night2 (RHS)
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Appendix A: Dataset used

ECG and glucose profiles for patient 215 are given in Figures A. 16-A. 18.

p215-night1 

 1---

sam p le  num ber

Figure A. 16: ECG traces superimposedfor patient 215-night 1
p215-night2

T-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-----

-1000* 1 1 1 * 1 1 1 1 1_____
0 10 20 30 40  50 60 70 80  90  100

sa m p le  num ber

Figure A. 17: ECG traces superimposedfor patient 215-night2
p215-night1 p215-night2
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record num ber

20 25 30 35

IJ3

4 0 45 50 55 60 65

Figure A. 18: Glucose profiles for 215 night 1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 227 are given in Figures A. 19-A.21.

p227-ricfit1

400----------------1----------------1----------------1----------------1----------------*----------------
0 20  40  60  80  100 120

sam p le  number

Figure A. 19: ECG traces superimposed for patient 227-night 1
p227-nc#"it2

1-------------- 1-------------- 1-------------- T

0 20 40  60 80  100 120
sam p le  num ber

Figure A. 20: ECG traces superimposedfor patient 227-night2
p227-night1 p227-night2

14
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Figure A. 21: Glucose profiles for 227 night 1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 244 are given in Figures A.22-A.24.

>

1"S.§

sa m p le  number

Figure A. 22: ECG traces superimposed for patient 244-night 1
p244-nght2

I

sa m p le  num ber

Figure A. 23: ECG traces superimposedfor patient 244-night2
p244-night1 p244-night2

5 20
rec o rd  n u m b e r

30 3510 15 25

E£
1J3

35 65 7040 45 50 55 60
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Figure A. 24: Glucose profiles for 244 night 1 (LHS) and night2 (RHS)
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Appendix B: Simple fuzzy logic system example
In order to illustrate the concept o f fuzzy set operations and fuzzy rules processing for a 

Mamdani-type system, a simple example is considered and briefly presented, from the 

MATLAB fuzzy logic toolbox manual [MathWorks Fuzzy]. This example is based on 

the basic tipping problem, namely what is the “right” amount to tip the waiting staff in a 

restaurant. This is formulated as: "Given a number between 0 and 10 that represents the 

quality o f service at a restaurant (where 10 is excellent), what should the tip be? " 47 The 

fuzzy system to tackle the tipping problem, consisting of two inputs, three rules and one 

output and is presented in Figure B .l. The two inputs (quality of service, quality of 

food) also vary in the interval [1 1 0 ].

Dinner for two 
a 2 inpu), 1 outpui, 3 rule system

Input 1
Service (0*10)

Output
%  15-25%}

Input 2
Food (0-10)

R u le  1 ^  service ts poor or food is rancid,
then tip is cheap,

R u le  2  If service is good, then tip is overage.

R u le  3  ^  service is excellent or food is delicious, 
fhon lip  is generous.

the inpuls are crisp Alt rules are The results o f the rules The result is a crisp
(non-fuzzy) numbers evaluated in parallel are combined and (nan-fuzzy) number,
limited lo a  specific using fuzzy distilled (defuzzified).
range: reasoning.

Figure B .l: Fuzzy tipper system [MathWorks Fuzzy tbj

B.l Fuzzification

Figure B.2 illustrates the fuzzification o f the input o f the tipper system describing the 

quality o f food. I f  the food is assessed as 8 (out o f 1 0 ), this is fuzzified as having a 

membership of 0.7 in the “delicious” fuzzy set.

47 This problem is based on tipping as it is typically practiced in the United States. An 

average tip for a meal in the U.S. is 15%, though the actual amount may vary depending 

on the quality o f the service provided.
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f. Fuzzify 
inputs.

0,7

Result o f  
fuzzification

f o o d  Is d e l i c i o u s

food = 8

inpul

Figure B.2: Fuzzification [MathWorks Fuzzy]

B.2 Combination of fuzzy sets using the “Union” operator

Let’s consider only the 3rd rule o f the rule base: “if  service is excellent or food is 

delicious then tip is generous”. Figure B.3 demonstrates the use o f the “Union” operator 

(OR) to combine two fuzzy sets related to this rule. After the fuzzification process, a set 

o f inputs: service = 3, food = 8 , will have memberships o f 0 and 0.7 in the “excellent” 

and “delicious” fuzzy sets respectively which are involved in the above rule.

t  Fuzzify 
inputs.

2. Apply
OR operator (max).

excellent

delicious0.0

food is deliciousservice is excellent or

0 .7

0,0

0.7

result o f  
fuzzy operator

service = 3 food s  8

input 1 input 2

Figure B.3: Demonstration o f  Union operator (OR) [Math Works Fuzzy]

The OR operator will combine the membership degrees o f the two inputs. A 

“maximum” operator is used to implement the “fuzzy union” in this system giving an 

output o f 0.7 (max(0, 0.7) = 0.7).

B.3 Implication operator

Once the fuzzy sets in the antecedent of the current rule are combined, the Implication 

operator is used to determine the firing strength o f the rule. In this system, Implication 

is implemented by a “minimum” operator which is applied on the membership function 

with 1 inguistic v alue “ generous” as s een i n F igure B .4. T he r esult o f  t he Implication
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operator is shown in the right most graph o f the figure. As it can be seen, the result of 

the operator is a MF identical to the “generous” MF but truncated at the 0.7 level.

Antecedent

1. Fuzzify 
inpuss.

>  f *

2. Apply
OR operator (max).

Consequent

3. Apply  
Implication 
operator (min).

delicious

food is delicious tip » generousif service is excellent or result of  
implication

service = 3 food « 8

input 1 input 2

FigureB.4: Demonstration o f  Implication operator [MathWorks Fuzzy]

B.4 Aggregation and Defuzzification

The process o f aggregation for the set o f inputs discussed above (service = 3, food = 8 ) 

is illustrated in Figure B.5.
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method (max).

service « 3  

input 1

food m 8

input 2

Result o f  
aggregation

Figure B.5: Aggregation [MathWorks Fuzzy]
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The rule considered up to now is the 3rd one on the figure. The use of the intersection 

and implication operators to determine the firing strengths of all the rules can be seen in 

the figure. The aggregation process combines all the rules into a single fuzzy set as seen 

in the bottom-right graph of Figure B.5. The fuzzy set produced by the aggregation is 

then defuzzified to produce a numerical output. The defuzzification method used in this 

system is the Centre o f Gravity (COG). It calculates the centroid o f the resulting fuzzy 

set as illustrated in Figure B.6 .

Figure B. 6: Defuzzification [Math Works Fuzzy]

The tipper system infers that when the service is rated as 3 and the food as then the tip 

should equal 16.7% of the bill.

.2* S. Dc fuzzify the
 __ a ggrega te  output
25% (centroid%0

tip *  16.7%

Result o f  
defuzzification
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Appendix C: Extracted ECG features
A small sample o f the sets o f features extracted is presented in this appendix.

Table C.l: ECG features for 203-night 1

%Record gi HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc

7 12.24 87.69 261.52 316.17 156.32 188.98 612.97 7450.10 1.11 0.02 -0.67

8 8.81 85.80 246.92 295.28 159.43 190.66 810.41 10125.51 0.78 -0.74 -0.50

9 6.10 84.14 262.01 310.27 164.95 195.34 736.78 9707.78 1.23 0.18 -0.71

10 3.52 76.50 269.62 304.45 171.87 194.06 1041.20 13757.31 0.62 -1.12 -0.30

11 2.20 74.62 265.03 295.57 171.71 191.49 1088.90 14356.80 0.57 -1.21 -0.30

12 2.20 76.24 267.00 300.98 179.58 202.43 1136.23 15293.22 0.77 -0.92 -0.33

13 2.20 78.56 262.11 299.92 176.29 201.72 1166.76 15506.59 0.71 -1.03 -0.29

14 2.20 89.23 250.29 305.22 154.33 188.20 676.04 8302.61 . 1.00 -0.24 -0.67

15 2.20 83.22 281.43 331.44 186.05 219.11 761.50 11238.28 1.44 0.75 -0.60

16 2.20 69.80 285.50 307.93 171.51 184.98 681.20 9435.47 1.28 0.44 -0.69

17 2.20 72.23 285.26 312.99 175.38 192.43 706.32 10185.58 1.28 0.37 -0.74

18 2.20 66.30 279.56 293.88 148.17 155.76 540.41 6565.77 1.40 0.52 -0.78

19 2.20 64.30 287.22 297.33 152.25 157.61 561.00 6878.94 1.26 0.29 -0.78

20 2.20 65.94 287.23 301.10 156.43 163.99 537.89 6675.08 1.24 0.12 -0.73

21 2.20 71.24 287.84 313.64 176.03 191.81 547.38 7755.17 0.88 -0.50 -0.58

22 2.20 79.47 271.99 313.02 163.42 188.06 577.32 7367.79 0.80 -0.75 -0.55

23 2.20 79.24 282.40 324.54 178.86 205.55 676.14 9389.45 - 0.94 -0.49 -0.57

24 2.20 75.31 292.19 327.35 194.98 218.44 732.48 11386.07 0.95 -0.37 -0.62

25 2.20 76.93 282.65 320.06 173.12 196.04 655.18 9029.22 1.24 0.28 -0.76

26 2.20 80.28 279.44 323.23 175.08 202.52 691.76 9709.09 1.45 0.55 -0.71

27 2.20 82.19 270.13 316.17 173.74 203.34 744.81 10505.46 1.43 0.45 -0.76

28 2.20 77.85 283.48 322.91 175.16 199.52 921.04 12356.98 0.74 -0.82 -0.50

29 2.20 81.44 277.86 323.72 174.92 203.79 868.46 11832.22 0.60 -1.13 -0.37

30 3.25 77.82 278.88 317.61 181.24 206.41 1323.60 18425.94 0.65 -1.19 -0.23

31 4.37 80.98 276.97 321.76 167.43 194.51 1264.22 16302.14 0.73 -0.97 -0.40

32 7.14 76.78 275.76 311.96 167.13 189.06 1358.07 17037.79' 0.54 -1.35 -0.18

33 8.26 82.20 273.99 320.70 177.61 207.89 948.89 12511.21 0.60 -1.27 -0.13
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Table C.2: ECG features fo r 204

%Record fll HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc

5 8.48 84.55 291.38 345.89 100.88 119.75 206.62 1536.83 1.49 1.03 -0.33

6 8.48 83.30 294.13 346.57 107.02 126.10 248.57 1937.30 1.48 1.16 -0.15

7 7.09 86.97 297.79 358.54 105.79 127.37 226.08 1737.40 1.18 0.77 -0.44

8 5.08 85.81 297.92 356.28 122.20 146.13 368.19 3304.47 0.86 -0.27 -0.60

9 5.41 86.70 291.59 350.52 122.20 146.89 404.66 3636.03 0.98 -0.11 -0.60

10 5.66 95.56 283.54 357.83 118.78 149.90 362.94 3133.20 0.69 -0.74 -0.55

11 6.14 86.46 292.87 351.57. 123.78 148.59 409.12 3766.22 0.72 -0.60 -0.51

12 5.23 86.77 293.65 353.14 106.16 127.66 201.02 1606.02 0.95 0.43 -0.53

13 4.91 87.77 296.20 358.25 121.81 147.33 391.82 3514:68 1.26 0.51 -0.53

14 4.69 84.48 297.87 353.44 125.63 149.07 435.32 3962.74 0.83 -0.32 -0.60

15 4.06 89.98 285.42 349.52 119.86 146.78 391.05 3453.42 0.76 -0.47 -0.56

16 4.09 92.30 277.29 343.92 104.57 129.70 271.56 2161.09 0.78 -0.40 -0.61

17 2.82 88.12 291.84 353.69 92.68 112.32 132.84 912.46 1.17 0.74 • -0.45

18 2.20 90.40 295.01 362.11 98.98 121.49 154.70 1153.99 1.26 0.87 -0.33

19 2.20 86.86 290.00 348.94 100.46 120.88 168.75 1275.51 1.40 1.02 -0.32

20 2.20 89.10 282.57 344.34 97.13 118.37 171.53 1229.85 1.07 0.49 -0.61

21 2.20 92.09 290.14 359.45 98.57 122.11 155.88 1159.65 1.58 1.16 -0.25

22 2.20 88.53 291.86 354.53 104.14 126.50 157.15 1185:12 1.36 1.09 -0.36

23 2.20 92.31 294.11 364.81 97.73 121.22 127.94 962.25 1.22 0.88 -0.37

24 2.20 84.16 300.01 355.33 121.76 144.21 432.17 3982.23 1.05 0.17 -0.53

25 2.20 86.82 297.47 357.82 123.14 148.12 446.38 4002.90 0.92 -0.19 -0.60

26 2.20 84.54 294.02 349.00 98.69 117.15 162.38 1193.52 1.26 1.03 -0.30

27 2.20 91.03 294.74 363.06 100.72 124.06 179.40 1262.76 1.16 0.82 -0.32

28 2.20 86.74 288.66 347.07 96.63 116.19 162.56 1184.09 0.94 0.22 -0.62

29 2.20 88.92 292.33 355.87 104.35 127.04 215.67 1766.22 0.87 0.25 -0.57

30 2.76 87.17 290.94 350.69 105.43 127.08 208.13 1608.22 1.34 0.96 -0.40

31 2.20 86.15 302.17 362.07 123.68 148.20 404.52 3757!61 0.72 -0.56 -0.55

32 2.2 90.59 289.88 356.19 123.52 151.77 390.61 3531.06 0.91 -0.19 -0.60

33 2.2 88.88 294.15 358.01 124.84 151.94 413.89 3782.15 1.04 0.14 -0.56
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Table C.3: ECG features for 205-nightl

%Record gi HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc

1 4.60 95.48 295.40 372.65 116.74 147.26 529.25 4449.52 0.95 -0.09 -0.53

2 3.36 87.16 309.21 372.68 126.57 152.56 476.56 4418.54 1.40 0.83 -0.38

3 3.83 91.88 297.21 367.78 114.38 141.54 454.80 3762.01 1.08 0.08 -0.57

4 4.58 91.32 293.01 361.48 118.98 146.78 577.99 5077.83 0.89 -0.39 -0.51

5 4.72 86.64 299.38 359.76 127.83 153.62 619.86 5930.57 0.91 -0.46 -0.48

6 5.47 90.83 294.02 361.76 136.59 168.06 670.66 6721.54 0.69 -0.92 -0.36

7 4.91 85.87 311.29 372.41 124.28 148.68 582.62 5439.50 0.76 -0.55 -0.48

8 4.16 79.93 314.48 362.98 137.18 158.33 870.87 8649.23 0.58 -1.22 -0.16

9 3.99 79.16 309.87 355.92 140.51 161.39 909.40 9151.49 0.70 -1.04 -0.17

10 3.85 80.38 312.35 361.53 143.84 166.49 930.75 9443.58 0.77 -0.96 -0.20

11 3.78 79.03 321.32 368.76 148.61 170.55 968.06 10119.47 0.75 -1.00 -0.22

12 5.26 88.39 305.54 370.85 122.87 149.13 590.01 5300.68 0.99 -0.14 -0.58

13 4.98 83.69 319.96 377.88 129.68 153.15 570.81 5505.92 0.76 -0.57 -0.53

14 5.00 81.06 322.28 374.60 134.64 156.50 587.53 5883.30 0.77 -0.61 -0.48

15 5.47 97.29 288.76 367.70 127.29 162.09 573.76 5483.15 0.84 -0.49 -0.52

16 3.50 75.59 329.63 369.98 143.04 160.55 654.39 7042.03 0.71 -0.91 -0.32

17 3.71 75.55 326.43 366.29 135.84 152.43 672.90 6734.90 0.72 -0.88 -0.36

18 3.57 76.95 324.96 368.01 131.52 148.94 621.05 6151.77 0.66 -0.91 -0.36

19 3.69 78.26 320.54 366.09 128.43 146.68 610.22 5810.33 0.84 -0.57 -0.47

20 4.79 81.29 317.61 369.68 142.62 166.01 730.85 7751.01 0.62 -1.11 -0.26

21 5.12 81.31 320.20 372.75 137.79 160.41 570.33 5761.47 0.70 -0.84 -0.39

22 4.37 79.33 317.52 365.09 140.86 161.97 778.41 8104.57 0.62 -1.09 -0.25

23 3.99 80.30 315.89 365.45 136.39 157.78 853.43 8475.00 0.59 -1.21 -0.13

24 4.96 79.31 315.71 362.97 139.12 159.94 929.29' 9259.51 0.60 -1.22 -0.12

25 5.64 81.58 320.22 373.38 130.58 152.26 714.17 6927.32 0.80 -0.60 -0.50

26 5.87 82.34 317.82 372.31 131.95 154.58 637.86 6338.91 0.68 -0.83 -0.39

27 6.22 82.83 319.20 375.05 138.50 162173 628.00 6436.88 0.65 -0.91 -0.41

28 6.20 82.87 307.27 361.12 151.15 177.64 849.34 8622.01 0.57 -1.32 0.02

29 5.97 88.59 296.95 360.83 117.01 142.17 550.70 4679.16 1.01 -0.17 -0.49

30 5.82 83.51 316.99 373.96 132.71 156.56 567.61 5658.28 0.92 -0.21 -0.54

31 6.01 82.08 321.59 376.14 136.42 159.57 569.32 5744.83 0.98 -0.13 -0.58

32 6.97 83.64 320.49 378.40 146.49 172.96 670.43 7296.42 0.62 -1.04 -0.34

33 9.09 97.86 287.42 367.07 98.84 126.23 402.94 2870.93 1.03 0.03 -0.55
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Table C.4: ECG features fo r 205-night2

% Record gi HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc

38 4.79 96.36 296.14 375.29 112.73 142.86 510.52 4123.69 1.51 0.95 -0.33

39 5.29 96.22 290.71 368.14 113.44 143.66 568.67 4695.72 1.12 0.30 -0.55

40 4.84 97.25 292.07 371.84 104.11 132.55 353.90 2640.57 1.01 0.22 -0.45

41 4.87 98.73 285.25 365.91 113.46 145.55 448.40 3753.62 0.85 -0.33 -0.48

42 5.10 96.73 283.74 360.26 106.17 134.81 457.56 3541.17 1.08 -0.15 -0.56

43 5.34 93.39 285.19 355.80 111.99 139.71 438.59 3547.22 0.89 -0.31 -0.54

44 5.65 90.36 301.32 369.78 122.47 150.29 557.27 4950.36 1.00 0.00 -0.50

45 5.47 91.99 294.46 364.61 123.31 152.69 623.41 5659.71 0.81 -0.58 -0.41

46 4.40 90.06 295.43 361.95 121.01 148.26 549.22 4793.45 0.82 -0.33 -0.54

47 4.06 90.77 297.11 365.43 104.37 128.37 490.70 3748.01 1.32 0.58 -0.50

48 4.09 91.41 295.63 364.89 108.89 134.40 466.31 3654.35 1.15 0.29 -0.48

49 4.17 91.58 307.80 380.26 117.71 145.43 478.09 3953.11 1.04 0.16 -0.58

50 4.74 92.21 305.87 379.19 118.06 146.36 474.68 3992.55 0.91 -0.14 -0.50

51 4.79 83.58 310.05 365.93 121.53 143.43 536.77 4740.87 1.20 0.41 -0.52

52 4.84 84.58 314.01 372.82 128.05 152.04 563.57 5190.71 0.78 -0.56 -0.46

53 5.02 88.20 311.94 378.21 118.80 144.04 526.10 4465.38 0.90 -0.26 -0.50

54 5.21 89.12 309.77 377.52 121.35 147.88 493.97 4312.80 1.19 0.41 -0.49

55 5.21 87.45 309.08 373.14 128.51 155.15 498.08 4493.40 0.98 -0.02 -0.54

56 6.25 87.29 315.83 380.96 124.95 150.72 504.93 4450.67 0.92 -0.19 -0.57

57 5.18 88.48 314.45 381.85 131.69 159.92 546.49 5207.43 1.09 0.11 -0.59

58 5.81 91.82 306.94 379.71 89.69 110.96 323.29 2071.29 1.34 0.88 -0.36

59 5.81 89.64 313.46 383.15 127.30 155.60 540.39 5149.17 1.15 0.31 -0.57

60 5.94 84.69 320.64 380.95 134.53 159.84 711.71 7157.57 0.76 -0.73 -0.43

61 6.22 87.47 317.87 383.81 131.55 158.84 529.66 5200.64 0.95 -0.04 -0.57

62 6.14 89.29 316.65 386.27 139.24 169.85 619.88 6518.94 0.80 -0.52 -0.50.

63 6.01 81.32 311.70 362.87 139.02 161.84 838.88 8455.97 0.74 -0.89 -0.35

64 6.74 92.07 307.72 381.19 119.42 147.93 501.61 4376.78 1.07 0.18 -0.63

65 6.12 88.90 319.63 389.08 140.10 170.54 494.66 5006.76 0.77 -0.47 -0.49

66 7.03 93.62 303.90 379.60 139.86 174.71 593.84 5880.00 0.71 -0.92 -0.34
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Appendix u: extracted n u u  ieaiures

Table C.5: ECG features fo r 209-night 1

%Record gi HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc

1 8.70 112.12 159.90 218.58 82.88 113.29 945.67 12014.05 0.57 -1.29 -0.17
2 9.32 107.80 165.68 222.07 88.25 118.29 780.62 10770.64 0.56 -1.32 -0.16
3 9.80 98.75 171.78 220.37 93.56 120.03 687.21 9759.87 0.60 -1.25 -0.22
4 9.95 92.69 171.02 212.56 93.78 116.56 674.77 9766.67 0.56 -1.33 -0.13
5 10.39 105.09 168.87 223.50 90.52 119.80 714.50 9754.39 0.73 -1.03 -0.30
6 10.39 85.20 169.55 202.05 90.56 107.92 741.04 10051.31 0.71 -1.04 -0.31
7 9.51 109.15 162.23 218.81 90.46 122.00 919.80 12661.41 0.60 -1.28 -0.16
8 7.65 109.32 164.94 222.64 94.14 127.08 933.79 13386.60 0.66 -1.19 -0.24
9 7.14 101.57 166.18 216.21 92.66 120.56 981.67 13939.19 0.57 -1.34 -0.10
10 6.76 105.15 169.75 224.71 95.94 127.00 959.22 14092.50 0.65 -1.25 -0.15
11 7.52 84.47 167.49 198.73 92.79 110.09 987.66 13766.76 0.60 -1.25 -0.20
12 7.75 104.29 171.66 226.31 96.79 127.61 962.96 14016.55 0.74 -1.04 -0.29
13 7.86 105.71 171.05 227.04 93.22 123.73 974.95 13890.79 0.57 -1.34 -0.11
14 7.65 104.31 172.21 227.07 95.17 125.48 961.05 13902.60 0.60 -1.30 -0.12
15 9.32 107.01 164.96 220.30 87.03 116.23 972.24 12858.67 0.58 -1.33 -0.08
16 9.08 102.58 173.30 226.60 96.40 126.05 883.61 12882.51 0.61 -1.28 -0.13
17 8.49 100.97 169.21 219.50 91.31 118.46 941.60 13133.98 0.71 -1.15 -0.18
18 7.73 108.36 159.41 214.23 95.00 127.67 963.95 13103.95 0.54 -1.47 0.17
19 6.42 107.17 172.12 230.04 101.26 135.34 875.57 13518.78 0.69 -1.15 -0.25
20 6.38 104.76 176.81 233.64 104.44 138.01 861.06 13815.94 0.63 -1.24 -0.21
21 7.25 106.62 178.12 237.44 103.67 138.20 785.22 12449.61 0.55 -1.33 -0.20
22 6.57 103.93 162.65 214.07 69.68 91.71 335.46 3748.97 0.61 -1.38 -0.12
23 6.87 125.54 150.39 217.54 68.94 99.72 497.31 5864.55 0.59 -1.18 -0.39
24 6.70 85.97 167.87 200.95 87.55 104.81 873.83 11297.32 0.50 -1.39 -0.17
25 6.04 106.87 170.73 227.86 99.71 133.07 779.21 11133.09 0.53 -1.41 -0.05
26 6.27 113.14 170.74 234.45 93.42 128.29 797.50 11380.46 0.51 -1.37 -0.16
27 6.57 115.75 156.37 217.19 84.29 117.08 1003.26 12771.99 0.50 -1.45 -0.05
28 8.72 112.11 172.01 235.13 91.01 124.40 874.23 12114.32 0.66 -1.20 -0.17
29 10.84 115.35 161.14 223.43 87.61 121.47 960.37 12825.70 0.64 -1.29 -0.08
30 11.32 108.16 168.86 226.72 92.69 124.45 894.98 12448.80 0.54 -1.41 -0.04
31 10.90 115.04 154.11 213.39 77.42 107.20 836.96 10127.86 0.49 -1.37 -0.18
33 10.98 78.74 143.46 164.35 53.52 61.31 635.47 5014.27 0.99 -0.34 -0.87
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Appendix C: bxtracted b t u  leatures

Table C.6: ECG features fo r  209-night2

%Record gi HR RTmsi RTcmsi Tdur Tdurc Tampl Tarea HAR SKEW KURTexc
34 5.51 118.88 166.24 234.00 87.73 123.48 824.66 10854.38 0.81 -0.81 -0.41
35 5.53 108.26 170.58 229.13 90.45 121.50 750.54 10329.68 0.77 -0.89 -0.35
36 5.46 109.77 170.70 230.88 96.37 130.34 823.08 11994.24 0.68 -1.08 -0.29
37 5.81 106.31 175.21 233.23 98.92 131.68 759.50 11500.41 0.61 -1.18 -0.25
38 6.16 104.49 174.75 230.61 99.34 131.10 787.87 11946.91 0.61 -1.20 -0.23
39 5.69 108.91 177.07 238.57 99.38 133.90 815.71 12422.21 0.70 -1.12 -0.23
40 4.89 92.27 172.58 214.01 95.49 118.41 800.28 11493.93 0.59 -1.30 -0.11
41 4.36 106.05 170.66 226.89 93.21 123.92 819.37 11613.58 0.73 -1.07 -0.24
42 4.04 71.22 175.45 191.15 95.46 104.00 836.27 12034.21 0.72 -1.03 -0.29
43 4.19 99.22 174.09 223.87 92.29 118.68 839.47 11839.07 0.70 -1.10 -0.23
44 3.52 99.99 178.28 230.15 99.09 127.91 917.93 13671.94 0.61 -1.24 -0.20
45 3.94 105.20 167.72 222.08 92.86 122.95 941.20 13128.18 0.63 -1.24 -0.18
46 4.95 104.41 175.19 231.10 97.90 129.14 863.77 13060.69 0.69 -1.16 -0.21
47 3.96 109.15 165.02 222.57 93.54 126.16 876.81 12339.17 0.49 -1.42 -0.12
48 3.53 108.10 162.29 217.83 107.06 143.70 785.73 11953.75 0.57 -1.49 0.16
49 3.05 103.40 180.17 236.53 105.85 138.95 771.30 12477.60 0.74 -0.99 -0.38
50 2.89 101.00 177.76 230.63 101.20 131.29 793.97 12353.34 0.67 -1.13 -0.29
51 2.82 106.03 175.00 232.64 100.23 133.25 756.56 11671.82 0.79 -0.88 -0.43
52 3.27 104.86 181.25 239.61 104.02 137.51 814.91 13022.51 0.63 -1.22 -0.21
53 3.22 119.72 168.35 237.81 98.16 138.66 592.06 8013.48 0.79 -0.97 -0.25
54 2.64 118.60 156.03 219.36 83.14 116.88 857.47 11059.48 0.91 -0.82 -0.39
55 2.36 106.62 175.29 233.67 100.33 133.75 861.59 13184.17 0.64 -1.19 -0.24
56 2.34 104.67 166.65 220.11 91.07 120.28 712.46 10032.95 0.59 -1.29 -0.20
57 3.48 106.81 166.71 222.43 88.85 118.54 891.96 12262.15 0.51 -1.44 -0.04
60 3.22 108.40 173.27 232.90 93.37 125.51 852.99 12092.58 0.64 -1.17 -0.23
61 3.25 110.63 175.55 238.38 99.61 135.26 841.91 12443.26 0.69 -1.18 -0.17
62 4.56 117.17 164.55 229.95 92.19 128.83 865.94 11986.80 0.68 -1.20 -0.17
63 5.28 100.24 146.80 189.74 79.61 102.90 984.53 12115.43 0.42 -1.55 0.00
64 5.74 109.32 171.90 232.04 98.28 132.66 859.22 12925.17 0.66 -1.17 -0.21
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Abstract

Nocturnal hypoglycaemia has been implicated in the 
sudden deaths o f  young people with diabetes. 
Experimental hypoglycaemia has been found to prolong 
the ventricular repolarisation and to affect the T wave 
morphology. It is postulated that abnormally low blood  
glucose could in certain circumstances, be responsible 
fo r the development o f  a fa ta l cardiac arrhythmia.

We have used automatic extraction o f  both time- 
interval and morphological features, from the 
Electrocardiogram (ECG) to classify ECGs into normal 
and arrhythmic. Classification was implemented by 
artificial neural networks (ANN) and Linear 
Discriminant Analysis (LDA). The ANN gave more 
accurate results. Average training accuracy o f the ANN 
was 85.07% compared with 70.15% on unseen data.

This study may lead towards the demonstration o f  the 
possible relationship between cardiac function and 
abnormally low blood glucose.

1. Introduction & background
The aim of this work is to detect the onset of nocturnal 

hypoglycaemia indirectly through analysis of the 
Electrocardiogram (ECG) of type 1 diabetics. In order to 
achieve this, ECG feature extraction is performed and the 
features produced are classified according to their 
corresponding glucose levels.

Nocturnal hypoglycaemia has been implicated in the 
sudden deaths of diabetics, especially those of an early 
age, a syndrome known as “Dead in Bed” [1], The 
mechanism and cause of such deaths is still not very 
clear. The diabetics were well the night before and were 
found dead in an undisturbed bed the following morning. 
There was no brain damage, a symptom of profound 
hypoglycaemia, hence the deaths were caused by a 
different mechanism. It is suspected that deaths were 
caused by a fatal cardiac arrhythmia. It has been shown 
that experimental hypoglycaemia prolongs the ventricular 
repolarisation (VR) and hence it affects the rythmicity of

the heart [2 ].
The 3-lead ECG 

was used for the 
purposes of this 
research. A typical 
ECG cycle is 
presented in figure
1. The T wave 
corresponds to the 
ventricular 
repolarization of the 
myocardium. During 
hypoglycaemia, the 
counter-regulatory 
responses cause the 
release of adrenaline and a ' fall in potassium, which 
delays repolarisation. These changes may be reflected on 
the ECG by changes in T wave morphology. If these 
changes can be automatically identified it may provide a 
warning of hypoglycaemia or of a potentially pro- 
arrhythmogenic condition.

2. Methods

2.1. Data acquisition
The data used in this study consisted of both the ECG 

traces and their corresponding blood glucose levels. They 
were obtained from eleven type 1 diabetic patients, with 
mean (sd) age 35.9 (14.53), recruited by the Diabetic 
Clinic of the Royal Hallamshire Hospital in Sheffield. 
The ECG data were recorded in the patient’s own 
environment by a custom-built system that captures data 
from the YY’ orthogonal lead [3]. One-minute worth of 
recording was captured every 15 minutes. Blood glucose 
was recorded by an implantable glucose sensor (MiniMed 
CGMS) [4] that measures glucose in the trancutaneous 
tissue every 5 minutes. The above acquisition was carried 
out for two successive nights and produced a data-set of 
paired ECG-glucose readings. This data-set was used for 
offline feature extraction and classification.

+ 4

Interval

QRS
Duration

Fig 1: a typical ECG
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2.2. ECG features
An illustration of the time-interval features that can be 

extracted from an ECG cycle is given in figure 1. The QT 
was considered in this study since it describes the 
duration of VR. Correction of QT for heart rate was 
carried out using Bazett’s formula (QTc = QT/VRR) [5]. 
Besides the time interval features, other features 
describing the amplitude, morphology or area of certain 
waves were considered.

Five ECG features were used in this study namely: 
RR, RTc, T wave amplitude (Tampl), T wave skewness 
(skew) andT  wave kurtosis (kurt). These features were 
extracted using automatic algorithms. The onset and end 
of the T wave were detected using the tangent method
[6,7].

RT is the time interval from the R peak to the end of 
the T wave. RTc is the corrected version using Bazzett’s 
formula. The RT interval was chosen for this study, 
instead of the QT, since R point detection is more robust 
than Q point detection especially in the presence of noise. 
Moreover the RT interval still describes the process of 
ventricular repolarisation satisfactorily. RT has been used 
before [8 ] but to a lesser extend than the QT.

Skewness is used to evaluate the symmetry of the T 
wave shape. Kurtosis is used to quantify the degree of 
peakedness of the T wave shape. Traditionally skewness 
and kurtosis are used to evaluate the symmetry and 
peakedness of statistical distributions but in this study 
they are used for the shape analysis of the T waveform
[9]-

2.3. Neural network classification
Artificial Neural Networks (ANN) are computational 

models inspired by  the functioning o f  the human brain. 
They consist of simple but highly interconnected 
computing devices, each of which imitates the biological 
neuron. The ANN “learns” by adapting connections 
between its computational neurons to match input-output 
combinations.

The neural network architecture used in this study for 
classifying ECG traces was the Multi-Layer Perceptron 
(MLP). Classification was binary, into normal and 
arrhythmic (corresponding to hypoglycaemia) ECG 
records. The ANN mapped normal ECG records as 
negative and arrhythmic ones as positive. A threshold of 
2.5 mmol/lt was used to distinguish euglycaemia from 
hypoglycaemia. ECG traces corresponding to glucose 
equal or below 2.5 mmol/lt were classed as arrhythmic 
(hypoglycaemic) while those corresponding to the 
glucose interval [4 8] mmol/lt were classed as normal 
(euglycaemic). Records belonging to the interval (2.5 4) 
were excluded since they belong in the transition region 
between the normal and the hypoglycaemic class. 
Hyperglycaemic records (defined as: glucose> 8 mmol/lt)

were also excluded.
The 5 ECG features produced were combined in two 

combinations of 4 features namely RR, RTc, Tampl, 
skew and RTc, Tampl, skew, kurt. Apart from the above 
features, a third combination was considered. It consisted 
of a total of 10 ECG features, including the above 5. The 
extra 5 features were: RT, Tduration, corrected Tduration 
(using Bazett’s formula), area under T and ratio of areas 
under T on either side of T peak. These 10 features were 
preprocessed using Principal Component Analysis (PCA) 
to produce an orthogonalised set of features and reduce 
the dimensionality of the input vector (i.e. the number of 
features used). Any feature with less than 2% 
contribution to the variation in the data set was discarded 
by the PCA algorithm. PCA typically reduced the 10 
initial features into 4 or 5 orthogonalised features. Neural 
networks were trained using the above three feature 
combinations and comparisons were made in order to 
identify the best one.

A classifier was trained for each patient considered in 
the study. Alternatively a single classifier could have 
been trained to work on all patients. The second approach 
was not preferred because of inter-patient variability 
problems. Such variability is common when dealing with 
physiological data, making i t  difficult for the classifiers 
to generalise on unseen data, across the population of all 
patients. Some parameters that are typically varying 
across patients are: age, sex, duration o f diabetes, level of 
glycaemic control, fitness level etc. By allowing a 
classifier to focus on the dynamics of a single patient the 
problem o f  inter-patient variability is  overcome and the 
only problem we are faced with is that of intra-patient 
variability.

Producing a classifier for each patient means that each 
classifier only sees data from a single patient. This 
introduces the problem of small data-sets since the data 
has to be partitioned per patient. In order to maximise the 
data available five-fold cross-validation was applied and 
the results were averaged over 5. Data-sets consisted of a 
maximum of 6 6  feature vectors, each vector consisting of 
four (or more for PCA) features. Since the length of the 
data-sets was short, the size (number of neurons) of the 
ANNs was kept small to avoid overfitting. A maximum 
of 5 neurons was used in the single hidden layer. For the 
same reason, the number of input ECG features was 
limited to 4 although more features were available. The 
preprocessing of the features included removal of outliers 
(using the mean ± 2 sd criterion) and normalisation in the 
interval [-1 1 ].

The performance measures used to evaluate the 
performance of the classifiers were: accuracy, hitrate 
(sensitivity), false-alarm-rate, true-negatives-ratio 
(tnratio) and missed-hypos (false-negatives ratio). They 
are defined as:
> Accuracy = tp + tn / (tp+tn+fp+fn) (1)
> Hitrate = tp / (tp +fn) (2)
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> False-alarm-rate = fp / (fp +tn) (3)
> Tnratio = tn / (tn + fp) (4)
> Missed-hypos = fn / (fn + tp) (5)
where tp, tn, fp  and fn stand for: true positives, true 
negatives, false positives and false negatives respectively. 
Positive refers to hypoglycaemia while negative refers to 
euglycaemia.

Hitrate describes the number of arrhythmic traces 
classified correctly while false-alarm-rate describes the 
number of normal traces that were classified as 
arrhythmic (i.e. false alarms). Tnratio describes the 
number of normal traces classified correctly while 
missed-hypos describes the number of arrhythmic traces 
classified as normal, i.e. the number of hypoglycaemic 
events that were missed.

3. Results
Neural network classification results for the 11 

subjects and for features RTc, Tampl, skew, kurt are 
given in table 1. The table contains performance 
measures for both the training and testing datafiles.

Table 1: ANN classification results (RTc Tampl skew kurt)

To allow comparisons, Linear Discriminant Analysis 
(LDA) was also used for classification of the ECG 
records in normal and arrhythmic. LDA works by 
minimising the Mahalanobis distance [10] which is a 
multivariate measure of the separation of a data set from 
a point in  space. The same ECG features that were fed 
into the ANN were used in LDA. Five-fold cross­

validation was applied and the results were averaged over 
5. Partitioning of the data into training and testing was 
exactly the same as for the ANN. The classification 
results for RTc, Tampl, skew, kurt obtained from LDA 
are tabulated in table 2 .

Overall the ANN were superior to the LDA. The 
weakest point of LDA was the percentage of missed- 
hypos. This ratio was high even for the training data-set.

For both the ANN and the LDA, the hitrate was 
greater than the tnratio for both training and test results. 
This means that both classifiers were better in classifying 
hypoglycaemic records correctly than in classifying 
normal records correctly.

Table 2: LDA Classification results (RTc Tampl skew kurt)

For some patients the test figures for false-alarm-rate 
(for both the ANN and the LDA) were extremely high 
while the accuracy and hitrate were also high. This can be 
understood by looking at equations 1-3 in the previous 
section. If in the data-set there exist very few tn 
compared to the number offp  the false-alarm-rate will be 
high. At the same time the accuracy and hitrate can be 
high if tp is much higher than fp  and fn. If the data-sets 
were sufficiently large there would not be such a 
problem.

4. Discussion
Classification of ECG traces was carried out by MLP 

and LDA. Both are supervised classification methods but 
the way they work is not the same. The LDA is a linear
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statistical classifier while the MLP is non-linear. Both 
types of classifiers had reasonable performance with the 
MLP performing better than the LDA. Longer data-sets 
will be necessary for obtaining a clearer picture of the 
differences in performance of the two classifiers.

The three feature combinations used had very similar 
performance when considering the average performance 
metrics. Looking at individual patients, the three feature 
combinations did not have systematic performance for 
the various patients.

For the given data-sets and input features, the 
performance of LDA cannot, because of its nature, be 
improved further. However, in the neural network case 
the performance could be further improved. Many 
different parameters are involved which have not been 
explored fully. By tuning the parameters better 
classification performance could be possible.

5. Conclusion
This paper focused on automatic feature extraction and 

classification of ECG signals for detection of the delayed 
ventricular repolarisation, a cardiac arrhythmia that is 
suspected to be introduced by hypoglycaemia. ECG 
features were used that describe both the duration and 
morphology of the relevant ECG components. 
Classification was carried out using multi-layer 
perceptrons and statistical classifiers (LDA). The two 
types of classifiers performed quite closely to each other, 
with the ANN being more accurate. The ANN can be 
further improved to achieve even better performance, 
because of the nature of its architecture being multi- 
parametric. It is suspected that the optimal neural 
network recipe has not been found yet.

Future work will focus on improving the ANN 
classification and also on experimenting with other 
feature combinations and probably the introduction of 
new features. Non-linear PCA may be used instead of 
PCA in order to, more effectively, reduce the 
dimensionality of the input sp ace. Fuzzy 1 ogic w ill also 
be considered in order to offer transparency to the 
classification process.

Regarding data acquisition, data sets from adolescent 
and prepubescent type 1 diabetic patients will be used in 
the near future. The incidence of sudden death is highest 
in young people or those with a short duration of diabetes 
and these data may show more pronounced changes.
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Abstract
The paper describes investigations into the 
classification of signal-averaged electro­
cardiogram (SAECG) signals, with regard to 
detection of the onset of hypoglycaemia in 
diabetic patients. Firstly, feature extraction is 
carried out to obtain time-domain features, which 
are classified by neural networks. Secondly, the 
SAECG signals are modelled by Autoregressive 
modelling (AR), and the parameters classified 
using Linear Discriminant Analysis. The 
classification performances using both 
approaches are compared. ECG datasets were 
obtained from ongoing related research, and 
consist o f paired ECG-Glucose readings from 
Type-1 diabetic patients. Data was recorded 
overnight in the patient’s own homes. .

1 INTRODUCTION 
The ECG signal describes the electrical activity 
of the heart and is among the most widely used 
physiological signals. In this paper, the study is 
related to detection of hypoglycaemia in Type-1 
diabetes patients. Hypoglycaemia is a condition, 
among mostly diabetic patients, where the blood 
glucose drops to abnormal levels. Nocturnal 
hypoglycaemia has been implicated in the sudden 
deaths of diabetic patients, especially those of an 
early age, a syndrome known as “Dead in Bed” 
[1], The mechanism and cause of such deaths is 
still not very clear. The patients were well the 
night before and were found dead in an 
undisturbed position the following morning. 
There was no brain damage, a symptom of 
hypoglycaemia, suggesting that the deaths were 
caused by a different mechanism. It is suspected 
that deaths were caused by a fatal cardiac 
arrhythmia.

2 DATA
Available datasets were obtained from other 
diabetes related research. They consist of paired 
ECG-Glucose readings from 11 Type-1 diabetic 
patients and have been analysed in the present 
research to investigate any symptomatic 
manifestation o f hypoglycaemia within the ECG. 
Data was recorded overnight in the patient’s own 
homes in order to capture spontaneous 
hypoglycaemic events. One-minute worth o f Y 
lead ECG recording was captured every 15 
minutes. Each SAECG cycle was produced by 
averaging over the 1-minute time period. ECG 
acquisition was carried out using a custom-made 
system (Hypoglycaemia Online Monitoring 
Ensemble) [2] developed in the Royal 
Hallamshire Hospital in Sheffield. The sampling 
rate was 125 Hz and was limited by the 
specification of the palmtop computer used. 
Glucose measurements were acquired using 
MiniMed CGMS [3].

3 METHODS
Two approaches were followed in representing 
the ECG. Individual ECG features, both time 
domain and morphological, that describe certain 
components or processes o f the cardiac function 
were used as the first approach. In the second 
approach, the whole of the relevant segment of 
the ECG was described via modelling by Auto- 
Regressive coefficients. The ECG feature 
extraction results were classified using Artificial 
Neural Networks (ANN) and Linear 
Discriminant Analysis (LDA) while the AR 
modelling results were only fed to the statistical 
classifiers (LDA). Comparison o f the two ECG 
representation methods and also the two 
classification approaches are presented.

mailto:nyongesa@mopipi.ub.bw


3.1 ECG Feature Extraction
Five ECG features were used in this study 
namely: RR, RTc, T wave amplitude (Tampl), T 
wave skewness (skew) and T wave kurtosis 
(kurt). These features were extracted using 
automatic algorithms. The onset and end of the 
T-wave were detected using the tangent method 
[4]. RT is the time interval from the R peak to the 
end of the T wave. RTc is the corrected version 
using Bazzett’s formula [5]. The RT interval was 
chosen for this study, instead o f the QT, since R 
point detection is more robust than Q point 
detection especially in the presence of noise. 
Moreover the RT interval still describes the 
process of ventricular repolarisation 
satisfactorily. RT has been used before but to a 
lesser extend than the QT.
Skewness is used to evaluate the symmetry o f the 
T wave shape. Kurtosis is used to quantify the 
degree o f peakedness of the T wave shape. 
Traditionally skewness and kurtosis are used to 
evaluate the symmetry and peakedness of 
statistical distributions but in this study they are 
used for the shape analysis of the T waveform.

3.2 . ECG Modelling by AR Coefficients
This approach has been used before for detection 
o f certain cardiac arrhythmias. In this study it 
was used for the detection of the delayed 
ventricular repolarisation often exhibited during 
hypoglycaemia.
The general form of an nth order AR model is:

y(k + 1) = a> • y{k -  i) + e(k + 1) + offset (1)
/=o

where e(k) is the noise parameter and “offset” 
denotes an offset parameter.
The ECG section to the right of the R peak and 
until the end of the trace is used because this is 
the section affected by hypoglycaemia.
The Least Squares (LS) algorithm was used to 
find the estimates o f the optimal model 
parameters. It works by minimising the sum of 
the squares of the model errors and is given by:

B = ( 0 7’0 ) ' 1O 7Y  (2)

Vector B contains the model parameters (a; and 
offset) and vector Y contains the data-points 
describing the ECG trace.

Figure 1 illustrates a SAECG trace together with 
its modelled version using a 2rd order AR model. 
The whole ECG cycle is plotted (blue) but only 
the post-R peak section is modelled (dotted).

actual (dotted black) & predicted (solid blue) ECG trace
2000
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Figure 1: actual (solid) vs modelled (dotted) ECG

The actual ECG modelling was carried out using 
a 3rd order AR model. The correlation coefficient 
between actual and modelled ECG trace was for 
all but one patient greater than 91% with an 
average of 95% across patients. The model order 
can be increased so that each ECG trace is more 
closely modelled but this will produce extra 
model parameters that the classifiers have to 
handle and classify. Emphasis is placed on 
making the model simple and hence keeping the 
classification task simple.

3.3 Classification
Data from individual patients were classified, one 
at a time, in order to avoid inter-patient 
variability problems. Such variability is common 
when dealing with physiological data, making it 
difficult for the classifiers to generalise on unseen 
data, across the population o f all patients. Some 
parameters that are typically varying across 
patients are: age, sex, duration o f diabetes, level 
o f glycaemic control, fitness level etc. By 
allowing a classifier to focus on the dynamics of 
a single patient the problem of inter-patient 
variability is overcome and the only problem we 
are faced with is that o f intra-patient variability. 
Partitioning data per patient means that each 
classifier only sees data from a single patient 
which introduces the problem o f small data-sets. 
In order to maximise the data available five-fold 
cross-validation was applied and the results were 
averaged over 5.

2



Classification was binary, into normal and 
arrhythmic (corresponding to hypoglycaemia) 
ECG records. The classifiers mapped normal 
ECG records as negative and arrhythmic ones as 
positive. A threshold o f 2.5 mmol/lt was used to 
distinguish euglycaemia (normal) from 
hypoglycaemia. ECG traces corresponding to 
glucose equal or below 2.5 mmol/lt were classed 
as arrhythmic (hypoglycaemic) while those 
corresponding to the glucose interval [4 ... 8 ] 
mmol/lt were classed as euglycaemic. Records 
belonging to the interval [2.5 ... 3.5] were 
excluded since they belong in the transition 
region between the normal and the 
hypoglycaemic class. Hyperglycaemic records 
(defined as: glucose > 8mmol/lt) were also 
excluded.
The 5 ECG features produced were combined in 
two combinations of 4 features namely "RR, 
RTc, Tampl, skew" and "RTc, Tampl, skew, 
kurt". Neural networks were trained using both 
feature combinations and comparisons were 
made in order to identify the best one. The neural 
network architecture used in this study for 
classifying ECG traces was the Multi-Layer 
Perceptron (MLP).
Data-sets consisted o f a maximum of 6 6  feature 
vectors, each vector consisting o f four features. 
Since the length of the data-sets was short, the 
size (number of neurons) of the ANNs was kept 
small to avoid overfitting. A maximum of 5 
neurons was used in the single hidden layer. For 
the same reason, the number of input ECG 
features was limited to 4 although more features 
were available. The preprocessing of the features 
included removal o f outliers (using the mean ±  
2 sd criterion) and normalisation in the interval [- 
1 1].
The performance measures used to evaluate the 
performance of the classifiers were: accuracy, 
hitrate (sensitivity), false-alarm-rate, true- 
negatives-ratio (tnratio) and missed-hypos (false- 
negatives ratio). They are defined as:
■ Accuracy = tp + tn / (tp+tn+fp+fn) (1)
■ Hitrate = tp / (tp +fn) (2)
■ False-alarm-rate = fp / (fp +tn) (3)
■ Tnratio = tn / (tn + fp) (4)
■ Missed-hypos = fn / (fn + tp) (5) 
where tp, tn, fp and fn stand for: true positives, 
true negatives, false positives and false negatives 
respectively. Positive refers to hypoglycaemia 
while negative refers to euglycaemia.

Hitrate describes the number of arrhythmic traces 
classified correctly while false-alarm-rate 
describes the number of normal traces that were 
classified as arrhythmic (i.e. false alarms). 
Tnratio describes the number o f normal traces 
classified correctly while missed-hypos describes 
the number o f arrhythmic traces classified as 
normal, i.e. the number o f hypoglycaemic events 
that were missed.
LDA was used tp classify the two ECG feature 
combinations and also the coefficients produced 
by AR modelling. LDA works by minimising the 
Mahalanobis distance, which is a multivariate 
measure o f the separation o f a data set from a 
point in space.

4 RESULTS -
Results from 11 Type-1 diabetic patients along 
with summary statistics are presented in the 
following tables.
Table 1: A NN  classification results (RTc Tampl skew 
kurt)________________________________________________
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202 89.82 100.00 3.53 89.26 0.00 71.52 73.85 24.29 74.29 24.75

203 93.78 98.46 10.90 89.10 1.54 87.50 90.46 26.67 73.33 9.54

204 77.08 100.00 0.00 77.22 0.00 58.33 62.00 37.00 58.67 34.00

208 88.30 94.86 3.50 90.33 4.80 66.00 71.00 29.00 66.00 26.67

212 83.50 100.00 0.00 79.00 0.00 77.66 85.45 16.67 83.33 12.73

216 79.15 93.89 29.26 70.07 5.88 76.82 85.61 57.00 39.33 14.13

220 83.89 97.78 0.00 83.89 2.22 65.19 70.87 16.67 50.00 27.14

223A 82.19 96.19 0.95 79.76 3.81 69.11 84.00 21.90 68.33 13.33

227 93.17 100.00 4.86 89.33 0.00 62.00 65.86 27.00 68.67 30.17

229 78.21 81.88 6.41 78.21 17.18 64.19 60.00 29.69 65.14 38.33

244 86.67 100.00 0.00 86.67 0.00 73.28 80.60 28.00 58.00 18.60

mean 85.07 96.64 5.40 82.99 3.22 70.15 75.43 29.72 64.10 22.67

std 5.79 5.38 8.63 6.59 5.10 8.36 10.41 10.95 12.17 9.58

min 77.08 81.88 0.00 70.07 0.00 58.33 60.00 16.67 39.33 9.54

max 93.78 100.00 29.26 90.33 17.18 87.50 90.46 57.00 83.33 38.33

Results are tabulated only for the "RTc, Tampl, 
skew, kurt" feature combination. The "RR RTc 
Tampl skew" feature combination gave slightly 
inferior results which are not included. Table 1 
presents the ANN classification results for the 
"RTc, Tampl, skew, kurt" feature combination 
while Table 2 contains the LDA classification for
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Figure 2: Classification accuracies for all three approaches

the AR coefficients. ANN studies for this 
approach are on-going.

5 DISCUSSION
The ANN classification results were superior to 
the LDA results, which is expected since ANNs 
are non-linear and more powerful classifiers. 
Comparing the LDA classification results for the 
individual ECG features and the AR coefficients 
it is observed that the AR modelling yielded 
better results. It is anticipated that classifying the 
AR coefficients using a neural classifier will 
enhance even more the classification 
performance. The results suggest that AR 
modelling is a better ECG representation 
technique compared to the morphological ECG 
features. A summary o f the training (known data) 
and test (unseen data) accuracies are presented in 
the form of a column graph in figure 2 .

6  CONCLUSION
This paper focused on the investigation of two 
approaches of ECG trace representation and also 
two ways of classification o f represented ECG 
traces. Previous work had focused mainly on 
using individual ECG features for detection of 
hypoglycaemia-induced arrhythmias. Recent 
work is showing that the use o f AutoRegressive 
coefficients to represent segments o f ECG cycles 
is a promising approach that has the advantage of 
describing the whole segment o f interest as 
opposed to extracting features from it. Future 
work will involve the use o f more sophisticated 
classifiers for the classification of AR results.
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202 84.52 82.06 13.01 86.99 17.94 76.52 93.33 64.76 35.24 6.67

203 99.17 100.0 1.67 98.33 0.00 88.58 91.23 21.43 78.57 8.77

204 97.78 95.56 0.00 100.0 4.44 66.85 56.67 24.76 75.24 43.33

208 93.98 91.17 3.20 96.80 8.83 85.03 87.50 18.67 81.33 12.50

216 78.01 89.26 33.24 66.76 10.74 71.39 75.20 46.67 53.33 24.80

220 79.44 100.0 41.11 58.89 0.00 89.99 91.70 70.00 30.00 8.30

223A 83.67 86.57 19.24 80.76 13.43 65.20 86.00 64.29 35.71 14.00

227 82.26 82.71 18.19 81.81 17.29 59.75 64.95 55.33 44.67 35.05

229 82.82 73.46 7.82 92.18 26.54 52.86 31.67 44.43 55.57 68.33

244 93.19 88.61 2.22 97.78 11.39 52.77 47.06 10.67 89.33 52.94
mean 87.49 88.94 13.97 86.03 11.06 70.89 72.53 42.10 57.90 27.47
std 7.77 8.33 14.11 14.11 8.33 13.89 21.58 21.73 21.73 21.58
min 78.01 73.46 0.00 58.89 0.00 52.77 31.67 10.67 30.00 6.67
max

99.17 100.0 41.11 100.0 26.54 89.99 93.33 70.00 89.33 68.33
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DETECTION OF ABNORMAL ELECTROCARDIOGRAM TRACES, RELATED TO 
HYPOGLYCAEMIA, USING A KNOWLEDGE-BASED APPROACH
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Key words to describe the work: Electrocardiogram Signal (ECG), ECG Feature Extraction, Diabetes, Hypoglycaemia, 
Cardiac Arrhythmia, Dead in Bed Syndrome, Knowledge-Based Monitoring System, Expert System.

Key Results: Successful monitoring on offline data from diabetic patients corresponding to sensitivity and specificity of 
100% and 91.30% respectively. Production of a rule-based system to represent knowledge on the relationship between 
spontaneous nocturnal hypoglycaemia and cardiac arrhythmia.

How does the work advance the state-of-the-art?: By developing a novel automatic hypoglycaemia monitoring method 
and providing a better understanding of the relationship between nocturnal hypoglycaemia and cardiac arrhythmia. By 
verifying and strengthening the hypothesis according to which, hypoglycaemia can be manifested on the ECG signal.

Motivation (problems addressed): Mechanism of Dead in Bed syndrome. Demonstration of relationship between 
spontaneous hypoglycaemia and cardiac function. Production of a non-invasive prototype monitoring system for 
hypoglycaemia detection and nocturnal death prevention in diabetic patients.

1 Introduction
Hypoglycaemia is the condition, experienced mostly 
by diabetic patients, according to which there is 
abnormally low glucose in the blood stream. Severe 
nocturnal hypoglycaemia has been implicated in the 
sudden death o f diabetic patients, especially those o f 
an early age, commonly known as “Dead in Bed 
Syndrome” [1]. The mechanism and cause o f such 
deaths is still not very clear. It is suspected that 
deaths were caused by a fatal cardiac arrhythmia. It 
has been shown that experimental hypoglycaemia 
prolongs the ventricular repolarisation and hence 
affects the rythmicity o f the heart [2 ].
The aim of this research is to detect abnormal 
Electrocardiogram (ECG) cycles occurring during 
hypoglycaemia and through this, to detect the onset 
o f nocturnal hypoglycaemia indirectly through 
analysis o f  the diabetic’s ECG.

2 Methods
2.1 D ata  Acquisition
The datasets used consisted o f paired ECG-glucose 
readings obtained from Type 1 diabetic patients. 
Data was recorded overnight at the patient’s own 
home. One-minute o f ECG recording was captured 
every 15 minutes. Data from 19 patients, recorded 
over 32 nights were used to test the system.

2.2 K nowledge-Based M onitoring System
We have developed a prototype system to interpret 
the ECG signals. The system is designed to raise

alarms if  abnormal cardiac events, related to 
hypoglycaemia are detected. The system comprises 
an ECG pre-processor, a feature extractor and an 
Expert System (ES). The knowledge-base for the ES 
is a set o f rules generated from observations o f ECG 
changes under hypoglycaemia, within guidelines 
provided by clinical experts. The monitoring system 
is depicted in Figure 1..

I ECG4a ? ECG PRE­
PROCESSING

r v i o n i t o r i n g " \
SYSTEM

FEATURE
EXTRACTOR

s N

RULE BASE

V J

INFERENCE
ENGINE

Normal ECG
(no alert)

OUTPUT

Abnormal ECG 
(alert given)

Figure 1: ECG Monitoring System

Monitoring is carried out on offline ECG data 
simulating an online monitoring scenario. At each 
sampling instant the ECG is fed to the pre­
processing stage where a number o f  filtering steps 
are carried out. Next, the filtered ECG is passed to 
the feature extraction stage where a number o f ECG 
features that describe the morphology and duration 
o f  the components o f the current ECG cycle are 
extracted. The ECG features are then fed to the ES 
that infers, using the rule-base, whether they
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correspond to a normal or abnormal ECG cycle. The 
system is using ECG features from the current, as 
well as previous ECG cycles to make a decision on 
whether to raise an alarm or not.

2.3 Assessment o f Performance
Two definitions o f  True-Positives (TP) were used to
assess the performance o f the system:
i. Each hypoglycaemic night monitored, was

assessed as TP if  hypoglycaemia was detected at 
the exact time it occurred during the night.

ii. Each hypoglycaemic night monitored, was
assessed as TP if  hypoglycaemia was detected 
within an hour from the time it occurred during 
the night.

Each hypoglycaemic night monitored was assessed 
as False-Negative (FN) if  hypoglycaemia was not 
detected, that is no alarm raised. Each euglycaemic 
(i.e. normal) night monitored correctly was a True- 
Negative (TN) and each euglycaemic night where a 
false-alarm was raised was a False-Positive (FP). 
After performing monitoring on all nights the 
sensitivity and specificity, over all nights, were 
calculated by the formulas:
■ Sensitivity = TP / (TP + FN) (eqn 1)
■ Specificity = T N /(T N  + FP) (eqn 2) 
Using the two different definitions for TP yields two 
pairs o f  results for sensitivity and specificity.

3 Results
Out o f all nights, the system raised only two false- 
alarms, for two different nights, which corresponds 
to a specificity o f 91.3%. The sensitivity was 
55.56% if  alarms were classed as acceptable, when 
they were produced at the exact time corresponding 
to the onset o f hypoglycaemia (i.e. 1st TP definition). 
However, allowing alarms to deviate by up to an 
hour, either early or late, from the hypoglycaemic 
onset (i.e. 2nd TP definition) increased the sensitivity 
to 1 0 0 %.

4 Discussion
The use o f a knowledge-based monitoring system 
for detection o f abnormal ECG traces related to 
hypoglycaemia proved to be a very promising 
approach. It contributes in strengthening the 
assumption according to which, the occurrence o f 
hypoglycaemia is manifested on the ECG. In all 
hypoglycaemic nights, the system raised accurate 
alerts within 1 hour o f the onset o f  hypoglycaemia. 
Regarding th e  euglycaemic nights, there w ere only

two nights where a false-alarm was produced by the 
system.
In previous approaches we had employed Multi- 
Layer Perceptrons (MLP) and Linear Discriminant 
Analysis [3, 4] to perform ECG trace classification 
related to hypoglycaemia. Using a knowledge-based 
approach introduced a few advantages. The 
incorporation o f human-expert knowledge allowed 
the system to focus on the significant ECG changes 
and ignore the unrelated ones. MLPs were confused 
by unrelated ECG changes and overcoming this 
would require very long datasets that were not 
available. Regardless o f the above, the ES made 
better use o f the dataset since all the data could be 
used to assess performance. In the case o f  MLP, a 
portion o f  t he d ata h ad t o b e s et a side f  or training 
and only the remaining data could be used for 
assessment o f performance.
The ES being transparent also allows the 
investigation o f its internal structure by clinical 
experts. On the contrary a trained MLP, being a 
black-box model does not allow easy investigation 
o f its internal structure. A  weakness o f ES as 
compared to MLP is that it requires expert 
knowledge and this knowledge must be successfully 
coded.

5 Conclusion
This study focused on the design o f an Expert 
System for overnight monitoring o f diabetic patients 
and detection o f abnormal ECG traces apparent 
under hypoglycaemia. Satisfactory performance o f 
the system w as achieved. Future work will involve 
further tuning while acquisition o f  more data for 
further investigation will be essential for longer-term 
continuation o f the research.
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