Sheffield
Hallam
University

Analysis and interpretation of electrocardiogram signals for the detection of
hypoglycaemia.

ALEXAKIS, Charilaos.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20615/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20615/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.


http://shura.shu.ac.uk/information.html

shhirsd WIMLmxusrit
m m scm s
OOtLEQWE C£SC6*TC«!8PUS

as-rrsiDsiosBP

REFERENCE



ProQuest Number: 10701262

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10701262

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



Analysis and Interpretation of Electrocardiogram

Signals for the Detection of Hypoglycaemia

Charilaos Alexakis

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University

for the Degree of Doctor of Philosophy




Abstract

Diabetes is a complication of metabolism where the glucose control system of the
human body is impaired and cannot preserve the blood glucose levels in the normal
range. This research investigated the relationship between abnormally low glucose
levels (hypoglycaemia) and cardiac function in human subjects with Type 1 diabetes.
The aim of the research was to detect the onset of spontaneous nocturnal hypoglycaemia
indirectly through analysis of the subject's Electrocardiogram (ECG). The research
hypothesis follows from previous studies, that suggested changes in ECG morphology,
in particular prolongation of the QT interval and flattening of the T-wave, during
hypoglycaemia.

The research methodology involved ECG feature extraction and classification of

extracted features into euglycaemic (normal glucose levels) and hypoglycaemic

-categories. A number of time-domain ECG features were evaluated and a few ECG

annotation algorithms were investigated for detection of onsets, peaks and offsets of the

ECG components. Autoregressive (AR) modelling was also employed as a means of
describing and characterising post-QRS ECG segments. ECG segment classification

was carried out using Multi-layer Perceptron (MLP) neural networks. Statistical

classifiers were also employed namely, Linear Discriminant Analysis (LDA) and the k-

Nearest Neighbour (kNN).

This research proposed a new methodology for detection of spontaneous nocturnal
hypoglycaemia by combining time-domain characterisation and classification of the
post-QRS ECG segment. Two novel ECG features were introduced to characterise T-
wave morphology. MLPs achieved better classification of ECG feature vectors
compared to LDA. Also ECG representation by AR coefficients was marginally
“superior to individual ECG features, according to classification performance by LDA.
Finally a Knowledge-Based System (KBS) was d esigned for ECG monitoring during
the night. It was developed and tested on o ffline data in a m anner that simulated an
online monitoring scenario. The system was able to detect ECG abnormalities related to
spontaneous nocturnal hypoglycaemia and to raise an alarm if necessary. In its optimal
~ configuration, the system correctly monitored 30 out of the 32 recorded nights
(originating from 19 patients) while there were 2 false alarms. This performance
corresponds to accuracy, sensitivity and specificity of 93.75%, 100% and 91.30%
respectively.

The main contribution to knowledge from this research was successful detection of the
onset of spontaneous nocturnal hypoglycaemia indirectly, using solely ECG
information. This result supports the hypothesis stating that spontaneous hypoglycaemia
affects the cardiac function and is manifested on the ECG. A detailed analysis of the
ECG signal for the detection of hypoglycaemia was carried out in the thesis. ECG
features were extracted and assessed as predictors of the clinical condition. A number of
approaches for ECG representation and classification (MLP, kNN, LDA) were
examined and compared. Moreover, a KBS capable of achieving satisfactory monitoring
performance on offline data from diabetic patients was designed. It was found that ECG
changes in response to hypoglycaemia were short-time transients and incorporation of
temporal information in the classification system caused significant improvement in
performance. Successful continuation of this work may lead to a hypoglycaemia-
detection system for the bedside.
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Chapter 1

Introduction

1.0 Introduction

The aim of this thesis was to investigate the relationship between hypoglycaemia and
cardiac function and to attempt detection of the onset of nocturnal hypoglycaemia, in
Type 1 diabetic patients, indirectly through analysis of their Electrocardiogram (ECG).
The research focused on the development and use of feature extracﬁon and signal
classification techniques in order to analyse the ECG signals. This chapter presents the
biomedical background to the study, the motivation behind this research and the
detailed objectives set. It also presents the goals reached and outlines the structure of the

thesis.

1.1 Biomedical Background

This section provides theoretical background on the medical condition of diabetes and
the complication of hypoglycaemia. It also describes the architecture of the human heart
and the processes of depolarisation and repolarisation of cardiac cells. It includes

information about electrocardiography and the electrocardio'grain and discusses the |

relationship between hypoglycaemia and cardiac function.

1.1.1 Diabetes and Hypoglycaemia

Diabetes is derived from the Greek word “diabainein” (Swofaivelv) meaning “to pass”
because in a specific form of diabetes (diabetes mellitus) glucose is passed through the
body and out with the urine. Diabetes is a complication of metabolism where the
glucose control system is impaired and is not able to maintain the blood glucose in the

normal physiological range.

Insulin is the hormone that serves to lower glucose levels and is produced by the

pancreas. The complication of diabetes and the root cause of most of the damage it does
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is related to excess glucose in the blood. This happens because the cells of the pancreas
do not produce sufficient amounts of insulin. Because of the insufficient amount of
insulin the glucose cannot be controlled effectively. The only treatment to the absence

of insulin is to replace it. This is done by injection or by infusion through an insulin

pump.

Hypoglycaemia is the opposite complication i.e. not enough sugar in the blood,.which is
| a dangerous situation since glucose is needed to maintain brain function. Severe
hypoglycaemia can lead to coma and even death. There is strong circumstantial
evidence that hypoglycaemia can cause overnight death in young adults and children, a
syndrome known as “Dead in Bed” [Campbell 1991]. The mechanism of such deaths

remains unclear but may be cardiac related.

The form of diabetes in which the urine contains glucose matter is called diabetes

mellitus. There are two different types of diabetes mellitus:

e Type 1 diabetes or insulin-dependent diabetesis a severe, acute form o f diabetes
caused by lack of production of insulin. The disease, which typically appears in
childhood or adolescence, is characterized by increased sugar levels in the blood and
urine, excessive thirst, frequent urination, acidosis and wasting,.

e Type 2 diabetes or non-insulin-dependent diabetes is a chronic form of diabetes that
typically appears in late adulthood and is exacerbated b y'obesity and an inactive
lifestyle. In this type of diabetes the patient develops insulin resistance and is not
able to effectively use the insulin produced by the pancreas. At onset this disease
often has no symptoms, is usually diagnosed by tests that indicate glucose

intolerance, and is treated with changes in diet and an exercise regimen.

Diabetic patients need to monitor their glucose levels and act appropriately to keep them
in the normal range, which lies between 4 and 8 mmol/lt approximately. Patients have
the choice to keep their glucose levels as close as possible to this range or to allow their
glucose to vary in a wider range than the normal. In order to perform tight glycaemic
control, they need to monitor their glucose levels in the blood at regular intervals and to
inject regular small quantities of insulin before meals. In Type 2 diabetes they can diet

‘or use oral medication.
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Quality of Glucose Control. It has been shown [DCCT 1991] that tight glycaemic
control in patients with insulin-dependent diabetes mellitus has the advantage of
reducing the frequency and progression of serious long term complications to the
patient, compared to loose control; the drawback being that hypoglycaemia, a short term
complication, is more frequent [ Davis 1 998]. T he p atients are therefore faced by the
dilemma of whether (i) to set higher glucose targets and achieve reduced risk of
hypoglycaemia but increase the risk of long term diabetic complications ’or (ii) to set
lower glucose targets and reduce the risk of long term complications but increase the

risk of h@oglycaemia.

Because many patients nowadays try to achieve tight control, there is a greater need for
a continuous glucose-monitoring device or a hypoglycaemia-detection device. Such a
device may also help diabetic patients who fail to achieve tight control for
psychological reasons such as the fear of hypoglycaemic episodes. Patients often allow

their glucose to run high because of fear of the other extreme, that of hypoglycaemia.

Clinical studies of hypoglycaemia. Spontaneous hypoglycaemia occurs naturally when
the glucose of the diabetic patient drops to abnormally low levels and is difficult to
study clinically because it is relatively infrequent. However, some studies have utilised
experimental hypoglycaemia which is caused artificially by infusing controlled amounts
of insulin to a non-diabetic subject and “clamping”‘ the blood glucose at an abnormally
low value (e.g. 2.5 mmol/lt) for a short peridd of time. Experim;antal hypoglycaemia has
been found té introduce more prominent changes on the ECG [Marques 1997]
compared to spontaneous hypoglycaemia. The spontaneous hypoglycaemic events used -
in this research were nocturnal and the subject was asleep whereas in experimental

studies the subject is normally kept awake, in a supine and relaxed position.

1.1.2 Architecture of the heart

The cardiovascular system is responsible for the rapid transport of oxygen, water and
nutrients around the body and the rapid washout of metabolic waste products like
carbon dioxide. It also plays a vital role in temperature regulation, by delivering heat
from the core ofthe body to the skin. It consists o f: a pump (the heart), a series of
distﬁbuting and collecting tubes and an extensive system of thin vessels that permit

rapid exchange between the tissues and the vascular channels.
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The heart organ is the muscular pump of the cardiovascular system that drives the blood
around the body. The human heart consists of two muscular pumps in series, the right
and left ventricles (Figure 1.1). Each pump is filled from a reservoir, the right or left
atrium. The right ventricle propels blood through the lungs for exchange bf oxygen and
carbon dioxide (pulmonary circulation) and the left ventricle simultaneously propels
blood to all the other tissues of the body (systemic circulation). Unidirectional flow
through the heart is achieved by the appropriate arrangement of effective flap valves.
Although the cardiac output is intermittent, continuous flow to the periphery occurs by
distension of the aorta and its branches during ventricular contraction (systole) and
elastic recoil of the walls of the large arteries with forward propulsion of the blood

during ventricular relaxation (diastole).

Sinus node-

Semipreferential
internodal pathwa

ys

AV node

Bundle of His ' \ YT
Right bundie : - ) eft-bundle
branch ! . branch _ -

Intraseptal barrier

Lower right
septal mass

Figure 1.1: The left and right atria (LA, RA) andventricles (LV, RV) of the heart [McLachlan 1981]

The outstanding feature of the heart’s function is its ability to initiate and maintain a
thythmical beat. As with all muscle, the heart contracts in response to an electrical
impulse which spreads throughout its surface, reaching the contractile muscle cells. It is
the spread of this impulse which the electrocardiogram records, not the muscular

contraction which follows [McLachlan 1981].

Depolarisation and repolarisation of myocardial cells

The depolarisation and repolarisation of the heart muscle will be described in a cellular
level. The two terms will be defined for an isolated cell of the cardiac muscle. Consider
the resting muscle cell being in a state of electrical equilibrium with positive charges on
the outer surface of its membrane and negative charges on the inner surface. In this

resting state the cell is said to be polarised and remains stable until it is stimulated.

4
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In response to a stimulus the cardiac cell begins to depolarise. The charges on the outer
surface of the cell become negative and those on the inner surface become positive. This
change in polarity does not happen instantly for the whole cell surface. It starts from the
point where the stimulus was received and propagates along the cell as seen in Figure
1.2. The advancing boundary of change is called the activation front. Once the electrical
charge has changed polarity, throughout the cell, then depolarisation has finished and

the cell is said to be depolarised.

+(T T T T T T T T T ) .
+1r ‘ 1]+
.§.

+ 4+
Polarized cell

i _"'.—"'"—'“'| + ;.";MJ.m
¢ — e L E
- = = N+ o+ 4 o+ 4+ &

Stimulus Activation front i
Stimulus Depotarized cell

Figure 1.2: Nlustration of the depolarisation process [McLachlan 1981]

The inverse process is called repolarisation and metabolic energy is required for it to
take place. Once the cell is completely depolarised it must be returned to its polarised
state in preparation for the next depolarising stimulus. In the case of repolarisation the
advancing boundary of change is called repolarisation front. The repolarisation of the
ventricles is the cardiac process of interest in this thesis. As will be mentioned in more
detail later in the chapter, hypoglycaemia has been observed to cause a delay in
ventricular repolarisation which has been associated with the risk of cardiac

arrthythmias.

1.1.3 Electrocardiography and the electrocardi‘ogram

Electrocardiography is used as a method for studying the action of the heart muscle. It
can be defined as the procedure of making graphical records of the variations in
electrical potential caused by electrical activity of the heart muscle and detected at the

body surface.
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The ECG lies among the most widely used signals in biomedical practice. It describes
the electrical activity of the heart. The standard ECG consists of 12 leads but the 3-lead
ECG was used instead, as it was sufficient for this work (Section 3.2.1). The latter
consists of three leads in an anatomically orthogonal configuration which are referred to

as XYZ leads, similar to the coordinate axes used in geometry [Berbari 2000].

The utilisation of only three leads was probably due to the fact that technology used by
early invéstigators was limited in the number of low-noise amplifiers available and the
relatively slow speed of computers [Berbari 2000]. Reducing the number of leads from
12 to the orthogonal (XYZ) sét of three leads seemed to be a reasonable compromise
from both computing and physiological standpoints [Berbari 2000]. The anatomical

locations for the XYZ leads are presented in Figure 1.3.

Figure 1.3: Anatomical locations for the XYZ leads [AMA 1988]

The figure depicts an idealised male torso with the 6 electrodes (X+, X-, Y+, Y—,_ Z+,
Z-) forming the orthogonal lead set, plus a reference electrode. It is obvious from the
graph that the three electrode pairs form three axes. The Z+ electrode is located at the
same level as the X lead and is placed on the anterior chest. The Z- electrode is placed

on the reflection of the Z+ electrode on the patient's back.



Morphology of the electrqcardiogram

A typical ECG cycle consists of three waves namely the P wave, the QRS complex and
the T wave as shown in Figure 1.4. A U wave following the T wave is sometimes
present on ECG cycles. The R peak is the peak with the highest amplitude in an ECG

cycle.

« >4 ».
i PR QT :
{Interval | p  Interval :
T

. ST |
: ‘Segment
QRS

Duration

Figure 1.4: A typical ECG cycle [Gholam-Hosseini 1998]

The time duration between two successive R peaks denotes the instantaneous heart rate.
The P wave corresponds to the atrial depolarisation, the QRS complex to the ventricular
depolarisation and the T  wave is due to the ventricular repolarisation of the
m};ocardium. Figure 1.5 shows the: mapping of each wave to the corresponding cardiac

event and the corresponding regions in the heart.

A number of key time-intervals can also be identified in Figure 1.4. The time-intervals
related to this research are: the QRS duration, the ST segment and most importantly the
QT interval. The latter is very widely used in the biomedical community and is defined

as the interval from the Q point to the end of the T wave.



Figure 1.5: Relationships between the cardiac events and the waves of the ECG cycle [McLachlan 1981]

1.1.4 Effect of potassium and adrenaline on the cardiac function

Cardiac function is affected by both variations in potassium and adrenaline, beyond the
normal range. The fundamental imbortance of potassium ions in the cellular mechanism
of muscle contraction is that variations in their concentration beyond the normal range
in the intracellular fluid may be expected to influence the clinical ECG [McLachlan
1981]. When cellular potassium levels are depleted, ST segment depression takes place
and also a prominent U wave blended with a flat T wave gives a false impression of a
prolonged QT interval [McLachlan 1981]. Under hypoglycaemia serum potassium often
falls to low levels due to a combination of high insulin concentrations and the effects of

sympathoadrenal activation [Harris 2000].

Adrenaline causes lengthening of the QTc interval and a decrease in plasma potassium
(K", when infused into healthy subjects at concentrations comparable to those seen
during moderate hypoglycaemia [Cryer 1980]. Although adre'naline causes a drop in
plasma potassium, Lee et al [Lee 2003] have shown that disturbed cardiac repolarisation
as a result of increases in circulating adrenaline, released due to hypoglycaemia, occurs

independently of extracellular potassium.
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1.1.5 Relationship between hypoglyceemia and cardiac function

During hypoglycaemia, the counter-regulatory responses of the human body cause a fall
in potassium and the release of adrenaline, which delays the Ventricular Repolarisation
process (VR) in the heart. These changes may be reflected on the ECG by changes in T
wave morphology. A hypothesis has been formulated stating that there is a relationship
between abnormally low glucose levels and cardiac function. In more detail,
hypoglycaemia can cause abnormal cardiac repolarisation and an attendant risk of

cardiac arrhythmia [Robinson 2004].

This hypothesis is based on pfeliminary evidence from a number of studies [Heinemann
1995, Marques 1997]. Marques et al [Marques 1997] have shown that experimental
hypoglycaemia prolongs the ventricular repolarisation of the heart, causing the
development of cardiac arrhythmias. Although the hypothesis is supported by
experimental results, sufficient evidence is necessary to demonstrate the hypothesis for
spontaneous events of nocturnal hypoglycaemia. Early studies demonstrate agreement
with the hypothesis for spontaneous nocturnal events. Robinson et al [Robinson 2004]
have recently shown that the QTc interval lengthens significantly during spontaﬁeous
nocturnal h ypoglycaemia but the increase is generally 1 ess than that o bserved d uring

experimental episodes.

Since hypoglycaemia is believed to affect the cardiac function, then its onset is expected
to be reflected on the ECG. Hypoglycaemia can affe_ct the ST eegment and the T wave
i.e. the ventricular repolarisation of the heart. More specifically the T wave becomes
flattened and prolonged under hypoglycaemia and often another wave, the U wave, is
present. Figure 1.6 illustrates potential changes on the ECG due to dropping glucose.
The illustratien in the figure originates from real data. Each pair of graphs corresponds
to a different time instant and the graphs are successive in time from top left to bottom
right. At each time instant the left-hand-side graph demonstrates a truncated T wave and
the right-hand-side graph depicts the glucose level up to the current time instant. The
portion of the ECG cycle prior to the T wave is not shown. It is obvious from the graph
that dropping glucose to abnormal levels (below 3 mmol/lt approximately)- causes
significant changes on the T wave. The T wave amplitude drops significantly while the
symmetry of the same wave changes slightly. Moreover the temporal location of the T
peak is slightly moved to the right. The end of the T wave is also shifted slighﬂy to the

right and its e xact p osition b ecomes m ore ambiguous ¢ ompared to the initial n ormal
9
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trace. The shifting of the end of the T wave to the right also causes a proportional

increase in QT interval since its end point is defined by the end of the T wave.
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Figure 1.6: Hllustration of chqnges in T wave with dropping glucose [URL 1].

Since hypoglycaemia may be reflected on the ECG and may introduce cardiac
arrhythmias, the investigation of this biomedical signal is proposed as an indirect means
of detection of this medical condition. If the changes in the ECG can be automatically
identified, this may provide a warning of hypoglycaemia o'r of a potentially pro-

arrhythmogenic condition.

It is emphasised that the manifestation of hypoglycaemia on the ECG is more likely to
be due to the high circulating adrenaline affecting the cardiac function rather than due to
the abnormally low glucose affecting it. Therefore this researchis practically attempting

to detect the c ardiac changes c aused b y the c ounterregulatory responses triggered by

10



hypoglycaemia. This is a secondary effect. The direct effect would be if abnormally low

glucose was directly affecting the cardiac function.

1.2 Motivation behind the research

Diabetes is one of the most common causes of severe morbidity and disability in the
United Kingdom, affecting approximately 1.5 million people. In spite of improvements
in insulin therapy around 40% of patients develop serious long-term complications. It
has been shown that the incidence of these complications can be significantly reduced if
blood glucose control is tightly maintained [DCCT 1993]. However, patients who
attempt intensive insulin therapy are three times more likely to suffer a severe
hypoglycaemic episode, which can lead to coma or death. Consequently, fear of
hypoglycaemia is probably the main reason why patients fail to achieve tight control of
blood glucose. Furthermore, the symptoms of hypoglycaemia cannot be recognised by
young patients or if the patient is asleep and this has been implicated in the sudden
overnight death of patients with diabetes, perhaps due to the development of cardiac

arrhythmias [Tattersall 1991].

While early diagnosis of diabetes is known to be critical to its treatment, good
management remains the only means to avoid complicatioris of the disease. Since
diabetes is patient managed, information, decision support and alarm tools are
particularly valuable to diabetic patients. The ideal solution for detection of
hypoglycaemia would be the development of a transcutaneous or non-invasive sensor,
which could monitor glucose concentrations continuously. - Although recent
technological advances offer the promise of a transcutaneous sensor in the medium to
long term, there are still formidable technological problems to overcome [Ireland 2000]

and the initial cost may prohibit widespread use.

In context with the aforementioned‘points, this research work investigates the possible
manifestation of hypoglycaemia on the patient's electrocardiogram. Such a
manifestation may contribute in demonstrating a clear relationship between spontaneous
nocturnal hypoglycaemia and delayed ventricular repolarisation and hence it may aid
the explanation of the mechanisms behind the "Dead in Bed" syndrome. The possibility
of producing an alarm system for hypoglycaemia, based solely on secondary responses
caused by dropping of glucose to abnormally low levels is also examined. Until an

affordable and robust transcutaneous or non-invasive glucose sensor can be

11
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manufactured, an alarm system based solely on monitoring the ECG may partly solve

the problem of detection of the onset of nocturnal hypoglycaemia.

1.3 Detailed objectives

The detailed objectives of this research programme are given below:

1.

To formulate a hypoglycaemia detection methodology based solely on information
from the ECG. The methodology will involve an ECG preprocessing, a feature
extraction and a classification/inference stage.

To extract ECG features that will be able to quantify the suspected cardiac changes

introduced by hypoglycaemia. This involves the re-use and fine-tuning of existing

- features besides the introduction of new ones. Emphasis is given on the introduction

of features for assessment and characterisation of T wave morphology.

To select optimal feature combinations to be used for classification of normal and
hypoglycaemic ECG traces. ]

To compare both neural and statistical classifiers in the task of discriminating
between normal and hypoglycaemic ECG traces.

To design and develop a classification system that can distinguish normal ECG
waveforms from ECGs reflecting hypoglycaemia-induced cardiac arrhythmias. The
system should address overnight monitoring of patients for detection of possible
hypoglycaemic events. '

To design a Knowledge-Based System (KBS) to be used as the classification engine
of the patient monitoring system, making use of existing knowledge from human
experts. To compare the KBS against the neural and statistical classifiers, regarding
their ability to carry out the classification/inference task within the patient
monitoring system.

By combining all research findings to attempt an assessment of the hypothesis
suggesting a relationship between hypoglycaemia and cardiac function.

To assess the feasibility of detection of hypoglycaemic events and hypoglycaemia-

induced arrhythmias using a specialised ECG monitoring system.

1.4 Contribution to Knowledge

The main contribution to knowledge from this research was successful detection of

spontaneous nocturnal hypoglycaemia in some Type 1 diabetic patients. This result

supports the hypothesis stating that hypoglycaemia affects the cardiac function (Section

1.1.5). There was strong evidence of such a relationship for the case of experimental

12
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hypoglycaemia. T he results from this research support the h ypothesis for the case of
spontaneous hypoglycaemia where more subtle ECG changes occur and their detection

- is more challenging.

During the process of achieving this result, we have proposed a methodology for
implementing a diagnostic system to be used in hypoglycaemia monitoring. The system
consists of an ECG representation stage in cascade with a classification stage, discussed
in Chapter 4. In the ECG representation stage, each ECG cycle is characterised by the
parameters extracted from it. In the classification stage these parameters are
distinguished into those corresponding to euglycaemia (normality) and hypoglycaemia.
The proposed system was implemented as an early software prototype. It was tested on
offline data from Type 1 diabetic patients experiencing spontaneous nocturnal

hypoglycaemic episodes.

Detailed analysis of the ECG signal was carried out, for examination of the above

relationship. In more detail:

e A number of time-domain ECG features were extracted for describing the cardiac
changes occurring under hypoglycaemia. Novel ECG feaﬁ;res were introduced
besides reusing and modifying existing ones.

o Two novel ECG features, inspired from the third and fourth central moments
used in statistical theory, were introduced for the evaluation of T wave
symmetry and morphology.

o The concept behind an existing feature that has been used, arhong other
features, as a predictor of the Long QT Syndrome [Benhorin 1990] was
borrowed and modified accordingly to produce a third feature for assessing
T wave symmetry. The new feature was based on the ratio of the two areas
under the T wave to the left and right of the T peak.

e A comparative study of geometric methods for marking the T wave end was carried
out using data from Type 1 diabetic patients.

o AutoRegressive (AR) coefficients were employed for the description of the post-R
segment. This approach was chosen as an alternative ECG representation technique
to that of segmenting the ECG cycle by extraction of ECG features.

e Data analysis on the available dataset highlighted the existence of high inter-patient
variability. This suggested that the performance of a inonitoring system would be
boosted by allowing customisation to the specific patient to be monitored.

13
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Significant differences in ECG behaviour were .also observed among different night-

recordings of the same patient (day-to-day variability) which suggests that a robust

monitoring system should also be made adaptive to ECG changes as time elapsed.

Hypothesis testing (Student’s t-test) on all ECG features extracted, proposed that

different features may be robust predictors of hypoglycaemia among different

patients. The occurrence of hypoglycaemia may not be sufficiently described using
~ the same features on all patients.

e Investigation of the ECG and glucose profiles also indicated that the ECG responses
to hypoglycaemia are expressed in the form of transient events and hence, the
incorporation of a temporal dimension in a classification system would be essential

4 for robust detection of the condition. ' .

e Multi-Layer Perceptron (MLP) Artificial Neural Networks (ANN) were assessed for
the classification of extracted ECG features. Both approaches of producing global
classifiers, to be used on large groups of patients, and also producing classifiers
customised for individual patients were followed. Patient-oriented customisation
yielded a significant improvement in performance.

e Statistical classifiers, namely the k-Nearest Neighbour (KNN) and Linear
Discriminant Analysis (LDA) were also assessed regarding their ability to classify
the extracted ECG features. ;

e A KnoWledge-Based System (KBS) was designed for monitoring and classifying
offline data from diabetic patients in a manner that simulated an online patient-
monitoring scenario. Two versions of the KBS were produced, namely a version
based on Crisp Set Logic and a version based on Fuzzy L ogic. The two systems
were using the same rule-base. The Fuzzy Inference System (FIS) was introduced
because of its ability to provide a degree of certainty when raising hypoglycaemic
alerts. Employing a knowledge-based approach yielded the highest performance
among all the classification techniques considered. This system was able to
accurately monitor patients that were consistent with the initial hypothesis i.e.
exhibiting QT prolongation and T wave flattening during hypoglycaemia. A
significant difference of the KBS compared to the neural and statistical classifiers
was that it incorporated temporal informafion, while the latter were performing

static’ pattern classification.

% i.e. no time-stamps
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e A methodology was proposed for making the monitoring system adaptive as time
elapsed. Adaptivity in our case meant that the definitions of QT prolongation and T
wave flattening (and also the definitions of normal QT and T wave) were changing
as time elapsed. |

e By means of the performance of the KBS, it was demonstrated ‘that two ECG
features weré sufficient for detecting the condition on those patients who manifested
both QT prolongation and T wave flattening under hypoglycaemia. More features
could be used in the future for achieving more robust monitoring across the patient

" population. -

e Development of the KBS also contributed in formulating the vague knowledge of
the basic ECG changes under hypoglycaemia in the form of rules of natural
language. This was informative for medical researchers and provided feedback to
the clinical experts who formulated the initial hypothesis and contributed the initial

guidelines for the knowledge-base.

To the best of our knowledge, this work lies among the first studies attempting to detect
the onset of spontaneous nocturnal hypoglycaemia indirectly 'through analysis of the
patient's ECG. Novel datasets are used that consist of both the ECG traces and the
accompanying glucose data. Online ECG databases, available for research purposes in
the World Wide Web contain ECG data only, without glucose information. A number of
researchers have been carrying out studies [Marques 1994, 1997], [Ireland 1998, 2000],
[Harris 2000], [Lee 2003], [Robinson 2004], with specialised ECG-glucose datasets but

the analysis was carried out from a clinical viewpoint.

A lot of engineering studies have been carried out focusing on ECG signal processing
and classification for cardiac diagnostics and arrhythmia detection® but this is among the
first ones looking at the quantification of 'ECG changes related to hypoglycaemia-

induced arrhythmias for the detection of the symptomatic status of hypoglycaemia.

1.5 Structure of the thesis

The structure of the thesis, following this first chapter, is outlined below:

? A small sample of such studies is: [ Xiong 1983], [Shibahara 1984], [ Yang 1994], [Kundu, N asipuri
1994], [Kennedy 1997], [Hedén 1997], [Simon 1997], [Hu 1997], [Al-Fahoum 1999], [Lagerholm 2000],

[Acharya 2004], [Kundu 2000]. '
15



Chapter 2 presents the necessary theoretical background to support this work. Firstly it
covers ECG signal processing (including pre-processing and noise reduction) and then
discusses standard and abnormal ECG morphologies. Following these, ECG feature
extraction and significant point detection is presented. Autoregressive modelling is also
presented. Chapter 2 also provides theoretical background on the classification
techniques employed. This includes brief Neural Network theory, theory on Linear
Discriminant Analysis and the k-Nearest Neighbour classifier, background on

Knowledge Based Systems and finally Fuzzy Logic theory.

Chapter 3 presents the biomedical resources used in this research. This mainly includes
the patient data on which the studies were based. Moreover, the data acquisition

equipment and data acquisition protocol are presented.

Chapter 4 presents the overall methodology used in this work followed by the feature
extraction results. The ECG-specific software tools used for algorithmic development
are presented. Moreover the way of combining the various techniques for producing the
overall system for hypoglycaemia detection is given. The rémaining of the chapter
presents the results from the feature extraction of ECG signals. A number of automatic
algorithms designed for ECG annotation are presented. A subset of these algorithms is
utilised in a comparative study of four geometric methods for T end annotation. The
ECG' features produced, including two novel ones introduced, are presented and

assessed. AR modelling, as a means of ECG representation is also included.

Chapter 5 presents the static pattern classification results produced. Classification is
based on either individual ECG features or AR coefficients. ANN, LDA and kNN
results from a number of approaches are presented. Both the approaches of producing

global and patient-oriented classifiers are outlined.

Chapter 6 presents a knowledge-based monitoring system for hypoglycaemia detection
during the night. The architecture of the knowledge based system used, including its
rule base is presented. Results are produced both when applying crisp and fuzzy logic in

the system.
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Chapter 7 summarises and concludes the thesis. The contribution of this study is
presented and the unsolved problems are discussed. Also some long-term research
challenges and unsolved problems that impeded this study are discussed. Finally the

way forward is considered and recommendations for further work are given.
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Chapter 2
Theoretical Background and Review of the Literature

2.0 Introduction

In this chapter the theoretical background relevant to the techniques applied in this
study, is provided. It presents detailed information on Electrocardiography, extending
the discussion of Chapter 1, and also presents ECG signal processing including noise
reduction, automatic ECG annotation and ECG features. Next, a review of relevant
biomedical equipment used for ECG and glucose monitoring is provided. Moreover,
theory on intelligent systems is presented, including neural networks and knowledge-

based systems. Statistical classifiers are also discussed.

2.1 Noise considerations related to ECG signals

Electrocafdiogram recordings suffer greatly from various sources of noise. One of these
is 50 Hz powerline interference, and its harmonics, together with electronic noise
inherent in all electronic devices. Muscle noise (the signal known as ElectroMyoGram
(EMGQG)) is another noise source. ItAis introduced by the movement of the skeletal
muscles of the chest wall during respiration but may also be due to movement of other

peripheral muscles [Marques 1994].

The first type of noise mentioned can be reduced by performing a good skin preparation
before placing the electrodes, by using shielded cables and by avoiding proximity to the
sources of 50 Hz, e.g. fluorescent lights, monitors etc. Good amplifier design with
modern electronic components is usually adequate for limiting inherent noise.
Remaining noise due to powerline interference can be reduced using a notch filter set at

50 Hz.
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2.2 The Signal Averaged ElectroCardioGram (SAECG)

Even when being cautious to perform good data acquisition, noise problems will still
exist, mainly due to the EMG signal. Averaging is often necessary and is used to further
reduce the noise levels. Successive ECG records are aligned and then averaged to
produce the Signal Averaged ECG (SAECG). The averaging process attenuates the
stochastic components and amplifies the deterministic components in the signal. As
each beat is added, the noise is reduced in the signal-averaged recording. This is the
primary reason for using the signal-averaging method because very low-level signals
are usually masked in noise and standard ECG techniques are not adequate for

recording these very low-level signals.

Theoretically the square 'root of the number of beats averaged will be the factor by
which the noise is decreased [Berbari 2000]. If 100 beats are averaged, then the noise
will be reduced by a factor of 10. In practice this is only approximate because the
characteristics of the noise may vary over time. Although av'eraging helps to reduce
noise, one of the disadvantages of averaging successive ECG records is that distortion
may be introduced and useful information lost. This happens because the noise-free
ECQG is different from cycle to cycle since it is a dynamic signal. The signal-averaging
process would not introduce distortion in the ideal case where the ECG signal would be

stationary and contaminated by random noise.

The way signal averaging is carried out is demonstrated in Figure 2.1. The diagram
represents each ECG cycle by a piece-wise linear representation (only the QRS is

represented and the P & T waves are -

3 TN
component is drawn on each ECG A A Aoeee A
1

cycle. Successive ECG cycles are

' . 142¢80.N
-
‘A

component in the post-QRS region  Figure 2.1: Demonstration of signal averaging process
[Berbari 2000]

not drawn). An exaggeratedk noise .
1

collected and aligned and then they

are added and averaged. The
averaged signal at the output of the
summation operator, in Figuré 2.1,

is drawn with a smaller noise

S

to demonstrate the reduction in

noise levels.
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In order to carry out the above alignment and averaging process, the QRS complex of
each cycle must be detected. Detecting QRS complexes is generally easy since it is the
component of the ECG cycle with the highest amplitude. But simply using an amplitude
criterion to detect the QRS may lead to false detections of premature ventricular
contractions (PVC) or T waves with high amplitude, as 'QRS complexes. This
introduces the need for QRS selection in order to discard false detections of premature
ventricular contractions or T waves with high amplitude. An example of a PVC beat

occurring between two Normal Sinus Beats (NSB) is shown in Figure 2.2 (top graph).

Alignment is done using a fiducial point on the QRS complex upslope (Figure 2.2
bottom graph). The fiducial point is a detection point that acts as a time reference in the

alignment process. The shape of the
' SB

QRS is used to determine the _Nsi NA PVC "ASB
J‘\—A\/—r\_’\\,._ﬁ\j\/\ __“._A_}\__\"/

fiducial point. A more simplified

approach would be to use the QRS FIDUCAL

POINT —— {1
TEMPLATE
BBAT

amplitude or the magnitude of the
first derivative at the R peak

[Berbari 2000] but these do not

~—

. . TEMPLATE
contribute to a highly accurate INTERVAL :
Figure 2.2: PVC between two normal beats (top graph)

alignment process since other ) )
- and fiducial point (bottom graph) [Berbari 2000]

components can be mistaken for the

QRS as mentioned earlier. Using the shape of the QRS is superior because it eliminates
all other ECG components (PVCs, high T waves), noisy beats and motion artefacts
[Berbari 2000]. Moreover it allows fine alignment of the QRS éomplexes for the

averaging process.

A number of assumptions are made and a number of conditions need to be met for a

successful averaging process [Marques 1994]:

1. The ECG signal and the noise should be independent.

2. The noise probability distribution function must remain constant throughout the
recording period, i.e. it must exhibit stationarity.

3. The contaminating noise must have a Gaussian distribution.

4. The signal of interest must be periodic and associated to a timing reference.
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The averaging technique is effective in removing EMG noise since the respiratory and
cardiac cycles are not synchronous [Marques 1994]. Electronic noise is random and
" may be reduced or eliminated by employing narrow bandwidths. However, the 50 Hz
noise may sometimes not be completely eliminated, since its probability density
function is not Gaussian and therefore will never average to zero [Marques 1994]. Use

of a notch filter before the averaging process may solve this problem.

2.3 ECG components and the morphology of the ECG

As mentioned in Chapter 1, a typical ECG cycle consists of three main components

namely the P wave, the QRS complex and the T wave. Besides the above three, more

components can be identiﬁed on a typical cycle. A full list of them (including the above
three) is given below:

1. P wave which corresponds to the atrial depolarisation of the myocardium.

2. QRS complex defined by the following points on the ECG: Q, R and S. The QRS
complex corresponds to the ventricular depolarisation of the myocardium. The R
peak is the peak with the highest amplitude in a normal ECG cycle. The time
duration betweeﬁ two successive R peaks denotes the instantaneous heart rate.

3. ST segment, which is a segment of electrical inactivity post the QRS.

4. ] point (starting point of the ST segment).

5. 180 point (ending point of the ST segment, located at 80msec interval from the J
point).

6. R104 point located at 104 msec interval from the R peak.

7. T wave which corresponds to the ventricular repolarization of the myocardium. .

8. U wave which is not part of a typical ECG cycle and is only present under certain
circumstances. Presence of U waves has been reported under hypoglycaemia

[Lazarra 1992], [Ireland 2000].

2.3.1 Types of T wave morphology

A few different types of T wave morphology can be encoﬁntered and will be presented
in this section. Different morphologies may have different clinical significance. Robust
feature extraction algorithms must be able to annotate records even when non-standard
morphologies occur. The shape of a normal T wave is given in Figure 2.3. Under certain
circumstances, inverted T waves occur. They are similar in shape to the normal T waves
with the difference that they are inverted, i.e. the orientation of the T wave is opposite to

that of the P wave and QRS complex. ECG cycles containing inverted T waves are
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presented in Figure 2.4. Finally biphasic T waves can also be encountered. These
consist of a positive and a negative peak in succession. Either the positive (characterised
as biphasic +ve/-ve) or the negative wave (biphasic

T UlJave

-ve/+ve) can occur first. The combination of these two

waveforms produces an undulation as seen in Figure 2.5.

Apart from the above morphologies, a U wave is
sometimes present after the T wave as mentioned briefly in
Chapter 1. This wave may exist as a separate entity or may
be fused with the T wave. Detection and characterisation of
this wave is desirable in ECG processing. An ECG

waveform exhibiting an exaggerated U wave is presented Figure 2.3: Normal Twave

in Figure 2.6.

T-YVave Inversion

Figure 2.4: A single inverted Twave (left) and a train o finverted Twaves (right)

U Wove

Figure 2.5: Biphasic (+ve/-ve) Twave

Figure 2.6: Uwave present after the T wave
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2.3.2 ECG characteristic points

Besides the previously discussed ECG components, a number of ECG characteristic
points (sometimes referred to as "ECG significant points") need to be detected on each
cycle. Such points are mainly the onsets, offsets and peaks of the three main waves (P,
QRS, T). These characteristic points are necessary for the process of extracting ECG
features as it will be discussed later. The characteristic points that need to be detected in
the context of this research are: the R peak, the QRS onset and offset, the T peak and the
T wave onset and o ffset. M oreover, d etection o f the peak, onset and o ffset ofthe U
wave, if present, are useful. This type of wave is not always present or if it is, it can be

fused with the T wave so its detection is not always possible.

Detecting the end of the T wave has, for many years, been a big problem in the research
community. Under noise conditions, existence of U waves or other abnormalities, the
end of the T wave can be very ambiguous and even manual marking by clinical experts

can be difficult.

Manual vs Automating ECG Marking. The marking of time intervals on ECG cycles is
done manually by cardiologists. ECGs on paper were used in the past, but nowadays
computer screens are mostly used where the cardiologists set cursors to mark certain
features and intervals. (ECGs were recorded in the past using a heated stylus that was
marking strips of propagating paper.) Manual measurement is essential but not
sufficient. Some of the problems associated with it are that: it is labour intensive, it
introdubes the problem of inter-observer variability and it does not give systematic
results compared to automatic methods. Automatic algorithms have the following
advantages: they produce systematic measurements, they need less resources (time,
researchers) to bé_carried out, and they allow the design and use of automatic, online

monitoring systems where the presence of a medical expert is not possible.

2.3.3 Automatic detection of the ECG characteristic points

A number of algorithms for detection of the ECG characteristic points will be presented
below. Some of these focus only on detection of a specific component (mainly the R

and T peaks) while others can be applied for detection of more than one component.

Although the end of the T wave is the last point in the sequence of significant points, it
will be reported first since it is among the most important points to mark for detection of”
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hypoglycaemia and a challenge to detect especially in the presence of noise or other
abnormalities. A review of a number of algorithms for detecting the end of the T wave

will be discussed in the following section.

Automatic detection of the end of the T wave

Annotating the end of the T wave on an ECG cycle is necessary for measuring time
intervals such as the QT. This can be done both manually and automatically. The
manual method is the current “gold standard”. A number of automatic methods also
exist. Marking the end of the T wave is not always an easy task. Very often the point
where the T wave ends is not very clear. The presence of a fused U wave is one of the

cases where the detection of the T wave end is difficult.

Probably the simplest and most obvious approach for marking the end of the T wave is
the one that uses the cross-section of the T wave downslope with the isoelectric line
(flat baseline) to mark Teng. The weakness of this method is that in some cases, there is
no crossing of the T wave downslope with the isoelectric line. Various methods for
marking the end of T have been investigated in a number of papers. The most important
algorithms are covered in this section: | _ |
1. Tgngent Method (or MSI: Maximum Slope Intercept) [Ireland 1998, 2000],
[McLaughlin 1995, 1996]
This method finds the point of the T wave downslope having the steepest tangent
and marks the end of the T wave at the point where the steépest tangent line meets
the isoelectric line. The characteristic of this method is that it relies only on a single
point on the ECG trace for deciding where the T ends. | '
2. Peak Slope Intercept (PSI) [McLaughlin 1995, 1996]
This method uses the peak of the T

Lo Dempnstration of Pes kSlau ntercopt (PS1) m ‘ :
% em-dmg'r d nnpem Yp zkmﬂmu fope 10 define 2 ar-gmi ﬂmcms m Ium
T

T pea § Tmaxsiope marked wih creies

wave and the point of the T wave |
having the steepest tangent to define
a straight line. The intersection of |
this line with the isoelectric line |
marks the end of the T wave. The
way this method works is illustrated I

in Figure 2.7. The peak of the T

wave and the steepest tangent point g, igure 2.7: Demonstration of the PSI method

are marked with circles on the
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graph.

3. Fitting Method [McLaughlin 1995,

" Demonstralion ofiting a staight (ne (et oder polynomial) i the end of tho Twive .1 G
T : T T T

i

1996] ‘
The third method fits a 1% order
polynomial on the downslope of the T
wave. Again the intersection of the
fitted straight line, with the isoelectric

line, marks the end of the T wave. The

line fitted by this method on the T - V : \/‘/

downslope can be seen in Figure 2.8.

Figure 2.8: Demonstration of the fitting method

4. Threshold method (TH) [McLaughlin 1995, 1996]
This method marks the end of the T

wave by using a threshold level set at a

fraction (e.g. 0.1) of the T wave  Threshold

_ TH
amplitude. The intersection of the

threshold level with the T wave marks

o1)

the T end. This concept is illustrated in
Differential

Figure 2.9 (top graph) where the threshold

threshold level is depicted by a dashed bTH ‘

horizontal line.
5. Differential Threshold method (DTH)

[McLaughlin 1995, 1996] . v
) . Figure 2.9: Illlustration of TH (top) and DTH
The Differential Threshold method (bottom) [McLaughlin 1995, 1996]

i

works similarly to the Threshold method .

with the difference that the signal used is the 1* derivative of the ECG trace instead
of the trace itself. In both algorithms, threshold crossing points are determined using
a left to right scan of the data from the T peak. Moreover the T peak and the
threshold level are calculated relative to the isoelectric level. Figure 2.9 (bottom
graph) illustrates the 1% derivative of the ECG trace, the threshold level chosen and
the location where T end is identified.

6. Wings algorithm
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In 1999 Daskalov and Christov [Daskalov 1999] presented their algorithm named as
“Wings algorithm” for detection of the end of the T wave. The algorithm is also able
to detect the T peak. It works by calculating the “wings” function obtained at each
successive sample of the search interval of the current ECG cycle. The “wings”
function is given by the product of two adjacent segments forming “wings” each 40
msec in length. The wings are calculated in sequence at each signal sample of the
search interval. The search interval starts at the isoelectric point at the end of QRS*
and reaches the end of the record. The minimum value of the wings function
corresponds to the T peak. The algorithm is also c apable o f d etecting biphasic T
waves. The T. wave end is chosen as the -point having the smallest angle between
wings of 10 msec length in the post-Tpeax region.

. Algorithm by Vila et al

In 2000 Vila et al [Vila 2000] introduced a new TU complex detection and
characterisation algorithm. Their work builds on previous research on modelling T
waves using A ction P otentials ( APs) [ Wohlfart 1987, M alik 1989, P adrini 1 995].
According to the authors the most complete approach for such modelling was
proposed by Padrini [Padrini 1995] which is capable of modelling combinations of
T and U waves. The authors extend on Pardrini’s work by employing a two-stage
process for TU wave detection and characterisation. The first stage is modelling
using Action Potentials differences and the second stage involves annotations on the
modelled signal, instead of using the original one, using classic threshold detection
algorithms such as those mentioned above.

. Neural Network algorithm by Bystricky and Safer

In 2002 Bystricky and Safer [Bystricky 2002] developed a neural network algorithm
to mark the T wave end. It is based on a 2-layer Multilayer Perceptron (MLP)
trained on the Physionet QT database. As far as we are aware this is the only neural-

network-based algorithm for T end annotation.

Automatic Detection of the R peak

A number of R peak detection algorithms have been developed. Among the established

algorithms, the one by Pan and Tompkins [Pan 1985] with some modifications [Laguna

* 1990] was also used for this research work. Other well-known R detection algorithms

are the Balda algorithm [Balda 1977] which is included in a commercial ECG analysis

* The above isoelectric pointis defined as the rightmost post-QRS sample satisfying a linearity and a

slope condition defined in their paper [Daskalov 99].
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system by HP, and the ARISTOTLE algorithm [Moody 1982]. Li et al [Li 1995]
presented a wavelet algorithm for detecting the QRS complex while the algorithm is
also able to detect other components such as P and T.In 2002 Saxena et al [Saxena

2002] developed a new wavelet for detection of the QRS complex.

At the early stages of this research program a basic R detection algorithm was

developed and used as part of the feature extraction process.

“ecgpuwave” - Automatic Threshold Based Detector (TD) of Waveform
limits

The “ecgpuwave” algorithm. was designed by Laguna et al [Laguna, Thakor 1990],
[Laguna 1994] and took its name from the name of the command that invokes it in a
UNIX shell. It is able to detect the onsets and ends of the P, QRS and T waves. It can
work on all leads of the standard 12-lead ECG and also in all 3 leads of the orthogonal
ECG. It also classifies QRS complexes as normal or abnormal and T waves as normal,
inverted, monophasic -and biphasic. The QRS detection is carried out using the Pan and

Tompkins algorithm [Pan 1985] with modifications by Laguna as mentioned earlier.

The detection of the ECG significant points is a two-stage process. Firstly the algorithm
uses a differentiated and low-pass filtered version of the ECG signal to detect each beat
and then the waveform b oundaries are located in each lead. This algorithm has been
written in FORTRAN, is open-source and is distributed under the GNU General Public
License (GPL) [URL 2]. It is available as part of the Physio tooikit from Physionet.

2.4 ECG features

A number of ECG features can be extracted in the time domain, some of them being
related to or based on the ECG components that were described above. The QT interval,
the time interval from the onset of the QRS complex to the end of the T wave, is
probably the most important parameter for indicating the onset of hypoglycaemia. It
describes the duration of ventricular depolarization and repolarization. Several studies
on the effect of hypoglycaemia on the QT interval have been carried out [Hafris 2000,
Ireland 1998, 2000]. An illustration of the QT interval is given in Figure 2.10. QT
intervals longer than 440 msec in lead Vs are considered abnormal (Long QT syndrome)

[Benhorin 1990].
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Other useful intervals are: the QRS .
duration, which describes the duration of Inzr*fa, R Int?:al
ventricular  depolarization, the PR : :
interval, the RT interval, the ST segment

etc. Although the QT interval can be an

indicator of spontaneous hypoglycaemia,

more sophisticated parameters will have

to be extracted from the ECG for better

detection of this medical condition. In

. QRS
the time domain the parameters that are Figure 2.10: ECG features

proposed are describing the morphology and shape of the T wave. Some of the

parameters that are proposed, besides the QT interval, are the following:

* T wave amplitude, also shown in Figure 2.10 above as Tmax.

* Baseline T wave amplitude (at the beginning of measuring period) to current T wave
amplitude.

= Areaunder the T wave.

=  Symmetry of the T wave. The 3™ and 4™ moments (skewness & kurtosis) are
‘proposed for the evaluation of symmetry. '

= Presence of U wave following the T wave.

= Ratio of R peak to T wave peak.

* Time to peak T wave amplitude.

» Rate of change of T wave amplitude.

= Baseline drifts between records or within a record.

2.4.1 QT and other time-interval correction

' The QT interval may vary because of changes in the RR interval (the instantaneous
heart rate). We are only interested in QT variation due to hypoglycaemia or other
arrhythmias and not in variation due to changes in heart rate. To cater for this, mahy
investigators normalize the QT interval to make it independent of HR. The most
commonly used correction formula is Bazett’s [Bazett 1920] formula which is given
below:

QTc=QT/VRR eq (2.1)
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According to this formula the heart-rate-corrected interval (QTc) is derived by dividing
QT by the square root of the instantaneous HR. A few other methods of QT correction
exist [Puddu 1988, Rautaharju 1993, Ahnve 1985]. Correction: for heart rate is usually
applied on the QT interval but it could also be used for other time intervals such as the

RT, the ST, etc as it l;)vill be seen later.

2.4.2 Benhorin’s features for detection of Long QT syndrome -

- In 1990 Benhorin et al [Benhorin 1990] had introduced seven new ECG features to
identify patients with known long QT syndrome (QT>440msec in lead V). The features
quantify various components of the post-QRS ECG segment on all leads of the standard
ECG. The features were used to distinguish between normal subjects and Long QT
Syndrome sufferers. Although this study was very significant in introducing novel
fegtures for classification between patients and normal subjects, it did not achieve
detection of the symptomatic status of Long QT Syndrome sﬁfferers, i.e. detection of
the onset of QT prolongation. The latter problem needs to be solved in order to achieve

monitoring of patients.

The features (with feature names given in brackets) are:

1) Early duration (SoTmc): HR corrected S wave offset (So) to T wave absolute
maximal amplitude (Tm) interval.

2) Late duration (TmTo): Tm to T wave offset (To) interval.

3) Rate (t.A25-75): the time to accumulate the mid-50% of total absolute repolarisation
area from its 25% to its 75% value. ,

4) Total Area (Atot): Total absolute repolarisation area from So to the end éf
repolarisation signal or to the next P onset (whichever occurred first).

5) Symmetry Ratio (SR): T wave area symmetry ratio; the ratio between the integrated
area over SoTm and TmTo intervals, SR= SoTm/TmTo eq” (2.2)

6) Late phenomena (%A@To): % of Total area (Atot) accumulated at To. This is the
ratio of the repolarisation area from So to To upon the repolgﬂsation area from So to
the end of the ECG cycle: %A@To = 100 * (Area from So to To) / Atot  eq" (2.3)

7) Heterogeneity (SoTm_sd): the standard deviation of SoTm interval in the precordial
leads. This feature describes the dispersion of the SoTm feature among the

precordial leads.
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All variables were measured in lead V s except Son_sd which was calculated from
measurements in precordial leads 4 to 6. Heart rate correction w as c arried o ut using

Bazett’s formula.

2.5 Review of Glucose and ECG Monitoring Eqﬁipment

This section includes the review of the literature on the biomedical equipment related to
this research. This includes glucose monitoring devices and ECG acquisition and

analysis equipment.

2.5.1 Hypoglycaemia Detection and Glucose Monitoring Equipment

Two types of devices are discussed in this section: hypoglycaemia detection devices and
glucose monitors. Hypoglycaemia detection devices are designed to detect the onset of
hypoglycaemia but cannot necessarily measure the glucose levels of a patient. On the
other hand, glucose monitors can produce glucose measurements and, if suitable alarms
are programmed into them, they can also be used to detect the onset of hypoglycaemia

and hyperglycaemia.

Hypoglycaemia detection devices

One of the approaches used in hypoglycaemia detection devices is to utilise the
periphérél physiologicéll responses to falling blood glucose (e.g. sweating), and then
develop methods of measurement and the software to récogniz‘e these patterns. "Sleep
Sentry" [Hansen 1993, URL 3] was an early commercial device that was detecting such
physiological responses by monitoring skin conductance and temperéture as an index of
diaphoresis and skin blood flow but was not widely established because of a high
number of false alarms. Although not widely established, Slee;p Sentry remains in the

market [URL 3].

Hastings et al [Hastings 1998] also presented a hypoglycaemia detector that was using
peripheral physiological responses to falling blood glucose. This detector was presented
as a prototype software engine for a hypoglycaemia detector. It was using skin
conductance and heart rate as inputs while two additional inputs (snoring and ECG)

were proposed for future versions of the system.
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Glucose monitoring devices

Early measurement of glucose was achieved using urine-reactive strips. Currently, urine
glucose testing is not recommended as the sole method for monitoring blood glucose
[Kirk 1998]. The desire to improve glycaemic control has led to the use of blood-
reactive strips to measure capillary blood glucose levels. Initially, these blood glucose
strips were interpreted by colorimetry through visual readings and optionally by
reflectance photometry [ADA 1995]. The first blood glucose monitor using reflectance
photometry was the Ames Reflectance Meter (ARM) [Bernstein 2002]. The first patent
for this meter was issued in September 1971. An early ARM prototype is depicted in
Figure 2.11.

Figure 2.11: Early ARM prototype

All current home glucose monitoring systems use either reflectance photometry (first-
generation systems) or an electrochemical process (second-generation systems)
[Fleming 1994]. In both types of systems, an enzyme that catalyzes the glucose reaction

within the test strip is used.

The introduction of first-generation blood-reactive meters led to more accurate readings
while the devices became easier to use. Some disadvantages that later devices were

challenged to solve are the long processing time for glucose measurement, the
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requirement of a large drop of blood, the large size of the device and the limited

memory features [Kirk 1998], [Foster 1999].

Second-generation b lood glucose m onitors m easure a n electrical charge g enerated by
the glucose-reagent reaction. The electrochemical principle employed can be either
amperometry or colorimetry. Amperometry meters did not solve the problem of using a
-small blood sample, since only a small portion of the blood sample is utilised. However,
colorimetry meters solved this problem by utilising all of the sample glucose and
convertiﬁg it to an electrochemical charge that is measured. The latter approach is also
insensitive to temperature and haematocrit variations while amperometry devices were
suffering from such variations. Finally, an invaluable contribution by 2"._generation
colorimetry monitors is the possibility of using alternative sites (e.g., arm or thigh) to
obtain blood samples. At these sites, capillaries and nerve endings are less numerous;
therefore, a more sensitive measurement technology was necessary to provide virtually -

painless blood glucose testing [Mehta 2002].

Interstitial fluid sampling. A later approach to glucose seﬁsing is to sample the
interstitial fluid (ISF), i.e. the fluid that exists among the tissue cells. A few devices
have been produced that follow this approach. MiniMed Inc [URL 4] has produced the
MiniMed Continuous Glucose Monitoring System (CGMS) [Gross 2000, Steil 2000]
which is an invasive sensor that measures glucose levels by sampling the glucose in the
interstitial fluid. A probe is inserted in the subcutaneous tissue of the tummy area and
measures glucose in the tissue. This sensor is used for data acquisition in this research

and will be presented in greatef detail in Chapfer 3.

The limitation of the MiniMed CGMS system is that it employs an invasive approach
which could, depending on the size of the probe used, be a.degrading factor in the
quality of life of the patient using it. Another device, the GlucoWatch [URL 5] by
Cygnus Inc [URL 6] achieves non-invasive monitoring. It monitors glucose levels non-
invasively by reverse iontophoresis (electroosmosis) [Rao 1995, Tamada 1995]. 1t is
worn like a wristwatch and applies a small electric current to the skin, which is used to
collect glucose molecules that exist between cells, through the' skin in gel disks inside

the watch. The glucose levels are then translated into electrical signals.
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The next step in blood glucose monitoring is the development of non-invasive (3"-
generation) meters, in which the sample is obtained without direct interaction with body
tissues [Mehta 2002]. These future meters will perform measurement remotely usihg
various characteristics (e.g., spectral, optical, thermal, electromagnetic). The most
promising prototypes use radiation technologies i.e. Near Infra-Red (NIR) spectroscopy,
Far Infra-Red (FIR) spectroscopy, radiowave impedance, and optical rotation of

polarized light.

2.5.2 ECG Acquisition and Analysis Equipment

Numerous devices have been developed for acquisition, analysis and monitoring of
ECG-signals. Modern electrocardiographs can capture ECG data from all 12 leads of the
standard ECG. They perform appropriate pre-processing to remove noise and artefacts
from various sources. Many of them also offer interpretation of ECG traces and hence
can diagnose various cardiac rhythms or arrhythmias. A selection of the latest devices is

presented in this section.

ECG monitoring devices could be categorised as trolley-based, computer-based and
pertable devices. Seca is among the companies producfng trolley-based ECG
monitoring equipment. It produces 3 ECG monitors (CT3000i, CT6i, CT8000P) [URL
7]. The Seca CT6i, incorporating interference filters and being capable of producing 12
Channel interpretive ECG, is depicted in Figure 2.12 [URL 7]. CARDIOVIT and GE

Medical Systems are also manufacturing a number of trolley-based electrocardiographs.

Computer-based ECG equipment as the name
implies is based on a personal computer (PC).
The recorded ECG is transferred, in real-time,
to the PC via an appropriate interface and the
relevant software is used to display, store and

process the ECG traces.

An example of an interfacing link is the
CardioView ECG-PC Link from

Micromedical Industries which connects to the PC Serial Port. It is depicted in Figure

Figure 2.12: Seca CT6i ECG monitor

- 2.13 next to a PC.
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Advancing handheld-computer technology has allowed the realisation of portable ECG
monitors based on palmtop computers. Such an example is the PocketView ECG [URL
8, 9] shown in Figure 2.14. Biolog 3000i (Figure 2.155 is another handheld
electrocardiograph, though not based on a palmtop computer. Besides the standard
features that modern electrocardiographs posses it is able to display and record instant
12 lead ECG by placing the Biolog directly on to the patient’s chest (i.e. no leads
involved). MINISCOPE MS-3 [URL 10] is another portable device recording
Emergency 1-Channel ECG. ' |
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Figure 2.13: CardioView ECG-PC Link Figure 2.14: PocketView Figure 2.15: Biolog

CardioSoft and CardioView 3000 are software packages that can be run on a PC and
can perform collection, analysis, review, and printing of ECGs. Besides the above two
more generic packages, some more specialised software packaées have been developed
- by GE Medical Systems, that coﬁtain software algorithms for in-depth processing of
ECGs. Such packages are: 12SL ECG Analysis Program, Acute Cardiac Ischemia
Time-Insensitive Predictive Instrument (ACI-TIPI) and Signal-Averaged High
Resoiution P-Wave (Phi-Res) Analysis.:
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2.6 Statistical Classifiers

Statistical classifiers were considered in order to allow comparisons with neural
class‘iﬁers, presen’ted in later sections. The statistical classifiers used were Linear
Discriminant Analysis (LDA) and k-Nearest Neighbour (kNN). LDA works by
minimising the Mahalanobis distance [MathWorks‘ Statistics] which is a multivariate
measure of the separation of a data set from a point in space. The Mahalanobis distance
is a very useful way of determihing«the "similarity” of a set of values from an
"unknown" sample to a set of values measured from a collection of "known" samples.
This distance measure was introduced in 1936 by P. C. Mahalanobis, hence the name of

this statistic.

The statistical distance or Mahalanobis distance between two points x = (x,..., Xn) and
Y= (Y1,-..,)" in the n-dimensional space R" is defined as:

dx, y) = ((x-y" 8" x-y)"* eq" (2.4)
where S represents the within-group covariance matrix, lowercase letters in bold denote

vectors or matrices and the superscript “T” denotes the transpose operation.

Another measure of distance that can be used for classification is the Euclidean
distance. v
The Euclidian distance between two points x = (Xy,..., xn)T and y = (yl,...,y,,)T in the n-

dimensional space R" is defined as:

dx, ) =( =y + oo + o=y )2 = (- Y (x-y))"* eq” (2.5)

The Euclidean distance is a geometric distance measure as 'opposed to a statistical
distance measure and in certain application domains can be inferior to the Mahalanobis
distance when used as a classifier. In such applications the Mahalanobis distance is

superior because it takes the distribution of the points into account.

Some of the advantages of the Mahalanobis distance are:
1. It takes into account not only the average V_alue but also the variance and the
covariance of the variables measured. _ '
2. It accounts for ranges of acceptability (variance) between variables.
3. It compensates for interactions (covariance) between variables.
4. Tt is dimensionless.
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Figure 2.16: Comparison of Mahalanobis vs Euclidean classifier Mahalanobis distance
which considers an elliptical boundary compared to the circle around the mean point X
used by the Euclidean distance. Let us consider the example where the data-points with
mean X (that occur within the two boundaries) comprise the training set of a
classification problem and the points A and B shown in the figure are two unknown
samples. The Euclidean distance of points A and B from the mean X is approximately
the same. This means that point A is just as likely to be classiﬁed as belonging to the
group, as point B. However, the Mahalanobié distance will classify point A to be more
likely to belong to the known group since it lies on the trend-line of the known group, as

described by the méjor axis of the ellipsoid. The limitation of tﬁe Euclidean classifier is

that it does not take into account the variability of the values in all dimensions.

The kNN classifier mentioned earlier uses the Eﬁclidean distance metric. Let us
consider an n-dirnénsional space R" and a finite set S < R". S is the training set, i.e. the
set of known sample points. The class of an unknown point (query point) ¢, ¢ € R"is
determined according to its neighbouring points in the training set. The parameter & of
the kNN classifier can, in theory, be set to any positive integer. It defines the number of
neighbouring points from the training set, to be used in determining the class of a query
point q. For example, for k=1 the class of ¢ will be determined by the class of the point
in the training set having the shortest Euclidean distance from ¢. Expressing this
mathematically, the 1-NN classifier will find the element p € S such that:

dp,q) <drq),VreSr+p, eq" (2.6)

where d(x,y) is the Euclidean distance between two points x and y, withx, y € R".
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For k=3, three neighbouring points will be used in determining the class of ¢ and the
chosen class will be determined by majority voting. For a two-class classification
problem, the operation of the kNN classifier can be illustrated in Figures 2.17 and 2.18.
Figure 2.17 depicts the 2-dimensional scatter diagram for the variables x and y. One

class is marked by circles and the other by squares.

00

X
Figure 2.17: Scatter diagram ofy vs x with each class marked with either circles or squares [URL 11]

Figure 2.18 depicts a section of the above scatter diagram after zooming in. The figure
illustrates how the class of'the unknown query point marked with a is determined by

the kNN classifier in the cases of k=1 (LHS graph) and k=3 (RHS graph).

Figure 2.18: 1-NN classification (LHS) and 3-NN classification (RHS) [URL 11]

In the specific example presented above, the classification result is different for the two
values of k. Using 1 neighbour, the query point is classed as being a member of the
class of squares while using 3 nearest neighbours, it is classed as belonging to the class
of circles. Choice of the number of nearest neighbours to be used can be a very

important factor in classification performance.

When using an even number of neighbours a tie can occur, i.e. there are equal numbers
of neighbours in each class. In order to get an output from the kNN classifier, the tie

needs to be broken. One way to break the tie is to choose randomly between the classes
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in the tie. Alternatively the tie can be broken by taking in account extra information
from the nearest neighbour (i.e. shortest Euclidean distance) to the query point. In that
case the nearest neighbour is used to determine the class. Using odd values of k is

another way to avoid ties between classes.

An advantage of the kNN classifier is that the decision boundary can be arbitrarily
complex. For instance, the classifier can operate not only under circumstances where
non-linear decision boundaries exist but also in cases where a class exists within another
class etc. A drawback of the kNN classifier is that it does not construct a generalised

representation of the learnt classes. Instead, all the training examples are kept in |
memory and classifying any new point can be very computationally expensive. This is
because the Euclidean distance of any new point from all points in the training set must

be calculated.

In our case, the computational cost of the KNN was not an issue. The feature vectors fed
as inputs and also the length of the datasets used were small and the algorithm executed

in short time.

2.7 Artificial Intelligence

Artificial Intelligence (Al) is a branch of computer science concerned with the design
and implementation of programs which are capable of emulating human cognitive skills

such as problem solving, visual perception and language understanding [Jackson 1990].

Artificial Neural Networks (ANN) and Knowledge-Based Systems (KBS), including
Fuzzy Inference Systems (FIS), constitute the Artificial Intelligence techniques
considered in this work; for the classification of ECG traces. Theoretical background on

the above techniques is given in the following sections.

2.7.1 Artificial Neural Networks (ANN)

The main classifiers considered in this research were artificial neural networks. A
number of definitions have been proposed that describe what constitutes a neural
network but there is no convergence to a single generally accepted definition. One of

the eloquent definitions available is given overleaf.

38



e e T T T

According to Haykin [Haykin 1994] a neural network can be defined as a massively
parallel distributed processor that has a natural propensity for storing experiential
knowledge and making available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the

knowledge.

Artificial neural networks are also referred to as connectionist ﬁmdels, and their field of
study is alternatively termed

parallel distributed processing, %
neurocomputing or artificial neural \q,
systems [Rumelhart 1986, w\
Simpson 1990]. The inspiration of =2
artificial neural networks w)

Signal flow
} 0> Input
O
>
v Output

originates from observations of the

operation of biological nervous
systems. The Central Nervous Figure 2.19: A biological neuron [Gurney 1997]

System (CNS) in the human body consists of the brain and the spinal cord. The
Peripheral Nervous System (PNS) serves for communication with the rest of the body.
The brain is the central information processing and control unit. The smallest processing
element of the brain is the neuron. The human brain consists of an estimated 10'! nerve
cells, or neurons [Gurney 1997]. A biological neuron is depicted in Figure 2.19. It
consists of the cell body, synapses, dendrites and axon. The cell body is the core of the
neuron. The dendrites are the inputs to the neuron while the axon is its only output. The
output (axon) of a given cell serves as an input to other neurons in the brain. A synapse
is the point where the axon from one neuron connects to a dendrite of another. The
synapse determines the strength of such a connection (synaptic strength) and varies with

time and through the learning process.
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The computational neuron

The biological neuron can be abstracted into the computational neuron as depicted in

Figure 2.20.

" ¥
z f{net) e
1
Figure 2.20: Computational neuron Figure 2.21: Neuron with activation function

The neuron in Figure 2.20 receives 5 inputs (x;-xs). Each input is multiplied by a scaling
factor, the network weight. The network weights simulate the effect of the synaptic
strengths encountered in biological neurons. The weighted versions of the inputs are
summed to produce a resultant (net) input to the network. For the neuron depicted in the
figure, the output equals the net input. Alternatively a mathematical function can be
used to translate the net input to an output value. The function used to perform such a
mapping is termed "activation function" and can be seen as the neuron transfer function.

A neuron incorporating an activation function (f(net)) is depicted in Figure 2.21.

Typical activation functions are: step, linear, saturated linear, logistic sigmoid,
hyperbolic tangent, etc. The activation function is also referred to as squashing function
because most activation functions "squash" the value of the net input to the interval [0

1] or [-1 1], depending on the span of the function values on the.y-axis.

The first formal definition of an artificial neuron was proposed in 1943 by McCulloch
and Pitts [McCulloch 1943]. It is known as the McCulloch-Pitts neuron (MCP) or
threshold-logic unit (TLU). It receives binary inputs and has a step activation function.
The drawback of this architecture is that its weights need to be adjusted by the user, for
a given task to be performed. They also have to be known for a given classification
problem, i.e. the mapping from the problem domain to the neuron internal parameters
must be known. The MCP neuron is not capable of learning by example and adapting

itself in an automated manner.
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In 1962 Rosenblatt introduced his Perceptron [Rosenblatt 1962], a single-neuron neural
network that was able to learn by experience and adjust its weights autonomously. It
was similar to a MCP neuron in many ways and its innovative feature was that it was
able to leam‘by experience. The differences between the Perceptron and the MCP
neuron are that the Perceptron is not restricted to binary inputs and that it incorporates a
learning algorithm. Apart from these they are very similar and the single-neuron
network depicted in Figure

2.21 can illustrate both a MCP

Scatter diagram

and a Perceptron providing that
the activation function is a step 07k ' ’

function. o6l

Consider a linearly-separable

two-dimensional classification

problem as shown in Figure
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problem is termed as linearly- Figure 2.22: 2-class linearly separable classification
separable if the two classes can be separated by a straight line in 2D, a plane in 3D or an
(N-1)-dimensional hyperplane in the case of an N-dimensional classification problem. A
Perceptron is always capable of classifying linearly-separable .data by finding a linear
decision boundary. It is guaranteed to find a solution in finite time if one exists, i.e. if

data is linearly-separable (Perceptron Convergence Theorem [Minsky 1969, 1988]).

The Perceptron léarning rule (weight-update rule) is given by the equation:

wi(t+1) = wi(t) + 1 e(t) xi(t) , eq” (2.7)

where:

¢ 1 is the learning rate (0<n<1)

% Wij(t) is the network weight of the it input at time instant t

% e(t) is the error defined as: e(t) = x{(t) - x;(t) eq" (2.8)
superscripts @ and d stand for actual and desired network outputs respectively. The
permitted values for e(t) are {-1,0,1} '

% x;(t) is the input value received at the i input at time instant t
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The MultiLayer-Perceptron

The MultiLayer-Perceptron (MLP) is a neural network architecture consisting of

multiple layers of simplé perceptrons incorporating non-linear activation functions.

X1 ~
h :

};1 };2 YD 1 . In 1969 Minsky and Papert

4 R
0 1 1 4 published a book entitled
i v 2 % L. "Perceptrons: an introduction to
Y = X, ® X computational geometry"
[Minsky 1969] where they

N Ty
DT Le .-" 1W Xz stressed that a single-neuron
'. neural network could not solve

Figure 2.23: lllustration of the XOR problem

(including truth table) v ‘ the XOR problem, depicted in

Figure 2.23. The book had a negative influence and impeded neural network research
for some years [Wilkes 2001, URL 12]. Research actions in solving the XOR problem
lead to the introduction of multilayer networks consisting of more than one ﬁeuron
organised in different layers. The XOR problem can be solved'using three perceptrons,

each one trained separately, as seen in Figure 2.24.

Figure 2.24: Three-neuron network solving the XOR problem
Perceptrons 1 and 2 are classifying the two sub-problems constftuting the XOR problem
using two sfraight lines and neuron 3 is combining the tasks of the first two neurons to
achieve classification of the XOR problem. Using such a configuration to solve the
XOR probleni is not practical since each network has to be trained separately to solve
each sub-problem and there is no algorithm achieving automated learning for the
network as a whole. Perceptrons 1 and 2 are in principle separate neural networks

performing a pre-processing task for the 3" neural network.
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One of the architectures introduced to solve the above problem was the MLP. The
requisites for an MLP are:
+ Each processing element must have a non-linear activation function.
% Each activation function must be differentiable throughout its range.
+ A method of credit assignment is necessary to distribute the error at the output
throughout the network. '
An MLP having N inputs and n, outputs is depicted in Figure 2.25. It is a two-layer
network where wj; are the 'weights
Wk i between the inputs and the hidden

layer (1 layer) and Wij are the

72 weights between the hidden layer
23 yi  and the output layer (2" layer). It
: must be noted that the left-most
- layer (input layer) depicted is not
an active layer and is only used as a
N — buffering layer to transfer the
Figure 2.25: Two-layer multilayer perceptron inputs to the hidden layer. This is

why the network depicted is a two-layer and not a three-layer network. Multilayer
Perceptrons are trained using the backpropagation method which is based on a
generalisation of the Perceptron learning rule. Standard backpropagation is a gradient
descent algorithm. There are a number of variations on the basic algorithm which are

based on various standard optimisation techniques.

MLPs are alternatively termed feedforward neural networks because of the forward-
only flow of information from input to output, i.e. no feedback loops. They are also
backpropagation neural networks because of the backpropagation of error from output

to input, as dictated by their learning algorithm.

Neural Network Learning

There exist three paradigms of neural-network learning namely supervised learning,

unsupervised learning and reinforcement learning.

Supervised learning is characterised by supervision by a teacher. The teacher possesses
the knowledge required in a specific problem domain and gives feedback to the neural

network regarding its performance. Such feedback (error signal) is used by the network
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during the training process in order for the network parameters to be adjusted for
optimal performance. Examples of supervised neural networks are the simple and multi-

layer perceptrons presented earlier.

In contrast to the supervised learning approach, the other two paradigms do not involve
a teacher in their learning process. In reinforcement learning the learning of an input-
output mapping is performed through continued interaction with the environment in
order to minimise a scalar index of performance [Haykin 1994]. Although there is no
teacher, an external critic is used to convert a primary reinforcement signal received

from the environment into a higher quality reinforcement signal.

Unsupervised ‘or self-organised learning does not require a teacher or critic to oversee
the learning process. Learning is based on a task-independent measure of the quality of
the representation that t he network has to achieve. S uch networks are used for d ata-

mining.

Review of the use of ANNs for Biomedical Applications

One of the great motivations behind moving towards automated ECG interpretation and
diagnostics is that manual analysis of long-term (24 h) ECGs is labour-intensive and
prone to inter-observer variability. Computer techniques have been developed in order
to facilitate visual analysis, e.g. by condensed printouts of various signals and trends
[Lagerholm 2000]. With this type of presentation the operator usually can analyze a 24-
hour -recording in 20-40 minutes provided that no complex arthythmias exist
[Lagerholm 2000]. The use of automated systems for detection of arrhythmias
considerably reduces the amount of time the operator needs to spend. Several
commercial systems are available for long'-term ECG analysis [Lagerholm 2000].
However, their performance deteriorates markedly when noise and artefacts are present
and, as a consequence, an excessive number o f b eat c lasses is created which require
considerable manual editing [Lagerholm 2000]. Artificial neural networks have
significantly contributed in the process of automating ECG diagnostics. They have been
widely used for characterisation of cardiac signals and a few such studies are reported in

this section.

Kennedy et al [Kennedy 1997] employed ANNs (MLPs) for detection of Acute

Myocardial Infarction. The diagnosis of acute myocardial infarction in patients with
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chest pain is one of the challenges of emergency medicine while early diagnosis is
critical. In their paper [Kennedy 1997] they report overall accuracy, sensitivity and
specificity of 91.8%, 91.2% and 90.2% respectively when ANNs were tested on unseen
data. Linear Discriminant Analysis classification results on the same dataset were 81%,
77.9% and 82.6%. Using another test dataset from another hospital yielded ANN results
of 73.6%, 52.4%, 80% and LDA results of 65.1%, 28.5% and 76.9%. Examples of other
researchers that used ANNs for detection of myocardial infarction are [Yang 1994] and.

[Heden 1997].

Besides the MLP, other ANN architectures have been employed for ECG diagnostics.
Simon and Eswaran [Simon 1997] designed an ECG classifier using Decision-based
neural networks. The system was aimed at detecting the following cardiological
conditions: Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB),
Anterior wall Myocardial Infarction (AMI), Posterior wall Myqvcardial Infarction (PMI)
and normal ECG. Al-lFahoum et al [Al-Fahoum 1999] used radial basis function neural
networks, combined with wavelet transformations, for classifying cardiac arrhythmias.
Unsupervised neural networks have also been employed. Hu et al [Hu ‘1997] used Self-
Organising Maps (SOM) and Learning Vector Quantisation (LVQ) to construct a
patient adaptable ECG ciassiﬁer. Lagerholm et al [Lagerholm 2000] have also used
SOM to perform clustering of ECG complexes.

Apart from ECG trace classification, neural networks have also been used for noise
removal from ECG data [Paul 1997] and for ECG characteristic pc;int detection
[Bystricky 2002], e.g. for the detection of the T wave end: | |

A number of researchers have also investigated the Heart Rate Variability (HRV) signal
for diagnosis of certain conditions; and ANNs have been employed in such studies.
Acharya et al [Acharya 2004] have used MLPs for Heart Rate Variability (HRV)
analysis with the aim to classify cardiac beats into eight categories (normal sinus
rhythm (NSR),'leﬁ bundle branch block (LBBB), pre-ventricular contraction (PVC),
atrial fibrillation (AF), ventricular fibrillation (VF), complete heart block (CHB),
“ischaemic/dilated cardiomyopathy and sick sinus syndrome (SSS)).

To conclude it is emphasised that neural networks have been very successful and widely

used for ECG diagnostics. It has been shown that ANNs for specific issues can perform
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better than both experienced cardiologists and ruled-based criteria [Lagerholm 2000],
e.g., in detecting acute myocardial infarction from the ECG [Hedén 1997]. A first
generation of ANNs have also been implemented in commercial electrocardiographs

[Yang 1994].

2.7.2 Knowledge-Based Systems

In the 1960’s, early researchers in Al believed that the best approach to problem solving
was the development and use of general purpose problem solvers, that would be able to
offer solutions in a wide variety of fields [Patterson 1990]. The limitations of such
systems, that were based only on a few laws or axioms, led to the introduction of
knowledge-based systems. It was realised that the use of systems incorporating
specialised expert knowledge in a specific domain was a much more powerful Way to
tackle complex problems. Feigenbaum [Feigenbaum 1977] emphasised that the real
power of an expert system comes from the knowledge it possesses rather than the

specific inference schemes and other formalisms it employs.

A knowledge-based system is any system which performs a task by applying rules of
thumb to a symbolic representation of knowledge, instead of employing more

algorithmic or statistical methods [Jackson 1990].

An expert system is a computer program that represents and reasons with knowledge of
some specialist subject with a view to solving problems or giving advice [Jackson
1990]. Expert systems form a subset of the broader family of knowledge-based systems.
In contrast to expert systems, a knowledge based system, although based on human
knowledge, does not necessarily incorporate any expertise in. fhe specific domain of

application.

Two more deﬁnitions, presented below, are useful as part of the discussion of KBS:

% Knowledge acquisition is the transfer and transformation of potential problem-
solving expertise from some knowledge source to a program [Buchanan 1983].

% Knowledge representation is concerned with the way in which information might be
stored in the human brain, and the possibly analogous ways in which large bodies of
knowledge can be formally described for the purposes of symbolic (non-numeric) '

computation [Jackson 1990].
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The most common form of architecture used in knowledge-based and expert systems is
the rule-based system [Patterson 1990]. According to this approach, the knowledge
representation is achieved using rules of natural language. Rules consist of an
antecedent ("IF" part) and a consequent ("THEN" part). Examples ofsuch IF-THEN

rules are given below:

IF temperature is HOT, AND moisture is HUMID THEN comfort is VERY LOW.
IF Blood Pressure is VERY HIGH THEN raise alarm AND prescribe medication

Linguistic values are presented in bold. Variable names are given in italic. The first rule
involves two variables in the antecedent combined by an "AND" operator, while in the
output only one variable is used. This example could be used for modelling the comfort
of a human being in a specific location. The second rule includes only one variable in
the antecedent but its consequent gives two outputs. The output of the rule is related to
actions to be taken and resembles more a decision-making/control scenario rather than a
modelling scenario. Significantly more complex rules, having a large number of

variables in the antecedent and consequent parts can be employed.

Brief History of KBS and Expert Systems
A basic block diagram of an Expert System is depicted in Figure 2.26:

user | (_._.....“..W..\
: Infarence Enging \ .
| ' Case History File f——
I Explanation module
e/
|
|
I Knowledge 8;150
fnput |
— Working Momory
1O interface
Qutput \.-......]m.....—/ .
— T
—_—t —
Learning module -

e

- Figure 2.26: Illustration of an Expert System [Patterson 1990 pp331]

The first expert system was DENDRAL, developed at Stanford University in the late

1960s [Patterson 1990]. This system was capable of determining the structure of
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‘chemical compounds. DENDRAL used heuristic knowledge obtained from experienced
chemists. During tests, DENDRAL discovered a number of structures previously '

unknown to expert chemists. -

Shortly after DENDRAL was completed, the development of MYCIN began at Stanford
University [ Patterson 1990]. M YCIN w as an e xpert sy stem for d iagnosing infectious
blood diseases and determining a recommended list of therapies. MYCIN’s
performance improved over sevefal years as more knowledge was incorporated in the
system. Tests had indicated that MYCIN’s performance had reached or exceeded that of

experienced physicians.

Two other early expert systems used in medical diagnostics were PUFF and
INTERNIST. PUFF [Aikens 1983] was a diagnostic expert system for pulmonary
diseases based on MYCIN. INTERNIST [Pople 1975], developed in the 1970s, was a
medical diagnosis tool that contained nearly 100,000 relationships between symptoms
and diseases. More recent expert systems used in biomedicine were BTDS, RESAC and
a system for detection of breast cancer. BTDS (Brain Tumours Diagnostic System)
[Wang 1990] was developed to aid in diagnosing the causes of brain tumours from
computed tomography pictures. RESAC (Real Time Expert System for Advice and
Control) [Linkens 1990], [Greenhow 1993] provided interactive advice and control
during surgery. It focused specifically on the control of anaesthesia and had been
embraced by human anaesthetists as they were confident to follow its suggestions.
Finally, Morio et al [ Morio 1989] developed an expert s ystem for early d etection o f
breast cancer. The system could undertake a conversation with a woman who was
anxious about breast cancer. After listening to her symptoms, the system would present

its conclusions and suggest courses of action to be taken.

Examples of early expert systems in other fields included PROSPECTOR, a system for
assisting geologists in the discovery of mineral deposits, and R1 (aka XCON), a system
used by the Digital Equipment Corporation to select and configure components of

complex computer systems [Patterson 1990].

Expert Systems have been very useful in formulating the knowledge of human experts.
In many fields there are only a few human experts and because of their rarity, the

workload can be too much for them. For instance, in the case of industrial plant fault
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diagnostics, a human expert may have to overlook many plants in different géo graphical
locations. Coding the knowledge of such an expert to an ES allows duplication of the
human expert’s knowledge to many locations. The ES can also be used to train new
experts and will be a tool that will never retire as is the case with human experts. Upon
retirement of a human expert, the knowledge will be lost if not passed on to other

humans.

Expert Systems and more broadly Kﬁowledge-Based systems have also been used for
ECG interpretation in order to achieve accurate diagnosis through modelling of the
physician’s ability in diagnosing ECGs. A small sample of such studies is: [Stockman
1976], [Xiong 1983], [Mylopoulos 1983], [Shibahara 1983], [Tsotsos 1987], [Kundu
1993], [Kundu, Nasipuri 1994], and [Kundu 1994].

2.7.3 Fuzzy Logic Theory
Fuzzy sets and fuzzy logic theory were introduced by Zadeh [Zadeh 1965]. The strong

point about fuzzy systems is that they can combine human expertise together with
sensory measurements and mathematical models. This section will present background

and terminology of the field of Fuzzy Logic.

Classical (crisp) Sets and Fuzzy Sets

If Q is the universal set, or universe of discourse, containing all the possible elements

involved in a particular problem, a crisp set 4 within Q is a set that has clear

boundaries. I'ts elements have a well defined property. There are three main ways of

defining a crisp set 4. These are:

a. The list method where A is defined by listing all 'of its members.

b. The rule method where A4 is defined by specifying the properties that each ofits
members must have. '

c. The membership method where a membership function pa(x) is introduced to
denote whether an element x belongs to 4 or not. In crisp sets, this membership

function is a discrete one and can only take two values, either 0 or 1. This is

illustrated below:
lifxeA
_ ’ " (2.9
ha(x) {o ifxeA ' (29)
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Because of this crisp membership, crisp sets are unable to describe certain situations
such as when sets do not have clear boundaries i.e. an element may belong to more than

one set. To overcome this, fuzzy sets were introduced.

A fuzzy set A4 is a set where the membership of any element x of the universal set in 4 is
described by a continuous membership function taking values in the interval [0, 1]. For
every element x the pair (x, pa(x)) can be formed containi'ng the element and its
corresponding membership degree. In general for a fuzzy set 4 we can write:

A={(x,palx)) /x €eQ} . eq" (2.10)
The value of the membership function pa(x) determines if the element belongs to the
fuzzy set A and to what extent. It determines a degree of certainty i.e. degree of truth.

This should not be confused with the probability of x belonging to the set 4.

Types of Membership Functions

Three types of membership functions will be considered in this project. Two of them,
the triangular and trapezoidal, are piecewise linear functions. The third type is the
Gaussian membership function which is used for extra smoothness but is more complex
in shape.

a) Triangular membership function

(%)

A

v

>
ap a as

Figure 2.27: Shape of a triangular membership function

The shape of the triangular membership function, as seen in Figure 2.27, is described by

the following straight line equations:

-

0 X<aq,
X—4 a <x<a,
=14~ : eq" (2.11)
3
P a,<x<a
. 0 X 2a,
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b) Trapezoidal

1 /

A 4
=

a; d a3 [

Figure 2.28: Shape of a trapezoidal membership function

The shape of the trapezoidal membership function, as seen in Figure 2..28, is described

by the following straight line equations:

0 X <aq,
x—4 a <x<a,
a,—q
px)=11 a,<x<a, eq" (2.12)
i a,<x<a,
a,—a,
L 0 X2a,
¢) Gaussian
. (x-c)? 0
It is given by the formula: zu(x) =exp(- = ) eq (2.13)
o

where ¢ denotes the centre of the bell-shaped curve and o denotes the standard

deviation.

Crossover Point

Consider Figure 2.29 below containing two trapezoidal (left-most and right-most) and a
triangular membership function (middle). This figure is used to illustrate the concept of
the crossover point. The points where the membership functions meet (at X = {25, 75})
are called crossover points. The degree of membership at the crossover points is, in this

case 0.5 but this is not necessarily the case in fuzzy systems.
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Figure 2.29: lllustration of the crossover point

The importance of the crossover point is that it marks the point at which, for a particular
membership function, the certainty of belonging changes. For membership degrees
higher than the crossover point the certainty of belonging to a particular membership
function is higher than the certainty of not belonging. For membership degrees lower

than the crossover point the opposite happens for the certainty of belonging.

Logical Operators

Boolean L ogic operators can be applied on crisp séts. The standard and most widely
used ones are the intersection, union, and complement operators. These operators are
defined below in terms of Set Theory. If we consider two crisp sets A and B and the
universal set Q then the definitions are of the form:
1. The Intersection operator (AND)

ANB={x|xe Aand x e B} eq" (2.14)
2. The Union operator (OR) ,

AuB={x|xerrxeB}l . eq" (2.15)
3. The Complement operator (NOT)

A={x|xe¢ 4, xeQ} eq" (2.16)

For two binary variables A and B the truth tables for the AND, OR and NOT operators

are given below:
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Table 2.1: Truth table for AND Table 2.2: Truth table for OR Table 2.3: Truth table for

operator operator complement operator
A | B | AND A | B | OR A | NOT
0({0] 0 0/0] 0 | ol 1
0]1 0 0]1] 1 ] 1 0
110 0 1{0] 1
1]1 1 11 1

Boolean Logic operations can also be used to manipulate and combine fuzzy sets. For

two fuzzy sets 4 and B the above three operators take the form:

1. Intersection (or conjunction) operator (AND)

Hang (¥) = () A p1p (%) ; | eq (2.17)
2.. Union (or disjunction) operator (OR)

Haop ()= py(X)V pg(x) ' eq" (2.18)
‘3. Complement operator (NOT)

150 =1 1,(x) eq” (2.19)

A fuzzy intersection operator can be implemented by a "minimum" or a "product"
operator. For two fuzzy sets A and B, the expression "A N B" (or "A AND B") can be
implemented as min(A,B) or prod(A,B). Similarly the union operator (A U B) can be

implemented using a "maximum" operator max(A,B).

Figure 2.30 illustrates the three operators for the cases of two-valued logic (crisp logic)
and multivalued logic (fuzzy logic). It can be seen that in the latter case, the sets A and
B are represented as membership functions and the figure depicts how the classical

operators are applied on fuzzy membership functions.
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Figure 2.30: Illustrates the logical operators for crisp and fuzzy logic [MathWorks Fuzzy]

Fuzzification and Defuzzification

» Fuzzification is the conversion of a numeric input into a fuzzy input. It maps a crisp
input x € Q into a fuzzy set 4 in Q. Set 4 can be a fuzzy set, like the ones discussed
earlier in the chapter, or a fuzzy singleton. The membership function for a fuzzy
singleton is as follows:
1 ifx=x

eq” (2.20
0 otherwise q )

u(x) = {
i.e. the membership is 1 only at the point x; and zero elsewhere. ‘

Defuzzification is the conversion of a fuzzy quantity into a crisp quantity. Several
defuzzification methods exist such as: the maximum membership, the mean of

maxima, the centre of gravity methods etc.

Fuzzy Rules Processing

The two different types of fuzzy rules processing are the Mamdani-type and the

Sugeno-type. The general form of the two types of rules is given below:

Mamdani: R’ IF X) is Ajj and x;is Ajpand ... and Xy, is Aijn THEN y; = B;,

Sugeno: R IF X;is Ajjand XpisApand ... and X, 1S Aim )
’ THEN y; = f(X1, X2, .., Xm), €q" (2.22)

where:
* (X1, X2, ... Xm) are the inputs to the system,

" yisthe output
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*  Ai1, Ap, Aim, Bjare linguistic labels such as: zero (ZE), negative small (NS), positive
big (PB) etc.

= fxix2, ..., Xm)=Co+ cl'xl + CyXp + ... + CuXp , 1.€. a linear function

» R'denotes the i rule in the rule-base.

=. i=1,2,... M, where M is the number ofrulés.

An example of each of the above two types of rules, for a SISO system (e.g. static

exercise bicycle keeping constant heart rate), would be:

Mamdani: IF heart rate is positive-big (PB) THEN make pedal torque positive-small

(PS). ; '

Sugeno: IF heart rate is positive-big (PB) THEN make pedal torque equal to 1 Nm.

It can be seen that in the Mamdani-type ‘of fuzzy rules processing, both the antecedent
(IF) and the consequent (THEN) parts are fuzzy while in Sugeno-type the conseQuent
part is not fuzzy but a linear mathematical function. This means that in the latter there is
no defuzzification operation.

A Mamdani-type controller can be seen in Figure 2.31 below:

Fuzzy

Rule Base
!

Fuzzy inference

v

plant

\4

Defuzzif®

A 4

Fuzzif®

A 4

engine

Figure 2.31: Mamdani-type fuzzy controller and plant
For a Sugeno-type controller the figure would look very similaf with the difference that

the defuzzification box would not be present. The “Fuzzy Rule Base” block shown in

Figure 2.31 represents the knowledge about the process under investigation.

Fuzzy systems using the Sugeno-type of fuzzy rules processing are alternatively termed
fuzzy TSK (Takagi-Sugeno-Kang) [Takagi 1985] systems from.the names of the people
that introduced it. The physical meaning of the Sugeno-typé rule presented earlier is that
when the input variable x is constrained to the fuzzy range characterised by the IF part

of the rule, the output is a linear function of the input variables. The TSK fuzzy system
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can be viewed as a piecewise linear function, where the change from one piece to the-
other is smooth rather that abrupt [Wang 1997]. This makes the TSK . fuzzy system
appropriate for piecewise linear modelling. Piecewise linear modelling is a non-linear
modelling approach that uses multiple linear models. The problem is divided into
partitions and a linear model is fitted in every partition. A simple fuzzy logic system

example illustrating the concepts presented above is provided in Appendix B.

2.8 Summary

This chapter provided the relevant theoretical background needed to support this thesis.
It presented information on Electrdcardiography and the ECG signal. It discussed ECG
preprocessing issues including noise removal and focused on the production of the
Signal-Averaged ECG (SAECG) signal used in this study. It also discussed the process
of ECG feature extraction that will be used to produce features that quantify the cardiac
changes related to hypoglycaemia. ECG features that were used in a clinical study for
identification of patients with the Long QT syndrome were presented. AutoRegressive
modelling and the use of AR coefficients were also discussed as an alternative way, to

that of feature-extraction, for ECG representation.

A review of relevant biomedical equipment was also presented. This review-addressed
the practical problem of measuring glucose and detecting hypoglycaemia in relation to
the relevant devices. Since the ECG is involved in our approach of detecting
hypoglycaemia, ECG monitoring devices were also presented. The section mainly
focused on commercial devices as opposed to prototypes. Hypoglycaemia detection
systems and also glucose monitoring equipment, both early and modern versions, were
discussed. A few different types of commercial ECG monitors were also included. By
considering this section it is realised that there is no established solution for
hypoglycaemia detection, in the form of a continuous non-invasive monitoring system.
The methodology for hypoglycaemia detection proposed in this thesis could, if

appropriately enhanced and extended, contribute in the solution of this problem.

Moving to the classification part of this work, statistical classifiers that would be
appropriate for ECG trace classification were discussed. Such classifiers were the
Mabhalanobis and k-Nearest Neighbour. Moreover, Artificial Neural Networks were
presented including early architectures, as well .as the MLP which lies among the most

widely used. The use of ANN in biomedical classification problems and specifically in
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the domain of ECG diagnostics was reviewed. A number of successful and promising
studies employing ANN were included. Knowledge-based systems were discussed next,
including both Expert Systems and Fuzzy Inference Systems. A review of such systems

for ECG diagnostics was also included and their importance was emphasised.

To conclude this chapter, it is stressed that ECG feature extraction has been extensively
carried out in previous studies and appears to be a wise choice to employ it in this thesis
for ECG representation. Moreover Artificial Intelligence tecfmiques, both ANN and
KBS, have been successful in medical diagnosfics and will be used in this thesis to
achieve ECG classification into normal traces and those corresponding to
hypoglycaemia. The next chapter will present the data acquisition equipment and the

dataset utilised in this work.
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Chapter 3

Data Acquisition Method and Datasets

3.0 Introduction

This chapter provides information about the data used in this project and also the data
acquisition equipment utilised. Data-sets consist of paired samples of ECG records and
their corresponding glucose levels. Data from spontaneous hypoglycaemia were used in
this project. They originated from Type 1 adult diabetic patients recruited by the
Diabetic Clinic of the Royal Hallamshire Hospital in Sheffield.

3.1 Online ECG Databases

The "Physionet" [URL 13] resource for research on physiological signals contains a
large number (approximately 19) of online databases [URL 14] of ECG signals
accompanied by annotations by clinical experts. A few of these databases were relevant
to this research, namely the European ST-T Database [Taddei 1989, 1991, 1992], the
Long-Term ST Database [Jager 1996, 1998, CiC98, 2000, 2003] and the QT database -
[Laguna 1997]. The drawback of using such databases was that there was no glucose
information to accompany the ECG records. Moreover the data of the online databases
were not necessarily originating from diabetic patients. These created the need for
customized ECG-glucose acquisition for this work and other related research. The data

acquisition equipment and data-set are described in the following sections.
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3.2 Data Acquisition Equipment

3.2.1 Portable Ambulatory System for ECG acquisition

It is advantageous to record ECG signals using an ambulatory system at the patient's
own environment instead of doing so in a hospital. A portable ambulatory system
(Hypoglycaemia On-line Monitoring Ensemble (HOME)) [Harris 2000] has been
developed for the needs of the diabetic clinic at the Royal Hallamshire Hospital. A
Hewlett Packard (HP) 200LX pocket PC attached to a single channel high gain

amplifier with a serial data interface has been used, as seen in Figure 3.1.

Figure 3.1: Hypoglycaemia On-line Monitoring Ensemble (HOME)

It can record high resolution Y-lead ECG data for 1 minute every 15 minutes. It was
used to record data overnight to aid the studies on nocturnal hypoglycaemia. The
recording time was limited to a maximum of 10 hours by the battery life of the ECG
recorder and the memory of the HP computer. Acquisition was starting at 23:00 and
finishing at 7:00. The data was downloaded to a PC in the morning where off-line

processing such as fdtering and signal averaging could take place.

ECG data were recorded only from the Y-lead of the high resolution 3-lead orthogonal
ECG. Ideally all three leads of the orthogonal ECG or all twelve leads of the standard
ECG would be recorded. This was not done because of limited processing power and
storage space in the HOME system. It was assumed that glucose variations are affecting
the whole of the heart which means that less leads could be used. Moreover the flow of

current in the heart is downwards hence most changes will happen on the Y-lead. Hence
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it was assumed that changes in the cardiac function due to hypoglycaemia would be

satisfactorily reflected on the Y-lead so data from just this lead would be sufficient.

3.2.2 MiniMed Continuous Glucose Monitoring System (CGMYS)

The optimal way of measuring a subject’s glucose is by taking a blood sample. This can
be done by pricking the finger or, when
repetitive sampling is necessary, by
taking blood through an intra-venous
(i.v.) cannula. For the data-sets used in
this research, frequent sampling was
necessary hence an iv. cannula would
have been used. This is only convenient
for studies held in a hospital environment
but is not possible for studies carried out
in the patient’s home. The Medtronic
MiniMed CGMS system, shown in
Figure 3.2, is a portable glucose meter Figure 3.2 MiniMed glucose meter
that was used to overcome this problem.

A probe is inserted in the subcutaneous tissue of the tummy area and measures glucose
in the tissue every 5 minutes. The probe is inserted upon a visit in the hospital and the

patient can go home with the sensor and carry out his/her normal daily routine.

The difference is that MiniMed CGMS is not measuring glucose in the blood stream but
in the interstitial fluid (ISF) i.e. the fluid in the connecting tissue between cells.
Although ISF glucose readings closely mimic blood glucose readings, the latter is the

optimal and most valid way of measuring glucose.

A limitation with measuring glucose in the subcutaneous tissue is that there exists a
time-delay in glucose variations between the blood stream and the tissue which is
approximately 10 minutes. It has been reported to be 9 minutes in humans [Hoss 2001],
and between 5 and 12 minutes in canines [Rebrin 2000]. The delay is corrected by the
software that accompanies MiniMed. Such a time-delay may be variable and could
possibly depend on the rate of change of glucose. It is expected to be smaller in slow

changing blood glucose but is expected to increase if the glucose is changing rapidly.
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The above time-delay is another reason why ISF glucose readings are inferior to blood

glucose readings, since the accuracy of the delay correction could be questioned.

Another limitation of the MiniMed glucose meter was that the minimum value it could
record was 2.2 mmol/lt. There were cases where the glucose was falling below this
value but these were only recorded as 2.2 mmol/lt. This is illustrated in Figures 3.5
(RHS) and 3.8 for two of the patients. For patient 202 (Figure 3.5) the glucose variable
was saturated at the minimum value of 2.2 mmol/lt 'for records 41-58. The same
happened for records 18-29 and 31-33 of patient 204. In many cases, interesting
dynamics of the glucose variable may have been lost because of this sincé any variation
below 2.2 mmol/lt was recorded as 2.2 mmol/lt. Severe hypoglycaemic events,
sometimes reaching 1.5 mmol/lt or less, could not be identified because of this
limitation. All hypoglycaemic events below 2.2 mmol/lt had to be treated as having the

same severity.

The MiniMed CGMS system has to be calibrated using samples obtained from the
blood stream by use of a finger-prick test. Three blood samples per day are needed.
Calibration takes place at midnight. Calibration of the sensor should not happen during
or close to an acquisition peri'od since this could introduce disturbances on the glucose

readings’.

MiniMed CGMS has been approved by the U.S. Food and Drug Administration (FDA)
but it was advised that glucose readings by CGMS were intended to supplement, not
replace, blood glucose information obtained using standard home glucose monitoring
devices. Moreover, the FDA panel advised that, values of glucose produced by the

CGMS should not be used to make therapeutic decisions [URL 15].

More than 100 papers have been published, assessing various aspects of the CGMS

system and its use in various types of studies. A number of papers® have been published

5 Calibration at 0:00 overlapped, in our case, with the recording period (23:00-7:00). The calibration time
was not customisable in the CGMS used in this study. In order to overcome this problem, the CGMS
clock was shifted by 12 hours so that calibration would occur at 12 noon. The only drawback of this is
that the time signatures in the spreadsheet produced, containing the captured data, had to be corrected. |

_% [Gross 2000] , [Cheyne 2002], [Gross and Ter Veer 2000], [Gross and Mastrotrotaro 2000], [Monsod
2002], [Zavalkoff 2002], [Rebrin 1998], [Sharp 2001], [Shin 2002], [Steil 2000]
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that focused on the accuracy of the sensor. Gross [Gross 2000] reports good agreement
of the CGMS to blood glucose meter values, under conditions of home use, in patients
selected by their physicians as candidates for continuous monitoring. Unexplored areas
of the sensor behaviour should obviously exist; Cheyné [Cheyne 2002] reports that
"_studies‘suggest that subcutaneous glucose levels closely mimic blood glucose levels
with a lag time of only a few minutes. However, no studies have been published to show

how well the sensor performs during sustained or in recovery from hypoglycaemia."

Although issues about the agreement of MiniMed readings and blood glucose readings
can be raised, it must be realised that MiniMed CGMS is a niche glucose sensing
system and very valuable for research purposes. It lies among the only two devices that
have been approved by the FDA, the other being the GlucoWatch [URL 5] by Cygnus.
- The CGMS system is an invaluable tool for recording glucose profiles under
circumstances, such as home self-monitoring, where no other means of measurement is

available.

3.3 Dataset

The dataset used contains data on spontaneous hypoglycaemia. 'Forty three Type 1 adult
diabetic patients were recruited for two successive nights, with one patient returning for
a second acquisition which yields a total of 44 recordings. Unfortunately, not all data
recorded were usable. A few of the nights recorded could not be used due to various
problems such as failure of the ECG or glucose sensor, corrupted data due to noise and
other artefacts and also due to human errors by the patients in"handling the equipment
when not accompanied by a physician or nurse. A summary of all patients constituting

this dataset is included in Appendix A.

The ECG data were recorded at the patient’s home using the HOME system presented
earlier. One-minute worth of beat-to-beat recording was captured every 15 minutes
using a sampling frequency of 125 Hz. Each one-minute recording was signal-averaged
to produce a single SAECG cycle. Signal averaging was performed using the ECGLAB
toolbox, based in MATLAB, which will be presented in Chapter 4. Blood glucose was
recorded by the MiniMed CGMS system. The above acquisition was carried out for two
subcessive nights, each night contributing a maximum of 33 SAECG cycles, and

produced a data-set of paired ECG-glucose readings.
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The profile (background info) and raw ECG data for each patient was stored in 3 binary
files: one main file coﬁtaining the ECG data and two complementary files containing
additional information (metadata). The file extension for these three files was ".hom".
The file containing the raw ECG data had a filename with the prefix "ecg" followed by
the patient number (e.g. 202), followed by the ".hom” extension. The other two files had
prefixes "Dsgn" & "Exp" and the remaining part of the filename was the same as before.
To load the data for a given patient into thé ECGLAB toolbox, all three files had to be
present. (For patient 204 these would be: Dsgn204.hom, Ecg204.hom and
Exp204.hom.) When the data of a patient was filtered, signal averaged and annotated,
the results were stored in a MATLAB ".mat" file. Summary information for the
Sheffield data-set is presented in Table 3.1 followed by presentation of the ECG and

glucose profiles of sample patients.

Table 3.1: Summary information for the data-set

number of subjects’ : 43 +1

number of ECG leads ' 1 bipolar (YY" lead)

number of records per night =33

number of nights per patient 2

ECG acquisition equipment HOME system (125 Hz sampling freq)
glucose sensing method MiniMed CGMS .

Features extracted from (raw/SAECG) SAECG

The ECG cycles for patient 202 are given in Figures 3.3 and 3.4 for nights 1 and 2. The
ECG traces for each night are superimposed and plotted with 'different colours. These
two figures present the ECG changes during each night. More importantly, they provide
a clear presentation of the day-to-day intra-patient variability. There are extreme
differences in both the P and T waves between the two nights. The T waves of the
second night have lower amplitudes while the QRS complexes of the night are higher
than those of night one. In addition, the ST segments of the second night are almost flat
whereas the ST segments for the first night have a stéep slope and are fused with the T

wave upslope.
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Figure 3.3: ECG tracesfor 202-nightl (202A4)

202cd

Figure 3.4: ECG tracesfor 202-night2 (202)

The above two figures give a clear indication of the challenges involved in classifying
ECG traces, corresponding to euglycaemia and hypoglycaemia, even in the case of

using a single patient (i.e. no inter-patient variability).

The glucose profiles for the two nights of patient 202 are presented in Figure 3.5.
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Figure 3.5: Glucose profiles for 202—hight1 (LHS) and 202-nigh2 (RHS)

The horizontal dashed line marks the hypoglycaemic threshold at 3 mmol/lt. It can be
seen in the two figures that the first night started as hyperglycaemic (with glucose at
10.2 mmol/lt) since it was exceeding the upper threshold of 8 mmol/lt. There was a
steep descent of the glucose concentration during this night. The glucose profile of the
second night was very different. The night started with glucose being at the low-end of
the euglycaemic range (low-end defined as 4 mmol/lt) and went into a long period of
hypoglycaemia. These two different glucose profiles of patient 202 give some reasoning

for the big ECG differences between the two nights.

Based on patient 202 besides some other patients, it was observed that night-recordings
starting with glucose concentrations at the low band of the éuglycaemic range often
exhibited flat ST segments. On the other hand, some night-recordings starting with
higher glucose concentrations exhibited steep ST segments often fused with the T wave
ﬁpslope. These observatiohs were deduced by visually assessing the ST segments as
opposed to using a feature extraction algorithm. Some example-cases are presented

below.

Both nights of patient 223A had flat ST segments. Night-1 started at 3.6 mmol/It with
glucose increasing during the night while night-2 started at 3.48 mmol/It and went
‘through a long period of hypoglycaemia. Both nights of patient 229 had flat ST
segments and they both went into hypoglycaemia. The first night started at 4 mmol/lt

and the second started as ;hypoglycaemic with glucose concentrations at 2.26 mmol/It.

Both nights of patient 228A had quite flat ST segments although the glucose
concentration at the start of both nights was high, being just over the hyperglycaemic

threshold of 8 mmol/lt. Night-1 went into hypoglycaemia towards the end of the
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recording. Night-2 did not go into hypoglycaemia but had big glucose fluctuations. This
patient was the only exception having flat ST segments while the glucose was high at

the start of both night-recordings.

An example of a night-recording starting as hyperglycaemic (at 17.4 mmol/It) that
exhibited steep ST segments fused with the T upslope was 201A-nightl, depicted in
Figure 3.6.

201 A-night!

Figure 3.6: ECG tracesfor 201A-nightl

The second night of this patient started as hyperglycaemic, at 10.12 mmol/It, and also
exhibited steep ST segments. Another example of steep ST segments in combination
with high glucose concentrations at the start of the night was 205-night2, starting
slightly over 8 mmol/It.

The ECG traces of patient 204 are presented in Figure 3.7. This patient experienced
very clear T wave flattening and QT prolongation in response to hypoglycaemia. Such
ECG changes are the ones dictated by the research hypothesis. The glucose profile of

this patient is presented in Figure 3.8.
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Figure 3.7: ECG tracesfor 204
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Figure 3.8: Glucose profilefor 204

ECG-glucose profiles for more patients of the dataset are presented in Appendix A.

3.4 Summary

This chapter focused on the presentation of the data acquisition equipment used and the
dataset utilised in this study. The equipment consisted of the CGMS glucose sensor and

the custom-made ECG acquisition system (HOME). The data-set contains events on
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spontaneous hypoglycaemia. Relevant details and the relevant paper publications of the
studies under which the datasets were generated, were presented. Some comments and
observations on the nature of the ECG and glucose profiles included in the dataset were
provided. The next chapter focuses on ECG feature extraction presenting both the

methodology and results.
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Chapter 4

Feature Extraction and Analysis of SignaIQAveraged

Electrocardiogram Signals

4.0 Introduction

This chapter presents the methodology and results related to the feature extraction
l process undertaken in this research. Firstly the MATLAB toolbox (ECGLAB) that was
used as the main software platform for ECG processing is introduced. The issue of
defining an appropriate hypoglycaemic threshold is then raised, followed by the
presentation of the overall methodology for developing a hypoglycaemia detection
system. The sub-processes and components of the overall system are then outlined,
namely the feature extraction and classification of ECG traces. The classification of
ECG traces is gfouped into two different approaches: (i) the .approach of using static
pattern classification of ECG features with no temporal information incorporated
(Chapter 5) and (ii) the approach of classifying ECG traces based on the time series of
the ECG features used (Chapter 6). '

ECG representation was carried out by either using direct ECG feature extraction or by
AutoRegressive (AR) modelling. The former describes each ECG trace using time-
interval or morphological features and the latter represents each ECG trace by means of
AR coefficients. S ection 4 .4.1 presents the relevant algorithms that are necessary for
detection of the ECG characteristic points. Once the ECG characteristic points have
been defined, a comparative study of geometric methods for annotation of the T wave
end is included. Then the assessment of morphology of the T wave is presented. Next, a
number of ECG features are presented and some analysis of their usefulness in relation
to hypoglycaemia is carried out. Following these, the autoregressive modelling of post-
QRS ECG segments is discussed. This is an alternative apprdach to that of using
individual ECG features, for ECG representation.
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4.1 TheECGLAB® toolbox

ECGLAB® [Ireland 2001] is a custom-made ECG processing toolbox, running in
MATLAB that has been developed by RH Ireland for the needs of the studies on
spontaneous and experimental hypoglycaemia7. ECGLAB has a graphical user interface
and it can display raw and Signal-Averaged ECGs. It allows signal averaging to be
performed provided that the corrupted records are discarded manually, and allows
markers to be set manually on the Signal-Averaged ECG (SAECG) records. This
toolbox was also used in this research, as a tool for viewing and annotating ECGs and
mainly as a platform for developing new algorithms, implemented in MATLAB. Two

screenshots from ECGLAB are presented in Figures 4.1 and 4.2.

Set 1 Record 21 at 0401 Averaged Beat (blue). Ist deriv (black) & 2nd deriv (green)

Set 1 Record 22 at 04.16

Figure 4.1: ECGLAB screenshot displaying raw (beat- Figure 4.2: ECGLAB screenshot displaying a
to-beat) ECG SAECG cycle with 2nd derivative information

plotted (green) and vertical markers set.
The left figure displays raw ECG trains before the averaging process while the right
figure displays a SAECG cycle with second derivative information plotted in green and

with vertical markers (red vertical lines) set by the user to mark the Q, S and T end.

4.2 Choice ofhypoglycaemic threshold

In order to define the medical conditions of euglycaemia (normality) and
hypoglycaemia, for the purposes of this research, a hypoglycaemic threshold must be
selected. A threshold lying in the interval [2.5 3.5] mmol/It has been used in various
studies. A threshold of 3.5 mmol/It has been used by Harris et al [Harris 2000], while a
threshold of 2.5 has been used by Robinson et al [Robinson 2004] in their studies on

7ECGLAB was developed externally and is not distributed as a commercial toolbox with the MATLAB

software package (Mathworks Inc).
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hypoglycaemia. In our case, thresholds of 2.5 and 3 mmol/lt were used. The choicé ofa
threshold to define hypoglycaemia is not an easy one to make. A threshold had to be
chosen bearing in mind that the data from the two classes would have to be classified by
a neural or statistical classifier which is not the same situation with that of a clinical
study. The threshold should be chosen so that the task of fhe classifier would be eased.
The two classes formed should be distinguished just by using ECG features
corresponding to these two classes. In some cases, data belonging to the ambiguous
range of glucose values between euglycaemia and hypoglycaemia was excluded in order
to show more abrupt changes of ECG features between the two classes. This transition
region bétween euglycaemia and hypoglycaemia was normally in the interval (2.5 4)
mmol/lt when a threshold of 2.5 mmol/lt was used and in the interval (3 4) mmol/lt

when a threshold of 3 mmol/lt was used.

A second threshold was also necessary; this is the threshold between euglycaemia and
“hyperglycaemia which is the condition of abnormally high glucose levels. The choice of
such a threshold is not very critical compared to the hypoglycaemic threshold. After

consulting our medical collaborators this was chosen to be 8 mmol/It.

4.3 Hypoglycaemia Detection Approach

In this research work, a methodology was proposed according to which a diagnostic
system can be implemented for hypoglycaemia monitoring. The proposed approach for

hypoglycaemia detection is presented in Figure 4.3.

» Class :Nommal ECG

o ECG | Festuns| Classifier |oup
tn
represen = Class 2. Abnormal ECG

R R T T T LY

! Providedonly ---:v | Glucose
| duting training 1~ :
of classifier ! mfo

..............

Figure 4.3: Feature Extraction and Classr‘j'icatfon System

The proposed system consists of an ECG representation stage in cascade with a
classification stage. After the appropriate preprocessing and filtering, the ECG is fed to
the ECG representation stage. (The system as depicted in Figure 4.3 receives a

preprocessed and filtered ECG and hence an ECG preprocessing stage is not presented
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as part of the system.) In the representation stage, the ECG signal is described
numerically in an appropriate manner so that it can be classified in the following stage.
Two approaches were used; the first one was to extract ECG features to be used for
ECG representation and the second was to achieve ECG representation by means of AR
coefficients. The output of the representation stage (ECG features or AR coefficients)
was fed to the classifier, either a neural network (Multi-Layer Perceptron (MLP)), a
statistical classifier (Linear Discriminant Analysis (LDA) or k-Nearest Neighbour
(kNN)) or a knowledge based system (expert system or fuzzy inference system). During
the test/monitoring phase, the classifier would classify thevinput vector fed as either
hormal or abnormal corresponding to hypoglycaemia. In the training phase, glucose
information would also be available for the classifier. The glucose variable informs
about the euglycaemic/hypoglycaemic state. It is used to provide the targets for the
supervised classifiers (MLP, LDA, kNN) or alternatively to aid the construction of the
rule base of the KBS. '

4.4 ECG representation by extraction of ECG features

This section presents the feature extraction of ECG signals. Feature extractionis the
process of extracting parameters (or features) from-a recorded signal. In our case A
features are devised to describe certain p hysiological r esponses on the ECG. F eature
extraction can take place in the time domain, which was the focus of this thesis, in the
frequency domain, or simultaneously in both the time and frequency domains using
time-frequency localisation techniqués such as the Short-Time Fourier Transform
(STFT). In the time domain, both time-interval and morphological features can be
extracted. Time-interval features simply describe the duration of a component of the
signal while morphological features can describe aspects such as the symmetry, the area

under a curve, the presence or non-presence of a component.

4.4.1 ECG characteristic points

As discussed in Section 2.3.2, each ECG cycle consists of a number of ECG
characteristic points (sometimes referred to as "ECG signiﬁcant points"). The
characteristic points most relevant to this research are: (i) the Q point, R peak, S point,
which are the onset, peak and offset of the QRS complex and (ii) the T onset, T peak
and T offset. These characteristic points are necessary for the process of extracting ECG

features since the definition of ECG features is based on these points.
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Detection of the ECG characteristic points

All algorithms discussed in this section were designed to work on SAECGs since the
‘ feature extraction process was carried out solely on SAECGs. Raw (beat-to-beat) ECGs
were only used to produce the .signal-averaged cycles and feature extraction of the raw
cycles was not carried out. Therefore, the algorithms were not tested on raw ECG

signals as this was beyond the scope of study.

Automatic detection of the R peak

This algorithm detects the temporal location of the R peak in SAECGs. Although
established algorithms exist for the detection of the R peak [Balda 1977], [Moody
1982], our own code w as d eveloped. T his was done firstly b ecause most e stablished
algorithms are proprietary and were not found freely available at the time that this
algorithm was developed and secondly because design of such an algorithm provided a
deeper insight into ECG feature extraction. Annotation of the R peak was necessary for
all ECG features using this ECG characteristic point in their definition (i.e. RT, RTapex
features). The R detection algorithm developed for this project is given below in

pseudocode® form:

LOAD current ECG record
Calculate 1°° derivative of ECG record
FIND min & max of 1°° deriv and store min_deriv_index &
max_deriv_index
Calculate difference: min_deriv_index - max_deriv_index
IF differehce > 80msec
Reduce min_deriv_index by 40Omsec
END )
FIND new min of 1°° deriv (after above reduction)
FIND max of portion of ECG lying between max_index & min_index (this

is the R peak)

In the pseudocode, “min_deriv_index” and “max_deriv_index” describe the temporal

location of the extrema of the 1% derivative. The difference (min_deriv_index --

8 Operations such as: calculating the length of arrays, calculating sampling intervals, printing messages in
MATLAB command window etc are not included in the pseudocode since they are straightforward

operations that do not contribute in the understanding of the operation of the algorithm.
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max_deriv_index) is positive for upright QRSs and negative for inverted QRSs. If the
difference is greater than 80 msec then the min and max indices found will not
correspond to the QRS complex. The 80 msec threshold was chosen after investigation

on our dataset.

The min and max indices correspond to the points of inflection (2™ derivative = 0) to
the left and right of the R peak. If a T wave higher than the QRS complex exists then its
peak and its points of inflection may be detected instead of those of the QRS. By
calculating the difference between the two points of inflection it is inferred whether they
belong to the T wave or the QRS complex. The T wave being a wider wave in time,
with a 1% derivative not being as steep as that of the QRS, will have points of inflection

further apart than the QRS will.

ECG annotation algorithms are normally tested by compaﬁsbn to manual annotations
produced by clinical experts. Manual R peak annotations on our dataset were not
available so the R detection algorithm had to be assessed by visual inspection9. Visual
inspection involved the assessment of the accuracy of an annotation superimposed on
the curfent ECG trace and displayed on the visual display unit. The R detection
algorithm presented here was tested visually on all ECG traces used in the stuciies

carried out in this work and was annotating correctly the R peaks.

The objective for our R detection algorithm was to design a method that would work
satisfactorily on the data used in this project as opposed to producing a robust R
detection algorithm to be used for generic R annotation. Hence our algorithm was not

tested on other ECG datasets.

A SAECG record (p203rec41) is presented in Figure 4.4. It depicts the detection of the
R peak (marked by a black dashed line) on an ECG record that includes a T peak higher
in amplitude than the R peak. The 1% and 2" derivative information are also plotted in

black and green respectively.

? carried out by C Alexakis
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Figure 4.4: ECG trace exhibiting a T wave higher than the QRS. R peak annotated correctly by the R
detection algorithm

By employing criteria based on the Ilst derivative of the ECG signal, the algorithm
correctly recognised the R peak, even in the presence of a T wave higher than the QRS
complex. In a normal ECG cycle, the QRS is the component with highest amplitude and
hence easy to detect. The algorithm was not tested on beat-to-beat ECG traces. The

latter may be more difficult to annotate as there is more contamination by noise.

Algorithm for detection of the temporal location of the T peak

This algorithm detects the temporal location ofthe T peak in SAECGs. The T detection
algorithm can detect the peak in the following cases:

1. normal T waves

2. inverted T waves

3. biphasic T waves

The algorithm was able to detect more than one T peak. In the case of biphasic T peaks
the algorithm detects two peaks, one in the positive and one in the negative phase.
(Inverted and biphasic T waves were discussed in Section 2.3.1.) The algorithm was
tested on SAECG traces from our dataset, having a sampling frequency of 125 Hz. The

pseudocode for the algorithm is given overleaf.

75



LOAD current ECG record

LOAD x coordinate of R peak (i.e. R peak temporal location,
calculated by R detection algorithm)

CALCULATE 1% and 2™ derivative of the ECG record loaded

PERFORM a forward search to find the 1°° point of inflection to the
right of the R peak

CALCULATE R104 point

FIND which is the rightmost between R104 and 1°° inflection point.
SET as startpt (starting point for T peak search) the rightmost
point found

Set T peak search interval from starpt up to 120msec before the end

of the ECG trace

FIND all possible T peaks (both +ve & -ve peaks are considered)
STORE in descending order all possible T peaks in peaks_array
$ CHECK T peak candidates found for validity
number of valid_peaks = 0 % initialise to 0 -
loop_counter = 0 % initialise to 0 .
WHILE number of_ valid_peaks < 2
INCREMENT loop_counter
GET current T peak candidate (according to loop counter) from
peaks_array (i.e. peaks_array{(loop_counter))
FIND points of inflection immediately to the left and right of T
peak
CALCULATE temporal difference between points of inflection found

ACCEPT T peak candidate based on conditions below:

-1. Existence of points of inflection to the left and right of the
T peak.

2. change of sign of 1lst derivative immediately to the left and
right of T peak candidate.

3: inflection point temporal difference € [16 121] msec

4. inflection point Voltage difference < 400 mV

5. absolute value of 2“ derivative at T peak > 2mV

END of WHILE
STORE T peak candidate with highest absolute amplitude

The algorithm works by scanning the post-QRS section of the SAECG trace, i.e.
detection of the R peak is a pre-requisite for this algorithm. The forward search starts at

the R104 (104 msec to the right of R peak) or at the first point of inflection after the R
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peak, whichever occurs later. The T peak search ends 120 msec before the end of the

ECG trace.

Once a T peak candidate is found, the following acceptance criteria are applied to

decide whether the identified peak is valid:

1. Existence of points of inflection to the left and right of the T peak candidate.

2. Change of sign of 1% derivative immediately to the left and right of T peak
candidate.

3. Distance between the left and right points of inflection lying in the interval [16 121]
msec. (The left and right points of inflection considered are the ones immediately to
the left and immediately to the right of the T peak.)

4. Voltage difference (i.e. y axis difference) at the points of inflection must Be smaller
than 400 mV.

5. The absolute value of the 2™ derivative of the ECG trace at the x coordinate where

_ the prospective T peak appears must be greater than 2 mV. (This criterion is
necessary to distinguish between ECG components (such as small undulations) that
comply with the above criteria but have a very small absolute value for the ond

derivative at the peak detected.)

If a second T peak is detected that complies with the above criteria, it is kept only if it
exceeds 60% of the amplitude of the highest peak. The highest peak is considered to be
the main T peak. Figure 4.5 illustrates an example of correct T annotation in a record

where the ST segment has greater absolute amplitude than the T peak.

The figure depicts the ECG trace in blue and the 2™ derivative signal in green. Dotted
blue vertical markers denote the position of the points of inflection to the left and right

ofthe T péak. The vertical green marker denotes the position of the T peak. Despite the

fact that the ST has greater amplitude than the T peak, the algorithm has correctly

identified the latter.
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Figure 4.5: T annotationfor patient 216 record 41. (BLUE: ECG trace, GREEN: 2nd derivative)

T wave End Detection

As stressed in Chapter 2, detection of the end of the T wave constitutes a major
algorithmic problem in the field of ECG annotation due to the ambiguity of location of
the T wave end under noisy signal conditions, disturbed post-T-wave baselines and the
like. A number of existing geometric methods were adopted to perform T end
annotation for the needs of this work, namely the tangent method (Maximum Slope
Intercept or MSI), the Peak Slope Intercept (PSI) and the Fitting method. A brief
theoretical background for these algorithms was given in Chapter 2 (Section 2.3.3). The
above three algorithms were implemented in MATLAB using the ECGLAB toolbox as

a platform.

Tangent Method or Maximum Slope Intercept (MSI)
This method finds the point ofthe T wave downslopel0having the steepest tangent and
marks the end of the T wave at the point where the steepest tangent line meets the

isoelectric line1l. The pseudocode for the tangent method is given overleaf.

I0or upslope in the case ofan inverted T wave

1l horizontal line at 0 volts
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LOAD current ECG record
LOAD T peak coordinates
CALCULATE 1% and 2™ derivative

IF T wave is normal (i.e. upright)

FIND minimum of 1°% derivative on T downslope
ELSEIF T wave is inverted

FIND maximum of 1°% derivative on T downslope

END

CALCULATE the point where the tangent line meets the isoelectric
line to find temporal position of T end.

STORE T end coordinates

After the algorithm is executed, the R coordinates and the T end coordinates are used to

calculate the RT interval according to the tangent method.

Peak Slope Intercept (PSI)

This method marks the end of the T wave according to the intersection of the isoelectric

line with the line defined by the T peak and the point of maximum slope (inflection
point) on the T wave downslope. The pseudocode describing the PSI method for

marking the T wave end is given below:

LOAD ECG cycle
LOAD T peak coordinates
CALCULATE 1°% and 2™ derivative

IF T wave is normal (i.e. upright)

4 FIND minimum of 1°% derivative on T downslope

ELSEIF T wave is inverted '
FIND maximum of 1°% derivative on T downslope

END

CALCULATE the point where the straight line (defined by the T peak
and the point of inflection on the T downslope) meets the
isoelectric line to find temporal position of T end.

STORE T end coordinates
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After the algorithm is executed, the R coordinates and the T end coordinates are used to

calculate the RT interval according to the PSI method.

First order fitting method (FIT)
This method marks the end of the T wave by fitting a straight line on the T downslope.

The T end is defined as the point where the line fitted meets the isoelectric line. In the
implementation of the method for the needs of this work the range of data on which the
straight line was fitted spanned from T peak up to the point of inflection on the T

downslope. The pseudocode for this algorithm is given below:

LOAD ECG cycle
LOAD T peak coordinates
CALCULATE 1°% and 2™ derivative

FIND point of inflection on T downslope

SELECT range of fit from Tpeak to point of inflection on T downslope
Fit a 1°® order polynomial in a least-squares sense (using polyfit

function)

CALCULATE the point where the fitted straight 1line meets the
isoelectric line to find temporal position of T end. ‘

STORE T end coordinates

In a similar manner a second order polynomial can be fitted. Fitting polynomials of
higher orders is not advisable since such polynomials will closely follow the shape of
the T wave downslope and may mask any prolongations of the QT interval. A second
order fitting method was included in the RT comparative study presented in Section

44.2.

The MSI method relies on a single point on the T downslope to define the T wave end
while the PSI method relies on two points and the fitting method relies on a whole
section of the downslope. The fact that the MSI method only relies on one point does
not mean that it is inferior to the other algorithms. Reliance on a single point may
appear as if the algorithm will be mdre sensitive to noise but in practice the algorithm

proved to be robust, as it will be seen in the section where the algorithms are compared."

The following section presents a comparative study of geometric methods for T wave

end detection, and is directly related to the RTc, RTapexc and QTc features.
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4.4.2 Comparative study of geometric methods for marking the end of the T
wave

A comparative study of three geometric methods used to mark the end of the T wave is
presented in this section. By geometric methods we refer to algorithms that work on the
T dbwnslope using geometric criteria such as tangent lines or fitting of best straight
lines for marking the end of T. The first 3 algdrithms described in chapter 2 (msi, psi,
fit) are considered to be such methods. These methods comprise relatively simple
approaches, in concept, for marking the end of T. The motivation for this study was to
assess these algorithms specifically on our data and compare the algorithms in the
context of hypoglycaemia detection using the ECG. Moreover the tangent method has
been used, in a semi-automatic way'>, by our medical collaborators in their clinical
studies on the manifestation of hyboglycaernia on the ECG. Therefore, assessment of
this method and comparison with other similar methods would be useful to them as

well.

Five methods were considered in total. This includes the aforementioned three plus a 2™
order fitting method and a manual method for benchmarkfng the automatic ones.
Manual marking of the end of T is the current gold standard. The manual marking of the
ECG records was performed by a biomedical scientist'® familiar with ECG annotation.
The RT interval was used'®, instead of the traditionally used QT, in order to assess the
various algorithms. This is because identifying automatically the Q point on the ECG
can be a difficult task to perform especially in the presence of noise. The R point (the
peak of the QRS complex) can be detected a lot more easily and accurately than the Q
‘point. Moreover it is obvious that the RT interval still describes satisfactorily the
duration of ventricular repolarisation so it can be used as a predictor of this arrhythmia.
A few other researchers, e.g. [Pbrta 1994, 1998], have also considered the RT instead of
the QT. The RT is defined as the time interval from the R peak to the end of the T wave.

12 The T end marking was semi-automatic in the sense that a tangent line was used as a visual aid when
performing manual T end annotation.
12 Cath Davies from the Royal Hallamshire Hospital in Sheffield.

" R detection was automatic and T end detection was done manually by Cath Davies.
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Methodology for the comparative study
All the algorithms w ere implemented in M ATLAB using the’ ECGLAB toolbox as a

platform. The manual marking, in order to be blinded, was carried out on a blank
computer screen with no labelled axes or any sort of visual aids. The second order
fitting m ethod w as included b ecause it had not been found to have been tried in the
literature. A second order polynomial would follow more closely the T wave downslope
and it was suspécted to partly mask the prolongations in the RT. However, the range of
the T wave downslope used for fitting was small which means that the second order
fitting algorithm would not closely follow the downslope. We wanted to test this
algorithm and investigate the extent to which it could demonstrate prolongations in RT
or QT. Moreover it was easy to include the second order method in the study since its
implementation was largely based in the first order method. The way that the second
order fitting method works is by fitting a second order polynon'iial on the downslope of
the T wave. The root of the polynomial that occurs to the right of the T peak marks the
end of the T wave i.e. the end is marked as the point of intersection of the polynomial
with the isoelectric line to the right of the T peak. The other root, occurring to the left of
the T wave isignored. In this study the range of data on which the p olynomial w as
fitted, ranged from the T wave peak to the point of éteepest' tangent on the T wave

downslope. This was the case for both the first and second order fitting methods.

The above T end detection algorithms. were examined and compared using a few
different approaches. Firstly the graphs of RTs over time were inspected visually for
each algorithm. This way it was seen how each method behaved and the level of offset
(baseline level) of each one was identified. Identifying the offset indicated the degree of
over/under-estimation of the RTs by each algorithm. Correlation coefficients were also
used in order to identify the correlation between each of the methods. Bland-Altman
plots [Bland 1986] were used in order to examine the level of agreement between the

manual and each other method.

It has to be noted at this point that the RT intervals used in this study were not corrected
for heart rate. This was because we were interested in comparing the performance of the
algorithms. The algorithms were assessed according to how well they resembled the
manual method and not according to how well they correlated with glucose or how well
they could predict certain cardiac arrhythmias. So heart-fate-correction Wwas not

considered necessary. But even if correction had been applied, it would not have
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introduced any change since all RTs would have been corrected using the same
algorithm. RT intervals from all algorithms would have been divided by the same
number (RTc = RT / VRR) according to Bazett’s correction formula [Bazett 1920]. This

would effect as a form ofnormalisation which was not necessary.

Comparative Study Results

The diabetic patients used for this study were: 201 A, 203, 204, 205, 207, 208, 209, 215,
216, 222 and 227. Data exists for two nights (normally 66 records) for all patients
except 204 and 222 which gave single-night records due to problems during data
acquisition. This means that approximately 660 ECG cycles were used in this study.
Patients having inverted or biphasic T waves were not included in the study. Figure 4.6
illustrates the RT intervals produced by the five different methods for the first night of
subject 207. It can be seen that the manual method produced the longest RTs and the

second order fitting method produced the shortest.

207cd -1 st night

440
420
400 legend
% 380 Circles: manual
Diamonds: fit
i- 360 Reddots: psi
Bluedots: msi
Stars: fit2nd
340
320
300
5 10 15 20 25 30 35
record #

Figure 4.6: RT intervals by the 5 algorithmsfor 207-nightl
For each RT measurement method used, the mean and standard deviation of the RT
values over all patients and all nights were calculated. This gives an indication of the
overestimation or underestimation of the RT interval by each method. The results are

shown in the bar chart below (Figure 4.7):
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mean & std of 5 RT methods over all nights for 11
_patients

RTs (msec)

o e

1 2 3 4 5 6 7 8 9 10
LSeries1 347.3|19.74 | 320.8 | 17.47 | 318.2 | 15.98 | 304.1 | 14.26 | 295.8 | 13.09
man - fit - psi - msi - fit2nd -

0L

Figure 4.7: Mean and standard deviations across all patients, for the 5 Tend annotation methods

Bars labelled with odd numbers correspond to the mean values, while bars labelled with
even numbers correspond to standard deviations. The table incorporated in the figure

informs about the exact height of the bars.

It can be seen from Figure 4.7 that the manual method gives the longest RTs followed
by the first order fitting method, then by the peak slope intercept method, the maximum
slope intercept method (tangent method) and then by the second order fitting method
(man>fit>psi>msi>fit2nd). The psi and fit methods gave very similar results. This is

also apparent from the correlation coefficients between psi and fit.

Exceptions. The level of offset of the RT interval identified by each algorithm was
different but consistent across patients (man>fit>psi>msi>fit2nd). Nine exception's were
observed, in the above result, out of 'thé 660 records considered. They occur in the
following patients, among the 11 patients used:
= Patient 205-nightl: psi and fit longer than manual for records: 2, 3, 5.
= Patient 205-nght2: psi and fit longer than manual for records: 51, 54, 57, 59.
(For record 42 fit is slightly longer and psi is shorter than manual. This record was
not considered among the exceptions.)
= Patient 227-night2: psi and fit longer than manual for records: 39 and 46.
(For record 50 fit is slightly longer and psi is slightly shorter than manual. This

record was also not considered among the exceptions.)

Agreement among first derivatives of the RT methods

Although the first derivatives of all the methods agree in most of the cases,b i.e. all the

-methods ascend, descend and change direction in the same way, there have been
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observed some exceptions to this. One example is record 22 of patient 208-nightl. The
RT drops for the manual and second order fit method but rises for psi and fit. It almost

stays the same for msi. This is highlighted in Figure 4.8 below.

legend
circles: manual
diamonds: fit
reddots: psi
bluedots: msi
stars: fit2nd

14 '6 18 20 22 24 26

record #

Figure 4.8: RT by psi andfit increases while it decreasesfor manual andfit2nd

Correlation coefficients

Correlation coefficients were calculated for all methods. Correlation matrices were
produced for the 11 subjects. Each correlation matrix contains the correlation coefficient
of each RT measurement method with all the other RT methods. As an example, the

correlation matrix for patient 205 is given in Table 4.1 below:

Table 4.1: correlation coefficientsfor patient 205

p205S man msi psi fit fit2nd

man 1 0948 0.8255 0.8125 0.6062
msi 0.948 1 0.8515 0.8326 0.557
psi 0.8255 0.8515 1 0.9986 0.5112
fit 0.8125 0.8326 0.9986 1 051
fit2nd 0.6062 0.557 0.5112  0.511 1

Each method has a different offset but the differences between the methods are not
exclusively due to a difference in offset. This can be seen from the correlation

coefficients between the different methods. Ifthe differences between the methods were
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purely due to offset then the correlation coefficients would be equal to 1. But this is not

the case as seen in Table 4.1.

It must be mentiohed»here that the correlation coefficient p can only identify linear
relationships between two variables. Even if the correlation‘coefﬁcient does not indicate
so, a non-linear relationship may exist. Looking at the correlation of the manual
methods with all the other methods, it was observed that: the msi method had the
highest c orrelation with the m anual m ethod for 7 out o f 1 0 patients. F or the other 3

patients the fit2nd method had the highest correlation with the manual method.

The following rankings of the correlations, from highest to lowest, were observed
between the manual and the other methods: ‘

» p(man,msi) > p(man,psi) > p(man,fit) > p(man,fit2nd), for 3 patients

* p(man,msi) > p(man,fit2nd) > p(man,psi) > p(man,fit), for 3 patients

* p(man,fit2nd) > p(man,msi) > p(man,psi) > p(man,fit), for 2 patients

Comparison of T end methods using Bland-Altman plots

J. M. Bland and D. G. Altman [Bland 1986] have developed a visual method for
assessing agreement between two methods of clinical measurement. This method was -
included in this study to aid in the comparisons of the different RT algorithms. As
stressed by Bland and Altman [Bland 1986], the concept of good correlation should not
be confused with the concept of good agreement. Two measurement algorithms
measuring the same quantity should ideally agree in the readings they producé and not
just correlate well with each other. So generally the Bland-Altman plot is a more useful
tool than the correlation coefficient p when trying to identify agreement between two

methods.

A Bland-Altman plot for.comparing two measurement methods is basically a scatter
diagram. Each point of the x-axis is the average value between each pair of
measurements produced by the two methods studied. Each point of the y-axis describes
the difference between the pair of measurements. A scatter diagram of the differences vs
the average values is produced. Horizontal lines marking the mean and the +2sd

(standard deviation) limits are also included.
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Bland-Altman plots give an idea of how the difference and the spread of readings
between two methods change as the average RT between the two methods changes. The
Bland-Altman p lots t hat c ompare t he m anual m ethod with all the o ther m ethods, for

patient 201, are given in Figure 4.9.

Bland-Altman plot to compare RTmsi with the manual method Bland-Altman plot to compare RTpsi with the manual method
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Figure 4.9: Bland-Altman plots for patient 201A
The top-left plot examines the agreement between the manual methodA and the msi
method ahd the top-right examines the agreement between the manual and the psi. The
bottom-left compares the manual with the fit method and the bottom-right the manual
with the fit2nd method. The x-axis displays the average RT between the two methods
compared while the y-axis displays the difference in RT betv&;eén the manual and the
corresponding automatic method. The dashed lines mark the mean and +2sd limits. For
patient 201A all the data points, but one, lie within the 2sd lirﬁits. This happens for all
four plots of this patient. It can be seen that the difference between the manual and each
other method increases as the average RT increases. This means that the disagreement
" between the manual and each automatic method in turn increases as the length of RT to
be measured increases. This piece of information is not provided by the correlation
coefficient. To remove this trend from the graphs a logarithmic transformation can be

used, before the data is plotted.

It is apparent from the graphs that the mean difference (marked by the middle dashed
line) lies well above zero in all the cases. This is because of the different levels of offset

in the methods. If the agreement between the manual and each other method was very
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close, then the mean-difference-line should lie very close to zero. The best agreement is
found for patient 204 and for the psi and fit algorithms. For most of the patients the
magnitude of the difference is quite significant compared to the magnitude of the RT
intervals. Because Bland-Altman plots comprise a visual method for assessing
correlation and agreement, correlation coefficients were also useful since they express

the level of correlation numerically.

Final discussion on comparative study

The manual method gave the lohgest RTs for all patients and all nights. There were 9
cycles as exceptions to this, out of the 660 cycles studied. The tangent (msi) method
was the one that correlated mostly with the manual method according to what the
correlation coefficient indicates. The psi and fit methods correlate very well with each
other. The correlation coefficients between the two are the highest ones observed in the
study. The performance of the first order fitting method could i)(‘)ssibly be improved by
changing the portion of the T downslope used to fit the best straight line. Different
ranges could be used to optimally tune the algorithm. This was not undertaken due to
time constraints. Another fact observed was that the differences between the algorithms

were not purely due to offset as the correlation coefficient indicated.

There was a need to choose a T end detection algorithm to be used as part of the feature
extraction process. The automatic tangent method was chosen as the method to use.
This method correlated the highest with the manual method which is the current gold
standard. Moreover the semi-autoniatic version of the tangent method has been already
used for ménual feature extrabtion by medical experts [Ireland 1998, 2000] which

indicates that this method is already accepted in the medical community.
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4.4.3 Evaluation of the Symmetry and Morphology of the T wave

One of the main motivations in performing ECG feature extraction was to quantify the
level of symmetry and the morphology of the T wave. A number of features were
proposed and the relevant algorithms used to extract these features were designed.
Three novel features were introduced: the Half-Areas Ratio, the T wave skewness and
the T wave kurtosis feature. The latter two features were inspired from the 3 and 4™
central moments, used in statistical theory to evaluate the symmetry and peakedness of
distributions. In our case the definitions of skewness and kurtosis were adopted to

evaluate the morphology of the T wave.

Half-Areas Ratio (HAR) algorithm
This algorithm was designed for producing a basic symmetry ratio for the T wave. The

ratio of the areas to the left and right of the T wave was used and the feature was termed
HAR (Half-Areas Ratio). A similar symmetry feature had been used in the past by
Benhorin et al [ Benhorin 1990] to e valuate the symmetry ofthe T wave. B enhorin's
Symmetry R atio (SR) was different to our version (HAR) and was involving the ST
segment. As mentioned in Section 2.4.2, Benhorin's symmetry ratio was defined as the
ratio between the integrated area over SoTm and TmTo intervals (SR= SoTm/TmTo). In
our case we wanted to avoid involving the ST segment in the quantification.of T wave
symmetry. A symmetry measure was introduced that involved only the T wave portion,
enclosed by T onset and offset. The Half-Areas Ratio algorithm calculates the ratio of
the areas to the right and left of the T peak and can give us a simple measure of the
symmetry of the T wave. The HAR feature is given by the formula:

HAR= Arearys / Areays

If the two areas are equal then the ratio is 1. If the area to the right of T peak (Areagrgus)
is greater than Areay g then the ratio is greater than 1 and vice versa'”. Figure 4.10 helps
illustrate the concept behind the algorithm. Assuming an upright T wave, the two areas
involved are calculated as follows: the left-hand-side area (Areans) is left-delimited by

the vertical line going through Tonset, right-delimited by the vertical line going through

' Benhorin's symmetry used a ratio of the LHS upon the RHS area. We chose the inverse (RHS/LHS) so
that the HAR value would increase for T waves skewed to the right and decreaée for T waves skewed to
the left. This is in agreement with how the skewness of a distribution works and allows easier inspection
of feature values by a human observer.
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T peak, bottom-delimited by the isoelectric line and top-delimited by the ECG portion
corresponding to the T wave upslope. Replacing the Tonset by Toffset and the T wave
upslope by the downslope produces the definition of the right-hand-side area (Areagrgs).

HAR = Areagys / Areapys

AreaLHs :

Figure 4.10: Truncated T wave to demonstrate Half-Area Ratio

Figures 4.11 and 4.12 illustrate two T waves from patient 202-nightl (202A) that
possess the extreme values of HAR for the given patient. The onset and offset of the T

wave were calculated by the tangent method (msi).
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Figure 4.11: T wave of 2024 record 14 having a HAR value of 0.547
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Figure 4.12: T wave of 2024 record 16 having a HAR value of 0.6605

The HAR variation for this night shows only subtle changes. All T waves in the night
possessed a LHS area, greater than the RHS area. The change in T wave symmetry
according to HAR was small although the above night contained hypoglycaemic

records.

The HAR feature is dependent on the onset and offset annotations of the T wave. Using
different algorithms to mark the onset and offset of the T wave will yield different
values of the feature. For instance, if we consider two identical T waves, with the
second T wave having its end located a few msec to the right compared to the first T
wave, then the HAR value will be different for the two waves although they will have |
the same symmetry. In order to investigate the sensitivity of HAR to the annotation

algorithms, the feature was calculated, based on 3 different annotation algorithms.

Figure 4.13 illustrates the HAR feature values from patient 209 when the T wave offset
is calculated in turn by the three algorithms (msi, psi, fit) described in Section 4.4.1.
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HAR feature based on 3 different T end detection algorithms
(patient 209)
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Figure 4.13: HAR feature based on 3 different T end detection algorithms (patient 209)

The T onset is calculated by the msi algorithm (tangent method) to avoid introducing
algorithmic variations on the annotation of the onset. This allows investigation of the
effect of the use of different offset algorithms. It can be seen on the graph that the HAR
profile depends on the annotation algorithm used. Even if the same algorithm is used for
annotation of onset and offset, the existence of some variation will be possible. For
instance, the behaviour of the tangent method will be different on the T upslope and
downslope because they have different slopes. The following section discusses
approaches that were followed in order to reduce the dependence of the HAR algorithm

on the T onset/offset annotations.

Reducing the dependence of HAR on the T onset/offset annotations

A number of steps were taken to make the HAR feature (and also the skewness and
kurtosis features, presented later) as independent as possible to the T onset/offset
annotations. One approach was to make the feature dependent on only one annotation,
either the.onset or offset, instead of two. This could by achieved by defining the onset
and offset of the T wave in such a way that they\would lie at' the same amplitude (in
mV). This would define a horizontal threshold level and only the portion of the T wave
above this threshold would be used for symmetry/morphology calculations. This would
contribute in overcoming variations of the HAR feature due to the onset/offset
annotations being at different amplitudes. The point (either onset of offset) being at the
highest amplitude was extrapolated (i.e. projected) at the other side of the T wave. For
instance, if the T offset was at a higher amplitude than the T onset, then the T offset
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would be extrapolated on the T upslope and would define a new onset for the wave (T-

onset™"P),

The opposite was done when the onset was at a highef amplitude than the offset; in that
case the onset was extrapolated on the other side. What is achieved by the extrapolation
process is that the value of each of the three symmetry/morphology features depends
only on one annotation ( either o nset o f o ffset) rather than two. T he new o nset/offset
defined by projection from the other side of the wave, would only be used for the
purposes of calculating the HAR feature and the other two features assessing symmetry
(skewness, kurtosis). The extrapolated onset/offset would not be used for calculating

other features e.g. time interval ones (T-duration etc).

The above process is illustrated in Figure 4.14.
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Figure 4.14: An illustration of extrapolating the T onset on the T do.wnsl‘ope (p209 record 6)
- The figure shows the projection of T onset on the T downslope. The T onset annotation
lies at a higher amplitude than the T offset so it is the one to be projected on the other
side to define a horizontal threshold level. The extrapolated-HAR (HARx) feature for
this T wave will be calculated based on T-onset and T-offset™". When the T wave
offset lies at-a higher amplitude it is extrapolated on the T upslope to define a new

onset.
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A second approach used to evaluate the symmetry of the T wave based on the HAR
feature, with no dependence on the onset and offset annotations, was to use the point of
inflection on the T downslope to define the horizontal level. Only the portion of the T

wave above this horizontal level was used to calculate the symmetry of the wave.

In the approaches using a horizontal level to set a lower threshold for selecting the T
wave portion for morphology calculations, we were faced by problems due to low
sampling rates of the ECG signal. The closest ECG samples to the horizontal threshold
chosen, had a significant difference in amplitude between them, as illustrated in Figure
4.15 and would almost never lie at the same horizontal level. This partly defeats the
purpose of using a horizontal level as a step to improve the T wave morphology
calculations. Although the difference in amplitude between the onset and offset
annotations is reduced, it is not eliminated. Even for high sampling rates, the amplitudes
of the offset and extrapolated onset, or vice versa, will be similar but not identical. In
the case of our dataset the sampling rate was low (125 Hz) and the above problem was
more prominent. One solution to this would be to use interpolation for upsampling the
data to a higher sampling rate. Due to the low sampling rate in our dataset, the amount
of interpolation needed was high and this was, in some cases, causing some distortion to
the signal. Although the distortion was not severe, the approach of interpolating was not
followed. T wave symmetry changes can be subtle and even the slightest ‘distortion due

to interpolation could contaminate the features.

BoXplots are presénted in Figure 4.16 to allow comparisons of the three versions of the
HAR feature. The boxplot [Tukey 1977] is a very useful tool for data inspection and
will be used in the remaining of the chapter as part of the ECG feature analysis. A box
~ represents the inter-quartile range (mid-50% of the data) while the median is also
marked with a line across the smaller dimension of the box. The whiskers display the
extent of the remaining of the data. Outliers are represénted by "+" as seen on the graph.
The notches in the box are a graphic confidence interval about the median of a sample.
Box plots do not have notches by default. The use of notches is a feature of the boxplots

produced by the Statistics toolbox [MathWorks Statistics] in MATLAB.
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Figure 4.15 compares the three versions of the HAR feature for the conditions of
norrnality16 and hypoglycaemia. The LHS graph presents the raw feature, the middle
one presents the HAR feature after projection of the T onset or offset on the other side
(HARx) and the RHS figure presents the HAR feature when the T wave portion used is
selected by the point of inflection of the downslope (HARXIP). It can be seen that all
three features have similar behaviour. In all three cases there are big differences
between euglycaemia and hypoglycaemia and the feature changes appear to be
statistically significant, according to the notches plotted. There is no overlap of the
notches for the boxplots corresponding to normality and hypoglycaemia.
Hypoglycaemia also appears to have significantly larger range's vof values compared to
normality. Comparing the normal records for all three features, it is seen that all three
boxes are quite symmetric with the raw HAR feature having the largest range.
Comparing the hypoglycaemic records fo‘r all three features, it is observed that the
HARx and HARXIP features are significantly skewed to the left (i.e. bottom in this plot)
compared to the raw HAR feature which is slightly skewed to ‘the right (i.e. top in this

plot).
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Figure 4.15: Boxplots for the 3 versions of the HAR feature for patient 203 (both nights):
(a) HAR, (b) HARx, (c) HARxIP

'® Including hyperglycaemic data if present.
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Although the above boxplot was informative about the behaviour of the HAR feature, it
does not provide temporal information. In order to investigate the dynamic changes with
respect to time and in relation to the changing glucose, Figure 4.16 is provided. The top
graph presents the three versions of HAR vs time. The bottom graph presents the
glucose levels. Two successive nights for this patient are given. The vertical dashed line
in black splits the two nights. The horizontal dashed line in black, at the bottom graph

marks the hypoglycaemic threshold of 3 mmol/It.
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Figure 4.16: HARfeatures and glucose level versus timefor 2 successive nights ofpatient 203

The 3 versions of the HAR feature have similar performance with the HARx and
HARXIP being very close together. The graph indicates that this feature, in all its
versions, is a very informative one in relation to hypoglycaemia detection. The first
night was hypoglycaemic while the second was normal (including some hyperglycaemic
records). The HAR feature (all three versions) had very small variation for the second
night (RHS of'the vertical dashed line) while it had great variation during the first night

which was hypoglycaemic as can be seen from the glucose profile in the bottom graph.

It is emphasised that the performance of the various ECG features, as predictors of
hypoglycaemia, is expected to vary from patient to patient. The HAR feature for patient

227 (both nights) is presented in Figure 4.17. It can be seen that there are clear changes
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between the two clinical conditions, but the changes are not as prominent as those of
patient 203 presented in Figure 4.16. Comparing the three versions of the HAR feature
for patient 227, it is observed that the HARx was the worst version of the feature

judging by the overlap that the notches of the boxplot have.
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Figure 4.17: Boxplots for the 3 versions of the HAR feature for patient 227 (both nights):
(a) HAR, (b) HARx, (c) HARxIP

Assessing T wave symmetry using the concept of skewness

As part of the efforts to devise algorithms that will assess the T wave morphology, an
algorithm was designed that uses a normalised form of the 3™ central moment
- (skewness) to assess the symmetry of the T wave. An analogy was formulated that was
considering and assessing the symmetry of T waves in a similar way to how the
“symmetry of a statistical distribution is described by the normalised 3" central moment.
Skewness is calculated by dividing the 3™ centrai moment, about the mean, by the cube
| E(x—x)
3

S

of the standard deviation as described by the formula: 1 = eq" (4.1)

where E denotes the “expected value” operator.

This is the skewness of a random variable X with sample mean x and sample standard
deviation s. It d escribes the symmetry o f the distribution o f X. S kewness is negative

when the distribution is skewed to the left and positive when it is skewed to the right. A
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skewness of zero corresponds to a perfectly symmetric (i.e. Gaussian) distribution.
Skewness in this study is not used for quantifying the symmetry of the distribution of a
given ECG feature but rather to evaluate the s ymmetry ofthe T wave shape. The T
wave shape resembles the shape of a bell-shaped distribution which justifies the choice

of the concept of skewness to assess the symmetry of the T wave.

In order to evaluate its symmetry, the T wave component is truncated from the rest of
the ECG trace and is treated as a functional form. Its shape is treated as if it is the shape
of the frequency curve of a, highly-sampled, discrete distribution. The skewness of this
functional form is calculated and, effectively, we obtain a measure of symmetry of the T
wave. (We utilise the term frequency curve instead of probability curve because the T
wave curve originates from a sampled signal and, more importantly, it is not normalised

to have unity area underneath'’.)

Let us consider a random variable X. f{x) is the frequency of occurrence of X at value x
and Tx - f(x)dx ' eq’ (4.2)
desc;imi)es the area under the frequency curve. When the curve is normalised to have
unity area underneath (Tx- f(x)dx=1) then f{x) is referred to, as the probability

density function (p.d.f)) of x.

In our case, and in order to calculate the symmetry of the T wave, X describes the time
(x-axis variable) and f{x) the corresponding voltage of a given sample of the ECG trace

(y-axis variable). Using this analogy and for an analogue ECG signal, equation 4.2

Toffset
becomes: It -ECG(t)dt | eq" (4.3)

Tonset

where t describes the time at any time instant and ECG describes the corresponding
amplitude of the ECG trace (only for the T wave portion of the ECG) for this time

i=Toffset *
instant. In the discrete domain this can be written: ffi' ECG(t) ' eq" (4.4)

i=Tonset
Using this analogy, we are calculating the normalised 3" central moment of the T wave
sample points about the T wave peak and this leads to a new ECG feature for T wave

symmetry evaluation. The analogy used is illustrated in Table 4.2:

' The term probability curve refers to continuous distributions with unity area underneath.
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Table: 4.2: Analogy introduced to allow calculation of T wave skewness and kurtosis

Analogy

statistical theory ' assessment of T wave morphology

random variable X discrete time f; (sampling instants at which T

wave is sampled)

frequency of occurrence of X, (f(X)) T wave portion of ECG signal, ECG(t;) (mV)

mean of X temporal position of T wave peak

variance of X 2" moment of ECG sample poi1.1ts around the T
wave peak

standard deviation of X square root of the 2™ moment of ECG sample

points around the T wave peak

skewness of the distribution of X 3" moment of ECG sample points around the T
wave peak normalised by the cube of the standard

deviation

kurtosis of the distribution of X normalised 4™ moment of ECG sample points

around the T wave peak

According to the analogy, the mean value of the distribution corresponds to the T peak.
The standard deviation formula expresses the square root of the 2" moment of the ECG
sample points around the T peak (Grpeak), and the skewness expresses the normalised 3
central moment around the T peak. tryeak denotes the temporal position of the T wave
peak. The algorithm assessing the kurtosis of the T wave is based on the same analogy

and will be discussed in Section 4.4.3.

According to the above analogy, the skewness formula becomes:

N
Z (t: — tipeat)’ - ECG(t:)

i=1

/O'Tpeak3 eqn (45)

T skewness = =
> ECG(t:)

i=1 .

N
> (ti—tryear)” - ECG(t1) .
where Ompear = |- ’ eq" (4.6)

iECG(t:)

i=1

The analogy w as based on equations from population statistics (using true mean and
standard deviation) as opposed to the equations from sample statistics. When using

equations from sample statistics, and for a sample of N points, the denominator for the
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N N
above equations would be ZECG(ti)—linstead of ZECG(I.'), i.e. one degree of
1 1

freedom (DOF) would be subtracted. Our situation although being only an analogy to a
statistical problem, resembles a problem where the whole population is considered
instead of a sample of the population. The T-wave is abstracted as the shape of a true
distribution and not as a sample distribution producing an estimate of the true
distribution of the population. Each T wave shape assessed, purely describes itself and is
not an estimate of any other T wave. In other words, we know the temporal position of
the T wave peak instead of calculating it from the T wave data, which is analogous to

knowing the true mean of a distribution, in a statistical problem.

The behaviour of the skewness algorithm was tested experimentally. The choice of the
exact form of the skewness equation being the 6ne originating from population
statistics, was also tested. A perfectly symmetric T wave was constructed to investigate
the above. This was an artificially synthesized T wave but was based on real ECG data.
The upslope of a nearly symmetric-T wave (p203 record7) was chosen and its mirror
image, along the vertical, was produced. The two shapes were joined together to

produce a perfectly symmetric T wave. This is shown in Figure 4.18.

artifictally synthesized, symmetric T wawe
700 T T T ——

500+

400}

amplitude (mV)
w
Q
(=]

200

- 1
[4} 5 10 15 20 25 30
sample number

Figure 4.18: artificially synthesized T wave, exhibiting perfect symmetry

The HAR feature for this T wave was 1 as expected. The skewness feature (SKEW) for
this wave for N-1 DOFs (ie. sample statistics) was —6.9831-10"7 while it was
—6.9821-10""7 for N DOFs (i.e. true population statistics). It can be seen that the

100



A1 EIVWE T Ui v A%E 4 AV VAMENWLE ASAWWEA W WA VLAV SmA SeLLA v apaswYens
Aaiad o 4 WL ASOACLUVELL/AL VAL £ AJIML ) DAY WA WSS - fo) o o

dif/ferencé between the two values of skewness is negligible. Values of skewness in the
order of 107" are practically zero, which demonstrates that the skewness algorithm
assessed correctly the perfectly symmetric T wave corresponding to a theoretical
skewness value of zero. It also demonstrated that the choice of the number of DOFs did
not affect the result. This is due to the fact that the T wave shape assessed was not
normalised to have unity area. Normalising to unity area leads to a value of skewness in
the order of 10™° when using N-1 DOFs, while the skewness values using N DOFs

remains in the order of 107",

‘The skewness algorithm needs the T onset and T offset annotations in order to function. -
The onset and offset specify the subsection of the ECG trace to be used. The skewness
algorithm for calculating the symmetry of the T wave is illustrated in Figure 4.19 that
displays two truncated T waves of calculated skewness -0.049 and 0.352 respectively.
The data originates from patient 204 and the traces illustrated in the figure are records 9
and 26 respectively which exhibited the extrema of skewness for this patient. The T
wave in record 9 is slightly skewed to the left according to the skewness algorithm
while the T wave in record 26 is skewed to the right. The green line marks the T peak
while the black dashed lines to the left and right of the peak mark the onset and offset of
the wave respectiveiy. Taking in account the T onset and offset it is apparent from the
figures that the LHS graph looks quite symmetﬁc while the RHS one is skewed to the
right. Obviously the calculati.on of skewness depends heavily on the annotation of the T
wave onset and offset. For instance if the T wave offset on the RHS graph above was
marked a few msec to the left of its current position, the value of skewness calculated

would appear to be less positive.
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Figure 4.19: (LHS) p204rec9 (skew=-0.065); (RHS) p204rec26 (skew= 0.291)

In order to analyse this phenomenon, the skewness was calculated for each record of

patient 204 using 3 different T end annotations by 3 different algorithms, namely MSI
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(tangent method), PSI and FIT. This was a similar analysis to the one assessing the
effect of the T onset and offset annotations on the HAR feature. In order to allow
comparisons of the effect of T end, the T onset was calculated by the MSI algorithm in
all three cases. We are focusing on the effect of T end annotation on the calculation of
skewness rather than the effect of T onset annotation because the former is the one that
constitutes a more difficult algorithmic problem. Annotating the T onset is an easier task
since the waveform is likely to be less affected and distorted by dropping glucose.
Hence it is crucial to choose a T end detection algorithm that releases the full potential
of the skewness feature in evaluating the symmetry for the wave. For instance an
algorithm that overestimates the QT interval, i.e. it marks the end of T always to be to
the right of where it should be, will tend to present the T wave being skewed to the right
which will mask the real symmetry of the wave.

The skewness calculated using the three T end algorithms is tabulated in Table 4.3. The

table includes the record numbers and the glucose levels as well.

Table 4.3: Skewness based on three different algorithms of T end detection

{rec | dl skew msi | skew psi | skew fit
51848 0.183 0.632° 0.632
6 |8.48 0.302 0.415 0.415
717.09 0.233 0.451 0.451
8 |5.08 0.017 0.177 0.177

9541 -0.049 0.282 0.282
10 | 5.66 | -0.031 0.022 0.022
111 6.14 0.014 0.091 0.091
12 1 5.23 0.273 0.388 0.388
13 | 4.91 0.040 0.300 0.400
14 | 4.69 0.023 0.202 0.202
15 | 4.06 0.047 0.112 0.112
16 | 4.09 0.052 0.138 0.138
17 | 2.82 0.225 0.475 0.475
18 [ 2.20 0.259 0.503 0.503
19 [ 2.20 0.228 0.559 0.648
20 | 2.20 0.179 0.357 0.357
211220 0.220 0.436 0.544
22220 0.301 0.631 0.631
23 | 2.20 0.272 0.364 '0.364
24 | 2:20 0.040 0.133 0.218
25220 | -0.023 0.128 0.128
26 | 2.20 0.352 0.470 0.586
27 1220 0.306 0.419 0.419
28 | 2.20 0.181 0.289 0.289
29 | 2.20 0.274 0.386 0.386
30 ] 2.76 0.222 0.556 0.658
311220 0.035 0.122 0.122
32220 | -0.009 0.138 0.138
33 | 2.20 0.040 0.187 0.187
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The contents of'the table are also presented as a graph in Figure 4.20.

calculated skewness based on 3 different T end
algorithms

0.8

0.6
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Figure 4.20: Skewness according to three different algorithms of T end detection

It can be seen that the skewness calculated by the peak-slope-intercept (PSI) algorithm
matches very closely the skewness calculated by the fitting algorithm (FIT). The dc
component of the skewness calculated by the tangent method (MSI) is significantly less.
According to this algorithm the T wave appears to be negatively skewed (i.e. to the left)
in more samples than with the other two algorithms. The other two algorithms
overestimate the RT interval and hence they cause most T waves to be assessed as

skewed to the right.

In order to aid the investigation of the effect of the T end annotation on the calculation
of skewness, the correlation coefficient between glucose and the values of symmetry by

the three different T end annotation algorithms (MSI, PSI and FIT) is calculated. The

correlations are tabulated in Table 4.4.

Table 4.4. Correlation coefficients between glucose and skewness, based on three different

algorithms.
correl(gl,msi) correl(gl,psi) correl(gl,fit)
glucose -0.1311 -0.0041 -0.05814

The correlation coefficients calculated are very low for all algorithms but they suggest
that the skewness calculated by the MSI algorithm correlates less badly with the glucose

variable.
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Advantages of the skewness feature (SKEW) over the HAR feature

Both these features are used to assess the symmetry of the T wave. A question could
easily be raised as to why use the skewness feature and what are the advantages of this
feature over the simpler HAR feature. The limitation of the HAR feature is thét it
quantifies symmetry simply by using the areas of the T wave halves to the left and right
of the T peak. This feature will not detect the asymmetry of a wave whose halves to the
left and right of the T peak have the same area. On the other hand, the skewness feature
does not depend on the areas for assessing the symmetry and will distinguish the
asymmetry in the above example. This can be easily understood by considering the
simple illustration in Figure 4.21. The illustration depicts a piecewise linear
representation of the T wave. The LHS of the T wave is defined by a right-angle
triangle and the RHS by a trapezium joined with a right-angle triangle that simulates the
case when the T wave is skewed to the right. The points corresponding to the T onset,
offset and p eak are marked on the figure. By c onsidering the 1engths marked on the
figure (arbitrary units) the HAR value can be calculated: ’

Arearys = (9%10)/2 =45

Areagys = (10 + 2)*6/2 + (9*%2)/2 =45

HAR = Areapys / Areajys= 1 |

Calculating the skewness of the piecewise linear T wave'® v;re get 0.7804, which is
significantly different to a skewness value of zero that would correspond to a perfectly
symmetric T wave. The above value for skewness proposes a significantly skewed to
the right, T wave. It can be easily concluded that the HAR feature will fail to
" demonstrate the asymmetry o fany T wave that p ossesses equal areas to the left and
right of its peak. This introduces a need for a feature that will be able to identify such an

asymmetry. The proposed skewness feature demonstrates that it can identify such

asymmetries.

The skewness feature could prove a useful one in detecting T wave changes under
hypoglycaemia but it should not replace the HAR feature. The two features m easure
different quantities and could both be used in order to obtain a more complete measure

of the morphology of the T wave.

18 The shape in the figure was sampled at 0.0001 intervals for calculation of the skewness value.
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Figure 4.21: Piecewise linear representation of the T wave for comparison of HAR and SKEW

Reducing the effect of T onset/offset annotations on the SKEW feature

The approach that was used for reducing the dependency of the HAR feature on the
onset and offset of the T wave was also applied in the casé of the SKEW feature. Three -
versions of the feature were produced: the raw feature (SKEW), a version where the
onset or offset was extrapolated on the other side of the wave (SKEWx) and a version of
the feature that was using the point of inflection on the T downslope to define the
portion of the T wave to be used (SKEWXIP). Boxplots are presented in Figure 4.22 to

allow comparisons of the three flavours of the feature.
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Figure 4.22: Boxplots for the 3 versions of the SKEW feature for patient 227 (both nights) (a) SKEW, (b)
SKEWx, (c) SKEWxIP
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It can be seen from the graph that all versions of the feature have quite similar
behaviour. The range and inter-quartile range increases in all three cases, under
hypoglycaemia. For this patient, choice of one of the three features to be used will not

be crucial to the performance of a classification system.

Assessing T wave morphology using the concept of kurtosis
The kurtosis of a statistical distribution is caIéuIated by the formula:

B2 = i’:}’i eq” (4.7)

This is the kurtosis of a random variable X with sample mean x and sample standard
deviation s. It describes the degree of peakedness of a distribution, defined as a
normalized form of the fourth central moment. A distribution with a high peak is called
leptokurtic (y,>0), a flat-topped curve is called platykurtic (y, < 0), and the Normal
distribution is called mesokurtic (y,=0). y2 is the kurtosis excess [Kenney 1951] defined
as kurtosis minus three (y2 = B2 - 3). Since the kurtosis of the Normal distribution is 3,
using the kurtosis excess is more convenient since it is zero-valued for the Normal]
vdistribution. This justifies the subtraction of the value of 3 and the convenience of using

the kurtosis excess quantity instead of the kurtosis.

Similarly fo the skewness feature, the concept of kurtosis was not used for assessing the
shape of a distribution but instead for assessing the T wave shape through the analogy
introduced earlier. Again the T wave component is truncated from the rest of the ECG
trace and its shape is assessed in the same way that the probability curve of a probability
distribution is assessed using the kurtosis formula from statistical theory. The calculated

kurtosis of a given T wave gives a measure of the morphology of the T wave.

According to the analogy between the shape of a distribution and the T wave shapé,

presented in Table 4.2, the kurtosis formula becomes:

N
D" (ti—trpear)* - ECG(t:)
T kurtosis = - = / Grpear* eq" (4.8)
‘ Y ECG(r) ' |
I

Similarly to the equations used for calculation of skewness, this is the equation

corresponding to true population statistics (when the true mean p and true standard

deviation ¢ are used).
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Figure 4.23 illustrates the T waves corresponding to the minimum (LHS) and maximum

(RHS) kurtosis for patient 204.
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Figure 4.23: (LHS) p204rec22 (kurt=2.224) and (RHS) p204rec24 (kurt=2.464)

It is observed that the range of the kurtosis feature is very small (0.239) compared to its
mean value (2.385) but even differences in skewness of around 0.2 correspond to very
differing T wave morphologies as seen in the above figure. If we calculate the kurtosis
excess, it will be -0.615 for record 22 and -0.536 for record 24 which informs us that

both T wave shapes are classed as platykurtic.

The approach used for reducing the effect of onset and offset annotations on the
symmetry features were also applied to the kurtosis excess feature. The three versions of

the kurtosis excess feature are compared in the boxplot presented in Figure 4.24.

The figure suggests significant changes for all three versions of the feature in response
to abnormal glucose changes. The limits of the inter-quartile ranges change significantly
between normality and hypoglycaemia. The figure also suggests that T waves become

more platykurtic under hypoglycaemia which is in line with the research hypothesis.
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Figure 4.24: Boxplots for the 3 versions of the kurtosis excess feature for patient 203 (both
nights)

4.5 ECG features

Time-domain ECG features were extracted and used in order to represent ECG traces

for classification to be carried out. From a theoretical point of view, such ECG features

were discussed in Section 2.4. Some of the features listed below have been presented
already in this chapter in the sections where the relevant algorithms for extracting them
were presented. The ECG features that we considered, assessed and used were:

1. RR: this is an instantaneous measure of Heart Rate. Heart Rate variations are
possible under hypoglycaemia and hence the RR was considered as a feature.

2. RT: time interval from R peak to T wave end. The corrected version of this interval
(RTc) was mainly used.

3. RTc: Heart-Rate-corrected RT interval. This was chosen instead of QTc in order to
avoid possible variation due to-the Q point detection process. The R peak is easier to |
detect than the Q point and hence the annotation of the former is expected to be
more robust.

4. RTapex : time interval from R peak to T wave peak. The corrected version of this

interval (RTapexc) was mainly used.
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RTapexc: Heart-Rate-corrected RT interval. In certain studies, the RTapexc was
used instead of the RTc in order to avoid possible variation due to the T end
detection process. Detection of the T wave end can suffer from noise and artefacts
and becomes difficult under T wave flattening and presence of U waves. In order to
avoid such problems, the RTapexc was used to investigate whether it can still
highlight effectively the delayed VR process.

T-duration (Tdur): time duration from T onset to T offset.

T-durationc (Tdurc): Tduration corrected for heart rate.

T amplitude (Tampl): amplitude of the T wave from the isoelectric (0 Volts) level.
This is a significant feature since changes in T gmplitude are related to changes in
plasma potassium that occur under hypoglycaemia. The T wave amplitude is
expected to reduce under hypoglycaemia. Alternative ways of calculating the T
amplitude would be to use the ST segment as a reference instead of the isoelectric
level. Other approaches would be to use the ratio of Tampl/Rampl in order to
achieve some form of normalisation of the Tampl values.

T-area: Area under the T wave. The area is enclosed by the ECG trace, the
isoelectric line and the vertical lines defined by the T onset and offset markers.

T wave Symmetry (Half-Area Ratio (HAR)). This is a measure of symmetry of the |
T wave. It was used because T wave symmetry changes are observed under
hypoglycaemia. This feature was discussed in detail in Section 4.4.3.

T wave skewness. This is an alternative measure of T wave symmetry, as mentioned
éarlier. It was inspired by the 3™ central moment from statistical theory used to
calculate the skewness of distributions. In this study it is not used as a s tatistical
measure but using an analogy it is used to assess the symme‘;ry of the T wave. |
T'wave kurtosis. This feature was used to assess the peakedness of the T wa\;e and
was also inspired from statistical theory and more specifically the 4™ central
moment. Again it is not used as a statistical measure but, using the analogy, it is

used to assess the flatness of the T wave peak.

When extracting the above features, the R and T peaks were detected using the

algorithms presented in this c hapter. The T onset and o ffset w ere d etected using the

tangent m ethod (msi). An example o fthe set o f features extracted in most s tudies is

given in Table 4.5.
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Table 4.5: Extracted ECG features for patient 204

Record| gl HR | RTmsi |RTcmsi| Tdur | Tdurc | Tampl | Tarea | HAR|SKEW| KURTexc | RTapex | RTapexc
5| 8.48| 84.55| 291.38 | 345.89 | 100.88 | 119.75| 206.62 | 1536.83 | 1.49| 1.03 -0.33 232.00 | 275.41
6| 8.48| 83.30 [ 294.13 | 346.57 | 107.02 | 126.10 | 248.57 | 1937.30 | 1.48| 1.16 -0.15 232.00 | 273.36
7| 7.09| 86.97 | 297.79| 358.54 | 105.79 | 127.37 | 226.08 | 1737.40| 1.18] 0.77 -0.44 240.00 | 288.96
8| 5.08| 85.81| 297.92 | 356.28 | 122.20 | 146.13 | 368.19| 3304.47 | 0.86] -0.27 | - -0.60 240.00 | 287.01
9| 5.41| 86.70} 291.59| 350.52 | 122.20 | 146.89 | 404.66 { 3636.03 | 0.98 | -0.11 -0.60 232.00 | 278.88
10| 5.66| 95.56 | 283.54 | 357.83 | 118.78| 149.90 | 362.94 | 3133.20 [ 0.69] -0.74 -0.55 232,00 | 292.79
11| 6.14] 86.46 | 292.87 | 351.57 | 123.78 | 148.59 | 409.12| 3766.22 | 0.72| -0.60 -0.51 240.00 | 288.10
12| 5.23| 86.77 | 293.65| 353.14 | 106.16 | 127.66 | 201.02 | 1606.02| 0.95| 0.43 -0.53 240.00 | 288.62
13| 4.91| 87.77| 296.20 | 358.25 | 121.81| 147.33 | 391.82 | 3514.68| 1.26| 0.51 -0.53 232.00 | 280.60
14] 4.69| 84.48| 297.87 | 353.44 | 125.63 | 149.07 | 435.32 | 3962.74 | 0.83 | -0.32 -0.60 240.00 | 284.78
15| 4.06| 89.98 | 285.42 | 349.52 | 119.86 | 146.78 | 391.05| 3453.42| 0.76 | -0.47 -0.56 232.00 | 284.11
16| 4.09( 92.30| 277.29| 343.92 | 104.57 | 129.70 | 271.56 |{ 2161.09 0.78| -0.40 -0.61 232.00 | 287.74
17| 2.82| 88.12| 291.84 | 353.69 | 92.68 | 112.32| 132.84| 912.46 | 1.17| 0.74 -0.45 240.00 | 290.86
18] 2.20] 90.40] 295.01 | 362.11 | 98.98 | 121.49| 154.70| 1153.99| 1.26| 0.87 -0.33 240.00 | 294.59
19| 2.20| 86.86 | 290.00 | 348.94 { 100.46 | 120.88 | 168.75( 1275.51( 1.40| 1.02 -0.32 232.00 | 279.15
20| 2.201 89.10| 282.57 | 344.34 | 97.13 | 118.37| 171.53 | 1229.85| 1.07 | 0.49 -0.61 232.00 | 282.72
211 2.20] 92.09{ 290.14 | 359.45| 98.57 | 122,11 155.88 | 1159.65] 1.58 | 1.16 -0.25 232.00 | 287.42
22| 2.20| 88.53| 291.86 | 354.53 | 104.14 | 126.50| 157.15| 1185.12] 1.36| 1.09 -0.36 232.00 | 281.82
23| 2.20] 92.31| 294.11| 364.81 | 97.73 | 121.22| 127.94 | 962.25 | 1.22|. 0.88 -0.37 240.00 | 297.69
24| 2.20| 84.16| 300.01 ] 355.33 | 121.76 | 144.21 | 432.17 | 3982.23 | 1.05| 0.17 -0.53 240.00 | 284.25
25| 2.20| 86.82| 297.47 | 357.82 | 123.14{ 148.12 | 446.38 | 4002.90 [ 0.92 | -0.19 -0.60 240.00 | 288.69
26| 2.20| 84.54 | 294.02 | 349.00 | 98.69 | 117.15] 162.38| 1193.52| 1.26] 1.03 -0.30 240.00 | 284.88
27| 2.20( 91.03| 294.74 | 363.06 | 100.72] 124.06 | 179.40| 1262.76 | 1.16] 0.82 -0.32 240.00 | 295.62
28| 2.20] 86.74 | 288.66| 347.07 | 96.63 | 116.19] 162.56| 1184.09| 0.94 | 0.22 -0.62 240.00 | 288.57
29| 2.20| 88.92| 292.33 | 355.87 | 104.35| 127.04 | 215.67 | 1766.22] 0.87 | 0.25 -0.57 240.00 | 292.17
30| 2.76| 87.17| 290.94 | 350.69 | 105.43 | 127.08 | 208.13 | 1608.22 | 1.34| 0.96 -0.40 232.00 | 279.64
31| 2.20] 86.15| 302.17 | 362.07 | 123.68 | 148.20 | 404.52 | 3757.61} 0.72| -0.56 -0.55 248.00 | 297.16
32| 2.20] 90.59} 289.88| 356.19 | 123.52 | 151.77 | 390.61 ) 3531.06 ) 0.91}- -0.19 -0.60 232.00 | 285.07
33| 2.20| 88.88| 294.15| 358.01 | 124.84 | 151.94 | 413.89 | 3782.15| 1.04| 0.14 -0.56 232.00 | 282.37

Boxplots presenting the ECG features for patient 227 (both nights) are presented in

Figure 4.25. The versions of the features where no heart-rate-correction was applied

were excluded from the graph. In each subplot the LHS box corresponds to normality

while the RHS corresponds to hypoglycaemia. The y-axis label informs about the ECG

feature plotted. This subject shows moderate feature changes under hypoglycaemia and

it can be seen that the biggest changes occur for the morphological features (HAR,
SKEW, KURTexc).
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Figure 4.25: Boxplots for 9 ECG features, for patient 227 (both nights)
Box plots of the RTc, T amplitude and HAR features for all patients are presented in
Figures 4.26, 4.27 and 4.28. These plots allow for inspection of the variation in feature

ranges across patients. Inter-patient and intra-patient variability is appafent in the

figures.

p244_nght1 [ T ! k — [T+ i ' i B
p232_nght2 — T} ]
p232_nght1 + + +— - H A+ E
p231_nght2 |- + + — I —— —
p231_nght1 |- + ——+ + B
p230_nght1 |- —{T+— + B
p227_nght2 + — —
p227_nght1 - — — [T -

p222 - —{D~ -

p221 - T -
p218A_nght2 |- + + —C— E
p218A_nght1 - o— — — T 3} b
p215_nght2 | — T +H+ -
p215_nght1 + +H+ I — + B
p212_nght2 + + ——0— - B
p212_nght1 o—{~ B

p210 - + 1 E
p209_nght2 R n ] E
p209_nght1 | + —( B
p208_nght2 | + — I3 b
p207_nght2 - +— 00—+ —
p207_nght1 - o— I ~
p205_nght2 + —{I0— -
p205_nght1 + + + —T 3 -

p204 - —(T1— B
p203_nght2 | T~ B
p203_nght1 |- HO— + + B

p202 o T} -

p202A 3 +H—— B
p201A_nght2 - T B
p201A_nght1 - —— 4+

C I ! L 1 ! 1 !
150 200 250 300 350 400 450 500
RTc msi

Figure 4.26: Boxplots for the RTc feature across all patients
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Figure 4.28: Boxplots for the HAR fedture across all patients
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4.5.1 Tests of significance on the ECG features change between the
conditions of euglycaemia and hypoglycaemia

In order to check for statistical significance in the feature changes due to
hypoglycaemia, hypothesis tests were carried out. Two-sample t-tests at the 5% level of
significance were employed for each ECG feature considered. For each feature, the null
hypothesis Hy stated that the changes in the mean value between hypoglycaemia and
normality were not statistically significant. The alternative hypothesis H; stated that the
changés in the mean value were significant i.e. the mean was different between the
conditions of normality and hypoglycaemia. Two-tailed tests were carried out, which
means that the alternative hypothesis was describing changes in mean in both directions

(greater or émaller).

The tests were carried out separately for each patient. Only patients that contributed data
| representative of both clinical conditions (euglycaemia and hypoglycaemia) were
included in the tests. Outliers were removed using the 3 SD criterion prior to the tests. A
hypoglycaemic threshold of 3 mmol/lt was used to distinguish between hypoglycaemia
and euglycaemia.. Before proceeding any further in the discussion it is important to bear
in mind that the t-test assumes a Normal distribution in the data. The t-test results can be

doubted if the features do not follow the Normal distribution.

Table 4.6 contains the t-test results for all ECG features considered. A value of 1
denotes that the outcome of the t-test indicated rejection of the I;ull hypothesis at the 5%
level of significance i.e. the mean values corresponding to normality and
hypoglycaemia were different. A value of 0 denotes acceptance of the null hypothesis.
The column labelled “sum” in the table contains the sum of each row. For each ECG
feature included, the t-tests gave different results across patients. Calculating the sum of
each row gives an indication of the number of patients for whom the changes in a given
feature were statistically significant. The best features according to this metric were,
RTc and SKEWx. For these features, the t-test indicated that statistically significant

changes occurred in 4 out of 7 patients.
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Table 4.6: t-test results at the 5% level of significance for 7 patients
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The t-test results give indications that a single feature combination cannot be used to
detect hypoglycaemia in all patients. Different features may have to be used to detect
the onset of hypoglycaemia in different patients. Different components of the ECG will
be affected by hypoglycaemia in different patients. A typical example of the above is
the presence of U waves under hypo. Presence of a U wave could be an indication of
hypoglycaemia but does not happen in all patients. It can be seen on the table that for
patient 203, fifteen features exhibited statistically significant changes in response to
hypoglycaemia. On the other hand, for patient 209 the changes ‘in all features studied
“were statistically insignificant. Such a result is possible since some patients can be
asymptomatic during hypoglycaemia. Specifically for the case of patient 209, the result
has to be treated with caution since the sample size for the hypo group was extremely

small (n=4 for hypo and n=50 for euglycaemia) and the t-test is probably not accurate.

4.6 AutoRegressive Modelling (AR) of post-R ECG traces

This section presents the approach of representing the ECG traces using Autoregressive
(AR) models. This type of ECG trace representation was used as an alternative to the
approaches that used ECG features. The autoregressive coefficients computed were
used to describe the modelled ECG traces. This approach has been used in other studies
for detection of certain cardiac arrhythmias [Srinivasan 2002]. In this study it was used
for the detection of the delayed ventricular repolarisation often exhibited during

hypoglycaemia. Under hypoglycaemia, and due to the T wave flattening, the AR model
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parameters are expected to be different because of the smaller undulations existing in

the data (post-R segment) to be modelled.

An n™ order AutoRegressive (AR) model is a linear recursive model described by the

difference equation:

Y41 == aie y(k—i+1)+e(k+1)+ B, kneN eq” (4.9)
i=1 '

where e(k) denotes a noise parameter and S denotes an offset pa'rameter.

For an n™ order model, the output y at sample number k+1 is modelled as the sum of
scaled versions of previous values of the output plus a noise component and an offset
component. The estimates of the optimal model parameters (a; and ) that achieve
minimal error need to be calculated. The Least Squares (LS) algorithm can be used to
find the estimates of the optimal model parameters. It works by minimising the sum of
the squares of the model errors.

In matrix form we can write: Y =® x B eq" (4.10)

Each row of vector Y contains the LHS of eq" (4.9) for a different value of £:

»(2) a,
y(3) ) a
...... The vector B contains the model parameters: | .....
...... - a,
(k+1) 5 ]

If the number of elements in Y is denoted by N then, the N by (n+1) matrix @ has the

form:
=) 0 ... 0 1]
-2 -y1) .. 0 1
—y(k) —yk-1) .. ~y(k-n) 1|

By multiplying the N by (n+1) matrix ® with the (n+1) by 1 vector B, we get an N by 1

column vector where each row is the RHS of the AR model presented in eq" (4.9).
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The least squares estimate is obtained by minimising the sum of the squares of the

model errors. The mean squared error (MSE) is calculated as follows:
1 & . S
MSE:R/‘—Z(yk—yk )? , ' eq" (4.11)
k=1

where y; is the actual output at sample instant k£ and y;" is the modelled version of the
output' at the same sample instant, calculated by multiplying the row of matrix @

corresponding to k with the column vector B containing the model parameters.

In matrix form, eq" (4.11) is written as:
MSE = ]—1,—(Y —oB)T (Y - 0B) eq” (4.12)

Solving with respect to B we get:
B=@ o)y 'oTy eq" (4.13)
The v ector B contains the estimates o f the o ptimal model p arameters. AR modelling

was used in this thesis as an alternative to the feature extraction process presented

earlier, for the representation of ECG traces.

When modelling the ECG signal, the general form of an n™ order AR model takes the
form:

ECG(k+1)=—iai.ECG(k—iH)+e‘(k+1)+ﬂ, koneR eq” (4.14)

i=1
ECG(k+1) is the ECG amplitude, in mV, at sample k+/. The ECG section to the right
of the R peak and until the end of the trace was used because this is the section affected
by hypoglycaemia. The Least Squares (LS) algoritilm was used to find the estimates of
the optimal model parameters. A 3" order AR model was employed which yields four
model parametérs (ai, az, a3 and f). Figure 4.29 illustrates a SAECG trace together with

its modelled version using a 2™ order AR model.

The whole ECG cycle is plotted (solid blue) but only the post-R peak section is
modelled (dotted black). It must be noted that the model order was set to 2 only for the”
purposes of generating the Figure (4.29) illustrating the modelling process. Using a 3™
order model or higher would cause the solid and dotted lines to almost overlap so the

differences would hot be visible.
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Apért from the illustration in Figure 4.29, all the ECG modelling was carried out using a
3" order AR model. The correlation coefficient between actual and modelled ECG trace
was for all but one patient greater than 91% with an average of 95% across patients. The
model order can be increased so that each ECG trace is more closely modelled but this
will produce extra model parameters that the classifiers have to handle and classify.
Emphasis was placed on making the model simple and hence keeping the classification
task simple.

actual (dotted black) & predicted (solid blue) ECG trace
2000 T T T T T T — T
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Figure 4.29: Actual (solid) vs modelled

The classification results in the approach of modelling the ECG by means of AR
coefficients are presented in Section 5.2.5. Linear Discriminant Analysis was used for
classifying the AR coefficients into two groups corresponding to euglycaemia and

hypoglycaemia.

4.7 Conclusion

This chapter focused on the representation of ECG traces by means of ECG features.
The feature extraction algorithms and the features introduced and used were presented.
The feature extraction process was put in the context of the overall methodology
proposed. This process precedes the classification process in the hypoglycaemia
detection methodology proposed. The ECG features extracted are fed to a classifier for

detection of the abnormal clinical condition. Annotation algorithms for detecting the R
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and T peaks and also the T onset and offset were implerﬁented in MATLAB. A
comparison of T end annotations was carried out. Three novel ECG features were
introduced for assessment of the T wave morphology. The visual inspection and
statistical analys'is carried out on all the features ‘considered, indicated the existence of
inter-patient and intra-patient variability. Moreover there were indications that a fixed
set of features may not be able to effectively represent the ECG cycles of all patients.
Certain features are useful for certain patients depending on the dynamics of each
patient’s ECG signature. The next .chapter focuses on the classification of ECG traces

using neural and statistical classifiers.
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Chapter 5

Classification of Signal Averaged Electrocardiogram
Signals using Artificial Neural Networks and Statistical

Classifiers

5.0 Introduction

This chapter contains Methods and Results for the classification of SAECG signals
‘using artificial neural networks (ANN) and statistical classifiers. Feed-forward neural
networks (multi-layer perceptrons (MLP)), Linear Discriminant Analysis (LDA) and
k—Nearest Neighbour (kNN) classifiers were used for classification. A number of
_ different approaches to classification are presented and discussed. The chapter is
structured as follows: initially the data-set used is addressed followed by the
preprocessing methodology for the data used. FolloWing that, the neural network
architecture is discussed detailing all the nécessary aspects of using MLPs for ECG
trace classification. After that, the statistical classifiers (LDA and kNN) are presented

and the approach used for evaluation of performance of all classifiers is given.

Moving into the Results section, the classification studies carried out during the initial
phase of the research are first presented together with an assessment of the ECG
features inspired by Benhorin’s work [Benhorin 1990] and extracted semi-automatically
in ECGLAB. The use of various feature combihations is presented. Then the focus
moves to the individual-patient-oriente(i classification studies where emphasis is given
on customising the system for individual patients in order to tacklé inter-patient
variability problems. Statistical classifiers are also included in these studies. Next the
use of ECG representation by Autoregressive Modelling coefficients is presented and
LDA classification resulfs are given. Final results in the chapter involve the use of

improved preprocessing combined with utilisation of a reduced set of ECG features.
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5.1 Methodology

5.1.1 Data

Data from the dataset presented in Section 3.3.1, were used in the classification studies.
The approach according to which the data were partitioned into training and test sets is

presented below. Issues related to inter-patient variability are also discussed.

5.1.2 Preprocessing

A number of preprocessing steps were followed to aid the classification process. Firstly, |
data points of each ECG feature were removed as outliers if they did not lie within 3
standard deviations -from the mean. This was carried out separately for each ECG
feature used" since the various ECG features had different ranges of values (Section
4.5). Outliers can occur because of noise or other artefacts, or due to bad performance of
the feature extraction algorithms upon an ambiguous ECG trace. It is essential to
remove outliers, since they can degrade the performance of the ANNs. If outliers are
present they can contaminate the range of the feature values and once normalisation is
applied, the useful information will be squashed to a significantly smaller range, leading

to loss of useful information.

A second pre-processing step was to normalise the data in the interval [-1 1]. This was
also done separately for each feature, because of the differences in range among
features. The various features were describing different quantities and hence their range
of values was different. For instance, some features were measuring amplitudes in mV
and others were describing time intervals in msec. For each feature, the samples

available were mapped linearly from the original space to [-1 1].

The next pre-processing step was to remove the baseline value (i.e. the dc component)
from each ECG feature. This was not applied in all studies carried out. For the studies
aiming to produce a global classifier by forming d atasets that included d ata from all
patients, baseline removal was essential in reducing inter-patient variability. The first

recorded sample of every night was considered the baseline and it was subtracted from

' j.e. the mean and standard deviation used in the outlier removal criterion were calculated separately for

each feature.
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all the samples. Alternatively the mean value of all samples can be used as the baseline.
Using the mean has some disadvantages and was not preferred in our case. First of all
using the mean is not convenient for online classification. Usjng a mean value as the
baseline, requires some portion of the data fed to the system to be used for calculation
of the mean before classification can start. For the offline classification studies included
in this thesis, the first value baseline is normally a good sample and is always
euglycaemic, since all accepted nights were starting with the patient having normal
. glucose levels. On the other hand, the mean value can be contaminated by artefacts and

will vary depending on whether hypoglycaemic samples are contained in the night.

Figure 5.1 illustrates the preprocessing stages that were included in the ECG-trace-
classification process. The baseline-removal stage succeeds the outlier-removal stage

but is not depicted since it was not included in all studies.
f

ECG Feature Preprocessmg

ECG '
FEATURE OUTLIER
EXTRACTOR ECG Features REMOVAL NORMALISATION CLASSIFIER

.

Figure 5.1: Preprocessing of ECG features before they are fed to the classifier

5.1.3 Formation of data-sets (training and test files)

Two approaches were followed in the formation of data-sets. According to the first one,
a number of patients were mixed together to form the datasets. This approach suffers
from problems related to inter-patient variability. The behaviour of the ECG signal and
hence the baseline, mean, standard deviation, range etc, of ECG features varies'from
patient to patient. This was highlighted in Figures 4.28 and 4.29 for two of the ECG
features considered. This variation undermines the generalisation ability of the
classifiers. Variability among patients may be due to variation in many parameters such

as: age, gender, duration of diabetes, level of glycaemic control, fitness level and so on.

Among the above p arameters, the only one that was taken in account when forming
datasets was the gender of the patient. The gender is a binary parameter (either male or
female) so it was a lot easier to take it in account when forming datasets. And more
importantly, there are indications that the gender is a factor that may affect the baseline

value of some ECG features. Healthy females are found to have longer QTc intervals
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compared to healthy males [Molnar 1996]. Datasets were formed by using data from all
patients and alternatively, using only male and only female patients in order to avoid
variations due to gender and also attempt to investigate the effect of the gender. The
variation in the remaining parameters (e.g. age, duration of diabetes etc) were not taken

into account since this was beyond the scope of this research.

To overcome inter-patient variability problems a second approach was also followed
according to which a different neural-network/statistical-classifier was used for each
patient or in some cases for each night. This o vercomes the problem o f inter-patient
variability by allowing a classifier to be customised to a specific patient. The problem
with the second approach is that the data available are significantly reduced. As
mentioned in Section 3.3.1 presenting the dataset, a maximum of two nights is available
per patient which gave a maximum of 66 SAECG records. 66 patterns were not the ideal
amount for training and querying an ANN but the advantage was that the only problem
to be overcome was intra-patient variability since inter-patient variability was
eliminated. C onsidering the trade-off b etween having 1 onger d atasets and e liminating
inter-patient variability, it was clear that the latter was more important. Such a choice
was a significant step towards improving classification performance. In order to make
maximum use of the data available, 5-fold cross-validation was applied. The
partitioning of data in training and test sets, under cross-validation was repeated each .
time a neural network was re-trained from different random initial conditions. This is
advantageous over the approach of generating the cross-validation groups only once and
then training the networks from different initial conditions. Since the cross-validation
groups were formed many times after shuffling of the feature vectors, the formation of

training and test files was unbiased.

According to cross-validation the data was partitioned in groups. 5-fold means that 5
groups of approximately equal size were used ie. each cross-validation group conSisted
of 20% of the total data available. Care was taken so that each group contained equal
number of euglycéemic and hypoglycaemic feature vectors. Four groups were merged
together (i.e. 80% of the data) to form the training file for the classifier and the
remaining 20% was reserved for testing. The process was repeated five times so each
group would be left out once, and the classification results were averaged over 5. 10-
fold cross-validation is also a very common alternative but only leaves 10% of the data

out for testing each time. In a datafile of 66 pattern vectors this means approximately 6-
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7 vectors. In our case and in order to maximise the size of the test data, 5-fold cross-
validation was chosen. This process will be further discussed in the Results section

(5.2.2).

5.1.4 Neural Network Classifiers

The Neural Network Architecture chosen for this research was the Multi-Layer
Perceptron (MLP) presented in Section 2.7.1. We needed a supervised neural classifier
and the MLP was an obvious choice since itis an established and very widely used
architecture. Moreover the MATLAB neural network toolbox was ‘available which
contains extensive tools (mainly in the form of various pre-processing and training
algorithms) for the MLP. Networks w ere trained by the batch gradient-descent back-
propagation algorithm. The neural network toolbox (versions 3.0.1 (R11) and 4.0.2
(R13)) of MATLAB (MathWorks Inc) was used in all the neural networks that were set

up.

Neural network size

Neural networks consisting of one hidden layer were trained. The number of neurons in
the hidden layer were variable in the interval [2 5] or in some cases in [2 101%°
depending on the study carried out. The network size was fixed durihg training. Each
neural network was trained 4 or 9 times (depending on the range of allowed hidden

neurons in each study) with a different number of neurons in the hidden layer each time.

Neural network initial conditions

The initial weights and biases pf ANNSs were initialised to random numbers. Training a
network more than once from different random initial conditions can yield different
results as ANNs are very sensitive to initial conditions. In most cases, a hundred
networks or more were trained for the same configuration and the b est ones c hosen.
This was done to overcome the sensitivity of the network performarice to random initial

conditions.

Output of the neural networks

Two approaches were followed regarding the type of the neural network output. In the

first case the neural network was presented with the continuous glucose data as a target

2 hidden layer sizes in [2 10] were only used in the studies producing global classifiers, where the

datasets were longer.
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for training (Section 5.2.1) while in the second one the glucose was coded into two
classes, a normal and a hypoglycaemic class®'. The output of the ANNs was not simply
interpreted as normal or hypoglycaemic. A third class was considered. This is the class
of undetermined cle'lssiﬁcations. The output of the neural network is a real number
which varies from —1 to 1 (since the activation function used was a hyperbolic tangent,
as discussed later). In order to map the output of the neural network to the “normal”
class or to the “hypoglycaemic” class, a threshold had to b;e considered. The most
straightforward value to choose for this threshold was zero. The simplest approach of
mapping would be to assign anything greater than zero to the “hypoglycaemic” class
and anything below to the “normal” class i.e. the equivalent of using a hard-limiter
activation function. This mapping though will not show us the cases where the network
was unable to choose between the two classes (i.e. output stuck around zero). A better
approach is to use the dual-threshold method and map output values greater than a
chosen number (0.5 or 0.8 for instance) to “hypoglycaemic” and those smaller than the
chosen number (e.g. — 0.5 or — 0.8) to “normal”. This way a third group, that of
~ undetermined classifications (“don't-know” outcomes), is created. The number of times
that the ANN output lies in the region of undetermined classifications will give us an
idea of how clearly it can distinguish the two classes. If the network maps many input
patterns to the undeterrhined region, then there is an indication that it cannot separate
the two classes easily. The partitioning of the above three classes is illustrated in Figure
5.2.

plot of classification pts superimposed on the theoretical activatior
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Figure 5.2: Output activation function with mapping to the 3 classes (normal, hypoglycaemic,
undetermined) shown. Dots denote data points lying on each class

2l in some studies the normal (euglycaemic) class also contained hyperglycaemic data while in other
studies the inclusion of strictly euglycaemic data was tried.
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Activation functions

Hyperbolic tangent activation functions were used both for the hidden and the output
layers. The hyperbolic tangent (tansig) we used is smoother than the built-in one
contained in the MATLAB neural network toolbox. It has the same shape as the built-in
logistic sigmoid (logsig) function contained in the toolbox and is given by the formula:

y=2/(1 +exp(-n)) — 1 instead of y = 2/(1+exp(-2*n))-1 which is the default function.
The largest the value of the gain inside the exponential term, the steeper the transition
will be between the two extremes. The modified tansig, being smoother in slope, gives
more candidates in the undetermined region. This means that the two classes must be
more clearly separated by the network when using the modified tansig compared to the

built-in one, so that they will not fall into the undetermined region.

Training parameters

The training algorithm used was batch gradient descent with or without momentum and
with or without a variable learning rate (functions "traingd" and "traingdx" in the
MATLAB neural network toolbox). When mbmentum was used it was chosen among
values in the interval [0.1 0.7]. When a variable learning rate was used its initial value
was set to 2, its increment was calculated by multiplying with 1.02 and its decrement by

multiplying with 0.7.

5.1.5 Statistical classifiers

Statistical classifiers were also considered in order to allow comparisons with ANNG.
The main statistical classifiers used were Linear Discriminant Analysis (LDA) and the
k-Nearest Neighbour (kNN). LDA*® works by minimising the Mahalanobis distance as
discussed in Section 2.6. The k-Nearest Neighbour (kNN) was using a Euclidean
distance metric (Section 2.6). The same ECG features that were fed into the ANN were
used in LDA and kNN. Classification was binary into normal and arrhythmic records.
Cross-validation was applied to achieve better use of the data available. Partitioning of

the data into training and testing was exactly the same as for the ANN.

5.1.6 Measurement and Analysis of Performance

The accuracy of classification on its own is not sufficient to describe the performance of

the classifiers. More aspects of performance are considered and the performance metrics

2 The LDA classifier was implemented using the "classify" command of the statistics toolbox in MATLAB
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used are: accuracy, hitrate (sensitivity), false-alarm-rate, specificity (true-negatives-

ratio) and missed-hypos (false-negatives ratio).

They are defined as:

> Accuracy or concordance = tp + tn / (tp+tn+fp-+fi) (eq" 5.1)
> Sensitivity or Hitrate =tp / (tp +fn) (eq"5.2)
> False-alarm-rate = fp / (fp +tn) (eq" 5.3)
> Specificity (TNratio) = tn/ (tn + fp) (eq" 5.4)
> Missed-hypos = fn / (fn + tp) ' (eq" 5.5)

where tp, tn, fp and fi stand for: true positives, true negatives,'false positives and false

negatives respectively. Positive refers to hypoglycaemia while negative refers to

euglycaemia. True positives are those classifications of the ANN where the real class is

positive and the ANN also classified the ECG as positiVe. Similarly for the other three

quantities: | .

True Negatives (TN): answer = NO, network said NO

False Positives (FP): answer = NO, network said YES

False Negatives (FN): answer = YES, network said NO

The above four quantities are summarised in Table 5.1 known as the confusion matrix:
Table 5.1: Confusion matrix

Classifier YES | Classifier NO

Actual YES TP FN

Actual NO FP TN

Accurate classifiers produce as few FP and FN as possible. In other words a good
classifier will give a confusion matrix with 1arge numbers on the main diagonal and

very small numbers on the second diagonal.

Sensitivity (hitrate) describes the number of arrhythmic traces classified correctly while
false-alarm-rate describes the number of normal traces that were classified as
arrthythmic (i.e. false alarms). Specificity (TNratio) describes the number of normal
traces classified correctly while missed-hypos describes the nurﬁber of arrhythmic traces
classified as normal, i.e. the number of hypoglycaemic events that were missed®. By

combining equations (5.1) and (5.5) the relationship between sensitivity and missed-

3 The terms sensitivity and hitrate will be used interchangeably throughout the text. Similarly for the

terms specificity and TNratio.
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hypos is revealed: sensitivity = 1 — missed-hypos. Combining equations (5.3) and (5.4)
it is shown that specificity and false-alarm-rate also sum to 1: specificity = 1 — false-

alarm-rate.

5.2 Results Section

Classification results from a number of approaches and classification “recipes” are
presented in this section. The various studies are presented in chronological sequence to
show the development process of the ECG classification. Classifiers trained on global
datasets are compared against classifiers tailored to the dynamics of specific patients. A
number of different ECG feature combinations are compared while both neural and

statistical classifiers are used.

5.2.1 Glucose level inference from ECG features

As has already been mentioned, most classification studies carried out in this research
were binary, for identifyihg ECG traces into normal and a&hythmic. Besides these
studies, the approach of inferring the approximate glucose level of the patient through
the ECG was attempted. This was a very optimistic attempt and was carried out at the
early stages of the research. The possibility of achieving a mapping between ECG and
glucose was examined. The neural networks used were reqﬁired to produce output
values corresponding to the continuous level of glucose of the patient. By consulting the
ECG, the MLP should infer the level of glucosé of the patient at the time. Of course,
this goes beyond our research hypothesis. The hﬁothe_sis assumes an existihg
relationship between the ECG and abnormally low glucose while this study examined
whether the glucose could be inferred from the ECG regardless of whether it was

abnormally low, normal or abnormally high. -

In terms of the data needed, the advantage of such an approach where modelling of the
ECG-glucose relationship is attempted, is that maximal use of the data available is
possible. We do not necessarily need many hypoglycaemic nights. The study could be
carried out on purely normal nights. This is because we are trying to infer the absolute
glucose levels from the ECG. If this modelling was possible, having a good range of
glucose levels, even if they did not lie in the hypoglycaemic band, could be enough to

train a neural network.
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This approach did not produce useful results as the objective set was extremely
optimistic. A Ithough there are indications t owards a relationship b etween a bnormally
low glucose and hypoglycaemia, it is highly unlikely that the ECG strongly correlates
with the glucose variable outside hypoglycaemia. Numeric results from this approach
are not presented and this study is reported only in the form of a short discussion. The
neural network simply failed to learn on the training data so numeric results cannot be

presented.

5.2.2 Classification of ECG traces by MLPs trained on multiple patients,
using ECG features extracted semi-automatically

In this study multi-layer perceptrons were used to classify ECG features extracted semi-
automatically. The ECG features were extracted from ECG traces corresponding to
euglycaemia and hypoglycaemia and hence distinguishing the two classes of feature

vectors successfully would lead to detection of the two clinical conditions.

The feature extraction is classed as semi-automatic because ’the T end was marked
manuallyv but using a tangent»line as a visual aid (i.e. use of the tangent method) and
based on the above annotation of the T end, a number of features based on Benhorin's
paper [Benhorin 1990] (presented in Section 2.4.2) were extracted. The Q and S
markers were set manually (with no visual aids) by the human expert performing the

annotations. The human expert was Cath Davies from the Royal Hallamshire Hospital

(RHH) in Sheffield.

ECG Features used

Fifteen features were extracted from ECG traces using ECGLAB, based on the semi-
automatic annotation by the human expert. The 15 features extracted along with their
brief definition are given below:

RR - instantaneous Heart Rate

QT - time interval from Q point to T wave end

QTc - Heart-Rate-corrected QT

QRS — QRS duration, from Q point to S point

QRSc — QRS corrected for heart rate

SoTm — time interval from S point to T wave maximal amplitude (i.e. T peak)

SoTmc — SoTm corrected for heart rate

© N v AW

TmTo — time interval from T peak to T wave end
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9. Time Area (25%) to Area (75%) - the time to accumulate the mid-50% of total
absolute repolarisation area from its 25% to its 75% value

10. Total Area - Total absolute repolarisation area from S point to T end

11. Symmetry - T wave area symmetry ratio (SR); the ratio between the integrated area
over SoTm and TmTo intervals. (SR= SoTm/TmTo)

12. % of Total Area to To — Total Area accumulatéd at To

13. (Area of ToUo)/Area of TmaxUo) — area under ECG from Tend until Uend upon
area from T peak to Uend )

14. %Tmax/Tbaselinemax — ratio of current T amplitude upon T amplitude at the start
of the night

15. %Tmax/Rmax - ratio of T amplitude upon R amplitude

Out of the total number of 15 features produced, the following were used: RR, QT, QTc
(corrected by Bazett's formula), Benhorin’s T wave symmetry (SR) and
%Tmax/Tbaselinemax. The features were selected because they were believed to be the
most significant clinically. RR was used because variations in heart rate are expected in
a hypoglycaemic event. QTc is a classical predictor of delayed VR among the clinical
cofnmunity [Harris 2000], [Ireland 1998, 2000]. The uncorrected version of QTc (QT)
was also used to investigate its usefulness as a feature and also to provide clues towards
the quality of heart-rate correction’*. The symmetry of the T wave can be seen visually
to be affected under hypoglycaemia hence a feature describing the symmetry was.
included. Finally the T amplitude (described by the %Tmax/Tbaselinemax feature) is

expected.to drop under hypoglycaemia due to the changes in potassium.

The remaining features extracted semi-automatically in ECGLAB were not used. The
features excluded were: QRS, QRSc (corrected for heart rate), SoTm, SoTmc (corrected
for heart rate), TmTo, Time Area (25%) to Area (75%), Total Area, % of Total Area to
To, (Area of ToUo)/Area of TmaxUo), %Tmax/Rmax. After performing visual
inspection, these features were identified as either not informative or not roBust i.e. the
extraction aigorithm had poor performance and was not reliable. Some of the features
were informative but were highly correlated with other features that were used. For

instance the %Tmax/Rmax feature had almost identical behaviour to the

24 The RR and QT were fed instead of the QTc in some cases, in order to test whether the neural network
~ could detect QT changes that were uncorrelated to hear rate.
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%Tmax/Tbaselinemax feature so only the latter was used in this study. An example of
this can be seen in Figure 5.3 that depicts the two features (% Tmax/Tbaselinemax and

%Tmax/Rmax) for patient 202A.

%Tmax/Tbaseline max
160

150
140

130

110

100

s

Figure 5.3: BLUE: Tmax/Tbaselinemax (top) and Tmax/Rmax (bottom)
BLACK: trend line (polynomialfitted)

The top graph presents the % Tmax/Tbaselinemax feature (in blue) during the night and
the bottom graph the % Tmax/Rmax (in blue). Polynomials are fitted (black lines) in
both cases in order to mark the trend ofthe feature. Trendlines, although not necessary
in this graph since the features have very similar behaviour, were used during the
process ofvisual inspection and this is the reason why they are included in this figure. It
can be concluded from the figure that the two features have similar behaviour. The main
difference is that the two features have a different baseline value and different range
which can be seen by inspecting the marks ofthe two y-axes. Some subtle differences
also exist. For instance the two features have slightly different behaviour around record
10. The top feature has a flat segment while there is a negative peak in the bottom one.
A few more such subtle differences can be observed on the figure. Despite these

differences, the two features have very similar behaviour.

Regarding the QRS (and QRSc) feature, it describes the ventricular depolarization of
the heart and is not very useful for the detection of hypoglycaemia; hypoglycaemia
affects the ventricular repolarisation process. Moreover, the QRS feature extracted by

ECGLAB was not very robust. Figure 5.4 (top graph) depicts the QRS feature during
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the night, for patient 201 A-nightl. The bottom graph presents the glucose profile for

that night. It can be seen that the feature values oscillate between two levels which do

not seem to be related to glucose.
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Figure 5.4: BLUE: QRSfeature (top) and glucose profile (bottom). BLACK: trend line (polynomial

fitted)

The SoTmc feature (along with its uncorrected version) were not used because they

were found not to convey any useful information regarding hypoglycaemia. Figure 5.5

depicts this feature along with the glucose profile, for patient 204. This patient

experienced a hypoglycaemic episode around the middle of the night and until the end

ofthe acquisition.
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Figure 5.5: BLUE: SoTmcfeature (top) and glucoseprofile (bottom.)BLACK: trend line (polynomial

fitted)
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Figure 5.6 depicts the TmTo feature (top graph) for the 2nd night of patient 203. The
glucose profile is depicted in the bottom graph. It can be seen on the graph that the

feature does not appear to be correlated to glucose.
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Figure 5.6: BLUE: TmTofeature (top) and glucose profile (bottom)
BLACK: trend line (polynomialfitted)
Figure 5.7 depicts the (Area of ToUo)/(Area of TmaxUo) feature (top graph) for the
first night of patient 209. The glucose profile is depicted in the bottom graph. It can be
observed on the graph that the feature does not appear to be correlated to glucose.
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Figure 5.7: BLUE: (Area ofToUo)/(Area of TmaxUo)feature (top) and glucose profile (bottom)
BLACK: trend line (polynomialfitted)
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It is noted that some of the features excluded may be useful predictors of
hypoglycaemia. They were excluded from this study because they were less importaht
and useful than the features used. Poor performance of a feature not used may be due to
weaknesses of the feature extraction algorithm or its implementation in MATLAB and
‘not due to the concept behind the feature being weak. Higher sampling rates may also

reveal useful variations in some time-interval features that were excluded.

Correlation coefficients

The correlation coefficient (p) was used to calculate correlations between ECG features
and glucose in order to gain an insight on the interrelationships between the cardiac
function and the glucose variable. Correlation matrices containing the correlations
between glucose and all features w ere c alculated. E xamples o f these correlations are

given in Table 5.2 for three of the patients of the dataset:

Table 5.2: Correlation Coefficients for 207-night! (a), 209-night! (b) and 201A-nightl . (©)
(@) (b) ' ()

207nght1 glucose | ]209nght1 glucose | |201Anght1 glucose
glucose : " 1] [|glucose 1{ [glucose 1
(Area of ToUo)/Area of ‘
TmaxUo) 0.822] |aTc 0.315] [Heart Rate 0.318
Time Area (25%) to Area
QT 0.8] |%of Total Area to To 0.267] [(75%) 0.292
HR 0.773] |QRSc 0.25] lar 0.277
Total Area 0.754} |ar 0.238] |Total Area 0.276
Time Area (25%) to Area B
(75%) | 0.744] |tm7o 0.216] |aTc 0.266
QRS 0.62] |%Tmax/Rmax 0.193] Jarsc 0.245
(Area of ToUo)/Area of
QRSc 0.425] [Heart Rate 0.183| [Tmaxuo) 0.233
SoTmc 0.372] |SoTmc 0.178] ISymmetry 0.212
QTc 0.348] |symmetry 0.133] |soTm 0.209
TmTo 0.271] |SoTm 0.109] 1%of Total Area to To 0.169
%of Total Area to To 0.197] [aRrs 0.097] |%Tmax/Rmax 0.134
%(Tmax)/(T baseline max) | 0.167] JTotal Area 0.0541 |soTme - 0.114
Symmetry 0.133] [%(Tmax)/T baseline max) | 0.049] |%(Tmax)/T baseline max) | 0.062
: (Area of ToUo)/Area of
SoTm 0.032| [TmaxUo) 0.026] JTmTo 0.024
Time Area (25%) to Area
%Tmax/Rmax 0] [(75%) 0.018] JaRrs 0.012

The features are sorted in descending order according to the magnitude of the
correlation coefficient. The remaining columns of the correlation matrices are not
included; only the relationships with glucose are presented. By referring to the
correlation matrices, the relationships among all the features can be examined. It must
be stressed that the correlation coefficient is very useful but not the ultimate method for

identifying correlated data, since it can only identify linear relationships. It is useful
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when p identifies a relationship but if it fails to show a relationship, it does not

necessarily mean that one does not exist.

It was found that tile rank of features was not very consistent across patients. This was
observed by considering all the nights studied and is also apparent in the above tablés.
For 207-nightl the most correlated feature to glucose was (Area of ToUo)/(Area of
TmaxUo)” while it was the QTc for 209-nightl and the Heart Rate for 201 A-nightl.
The Heart Rate was the only feature consistently ranked highly (top-ranked for 6 out of
13 nights studied). |

Figure 5.8 presents a 2-dimensinal scatter diagram of % Tmax/Rmax vs QTc. On the
graph, dots denote euglycaemic (normal) ECG feature vectors (pairs of QTc -
%Tmax/Rmax values) and circles denote hypoglycaemic feature vectors. Two classes
can be formed on the graph: a euglycaemic (Class A) and a hypoglycaemic (Class B).
However, the two clinical conditions (euglycaemic, hypoglycaemia) cannot be
distinguished by a linear or non-linear decision boundary. The situation is more
complex than that and non-linearly enclosed areas (clusters) are needed. An example of
an ambiguous point is encircled in the graph. It would be extremely difficult for a
classifier uéing- only the above two features toldistinguish between the two clinical
conditions for the encircled point. More features would be needed as inputs to the
classifier to help classify such ambiguous cases. Alternatively, an MLP with two hidden
layers would, in theory, be able to classify the c ases w here a' class of one type (e.g.
euglycaemia) exists within a class of another (e.g. hypoglycaemia); the class within a

class problem.
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Scatter diagram: %Tmax/Rmax vs QTc'
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Figure 5.8: Scatter diagram - %Tmax/Rmax vs QTc

Scatter diagrams of higher dimensions (greater than 3) cannot be visualised easily and

hence visual inspection is not a sufficient technique for feature selection.

ECG Feature Combinations

A number of ECG features were used in different feature combinations. Selection of the
features was carried out by taking in account the clinical significance of features besides
using information from visual inspection. The latter approach was used for exclusion of
a number of features that were not useful. The number of features fed was 3 in most
cases. The 1% derivatives of the features were also included, in most cases, giving a total
of 6 features. The features combinations used, consisting of 3 features and their first
derivatives were:

e RR, QT, QTc

e RR, QTc, Symmetry

¢ RR, QTc, %Tmax/Tbaselinemax
: : 135
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e RR, Symmetry, %Tmax/Tbaselinemax

e QTc, Symmetry, %Tmax/Tbaselinemax

Another combination used, consisting of four features, not inclu'ding 1** derivatives was:
¢ RR, QTc, Symmetry, %Tmax/Tbaselinemax.

The first derivatives were excluded in order to reduce the number of inputs to the
classifier from 8 to 4. The reason behind using the 1% derivatives of the features is

illustrated in Figure 5.9.
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Figure 5.9: Hlustration of two sample points considered under a static and dynamic context

The derivative value supplied with the feature value informs whether the feature was
increasing or decreasing. The two sémple points in Figure 5.9 are the same in a static
context but not in a dynamic context. At the LHS sample point the feature' value
increases whereas it decreases for the RHS sample point. This information could be
useful in our case. It had been stressed in the B,iomedical' background discussion
(Chapter 1) that T wave flattening and QTc prolongation are observed under
hypoglycaemia. The opposite changes most likely do not convey useful information.
Therefore feeding the derivative signal to the classifiers may help in ignoring feature

changes, to the opposite direction, that are unrelated to hypoglycaemia.
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Results from various feature combinations

Twenty one Type 1 adult diabetic patients from the dataset were included in the study
each one contributing a maximum of two nights. Each night can contribute a maximum
of 33 SAECG cycles. 34 nights were acceptable out of a total of 42. 275 SAECG traces
were available out of a total of 1122 after preprocessing and data selection. The

classification details are tabulated in Table 5.3 below:

Table 5.3: Parameters for classification based on semi-automatic features

Classification parameters

Patients:

Adult typel diabetics

ECG leads used:

YY' from 3-lead orthogonal ECG

Feature extraction:

Semi-Automatic

T wave onset method:

not used

T wave offset method:

tangent method (semi-automatic)

ECG features used:

RR, QT, QTc, Symmetry of T wave,
%Tmax/Tbaselinemax in various
combinations

Baseline removal method:

1** value baseline only in %Tmax feature

Number of output classes:

2 (euglycaemic — hypoglycaemic)

Hypoglycaemic threshold:

2.5 mmol/lt or 3.5 mmol/lt

Euglycaemic range:

[4 8] mmol/lt

Hypoglycaemic range:

[2.2 2.5] mmol/It (according to 2.5 mmol/it threshold)
[2.2 3.5] mmol/It (according to 3.5 mmol/lt threshold)

Ranges excluded:

(25 4) & (8 +00) (accor;iing to 2.5 mmol/lt threshold)
(3.5 4) & (8 +0) (according to 3.5 mmol/lt threshold)

cross-validation method:

5-fold

outlier removal: mean + 3SD
Number of hidden layers: 1

Number of neurons in hidden layer: Variable in [2 10]
Glucose sensing method: MiniMed CGMS

Results Using Features: RR, QTc, Symmetry of T wave, %Tmax/Tbaselinemax

The classification results of the global classifier produced are presented in Table 5.4.
The table presents training and test metrics (accuracy, sensitivity, specificity, ratio of
undetermined classifications). The assessment of undetermined classifications is rated
separately for the hypoglycaemic (undetermined-positives labelled as “und p” on the
table) and euglycaemic (undetermined-negatives labelled as “und n” on the table) cases.
Although the training accuracy is high, the test accuracy is unsatisfactory being less
than a random classifier (i.e. 50% accuracy). The main reason for the poor performance

is probably due to inter-patient variability. Further discussions on the issue of inter-
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patient variability will be presented later in the chapter when various studies will be

combined.

Table 5.4: Classification results for all male patients combined

malemlp_9_mc=0.1#1 hypo@2.5, RR, QTc, Symmetry of T wave, % Tmax/Tbaselinemax (no derivatives)

Xval tp tn fp fn undp undn normal hypos accuracy hitrate tnratio undet ratio

1 [125|122] 2 | 2 8 14 138 135 90.48% | 98.43% | 88.41% 8.06%
|2 ]9)121] 5| 8 29 11 137 136 80.59% | 92.52% | 88.32% 14.65%
S| 3 |125|126] 3 | 2 10 7 136 137 91.94% | 98.43% | 92.65% 6.23%
4 |[101]1118] 2 | 5 30 17 137 136 80.22% | 95.28% | 86.13% 17.22%

5 [123]|127| 4 | 2 10 6 137 135 91.91% | 98.40% | 92.70% 5.88%
mean: 87.03% 96.61% 89.64% 10.41%
std: 6.08% 2.66% 2.91% 5.19%

1 17 | 69 | 142] 15 1 14 225 33 33.33% | 53.13% | 30.67% 5.81%
|2 | 10]149] 66 | 23 1 8 223 34 61.87% | 30.30% | 66.82% 3.50%
§ 3 | 29179124 5 0 12 215 34 43.37% | 85.29% | 36.74% 4.82%
4 | 14| 70 {134} 11 7 21 225 32 32.68% | 56.00% | 31.11% 10.89%

5 7 | 144] 59 | 24 3 22 225 34 58.30% | 22.58% | 64.00% 9.65%
mean: 45.91%  49.46% 45.87% 6.94%
std: 13.67% 24.65% 18.03% 3.19%

Figure 5.10 contains graphs of the 4 input features fed to the classifier (top 4 graphs)
| and the glucose variable (bottom graph), for the whole of the dataset used. The first half
of the dataset (LHS) corresponds to hypoglycaemia (the glucose variable fluctuates
around 2.2 mmol/It) and the second half (RHS) corresponds to euglycaemia.

ECG features (top 4 graphs) and glucose (bottom)
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Figure 5.10: Four input features fed to the classifier (top 4 graphs) and glucose (bottom graph)
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The classification results for the RR, QT, QTc feature combination

Table 5.5.

Table 5.5: Results for RR, QT, QTc features (including 1st derivatives)

are presented in

malemlp_9_mc=0.1#1~1

Xval tp th fp fn undp wundn normal hypos accuracy hitrate tnratio undet ratio
1 851131| 3 | 24 32 4 138 141 77.42% 77.98% 94.93% 12.90%
- 2 97 | 117| 7 | 24 20 15 139 141 76.43% 80.17% 84.17% 12.50%
I 3 70 { 106| 4 | 55 15 24 134 140 64.23% 56.00% 79.10% 14.23%
4 48| 69 | 53| 72 19 8 130 139 43.49% 40.00% 53.08% 10.04%
5 89] 80| 49| 34 17 9 138 140 60.79% 72.36% 57.97% 9.35%
mean: 64.47% 65.30% 73.85% 11.81%
std: .13.82% 17.02% 17.76% 2.04%
1 0 | 1961 31| 31 1 7 234 32 73.68% 0.00% 83.76% 3.01%
- 2 0 |195]| 36| 34 0 3 234 34 72.76% 0.00% 83.33% 1.12%
§ 3 1 |162] 57 | 28 5 7 226 34 62.69% 3.45% 71.68% 4.62%
4 21| 132) 81| 11 2 16 229 34 58.17% 65.63% 57.64% 6.84%
5 12 | 128 93 | 17 6 14 235 35 51.85% 41.38% 54.47% 741%
mean: 63.83% 22.09% 70.18% 4.60%
std: 9.40% 29.96% 13.82% 2.63%

Comparison of feature combinations

Table 5.6 presents the classification train and test accuracy for 5 feature combinations®.

The optimal number of neurons in each case is recorded. Classification results were

produced for both hypoglycaemic thresholds. Therefore the table allows comparisons of

both the feature combinations and the hypoglycaemic thresholds.

Table 5.6: Comparison of feature combinations and hypo thresholds

‘ HrQTQTc | HQTeSymm | HrQTcTmaxTbas | QTcSymmTmaxTbas | HrSymmTmaxTbas
hypo@2.5|# of neuron 9 6 8
trainacc | 0.645 [ 108601 0611 ;
testacc | 0.638 | 0.560 0550 | 0508
diff: trtst | 0.006 | 0.041 0.061 | 0.206
HrQTQTc : HrQTcSyrmm | HrQTcTmaxTbas | QTcSymmTmaxTbas
hypo@3.5|# of neuron 7 9 8 10
trainacc | 0545 | 0596 | 0.797 0783
testacc | 0.398 | 0465 | 0478 0,464
diff: tr-tst 0.147 | -0.131 0.319 0.319

Comparing the feature combinations, consisting of groups of 3 ECG features and their

corresponding derivatives, it was found that the combination which gave the highest test

% The RR, Symmetry, %Tmax/Tbaselinemax combination is not included in the table for the 3.5 thresh

since it was not simulated.
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accuracy was the one consisting ofthe RR, QT and Q Tc features. T his c ombination
yielded a training accuracy of 64.5% and a test accuracy of 63.8%. Although there were
combinations with higher training accuracies, the above one gave the highest test
accuracy. However, this result has to be treated With caution. By inspecting the table
more carefully it is realised that the sensitivity was 0% for two of the cross-validation
groups and just 3.45% for a third one. This yields a very low average sensitivity
(22.09%). This is compensated by a high value of specificity (7'0.18%) which raises the
accuracy to 63.83%. Although this combination contributed the highest accuracy,

detection of positives (hypo events) was poor.

In general, the feature combinations gave very similar results for each hypoglycaemic
threshold which makes it difficult to select the best one. The optimal feature
combination cannot be concluded easily. Since the performance is not satisfactory, it
will not be too crucial and necessary to select the best feature combination. For the 2.5
mmol/lt threshold it was RR, QT, QTc according to the test accuracy as already
mentioned. Giving e mphasis on the training accuracy, the b est combination was RR,
Symmetry, %Tmax/Tbaselinemax. However, this combination gave the lowest test
accuracy and this indicates that the neural network may have overfitted on the training
data. It also had the 2™ largest number of hidden neurons. Comparing the two
hypoglyéaemic thresholds, it is concluded that the one at 2.5 mmol/It was a better
choice according to the performance of the classifiers. The test accuracies for the 3.5
mmol/It were very low, being worse than a random classifier. The disadvantage of the
2.5 mmol/lt threshold is that it contributes less hypoglycaemic patterns than the 3.5
threshold®.

Looking at the size of the hidden layer, it varied slightly among the various
configurations. In all the above feature combinations, the best results were achieved by
the networks having a large number of hidden neurons; i.e. number of neurons lying in

the upper half of the [2 10] interval.

26 This effectively leads to reduction of the data that can be used. In most cases the hypo class was the one
contributing less data than the euglycaemic class. Since equal numbers of training patterns from both

clinical conditions were used, the hypo class was the one determining how much training data could be

used.
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5.2.3 Per-patient classification based on automatically extracted ECG

features

The approach of producing a classifier tailored for each patient was followed since
previous studies (including the study presented in Section 5.2.2) indicated that the
performance of global classifiers is unsatisfactory. In this per-patient study 6 patients
were used. This was because the rest of them were not suitable for a per-patient study.
For such a study each patient must contribute data representative of both clinical
conditions (euglycaemia and hypoglycaemia). This is necessary for training ‘the
classifiers since they have to be trained on sufficient data from both conditions in order
to be able to distinguish them in the future. Only 6 patients from the dataset possessed

the above characteristic.

ECG features

ECG features were extracted in a fully automatic way. The features used were RR, RTc
(a subsection of QTc), Total Area under the T wave, and HAR (a symmetry measure of
the T wave). These features were extracted automatically, in ECGLAB, from the
Signal-Averaged ECG cycles®’. RTc is the corrected version of RT produced by the
formula: RTc = RT/VRR (Bazett’s formula) [Bazett 1920]. This correction is applied in
order to decorrelate the RT interval from the RR (instantaneous heart rate). The Q point
detection was manual in the previous study. In this study the R point was used instead
of the Q point and the‘ annotation was carried out using an automatic algorithm as
opposed to using manual annotations. Q detection is more error-prone to R detection
hence the choice of the latter. The RT interval still describes the ventricular
repolarisation process and hence it is a valid alternative to the QT. It has been used in

the past by Porta et al [Porta 1994, 1998].

The detection of the end of the T wave was carried out using a fully automatic version
of the tangent method (msi). Testing of the automatic tangent.method was carried out
using visual inspection by the researcherzg. The onset of the T wave was marked using
the intersection of the ECG trace with the isoelectric line. Unlike the downslope of the T

wave, the T upslope almost always crosses the isoelectric line. This means that using the

%" The features used in this study were different to the features extracted semi-automatically by the human
expert (Cath Davies) working in RHH. '
% Charilaos Alexakis.
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intersection of the T upslope with the isoelectric line was an acceptable algorithm for T 4
onset detection. Such an algorithm though, could not be used for the T end detection
because in the event of no crossing of the downslope with .the isoelectric line, the

algorithfn would not provide an annotation for the T end.

Neural Network Classifiers

In this study a different neural network was used for each patient in order to overcome
inter-patient variability problems. Global classifiers (i.e. classifiers trained on many
subjects) were not produced and the baselines of the ECG ‘features used were not
removed (by subtraction of the 1% value of each night). This was because the removal of
baseline was considered necessary mainly when producing a global classifier, in order

to normalise the ranges of the features by removing offsets.

Five-fold cross-validation was used in order to maximise the data-sets. This means that
five classifiers were produced that were trained on different subsections of the data
available and the classification performance averaged. This procedure of training 5
neural networks was repeated many times from different initial conditions and the best
networks were chosen. 1750 networks were trained for each subject. This is broken
down as: 70 different random initial conditions times 5 different hidden layer: sizes
times 5 different networks due to cross-validation. This task demanded a lot of
processing power and many hours of simulation. This is a big disadvantage of neural

networks over statistical classifiers such as LDA whose execution time is negligible.

The hidden layer size varied in [2 5]. For each of the above configuration four networks
were trained each one with a different number of hidden neurons variable in [2 5]. This
was attempted in order to identify the optimal network size for this classification

problem. Table 5.7 shows a summary of the classification parameters.
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Table 5.7: Parameters for per-patient classification of automatically extracted ECG features

Classification parameters

Patients: 202, 204, 212, 216, 227, 229 (Adult typel
diabetics)

ECG leads used: YY' from 3-lead orthogonal ECG

Feature extraction: Automatic

T wave onset method: intersection of T upslope with isoelectric
line

T wave offset method: tangent method (fully automatic)

ECG features used: RR, RTc, Total Area under T wave, HAR
(Symmetry of T wave)

Baseline removal method: none '

Number of output classes: 2 (euglycaemic — hypoglycaemlc)

Hypoglycaemic threshold: 2.5 mmol/lt

Euglycaemic range: (2.5 +o0)

Hypoglycaemic range: [2.22.5]

Ranges excluded: none (in order to maximise the amount of
data used)

cross-validation method: 5-fold

outlier removal: mean + 3SD

Number of hidden layers: 1

Number of neurons in hidden layer: Variable in [2 5]

Glucose sensing method: MiniMed CGMS

The classification results for the six patients are presented in Table 5.8.

Table 5.8: Training and test classification results for six diabetic patients

hltrate

hitrate

patient|accuracy spec‘ﬁ'l_city accura?y specificity
202 | 89.30%| 82.13%| 96.47%| 70.38%| 72.92%| 69.29%
204 | 78.47%| 100.0%| 77.22%| 61.12%]| 67.00%| 61.43%
212 | 79.00%]| 100.0%| 79.00%| 74.92%| 75.76%| 93.33%
216 | 73.97%| 85.44%| 69.26%| 73.86%| 86.21%| 42.67%
227 | 88.95%]| 95.69%| 92.29%| 57.82%| 58.86%| 76.00%
229 | 86.47%| 90.64%| 88.72%| 64.14%|43.33%| 66.71%
mean | 82.70%| 92.32%| 83.83%| 67.04%|67.35%| 68.24%
std "~ 6.40%| 7.53%| 10.34%| 7.05%] 14.88%| 16.70%
min 73.97%| 82.13%| 69.26%]| 57.82%| 43.33%| 42.67%
max 89.30%| 100.0%| 96.47%| 74.92%]| 86.21%]| 93.33%

The accuracy, hitrate (sensitivity) and specificity are tabulated for the training and

testing data. The table also presents summary results (mean, standard deviation, range).

The average train and test accuracies are 82.70% and 67.04% respectively. The

accuracy on unseen data is not impressive but shows that the use of neural networks for

classification can be a promising approach. The highest test accuracy was observed for

subject 212 (74.92%) and the lowest for 227 (57.82%)).
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By considering the results from Section 5.2.2 and the results from this section, some
observations are made regarding the use of a global classifier as opposed to the use of
classifiers customised per patient. It is obvious that this section’s results are
sigﬁiﬁcantly better. The training accuracy for the global classifier is higher than the
average training accuracy of the per-patient study but the generalisation on unseen data
is very poor and in some cases worse than a random classifier. It is possible that the
high performance on the training data may be due to overfitting. This study indicates
that the approach of producing a custom classifier for each patient can overcome the

severe inter-patient variability problems.

It must be noted here that not all the parameters, involved in the above two
classification studies, were kept the same in the two studies. Some of the ECG features
used were different. Two different algorithms for the calculation of the T wave
symmetry were used in the two studies (Benhoﬁn’s symmetry vs HAR). Also the total
area under the T wave was used in this study instead of the %Tmax/Tbaselinemaxi
feature used in the global classifier study. Moreover the RTc interval was used in this
study while QTc was used in the study of Section 5.2.2. Although different, these
features describe the same cardiac process, and the main difference is a change in

baseline®’. Finally, the RR feature was exactly the same for both studies.

The other factor that could have affected the performaﬁce is that the maximum number
of hidden neurons allowed in this study was 5 instead of 10 uséd in the global classifier
study. This means that the strength of the neural networks was restricted more in the
current study which is a step towards preventidn of overfitting leading to better

performance on unseen data.

» Although the main difference is the change in baseline, ambiguous Q point detection can introduce
further differences. On the other hand R point detection is straight-forward and does not introduce

problems in the comparison of the two features.
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5.24 Comparison of two feature combinations for the per-patient
classification of automatically extracted ECG features, by neural and

statistical classifiers

This study was a continuation of the work presented in Section 5.2.3. A few more
diabetic patients were recruited and added to the dataset and some additional ECG
features were used. Moreover, Linear Discriminant Analysis (LDA)* was employed in

order to provide a comparison between neural and statistical classifiers.

11 subjects from the dataset were included in this study, since more patients were made
available for analysis after the completion of the previous studies. Five ECG features
were used in this study namely: RR, RTc, T wave amplitude (Tampl), T wave skewness
(skew) and T wave kurtosis (kurt). These features were extracted using automatic

algorithms. The onset and end of the T wave were detected using the tangent method.

The 5 ECG features produced were combined in two combinations of 4 features namely
RR, RTc, Tampl, skew and RTc, Tampl, skew, kurt. This was so because it was decided
to keep the number of input features to a minimum. Feature vectors consisting of more
than 4 features w ere not used. Neural networks w ere trained using the above feature

combinations and comparisons were made in order to identify the best one.

Both ANNs and LDA were used for classification with five-fold cross-validation
applied in both cases. Classifiers customised per patient were produced as before. The
classification process was almost the same in this study and the one presented in Section
5.2.3, as can be seen in Table 5.9 that summarises the classification parameters. The
only differences were the different features and the different numbers of patients used.
Neural network and LDA classification results for the 11 subjects and for the feature V
combination of RT¢, Tampl, skew, kurt are given in Tables 5.10 and 5.11 respectively.
Similarly for the feature combination of RR, RTc, Tampl, skew, the ANN and LDA

results are given in Tables 5.12 and 5.13.

30 using the Mahalanobis distance metric
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Table 5.9: Parameters for per-patient classification

Classification parameters

Number of output classes:

2 (euglycaemic — hypoglycaemic)

Hypoglycaemic threshold:

2.5 mmol/lt

Euglycaemic range:

(4 8]

Ranges excluded:

(2.5 4] & (8 +w)

ECG leads used:

YY' from 3-lead orthogonal ECG

Feature extraction

Automatic

ECG features (or feature combinations)

» RR, RTc, Tampl, skew

used:

» RTc, Tampl, skew, kurt
outlier removal mean = 3SD
Number of hidden layers R

Number of neurons in hidden layer

Variable in [1 5]

Glucose sensing method:

MiniMed CGMS

Baseline removal method

None

Patients

Adult typel diabetics

Table 5.10 (LHS): ANN classification results (RTc Tampl skew kurt) and Table 5.11 (RHS): LDA

Classification results (RTc Tampl skew kurt)

TRAIN —_TEST . “TRAIN —_ | TEsT

3 = £ 3|l 21| € 3 = S 3| 21| s

® & & &
202 | 89.82]  100] 89.26] 71.52] 73.85 74.29 | 202 [ 83.42| 86.99 | 79.85 | 69.62| 72.58 | 62.86
203 | 93.78] 98.46] 89.1] 87.5] 90.46] 73.33 | 203 [ 91.35] 92.05 | 90.64 | 82.92] 86.52 ] 65.33
204 | 77.08] 100 77.22] 58.33] 62| 58.67]] 204 | 70.56| 66.11 | 75 |50.67] 26.67 | 74.67
208 | 88.3] 94.86] 90.33] 66| 71| 66]] 208 | 73.4 | 70.17 | 76.63| 63.67 | 46.67 | 80.67
212 | 835 100] _ 79| 77.66| 85.45| 83.34| 212 [ 100 | 100 | 100 |89.96] 92 [ 40
216 | 79.15] 93.80] 70.07] 76.82] 85.61] 3934 | 216 | 77.28| 82.28 | 72.28 | 69.88| 71.67 | 63.33
220 | 83.89] 97.78] 83.89] 65.19] 70.87] _ 50§ 220 | 68.89] 90.83 | 46.94] 87.1 | 89.77] 0
223A] 82.19] 96.19] 79.76| 69.11] _ 84] 68.33 [ 223A[ 64.9 | 76.86 | 52.95| 56.25] 84.76 | 34.72
227 | 93.17] 100 89.33] _ 62] 65.86] 68.67]] 227 |65.95] 51.14 | 80.76 | 44.09] 39.33 | 58.67
229 | 78.21] 81.86] 78.21| 64.19] _ 60| 65.14] | 229 | 79.68] 87.18 | 72.18] 36.33| 45 |35.51
244 | 86.67] 100 86.67] 73.28] 80.6] 58| 244 | 87.78| 97.78 | 77.78| 83.44 ] 90.68 | 38.67
mean| 85.07] 96.64] 82.99] 70.15 75.43 Szfﬂ mean| 78.47] 81.04 | 75 |66.72]67.79] 50.4
std 579 5.38] 6.59] 8.36| 1041 12.17Q{std | 11.24] 14.75 | 14.92] 18.24| 23.95] 23.18
min | 77.08] 81.88] 70.07] 58.33] _ 60| 39.33[min | 64.9 | 51.14 | 46.94 | 36.33] 26.67] 0
max | 93.78] __100] 90.33] 87.5| 90.46] 83.33 Imax | 100 | 100 | 100 |89.96] 92 ]80.67

By comparing Tables 5.10 and 5.11 it can be seen that the neural network results were

superior to those from Linear Discriminant Analysis. The sensitivity and specificity on
unseen data were 75.43% and 64.1% respectively for the ANN while they were 67.79%
and 50.4% for LDA. Looking at the standard deviation, across patients, of the

classification metrics it is realised that the ANN had more uniform performance across

patients. In the case of LDA there was greater variation in the performance of the

classifier among patients.
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Table 5.12 (LHS): ANN classification results (RR RTc Tampl skew)
Table 5.13 (RHS): LDA Classification results (RR RTc Tampl skew)

TRAIN TEST TRAIN TEST

patient
faccuracy (%)

patient
laccuracy (%)

hitrate (%)
tnratio (%)

hitrate (%)
tnratio (%)

}accuracy (%)
hitrate (%)
Fccuracy (%)

hitrate (%)
tnratio (%)

o [tnratio (%)

202 | 82.13] 93.96 75.08 | 79.46 ] 72.86 202 }85.07] 90.51 | 79.63 75.-97 84.08] 58.93
203 ] 90.64 ] 96.92 | 84.36 | 86.83 ] 90.46 | 72.67 203 | 88.21] 90.64 | 85.77] 75.67] 76.22] 72.67
204 | 76.94{ 97.78 | 78.80] 62.94] 66 61.9 204 |64.58) 74.17 | 55.00] 56.22| 84.67 ] 32.38
208 87 | 96.94 | 86.52] 59.44 | 67.78 | 58.33 208 | 69.17] 51.76 ] 86.57 | 59.69| 37.11] 85.00
212 90 96 88 | 76.96 { 83.02] 83.33 212 1 98.00] 100.00] 96.00] 66.91] 67.86] 43.33
216 | 839 | 94.12 | 7493 71.3 | 79.5 | 39.33 216 | 83.90] 84.56 | 83.24] 67.48( 70.30] 54.67
220 | 81.67] 100 | 83.89] 63.91] 72.62] 30 220 | 64.86] 93.33 | 36.39] 93.43] 95.82] 20.00
223A187.86] 98.1 | 87.38] 63.92] 67.62 | 63.89 | | 223A ) 60.10} 70.14 ] 50.05] 50.59] 68.93] 34.44
227 | 84621 99 |80.81| 60 |7065]) 62 227 | 73.52) 78.90 | 68.14} 56.82| 56.58] 57.33
229 | 89.87] 86.51 | 96.92| 65.62| 38 | 70.33 229 |82.12| 95.38 | 68.85] 46.52] 58.00] 44.63
244 | 88.75] 95.28 | 91.11 | 85.67 | 89.29] 84 244 189.58] 95.56 | 83.61] 84.06] 88.43] 58.67
mean | 85.76 | 95.87 | 84.35] 70.15] 73.13 | 63.51 | | mean | 78.10| 84.09 | 72.11] 66.66] 71.64 ] 51.10
std | 431 | 3.64 | 671 | 979 | 14.46] 16.64 std | 12.29] 14.31 1 18.33] 14.51] 16.85] 18.66
min | 76.94 ] 86.51 | 74.93] 59.44| 38 30 min | 60.10] 51.76 ] 36.39] 46.52] 37.11] 20.00
max | 90.64 | 100 [ 96.92| 86.83 | 90.46| 84 max [ 98.00{ 100.00 | 96.00] 93.43] 95.82] 85.00

Tables 5.12 and 5.13 show that for the feature combinétion of RR, RTc, Tampl, skew
the ANN also gave superior classification compared to LDA. The test accuracy was
70.15% for the ANN and 66.66% for LDA. The standard deviation, across patients, of

the classification metrics was again greater for the case of LDA.

Comparing the ANN classification results it can be seer that the two feature
combinations consisting of four features each (RR-RTc-Tampl-skew & RTc-Tampl-
skew-kurt) gave very similar results. The training accuracy differed by 0.69% while the
test accuracy was identical (given two significant digits). Comparing the two classifiers
used it is summarised that for both feature combinations the ANN were superior to

LDA. There was a difference of approximately 4% on the test accuracy, in both cases.

5.2.5 LDA classification of ECG traces modelled by AutoRegressive
Modelling

This section presents the classification results when the ECG traces were represented by
the coefficients of Autoregressive (AR) models. This type of ECG trace representation
was used as an alternative to the approaches where the ECG traces were segmented and

ECG features were produced. As mentioned in Section 4.6, a third order AR model was

employed which yields four model parameters (aj, a, a; and B). The AR parameters (3
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coefficients and offset) were classified by LDA. The classification results are given in

Table 5.16.
Table 5.16: Classification of AR coefficients by LDA

Known data Unseen data

misse misse
false false
alarm

(%)

alarm |
(%)

hypos
(%)

hypos
(%)

Patient
tnratio (%)
a
accuracy (%)

hitrate (%)
taratio (%)
o

accuracy (%)
hitrate (%)

P202' |84.52| 82.06 | 13.01 |86.99] 17.94 |76.52193.33| 64.76 {35.24| 6.67
p203 [99.17| 100.0 | 1.67 [98.33]| 0.00 |88.58 91:2_3 21.43 (78.57| 8.77
p204 §97.78195.56 | 0.00 [100.0} 4.44 166.85|56.67| 24.76 |75.24| 43.33
p208 ]93.98|91.17| 3.20 [96.80| 8.83 |85.03(87.50| 18.67 [81.3312.50
p216 78401 89.26 | 33.24 |66.76] 10.74 [71.39|75.20| 46.67 |53.33| 24.80
p220 ]79.44] 100.0 | 41.11 |58.89] 0.00 }89.99(91.70| 70.00 |30.00} 8.30
p223A |83.67] 86.57 | 19.24 |80.76] 13.43 | 65.20|86.00| 64.29 {35.71]| 14.00
P227 |82.26] 82.71 | 18.19 |81.81] 17.29 |59.75|64.95| 55.33 |44.67] 35.05
P229 |82.82) 73.46) 7.82 (92.18]| 26,54 |52.86|31.67| 44.43 |55.57] 68.33
P244 193.19{ 88.61 | 2.22 [97.78] 11.39 52.77|47.06] 10.67 [89.33|52.94

mean |87.49| 88.94 | 13.97 |86.03| 11.06 | 70.89|72.53| 42.10 |57.90] 27.47
std {777 833 [ 14.11 |14.11| 8.33 |13.89|21.58| 21.73 |21.73[21.58
min ]78.01)| 73.46| 0.00 |58.89] 0.00 |52.77|31.67| 10.67 |30.00| 6.67

max §99.17| 100.0 | 41.11 |100.0| 26.54 |89.99(93.33| 70.00 |89.33] 68.33

Figure 5.11 presents a comparison of the two approaches of ECG representation, i.e.
using ECG features and alternatively using AR coefficients to describe each cardiac
cycle. The results in the case of using ECG features originate from the study presented
in Section 5.2.4. The bars in Figure 5.13 represent training and test accuracy. L abels
“ECGfeat-NNET” and “ECGfeat-LDA” correspond to the approaches of using ECG
features classified by neural networks and linear discriminant analysis respectively. AR-
LDA corresponds to the approach of using AR coefficients for ECG representation
classified by linear discriminant analysis. The AR coefficients were not classified using
neural networks due to time constraints. Comparing the LDA classification results for
the two ECG representation approaches it is observed that the AR modelling yielded
higher training and test accuracy. This gives some indication that the approach of
modelling whole segments of interest of the ECG cycle is a promising one for detecting

subtle cardiac abnormalities related to hypoglycaemia.

148



\/llul.ll\dl e e I e i e

Train & Testaccuracies

100

[eo]
o

D
o O

Accuracy (%)

N
o

(=]

ECGfeat-NNET ECGfeat-LDA AR-LDA

Feature extraction-Classification profile

oTRaTST

Figure 5.11: Summary results for the two ECG representation approaches

5.2.6 Investigation of improved preprocessing on the classification of ECG
traces represented by the RTc and T amplitude features

This section presents a study where less ECG features were fed to the'classifier but
extra preprocessing was applied. Only the main two ECG features that were quantifying
the changes dictated by the research hypothesis were used. The main changes are
broken down to delayed Ventricular Repolarisation and flattened T waves. Therefore
the two main features involved are the RTc (or alternatively QTc) and the T wave
amplitude. The extra preprocessing step involved Moving Average filtering. The aim
was to test whether using additional preprocessing techniques would improve the
performance and whether it would allow reduction of the number of input ECG features
needed. This section also discusses the effect of fluctuations and transient ECG feature
changes on the classification performance. Classifiers used were tailored to the needs of
each patient and global classifiers were not used. The details of this classification study

are summarised in Table 5.17.
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Table 5.17: Classification parameters

Classification Parameters

Patients: . 202 (both nights), 203-nightl, 204, 212-
night2, 227 (both nights), 244-nightl
(Adult typel diabetics)

ECG leads used: YY' from 3-lead orthogonal ECG

Feature extraction: Automatic

T wave onset method: tangent method (fully automatic)

T wave offset method: ' tangent method (fully automatic)

ECG features used: RTc, Tampl

Baseline removal method: _| none

Number of output classes: 2 (euglycaemic — hypoglycaemic)

Hypoglycaemic threshold: 2.5 mmol/It or 3 mmol/lt

Euglycaemic range: (2.5 +o0] mmol/lt (according to 2.5 mmol/it threshold) '
(3 +o0] mmol/lt (according to 3 mmol/lt threshold)

Hypoglycaemic range: 4 [2.2 2.5] mmol/It (according to 2.5 mmolt threshold)
[2.2 3] mmol/lt (according to 3 mmoV/it threshold)

Ranges excluded: NONE (in order to maximise the amount of data used)

ECG features used: RTc, Tampl

cross-validation method 2-fold
(data was partitioned to train and test set and this
partitioning was repeated 1000 times after
randomising the data each time)

outlier removal mean + 3SD

Glucose sensing method: MiniMed CGMS

Effect of ECG feature fluctuations and transient ECG feature changes on
Classification Performance

Pattern classification as it was carried out up to this point of the thesis, suffers from a
number of problems discussed here. This section analyses how the fluctuations of ECG
featﬁres are degrading classification performance. ECG feature values sometimes
fluctuate significantly and this is unrelated to hypoglycaemia'. Moreover, some ECG
features change in value as hypoglycaemia occurs but often the change is a short-term
one and the feature values recover to their previous ranges associated with euglycaemia,
although the patient remains in hypoglycaemia. Such feature changes will be referred to
as “transient ECG feature changes”. The ECG features undergo changes in magnitude
. along with the onset of hypoglycaemia but such changes are transients and the feature
values do not settle to a steady-state level for the duration of the hypoglycaemic period.
Before the hypoglycaemic period finishes the feature values often return to their original
values. This introduces ambiguity since the same feature magnitude can be encountered
both under euglycaemia and hypogl};caemia. This phenomenon is illustrated in Figure

5.12
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Figure 5.12: Tampl (LHS) and RTc (RHS) graphs (solid lines) including MA values (dotted lines) for
. subject 204 .

The LHS graph presents the Tampl feature (solid) and the RHS graph, the RTc feature
~ (solid). The dotted lines describe the moving average of the two features. The vertical
dashed line marks the onset of hypoglycaemia. Records to the left of the dashed line are
normal while records to the right are hypoglycaemic. It can be seen on the Tampl graph
that there is a sharp drop around the onset of hypo. The low Tampl value is preserved
for a while but for records 24 and 25 the value o f the feature returns t o amplitudes,
similar to those before the hypo event. This change happens although the patient
remains in hypoglycaemia. A classifier will associate high T amplitudes (around 400-
450 mV) with euglycaemia and later on it will be presented with similar amplitudes that
correspond to hypoglycaemia. Such ambiguity is confusing the classifier and making its
task very difficult. Extra ECG features added may resolve the ambiguities and improve

classification.

Looking at the RTc graph, similar problems exist. The signal has a lot of fluctuations
and this again causes ambiguities between feature values corresponding to euglycaemia
and hypoglycaemia. For instance, record 13 has a similar value to record 19 although
they correspond to two different clinical conditions. These ambiguities need to be
overcome and the useful information in the feature extracted. For instance, the feature
has an upward trend as the patient goes into hypoglycaemia which is useful for
‘detection of the condition. Also there is a significant increas'e in feature value for a
couple of successive sampling instants around the onset of hypo. However, if static
pattern classification is carried out then this significant event will be masked by similar

feature values occurring before and after it in the night.
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Table 5.18 presents training and test classification results for patient 204 using LDA
when only RTc and Tampl! are used as inputs. The data was partitioned to training and
test and classification was carried out by LDA. This process was repeated 1000 times
and average performance calculated. This approach was chosen over the use of 5-fold
* cross-validation because in the latter case the cross-validation groups were very small
for calculation of statistics. Splitting the data in half (i.e. 2-fold cross-validation)
maximised the size of the train and test sets. Since this was répeated many times, and
the classifiers were assessed on the average performance, we were confident that the
data-set formation was not biasing the classification in any way. A hypoglycaemic

threshold of 2.5 mmol/lt was used to define euglycaemia and hypoglycaemia.

Table 5.18 p204 LDA classification results using RTc and Tampl (raw features, no exclusion of records)
Jfor a hypoglycaemic threshold of 2.5 mmol/lt

TRAIN TEST
accuracy |hitrate specificity |accuracy |hitrate specificity | .
mean 71.67%| 55.29%| 86.00%| 56.43%| 43.86%| 69.00%
std 10.31%| 22.49%| 10.99%( 10.77%| 21.99%| 24.79%

It can be seen from the table that the metrics on the test data ar'e poor with an accuracy
of 56% approximately. Poor performance on this patient is due to the existence of
ambiguous variations of the ECG features during the night that are confusing the
classifier. Specifically on the Tampl feature, there are samples with similar amplitude
that correspond to both clinical conditions and hence the classifier fails to distinguish

between the two; this was discussed earlier and illustrated in Figure 5.14.

In order to investigate the effect of the fluctuating ECG features on the classification
performance, the ambiguous. records according to the Tampl feature were removed. The
records removgd were: 5, 6, 7, 12, 24, 25, 31, 32, 33 and LDA classification was
re’peatéd. The removal of these records is not set up aiming to-improve the numbers in
the classification performance. The justification for the removal of these records is as
follows:
e records 5-7 are the first 3 records of the night corresponding to the transitional
period of the patient falling asleep and including the early stages of sleep. These
records can introduce ECG feature variations that are related to the transition into

sleep but which are unrelated to hypoglycaemia.
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e record 12, although not an outlier, is a record where a big change in feature value
happens and is unrelaied to hypoglycaemia. In some of the studies, such changes are
assumed to be insignificant since they oniy occur at one sampling instant. This
record could be suppressed during preprocessing and set to the value of the previous
sample or a moving average value. |

~» Records 24 and 25 belong to the hypoglycaemic part o f the night but the T ampl
values correspond to levels of magnitude encountered under euglycaemia. These
samples are removed in order to investigate the impact of .such ambiguous records
on the classification performance.

e Records 31-33 were removed for the same reason as records 24, 25.

The LDA classification results after removing the anibiguous feature vectors are

tabulated in Table 5.19 (the results with the ambiguous records included, which were

already presented in Table 5.18, are included again for easy comparisons). As it was
expected, the results significantly improved after removal of the ambiguous records.

The test accuracy increased from 56.4% to 81.2%.
Table 5.19: p204 LDA results using RTc and Tampl (with ambiguous records excluded)

TRAIN TEST
accuracy |hitrate |specificity |accuracy |hitrate |specificity
a’:‘;g;‘g:s mean | 93.70%| 94.00%|  93.40%]| 81.20%| 85.80%]|  76:60%
excuged | Std 8.00%| 9.64% 10.66%| 12.08%]| 18.04%| 28.58%
raw mean| 71.67%]| 55.29%] 86.00%| 56.43%| 43:86%| 69.00%
features |[std 10.31%|( 22.49% 10.99%| 10.77%| 21.99%| 24.79%

Moving Average Filtering

Manually removing ambiguous records was not a practical preprocessing step. In order
to systematically tackle problems of ambiguous feature vectors, an extra preprocessing
step was added before the classifier. This step involved calculating the moving average
profile of each feature. This produced the necessary filtering that suppressed some of
the fluctuations that were causing problems. The equation of the Moving Average filter

used is given below in its generic form for an n™ order filter:

(ix(k—-i)

,forn<k nkeW’ eq" 5.7a
n
_J
Y= S (ke — i) (
Hk ] JJornzk neNkeN" A k>1 eq"5.7D
| x(k), for k=1 eq" 5.7c|

x(k) is the raw feature value at sample k, and y(k) is the MA filtered version.
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It can be seen from the above equations that if there are not enough previous values to
fill the moving window then a smaller window is used with as much data there is
available. Figure 5.13 shows the graph of the raw Tampl feature (top) and the graphs of
the filtered versions of Tampl using MA filters of a length 3 (middle) and 5 (bottom).

_ Tampl feature: raw (top), filtered with MA lengh 3 (middle), filtered with MA lengh 5 (bottom)
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Figure 5.13: raw Tampl feature (top) and its filtered versions using MA filters of a length 3 (middle) and
5 (bottom).

A moving window is used and the mean. value of the déta in that window is calculated.
The classification process could be run multiple times with different window sizes in
order to tune the length of the window by trial and error. In-depth investigations on the
optimal w indow size were not carried out. M A filters o f'1 enéth 3 and length 5 were
tried. A length 3 MA filter was used since it gave better results in terms of classification
accuracy. The classification results for the length 5 filter are not included. The LDA
classification results for p204 when using the length-3 MA filter are given in Table
5.20. It must be noted that all the data that the patient contributed were used; no records

were excluded.
Table 5.20: p204 LDA results using RTc and Tampl (after applying MA length 3 (on all records))

(hypoglycaemic threshold =2.5)

TRAIN : TEST
accuracy |hitrate [specificity |accuracy |hitrate [specificity
mean 89.39%]| 89.73%| 89.09%| 82.36%)] 83.27%] . 81.46%
std 731%| 7.75% 9.10%|: 10.84%| 21.28%| 20.73%
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The results are very close to those obtained when the ambiguous records were removed.
Looking at the test data, the classification accuracy is very similar in both cases being
higher when using MA filtering. The sensitivity has decreased but this is compensated

by a greater increase in specificity.

Once there were indications that MA ﬁltering could improve the classification
performance, it was utilised in the classification process for a number of patients. Two
hypoglycaemic thresholds were used. Classification was carried out for both
hypoglycaemic thresholds to allow comparisons. The LDA classification results for the
8 patieﬁt-nights using MA preprocessing and the hypoglycaemic threshold set at 2.5

mmol/lt are given in Table 5.21.
Table 5.21: LDA results for hypo thresh=2.5, with length 3 MA preprocessing

TRAIN TEST
patient accuracy |hitrate specificity Jaccuracy [hitrate specificity
p202A 95.10%| 97.10%| 80.90%] 66.70%( 95.90%{ 37.60%
p202 ' 88.10%| 93.50%| -86.20%] 83.30%] 81.90%] 84.80%
p203night1] 81.30%| 59.60%| 87.10%] 59.10%| 38.60%| 79.60%
p204 89.40%| 89.70%| 89.10%] 82.40%| 83.30%| 81.50%

p212nght2| 80.10%| 77.80%| 92.60%] 68.40%| 77.30%| 59.50%
p227night1] 79.20%| 85.40%| 65.90%| 63.80%| 80.90%| 46.70%
p227night2] 87.60%| 90.20%]| 83.40%} 78.60%| 80.90%| 76.30%
p244night1] 85.90%| 91.50%| 79.50%] 76.70%| 86.00%| 67.50%].
mean ~ 85.80%]| 85.60%| 83.10%|] 72.40%| 78.10%| 66.70%
std 540%| 12.00% 8.20% 9.10%| 16.90%| 17.30%

Classification is repeated for a threshold of 3 mmol/It and the results are tabulated in

Table 5.22. »
Table 5.22: LDA results for hypo thresh=3, with length 3 MA preprocessing

TRAIN TEST
patient accuracy | hitrate | specificity] accuracy | hitrate | specificit
p202A 89.90% | 91.80% | 81.30% | 68.20% | 86.20% | 50.20%
p202 99.00% | 100.00% | 98.90% | 83.70% | 69.20% | 98.10%
p203night1] 81.50% | 60.70% | 87.00% | 57.90% | 37.80% | 78.10%
p204 92.10% | 88.40% | 94.20% | 79.30% | 67.20% [ 91.50%

p212nght2] 76.10% | 74.60% | 83.60% | 64.50% | 72.80% | 56.10%
p227night1] 80.90% | 87.50% [ 69.60% | 67.70% | 82.30% j 53.10%
p227night2] 86.80% | 91.10% | 82.50% | 77.00% | 78.80% | 75.30%
p244night1] 86.00% | 91.70% | 79.60% | 76.70% | 86.10% | 67.30%
mean . 86.50% | 85.70% | 84.60% | 71.90% | 72.60% | 71.20%
std 7.20% 12.30% 9.00% 8.70% 15.80% | 17.80%

Compan'hg the two hypoglycaemic thresholds when using the MA-length3 filter, it is
observed that the results are very similar. The only easily observable difference is in the

test sensitivity and specificity. For the threshold at 3 mmol/lt, the sensitivity and
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specificity have similar values while for the 2.5 mmol/lt the sensitivity is significantly
greater than the specificity. These variations average out so the accuracy figures for the

two hypoglycaemic thresholds are very similar. These can be visualised in the bar chart

depicted in Figure 5.14.

Comparison of hypoglycaemic thresholds (3 vs 2.5 mmol/lt)
when LDA is used with MA3

LDA RESULTS FOR hypo
thresh=3

LDA RESULTS FOR hypo
thresh=2.5

accuracy hitrate specificity

Figure 5.14 Comparison of hypoglycaemic thresholds

Concluding on the best hypoglycaemic threshold is not an easy task especially when
only considering the metric of classification accuracy on unseen data. Although the two
thresholds gave similar results, the one at 3 mmol/lt is selected for further use since it
yielded more balanced performance towards euglycaemia and hypoglycaemia; that is,
sensitivity and specificity were very close in value. The threshold at 2.5 mmol/It gave
very good performance -in detecting hypo events but the performance in terms of

detecting euglycaemic events was significantly lower.

Continuing the analysis of the effect of the introduction of MA filtering, the LDA
classification results when no MA pre-processing is carried out and for a hypoglycaemic

threshold of 3 mmol/lt are given in Table 5.23.
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Table 5.23: LDA results for hypo threshold=3 (no MA preprocessing)

, TRAIN TEST
patient accuracy |hitrate . |specificity Jaccuracy [hitrate specificity
p202A 93.00%| 96.80%| 75.60%) 69.20%| . 94.20%| 44.20%
p202 79.00%| 100.00%| 75.90%] 65.80%| 58.70%| 73.00%
p203night1 81.80%| 63.30%| 86.70%] 62.70%| 44.70%| 80.70%
p204 78.00%| 67.90%| 83.50%] 61.10%| 49.50%| 72.60%

p212nght2 84.80%| 82.00%| 98.90%| 68.90%( 79.70%| 58.20%|
p227night1 62.50%| 56.50%| 72.80%] 49.50%| 46.70%| 52.30%
p227night2 | 64.30%| 49.60%| 79.00%| 49.20%| 35.40%| 63.00%
p244night1 81.20%| 74.20%| 89.30%| 70.00%| 64.80%| 75.10%
mean . 78110%| 73.80%| 82.70%] 62.00%| 59.20%| 64.90%
std 10.20%| 18.20% 8.70% 8.50%| 19.70%| 12.60%

By inspecting Table 5.23 it is realised that the classification results without employing
MA preprocessing are significantly inferior. The test sensitivity and specificity are
59.2% and 64.9% whereas they were 72.6% and 71.2% respectively when MA (length
3) was used. It can be concluded that the MA preprocessing step significantly improved
performance by dealing with ambiguities in the ECG features and masking fluctuations

unrelated to hypoglycaemia. Hence the task of the classifier was simplified

significantly.

In order to allow further comparisons, a k-Nearest Neighbour (i(NN) classifier was also
employed as a benchmark for the LDA. A squared-Euclidean distancev metric was used
in the KNN. The kNN classifier was implemented using the “knnclassify” M file from
the MATLAB bioinformatics toolbox. The number of nearest-neighbours in the
classifier were set to 3 or 5 and we settled to k=3 since it gave better performance. The
process of partitioning the data into training and testing was the same as with the LDA
process. That is, the data was partitioned to training and testing sets and then fed to the

kNN classifier; this process was repeated 1000 times and averages calculated.

Neural networks were not used in this classification study due to lack of processing
power and time constraints. The KNN classification results- with and without MA

preprocessing for a threshold of 3 mmol/lt are tabulated in Tables 5.24 and 5.25

respectively.
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Table 5.24: kNN results (k=3) for hypo threshold=3, with length 3 MA preprocessing‘

TRAIN TEST
patient accuracy |hitrate specificity Jaccuracy [hitrate specificity
p202A 91.38%| 98.33%| 60.10%] 63.78%| 87.30%| 40.27%
p202 94.47%) 63.30%] 99.15%] 74.52%| 50.03%| 99.00%
p203night1 82.04%| 29.90%| 95.95%| 45.13% 1.00%| 89.25%
p204 82.30%| 71.38%| 88.25%| 69.92%| 57.75%| 82.08%

p212nght2 83.96%] 95.67%| 25.45%] 52.41%| 92.80%| 12.03%
p227night1 86.80%| 91.75%| 78.31%| 75.09%| 85.72%| 64.47%
p227night2 | 84.64%| 84.50%| 84.79%] 66.38%| 66.90%| 65.85%
p244night1 86.50%| 89.60%) 82.96%] 70.91%| 74.03%] 67.79%
mean  86.50%]| 78.10%| 76.90%| 64.80%| 64.40%| 65.10%
std 4.40%| 22.90%| 24.00%| 10.70%| 29.70%( 27.90%

Table 5.25: raw kNN RESULTS (k=3) FOR hypo thresh=3

- TRAIN TEST

patient accuracy |hitrate |specificity |accuracy (hitrate |specificity
p202A 86.08%| 98.84%| 28.63%] 46.90%| 91.67% 2.13%
p202 94.32%)| 57.40%| 99.86%] 69.00%]| 39.20%| 98.80%
p203night1] 85.73%| 36.40%]| 98.88%] 53.00%| 13.63%| 92.38%
p204 84.31%| 72.75%| 90.61%| 61.64%| 47.62%| 75.67%

p212nght2 | 83.66%]| 95.54%| 24.28%| 52.41%| 93.68%| 11.15%
p227night1] 71.27%| 85.74%| 46.46%| 41.10%| 62.83%| 19.37%
p227night2} 77.79%| 87.80%| 67.79%| 55.70%| 67.69%| 43.71%
p244night1] 77.42%| 84.94%| 68.83%| 62.49%)| 72.33%| 52.64%
mean . 82:57%| 77.43%| 65.67%| 55.28%)| 61.08%| 49.48%
std 6.99%]| 21.13%| 30.15% 8.99%| 26.95%| 37.07%

Using MA preprocessing in cascade with the kNN classifier improved the performance
compared to when feeding the raw ECG features. The accuracy on unseen data
increased from 55.28% to 64.8%. Further comparisons between the two classifiers will

be presented in the Discussion Section (5.3).

Using a dynamic threshold to assess the magnitude of the ECG features

As indicated earlier, using the raw ECG feature values has the disadvantage that
ambiguous events occur that confuse the classifiers. Besides using the MA signal
instead of the raw one, an alternative approach was to use the raw ECG feature data but
subtract the current MA value from the current feature value. This way the feature
values would not be filtered (smoothed) which is what the MA process does, but at the
same time, the fluctuations would be suppressed. Subtracting the MA value from the
feature v alue effectively c ompares the current feature value with a moving threshold
provided by the MA value. This, in theory, should absorb some of the fluctuations and

reduce the reliance of the classifier on raw feature values.
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The way this normalisation process works is that instead of using the raw feature values
as the criterion of whether the ECG trace corfesponds to normality or hypoglycaemia,
the feature is compared to a dynamic threshold. The dynamic threshold equals the MA
value at the current sampling instant. To put it simply, each input that the classifier
receives is produced by comparing the current ECG value to a‘dynamic threshold (MA
value) instead of using the absolute magnitude of the feature. So the classifier would
have to classify the difference of the current feature value from the current MA value.
The transfqrmed ECG features for subject 204 are given in Figures 5.15 (Tampl) and
5.16 (RTc). ' ’
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Figure: 5.15 Transformed (normalised) Tampl feature for subject 204
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Figure: 5.16 Transformed (normalised) RTc feature for subject 204

159



TS AARRPI VWA W v e mmve e ——— s - —— - - -~ -~

It can be seen that after the normalisation by subtracting the MA signal, the features
fluctuate around zero. This new transformed range of feature values would be useful if
data were mixed together to produce global datasets for global classifiers to be trained

on. However, this transformation will not guarantee the elimination of inter-patient

* variability.

LDA classification results using this approach (ECGfeat — MA) are presented in Table
5.26. A hypoglycaemic threshold of 3 mmol/lt was used and the MA window size used -

to calculate the dynamic thresholds was set to 3 as in the previous studies.

Table 5.26:LDA results for hypo thresh=3, adaptive features (ECGfeat-MA3) preprocessing

TRAIN TEST
patient accuracy |hitrate specificity Jaccuracy |hitrate specificity
p202A 80.57%| 83.79%| 66.88%} 56.13%| 82.10%| 30.17%
p202 87.40%| 80.93%| 88.32%] 69.43%| 51.95%| 86.90%
p203night] 77.60%| 62.13%]| 81.73%] 56.14%] 34.13%| 78.15%
p204 71.28%| 33.20%| 92.05%] 51.13%| 19.27%| 83.00%

p212nght2] 82.10%| 82.31%| 81.10%] 58.61%| 77.45%| 39.78%
p227nighty] 66.88%| 64.07%| 71.71%] 49.62%| 55.30%| 43.93%

227night]  73.23%| 65.89%| 80.56%] 61.95%| 50.34%| 73.56%
p244night] 62.27%| 63.84%| 60.47%] 39.69%| 43.66%| 35.71%
mean . 7517%| 67.02%| 77.85%| 5534%| 51.77%| 58.90%

std 8.34%| 16.46%]| 10.72% 8.86%] 20.80%| 23.61%

By inspecting the above table, it is realised that this preprocessing step did not live up to
the expectations. The results appear to be worse than when the raw ECG features were
used. In order to investigate the reasons behind the unsatisfactory performance of the
new preprocessing step, a number of scatter diagrams of Tampl versus RTc were
plotted. Figure 5.17 presents such a scatter diagram when the raw feature values are
used. Figures 5.18 and 5.19 present the scatter diagrams when MA filters of length 3
and 5 were used, respectively. Finally, Figure 5.20 presents a scatter diagram when the

| dynamic threshold is used, based on a MA-length3.
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Figure 5.17: Tampl vs RTc scatter diagram for raw ECG feature values of patient 204
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Figure 5.18: Tampl vs RTc scatter diagram for MA3 filtered ECG features (patient 204)
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Figure 5.19: Tampl vs RTc scatter diagram for MAS filtered ECG features (patient 204)
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Figure 5.20 Tampl vs RTc scatter diagram for normalised ECG features by subtracting the MA3 signal
(patient 204)

Itis easily observed by comparing the scatter d iagrams that filtering the data with a
length-3 MA filter gave the most clear-cut sub-classes on the 2D classification surface.
With the exception of two data-points, the two classes can be distinguished by a linear
decision boundary. This leads to only two misclassifications (missed-hypo events) that
lie in the euglycaemic class. Using a MA-lengthS filter also gives useful results thoﬁgh
they are inferior to when using a window of length 3. The two classes are closer

together and-more difficult to distinguish.

Using a-dynamic threshold gives a classification task that is significantly more difficult

to solve. The main euglycaemic sub-class occurs within the hypoglycaemic class. Using
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the raw feature values also leads to a situation that is difficult to classify. To summarise

the classification results presented earlier; a bar chart is given in Figure 5.21.

Symmary of classification results (hypo threshold = 3mmol/lt)

0.8
0.7- graw LDA RESULTS
0.6-
: LDA RESULTS with length 3
0.54 MA preproc
0.4 O LDA RESULTS with (ECGfeat-
MAZ3) preproc

oraw kNN RESULTS (k=3)

@ kNN RESULTS (k=3), with
length 3 MA preproc

hitrate specificity

Figure 5.21: Summary of pi‘eprocessing—classiﬁcation approaches

The best results were produced using the combination of MA (length 3) preprocessing
and LDA. The second best approach was again using MA (length 3) preprocessing but
followed by a k-Nearest Neighbour (k=3) classifier. The kNN classifier gave better

results than the LDA when raw features were fed and also when the dynamic threshold

was used.

Using a dynamic threshold defined by the current feature value minus the current MA
value proved to be worse than using the raw ECG features! In principle, the dyhamic
threshold should be superior because it would lead to adaptivity in response to cardiac
changes during the night. The results demonstrated that this was not the case in practice.
However the idea of a dynamic threshold was successfully used as part of a monitoring
system for hypoglycaemia detection, which will be presented in Chapter 6. The
advantage of the system presented in Chapter 6 was that it was also using temporal
information in combination with dynamic thresholds. This combination was effective in

improving performance.

5.3 Discussion

In this chapter, pattern classification of time-averaged ECG signals was carried out.
This is a static process since no time stamps were used for the feature vectors fed to the

+ classifier. In the studies inéorporating MA preprocessing, although we did not feed a
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variable conveying temporal information to the system, we were effectively including
some information from the temporal dimension since the filtering process e ffectively
provided information about the samples previous to the one classified at each
classification epoch. The same was done in the studies where the derivative of an ECG
feature was used. The first derivative value was accompanying each ECG feature fed
and was effectively providing information about the previous ECG sample. The
derivative value used was providing information on whether the previous sample was at
a higher/lower amplitude and by how much. The best results from this chapter reached a
classification accuracy on unseen data of approximately 72%. This figure is promising
and is improved in Chapter 6. Further improvements yielding robust detection of

hypoglycaemia could lead to an online monitoring system for the bedside.

5.4 Conclusion

This chapter presented a number of classification studies for distinguishing between
ECG traces corresponding to the conditions of euglycaemia (normal glucose levels) and
hypoglycaemia. Multi-layer perceptrons were used along with statistical classifiers
(LDA and kNN). A number of approaéhes towards tackling the problem were presented.
Classifiers trained on global datasets versus classifiers tailored to the dynamics of
specific patients were investigated. It could safely be concluded that producing a
customised system for the needs of a given patient would be the best approach towards
tackling the problem; the reason being the great inter-patient variability. Even if a
globally trained classifier could solve the problem, it would be expected that a

customised classifier would introduce a further improvement in performance.

A brief study on ECG trace representation by AR coefficients instead of vtﬁe use of ECG
features gave proinising results and could be investigated further in the future. This was
not done due to time constraints and also because it was thought that the quite recent
approach of Action Potential modelling [Wohlfart 1987, Vila 2000] of ECG signals
would be more suited to this work compared to AR modelling. Hence it would be wiser
to perform further work on ECG tface representation by A ction Potentials instead of
doing so by AR coefﬁcients. This is because the process of modelling by Action

Potentials is more plausible biologically.

Finally, the use of extra preprocessing techniques that would aid in solving ambiguities

in magnitude of ECG features corresponding to both clinical conditions, were
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| investigated. The best approach proved to be using the Moving Average signals instead
of the raw ECG features. The Aapproach of using a dynamic threshold to assess the
normality of an ECG feature failed and gave results inferior to those when using the raw

features.
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Chapter 6

A Knowledge-Based Monitoring System for

Hypoglycaemia Detection

6.0 Introduction

This chapter focuses on the design of a monitoring and alarm system for detection of the
onset of spontaneous nocturnal hypoglycaemia. Firstly it discusses the differences from-
previous classification approaches (MLP, LDA and kNN presented in Chapter 5) and
then it presents the ECG features used and the way monitoring w as carried out. The
adaptivity of the system to ECG feature changes as time elapses is discussed and the
rule-base is presented. The system was realised as an Expert System (using Crisp Logic)
and also as a Fuzzy Inference System (using Fuzzy Logic). Both systems are presented,

along with monitoring results, and their differences are highlighted.

6.1 Overview of monitoring system

The approach for detection of spontaneous nocturnal hypoglycaemia presented in this
chapter differs from the classification approaches presented in Chapter 5, in that it
simulates a patient monitoring scenario. The data available are of course offline, but the
approach is very similar to that where a patient is monitored online on his bedside. The
data are treated as if they were online data. The main difference to previous approaches
is t hat t emporal i nformation is i ncorporated to the s ystem. In previous studies, s tatic
pattern classification was carried out i.e. no temporal information was included. What
was classified consisted of feature vectors corresponding to the two conditions
(euglycaemia and hypoglycaemia) and the classifier was trying to recognise patterns
and classify the feature vectors correctly. In this study each feature vector was fed to the
system while the system was also using information from previous feature vectors in
order to detect changes in the behaviour of the cardiac signal. In other words, the

temporal dimension was also included and taken in account in the inference process.
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This system was based on incorporation of basic knowledge by human experts. The
Knowledge Base was constructed from vague guidelines by our medical collaborators
besides our observations on the dataset. A number of basic rules were used to achieve
monitoring of the patients. The initial Knowledge-Based System (KBS) produced was
based on traditional Crisp Set Logic and will be referred to as "Expert System" (ES)
since this term has been used in the field of AI to describe KBS based on Crisp Set
Logic. An alternative version of the system was also produced that was using Fuzzy
Logic. The Fuzzy Inference System (FIS) produced was using exactly the same rule-
base as the ES. The FIS possessed the additional advantage that it could produce a
degree of certainty to support the decision inferred. This degree of certainty was
describing the strength of an alarm if one was raised and, in the case of no alarm raised, |
the extent to which the alarm sounding threshold was approached. Such information is

useful for patients and clinicians using diagnostic systems.

The monitoring system is outlined in Figure 6.1. It has four inputs and three outputs.

More information about the architecture will be given in Section 6.7.

| Tampl :> ) ‘
. |7 Diabetic State >
[ RTapexc .
Adaptive Knowledge-Based oo——— ’\
System ]
[ Tampl risk >

RTapexc risk

2-1

Z-1

Figure 6.1: Illustration of the KBS
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6.2 Dataset

The data used in this approach originated from the dataset on spontaneous
hypoglycaemia presented in Section 3.3.1. The fact that the hypoglycaemic events are
nocturnal and spontaneous makes this dataset suitable for a realistic monitoring study. If
an online monitoring system was to be produced to monitor abnormal glucose levels by
inspection of the ECG then it would be aimed at detecting spontaneous events only
while the subject would be asleep. Such a system is not addressing the monitoring of
patients when they are awake. The ECG traces used were signél-averaged (SAECQG) as ‘
opposed to beat-to-beat in line with classification Astudies presented in chapter 5, also.

using SAECGs.

6.3 ECG features

Two ECG features were fed to the monitoring system. One of the features was the T
wave amplitude (Tampl) and the other feature was a time interval feature, either
RTapexc or RTc, describing the VR duraﬁon. RTapex is the time interval from the R
peak up to the T peak (T apex) and RT the interval from R peak to T-end. Both these
features were corrected for heart rate using B azett's formula (eq" 2.1) to produce the
RTapexc and RTc features where the suffix "c" stands for- "corrected". Either the
RTapexc or the RTc feature was fed to the system and comparisons of the effect of each

feature in system performance were carried out.

The reason for choosing the RTapexc feature, as an alternative to the RTc feature, is the
lack of a robust and weli-established T-end detection algorithm. As it has been stressed
earlier, despite thé large amount of research effort that has been devoted to the design of
a robust algorithm, the gold standard in T-end detection is still the manual annotation by
a human expert. The RTapex feature has the advantage of not using the T-end
annotation in its definition. The drawback of this feature is that it will not describe late
VR phenomena that may be reflected on the T-downslope. A prolongation in the QT
- interval will be manifested to a lesser extent on the RTapex feat'ure compared to the RT.
Although the T downslope is of great interest and the RTapex is incapable of
representing the behaviour of this downslope, it was chosen because of issues of
robustness. Weéknesses in T-end annotation algorithms may cause variations in QT and
RT features that have no clinical significance and could be confusing in a classification
or monitoring situation. ’
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This led us to investigate the alternative of choosing a less informative but more robust
feature. Besides testing the monitoring system when either using the RTc or the
RTapexc features, the uncorrected versions (i.e. no heart-rate correction) of these
features were also tested. The RTc and RTapexc feature profiles for patient 205-night 1
are presented in Figure 6.2 to allow comparisons of the two definitions of describing
VR duration. The top figure presents the raw values of RTc (blue) and RTapexc (black).
The middle graph presents the values for the two features after the baseline (1st value of
the night) has been removed. This was done to aid comparisons ofthe variations ofthe
two features. The bottom graph contains the glucose variable for that night, with the
dashed horizontal line denoting the 3 mmol/lt hypoglycaemic threshold. It is apparent

that this patient did not go into hypoglycaemia.
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Figure 6.2: RTc and RTapexcfor 205-night]

The other feature chosen besides RTapexc was the T amplitude, as mentioned earlier.
This choice was because depletion in plasma potassium due to counter-regulatory
responses occurring during hypoglycaemia affects in many cases the T wave by a drop
in its amplitude, as discussed in Section 1.1.5. T wave flattening is apparent in many

studies related to hypoglycaemia and is very frequently encountered in our datasets.
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The number of input features used was kept small in order to achieve low complexity of
the rule-base and the prototype system in general. The reason for choosing two features
was to be in line with the main clinical hypothesis upon which this thesis is based.
According to the hypothesis, only features quantifying the QT prolongation and T wave
flattening would be used. The features used were Tampl and a time interval feature
describing VR duration (either RTapexc or RTc). The above two features were chosen
because of their clinical significance. They both reflect the counter-regulatory responses
that can be encountered under hypoglycaemia. RTapexc (and also RTc) is related to the
release of adrenaline and T amplitude to the drop in potassium. Therefore choosing to
avoid features based on the T-end annotation leads to the use of the above two features.
In theory, RTapexc (or RTc) and T amplitude should be sufficient in quantifying the
flattening and prolongation of the T wave occurring under hypoglycaemia, which
constitutes the main assumption of this work. ST segment changes and U wave
morphology changes are extra events that may occur undér hypoglycaemia and could be

incorporated in the system as part of future work.

6.4 Monitoring

The pre-requisite for patients used in this monitoring study was that they should have
had healthy glucose levels at the time they went to bed. Both hypoglycaemic and
euglycaemic nights were used. Successful monitoring on an euglycaerhic night would
mean that an alarm should not be raised. Successful monitoring on a hypoglycaemic
night would mean the detection of the onset of hypoglycaemia as closely as possible to
the time it occurred. Once an alarm had been raised the monitoring would stop since the
patient would have woken up. In a real monitoring situation the patient would treat
himself (e.g. with carbohydrates) to restore the glucose levels to normal and go back to
bed. The system would be reset and start monitoring again. A post-alarm continuation
of monitoring was not considered in this study in order to simplify the problem and also
because the duration of each night-recording (8 hours) was not enough to allow
resuming the monitoring process. Also, since the dgta used was not online data, if an
alarm was raised this would not correspond to the patient waking up. This means that
there would be no restoration of glucose to normal levels after the alarm. Consequently,
the cardiac function would not have been fully restored. This makes it an unrealistic

situation to be used for monitoring.
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6.5 Moving Window Applied on ECG Features to Achieve
Adaptivity '

During the monitoring process, abnormal changes in feature value as time elapsed were
detected by comparison to an adaptive threshold. This threshold was based on a moving
average value. A moving window was used containing a few samples prior to the
current time instant. In some versions of the system, this was combined with a moving

value of the standard deviation, calculated from the same movihg window, to define an

accepted range (Healthy Band) of feature values.

The equation of the Moving Average filter used is given below in its generic form for

n™ order: .
(Zx(k—z')
i=l , forn<k nkeW' ' eq" 6.1a
n
— _ k-1
x(")—J 3 x(k - i) (
i=]k " ,forn2k neN keRN Ak>1 eq” 6.1b
0, for k=1 ' eq” 6.1c]

x(k) is the raw feature value at sample k, and Xx(k) is the MA filtered version.

The equation for the calculation of the Moving value of the Standard Deviation (MSD)

is given below in its generic form for n™ order:

(Z(x(k - i) = %(k))’
i=1 " , forn<k nkeWN’ eq" 6.2a
n —
k-1
YEY=1 N (x(k - i) - X (R))? [
i=T ,fornz2k neW keN Ak>2 eq" 6.2b
(k-1)-1
0, for ke {1,2} ‘ : eq" 6.2¢]

x(k) is the raw feature value at sample k and X(k) is the MA value at sample k

calculated from the moving window that spans up to x(k-1). y(k) is the standard
deviation of the feature values that lie in the moving window. This standard deviation is

not the deviation from a static mean but the deviation from the Iﬁoving average.
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In equations 6.1 and 6.2 presented above, the moving window does not include the
current sample, i.e. the right-hand-side limit of the window is the sample previous to the
current one. Inclusion of the current sample in the moving window was also tested.

When the current sample is included in the window, the equations take the form:

( )
D x(k—i+1)
L forn<k nkeRN* eq" 6.3a
n

—_ k-1

FE= S e —i+1) }
= P ,forn2k neR%,keR' Ak>1 : eq" 6.3b
L0, for k=1 eq” 6.3c |

[Z(x(k—iﬂ)—f(k))z .
=l " ,fJorn<k nke®N* ' eq” 6.4a
n_ .

k-1

YE) =95 (el —i + 1) — % (k)

=l ,forn2k neN'keN " Ak>2 eq" 6.4b
(k—-1)-1

0, for ke {1,2} o | eq" 6.4c |

The only difference in equations 6.3 and 6.4 is the “+1” component in the numerator,
which causes the current sample to be included in the window. The effect of including

the current sample is discussed in Section 6.13.

For the T amplitude feature, a significant event related to the .onset of hypoglycaemia
would be an abnormal drop in amplitude while for the RTapexc feature we would look
for an abnormal increase in feature value (corresponding to QT prolongation). This
means that opposing changes in the two features are significant. A drop in T amplitude
below the moving average value would be a sighificant event (risk factor)®' and
similarly for an increase in RTapex value. For an alarm to be raised, two successive in
time significant events in both features are necessary. The use of two successive
significant events was needed to avoid changes in feéture value that would correspond

to artefacts or other brief cardiac events unrelated to hypoglycaemia.

*! An abnormal feature change will be referred to a "potential risk", "risk factor", or "significant event"

interchangeably throughout the chapter and without further clarification.
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Looking for significant events independently in each of the two features would lead fo
many false alarms. There were cases where abnormal changes in only one feature would .
be observed that were not related to hypoglycaemia. There are even cases where
abnormal changes even in both features were unrelated to hypoglycaemia. Such an
example is the first night of patient 205 presented in Figure 6.5 (Section 6.10). This
patient exhibits both T flattening and RT prolongation which are unrelated to
hypoglycaemia and this causes a false alarm. Using just one feature would mean that
many more cases o f feature changes unrelated to h ypoglycaemia w ould 1ead to false
alarms. To ensﬁre that the changes were genuine, they were expected to happen in both

features.

An alarm accurately raised at record 17 for patient 204, is illustrated in Figure 6.3. The
graphs show the actual feature values, together with the moving average values (dotted

lines). The vertical dashed lines mark the record where the alarm was raised.

The use of the moving average criterion was necessary for detection of significant
changes in feature value. Because of inter-patient variability, an absolute threshold that
if excéeded would raise an alarm, could not be used. Also because of intra-patient
variability during the night, the baseline at the start of the night or any other fixed value
could neither be used as a threshold that when exceeded corresponds to a significant
event. An adaptive threshold, that would be changed as night progressed, had to be used
to detect significant events. This was realised in practice as early approaches of using a
hon—adaptive KBS did not achieve satisfactory performance. The term ‘“non-adaptive
KBS” means that the thresholds used are static and hence the system uses a fixed
definition of euglycaemia and hypoglycaemia. On the other hand, adaptive thresholds

mean that the definitions of euglycaemia and hypoglycaemia change as time elapses.
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Figure 6.3: Tampl (LHS) and RTapexc (RHS) graphs (solid lines) including MA values (dotted lines) for
subject 204
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A reason justifying why adaptive thresholds were necessary to define the abnormal
events is the apparent prolongation in QT, and hence RTapex, during sleep. Molnar et al
[Molnar 1996] have studied the diurnal pattern of QTc and observed lengthening of
QTc during sleep. Moreover an increase in T amplitude for a few samples at the
beginning of sleep was observed in some patients of our dataset. This can be clearly
seen for patient 204 in Figure 6.3 and patient 203 in Figure 6.4 presented in Section
6.10. If such an initial increase in amplitude occurs and later there is a drop due to
hypoglycaemia, the drop may cause the feature to have similar valués as those at the
start of the night. So if the baseline at the start of the night was used as a threshold this
~ would mean that the significant event due to a drop in feature value, could not be
detected. However, an adaptive threshold will closely follox;v the dynamics of the T
amplitude and RTapexc variables. It will mask the.acc'eptable dynamic changes and

help identify the abnormal ones.

6.6 Tuning of Window Size

The length of the window used for calculation of the'moving a\}erage was varied and an
optimal value was chosen. It was varied from a length of 1 sample up to 5 samples for
both features. This was done by an exhaustive search of all combinations while testing -
the performance of the alarm system. The optimal values were different for a few
patients although groups of patients having the same optimal values could be identified.
The differencesv in optimal window sizes among patients should not be an obstacle for a
custom alarm system that would be trained on the patient to be monitored prior to the
monitoring period. An alarm syétém tailored to a specific patient can be permitted to
learn and ‘adjust for a period of time prior to the start of monitoring. The width of the

Healthy Band (HB) was also tuned for optimal performance as will be discussed in

Section 6.11.

6.7 Rule-Base

As shown in Figure 6.1, the system has 4 inputs and 3 outputs. Two of the inputs are the
two ECG feature values (Tampl énd RTapexq) at the current sample and one of the
outputs (Diabetic State) represents-the alarm state. The rest of the inputs and outputs
refer to the significant events related to previous samples. The potential-risk outputs are

fed back to the system as inputs and are used in the next monitoring epoch.
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The two principal rules used for monitoring are presented below:

1. IF (Tampl is flattened) and (Tampl prev is flattened)
and (RTapexc is prolonged) and (RTapexc_prev is
prolonged) THEN (DiabeticState is hypo)

2. IF (Tampl is normal) or (Tampl prev is normal) or

(RTapexc 1is normal) or (RTapexc_prev is normal) THEN

(DiabeticState is eugly)

The suffix "_prev" stands for previous sample before the current one. "flattened" is
defined as: Tampl < Tampl MA, where Tampl MA is the moving average of Tampl,
based on a window size selected for optimal performance. Similarly, "prolonged" is
defined as: RTapexc > RTapexé_MA, where RTapexc MA is the fnoving average of
RTapexc, based on a window size tuned for optimal performance. If theADiabetic State
is "hypo" then an alarm is raised. In all other cases the Diabetic State is "eugly" i.e. the

night is euglycaemic.

If the combination of movihg average and moving value of standard deviation is used,
as will be discussed in Section 6.11 onwards, then "flattened" is defined as: Tampl <
-(Tampl_MA - Tampl MSD) where Tampl_MSD is the moving value of the standard
deviation - of Tampl and "prolonged" is defined as: RTapexc > RTapexc MA +
RTapexc_MSD, where RTapexc MSD is the moving SD of RTapexc. It is emphasised
that the system‘is adaptive to changes of ECG features only. The rest of the inputs and
also the outputs o f the sy stem are static. T he window used to calculate the MA and
MSD values is kept fixed during monitoring. For the Tampl and RTapexc inputs a
number of past values, dictated by the window size, are stored in internal registers for
calculation of the MA and MSD values of each epoch. Besides the inputs to the KBS,
the MA and MSD values are also used in the inference process and are illustrated with

arrows, at the top of the block diagram, in Figure 6.1.

The two principal rules were provided for illustrating the concept behind the monitoring
approach. They were presented for purposes of better readability since they were
compact. The actual rule-base used in the system consists of eight rules since not all the
eventualities are covered in the two principal rules. The latter present only how the

Diabetic State output is calculated, but not the other two outputs. The expanded rule-
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base fully complies with the compact rules presented above. and is the one that

corresponds to the system presented in Figure 6.1.

The exact rule-base, representing the knowledge of the system, is presented below:

1. IF (Tampl is flattened) and (Tampl risk is high) and
(RTapexc is prolonged) and (RTapexc_risk is high) THEN
(DiabeticState is hypo)

2. IF (Tampl is normal) or (Tampl risk is low) or (RTapexc
is normal) or (RTapexc _risk is low) THEN (DiabeticState
is eugly)

3. IF (Tampl risk is 1low) and (Tampl is normal) THEN
(Tampl risk is low) |

4. IF (Tampl_risk is 1low) and (Tampl is - flattened) THEN
(Tampl _risk is high)

5. IF (Tampl risk is high) and (Tampl is normal) THEN
(Tampl risk is low)

6. IF (RTapexc_risk is low) and (RTapexc is normal) THEN
(RTapexc_risk is low) ]

7. IF (RTapexc_risk is low) and (RTapexc is prolonged) THEN
(RTapexc_risk is high)

8. IF (RTapexc _risk is high) and (RTapexc is normal) THEN

(RTapexc__ri sk is low)

Rules 1-2 perform monitoring of the patient’s ECG. Rules 3-8 are used for evaluating
potential risk factors from previous feature samples. They increase the potential risk of a
feature if the current feature value appears abnormal while the previous one appears to
"be normal or decrease the potential risk when the opposite happens. The weighting for -

all rule.s was set to 1 for both the ES and the FIS.

A look-up table is provided (Table 6.1) to demonstrate how the system works. It
‘presents the input-output mappings for a simplified system using only two inputs, being
the ECG features, and only one output being the Diabetic State. Since the actual system
has four inputs it cannot be illustrated as a two-dimensional look-up table. The
simplified systém does not use information about the potential risks from previous

samples and hence the number of inputs is reduced to two.
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Table 6.1 Look-up table for two-input KBS (excluding potential-risk inputs)

RTapexc normal ~ prolonged
Tampl ‘
normal euglycaemia - euglycaemia
flattened euglycaemia hypoglycaemia

It must be noted that abnormal feature values to the other extreme (i.e. elevated T waves
or shortened RTapexc intervals) are treated as normal since they are not known to be

related to hypoglycaemia.

6.8 Hypoglycaemic Threshold Used and Quantitative Evaluation
of KBS Performance |

" In order to assess the performance of the monitoring system, the threshold defining the
onset of hypoglycaemia needed to be defined. This was discussed in Section 4.2. In
contrast to the classification studies, in this chapter, the onset of hypoglycaemia was
deﬁned'using two different hypoglycaemic thresholds, one at 3 mmol/lt and another one
at 2.5 mmol/lt. The onset according to both thresholds is tabulated in the results
sections. This is because there is no single answer for which is the optimal
hypoglycaemic threshold to be used. Various research studies have considered different
thresholds as discussed in Section 4.2. Some’patients could be symptomatic at 3
mmol/lt, while others would have to drop lower for changes on the ECG to be
manifested. (There could e ven be cases w here there is no m anifestation on the ECG
which is when our main research assumption would not hold leading to inability of
hypo detection.) For this reason both thresholds are presented so each case can be
judged individually. The abbreviation "eugly" in the 3™ column of the results-tables
means that the night was euglycaemic. On the last column labelled "perf" a summary of
the performance of the system is given. The following abbreviations are used to
describe the performance which in some cases is also given descriptively:

% CA: Correct Alarm, i.e. True Positive (TP), used to denote correctly raised alarms
% CE: Correctly monitored Euglycaemic night i.e. True Negative (TN)
% FA: False Alarm for a night i.e. False Positive (FP) '
% MH: Missed Hypo for hypoglycaemic night where no alarm was raised (i.e. False
Negative)
For the version of the system incorporating the MSD criterion the result tables contain a

few extra columns as will be seen in Table 6.3.
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Two sets of results for each version of the system are presented. A global KBS system
was produced which is tuned in such a way so as to perform optimal monitoring for all
patients. In order to improve performance, the KBS system was further tuned to achieve
customisation per patient. Such an approach is preferable since it achieves higher
performance. Moreover it is still realistic for monitoring because, when a real-life
monitoring system is produced it is feasible for it to be tuned on the patient to be
monitored, for a period of time, before the actual monitoring starts. The rule-base,
representing the knowledge of the system, was identical in both cases (global and
custom KBS). The only parameters that were tuned were the window sizes for the two
features and also the width of the Healthy Band as it will be séen in the version of the

system incorporating moving values of the standard deviation.

Analysis of performance on the hypoglycaemic nights is not as straightforward as for
the euglycaemic nights. For the latter, if no alarm is raised this means correct
mbnitoring and when the contrary‘happens it means a false alarm. But when assessing
the performance on hypoglycaemic nights the outcome is not binary (correct-alarm or
missed-alarm). There are cases where an alarm is raised with a small deviation, in time,
from the onset of hypoglycaemia. The cost of such a deviation must be assessed in each
case. Such events are also presénted descriptively, instead of just using percentages, in

the results tables of this chapter.

The analysis of how early or late an alarm was raised, was carried out in terms of
sample numbers and not in terms of the actual time duration. In the dataset used, ECG
data were recorded every 15 minutes during the night so an alarm two samples early or
late corresponds to half an hour in time which is a significant duration for a monitoring
system, making it look inaccurate. However this is only due to the fact that the data
were recorded every 15 minutes. This is the maximum temporal resolution of the
dataset. So if an alarm is raised just one sample late this means 15 minutes late which is
not a limitation of the alarm system but a limitation of the dataset. Such an alarm is
actually the second best result after a "spot on" detection. In a different situation with
more frequent sampling, one sample early or late would mean a shorter period of time.
In order to be fair in the assessment of the alarm system, the analysis is considering
inaccuracies in terms of sample numbers and not in terms of time duration. This means
that we are not assessing limitations due to the temporal resolution of the dataset but

only assessing the limitations of the monitoring system.

178



6.9 Approved patients from the dataset

This section discusses the choice of the patients from the dataset that were included in

the study and gives justification for patients excluded. It also presents the assumptions

formulated for certain patients. It must also be clarified here that the serial numbers for

the ECG traces were 1-33 for the first night.of a patient and 34-66 for the second night.

The datafiles not included in the study are listed below:

+

208nght1 was not included because the night started in hypoglycaemia.

216nght] was not included because hypoglycaemia started very early (glucose
dropped below 2.5 mmol/it at record 4). This made it very difficult for the KBS to
perform monitoring since there was not enough héalthy data for the system to start
defining its normal and abnormal thresholds.

216nght2 was not included because hypoglycaemia also started early (glucose
dropped below 2.5 mmol/lt at record 39 i.e. the sixth record in the night). Moreover
the glucose was fluctuating in and out of hypo throughout the night. T he p atient
went in and out of hypo 5 timés. '

Patient 220 (both nights) was not included because the ECG exhibited many
inverted T waves. Because the temporal position of a normal T peak varies from that
of the peak of an inverted T wave, the transition from a normal T wave to an
inverted and vice versa meant fluctuations in the time-interval feature describing the
QT which can be confusing for the monitoring system. Once more sophisticated
ECG features could be incorporated in the system, this patient could be included in
future studies.

Both nights of patient 223 started as hypoglycaemic so this patient was excluded.
Patient 225 (both nights) was rejected because of extremely bad quality of the ECG
recording. '

Patient 226 (who only contributed a single night) could not be used because of the
existence of many ambiguous components in the ECG. The patient exhibited
biphasic T waves, non-standard ST segments and, in certain records, almost
inexistent T waves.

229nghtl was not used because the onset of hypo happened very earl.y (record 2),
with the patient recovering for a while and then going hypo again. '
229nght?2 started as hypo so it was also rejected.

Both nights of patients 234 were rejected because of the bad quality of the ECG.
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Apart from the excluded patients an assumption had to be made for one of the approved
patients: '

For patient 201 A (night 2) the glﬁcose dropped below 3 mmol/lt (it did not go below 2.5
mmol/lt) at the last record of the night (record 66). This night was classed as
euglycaemic and this late event was ignored. Since there was no data past this event it is
unknown what happened after that and also the glucose did not drop below 2.5 mmol/lt
which would constitute a stronger candidate to be classed as hypoglycaemic event to
take into account. The biomedical scientist performing data acquisition and ECG
annotation in the Diabetic Clinic of the RHH>> had also classed this night as
euglycaemic. In clinical studies a night would normally be defined as h}fpoglycaemic
only if the glucose was in the hypoglycaemic region for a significant period of time (i.e.

30 minutes).

6.10 Monitoring Results using MA

The performance of the alarm system when only the MA criterion was used is tabulated
in Table 6.2. The table contains the following information: the patient number and
corresponding night, the record at which the onset of hypoglycaemia occurred, the
record at which the alarm was raised, the optimal MA window sizes for the two features
and the assessment of performance (“perf”). “TamplWS” stands for Tampl-WindowSize
and similarly for RTapexcWS. When the hypoglycaemic-onset entry of the table
(“hypo-onset@rec”) is zero the night was euglycaemic. Similarly When the alarm output
(“alarm@rec” field) is zero, no alarm was raised by the system. It must be stressed here
that the current feature value at each time instant was included in the calculation of MA.
Alternatively, the adaptive statisﬁcs can be calculated using a window spanning up to

the previous sample, as will be seen in later sections.

The table contains the results from the customised monitoring systems. Global results
are not presented for this early system. Both a global and a set of customised monitoring
systems will be given in Section 6.11 presenting the system that incorporates the MSD
criterion. The total nights monitored were 32, contributed by 19 patients. An alarm was
classed as acceptable if it satisfied any of the two hypoglycaemic thresholds cbnsidered
(2.5 mmol/lt or 3 mmol/lt). Out of the 32 nights used, 12 nights were monitored

accurately out of which, 3 were hypoglycaemic, with the alarm being raised at the

E: Cath Davies
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correct sample number by the KBS, and 9 were euglycaemic where no alarm was raised
by the monitoring system. This means that the accuracy, sensitivity and specificity of

the KBS were 37.5%, 33.3% and 39.13% respectively. There were also 14 nights where

a false alarm occurred and 6 nights where hypoglycaemic events were not detected.

Table 6.2: Performance of alarm system based on RTapexc and T amplitude featrures

# | patient hypo alarm@rec | TamplWS | RTapexcWS perf
: onset@rec
201Anght1 eugly 0 3 2 CE
201Anght2 66(<3) 0 3 2 CE
202nght1(202A) | 23(<3), 26 4 3 CAwithin2
24(<2.5)
4 | 202nght2(202) 41 (<2.5) 41 3 2 CA
5 | 203nght1 11 (<2.5) 20 3 2 CAwithin9
6 | 203nght2 eugly 0 3 2 CE
7 | 204 (nght1) 17(<3), 17 3 2 CA
18(<2.5)
8 | 205nght1 eugly 26 3 2 . FA
9 | 205nght2 eugly 48 3 2 FA
10 | 207nght1 eugly 0 2 2 CE
11 | 207nght2 eugly 43 2 2 FA
12 | 208nght2 eugly 64 3 2 FA
13 | 209nght1 eugly 20 4 4 FA
141 209nght2 50(<3), 50 4 4 CA
55(<2.5) :
5 | 210 (single night) | eugly 0 3 2 CE
16 ] 212nght1 eugly 12 3 2 - FA
17 | 212nght2 58(<3), 45 5 2 CAwithin13
59(<2.5)
18 | 215nght1 eugly FA
19 ] 215nght2 eugly FA
20 | 218nght1 eugly 0 4 2 CE
21 | 218nght2 | eugly 0 4 2 CE
22 | 221 (single night) | eugly 8 3 2 FA
23 | 222 (single night) | eugly 0 3 2 CE
24 | p227nght1 21(<3), 20 2 4 - CAwithin1
22(<2.5)
25 | p227nght2 39 44 2 3 CAwithin5
’ (<2.5mmol) g
% | p230nghtt eugly 14 3 2 FA
27 | 231nght1 eugly 14 3 2 FA
28 | 231nght2 eugly 45 3 2 FA
29 | 232nght1 eugly 14 3 2 FA
30 | 232nght2 eugly 0 3 3 CE
31 | p244nght1 18(<2.5) 22 2 5 - CAwithin1
1 23(<2.5)
32 eugly 41 2 5 “FA

p244nght2

If we consider a deviation from the hypoglycaemic onset of up to and including 2
samples as acceptable then there are 3 more hypoglycaemic nights monitored correctly
giving a total of 15 nights where the alarm system performance was acceptable with the

- sensitivity reaching 66.6%. Such nights were: 202A (alarm 2 samples late), 227nght1
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(alarm 1 sample early) and 244nght1 (alarm 4 samples after a very brief hypoglycaemic

event and 1 sample before the main hypoglycaemic onset).

A discussion of a few interesting cases of patients will be presented here. For patient
203 (night 1) whichis a hypoglycaemic night, the alarm is raised 1ate .by 9 samples
(hypo occurs at record 11). This happens because there is no manifestation of an
abnormal event on the ECG at the onset of hypoglycaemia. Regarding the T amplitude
feature, the opposite of what is expected happens. That is an increase in amplitude of
‘the T wave. It can be seen in Figure 6.4 presenting the actual (solid) and Moving
Average (dotted) profiles for the Tampl feature that there are 4 éuccessive increases in T
amplitude from record 9 up to record 13. This means that no flattening is manifested in
the pfoximity of record 11 which is when hypoglycaemia occurs. The vertical dashed
line on the figure marks the record where the alarm was raised.

p203nght1
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|
|
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700}

600+
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Figure 6.4: Tampl for 203nghtl showing delayed alarm (9 samples)

Investigating the glucose profile it is realised that the night started as hyperglycaemic
with the glucose at 12.24 mmol/lt at the start of the night (record 7). By record 11, i.e.
within an hbur, the glucose had droppéd to 2.2 mmol/lt. This is a very steep descent,
going from one extreme (hyperglycaémia) to the other (hypoglycaemia). This very rapid
drop in glucose could give an explanation as to why hypoglycaemia is manifested on
the T amplitude feature, and detected by the KBS, very late. A rapid drop in glucose is
eXpected to take longer before affecting the heart. On the other hand, the delay between

slow changing glucose and the subsequent effect on the heart is expected to be shorter

[PD2].
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For pétient 205 (night 1) a false alarm is raised because a drop in T wave amplitude,

p205nght1
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Figure6.5: Tampl graph for 205nght1 showing alarm @) rec26
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Figure 6.6: RTapexc graph for 205nght1 showing alarm (@ rec26

below the MA value,
occurs for records 25
and 26 and also a
prolbngation in
RTapexc, above the MA
value occurs for these
records as seen in
Figures 6.5 and 6.6.
(Abnormal changes in
the two features also
happen for record 27 but
this does not affect
anything since the alarm
has been raised from the
previous record.) These
changes  were very
similar to the changes
that. happen dﬁring a
hypoglycaemic  event,
which is why an alarm
was raised. It seems
impossible to avoid this
false alarm wusing a

monitoring system based

only on the above two features. There is a lot of fluctuation in both features that cannot

be masked simply by using the MA criterion, and this leads to a false alarm.

In Section 6.5 it was stressed that an alarm system based on only one ECG feature

would not be robust. The above alarm system was also assessed when only the T

amplitude feature was used. For subjects 202 (night 2) and 204 it detected

hypogiycaemia correctly while it was within the three samples for subject 209 (night 2).

Such a system though has many false alarms. This was expected but assessment of a’

system based only on the T amplitude feature was carried out to see whether some
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hypoglycaemic events occurring in the dataset, would be detected. The next section will

present a monitoring approach using moving values of mean and standard deviation.

6.11 Monitoring System using MA and MSD

6.11.1 Monitoriﬁg Results

An improved approach based on the system presented in Section 6.10 was to
incorporate the moving value of the standard deviation of the feature values in the
system. In that case a significant event will occur if a feature value lies outside the mean
+ standard deviation (SD) region. For the T amplitude feature, a reduction in amplitude
below mean - SD is significant while an increase above mean + SD is ignored since
only the flattening of the T wave has clinical significance. The opposite holds for the
RTapexc feature where we are monitoring increases in feature value above mean + SD
while RTapexc shortening below mean - SD is ignored. At each monitoring epoch the

standard deviation was calculated from exactly the same moving window of data as the

mean.

The main difference between the monitoring system presented in this section and the
one using MA only (Section 6.10) was the inclusion of the MSD criterion. All other

aspects of the system were the same (inputs, outputs, rule-base etc).

The moving window in the MA system was including the current feature value at the
instant of monitoring for calculation of the mean. In the MA&MSD system both the
approaches of including and not including the current sample were tested. Further
experimentation (outlined in Figure 6.10) included the assessment of the RTc feature
instead of the RTapexc and also the use of the uncorrected versions of both the RTc and
the RTapexc features. Moreover the approach of freezing the window values once a
potential risk occurred, in order to make the alarm system rﬁore sensitive to feature
changes, was tested as will be described in Section 6.13. F‘inally the Receiver Operating
Characteristic (ROC) approach was employed as presented in Section 6.11.2 in order to

further improve the performance of the global KBS by tuning its parameters.
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The accuracy, sensitivity and specificity of the global KBS using MA and MSD were:
78.13%, 22.22% and 100% respectively3 3, The results from the customised systems per
patient are tabulated in Table 6.3. Apart from the standard fields, the table also contains
the values of the optimal parameters (Window Sizes and Healthy Band Widths) for each
patient. “scTampl” is a scaling factor by which the standard deviation is multiplied so
that the width of the Healthy Band can be varied. The default p‘arameter is 1 which
effectively uses MA+MSD as the Healthy Band. Similarly for “scRTapexc”. The entries
of the table highlighted in bold denote cases where the parameters of the custom system

differ from those of the global system.

In most cases, more than one set of tuning parameters corresponds to the optimal
performance tabulated for each patient. For instance, for patient 202-night2, the
acceptable parameters ranged in 1, 1, [0.5 2], [0.5 0.7] for TamplWS, RTapexcWS,
scTampl and scRTapexc respectively’’. Wherever there was agreement between the
global and the custom parameters, the global paramefers were shown in Table 6.3. This
was done in order to identify the maximum number of patients showing agreement to a

global set of parameters.

A significant improvement in performance of the system was observed once the
standard deviation criterion was incorporated. The reason behind the improvement is the
fact that an acceptable range of feature values was defined at each sampling instant. A
significant event occurred only if the feature magnitude exceeded this range. According
to the previous apprdach where only the moving average was used, any reduction below
the mean in the case of T amplifude or increase for RTapexc would be a significant
event. This leads to many false alarms because a lot of fluctuation in feature values
occurs and such fluctuation is not necessarily corresponding to hypoglycaemia. A
typical example of a false-alarm being rectified by the inclusion of MSD is 205-nightl
that was discussed in Section 6.10." The system using MA -falsely raised an alarm
because T wave flattening and QT prolongation was observed. The improved system
was able to infer that the above flattening and prolongation was \;vithin acceptable

ranges.

33 Current sample not included in moving window and freezing of window not allowed.
* For scTampl and scRTapexc a range of values is given.
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Table 6.3: Alarm system results using MA & MSD (for RTapexc and Tampl features) -

MA & MSD Results

(not including current sample and no freezing of Window allowed)

No patient gl<3 [ gl<2.5 | alarm@rec perf TampIWS | RTapexcWS | scTampl | scRTapexc
1 | p201Anght1 0 0 0 CE 1 4 1.9 0.7
2 | p201Anght2 | 66 0 0 CE 1 4 1.9 0.7
3 | p202A 23 24 10 CAwithin13 1 1 1.9 0.7
4 | p202 41 141 41 CA 1 4 1.9 0.7
5 | p203nght1 11 11 18 CAwithin7 4 1 0.7 0.5
6 | p203nght2 0 0 0 CE 1 4 1.9 0.7
7 | p204 17 18 17 CA 1 4 1.9 0.7
8 | p205nght1 0 0 0 CE 1 4 1.9 0.7
9 | p205nght2 0 0 0 _CE 1 4 1.9 0.7

10 | p207nght1 0 0 0 CE 1 4 1.9 0.7

11 [ p207nght2 0 0 0 CE 1 4 1.9 0.7

12 | p208nght2 0 0 0 CE 1 4 1.9 0.7

13 | p209nght1 0 0 0 CE 1 4 1.9 0.7

14 | p209nght2 | 50 55 50 CA 5 2 0.9 0.9

15 | p210 0 0 0 CE A1 4 1.9 0.7

16 | p212nght1 0 0 0 CE 1 4 1.9 0.7

17 | p212nght2 58 59 50 CAwithin8 4 "2 1 1

18 | p215nght1 0 0 0 CE 1 4 1.9 0.7

19 | p215nght2 0 0 0 CE 1 4 1.9 0.7

20 | p218Anght1 0 0 0 CE 1 4 1.9 0.7

21 | p218Anght2 0 0 -0 CE 1 4 1.9 0.7

22 | p221 0 0 0 CE 1 4 1.9 0.7

23 | p222 1 0 0 CE 1 4 1.9 0.7

24 | p227nght1 21 22 21 CA 2 5 1 0.7

25 | p227nght2 39 39 39 CA 1 -4 0.7 0.7

26 | p230nght1 0 0 0 CE 1 4 1.9 0.7

27 | p231nght1 0 0 0 CE 1 4 1.9 0.7

28 | p231nght2 0 0 0 CE 1 4 1.9 0.7

.29 | p232nght1 0 0 0 CE 1 4 1.9 0.7

30 | p232nght2 | 65 0 0 CE 1 4 1.9 0.7

18 18
31 | p244nght1 23 23 10 CAwithin8 1 1 0.5 0.5
32 | p244nght2 0 0 0 CE 1 4 1.9 0.7

The summarised results (accuracy, sensitivity and specificity) of the customised systems

were: 87.5%, .55.5‘6% and 100% respectively. Once customisation of the system is

allowed, the performance (predominantly the sensitivity) increases significantly. Out of

the 32 nights used, originating from 19 patients, all 23 euglycaemic nights were

monitored accurately. Out of the 9 hypoglycaemic nights, 5 were monitored accurately

with the alarm being raised in the exact sample where the onset of hypoglycaemia

occurred. For the remaining of the hypoglycaemic nights, alarms were still raised but

subject to a time-deviation from the onset of hypoglycaemia. For 203-night] the alarm

was raised late by 7 sampling instants. For 212-night2 and 244-nightl the time-

deviation was 8 samples and for 202A it was 13 samples.
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It must be stressed here that any patients not complying with the clinical assumptions of
this Wdrk wiil not comply with the rule-base used in the monitoring system. Such
patients will not exhibit QT prolongation and T wave flattening under hypoglycaemia
and will not be monitored successfully by the system. Althougil this may be a problem
for a low-glucose-monitoring point of view, it is not one from a hypoglycaemia-related
arrhythmia-detection p oint o f view. P atients not e xhibiting the above bhanges onthe
ECG are probably exhibiting normal VR (i.e. normal cardiac function) and may not be

~in danger of arrhythmia or sudden death although the glucose is very low*>.

The fact that the KBS yields low sensitivity does not mean that it is inadequate as a
monitoring system. From the above discussion it becomes apparent that the KBS will
raise alarms only fbr those patients exhibiting the assumed ECG changes. Patients not
exhibiting the changés will, probably, not be in danger. The fact that the KBS raises
alarms at the correct sample for a few subjects verifies the fact that it is an adequate
system for monitoring. The KBS uses the minimal amount of input ECG features.
Further improvements in performance will require the inclusion of more features,

characterising ST segment changes and the presence or not of U waves.

6.11.2 Receiver Operating Characteristic (ROC)

The parameters of the KBS (width of healthy bands, and Windbw sizes) were tuned by
applying the Receiver Operating Characteristic approach which is a graphical method
for simultaneously maximising the sensitivity and specificity by selecting appropriate
values of the parameters of the system. The ROC curve when varying the width of the
healthy band*® is presented in Figure 6.7. The horizontal axis corresponds to "1-
specificity” while the vertical one corresponds to "sensitivity". Optimal performance
occurs for data-points as close as possible to the top left-hand corner of the figure. The
value of the corresponding scaling parameter (that adjusts the width of the healthy band)
is plotted next to each data-point. There is a trade-off between high sensitivity and high
specificity and ROC allows choice of the best pair given the requirements of the user of
the technique. All 4 parameters (window sizes and healthy bands independently for 2
ECG features) were tuned by ROC. Such an ROC graph is depicted in Figure 6.8.

35 Very low glucose may not necessarily mean abnormally low glucose, from the arrhythmogenesis point

of view.

3 in the case where the same width is used for both features .
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Figure 6.7: Receiver Operating Characteristic for tuning one parameter
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Figure 6.8: Receiver Operating Characteristic for tuning four parameters
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All possible combinations of the 4 parémeters were used in the ROC analysis. The
window sizes varied in the interval [1 5] and the scaling factors adjusting the healthy
band, in [0.5 2]. The graph looks “messy” because the area of the graph is swept up and
down because of the variation of multiple parameters. The optimal set of parameters can
easily be identified by zooming in. The ROC graphs were plotted in the MATLAB
environment that was allbwing the user to zoom in and read the parameters next to the
coordinate point of interest on the graph. Figure 6.9 illustrates a section of an ROC
graph after zooming in to read the parameters of interest. In many cases more than one

set of tuning parameters were yielding the same performance causing overlapping

points on the graph.
085} i}
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05¢ scTampl=1.8 32868 8
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Figure 6.9: ROC graph after zoorﬁing-in.

For a number of different conﬁgﬁrations‘ of the KBS, there were many parameter-
combinations yielding pairs in the bottom right comer of the ROC graph®’. In a
classification problefn this corresponds to very bad classification performance.
Nevertheless, such a classifier can be very useful when inverting its output. In our case,
altﬁough many pairs occurred in the bottom-right corner, this was not useful because the
KBS performs monitoring in time, as opposed to static pattern classification and

therefore its output cannot be inverted.

37 A weak classifier, will have data-points on the 45 degress line of the ROC graph, corresponding to 50%
sensitivity and 50% specificity (i.e. a random classifier).
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6.12 Outline of experiments

As mentioned earlier, a number of experiments were carried out in the development
process of the knowledge-based monitoring system with some of them having been
- presented already. Before proceeding any further in the discussion of these experiments,

a diagrammatic outline is given in Figure 6.10 to aid the reader in following the

presentation.
Expert System
Architecture o<
Fuzzy Inference System
RTapexc
Alternative RTc
Featu
res RTapex
, RT
Global
Tunin <
Knowledge-Based d Customised per patient

Monitoring System 4
' Number of risk factors <
needed to raise alarm 3

No -
Freezing window <
Yes

Previous sample
RHS limit of moving window <

Current sample

Figure 6.10: Outline of experiments carried out during the KBS development.

The issues that appear in the figure that havenot been discussed yet are: theuseof
alternative versions of the time-interval feature that describes VR duration (RTapex, RT
etc), the use of fewer risk factors as a requirement to raise an alarm, and the approach of

freezing the window once a risk factor has occurred.

6.13 Modifications of KBS (FreezeW, up2current)

Besides adjusting of the monitoring system by means of varying the WS and HB
parameters, a few more techniques were attempted in order to increase the performance.
Such experimentation was carried out only on the MA&MSD system, since this was the

main system produced for patient monitoring.

One dilemma encountered was whether to include the currerit feature value, at each
sampling instant, in the calculation of the MA and MSD values or to use a window of

past data spanning up to the previous sample. Inclusion of the current sample causes the
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system to be less sensitive in feature changes over time. For instance a sharp increase in
feature value from one sample to the next is more likely to be detected as abnormal if
the current value is not included in the window. Including thé current high value will
affect the value of the MA and MSD and this high increase will be masked to some
extent. Both options described above were attempted. The MA system presented in
Section 6.10 was using a window that included the current value. On the other hand, the
KBS yielding the results presented in Table 6.3 (MA&MSD) did not include the current
. sample in the moving window. Comparing the two approaches for the MA&MSD
system led to the conclusion that exclusion of the current sample in the moving
windows was the optimal approach. The monitoring results were inferior to those

presented in Table 6.3 so they are not presented here.

Another idea that was implemented into the system was to “freeze” the MA and MSD
values, once a significant event would occur i.e. to keep the window stationary. This
would make the system more sensitive to abnormal features changes. The way this
approach worked was to keep the current values of MA and MSD fixed for either
feature once a potential risk would be raised. These values would be kept in a buffer for
as long as potential risks were detected. The window would continue to move only if
the potential risks would be reset to zero. After implementing this approach it was
realised that it made the system very sensitive to feature changes and did not really
introduce an improvement in performance. Results from this approach are again not

included since they were inferior to those tabulated in Table 6.3.

6.14 Feature combinations including RTapex, RT and RTc

Further experimentation with the KBS led to the use of alternative feafures, instead of
the RTapexc, that also produce estimates of the VR duration.. The input ECG features to
the system were always kept to two and Tampl was always one of them. The RTapexc
feature was replaced in turn by RTapex, RT and RTc in equal tests of the monitoring
system. RTapex and RT are the uncorrected versions (i.e. no decorrelation from the RR

interval) of RTapexc and RTc respecﬁvely.
It has already been stressed that the RTc is a superior predictor of delayed VR compared

to RTapexc since it also describes late VR phenomena reflected on the T downslope that

RTapexc cannot describe. The only reason that the RTapexc was initially used in the
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system was the caution towards the robustness qf the T wave end annotation algorithm3 8
used. Using the RTapexc feature we were more confident that the feéture changes
would exclﬁsively be due to a cardiac event, whereas with the RTc feature they could
either be due to a cardiac event or due to a weakness of the algorithm under more
difficult circumstances (i.e. noise, artefacts etc). In later stages of development of the
KBS, the RTc feature was used instead of RTapexc to test the quality of the former as a

VR predictor besides testing the performance of the T-end annotation algorithm.

The experimentation with the RTc feature did not improve the global KBS. However,
when considering customised-per-patient systems it helped identify a few hypos more
closely. For subject 202A hypoglycaemia started at records 23-24. It was detected at
record 18 (5-6 samples early) when using RTc while it was detected at record 10 when
using RTapexc. Therefore the use of the RTc feature, although not achieving detection
of the hypo, gave an alarm closer to the onset of hypoglycaemia. For 203nght1, when
RTc was used the hypo was detected at record 15 (only 4 samples late). When RTapexc
was used the earliest it could be detected was record 18 (7 samples late). For 212nght2,
the alarm was still raised at record 50 when RTc was used and the chosen parameter
combination (TamplWS, RTapexcWS, TamplHB, RTapexcHB) for RTapexc was (4, 2,
1, 1) while the closest one when RTc was used was (4, 2, 1, 0.9). For 244nghtl1 the hypo
could not be detected at all when the RTc feature was used. When RTapexc was used,
an early alarm was raised at record 10 (8 records early). When assessing the system on
“spot on” alarms the use of RTc did not yield any improvement. However, if a deviation
of up to 5 samples was considered as acceptable, then the use of RTc increased the

sensitivity from 55.56% to 77.78%.

Besides the experimentation with the RTc interval, the RT and RTapex features were
examined. These tests were qarried out to see how useful the heart-rate-correction was.
It had been observed that the correlation coefficient between RTapexc and RR did not
reach satisfactorily low values, which means that the HR correction did not manage to
decorrelate the t wo variables very well. A ccording to the correlation c oefficient, HR
correction was better for the RTc interval compared to the RTapexc. Doubts about the

quality of HR correction led to the use of the uncorrected. versions of the features. After

3% Throughout the study of producing a KBS system, the tangent method was used to annotate T wave

end.
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extensively testing the system, it was concluded that the uncorrected versions did not

introduce any improvements.

In order to be concise and not overcrowd this section with tabulated results, the
experimentation with the extra features described above was only presented
descriptively, outlining only the improvements introduced and excluding the remaining

results.

6.15 Using three signiﬁcaht events to raise alarms

Up to this point, the rulefbase of the monitoring system was such that it would require
two successive significant events (potential risks) in both features to raise an alarm i.e. 4
significant events in total. In an attempt to make the system more sensitive to alarms,
the scenario where only 3 events would be enough was examined. Such events would
either be two potential risks from the previous cycle and one on either feature on the
current cycle (2+1) or one potential risk from the previous cycle and two, on both
features, on the current cycle (1+2). This means that instead of four, three of the events
that the s ystem was looking for inits previous version would be enough to raise an

alarm. The results using this analysis are presented below for the RTapexc and the RTc

features™.

When the RTapexc feature was used the following improvements were observed:

1. For 202A the hypo was detected at record 19 and also at record 26 depending on the
choice of tuning parameters (hypo onset was at records 23-24). This is a significant
improvement compared to when using 4 significant events (very early alarm at
record 10). 7 ’

2. For 203-night1 the alarm was raised at record 17 i.e. the use of only 3 events raised

* the alarm one sample closer to the onset of hypo (at record 11).

3. For 212-night2 the alarm was raised at record 51 which is again one sample closer
to the onset of hypo compared to the use of 4 events. '

4. For 244-night] the alarm was raised at record 22 i.e. 4 samples after the onset of a
brief period of hypo and one sample before the onset of the main hypo period. This

~ is a significant improvement.

% For the configuration where current sample not included in moving window and freezing of window
disabled.
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If a deviation of up to 2 samples is acceptable then the use of 3 significant events for the

RTapexc feature increased the sensitivity from 55.56% to 77.78%. This improvement in

sensiti{fity is the same quantitatively with that achieved by the use of RTc instead of

RTapexc when 4 significant events were used.

The results when the RTc feature was used along with 3 significant events, are analysed

in more depth and the full set of results for the customised ES are presented in Table

6.4. A gain the results in bold d enote d epartures of the tuning p arameters from those

values'corresponding to the global KBS.

Table 6.4: Alarm system results (for features: RTc, Tampl) when using 3 significant events

patient gl<3 _gl<25 | alarm@rec perf TamplWS RTcwWs scTampl | scRTc
p201Anght1 0 0 0 CE 5 1 2 1.7
p201Anght2 | 66 0 0 CE '5 1 2 1.7
p202A 23 24 27 CAwithin3 5 1 1.7 1.7
p202 41 41 37 CAwithin4 5 1 2 1.7
p203nght1 11 11 15 CAwithin4 5 1 1.7 1.7
p203nght2 0 0 0 CE 5 1 2 1.7
p204 17 .18 18 CA 5 1 2 1.7
p205nght1 0 0 0 CE 5 1 2 1.7
p205nght2 0 0 0 CE 5 1 2 1.7
p207nght1 0 -0 0 CE 5 1 2 1.7
p207nght2 0 0 0 CE 4 1 2 1.7
p208nght2 0 0 0 CE 5 1 2 1.7
p209nght1 0 0 0 CE 5 2 2 1.7
p209nght2 50 55 53 CAwithin2 5 2 1.8 0.7
p210 0 0 0 CE 5 1 2 1.7
p212nght1 0 0 0 . CE 4 1 2 2
p212nght2 58 59 58 CA 3 4 2 0.8
p215nght1 0 0 0 CE 5 1 2 1.7
p215nght2 0 0 0 CE 5 1 2 1.7
p218Anght1 0 0 0 CE 5 1 2 1.7
p218Anght2 0 0 0 CE 5 1 2 1.7
p221 0 0 0 CE 5 1 2 1.7
p222 0 0 0 CE 5 1 2 1.7
p227nght1 21 22 21 CA 5 1 0.9 1.7
p227nght2 39 39 39 CA 5 1 0.9 1.7
p230nght1 0 0 6 FA 5 1 2 1.7
p231nght1 0 0 0 CE 5 1 2 1.7
p231nght2 0 0 0 CE 5 1 2 1.7
p232nght1 0 0 0 CE 5 1 2 1.7
p232nght2 0 0 0 CE 5 1 2 1.7
p244nght1 18 18 21 CAwithin3 5 1 1.4 1
p244nght2 0 0 41 FA 5 1 .2 1.7

When alarms are classed as correct only if they are raised on the exact record of hypo-

onset then the accuracy, sensitivity and specificity of the system are: 78.13%, 44.44%,
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91.30% respectively. However if alarms raised within 4 samples are classed as

acceptable then the accuracy and sensitivity reach 93.75% and 100% respectively.

The use of 3 significant events made the system more sensitive to ECG feature changes.
Although the detection of hypos was improved, two false-alarms were raised in
euglycaemic nights. Such nights were p230nghtl and p244nght2 Specifically for the
‘case of p230nghtl the alarm happened too early, that is at record 6 while the first valid
record of the night was record 4. This means that the system had only two past samples
available to use for setting the thresholds used for monitoring. If a restriction would be
set for monitoring to start later, e.g. after the fifth record of the night so that the system

would have a chance to adapt, this false alarm could be avoided.

Regarding the hypoglycaemic nights, the following improvements were observed when

using 3 significant events: |

1. For p202A the hypo was detected at record 18 (in agreement with the case where 4
significant events were used) and also at record 27 depending on the choice’ of
tuning parameters. The alarm at record 27, which is the closest to the onset of hypo,
could not be produced when 4 events were used.

2. For p203nghtl the alarm was still raised at record 15 i.e. the use of only 3 events did
not introduce any improvement. |

3. For p212nght2 the alarm was raised at record 58 which is a significant improvement
since the blood glucose dropped below 3 mmol/It at that exact record.

4. For 244nghtl the alarm was raised at record 21 i.e. 3 samples after the onset of a
brief period of hypo and 2 samples before the onset of the main hypo period. Use of
three significant events also resulted in a valuable improvement since no alarm was
raised at all when 4 events were used.

If a deviation of up to 4 samples is acceptable then the use of 3 significant events for the

RTc feature increased the sensitivity from 55.56% to 100%, as mentioned carlier.
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6.16 A Monitoring System Incorporating Fuzzy Logic

During the process of tﬁe development of the monitoring systefn, Fuzzy Logic was also
considered. A Fuzzy Inference System (FIS) can be seen as a generalisation of an ekpert-
system where continuous degrees of membership, as opposed to binary oneé, are used.
This feature makes Fuzzy Logic a powerful tool due to the smooth transition from one
membership function to the next. As mentioned in Section 2.5.1, previous work on
- hypoglycaemia detection by a FIS was encountered in the work of Hastings et al
[Hastings 1998] who presented a prototype hypoglycaemia detector that was using
peripheral physiological responses (sweating and HR) to falling blood glucose.

The expert system used for monitoring, in previous sections, was converted to a FIS.
The rule-base of the system was kept the same but fuzzy logic was introduced to replace
the crisp logic previously used. This introduced the advantage that, when an alarm was
raised it would be raised with a degree of certainty in the interval [0.5 1]. Similarly for
the cases where no alarm was raised the output would lie in [0 0.5) and the user would
be able to see how close to the threshold of 0.5 the output had reached. Providing a
degree of certainty when raising an alarm and also informing how close to an alarm the
system has reached, when one is not raised, is useful for cliﬁicians and users of the
system. Such a degree of certainty was also produced for the Tampl and RTapexc

potential risk outputs besides the “Diabetic State” output.

A "Mamdani" system was used where both the antecedent and the consequent parts of
each rule are fuzzy. The MATLAB fuzzy logic toolbox (ver 2) was utilised. The

characteristics of the system are given in Table 6.5 presented below:
Table 6.5: FIS parameters

type: Mamdani
AND Method: min

OR Method: : max
Implication Method: min
Aggregation Method: max
Defuzzification Method: ~ centroid
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The system is very similar to the expert system presented earlier. The only difference is
that fuzzy logic is introduced. The inputs and outputs are kept the same. The fact that

the rule-base is also the same justifies the reason why a Mamdani system was used.

6.16.1 Membership Functions (MFs)

Triangular and trapezoidal membership functions (MFs) were used throughout. Three
MFs were used for the Tampl and RTapexé inputs. The left-most and right-most MFs
were trapezoidal while the middle one was triangular. For the rest of the variables, two
trapezoidal MFs were used. An illustration of the MFs for Tampl (LHS) and RTapexc
(RHS) can be seen in Figure 6.11. The linguistic values used to label the MFs are

T

nomal prolonged

flattened nomal elevated shortened
1

o o o
E-S [,3 -]

Degree of membership
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[N}
T

190 200 210 220 230 240 250 260 270 280 250 - 260 270 280 290 300 310
Tampl . RTapexc

Figure 6.11: MFs for Tampl (LHS) and RTapexc (RHS)

apparent in the figures. For Tampl they are: "flattened", "normal" and "elevated" and for
RTapexc: "shortened", "normal" and "prolonged". In line with the rule-base of the
Expert System, only Tampl magnifudes belonging to the "flattened" MF and RTapexc
magnitudes belonging to the "prolonged" MF would raise an alarm. The universe of

discourse of Tampl is in mV while for the RTapexc it is in msec.

The system was adaptive, similar to the Expert System, and the MFs were updated on
every monitoring epoch based on the calculated MA and MSD. The shapes of the MFs
was kept fixed (i.e. triangular, trapezoidal) but the positions of the peaks (or flat
segments) and also the slopes were varied. For the two ECG features (Tampl, RTapexc)
_using 3 MFs, the middle one (triangular) had its peak at the MA value calculated forl
that monitoring epoch and the cross-over points left and right of the peak occurred at
MA-MSD and MA+MSD. The LHS and RHS trapezoidal MFs were reaching a
membership degree of 1 at MA-2*MSD and MA-+2*MSD respectively. The MFs for the
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~potential-risk variables and also the “DiabeticState” output had a universe of discourse

in[01]and a cross-over'points at 0.5 and were not adapted during monitoring.

Tuning of window sizes and healthy bands was carried out in the same way as in the
Expert System. When the healthy band width was tuned, the éross—over points for the
middle MF would lie at MA-k*MSD and MA+k*MSD where k is the scaling factor
used to achieve variable MF width. In éuch a case, the LHS and RHS trapezoidal MFs
were reaching a membership degree of 1 at MA-2*(k*MSD and MA+2*k*MSD
respectively. The MFs for the potential-risk variables and also the “DiabeticState” were

not adapted as already mentioned.

The 3D surface for inputs Tampl and RTapexc and for the DiabeticState output is
shown in Figure 6.12. The inputs and outputs relating to the potential risks are not

included in order to achieve visualisation in 3 dimensions.

The 3D surfaces look identical because the axes are adjusted separately for each graph
to allow better visualisation. The adaptivity of the FIS can be seen if the range of the

axes in the two graphs is observed. For both input features the healthy range is smaller

at the time of the alarm

p202 - rec35 p202 - rec4t
Len T LT

o
kY o
o «

DiabeticState
o
Y

DiabeticState

o
@
Lo}

e 500
280 -
260

-500
RTapexc Tampl RTapexc Tampl

Figure 6.12: 3D surface for 2 input ECG features and DiabeticState output, at the start of the night
(LHS) and at the time of the alarm (RHS)

Table 6.6 contains the linguistic values used to label the MFs of all the variables used in

the system. The column labelled “middle MF” does not have a linguistic value for the

variables using only 2 MFs.
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Table 6.6: Linguistic values of all MFs

variable LHS MF middle MF RHS MF
Tampl flattened normal elevated
RTapexc shortened normal prolonged
Tampl_risk low | e high
RTapexc_risk | low | —ememememmeeeee high
DiabeticState | low _ | —————————— high

6.16.2 Fuzzy Results

The performanée of the fuzzy monitoring system is presented in Table 6.7. The table
layout is similar to previous tables containing results on the Expert System. The only
difference is that the outputs are not binary but continuous in the interval [0 1]. The
threshold of 0.5 separates the two classes of euglycaemia and hypoglycaemia in the
DiabeticState output. The same threshold separates the two classes of low and high risk
in the other two outputs. The alarm strength at each sampling instant is presented at the
.relevant column. The system presented in Table 6.7 is the global FIS for parameters (1,
4, 1.9, 0.7) for (TamplWS, RTapexcWS, vTamleB, RTapexcHB)4O. It corresponds to
the Expert System presented in Table 6.3. Features Tampl and RTapexc were fed and
the same tuning parameters were used. Also in both systems, the moving window did
not include the current value and also freezing of the moving windows was not allowed
while 4 significant events were needed to raise an alarm. The extra fields in Table 6.7,
which were not included in Table 6.3 are “alarm strength”, “TamplRisk” and
“RTapexcRisk”. “alarm strength” corresponds to the “DiabeticState” output and the

other two refer to the potential risks, from the previous record, associated with features

Tampl and RTapexc.

As expected the results produced by the two systems (ES and FIS) are exactly the same,
since the only difference was the introduction of Fuzzy Logic. The enhancement that the
FIS introduced was the fact that a degree of certainty for the alarm output and the
potential-risk outputs is provided at every monitoring epoch. This is very useful in

. quantifying the possible risk of hypoglycaemia onset both when an alarm is raised and

%% The tuning parameters are not tabulated since they are fixed (global system presented) and also because

" of space considerations on the page.
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when otherwise. Since the results were the same, further discussion specifically on the

performance of the FIS will not be provided in this section.

Table 6.7: Fuzzy monitoring system performance

No pat gl<3 | gl<2.5 | alarm@rec | alarmstrength | TamplRisk | RTapexcRisk | perf
1 | p201Anght1 0 0 0 0.33 . 037 0.54 CE |
2 | p201Anght2 | . 66 0 0 0.35 0.42 0.37 CE
3 | p202a 23 | 24 0 0.37 0.47 0.48 MH
4 | p202 41 41 41 0.5 0.53 0.6 CA
5 | p203nght1 11 11 0 0.44 0.64 0.54 MH
6 | p203nght2 0 0 0 0.37 0.5 0.5 CE
7 | p204 17 18 17 0.51 0.5 0.61 CA
8 | p205nght1 0 0 0 0.5 0.58 0.47 CE
9 | p205nght2 0 0 0 0.35 0.5 0.42 CE

10 | p207nghtt 0 0 0 0.34 0.4 0.42 CE

11 | p207nght2 0 0 0 0.36 0.5 0.49 CE

12 | p208nght2 0 0 0 0.35 0.5 0.39 CE

13 | p209nght1 0 0 0- 0.38 0.61 0.5 CE

14 | p209nght2 50 55 0 0.33 0.42 0.39 MH

15 | p210 0 0 0 0.33 0.5 0.37 CE

16 | p212nght1 0 0 0 0.35 0.36 0.43 CE

17 | p212nght2 58 59 0 0.35 0.54 0.36 MH

18 | p21 5right1 0 0 0 0.33 0.5 0.37 CE

19 | p215nght2 0 0 0 0.34 0.37 0.42 CE

20 | p218Anght1 0 0 0 0.43 0.59 0.64 CE

21 | p218Anght2 | O 0 0 0.37 0.52 0.5 CE

22 | p221 0 0 0 0.35 0.5 0.43 CE

23 | p222 0 0 0 0.44 0.47 0.62 CE

24 | p227nght1 21 22 0 0.37 0.41 - 05 MH

25 | p227nght2 39 39 0 0.35 0.39 0.6 MH

26 | p230nght1 0 0 0 0.34 0.39 0.47 CE

27 | p231nght1 0 0 0 0.33 0.39 0.5 CE

28 | p231nght2 0 0 0 0.34 0.38 0.42 CE

29 | p232nght1 0 0 0 0.43 0.64 0.61 CE

30 | p232nght2 0 0 0 0.34 0.52 0.38 CE

31 | p244nght1 18 18 0 0.37 0.63 - 0.5 MH

32 | p244nght2 0 0 0 0.36 0.38 0.44 CE

6.17 Discussion

A concluding discussion on the research direction of producing a KBS for

hypoglycaemia monitoring is presented in this section.

6.17.1 Knowledge-Based Monitoring System versus Neural Networks

The approach presented in this chapter significantly improved the performance of the
task of detecting the onset of spontaneous nocturnal hypoglycaemia. The use of a

Knowledge-Based approach proved superior to neural (MLP) and statistical (LDA and
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kNN) classifiers previously used. This is due to two ‘main reasons. First, the
| incorporation of temporal information into the KBS so that the system was consulting
previous ECG feature samples besides the current ones when inferring the symptomatic

status of a patient; and second, the incorporation of human-expert knowledge.

The incorporation of temporal information meant that the problem tackled was no
longer a static pattern classification problem as in the case of MLPs, LDA and kNN but
a time-series analysis problem with the system being adaptive as time elapsed. This
gave a competitive advantage to the KBS in performing better. As seen in the data used
in this project, a lot of transient events occur due to dynamic changes of the ECG signal.
The pattern classifiers were unable to make use of these transients and the opposite
effect was seen; that of confusing the classifier due to the varying baselines of the
feature vectors used. It is suspected that the performance of ANNs would be
significantly improved upon the incorporation of the time variable. This was not
possible with the existing datasets since the amount of data was not sufficient for
training time-lagged neural networks. ‘Bearing in mind that the data fed to an ANN
should ideally be representative of all classes to be classified it becomes obvious that in
our dataset the data is further reduced when using ANNs because not all the
euglycaemic nights, which are a lot more than the hypoglycaemic, can be used. On the
other hand, when using the Knowledge-Based approach, the system can be assessed on

all data available since no euglycaemic nights are left out.

The other reason for giving the KBS a competitive advantage was the incorporation of
human-expert knowledge. Not only had this made it possiblé to produce a working
system using a dataset significantly smaller to what a time-lagged neural network would
require, but it also guided the system in identifying only the significant ECG changes
and ignoring the useless ones. This comprises a typical problem in neural network
research. The ANN must decide on its own what comprises structure and what noise in
the data which is a very difficult task and requires very lengthy datasets to achieve this.
For the case of the KBS the rule-base dictated, for instance, that abnormal T wave
elevations could be ignored and similarly for abnormal RTc shortening. It also dictated
that abnormal changes, in the right direction, had to be successive in time. This

knowledge was extremely useful in boosting the performance of the monitoring system.
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Besides the above arguments, the use of a KBS had the advantage that it required tiny
amounts of processing power during its development, compared to ANNs. ANNs
required a large amount of time to frain. This was because a different ANN was
produced for each patient and also because multiple ANNs were trained for a given
patient each one starting from different random initial conditions. Taking into account
that a few ECG feature combinations were fed to the ANNs, the time taken to train all

the ANNs needed was multiplied by the number of feature combinations used.

Another problem with neural networks was the dangerofo vérﬁtting. There are high
chances, in the process of training ANNs, to produce a not so useful ANN that cannot
generalise well on unseen data. Overfitting was not a problem with the KBS. Even
when the system was customised to a specific patient, the internal structure was
meaningful to a human observer. This transparency of the system would allow an
observer to study why a KBS is performing well on a given patient but not on another

one.

Finally the incorporation of human-expert knowledge was very useful for researchers in
the field, especially clinicians. A rule-base allows them to understand how the system
operates, and a]so‘trust it is doing a wise thing. ANNs, being -black-box models, were
often faced with extreme caution and mistrust in the biomedical community; this is not
the case for KBS. Besides the fact that the knowledge of the KBS is formulated in a
meaningful way for human-experts it is also useful in validating clinical assumptions. In
our case, a clinical assumption was provided"! by our medical collaborators, this
assumption was then formulated in a rule-base and successful use of this rule-base
provided the 'necessary feedback to the clinicians to support and strengthen their

assumption.

A drawback of using Knowledge-Based systems is that the expert knowledge must be
available and it must be successfully coded into the system. The knowledge acquisition

and the knowledge representation processes in the KBS context can be difficult tasks to

perform.

“! That of the flattening and prolongation of the T wave under hypoglycaemia
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6.17.2 Detection of the onset of hypoglycaemia versus detection of life
threatening arrhythmias.

The findings of this research regarding ECG analysis and monitoring can either be
directed towards addressing the problem of the detection of the onset of hypoglycaemia
or towards tackling the problem of hypoglycaemia-related life threatening arrhythmias.
These two problems are related since severe nocturnal hypoglycaemia may lead to

cardiac arrhythmias.

The first challenge seems a lot more difficult since monitoring the levels of glucose is
attgmpted indirectly through analysis of the patient’s ECG. Abnormally low glucose
causes adrenaline release and potassium depletion which both affect the ECG and it is
only through these ECG changes that the drop in glucose can be detected. If there is no
manifestation of the dropping glucose on the ECG, then the abnormal drop cannot be
detected. This is a problem for a hypoglycaemia-detection system since the hypos not
~ reflected on the ECG will not be detected. However, the cost of not detecting these
hypos is suspected to be very low from an arrhythmia-prevention point of view. This is
because abnormally low glucose not causing delayed VR will probably not be
dangerous as it will probably not lead to arrhythmogenesis. Hence a system detecting
only those hypos that are manifested on the ECG could be useful in preventing

nocturnal deaths of diabetics related to the “Dead in Bed” syndrbme.

Investing further research effort in the system prdposed in this chapter may lead towards
a monitoring system for “Dead in Bed” prevention. The KBS produced was in many
cases able to raise an alarm at the correct sample. If a fatal cardiac arrhythmia is to be
developed, even a late alarm can be invaluable in saving the patient. There are a few
examples from the dataset where patients (202, 204, 227, 244) were under
hypoglycaemia for a few hours with the glucose being at 2.2 mmol/lt or below*? and the
person remained healthy. The most prominent case was that of 202-night2 where the
patient was at 2.2 mmol/lt for 4.5 hours and below 3 mmol/It for 5.5 hours and remained
healthy. This gives an indication that even an alarm raised a few hours late could be
invaluable in saving the patient from the occurrence of fatal cardiac arrhythmias. A long

period of hypoglycaemia will probably have to occur before the genesis of a dangerous

2 The actual values below 2.2 are riot known because of a limitatioh of the MiniMed sensor as it was

stressed in section 3.2.2.
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arrhythmia and in that long period of hypoglycaemia there is high probability that ECG
changes will occur, in the form of T flattening and QT prolongation, which will be

detected by the monitoring system.

6.17.3 Patient-Oriented Customisaﬁon

As mentioned earlier in the chapter, two approaches were follov'ved in producing a KBS.
A global KBS was produced that was aimed at having optimal performance when
monitoring all patients i.e. it was challenged to tackle both inter-patient and intra-patient
variability in the ECG features. Moreover, customised systems were used for the
elimination of inter-patient variability. These customised systems would focus on the
dynamics of the specific patient to be monitored. This was expected to improve
- performance. The customisation involved the adjustment of the Window-Size and

Healthy-Band parameters. All other aspeéts of the system were fixed.

A global system would be more useful in producing a generic model for the monitoring
problem discussed. Such a generic model is useful academically. However tackling the
real-life problem of patient monitoring will require customised systems. The increased

performance of the customised systems on the dataset contributed in validating their

use.

6.17.4 Static Pattern Classification Performance versus Monitoring System
Performance

The performance of the monitoring approach was superior to that of the pattern
classification approaches. However, this is not easily visible on the performance metrics

because the performance is assessed differently in the two cases.

This becomes aﬁparent by comparing two sets of results from‘ the KBS ‘and the MLP.
The results from the customised KBS presented in Table 6.3 were: 87.5%, 55.56% and
100% for accuracy, sensitivity and specificity respectively®. The MLP classification
results (on unseen data and when MLPs were customised per patient) from Section 5.2.4

were 70.15%, 75.43%, 64.10% for accuracy, sensitivity and specificity respectively.

# when not including current sample in moving windows, with no window freezing allowed and when
assessing alarms as acceptable only if they were raised on the exact sample.
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From the above metrics, the KBS results look superior in terms of the specificity only.

However, they are superior in terms of the sensitivity as well.

Quantifying performance in the Monitoring studies is different to that applied in Pattern
Classification. In the mbnitoring studies, performance is assessed on a patient-night by
patient-night basis. In the classification by MLPs and LDA the performance is assessed
on a pattern (i.e. ECG feature vector) by pattern basis. In the monitoring study, a patient
is either monitored correctly or not, i.e. binary outcome. On the other hand, when using
MLPs and LDA the accuracy per patient lies in the interval [0 100]%. To produce the
overall performance metrics, for the MLPs presented above, the per-patient metrics are

averaged.

The above discussion becomes clearer once a patient is inspected. The MLP test results
for 204 were 58.33%, 62.00% and 58.67% for accuracy, sensitivity and specificity
respectively. The KBS raised an alarm on the correct record for this patient. If patient
204 is analysed on a pattern by pattern basis then the KBS will give a sensitivity and
specificity of 100%. Similarly for patient 227 (both nights merged together) the MLP
yielded 62.00% 65.86% 68.67% while the sensitivity and spe'ciﬁcity (on both nights)
would be 100% by the KBS. Similarly, whenever a euglycaemic night was monitored

correctly by the KBS the metrics would be 100% whereas the MLP result was always

inferior.

In order to be able to compare the performance of the MLP and KBS approaches, the
KBS performance will have to be assessed on a pattern-by-pattern basis and the results
averaged. This was not followed since assessing the performance of the KBS in a

pattern-by-pattern basis is not very informative in a monitoring study.

6.17.5 Optimal KBS Configuration and Optimal ECG Features

The 'monitoring system configuration according to which the moving window was
frozen once a potential risk occurred, in an attempt to make the system more sensitive to
abnormal changes, did not introduce an improvement. Similarly the inclusion of the
ECG feature values from the current monitoring epoch into the moving window, did not

introduce any improvement.
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Regarding the ECG features, the use of the uncorrected versions of RTapexc and RTc
did not yield any improvement in the performance of the system. The optimal results
were produced by employing heart-rate correction on the features describing VR
duration (RTapexc, RTc). As mentioned earlier, the customised KBS results when using
the RTapexc were 87.5%, 55.56% and 100% for accuracy, sensitivity and specificity
respectively. The use of the RTc instead of the RTapexc did not improve these results
when assessing spot-on alarms. However, if a deviation of 5 samples is considered

acceptable when assessing alarms, the use of the RTc increased the sensitivity from

55.56% to 77.78%.

The requirement of three significant events (risk factors) for an alarm, instead of four,
gave the following metrics: 78.13%, 44.44%, 91.30% when alarms are classed as
correct only ifthey are raised on the exact record o f hypo-onset. However i f alarms

raised within 4 samples are classed as acceptable then the metrics reach 93.75%, 100%

and 91.30%.

6.18 Conclusions

This chapter focused on the design of a Knowledge-Based System for the detection of
the sympfomatic status of patients experiencing spontaneous necturnal hypoglycaemia.
In this chapter the research focus moved from ECG pattern classification to monitoring
of patients by monitoring of their ECG during the night. Ofﬂine monitoring of patients
from the dataset was carried out in an approach simulating an online monitoring
situation. The system was monitoring the time-series of two ECG features (T amplitude
and VR duration) and was adapting itself as time elapsed. The KBS was realised both as

~ an Expert System and a Fuzzy Inference System.

A short Rule-Base w as produced to formulate fhe Knowledge-Base o f the sy stem. It
consisted of eight rules. Such a Rule-Base can be v.ery useful for clinical experts and the
fact that the one developed in this work is very concise allows easy inspection by
clinicians. The Knowledge-Base of the system was based on the clinical hypothesis:
(presented in Section 1.1.5) according to which abnormally low glucose encountered in |
hypoglycaemia is reflected on the ECG in the form of T wave flattening and QT
prolongation. The performance of the monitoring system strongly supports this
hypothesis raising optimism for its Vélidation, once more data can be captured to allow

future research.
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The need for customised systems on each patient to be monitored was emphasised
during this work. The research task of producing a monitoring system can be facilitated
significantly o nce inter-patient v ariability c an be o vercome. This can be achieved by
producing a tailor-made monitoring system aimed at the - specific patient to be
monitored. To achieve this, a future monitoring system based on the prototype
presented in this chapter will need a period of learning and customisation on the patient

to be monitored before the actual monitoring will start.

Although the proposed system focused on the detection of the symptomatic status of
hypoglycaemia, it could also I;e a candidate after certain modifications in tackling the
task of detecting the onset of cardiac arrhythmias leading to Sudden Death. If a
monitoring system for Sudden Death was to be produced based on the approach
presented in this chapter, then it should be tuned ohly to detect excessive ECG changes

otherwise many false-alarms would be raised.

Further discussion of the impact of the Knowledge-Based monitoring system on the
initial aims and objectives of this doctorate work will be presented in the next chapter

(Chapter 7) which will conclude the thesis and provide recommendations for further

work.
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Chapter 7

Final Discussion, Conclusions and Further Work

7.0 Introduction

This thesis focused on the investigation of the relationship between hypoglycaemia and
cardiac function and also the detection of the onset of hypoglycaemia using solely ECG
information. This chapter summarises and concludes the thesis. First of all it presents
the main research challenges related to the physiological conditions addressed. It
discusses the extent to which the goals initially set were achieved and the impact they
have on the investigatibn of the clinical problem addressed. It proposes a way forward

for further investigation of the problem by outlining a number of suggestions.

7.1 Discussion of Research Challenges

This section discusses various issues that make this research work a challenging study
and many of the serious obstacles encountered during this project. Some of the
obstacles could not be fully tackled in this research work and are subject to further

investigation. T he c hallenges are organised in subsections according to their relevant

arcas.

7.1.1 Issues related to Data Acquisition and Dataset

A novel dataset was used as a basis for this research work and allowed some new
insights into the relationship between hypoglycaemia and the ECG. It was observed that
the ECG changes due to hypoglycaemia were short-time transients (Sections 5.2.6 and
6.14.1). This suggests the inclusion of temporal information in the classification system.
Unfortunately the data available was not sufficient for training, time-lagged neural
networks**. Such neural networks require long recordings of data. Because of this, only
static neural classifiers (i.e. no time stamps), were used which is believed to have

~caused a compromise in performance.

* Networks receiving time-series inputs.
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Another issue was that the two conditions studied, i.e. euglycaemia and hypoglycaemia,
were not équally represented in the recordings since the hypoglycaemic events in the
dataset were spontaneous. There is a significant advantage in investigating spontaneous
hypoglycaemia namely that it is a realistic complication as opposed to experimental
hypoglycaemia which is artificially induced. The drawback is that since the diabetic
patients had to experience hypoglycaemia naturally, there were more recordings
containing normal events than hypoglycaemic. Referring back to the task of training
neural classifiers, the training data used should be representative of all conditions to be
classified. The existence of less hypoglycaemic records did not allow maximal use of

the data and restricted in some cases the size of the training files.

As mentioned in Section 3.1, there exist a number of online databases [URL 13]
containing ECG records with annotations from human experts. In many research
projects, such databases are the only source of data. Many researchers use these
databases to design and evaluate feature extraction algorithms, classify cardiac beats
etc. In our case such databases were not useful since the accompanying glucose data at
the time the ECG was captured was not recorded. Moreover, the data on the online
databases did not generally originate from diabetic patients, i.e. the patient group we
were studying. Therefore, special acquisition of both ECG traces and glucose data was
necessary in our case. Our data was less than what researchers working on online
databases would have available. Moreover, online databases often contain manual

annotations on the ECG cycles from more than one clinical expert, which were not

available in our case.

The glucose sensor had a limitation which was that the minimum value it could record
was 2.2 mmol/lIt (Section 3.2.2). There were cases where the glucose was falling below
this value but it was only recorded as 2.2 mmol/lt. In many cases, interesting dynamics

of the glucose variable may have been lost because of this.

Another limitation of MiniMed CGMS was that it was recording glucose in the
subcutaneous tissue (interstitial fluid) while the standard aﬁproach is to record glucose
in the blood stream. Recording glucose in the subcutaneous tissue is not optimal in
terms of accuracy since the readings may differ from those of blood glucose. Moreover
there is a delay, of approximately 10 minutes, between subcutaneous tissue glucose and

blood glucose. The MiniMed software is programmed to automatically correct this

209



delay but the effectiveness of this correction could be an issue to be investigated and
could be affecting the studies carried out using MiniMed. The existence of a delay
between interstitial fluid glucose and blood glucose may have affected to some extent

our studies although the impact on our results cannot be quantified easily.

Due to processing power, memory size and battery life considerations the HOME
system was only capturing the YY"’ orthogonal lead from the 3-lead ECG. Although the
most prominent ECG changes due to hypoglycaemia are expected to be manifested on
the YY’ lead, recording of more leads would be useful. Thi.s‘is mainly because the
dispersion of ECG features across ECG leads is a useful feature and can provide extra
information. A popular dispersion feature is the QT dispersion (QTd) that was found to

be informative in the detection of the Long QT syndrome [Benhorin 1990].

Due to the memory considerations in the HOME system, the ECG waé only recorded
every 15 minutes although glucose readings w ere a vailable e very 5 minutes and this
obstructed the full use of all the glucose data available. Moreover, having more frequent
ECG records during the course of the night would probably have improved the
performance of the Knowledge-Based monitoring system. Hypoglycaemic events were
in many cases detected by the system a few samples later or earlier than the actual
onset. Having more frequent ECG recordings during the night would have reduced the
time-deviation of alarms from the actual hypo onset. Nowadays, new trends in hardware
technology allow for more storage at low cost which is promising for acquisition of
more data and making better use of each patient recruited. Such hardware

considerations will be discussed in the future work section of this chapter. |
7.1.2 Cardiac function

Delay between changing glucose and cardiac function

This research investigates the relationship between cardiac function and abnormally low
glucose levels in Type 1 diabetic patients. Assuming that such a relationship exists, it is
suspected that there will be a delay between the changing blood glucose and the
subsequent effect on the cardiac functipn. The glucose will have to drop to abnormally
low levels for a period of time before the cardiac function will be affected. This delay is

undefined [PD1, PD2] and for the studies in this research it was assumed to be zero. For
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the KBS which incorporated the temporal dimension, the delay can be reflected on the

time-deviation between alerts given and the actual onset of hypoglycaemia.

The delay may depend on the rate of change of the glucose [i’D2] which complicates
the relationship between glucose and cardiac function even further. For sudden glucose
changes there may be a longer delay, while there may be a shorter one for smooth
changes. The slower the change in glucose, the faster the corresponding manifestation
of changing glucose on the cardiac function will be, since the heart will be affected
sooner by slow changing glucose [PD2]. Faster changes in glucose will take longer to

fully manifest on the cardiac function.

Transient cardiac changes in response to hypoglycaémia

Another issue that complicates the research question is that the changes in cardiac
function that have been observed in response to hypoglycaemia do not reach a steady
state for the duration of hypoglycaemia. In most cases, transient changes are observed.
For instance, the value of a certain ECG feature might change after the onset of
hypoglycaemia and later on this feature will recover its initial approximate value

although the hypoglycaemia will still be present. This is illustrated in Figure 7.1.
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Figure 7.1: T wave amplitude over time (top graph) & Glucose profile over time (bottom graph)
The figure shows a significant feature change for records 17-23 followed by a recovery

in feature magnitude although the glucose level remains at abnormally low values. The
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feature magnitude drops again at record 26 followed by a further recovery in its

magnitude towards the end of the recording period.

7.1.3 Reduced counterregulatory responses in subsequent hypoglycaemic
events .

It has been clearly established [Davis 1991, 1992], [Heller 1991] that repeated exposure
to hypoglycaemia can reduce counterregulatory responses to subsequent hypoglycaemia
by as much as 50% in healthy humans and Type 1 diabetic subjects [Davis 2000],
[Cryer 1992]. Table 7.1 from [George 1995] quantitatively presents four different
‘bodily responses to experimental hypoglycaemia obtained duﬁng three hypoglycaemic

events on days 1, 3 and 8 of the study.

Table 7.1: Quantitative representation of bodily responses on subsequent hypoglycaemic events

Adrenaline | Sweat Tremor Symptoms
Day 1 - +++++ +++ -+
Day 3 | ' ++ -+ +++
Day 8 ' -+ -+ v -+ A4+

The study involved 8 non-diabetic subjects over 8 days. Focusing on the adrenaline
response to hypoglycaemia, which is the most related to cardiac function, it is clear that
the response is reduced on the second hypoglycaemic event (Day 3) while it has partly
recovered on the third hypoglycaemic event of Day 8. The s'tudy concluded that the

physiological responses to hypoglycaemia are affected differentially by antecedent ‘
hypoglycaemia with sweating and adrenaline responses remaining impaired for at least

5 days [George 1995].

The above characteristic of the human body may have degraded the accuracy of the
static pattern classifiers used in this study and also the performance of the Knowledge—
Based monitoring system. Future morﬁtoring systems for hypoglycaemia detection
should be calibrated according to the frequency of hypoglycaemic events the patient is
experiencing. The occurrence of a hypo event should be stored in memory and taken
into account as part of the detection of subsequent onsets-of hypoglycaemia. For
instance the sensitivity of the system to feature changes should be altered depending on
how many hypo events have occurred in the past days. After a hypoglycaemia-free
period has elapsed, e.g. 5 days according to [George 1995], then the system would be

reset to its default sensitivity towards ECG feature changes.
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7.1.4 Feature extraction

One of the great challenges in ECG feature exfraction is identifying robustly the end of
the T wave either manually or automatically. The current gold standard is manual
annotation by a human expert. However manual annotation can still be an ambiguous
task under non-standard signal conditions. A number of automatic algon'thmé have been
developed for inarking the T wave end but no automatic algorithm can yet be accepted
as a gold standard. This research focused on T wave morphology analysis and marking
the T wave end was an essential task in the process. The problems in the inexistence of
a robust algorithm affected this research. Time constraints did not allow the research to
focus on the design of a robust T wave end algorithm so existing algorithms had to be
used. The problem of marking the T-end robustly under all signal conditions and
confidently undertaking the annotation tasks that clinical experts still carry out remains

unresolved and subject to further investigation.

Manual T end annotation and the use of existing T end annotation algorithms is
sufficient for many feature extraction tasks. However, in our case very accurate
annotation of the T end is required so that even the most subtle QT variations can be

uncovered and hence the existence of an accurate algorithm is essential.

Robust detection of the Q point is another problem to be overcome. This point is often
masked in noise. In this research this was overcome indirectly by using the R point
instead of Q. The QT interval is one of the main ECG features used and, since the R
point was used to replace Q, the RT interval was considered instead of the QT. The RT
interval is sufficient for this research since it still describes the process of ventricular
repolarisation. Although the QT feature has been used traditionally, the RT interval is
also encountered in the literature [Porta 1994, 1998]. .

7.1.5 Heart-rate-correction

‘Heart rate correction is another area requiring further investigation. The QT interval is a
subsectfon of the RR interval (the instantaneous heart rate) and hence the two are
correlated. In hypoglycaemic studies, among other studies, the changes in the QT
interval must be examined in isolation to changes in heart rate. 'Prolongations in QT are
significant but they have to be -genuine and not due to a prolongation in RR. Therefore
there is a need to decorrelate the RR and QT intervals and produce a heart-rate-
corrected QT interval (QTc). A few approaches'[Puddu 1988, Rautaharju 1993, Ahnve
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1985] have been proposed and the most commonly used is Bazett’s formula [Bazett
1920] which is also used in this research as mentioned earlier. None of the correction
algon'thmé are 100% accurate and the QTc is found to still be correlated to the heart
rate. Low quality of correction can be a limiting factor in the effective use of the QT
(and RT) interval. Advancements in the field of hear-rate-correction will be constructive

for our research as well as for the wider area of ECG signal analysis.

7.1.6 Diurnal pattern of QTc

The QT and QTc intervals undergo dynamic changes over 24 hours which is another
issue to be taken into account when attempting to assess Q Tc prolongation. The QT
“varies, not only with heart rate, but also with gender [Lepeschkin 1951] and with time
of day [Sarma 1990], [Ong 1993]. Molnar et al have concluded that there is a distinct
transient increase in QTc during the first hour after awakening, when the longest hourly
mean QTc of the day occurs [Molnar 1996]. Concluding their paper [Mc')lnar 1996
pp82], they also suggest that: “caution should be exercised when categorizing a single
clinically measured QTc interval as prolonged. The occurrence of long QT intervals in
normal subjects underlines the importance of assessing the .QT interval within the

clinical context.”

By considering the above findings it becomes obvious that the diurnal pattern of QTc is
another characteristic that needs to be addressed when designing monitoring systems for
the detection of hypoglycaemia. Treating the QTc interval as a static variable that would
only change due to hypoglycaemia or other clinical conditions is not a sufficient

approach. The healthy diurnal variation of QTc must be taken into account.

7.2 Summary of Achievements

The contribution to knowledge from this research was a detailed analysis of the ECG
signal for further examination of the relationship between cardiac function and
spontaneous hypoglycaemia and also for the detection of the latter indirectly through‘
the ECG. The main achievement of the thesis was the demonstration of the relationship
between spontaneous hypoglycaemia and cardiac function in Type 1 diabetic patients.
This was demonstrated mainly by detection of the onset of hypoglycaemia using solely
information from the ECG signal. When assessing alarms as correct only if they were
raised at the exact time of hypo-onset the optimal configuration of the KBS yielded the

following monitoring results: 78.13%, 44.44%, 91.30% for accuracy, sensitivity and
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specificity respectively (Section 6.12.5). However if alarms raised within 4 ‘samples
from the hypo-onset were classed as acceptable then the metrics reached 93.75%, 100%
and 91.30% for accuracy, sensitivity and specificity respectively (Section 6.12.5). These
results were achieved after fine-tuning the KBS for the needs of each patient as stressed

in chapter 6. -

A number of approaches for ECG representation and classification were examined. In

more detail:

A éomparative study of geometric methods for marking the T wave end was carried out
- using data from Type 1 diabetic patients (Section 4.4.2). It was concluded that among
all the algorithms studied, the tangent method was the one that correlated the most with
the annotations from the clinical expert. Based on this finding, the tangent method was

chosen for annotation of the T end.

A number of ECG features were extracted and assessed (Section 4.5). Two novel ECG
features, inspired from the third and fourth central moments of statistical theory, were .
introduced for the evaluation of T wave symmetry and morphology. The concept
behind an existing feature was modified accordingly to produce a third feature for
assessing T wave symmetry. The new feature was based on the ratio of the two areas
under the T wave to the left and right of the T peak. Two-tailed t-tests (Section 4.5.1)
run separately for each patient, indicated that the above three features assessing T wave
morphology underwent statistically significant changes between the conditions of

euglycaemia and hypoglycaemia in some patients.

AutoRegressive (AR) modelling was employed for characterisation of post-QRS ECG
segments (Section 4.6). The use of AR coefficients was investigated for modelling the
ECG segment of interest (from the R peak to the end of the cycle). Comparisons
revealed that the use of the AR approach for ECG characterization gave similar results

to the use of ECG features.

The Multi-Layer Perceptron (MLP) Neural Network was assessed for the classification
of the extracted ECG features in a number of studies (Chapter 5). The MLP
performance was compared against the Mahalanobis classifier (Linear Discriminant

Analysis). The k-Nearest Neighbour (kNN) classifier was also assessed (Section 5.2.6).
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It was found that the MLPs had slightly better performance than LDA. However, a
significant advantage of using statistical classifiers is that the user does not need to
involve in the laborious process of tuning a neural network architecture for optimal
" performance. Moreover, the processing power needed for the use of the aforementioned
 statistical classifiers was, in our case, significantly less compared to. that required for

training neural networks.

A methodology was proposed according to which a diagnostic system can be
implemented for hypoglycaemia monitoring. This consists of an ECG representation
stage in cascade with a classification stage as was presented in Chapter 4. Following the
proposed methodology, a Knowledge-Based System (KBS) was designed for
monitoring offline data from diabetic patients in a manner that simulated an online
patient-monitoring scenario (Chapter 6). Two versions of the system were produced
namely an "expert system"” and a system based on fuzzy logic. Employing a KBS
yielded the highest performance among all the techniques used. This system was able to
monitor correctly, patients that were consistent with the initial hypothesis i.e. exhibiting
QT prolongation and T wave flattening during hypoglycaemia. A significant difference
of the system compared to the neural and statistical classifiers was that it incorporated
temporal information, while the latter were performing static pattern classification.
Through the above system, it was demonstrated that two ECG features were sufficient
for detection of hypoglycaemia in those patients that manifested both QT prolongation

and T wave flattening in response to abnormally low blood glucose.

Moreover, the above system contributed in formulating the vague knowledge of the
principal ECG changes under hypoglycaemia in the form of rules of natural language.
This was informative for medical researchers and provided feedback to the clinical
experts' who formulated the initial hypothesis and contributed the initial guidelines for

the knowledge-base.

An interesting result was that the diagnostic performance reached in this research work
was achieved by using only one ECG lead. The Y lead from the 3-lead ECG was used
since it is placed in the direction of maximal flow of current through the heart. Using
more information from more leads is expected to increase the performance as it will be

highlighted in the discussion of directions for future research (Section 7.4).
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Finally, data analysis on the available datasets highlighted the existence of high inter-
patient variability (Section 4.5). This suggests that the performance of a monitoring
system would be boosted by allowing customisation to the specific patient to be
monitored. Differences in ECG behaviour w ere also observed among different night-
recordings of the same patient which suggests that a robust monitoring system should
also be made adaptive to ECG changes as time elapsed. Moreover it should be able to
start monitoring from a number of different initial conditions, i.e. different ECG

signature at the start of the night, without this affecting its performance.

Hypothesis testing (Student’s t-test) on all ECG features extracted, proposed that apart
from the inter-patient variability, different features may Be robust predictors of
hypoglycaemia among different patients (Section 4.5.1). The condition of
'hypoglycaemia may not be sufficiently manifested using the same features on all

patients.

Investigation of the ECG and glucose profiles also indicated that the ECG responses to
hypoglycaemia are expressed in the form of transient events (Sections 5.2.6 and 6.14.1)
and hence, the incorporation of a temporal dimension in a monitoring system will be

essential for robust detection of the condition.

7.3 Addressing the Research Question

The main conclusion of this thesis is that there exists a relationship between
spontaneous hypoglycaemia and cardiac function in some patients. This is in line with
the observations and conclusion of a clinical study focusing on QTc interval changes in
response to spontaneous hypoglycaemia [Robinson 2004]. In our work it is also
demonstrated that hypoglycaemia is reflected on other ECG features studied, besides the
QTec and that the onset of hypoglycaemia can in many cases be detected automatically

through analysis of the ECG.

This above relationship was initially established in studies of experimental, i.e.
artificially induced, ‘hypoglycaemia. The fact that the same relationship holds, although
more subtly, in the case of spontaneous hypoglycaemia is ai significant result with
possible impact towards the investigation of unexplained nocturnal deaths of young

diabetic patients.
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Besides the strengthening of the research hypothesis, we conclude that we can detect the
onset of hypoglycaemia, subject to a time-deviation, in those patients that exhibit T
wave flattening and QT prolongation. Detection of the condition with a time-deviation
of up to one hour® from its onset is perfectly legitimate [PD1]. This is an important
‘result since it is‘achieved purely by using information from the ECG. Clinical studies
have focussed on the assessment of the cardiac changes due to-hypoglycaemia and also
on the correct discrimination between patients with the Long QT syndrome and healthy
control subjects. However, this to the best of our knowledge is the first time that
detection of the symptomatic status of hypoglycaemia is attempted purely by analysis of
the ECG. ‘

Regarding the design of a patient monitoring system for hypoglycaemia, we have
identified and proposed that such a system must be adaptive as time elapses and tailored
to the patient to be monitored. Adaptivity ié necessary to overcome day-to-day intra-
patient variability (due to QTc diurnal pattern, frequency of hypos affecting responses
to subsequent hypos etc). Customisation per patient is necessary to overcome problems
due to inter-patient variability (variations in gender, age, fitness level, duration of
diabetes, level of glycaemic control and so on). Customisation per patient may involve
the selection of the ECG features to be used since there are indications that different
‘features may by related to hypo for different patients. Ideally feature selection should be
automated and be done online and adaptively rather than a priori since it is likely that
features manifesting the onset of hypo could in some cases bé affected by the day-to-

day variability of the patient.

7.4 Further Work

This section proposes a few directions for further work that were either not materialised
in this research program or they comprise a logical continuation of the work carried out

in this thesis.

A sensible step in further work would be to use more features in the knowledge-based
monitoring sy stem. T his w ould allow the v alidation o f genuine ECG changes due to
hypoglycaemia, leading to suppression of some false alarms and detection of hypo

events subject to a shorter time-deviation. Moreover it would aid detection of hypo

% j.e. 4 samples in the current dataset.
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events associated with very subtle ECG changes that may not be sufficiently reflected
on the QTc and T amplitude features, i.e. in the cases where hypoglycaemia is almost
asymptomatic. Features assessing the symmetry and morphology of the T wave,
developed in this research, will be useful additions to the system. The RR interval
(instantaneous heart rate) and also features characteris‘ing U waves and ST segment
changes would be very informative. Generally, improvements in the field of ECG signal
processing, involving both ECG annotation and heart-rate correction algorithms, are

expected to positively influence our research.

7.4.1 Action Potential modelling

Modelling ofthe T and U waves using A ction P otentials is a p owerful approach for
ECG characterisation and may prove promising for investigation of the manifestation of
hypoglycaemia on the ECG. A number of studies have been carried out on Action
Potential modelling of ECGs [Wohlfart 1987, Malik 1989, Padrini 1995, Vila 2000].
Action potentials could be used for modelling of the ECG segment of interest and then
traditional feature extracﬁon could be carried out on the modelled éignal, which is less
noisy than the original one. Alternatively the model parameters describing the T and U
waves could be investigated to identify whether they differ bétween the conditions of
euglycaemia and hypoglycaemia. The latter is particularly interesting as a direction for
future work. Results from the Autoregressive modelling of ECG traces, presented in this
thesis, indicated that the modelling of whole segments of the ECG cycle is a promising
approach. Action Potential modelling has the advantage, over AR modelling, that it is a°
biologically plausible approach and hence further improvemeﬁt in performance is

anticipated.

7.4.2 Beat-to-beat ECG analysis
Signal-averaged ECG (SAECG) cycles were exclusively used in this research work. The

investigation of the raw (beat-to-beat) ECG cycles could be a direction for further work.
~ Such an investigation would look for significant events due to Hypoglycaemia than were
not reflected on the SAECG cycles as they may have been filtered out through the
averaging process. The challenge of using beat-to-beat cycles is that the level of noise is
very high and any type of processing, such as annotation and feature extraction is

extremely difficult and requires very robust algorithms.
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7.4.3 Using more ECG leads

The diagnostic performance reached in this research was achieved by using only one
ECG lead. As stressed earlier, the Y lead is the best choice when using a single-lead
system. Incorporating more leads from the standard 12-lead ECG is expected to
improve performance and will allow the use of extra ECG features based on the
dispersion across the ECG leads of the features already used (e.g. QTc dispersion).
Moreover, the availability of more leads allows the application of Blind Source
Separation (BSS) techniques for reducing fhe level of noise and artefacts that
contaminate the ECG. Application of BSS techniques for noise reduction could Iead to
the reduction of the level of Signal-Averaging applied. This is desirable since the raw
signal is more informative and because the Signal-Averaging process can introduce
distortion. In addition, application o f BSS for reduction o f motion artefacts from the
skeletal muscle could possibly allow use of the monitoring system while the patient
would be awake. The current system is not addressing the monitoring of patients while
they are awake. There was no data available to perform such testing but performance is

expected to be lowered due to the increased amount of muscular activity in the skeletal

arca.

7.4.4 Baseline wandering

Baseline wandering on the beat-to-beat ECG signals has been observed in our dataset. A
question is raised as to whether the existence of baseline wandering conveys a message
related to the existence of hypoglycaemia. The baseline wandering was only
investigated by visual inspection and it was hard to draw any conclusions as to whether
it is a predictor of hypoglycaemia. An interesting direction for further work would be to
devise algorithms that can quantify the level of baseline wandering and then investigate

the importance of wandering to the detection of hypoglycaemia.

7.4.5 Datasets

The current dataset constitutes the current state of the art in the studies of the
relationship between hypoglycaemia and cardiac function. To the best of our knowledge
this lies among the first datasets using continuous glucose monitoring, besides ECG
recordings, in the studies o f nocturnal h ypoglycaemia. H owever, acquisition ofm ore

data will be a significant enhancement to the study.
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ECG traces recorded more frequently during the night will probably increase the
chances of the current system in giving a hypoglycaemic alert within shorter time‘ from
the actual onset. In the current dataset, an alarm raised with one sample deviation
corresponds to 15 minutes in time but this: is only due to the time-resolution of the
dataset. Moreover, data capture from more leads is very infonﬁative as stressed earlier.
Current trends in glucose sensing technologies allow increased range of glucose values
recorded. The GlucoDay continuous glucose monitoring system by Menarini
Diagnostics [URL 16] allows recording of glucose levels down to =1.1 mmol/It which is
very informative for investigation of severe hypoglycaemic events. The glucose meter
used in this study could not record glucose concentrations below 2.2 mmol/lt (Section

3.2.2) and may have masked the severity of some hypoglycaemic events detected.

More data will be necessary for further testing of the existing monitoring system and
also in the process of upgrading and improving it. More data will also be essential when
embarking dn the research direction of using time-lagged neural network architectures
for patient monitoring. Such architectures require extensive datasets. Using time-lagged
neural networks is promising for detecting transient changes that we may have not been

able to observe and formulate in the rule-base produced.

Upon satisfactory performance, the functionality of the system can be extended so that it
can be attached to diabetic patients and perform online monitoring. Extensive testing
will also be necessary followed by the necessary modifications before a monitoring

system can be approved for patient use.

Regarding the existing ECG acquisitioh hardware (HOME system) it could be improved
by upgrading the battery, internal memory etc, because at ’—the moment not all the
glucose data available per patient recruited is used*®. Current technology can also offer
new devices with increased capability in affordable prices. Modern palmtop computers
with 12-lead ECG interfaces are available in the market. Current technology

significantly facilitates acquisition at the patient’s own environment. When the HOME

% A MiniMed CGMS probe used for subcutaneous glucose measurements lasts for at least 3 days.
However, each acquisition of the dataset was including only two nights worth of ECG which means that
not all the glucose data available could be used. Moreover, the glucose variable vs}as sampled every 5
minutes while ECG was captured every 15 minutes. Because of this not all the glucose samples during a
given night were used.
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system was implemented the ECG interface attached to it had to be custom-designed for
the needs of the research while today it can be bought off-the-shelf and has significantly

reduced size. Such devices were presented in Section 2.5.2.

7.5 Final Remarks

This thesis focused on the analysis and interpretation of SAECG signals for the
detection of spontaneous nocturnal hypoglycaemia. A number of approaches for ECG
representation were employed and some novel ECG features were introduced. The
modelled ECGs were classified according to their corresponding glucose levels. Besides
the approaches used for static ECG pattern classification (ANN, LDA and kNN), a KBS
was designed to perform patient monitoring. It was developed énd tested on offline data
in a manner that simulated an online monitoring scenario. The KBS was rule-based and

the knowledge-base was formulated within guidelines from clinical experts.

To conclude the chapter it is stressed once more that analysis of the ECG is a promising
approach for the detection of the symptomatic status of hypoglycaemia in Type 1
diabetic patients. For a few patients studied in this work, hypoglycaemia could be
detected at the exact sample it occurred during the night only by looking at the patient’s
ECG. This is an important result and provides new insights on the effects of

hypoglycaemia on the cardiac function.

Further improving the performance of the monitoring system may lead to a commercial
alarm system in the long term future. Such a system could be used for nocturnal
hypoglycaemia detection or for the detection of Sudden-Death-related cardiac
arrhythmias. The software engine behind such a monitoring system could be used in any
clinical situation where ECG is already captured and could be incorporated in

commercial ECG monitors.
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Appendix A: Dataset used

The data used in this thesis originated from Type 1 diabetic patients. The demographic

/

details for the patients are given in table A.1.

Table A.1: Summary demographics

patient code|  sex DOB age @ test | dur’ of diabetes(yrs) |HbA1c (%)
201 m 24/08/1979 2?. 3 9.2
202 f 17/01/1948 53 26 8.9
203 m 06/01/1980 21 8 8.1
204 f 09/10/1952 48 23 8.5
205 f 32
- 207 m 09/12/1965 36 4 months
208 m 10/07/1973 27 16 7.6
209 m 03/11/1938 62 24 11.3
210 f 05/02/1972 29 21
211 f 27/03/1981 20 8
212 f 11/07/1970 30 17
215 m 14/02/1974 27 26
216 f 25/01/1946 55 22
218 m 08/02/1961 40 26
219 m 15/11/1964 36
220 22 3
221 m 18/09/1975| . 26 2.5
222 m 09/07/1963 38 18
223 f 24/08/1983 18 2
225 m 14/05/1961 40 13
226 m 17/10/1973 28 5
227 f 10/10/1959 42 27
228 f 03/02/1963 39 23
229 m 20/11/1981 20 3
230 f 08/01/1962 40 12
231 m 62 36
232 m 35 29
244 m 06/12/1979 23

“HbAlc” presented in the last column of the table, is a measure of the quality of glucose
control. HbAlc lies around 5% for healthy non-diabetic subjects while it is higher for

diabetic patients. The higher the value, the poorer the quality of glucose control.

The ECG and glucose profiles for a subset of the patients are presented at the remainder
of this appendix. ECG-glucose profiles for patients 202 and 204 have already been
presented in Chapter 3. The ECG data for patient 201 A (nightl and night2) are given in
Figures A.1 and A.2. The ECG traces for each night are superimposed and plotted with

different colours. The glucose profiles are presented in Figure A.3.

234



glucose mmolflt

-600* 1 1 1

Appendix A: Dataset used

201A-nightl

sample nunber

Figure A.l: ECG traces superimposedforpatient 201A-nightl

201A-night2

1 1 -
0 20 40 60 80 100 12
sample number

Figure A.2: ECG traces superimposedforpatient 201A-night2

p201A-night] p201A-night2

Figure A.3: Glucoseprofilesfor 2014 nightl (LHS) and night2 (RHS)
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ECG and glucose profiles are given in Figures A.4-A.6 for patient 205.

p205-njjitl

40 50
sample number

Figure A.4: ECG traces superimposedforpatient 205-nightl

p205-night2
i 1 1 1 1 1

Figure A.5: ECG traces superimposedforpatient 205-night2

p205-nightl

p205-night2
3
E £
£ E
9
g
3
E)
35 40 45 50 55 60 65 70

record number

Figure A. 6: Glucoseprofilesfor 205 nightl (LHS) and night2 (RFIS)
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ECG and glucose profiles for patient 207 are given in Figures A.7-A.9.

p207-night!

I
sample number
Figure A. 7: ECG traces superimposedforpatient 207-night I
p207-ncpt2
ple nirnb
Figure A. 8: ECG traces superimposedforpatient 207-night2
p207-night! p207-night2
£
El E
2 |
_3) 0)
0 5 10 15 20 25 30 35 35 40 45 50 55 60

record number

Figure A. 9: Glucose profilesfor 207 night1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 209 are given in Figures A. 10-A. 12.

glucose  mmol/lt

/vppenuix

209-night!

Figure A. 10: ECG traces superimposedforpatient 209-nightl
P2

Figure A.11: ECG traces superimposedforpatient 209-night2

p209-night2

o mm

Figure A. 12: Glucoseprofilesfor 209 night1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 212 are given in Figures A. 13-A. 15.

glucose mmolflt
o

w500

/\ppcnuix

p212-nghtl

-

sample number

Figure A. 13: ECG traces superimposedforpatient 2 12-night I

Figure A. 14: ECG traces superimposedforpatient 212-night2

p212-nightl p212-night2

mm

record number

Figure A. 15: Glucoseprofilesfor 212 nightl (LHS) and night2 (RHS)
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Appendix A: Dataset used
ECG and glucose profiles for patient 215 are given in Figures A. 16-A. 18.

p215-nightl

sample number

Figure A. 16: ECG traces superimposedforpatient 215-night 1

p215-night2
1 1 1 1
t t t t -

T. 1 1
I t I

0 10 20 30 40 50 60 70 80 9100

Figure A. 17: ECG traces superimposedforpatient 215-night2

p215-nightl p215-night2

glucose mmol/lt

0 5 10 15 20 25 30 35 40 45 50
record number

Figure A. 18: Glucoseprofilesfor 215 nightl (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 227 are given in Figures A. 19-A.21.
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Figure A. 19: ECG traces superimposedfor patient 227-night 1
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Figure A. 20: ECG traces superimposedforpatient 227-night2
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Figure A.21: Glucoseprofilesfor 227 night1 (LHS) and night2 (RHS)
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ECG and glucose profiles for patient 244 are given in Figures A.22-A.24.

Figure A.22: ECG traces superimposedfor patient 244-night 1

p244-nght2

Figure A.23: ECG traces superimposedforpatient 244-night2

p244-nightl p244-night2

glucose mmol/lt

5 10 15 20 25 30 35 35 40 45 50 55 60 65 70

ccccc d number record number

Figure A. 24: Glucoseprofilesfor 244 night1 (LHS) and night2 (RHS)
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Appendix B: Simple fuzzy logic system example

In order to illustrate the concept of fuzzy set qperations and fuzzy rules processing for a
Mamdani-type system, va simple example is considered and briefly presented, from the
MATLAB fuzzy logic toolbox manual [MathWorks Fuzzy]. This example is based on
the basic tipping problem, namely what is the “right” amount to tip the waiting staff in a
restaurant. This is formulated as: "Given a number between 0 and 10 that represents the
quality of service at a restaurant (where 10 is excellent), what éhould the tip be?"" The
fuzzy system to tackle the tipping problem, consisting of two inputs, three rules and one
output and is presented in Figure B.1. The two inputs (quality of service, quality of

food) also vary in the interval [1 10].

Dinner for two
a 2 input, 1 output, 3 rule system

{f serviee is poor ar food is rancid,
Rule 1 then fip is cgecp.

i
Serviee {0-10] )
A

)
Food [0-10} K

coeo

Rule 2 i service is guod, then ip is average.

pule 3 W servico is excellent or food is delicious, /

then tip is generous.

ermeressery

The inputs are crisp All sules are The results of the rules The resuit is a crisp
{non-fuzzy) numbers evalualed in paralicl are combined and {non-fuzzy] number.
timited 1o a specilic using fuzzy distiled (defuzzifivd).

range. teasoning.

Figure B.1: Fuzzy tipper system [MathWorks F uzzy' b}

B.1 Fuzzification

Figure B.2 illustrates the fuzzification of the input of the tipper system describing the
quality of food. If the food is assessed as 8 (out of 10), this-is fuzzified as having a

membership of 0.7 in the “delicious” fuzzy set.

7 This problem is based on tipping as it is typically practiced in the United States. An
average tip for a meal in the U.S. is 15%, though the actual amount may vary depending
on the quality of the service provided.
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0.7 |

Result of
fuzzification

1. Fuzzify
inputs. delicious

food is delicious

food = 8
input

Figure B.2: Fuzzification [MathWorks Fuzzy]

B.2 Combination of fuzzy sets using the “Union” operator

Let’s consider only the 3" rule of the rule base: “if service is excellent or food is
delicious then tip is generous”. Figure B.3 demonstrates the use of the “Union” operator
(OR) to combine two fuzzy sets related to this rule. After the fuzzification process, a set
of inputs: service = 3, food = 8, will have memberships of 0 and 0.7 in the “excellent”

and “delicious” fuzzy sets respectively which are involved in the above rule.

1. Fuzzify 2. Apply
inputs. OR operator {max).

excellent 0.7 .
f U S 0.7
0.0 delicious 0.0 resuit of
e fuzzy operator
service is excellent or food is delicious
service = 3 food = 8
input 1 input 2

_ Figure B.3: Demonstration of Union operator (OR) [MathWorks Fuzzy]
The OR operator will combine the membership degrees of the two inputs. A

“maximum” operator is used to implement the “fuzzy union” in this system giving an

output of 0.7 (max(0, 0.7) =0.7).

B.3 Implication operator

Once the fuzzy sets in the antecedent of the current rule are combined, the Implication
operator is used to determine the firing strength of the rule. In this system, Implication
is implemented by a “minimum” operator which is applied on the membership function

with linguistic v alue “ generous” as seen in Figure B.4. The result o f the Implication
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operator is shown in the right most graph of the figure. As it can be seen, the result of

the operator is a MF identical to the “generous” MF but truncated at the 0.7 level.

Antecedent _Consequent
1. Fuzzify 2. Apply 3. Apply i
inputs. OR operator (max). Implication

operator {min).
excellent
enerous § -4
delicious 9 N
if service isexcellent or . foodisdelicious  then tip = generous ' result of
‘ - implication
servite = 3 food = 8

input 1 input 2

FigureB.4: Demonstration of Implication operator [MathWorks Fuzzy]

B.4 Aggregation and Defuzzification

The process of aggregation for the set of inputs discussed above (service = 3, food = 8)

is illustrated in Figure B.5.

2. Appy . 3. Aoply
1. Fursity doputs. . inplicatin
i :;;.?;mn . teethed (i),
{OR = max), N
‘ - poor ] cheop )
: : ) 255, . 75%
{ i service is poor e food i rancid thers ‘ 1

g R b
20 dejandy
Hripwd 2 H -
- Q 25

service is good the fip - averoge

3. H debcious £ |
I : ) 255 0 1 @K 4 Apply
- - . e N iy . : [N agyregation
L 1 service s excellent o food is dehaofu Mren tip ~ generous Lo agdreg: ).
i i
service s 3 . food = 8
input 1 input 2

° Result of "
aggregation

Figure B.5: Aggregation [MathWorks Fuzzy]
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The rule considered up to now is the 3™ one on the figure. The use of the intersection
and implication operators to determine the firing strengths of all the rules can be seen in
the figure. The aggregation process combines all the rules into a single fuzzy set as seen
in the bottom-right graph of Figure B.5. The fuzzy set ‘produced by the aggregation is
then defuzzified to produce a numerical output. The defuzziﬁca;tion method used in this
system is the Centre of Gravity (COG). It calculates the centroid of the resulting fuzzy

set as illustrated in Figure B.6.

— 5. Defuzzify the
: t aggregate oulput
s} . - 25 {controid).

tip = 16.7%

Result of
" defuzzification

Figure B.6: Defuzzification [MathWorks Fuzzy]

The tipper system infers that when the service is rated as 3 and the food as then the tip

should equal 16.7% of the bill.

246



Appendix C: Extracted ECG features

A small sample of the sets of features extracted is presented in this appendix.
Table C.1: ECG features for 203-nightl

%Record ] gl HR | RTmsi| RTemsi| Tdur | Tdurc | Tampl Tarea |HAR|SKEW | KURTexc
7 12.24| 87.69| 261.52| 316.17 | 156.32| 188.98| 612.97 | 7450.10 | 1.11] 0.02 -0.67
8 8.81 | 85.80| 246.92| 295.28 | 159.43| 190.66| 810.41 | 10125.51 [ 0.78| -0.74 -0.50
9 6.10 | 84.14 [ 262.01 310.27 | 164.95| 195.34| 736.78 | 9707.78 | 1.23| 0.18 -0.71
10 352 176.50| 269.62| 304.45 | 171.87| 194.06| 1041.20 | 13757.31 0.62| -1.12 -0.30
11 2.20 | 74.62| 265.03| 295.57 | 171.71] 191.49| 1088.90 | 14356.80 | 0.57 | -1.21 -0.30
12 2.20 | 76.24| 267.00| 300.98 | 179.58 | 202.43 | 1136.23 | 15293.22} 0.77| -0.92 -0.33
13 220 | 78.56| 262.11| 299.92 | 176.29| 201.72| 1166.76 | 15506.59 | 0.71] -1.03 -0.29
14 2.20 | 89.23| 250.29| 305.22 | 154.33| 188.20| 676.04 | 8302.61 .| 1.00| -0.24 -0.67
15 2.20 | 83.22| 281.43| 331.44 | 186.05] 219.11| 761.50 | 11238.28 | 1.44| 0.75 -0.60
16 2.20 | 69.80| 285.50| 307.93 | 171.51| 184.98| 681.20 | 9435.47 | 1.28| 0.44 -0.69
17 2.20 | 72.23] 285.26| 312.99 | 175.38] 192.43| 706.32 | 10185.58 | 1.28] 0.37 -0.74
18 220 | 66.30| 279.56 | 293.88 | 148.17| 155.76 | 540.41 | 6565.77 | 1.40| 0.52 -0.78
19 220 | 64.30| 287.22| 297.33 | 152.25| 157.61| 561.00 | 6878.94 | 1.26| 0.29 -0.78
20 2.20 | 65.94| 287.23| 301.10 | 156.43| 163.99| 537.89 | 6675.08 | 1.24| 0.12 -0.73
21 2.20 | 71.24| 287.84| 313.64 | 176.03| 191.81| 547.38 | 7755.17 | 0.88| -0.50 -0.58
22 2.20 | 79.47| 271.99| 313.02 | 163.42| 188.06| 577.32 | 7367.79 | 0.80] -0.75 -0.55
23 2.20 | 79.24| 282.40| 324.54 | 178.86| 205.55| 676.14 | 9389.45-[ 0.94 -0.49 -0.57
24 2.20 | 75.31| 292.19| 327.35 | 194.98 | 218.44 | 732.48 | 11386.07 | 0.95]| -0.37 -0.62
25 2.20 | 76.93| 282.65| 320.06 | 173.12] 196.04 | 655.18 | 9029.22 | 1.24| 0.28 -0.76
26 220 | 80.28| 279.44| 323.23 | 175.08| 202.52| 691.76 | 9709.09 | 1.45]| 0.55 |. -0.71
27 220 | 82.19| 270.13| 316.17 | 173.74| 203.34 | 744.81 | 10505.46 | 1.43| 0.45 -0.76
28 2.20 | 77.85| 283.48| 322.91 | 175.16| 199.52| 921.04 | 12356.98 | 0.74 | -0.82 -0.50
29 2.20 | 81.44| 277.86| 323.72 | 174.92| 203.79| 868.46 | 11832.22 | 0.60| -1.13 -0.37
30 3.25 | 77.82]| 278.88| 317.61 | 181.24| 206.41| 1323.60 | 18425.94 | 0.65| -1.19 -0.23
31 4.37 | 80.98| 276.97 | 321.76 | 167.43| 194.51 | 1264.22 | 16302.14 | 0.73| -0.97 -0.40
32 7.14 | 76.78| 275.76 | 311.96 | 167.13| 189.06 | 1358.07 | 17037.79-{ 0.54 | -1.35 -0.18
33 8.26 | 82.20( 273.99| 320.70 | 177.61| 207.89| 948.89 | 12511.21| 0.60 | -1.27 -0.13
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Table C.2: ECG features for 204
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%Record gl HR | RTmsi | RTemsi| Tdur | Tdurc | Tampl Tarea HAR | SKEW | KURTexc
5 8.48 | 84.55 | 291.38 | 345.89 | 100.88 | 119.75| 206.62 | 1536.83 | 1.49| 1.03 -0.33
6 8.48 | 83.30 | 294.13 | 346.57 | 107.02| 126.10 | 248.57 | 1937.30 | 1.48| 1.16 -0.15
7 7.09 | 86.97 | 207.79| 358.54 | 105.79 | 127.37 | 226.08 | 1737.40 | 1.18| 0.77 -0.44
8 5.08 | 85.81 | 297.92| 356.28 | 122.20 | 146.13 | 368.19 | 3304.47 | 0.86 | -0.27 -0.60
9 541 | 86.70 | 291.50 | 350.52 | 122.20 | 146.89 | 404.66 | 3636.03 | 0.98 | -0.11 -0.60
10 5.66 | 95.56 | 283.54 | 357.83 | 118.78 | 149.90 | 362.94 [ 3133.20 [ 0.69| -0.74 -0.55
11 6.14 | 86.46 | 202.87 | 351.57 | 123.78 | 148.59 | 409.12 | 3766.22 | 0.72| -0.60 -0.51
12 523 | 86.77 | 293.65 | 353.14 | 106.16 | 127.66 | 201.02 | 1606.02 | 0.95| 0.43 -0.53
13 491 | 87.77| 296.20 | 358.25 | 121.81 | 147.33 | 391.82 | 3514.68 | 1.26 | 0.51 -0.53
14 469 | 84.48| 297.87 | 353.44 | 125.63 | 149.07 | 435.32 | 3962.74 | 0.83 | -0.32 -0.60
15 4.06 | 89.98 | 285.42 | 349.52 | 119.86 | 146.78 | 391.05 | 3453.42 | 0.76 | -0.47 -0.56
16 4.00 | 92.30| 277.29 | 343.92 | 104.57 | 129.70 | 271.56 | 2161.09 | 0.78 | -0.40 -0.61
17 2.82 | 88.12| 291.84 | 353.69 | 92.68 | 112.32| 132.84 91246 [ 117 0.74 | - -0.45
18 220 | 90.40| 295.01 | 362.11 | 98.98 | 121.49| 154.70 | 1153.99 | 1.26| 0.87 -0.33
19 220 | 86.86| 290.00| 348.94 | 100.46 | 120.88 | 168.75 | 1275.51 | 1.40| 1.02 -0.32

20 220 | 89.10| 282.57 | 344.34 | 97.13 | 118.37 | 171.53 | 1229.85 | 1.07 | 0.49 -0.61
21 220 | 92.09] 290.14 | 359.45 | 98.57 | 122.11| 155.88 | 1159.65 | 1.58 | 1.16 -0.25
22 220 | 88.53 | 291.86 | 354.53 | 104.14 | 126,50 | 157.15 | 1185112 | 1.36 | 1.09 -0.36
23 220 | 92.311 294.11 | 364.81 | 97.73 | 121.22| 127.94 962.25 | 1.22] 0.88 -0.37
24 220 | 84.16 | 300.01 | 355.33 | 121.76 | 144.21| 432.17 | 3982.23 | 1.05| 0.17 -0.53
25 220 | 86.82 | 297.47 | 357.82 | 123.14 | 148.12| 446.38 | 4002.90 | 0.92| -0.19 -0.60
26 2.20 | 84.54 | 294.02 | 349.00 | 98.69 | 117.15| 162.38 | 1193.52 | 1.26| 1.03 -0.30
27 2.20 | 91.03 | 294.74 | 363.06 | 100.72 | 124.06 | 179.40 | 1262.76 | 1.16| 0.82 -0.32
28 220 | 86.74 | 288.66 | 347.07 | 96.63 | 116.19| 162.56 | 1184.09 | 0.94 | 0.22 -0.62
29 220 | 88.92 | 292.33 | 355.87 | 104.35| 127.04 | 215.67 | 1766.22 | 0.87 | 0.25 -0.57
30 276 | 87.17 | 290.94 | 350.69 | 105.43 | 127.08 | 208.13 | 1608.22 | 1.34 | 0.96 -0.40
31 220 | 86.15 | 302.17 | 362.07 | 123.68 | 14820 | 404.52 | 3757.61 | 0.72| -0.56 -0.55
32 2.2 | 90.59| 289.881 356.19 | 123.52 | 151.77 | 390.61 | 3531.06 } 0.91| -0.19 -0.60
33 22 | 88.88] 294.15| 358.01 | 124.84 | 151.94 | 413.89 | 3782.15 | 1.04| 0.14 -0.56
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Table C.3: ECG features for 205-nightl

%Record | gl HR | RTmsi | RTemsi | Tdur | Tdurc | Tampl Tarea | HAR|SKEW | KURTexc
1 4.60 | 95.48] 295.40| 372.65 | 116.74 | 147.26| 529.25 | 4449.52 | 0.95 -0.09 -0.53
2 3.36 | 87.16 | 309.21 | 372.68 | 126.57 | 152.56 | 476.56 | 4418.54 | 1.40| 0.83 -0.38
3 3.83 | 91.88| 207.21 | 367.78 | 114.38 | 141.54 | 454.80 | 3762.01 | 1.08| 0.08 -0.57
4 458 | 91.32| 293.01 | 361.48 | 118.98| 146.78 | 577.99 | 5077.83 | 0.89] -0.39 -0.51
5 472 | 86.64 | 299.38 | 350.76 | 127.83 | 153.62| 619.86 | 5930.57 | 0.91| -0.46 -0.48
6 5.47 | 90.83| 294.02| 361.76 | 136.50 | 168.06 | 670.66 | 6721.54 | 0.69| -0.92 -0.36
7 4.91 | 85.87| 311.29| 372.41 | 124.28| 148.68 | 582.62 | 5439.50 | 0.76| -0.55 -0.48
8 4.16 | 79.93] 314.48| 362.98 | 137.18| 158.33 | 870.87 | 8649.23 | 0.58| -1.22 -0.16
9 3.09 | 79.16 | 309.87 | 355.92 | 140.51 | 161.39| 909.40 | 9151.49 | 0.70| -1.04 -0.17
10 385 | 80.38| 312.35| 361.53 | 143.84 | 166.49| 930.75 | 9443.58 | 0.77| -0.96 -0.20
11 3.78 | 79.03| 321.32| 368.76 | 148.61} 170.55| 968.06 | 10119.47 [ 0.75| -1.00 -0.22
12 5.26 | 88.39| 305.54 | 370.85 | 122.87 | 149.13| 590.01 | 5300.68 | 0.99| -0.14 -0.58
13 4.98 | 83.69] 319.96 | 377.88 | 120.68 | 153.15| 570.81 | 5505.92 | 0.76 | -0.57 -0.53
14 5.00 | 81.06| 322.28| 374.60 | 134.64 | 156.50 | 587.53 | 5883.30 | 0.77 | -0.61 -0.48
15 5.47 | 97.20| 288.76 | 367.70 | 127.29| 162.09| 573.76 | 5483.15 | 0.84 | -0.49 -0.52
16 350 | 75.50 320.63 | 369.98 | 143.04 | 160.55 | 654.39 | 7042.03 | 0.71] -0.91 -0.32
17 371 | 75.55 | 326.43 | 366.29 | 135.84 | 152.43 | 672.90 | 6734.90 | 0.72| -0.88 -0.36
18 357 | 76.95| 324.96 | 368.01 | 131.52| 148.94| 621.05 | 6151.77 | 0.66] -0.91 -0.36
19 3.69 | 78.26| 320.54 | 366.09 | 128.43 | 146.68 | 610.22 | 5810.33 | 0.84 | -0.57 -0.47
20 479 | 81.20| 317.61| 369.68 | 142.62| 166.01| 730.85 | 7751.01 [ 0.62| -1.11 -0.26
21 512 | 81.31] 320.20| 372.75 | 137.79| 160.41| 570.33 | 5761.47 | 0.70 | -0.84 -0.39
22 4.37 | 79.33| 317.52] 365.09 | 140.86 | 161.97 | 778.41 | 8104.57 | 0.62 | -1.09 -0.25
23 3.99 | 80.30( 315.89| 365.45 | 136.39| 157.78 | 853.43 | 8475.00 | 0.59| -1.21 -0.13
24 4.96 | 79.31] 315.71| 362.97 | 139.12| 159.94 | 929.29' | 9259.51 | 0.60| -1.22 -0.12
25 564 | 81.58( 320.22| 373.38 | 130.58 | 152.26 | 714.17 | 6927.32 | 0.80 | -0.60 -0.50
26 5.87 | 82.34 | 317.82| 372.31 | 131.95| 154.58 | 637.86 | 6338.91 | 0.68| -0.83 -0.39
27 6.22 | 82.83| 319.20 | 375.05 | 138.50 | 162.73 | 628.00 | 6436.88 | 0.65| -0.91 -0.41
28 6.20 | 82.87| 307.27| 361.12 | 151.15| 177.64 | 849.34 | 8622.01 | 0.57| -1.32 0.02
29 5.97 | 88.59 | 296.95 | 360.83 | 117.01| 142.17 | 550.70 | 4679.16 | 1.01] -0.17 -0.49
30 5.82 | 83.51| 316.99 | 373.96 | 132.71| 156.56 | 567.61 | 5658.28 | 0.92] -0.21 -0.54
31 6.01 | 82.08| 321.59| 376.14 | 136.42| 159.57 | 569.32 | 5744.83 | 0.98 | -0.13 -0.58
32 6.97 | 83.64 | 320.49| 378.40 | 146.49| 172.96 | 670.43 | 7296.42 | 0.62| -1.04 -0.34
33 9.09 | 97.86| 287.42| 367.07 | 98.84 | 126.23| 402.94 | 2870.93 | 1.03| 0.03 -0.55
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Table C.4: ECG features for 205-night2

N Nt A v v -

%Record gl HR | RTmsi | RTemsi| Tdur | Tdurc | Tampl Tarea |HAR| SKEW | KURTexc
38 4.79 | 96.36 | 296.14 | 375.29 | 112.73 | 142.86| 510.52 | 4123.69 | 1.51| 0.95 -0.33
39 529 | 96.22 | 290.71 | 368.14 | 113.44 | 143.66 | 568.67 | 4695.72 | 1.12| 0.30 -0.55
40 4.84 | 97.25] 202.07 | 371.84 | 104.11| 132.55| 353.90 | 2640.57 | 1.01| 0.22 -0.45
41 4.87 | 08.73| 285.25 | 365.91 | 113.46] 14555 | 448.40 | 3753.62 | 0.85] -0.33 -0.48
42 510 | 96.73| 283.74 | 360.26 | 106.17 | 134.81| 457.56 | 3541.17 | 1.08 | -0.15 -0.56
43 534 | 93.39( 285.19 | 355.80 | 111.99| 139.71 | 438.59 | 3547.22 | 0.89{ -0.31 -0.54
44 565 | 90.36 | 301.32 | 369.78 | 122.47 ] 150.29| 557.27 | 4950.36 | 1.00| 0.00 -0.50
45 5.47 | 91.99] 294.46 | 364.61 | 123.31| 152.69| 623.41 | 5659.71 | 0.81] -0.58 -0.41
46 4.40 | 90.06 | 295.43 | 361.95 | 121.01| 148.26 | 549.22 | 4793.45 | 0.82| -0.33 -0.54
47 4.06 | 90.77] 297.11| 365.43 | 104.37 | 128.37 | 490.70 | 3748.01 | 1.32| 0.58 -0.50
48 4.09 | 91.41] 295.63| 364.89 | 108.89 | 134.40| 466.31 | 3654.35 | 1.15] 0.29 -0.48
49 4.17 | 91.58 | 307.80 | 380.26 | 117.71| 145.43| 478.09 | 3953.11 | 1.04| 0.16 -0.58
50 474 | 92.211 305.87 | 379.19 | 118.06 | 146.36 | 474.68 | 3992.55 [ 0.91] -0.14 -0.50
51 4.79 | 83.58)] 310.05| 365.93 | 121.53 | 143.43| 536.77 | 4740.87 | 1.20| 0.41 -0.52
52 4.84 | 8458 314.01 | 372.82 | 128.05| 152.04 | 563.57 | 5190.71 | 0.78 | -0.56 -0.46
53 5.02 | 88.20| 311.94 ] 378.21 | 118.80 | 144.04) 526.10 | 4465.38 | 0.90| -0.26 | -0.50
54 5.21 | 89.12| 309.77 | 377.52 | 121.35| 147.88 | 493.97 4312.80 | 1.19| 0.41 -0.49
55 521 | 87.45] 300.08 | 373.14 | 128.51] 155.15| 498.08 | 4493.40 | 0.98 -0.02 -0.54
56 6.25 | 87.29] 315.83 | 380.96 | 124.95| 150.72| 504.93 | 4450.67 | 0.92| -0.19 -0.57
57 5.18 | 88.48| 314.45| 381.85 | 131.69| 159.92| 546.49 | 5207.43 {1.09| 0.11 -0.59
58 581 | 91.82) 306.94 ] 379.71 | 89.69 | 110.96] 323.29 | 2071.29 | 1.34] 0.88 -0.36
59 5.81 | 80.641313.46| 383.15 | 127.30| 155.60 | 540.39 | 5149.17 | 1.15| 0.31 -0.57
60 5.04 | 84.69| 320.64 | 380.95 | 134.53| 159.84| 711.71 | 7157.57 | 0.76| -0.73 -0.43
61 6.22 | 87.47| 317.87| 383.81 | 131.55| 158.84 | 529.66 | 5200.64 | 0.95| -0.04 -0.57
62 6.14 | 80.29| 316.65| 386.27 | 139.24 | 169.85] 619.88 | 6518.94 | 0.80 -0.52 -0.50.
63. 6.01 | 81.32] 311.70| 362.87 | 139.02 | 161.84 | 838.88 | 8455.97 | 0.74| -0.89 -0.35
64 6.74 | 92.07 | 307.72 | 381.19 | 119.42| 147.93| 501.61 | 4376.78 | 1.07| 0.18 -0.63
65 6.12 | 88.90 | 319.63 | 389.08 | 140.10| 170.54 | 494.66 | 5006.76 | 0.77 | -0.47 -0.49
66 7.03 | 93.62| 303.90| 379.60 | 139.86 | 174.71 | 593.84 | 5880.00 | 0.71| -0.92 -0.34
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Appendaix C. eXiracled 5LU 1cdaturcs

Table C.5: ECG features for 209-nightl

%Record gl HR | RTmsi | RTemsi | Tdur | Tdurc | Tampl Tarea HAR | SKEW | KURTexc
1 8.70 | 112.12] 159.90 | 218.58 | 82.88 | 113.29 | 945.67 | 12014.05 | 0.57 | -1.29 -0.17
2 9.32 | 107.80} 165.68 | 222.07 | 88.25 | 118.29 | 780.62 | 10770.64 | 0.56 | -1.32 -0.16
3 9.80 | 98.75 | 171.78 | 220.37 | 93.56 | 120.03 | 687.21 | 9759.87 | 0.60 | -1.25 -0.22
4 9.95 | 92.69 | 171.02 | 212.56 | 93.78 | 116.56 | 674.77 | 9766.67 | 0.56 | -1.33 -0.13
5 10.39 | 105.09] 168.87 | 223.50 | 90.52 | 119.80| 714.50 | 9754.39 | 0.73 | -1.03 -0.30
6 10.39 | 85.20 | 169.55 | 202.05 | 90.56 | 107.92| 741.04 | 10051.31 | 0.71 | -1.04 -0.31
7 9.51 | 109.15| 162.23 | 218.81 | 90.46 | 122.00 | 919.80 | 12661.41 | 0.60 | -1.28 -0.16
8 7.65 | 109.32| 164.94 | 222.64 | 94.14 | 127.08 | 933.79 | 13386.60 | 0.66 | -1.19 -0.24
9 7.14 | 101.57| 166.18 | 216.21 | 92.66 | 120.56 | 981.67 | 13939.19 ] 0.57 | -1.34 -0.10
10 6.76 | 105.15| 169.75 | 224.71 | 95.94 | 127.00 | 959.22 | 14092.50 | 0.65 | -1.25 -0.15
11 7.52 | 84.47 | 167.49| 198.73 | 92.79 | 110.09 | 987.66 | 13766.76 | 0.60 | -1.25 -0.20
12 7.75 | 104.29] 171.66 ] 226.31 | 96.79 | 127.61| 962.96 | 14016.55 | 0.74 | -1.04 -0.29
13 7.86 | 105.71] 171.05| 227.04 | 93.22 | 123.73 | 974.95 | 13890.79 | 0.57 | -1.34 -0.11
14 7.65 | 104.31| 172.21 | 227.07 | 95.17 | 125.48 | 961.05 | 13902.60 | 0.60 | -1.30 -0.12
15 9.32 | 107.01| 164.96 | 220.30 | 87.03 | 116.23 | 972.24 | 12858.67 | 0.58 | -1.33 -0.08
16 9.08 | 102.58| 173.30 | 226.60 | 96.40 | 126.05 | 883.61 | 12882.51 | 0.61 | -1.28 -0.13
17 8.49 | 100.97| 169.21 | 219.50 | 91.31 | 118.46 | 941.60 | 13133.98 | 0.71] -1.15 -0.18
18 7.73 | 108.36| 159.41 | 214.23 | 95.00 | 127.67 | 963.95 | 13103.95 | 0.54 | -1.47 0.17
19 6.42 | 107.17]| 172,12 | 230.04 | 101.26 | 135.34 | 875.57 | 13518.78 | 0.69 | -1.15 -0.25

20 6.38 | 104.76| 176.81 | 233.64 | 104.44 | 138.01 | 861.06 | 13815.94 | 0.63 | -1.24 -0.21
21 7.25 | 106.62] 178.12 | 237.44 | 103.67 | 138.20 | 785.22 | 12449.61 | 0.55 ] -1.33 -0.20
22 6.57 | 103.93] 162.65 | 214.07 | 69.68 | 91.71 | 335.46 | 3748.97 [ 0.61| -1.38 -0.12
23 6.87 | 125.54| 150.39 | 217.54 | 68.94 | 99.72 | 497.31 | 5864.55 | 0.59 | -1.18 -0.39
24 6.70 | 85.97 | 167.87 | 200.95 | 87.55 | 104.81 | 873.83 | 11297.32 | 0.50.| -1.39 -0.17
25 6.04 | 106.87| 170.73 | 227.86 | 99.71 | 133.07 | 779.21 | 11133.09 { 0.53 | -1.41 -0.05
26 6.27 | 113.14| 170.74 | 234.45 | 93.42 | 128.29 | 797.50 | 11380.46 | 0.51 | -1.37 -0.16
27 6.57 | 115.75] 156.37 | 217.19 | 84.29 | 117.08 | 1003.26 | 12771.99 | 0.50 | -1.45 -0.05
28 8.72 | 11211 172.01 | 235.13 | 91.01 | 124.40 | 874.23 | 12114.32 | 0.66 | -1.20 -0.17
29 10.84 | 115.35| 161.14 | 223.43 | 87.61 | 121.47 | 960.37 | 12825.70 | 0.64 | -1.29 -0.08
30 11.32] 108.16| 168.86 | 226.72 | 92.69 | 124.45| 894.98 | 12448.80 | 0.54 | -1.41 -0.04
31 10.90 | 115.04 | 154.11 | 213.39 | 77.42 | 107.20 | 836.96 | 10127.86 | 0.49 | -1.37 -0.18
33 10.98 ] 78.74 | 143.46 | 164.35 | 53.52 | 61.31 | 635.47 | 5014.27 | 0.99| -0.34 -0.87
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Appendix C: EXtracted EC 1eatures

Table C.6: ECG features for 209-night2

%Record gl HR | RTmsi | RTemsi | Tdur | Tdurc | Tampl Tarea | HAR| SKEW | KURTexc
34 5.51 | 118.88| 166.24 | 234.00 | 87.73 | 123.48 | 824.66 | 10854.38 | 0.81 | -0.81 -0.41
35 5.53 | 108.26| 170.58 | 229.13 | 90.45 | 121.50 | 750.54 | 10329.68 | 0.77 | -0.89 -0.35
36 5.46 | 109.77| 170.70 | 230.88 | 96.37 | 130.34 | 823.08 | 11994.24 | 0.68 | -1.08 -0.29
37 5.81 | 106.31| 175.21 | 233.23 | 98.92 | 131.68| 759.50 | 11500.41 | 0.61 | -1.18 -0.25
38 "6.16 | 104.49| 174.75| 230.61 | 99.34 | 131.10| 787.87 | 11946.91 | 0.61 ] -1.20 -0.23
39 5.69 | 108.91| 177.07 | 238.57 | 99.38 | 133.90 { 815.71 | 12422.21 | 0.70 | -1.12 -0.23
40 4.89 | 92.27 | 172.58 | 214.01 | 95.49 | 118.41 | 800.28 | 11493.93 ] 0.59 | -1.30 -0.11
41 4.36 | 106.05] 170.66 | 226.89 | 93.21 | 123.92 | 819.37 | 11613.58 | 0.73 | -1.07 -0.24
42 4.04 | 71.22 | 175.45| 191.15 | 9546 | 104.00 | 836.27 | 12034.21 | 0.72| -1.03 -0.29
43 4.19 | 99.22 | 174.09 | 223.87 | 92.29 | 118.68 | 839.47 | 11839.07 | 0.70 | -1.10 -0.23
44 3.52 | 99.99 | 178.28 | 230.15 | 99.09 [ 127.91 | 917.93 | 13671.94 | 0.61 | -1.24 -0.20
45 3.94 | 105.20| 167.72 | 222.08 | 92.86 | 122.95| 941.20 | 13128.18 | 0.63 | -1.24 -0.18
46 4.95 | 104.41| 175.19 | 231.10 | 97.90 | 129.14 | 863.77 | 13060.69 | 0.69 | -1.16 -0.21
47 3.96 | 109.15] 165.02 | 222.57 | 93.54 | 126.16 | 876.81 | 12339.17 | 0.49 | -1.42 -0.12
48 3.53 | 108.10| 162.29 | 217.83 | 107.06 | 143.70 | 785.73 | 11953.75 | 0.57 | -1.49 0.16
49 3.05 | 103.40| 180.17 | 236.53 | 105.85| 138.95| 771.30 | 12477.60 | 0.74 | -0.99 -0.38
50 2.89 | 101.00| 177.76 | 230.63 | 101.20 | 131.29 | 793.97 | 12353.34 | 0.67 | -1.13 -0.29
51 2.82 { 106.03 ] 175.00 | 232.64 | 100.23 | 133.25| 756.56 | 11671.82 | 0.79 | -0.88 -0.43
52 3.27 | 104.86] 181.25 | 239.61 | 104.02 ] 137.51 | 814.91 | 13022.51 | 0.63 | -1.22 -0.21
53 3.22 | 119.72| 168.35 | 237.81 | 98.16 | 138.66 | 592.06 | 8013.48 | 0.79| -0.97 -0.25
54 2.64 | 118.60| 156.03 | 219.36 | 83.14 | 116.88 | 857.47 | 11059.48 | 0.91 | -0.82 -0.39
55 2.36 | 106.62| 175.29 | 233.67 | 100.33 | 133.75| 861.59 | 13184.17 | 0.64 | -1.19 -0.24
56 2.34 | 104.67| 166.65| 220.11 | 91.07 | 120.28 | 712.46 | 10032.95 | 0.59 | -1.29 -0.20
57 3.48 | 106.81| 166.71 | 222.43 | 88.85 | 118.54 | 891.96 | 12262.15 | 0.51 | -1.44 -0.04
60 3.22 | 108.40] 173.27 | 232.90 | 93.37 | 125.51 | 852.99 | 12092.58 | 0.64 | -1.17 -0.23
61 3.25 | 110.63| 175.55| 238.38 | 99.61 | 135.26 | 841.91 | 12443.26 | 0.69 | -1.18 -0.17
62 4.56 | 117.17| 164.55] 229.95 | 92.19 | 128.83 | 865.94 | 11986.80 | 0.68 | -1.20 -0.17
63 5.28 | 100.24 ] 146.80 | 189.74 | 79.61 | 102.90 | 984.53 | 1211543 | 0.42 | -1.55 0.00
64 5.74 | 109.32] 171.90 | 232.04 | 98.28 | 132.66 | 859.22 | 12925.17 | 0.66 | -1.17 -0.21
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Feature Extraction and ClaSSiﬁcétion of Electrocardiogram (ECG) Signals
Related to Hypoglycaemia

C Alexakis', HO Nyongesal, R Saatchi', ND Harris?, C Davies®, C Emery3 , RH Ireland®, SR Heller®

!Schools of Computing & Engineering, Sheffield Hallam University, Sheffield, UK
2University of Bath, Bath, UK, 3 University of Sheffield & *Weston Park Hospital, Sheffield, UK

Abstract

. Nocturnal hypoglycaemia has been implicated in the
sudden deaths of young people with diabetes.
Experimental hypoglycaemia has been found to prolong
the ventricular repolarisation and to affect the T wave
morphology. It is postulated that abnormally low blood
glucose could in certain circumstances, be responsible
for the development of a fatal cardiac arrhythmia.

We have used automatic extraction of both time-
interval and morphological  features, from the
Electrocardiogram (ECG) to classify ECGs into normal
and arrhythmic. Classification was implemented by
artificial neural networks (ANN) and Linear
Discriminant Analysis (LDA). The ANN gave more
accurate results. Average training accuracy of the ANN
was 85.07% compared with 70.15% on unseen data.

This study may lead towards the demonstration of the
possible relationship between cardiac function and
abnormally low blood glucose.

1. Introduction & background

The aim of this work is to detect the onset of nocturnal
hypoglycaemia indirectly through analysis of the
Electrocardiogram (ECG) of type 1 diabetics. In order to
achieve this, ECG feature extraction is performed and the
features produced are classified according to their
corresponding glucose levels:

Nocturnal hypoglycaemia has been implicated in the
sudden deaths of diabetics, especially those of an early
age, a syndrome known as “Dead in Bed” [1]. The
mechanism and cause of such deaths is still not very
clear. The diabetics were well the night before and were
found dead in an undisturbed bed the following morning.
There was no brain damage, a symptom of profound
hypoglycaemia, hence the deaths were caused by a
different mechanism. It is suspected. that deaths were
caused by a fatal cardiac arrhythmia. It has been shown
that experimental hypoglycaemia prolongs the ventricular
repolarisation (VR) and hence it affects the rythmicity of

the heart [2].

The 3-lead ECG - : >
was used for the mif.l R lnl?:tl "
purposes of this

research. A typical
ECG  cycle is
presented in figure

1. The T wave

corresponds to the E
ventricular : o
repolarization of the {0 Segmen
myocardium. During 'QRS" —
hypoglycaemia, the Duration

counter-regulatory Fig 1: a typical ECG
responses cause the

release of adrenaline and a fall in potassium, which
delays repolarisation. These changes may be reflected on
the ECG by changes in T wave morphology. If these
changes can be automatically identified it may provide a
warning of hypoglycaemia or of a potentially pro-

arrhythmogenic condition.

2. Methods

2.1.  Data acquisition

The data used in this study consisted of both the ECG
traces and their corresponding blood glucose levels. They
were obtained from eleven type 1 diabetic patients, with
mean (sd) age 35.9 (14.53), recruited by the Diabetic
Clinic of the Royal Hallamshire Hospital in Sheffield.
The ECG data were recorded in the patient’s own
environment by a custom-built system that captures data
from the YY’ orthogonal lead [3]. One-minute worth of
recording was captured every 15 minutes. Blood glucose
was recorded by an implantable glucose sensor (MiniMed
CGMS) [4] that measures glucose in' the trancutaneous
tissue every 5 minutes. The above acquisition was carried
out for two successive nights and produced a data-set of
paired ECG-glucose readings. This data-set was used for
offline feature extraction and classification. ‘
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2.2. ECG features

An illustration of the time-interval features that can be
extracted from an ECG cycle is given in figure 1. The QT
was considered in this study since it describes the
duration of VR. Correction of QT for heart rate was
carried out using Bazett’s formula (QTc = QT/\/RR) [5]
Besides the time interval features, other features
describing the amplitude, morphology or area of certain
waves were considered.

Five ECG features were used in this study namely:
RR, RTc, T wave amplitude (Tampl), T wave skewness
(skew) and T wave kurtosis (kurt). T hese features were
extracted using automatic algorithms. The onset and end
of the T wave were detected using the tangent method
[6,7].

RT is the time interval from the R peak to the end of
the T wave. RTc is the corrected version using Bazzett’s
formula. The RT interval was chosen for this study,
instead of the QT, since R point detection is more robust
than Q point detection especially in the presence of noise.
Moreover the RT interval still describes the process of
ventricular repolarisation satisfactorily. RT has been used
before [8] but to a lesser extend than the QT.

Skewness is used to evaluate the symmetry of the T
wave shape. Kurtosis is used to quantify the degree of
peakedness of the T wave shape. Traditionally skewness
and kurtosis are used to evaluate the symmetry and
peakedness of statistical distributions but .in this study
they are used for the shape analysis of the T waveform

[9].

2.3. Neural network classification

Artificial Neural Networks (ANN) are computational
models inspired by the functioning o f the human brain.
They consist of simple but highly interconnected
computing devices, each of which imitates the biological
neuron. The ANN “learns” by adapting connections
between its computational neurons to match input-output
combinations.

The neural network architecture used in this study for
classifying ECG traces was the Multi-Layer Perceptron
(MLP). Classification was binary, into normal and
arthythmic (corresponding to hypoglycaemia) ECG
records. The ANN mapped normal ECG records as
negative and arrhythmic ones as positive. A threshold of
2.5 mmol/lt was used to distinguish euglycaemia from
hypoglycaemia. ECG traces corresponding to glucose
equal or below 2.5 mmol/lt were classed as arrhythmic
(hypoglycaemic) while those corresponding to the
glucose interval [4 8] mmol/lt were classed as normal
(euglycaemic). Records belonging to the interval (2.5 4)
were excluded since they belong in the transition region
between the normal and the hypoglycaemic class.
Hyperglycaemic records (defined as: glucose> 8mmol/lt)

were also excluded.

The 5 ECG features produced were combined in two
combinations of 4 features namely RR, RTc, Tampl,
skew and RTc, Tampl, skew, kurt. Apart from the above
features, a third combination was considered. It consisted
of a total of 10 ECG features, including the above 5. The
extra 5 features were: RT, Tduration, corrected Tduration
(using Bazett’s formula), area under T and ratio of areas
under T on either side of T peak. These 10 features were
preprocessed using Principal Component Analysis (PCA)
to produce an orthogonalised set of features and reduce
the dimensionality of the input vector (i.e. the number of
features used). Any feature with less than 2%
contribution to the variation in the data set was discarded
by the PCA algorithm. PCA typically reduced the 10
initial features into 4 or 5 orthogonalised features. Neural
networks were trained using the above three feature
combinations and comparisons were made in order to
identify the best one.

A classifier was trained for each patient considered in
the study. Alternatively a single classifier could have
been trained to work on all patients. The second approach
was not preferred because of inter-patient variability
problems. Such variability is common when dealing with
physiological d ata, making it difficult for the classifiers
to generalise on unseen data, across the population of all
patients. Some parameters that are typically varying
across patients are: age, sex, duration of diabetes, level of
glycaemic control, fitness level etc. By allowing a
classifier to focus on the dynamics of a single patient the
problem of inter-patient v ariability is o vercome and the
only problem we are faced with is that of intra-patient
variability.

Producing a classifier for each patient means that each
classifier only sees data from a single patient. This
introduces the problem of small data-sets since the data
has to be partitioned per patient. In order to maximise the
data available five-fold cross-validation was applied and
the results were averaged over 5. Data-sets consisted of a
maximum of 66 feature vectors, each vector consisting of
four (or more for PCA) features. Since the length of the
data-sets was short, the size (number of neurons) of the
ANNs was kept small to avoid overfitting, A maximum
of 5 neurons was used in the single hidden layer. For the
same reason, the number of input ECG features was
limited to 4 although more features were available. The
preprocessing of the features included removal of outliers
(using the mean * 2sd criterion) and normalisation in the
interval [-1 1]. -

The performance measures used to evaluate the
performance of the classifiers were: accuracy, hitrate
(sensitivity), false-alarm-rate, true-negatives-ratio
(tnratio) and missed-hypos (false-negatives ratio). They
are defined as:

» Accuracy = tp + tn/ (tpttnt+fp+fn) (1)
> Hitrate = tp / (tp +fn) (2)
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» False-alarm-rate = fp / (fp +tn) (3)
» Tnratio = tn/ (i + fp) 4)
» Missed-hypos = fn/ (fn + tp) %)

where p, tn, fp and fn stand for: true positives, true
negatives, false positives and false negatives respectively.
Positive refers to hypoglycaemia while negative refers to
euglycaemia.

Hitrate describes the number of arrhythmic traces
classified correctly while false-alarm-rate describes the
number of normal traces that were classified as
arthythmic (i.e. false alarms). Tnratio describes the
number of normal traces classified correctly while
missed-hypos describes the number of arrhythmic traces
classified as normal, i.e. the number of hypoglycaemic
events that were missed.

3. Results

Neural network classification results for the 11
subjects and for features RTc, Tampl, skew, kurt are
given in table 1. The table contains performance
measures for both the training and testing datafiles.

Table 1: ANN classification results (RTc Tampl skew kurt)

validation was applied and the results were averaged over
5. Partitioning of the data into training and testing was
exactly the same as for the ANN. The classification
results for RTc, Tampl, skew, kurt obtained from LDA
are tabulated in table 2.

Overall the ANN were superior to the LDA. The
weakest point of LDA was the percentage of missed-
hypos. This ratio was high even for the training data-set.

For both the ANN and the LDA, the hitrate was
greater than the tnratio for both training and test results.
This means that both classifiers were better in classifying
hypoglycaemic records correctly than in classifying
normal records correctly.

Table 2: LDA Classification results (RTc Tampl skew kurt)

TRAIN TEST
false missed false missed
-~ alarm | o [hypos | |~ alarm | —~ | hypos
) o 3 o o
s IR IE | ® | [»wT | | w2 | ®%
5 > Iy 2 g |8 -2
= < - h=4 = b=
< =1 o s =3 g s
= 138 | £ g |=E £
g = [

202 |83.42( 86.99 | 20.15 [79.85| 13.01 [69.62|72.58| 37.14 [62.86 27.42

203 |91.35(92.05| 9.36 [90.64| 7.95 |82.92|86.52| 34.67 |65.33| 13.48

204 170.56] 66.11 | 25.00 [75.00| 33.89 |50.67|26.67| 25.33 [74.67] 73.33

TRAIN TEST
208 |73.40[ 70.17 [ 23.37 |76.63 | 29.83 |63.67[46.67] 19.33 [80.67 53.33
false missed false missed -
< | alrm | [hypos|@. o | alerm | [Bypos 212 |100.0[100.00] 0.00 |100.0]-0.00 |89.96]92.00] 60.00 |40.00] 8.00
= |12 | OB RON L RO R 216 |77.28] 82.28 | 27.72 |72.28] 17.72 |69.88|71.67| 36.67 |63.33] 28.33
2 = 2 S
- - g 5 |E g 720 [68.89[90.83 | 53.06 [46.94] 9.17 [87.10(89.77| 100.00 | 0.00 | 10.23
I = & 151 = 8
g |= ® 223A164.90 76.86 | 47.05 |52.95| 23.14.{56.25|84.76 ] 65.28 |34.72| 15.24
202 189.821100.001 3.53 [89.26| 0.00 171.52|73.85| 24.29 |74.29] 24.75 227 |65.95| 51.14 | 19.24 |80.76| 48.86 |44.09139.331 41.33 |58.67| 60.67

203 193.78] 98.46 | 10.90 |89.10| 1.54 }87.50{90.46] 26.67 |73.33| 9.54

229 |79.68| 87.18 | 27.82 (72.18] 12.82 |36.33]45.00| 64.49 [35.51| 55.00

204 |77.08{100.00| 0.00 (77.22{ 0.00 |58.33(62.00| 37.00 |58.67 34.00

244 187.78) 97.78 | 22.22 |77.78] 2.22 ]83.44|90.68] 61.33 |38.67| 9.32

208 |88.30| 94.86 | 3.50 |90.33| 4.80 |66.00|71.00| 29.00 |66.00|26.67

mean {78.47| 81.94 | 25.00 |75.00| 18.06 |66.72|67.79| 49.60 |50.40] 32.21

212 |83.50[100.00} 0.00 [79.00| 0.00 |77.66]|85.45| 16.67 |83.33|12.73

std |11.24( 14.75 | 14.92 |14.92| 14.75 | 18.24]23.95| 23.18 |23.18} 23.95

216 ]79.15] 93.89 | 29.26 |70.07| 5.88 |76.82|85.61| 57.00 [39.33] 14.13

min {64.90( 51.14 [ 0.00 [46.94| 0.00 [36.33|26.67( 19.33 { 0.00 | 8.00

220 |83.89197.78 | 0.00 |83.89| 2.22 ]65.19|70.87| 16.67 |50.00] 27.14

max §100.0(100.00| 53.06 |100.0| 48.86 [89.9692.00| 100.00 { 80.67  73.33

223A182.19/96.19 | 0.95 |79.76| 3.81 [69.11]|84.00 21.90 [68.33]13.33

227 |93.17|100.00 4.86 [89.33| 0.00 |62.00(65.86| 27.00 |68.67(30.17

229 178.21| 81.88 | 6.41 |78.21] 17.18 }64.19/60.00] 29.69 ]65.14( 38.33

244 186.67(100.00| 0.00 [86.67| 0.00 |73.28|80.60| 28.00 [58.00| 18.60

mean |85.07] 96.64 | 5.40 [82.99| 3.22 ]70.15]|75.43| 29.72 |64.10]22.67

std | 5.79| 538 | 8.63 |6.59( 5.10 | 8.36 {1041 10.95 |12.17] 9.58

min |77.08] 81.88 | 0.00 |70.07| 0.00 ]58.33}60.00] 16.67 |39.33| 9.54

max [93.78]100.00| 29.26 |90.33| 17.18 [87.50}90.46] 57.00 |83.33| 38.33

To allow comparisons, Linear Discriminant Analysis
(LDA) was also used for classification of the ECG
records in normal and arrhythmic. LDA works by
minimising the Mahalanobis distance [10] which is a
multivariate measure of the separation of a data set from
apointinspace. The same ECG features that were fed
into the ANN were used in LDA. Five-fold cross-

For some patients the test figures for false-alarm-rate
(for both the ANN and the LDA) were extremely high
while the accuracy and hitrate were also high. This can be
understood by looking at equations 1-3 in the previous
section. If in the data-set there exist very few
compared to the number of fp the false-alarm-rate will be
high. At the same time the accuracy and hitrate can be
high if #p is much higher than fp and fu. If the data-sets
were sufficiently large there would not be such a
problem.

4, Discussion

Classification of ECG traces was carried out by MLP
and LDA. Both are supervised classification methods but

the way they work is not the same. The LDA is a linear
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statistical classifier while the MLP is non-linear. Both
types of classifiers had reasonable performance with the
MLP performing better than the LDA. L onger d ata-sets

will be necessary for obtaining a clearer picture of the '

differences in performance of the two classifiers.

The three feature combinations used had very similar
performance when c onsidering the a verage p erformance
metrics. Looking at individual -patients, the three feature
combinations did not have systematic performance for
the various patients.

For the given data-sets and input features, the
performance of LDA cannot, because of its nature, be
improved further. However, in the neural network case
the performance could be further improved. Many
different parameters are involved which have not been
explored fully. By tuning the parameters better
classification performance could be possible.

5. Conclusion

This paper focused on automatic feature extraction and
classification of ECG signals for detection of the delayed
ventricular repolarisation, a cardiac arrhythmia that is
suspected to be introduced by hypoglycaemia. ECG
features were used that describe both the duration and
morphology of the relevant ECG components.
Classification was carried out using multi-layer
perceptrons and statistical classifiers (LDA). The two
types of classifiers performed quite closely to each other,
with the ANN being more accurate. The ANN can be
further improved to achieve even better performance,
because of the nature of its architecture being multi-
parametric. It is suspected that the optimal neural
network recipe has not been found yet.

Future work will focus on improving the ANN
classification and also on experimenting with other
feature combinations and probably the introduction of
new features. Non-linear PCA may be used instead of
PCA in order to, more effectively, reduce the
dimensionality of the input sp ace. Fuzzy logic will also
be considered in order to offer transparency to the
classification process.

Regarding data acquisition, data sets from adolescent
and prepubescent type 1 diabetic patients will be used in
the near future. The incidence of sudden death is highest
in young people or those with a short duration of diabetes
and these data may show more pronounced changes.
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Abstract

The paper describes investigations into the
classification of signal-averaged electro-
cardiogram (SAECG) signals, with regard to
detection of the onset of hypoglycaemia in
diabetic patients. Firstly, feature extraction is
carried out to obtain time-domain features, which
are classified by neural networks. Secondly, the

SAECG signals are modelled by Autoregressive .

modelling (AR), and the parameters classified
using Linear Discriminant Analysis. The
classification ~ performances  using  both
approaches are compared. ECG datasets were
obtained from ongoing related research, and
consist of paired ECG-Glucose readings from
Type-1 diabetic patients. Data was recorded
overnight in the patient’s own homes. .

1 INTRODUCTION

The ECG signal describes the electrical activity
of the heart and is among the most widely used
physiological signals. In this paper, the study is
related to detection of hypoglycaemia in Type-1
diabetes patients. Hypoglycaemia is a condition,
among mostly diabetic patients, where the blood
glucose drops to abnormal levels. Nocturnal
hypoglycaemia has been implicated in the sudden
deaths of diabetic patients, especially those of an
early age, a syndrome known as “Dead in Bed”
[1]. The mechanism and cause of such deaths is
still not very clear. The patients were well the
night before and were found dead in an
undisturbed position the following morning.
There was no brain damage, a symptom of
hypoglycaemia, suggesting that the deaths were
caused by a different mechanism. It is suspected
that deaths were caused by a fatal cardiac
arrhythmia.

2 DATA :
Available datasets were obtained from other
diabetes related research. They consist of paired
ECG-Glucose readings from 11 Type-1 diabetic
patients and have been analysed in the present
research to investigate any symptomatic
manifestation of hypoglycaemia within the ECG.
Data was recorded overnight in the patient’s own
homes in order to capture spontaneous
hypoglycaemic events. One-minute worth of Y
lead ECG recording was captured every 15
minutes. Each SAECG cycle was produced by
averaging over the 1-minute time period. ECG
acquisition was carried out using a custom-made
system (Hypoglycaemia Online Monitoring
Ensemble) [2] developed in - the Royal
Hallamshire Hospital in Sheffield. The sampling
rate was 125 Hz and was limited by the
specification of the palmtop computer used.
Glucose measurements were acquired using
MiniMed CGMS [3].

3 METHODS
Two approaches were followed in representing
the ECG. Individual ECG features, both time

- domain and morphological, that describe certain

components or processes of the cardiac function
were used as the first approach. In the second
approach, the whole of the relevant segment of
the ECG was described via modelling by Auto-
Regressive coefficients. The ECG feature
extraction results were classified using Artificial
Neural Networks (ANN) and Linear
Discriminant Analysis (LDA) while the AR
modelling results were only fed to the statistical
classifiers (LDA). Comparison of the two ECG
representation methods and also the two
classification approaches are presented.
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3.1 ECG Feature Extraction

Five ECG features were used in this study
namely: RR, RTc¢, T wave amplitude (Tampl), T
wave skewness (skew) and T wave kurtosis
(kurt). These features were extracted using
automatic algorithms. The onset and end of the
T-wave were detected using the tangent method
[4]. RT is the time interval from the R peak to the
end of the T wave. RTc is the corrected version
using Bazzett’s formula [5]. The RT interval was
chosen for this study, instead of the QT, since R
point detection is more robust than Q point
detection especially in the presence of noise.
Moreover the RT interval still describes the
process of ventricular repolarisation
satisfactorily. RT has been used before but to a
lesser extend than the QT.

Skewness is used to evaluate the symmetry of the
T wave shape. Kurtosis is used to quantify the
degree of peakedness of the T wave shape.
Traditionally skewness and kurtosis are used to
evaluate the symmetry and peakedness of
statistical distributions but in this study they are
used for the shape analysis of the T waveform.

3.2 . ECG Modelling by AR Coefficients

This approach has been used before for detection
of certain cardiac arrhythmias. In this study it
was used for the detection of the delayed
ventricular repolarisation often exhibited during
hypoglycaemia.

The general form of an n™ order AR model is:

y(k+1)=—i=znaioy(k—i)+e(k+1)+oﬁfset 1)

where e(k) is the noise parameter and “offset”
denotes an offset parameter.

The ECG section to the right of the R peak and
until the end of the trace is used because this is
the section affected by hypoglycaemia.

The Least Squares (LS) algorithm was used to
find the estimates of the optimal model
parameters. It works by minimising the sum of
the squares of the model errors and is given by:

1‘3=(c1>Tq>)"q>Tif Q)

Vector B contains the model parameters (a; and
offset) and vector Y contains the data-points
describing the ECG trace. '

Figure 1 illustrates a SAECG trace together with
its modelled version using a 2™ order AR model.
The whole ECG cycle is plotted (blue) but only
the post-R peak section is modelled (dotted).

actual (dotted black) & predicted (solid blue) ECG trace
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Figure 1: actual (solid) vs modelled (dotted) ECG

The actual ECG modelling was carried out using
a 3" order AR model. The correlation coefficient
between actual and modelled ECG trace was for
all but one patient greater than 91% with-an
average of 95% across patients. The model order
can be increased so that each ECG trace is more
closely modelled but this will produce extra
model parameters that the classifiers have to
handle and classify. Emphasis is placed on
making the model simple and hence keeping the
classification task simple.

3.3 Classification

Data from individual patients were classified, one
at a time, in order to avoid inter-patient
variability problems. Such variability is common
when dealing with physiological data, making it
difficult for the classifiers to generalise on unseen
data, across the population of all patients. Some
parameters that are typically varying across
patients are: age, sex, duration of diabetes, level
of glycaemic control, fitness level etc. By
allowing a classifier to focus on the dynamics of
a single patient the problem of inter-patient
variability is overcome and the only problem we
are faced with is that of intra-patient variability.
Partitioning data per patient means that each
classifier only sees data from a single patient
which introduces the problem of small data-sets.
In order to maximise the data available five-fold
cross-validation was applied and the results were
averaged over 5.



Classification was binary, into normal and
arrthythmic (corresponding to hypoglycaemia)
ECG records. The classifiers mapped normal
ECG records as negative and arrthythmic ones as
positive. A threshold of 2.5 mmol/lt was used to
distinguish ~ euglycaemia  (normal)  from
hypoglycaemia. ECG traces corresponding to
glucose equal or below 2.5 mmol/lt were classed
as arrhythmic (hypoglycaemic) while those
corresponding to the glucose interval {4 ... §]
mmol/lt were classed as euglycaemic. Records
belonging to the interval [2.5 3.5] were
excluded since they belong in the transition
region between the normal and the
hypoglycaemic class. Hyperglycaemic records
(defined as: glucose > 8mmol/lt) were also
excluded. .

The 5 ECG features produced were combined in
two combinations of 4 features namely "RR,
RTec, Tampl, skew" and "RTc, Tampl, skew,
kurt". Neural networks were trained using both
feature combinations and comparisons were
made in order to identify the best one. The neural
network architecture used in this study for
classifying ECG traces was the Multi-Layer
Perceptron (MLP).

-Data-sets consisted of a maximum of 66 feature
vectors, each vector consisting of four features.
Since the length of the data-sets was short, the
size (number of neurons) of the ANNs was kept
small to avoid overfitting. A maximum of S
neurons was used in the single hidden layer. For
the same reason, the number of input ECG
features was limited to 4 although more features
were available. The preprocessing of the features
included removal of outliers (using the mean =+
2sd criterion) and normalisation in the interval [-
11].

The performance measures used to evaluate the
performance of the classifiers were: accuracy,
hitrate  (sensitivity), false-alarm-rate, true-
negatives-ratio (tnratio) and missed-hypos (false-
negatives ratio). They are defined as:
= Accuracy =tp + tn/ (tpt+tn+fp+fn) (1)

* Hitrate =tp / (tp +fn) )
» False-alarm-rate = fp / (fp +tn) 3)
=  Tnratio =tn/ (tn + fp) “
= Missed-hypos =fn/ (fn + tp) (%)

where tp, tn, fp and fn stand for: true positives,
true negatives, false positives and false negatives
respectively. Positive refers to hypoglycaemia
while negative refers to euglycaemia.

Hitrate describes the number of arrhythmic traces
classified correctly while false-alarm-rate
describes the number of normal traces that were
classified as arrhythmic (i.e. false alarms).
Tnratio describes the number of normal traces
classified correctly while missed-hypos describes
the number of arrhythmic traces classified as
normal, i.e. the number of hypoglycaemic events
that were missed. '

LDA was used to classify the two ECG feature
combinations and also the coefficients produced
by AR modelling. LDA works by minimising the
Mahalanobis distance, which is a multivariate
measure of the separation of a data set from a
point in space. ‘

4 RESULTS -

Results from 11 Type-1 diabetic patients along
with summary statistics are presented in the
following tables. .

Table 1: ANN classification results (RTc Tampl skew
kurt)

TRAIN TEST
false missed false missed
= alarm |~ fThypos | |~ alam | | hypos
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g |z |= 2 g 12 2
= 8 g = 5] =1
N EE- £ g |2 £
8 = s

n
(=}
5]
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o
oo
5]
(=
=1
[=3
=

3.53 [89.26| 0.00 [71.52|73.85| 24.29 [74.29| 24.75

203 |93.78] 98.46 | 10.90 189.10| 1.54 ]87.50|/90.46| 26.67 |73.33| 9.54

204 |77.08(100.00( 0.00 [77.22| 0.00 [58.33(62.00| 37.00 |58.67| 34.00

208 [88.30| 94.86 | 3.50 |90.33| 4.80 }66.00{71.00] 29.00 |66.00| 26.67

212 §83.50|100.00f 0.00 |79.00| 0.00 [77.66[{8545| 16.67 183.33{12.73

216 |79.15( 93.89 | 29.26 |70.07| 5.88 |76.82|85.61| 57.00 |39.33] 14.13

220 |83.89[97.78 | 0.00 [83.89} 2.22 [65.19]70.87| 16.67 |50.00] 27.14

223A182.19196.19 | 0.95 |79.76{ 3.81 |69.11|84.00| 21.90 |68.33] 13.33

227 |93.17]100.00| 4.86 |89.33( 0.00 |62.00{65.86| 27.00 |68.67( 30.17

229 7821 81.88 | 6.41 (7821 17.18 |64.19/60.00| 29.69 |65.14( 38.33

244 §86.67/100.00| 0.00 {86.67| 0.00 |73.28]80.60| 28.00 |58.00] 18.60

mean}85.07]| 96.64 | 5.40 [82.99] 3.22 |70.15{75.43| 29.72 |64.10| 22.67

std | 5.79 | 538 | 8.63 |6.59| 5.10 | 8.36 |10.41| 1095 |12.17| 9.58

min |77.08] 81.88 | 0.00 |70.07| 0.00 |58.33{60.00| 16.67 |39.33| 9.54

max |93.78/100.00| 29.26 }90.33} 17.18 |87.50|90.46]| 57.00 |83.33| 38.33

Results are tabulated only for the "RTc, Tampl,
skew, kurt" feature combination. The "RR RTc
Tampl skew" feature combination gave slightly
inferior results which are not included. Table 1
presents the ANN classification results for the
"RTc, Tampl, skew, kurt" feature combination
while Table 2 contains the LDA classification for




the AR coefficients. ANN studies for this . .
approach are on-going. Train & Test accuracies
100
5 DISCUSSION .
The ANN classification results were superior to g 80
the LDA results, which is expected since ANNs g 60
are non-linear and more powerful classifiers. g %
Comparing the LDA classification results for the < 2
individual ECG features and the AR coefficients 0 -
it is observed that the AR modelling yielded ECGfeat-NNET ~ ECGfeat-LDA AR-LDA
better results. It is anticipated that classifying the Feature extraction-Classification profile
AR coefficients using a neural classifier will
. . BTRaTST
enhance even more the classification
performance. The results suggest that AR Figure 2: Classification accuracies for all three approaches
modelling is a better ECG representation
technique compared to the morphological ECG 6 CONCLUSION ‘
features. A summary of the training (known data) This paper focused on the investigation of two
and test (unseen data) accuracies are presented in approaches of ECG trace representation and also
the form of a column graph in figure 2. two ways of classification of represented ECG
‘ traces. Previous work had focused mainly on
Table 2: LDA Classification using 3" order AR model using individual ECG features for detection of
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g | = & describing the whole segment of interest as
opposed to extracting features from it. Future
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Key Results: Successful monitoring on offline data from diabetic patients corresponding to sensitivity and specificity of
100% and 91.30% respectively. Production of a rule-based system to represent knowledge on the relationship between
spontaneous nocturnal hypoglycaemia and cardiac arrhythmia.

How does the work advance the state-of-the-art?: By developing a novel automatic hypoglycaemia monitoring method
and providing a better understanding of the relationship between nocturnal hypoglycaemia and cardiac arrhythmia. By
‘verifying and strengthening the hypothesis according to which, hypoglycaemia can be manifested on the ECG signal.

Motivation (problems addressed): Mechanism of Dead in Bed syndrome. Demonstration of relationship between
spontaneous hypoglycaemia and cardiac function. Production of a non-invasive prototype monitoring system for
hypoglycaemia detection and nocturnal death prevention in diabetic patients. .

1 Introduction
Hypoglycaemia is the condition, experienced mostly
by diabetic patients, according to which there is
abnormally low glucose in the blood stream. Severe
nocturnal hypoglycaemia has been implicated in the
sudden death of diabetic patients, especially those of
an early age, commonly known as “Dead in Bed
Syndrome” [1]. The mechanism and cause of such
~ deaths is still not very clear. It is suspected that
deaths were caused by a fatal cardiac arrhythmia. It
has been shown that experimental hypoglycaemia
prolongs the ventricular repolarisation and hence
affects the rythmicity of the heart [2].
The aim of this research is to detect abnormal
Electrocardiogram (ECG) cycles occurring during
hypoglycaemia and through this, to detect the onset
of nocturnal hypoglycaemia indirectly through
analysis of the diabetic’s ECG.

2 Methods
2.1 Data Acquisition
The datasets used consisted of paired ECG-glucose
readings obtained from Type 1 diabetic patients.
Data was recorded overnight at the patient’s own
" home. One-minute of ECG recording was captured
every 15 minutes. Data from 19 patients, recorded
over 32 nights were used to test the system.

2.2 Knowledge-Based .Monitoring System
We have developed a prototype system to interpret
the ECG signals. The system is designed to raise

262

alarms if abnormal cardiac events, related to
hypoglycaemia are detected. The system comprises
an ECG pre-processor, a feature extractor and an
Expert System (ES). The knowledge-base for the ES
is a set of rules generated from observations of ECG
changes under hypoglycaemia, within guidelines

. provnded by clinical experts. The monitoring system

is depicted in Figure 1. .

MONITORING
SYSTEM

RULE BASE

I

Normal ECG
(no alert)

>

\j

&

FEATURE

EXTRACTOR

ECG Featur?

INFERENCE
ENGINE

\—)

Figure 1: ECG Monitoring System

Abnormal ECG
(alert given)

Monitoring is carried out on offline ECG data
simulating an online monitoring scenario. At each
sampling instant the ECG is fed to the pre-
processing stage where a number of filtering steps
are carried out. Next, the filtered ECG is passed to
the feature ‘extraction stage where a number of ECG
features that describe the morphology and duration
of the components of the current ECG cycle are
extracted. The ECG features are then fed to the ES
that infers, using the rule-base, whether they
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correspond to a normal or abnormal ECG cycle. The
system is using ECG features from the current, as
well as previous ECG cycles to make a decision on
whether to raise an alarm or not.

2.3 Assessment of Performance

Two definitions of True-Positives (TP) were used to

assess the performance of the system:

i. Each hypoglycaemic night monitored, was
assessed as TP if hypoglycaemia was detected at
the exact time it occurred during the night.

ii. Each hypoglycaemic night monitored, was
assessed as TP if hypoglycaemia was detected
within an hour from the time it occurred during
the night.

Each hypoglycaemic night monitored was assessed

as False-Negative (FN) if hypoglycaemia was not
* detected, that is no alarm raised. Each euglycaemic
(i.e. normal) night monitored correctly was a True-
Negative (TN) and each euglycaemic night where a
false-alarm was raised was a False-Positive (FP).
After performing monitoring on all nights the
sensitivity and specificity, over all nights, were
calculated by the formulas: :
»  Sensitivity = TP / (TP + FN) (eq" 1)

= Specificity = TN/ (TN + FP) (eq" 2)
Using the two different definitions for TP yields two
pairs of results for sensitivity and specificity.

3 Results

Out of all nights, the system raised only two false-
alarms, for two different nights, which corresponds
to a specificity of 91.3%. The sensitivity was
55.56% if alarms were classed as acceptable, when
they were produced at the exact time corresponding
to the onset of hypoglycaemia (i.e. 1* TP definition).
However, allowing alarms to deviate by up to an
hour, either early or late, from the hypoglycaemic
onset (i.e. 2" TP definition) increased the sensitivity
to 100%.

4 Discussion

The use of a knowledge-based monitoring system
for detection of abnormal ECG traces related to
hypoglycaemia proved to be a very promising
approach. It contributes in strengthening the
assumption according to which, the occurrence of
hypoglycaemia is manifested on the ECG. In all
hypoglycaemic nights, the system raised accurate
alerts within 1 hour of the onset of hypoglycaemia.
Regarding the e uglycaemic nights, there were only
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two nights where a false-alarm was produced by the
system.

In previous approaches we had employed Multi-
Layer Perceptrons (MLP) and Linear Discriminant
Analysis [3, 4] to perform ECG trace classification
related to hypoglycaemia. Using a knowledge-based
approach introduced a few advantages. The
incorporation of human-expert knowledge allowed
the system to focus on the significant ECG changes
and ignore the unrelated ones. MLPs were confused
by unrelated ECG changes and overcoming this
would require very long datasets that were not
available. Regardless of the above, the ES made
better use of the dataset since all the data could be
used to assess performance. In the case of MLP, a
portion ofthe data had to be set aside for training
and only the remaining data could be used for
assessment of performance.

The ES being transparent also allows the
investigation of its internal structure by clinical
experts. On the contrary a trained MLP, being a
black-box model does not allow easy investigation
of its internal structure. A weakness of ES as
compared to MLP is that it requires expert
knowledge and this knowledge must be successfully
coded.

5 Conclusion

This study focused on the design of an Expert
System for overnight monitoring of diabetic patients
and detection of abnormal ECG traces apparent
under hypoglycaemia. Satisfactory performance of
the system was achieved. Future work will involve
further tuning while acquisition of more data for
further investigation will be essential for longer-term
continuation of the research. '
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