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CHAPTER 1

Introduction

1*1 Spline Development

A spline is a simple mechanical device used by draftsmen for
drawing smooth curves. It consists of a slender bar made of wood
or some other flexible material to which weights are attached. The
spline is placed on a sheet of graph paper and constrained by use of
the weights so that it takes the shape of the curve we wish to draw.

The term "spline function" was first used by Schoenberg (1946)
in a paper describing the use of generalised splines and other piece-
wise polynomials to approximate smooth functions of one variable.
The properties of spline functions were in fact employed in a few
isolated instances before this date although no reference was made
to the name itself. Schoenberg's early paper was an important con-
tribution to the use of spline functions but it was not until the
1960's that further work in the field was published.

In recent years spline functions have been used to solve a
wide range of numerical problems. For example Birkhoff and De Boor
(1965) , Curtis and Powell (1967) and Schumaker (1969) have described
methods of interpolating and approximating functions whilst the
numerical solution of ordinary differential equations has been con-
sidered by Bickley (1968), Fyfe (1969) and Albasiny and Hoskins (1969),
Although E1 Tom (1974, 1976) has proposed several spline function
methods for solving integral equations, there has not until recently
been significant work on the numerical solution of partial differen-

tial equations. In 1972 a method using cubic splines for solving



moving boundary problems in heat flow was discussed by Crank and
Gupta (1972), 1In their paper the authors used the spline function
not to obtain general solutions to the problem but to determine the
position of the boundary at each time level.

The general numerical solution of the well known one-dimensional
heat conduction equation was considered by Papamichael and Whiteman

(1973)e A similar method has since been used by Raggett and Wilson
(1974) to obtain solutions to the one-dimensional wave equation.
These last two papers form the basis of the work described in this
thesis.

*e2 Finite Differences

As will be seen in the following chapters we compare our methods
using cubic splines with a well known fully implicit finite difference
approximation. It is therefore useful for us to briefly describe
the development of finite difference methods for the numerical solu-
tion of partial differential equations.

The basic types of partial differential equations, parabolic,
hyperbolic and “liptic, were originally approximated using simple
finite difference methods by Courant, Friedrichs and Lewy (1928).
They also showed that the convergence of these methods depends on
the mesh ratio satisfying certain conditions. This fact was also
proved by von Neumann, who also applied the technique of stability
analysis to a wide variety of problems during the Second World War.
Some of wvon Neumann*e work is discussed in a study of the numerical
solution of partial differential equations by O'Brien, Hyman and
Kaplan (1951)¢ The finite difference approximations we have used

in this thesis are in fact a natural extension of the scheme devised



by von Neumann for the numerical solution of the wave equation.

Since von Neumann’s work on finite differences there have been
many types of schemes proposed, possibly the most well known being that
of Crank and Nicolson (1947). The majority of these schemes use
rectangular grids which have constant step lengths in both the time
and space directions. There are, in fact, very few instances where
unequal step lengths have been used for solving partial differential
equations. Murray and Landis (1959) deformed the grid in the space
direction by compressing or stretching it as an aid to solving
moving boundary problems in heat flow. They considered the problem
where the boundary between a solid region and a liquid region is
moving with time. They then approximated the heat conduction equa-
tion, which describes these practical circumstances, by finite
difference approximations with a constant step length on the solid
side of the boundary and a different constant step length on the
liquid side. This meant a change in the size of the step length
from one side of the boundary to the other.

Moving boundary problems of this type are often referred to
as "Stefan problems" and have also been solved using an alternative
variable step length method due to Douglas and Gallie (1955). 1In
this paper the authors introduced a variable time step length while
keeping the size of the space mesh length fixed. This method is
particularly useful in solving parabolic equations where, with the
increase of time, the solution becomes smoother and smoother. It
is therefore advisable to use a small time step length at the

beginning of the computations and then increase it as time increases.



1.3 Present Work

As suggested in section 1.1 a great number of numerical
problems can now be solved with the aid of spline functions. 1In
chapter 2 we define spline functions in general and derive some
expressions which results from the definition of the cubic spline,
this being the degree of spline function we will use throughout
this thesis. The cubic spline definition and these resulting
expressions are given in detail in Ahlberg, Nilson and Walsh (1967).

It was indicated by Raggett (1974) that the cubic spline
method for solving the one-dimensional wave equation (see Raggett
and Wilson (1974)) could be extended to obtain solutions to more
general hyperbolic partial differential equations. This work is
shown in chapter 3 where, in addition to the splines schemes, we
have derived a well known implicit finite difference approximation
from which we will draw comparisons.

In chapter 4 both the splines scheme and the difference approxi-
mation are developed to cover equations having variable coefficients.
The methods of solution in both this chapter and the previous one
require the Knots for the splines schemes and the mesh points for
the difference schemes to be equally spaced. The extension of the
methods to cover arbiggrily spaced knots and mesh points is given
in chapter 5.

The truncation errors and stability analysis for each of the
constant coefficient and variable coefficient schemes, both using
constant step lengths and variable step lengths, are given in their
respective chapters. Numerical procedures are also described for

obtaining spline solutions at points intermediate to the knots.



These additional solutions are found directly from the spline func-
tion itself. This is found to be a major advantage of the splines
schemes over the more well known finite difference methods.

In chapter 6 several case studies are developed where equa-
tions with both constant and variable coefficients are discussed.
The methods based on both uniformly and arbitrarily spaced knots

are also employed.



CHAPTER 2

Spline Functions

2.1 Definition of a spline function

Consider an interval a £ x £ b and subdivide it into m sub-

intervals by inserting knots at the points x*, x*, ... , where
a = x <X, < ... <x = b 2.1.1)
o 1 m
Then a spline function s(x) of degree n with knots Xor Xqr oo g X

is a function possessing the following two properties.
(1) In each interval x* " £ x £ x* 1 =1,2, ..., m , s(x) is
a polynomial of degree n or less.
(11) S(x) and its derivatives of orders 1,2, ..., n-1 are con-
tinuous .
Thus a spline function is a piece-wise polynomial function satis-
fying certain conditions regarding continuity of the function and
its derivatives. As explained by Greville (1969) when n = o condi-
tion (ii) 1is not operative and a spline function of degree 0 is a
step function. For n>0, a spline function of degree n could
equally well be defined as a function whose nth derivative is a
step function.
2.2 Cubic Splines
Let f(x) be a function with continuous derivatives in the range
a(x < b. Then Six) is a cubic spline interpolating to the func-

tion f(x) at the knots x , x., ... r x 1if
e} 1 m

A

(1) In each interval Xl—I b24

is a cubic polynomial.

—6"



(11) S'(x) and S"(x) are continuous

(iid) S(x.) - £f£(x.) i“@=0,1, ... , m.
1 1

Thus a cubic spline consists of a set of cubic polynomial arcs
joined smoothly end to end. The smoothness consists of continuity
up to the second derivative, but the third derivative will, in
general, have a discontinuity at each of the points x = x.
x—0,1, ... ,m«

If we represent S" (x7j, the second derivative of the cubic
spline at the points x = x*, by M then from Ahlberg, Nilson

and Walsh (1967) we have from the linearity of the second deriva-

tive on the interval | x.» X
i

S"(x) =M ,/X. - X\ + M /X - x. , \ (2.2.1)
i-1' i 1 I izi 1

Vohi) \ hi g

A A

where h” = x* - x Integrating twice and evaluating the constants

of integration, we obtain

S x = Mk—I @k - x) 3 + M.X (x - Xk—1)3 + {f(XX—I) - E{?Mi—l }
oh . 6h, u 6 J
I 1
&l - x)  + ?f(xf - hi2%f\(x - X. ) @ » 1,2, ...,m
2.2.2)
S’ x) = 4%1_f &i - X) + Mk (x - xi_IV#'+ f(xﬁ - f(xi—I)
2h 2h. h.
i I
M. - M., . \h, =1,2, ...,m (2.2.3)
X i-1 11

From (2.2.3) we have the expressions for the one-sided limits of

the derivatives



S (x1 - = h'i M.l_l. + hl ¥, + f(xl) - f(X'i—l') i=1,2, , M)
iy
(2.2.4)
S'<x+ 4) = -h.+1 M. - hi+l Mi+X + f(x1+1)-f(x.) 1=0,1.....
3 6 hi+l
(m=1)) (2.2.5)
From the continuity of S* (x) at the points x = x* (1 * 0,1, ..., m

we can equate (2.2.4) and (2.2.5) thereby obtaining the expression

hi Mi-i + /hi + hi+i'Mi + hi+i Mi+i = f£(*i+i) - £(xi> - £(xi) - f£(xi-i)

6 v 3 j6 hi+l ht
*=1,2, ..., (m-1)) (2.2.6)
Given the function values f (x] (1 =0,1, ...,m) we require two

additional conditions in order to express (2.2.6) in tri-diagonal
form. As shown by Curtis (1970) therearethree choices available

for these two extra conditions, namely

(1) S"(xt) — O (1 = 0,m) (2.2.7)
(1) S'(x.) = f'(x.) (1 = 0,m) (2.2.8)
i 1
(1i1) [sex) - f<x)]x=15 N 1i+Xi)=[s(x) —f (*) ]x=!s (Xi+Xi+i)
i1=1, m-1) (2.2.9)

FEach of these conditions can easily be applied in practice although
the second used by Birkhoff and de Boor (1965), and the third,

used by Curtis and Powell (1967), are most accurate and therefore
most popular. However in the solution of partial differential
equations these additional !end conditions" will be given by the

boundary conditions associated with the problem.



Once the choice of "end conditions" has been decided upon,
substitution of these into (2.2.6) gives a system of (m-1) equa-
tions which are linearly independent, tri-diagonal and diagonally
dominant. They can therefore easily be solved for the values
M.i i1=1,2, ..., m1)), the satisfaction of the "end conditions”
then giving Mg and M". The spline function S(x) can then be
obtained from (2.2.2).

2.3 Multiple Knots

The condition (2.1.1) can be relaxed to the form (see for

example Cox (1975))

= < oo < = 3.
a XOS: X’l sXm b (2.3.1)
If in general the points x” to are such that
X0 0T R 0T e TR 0007 X (2.3.2)

then these coincident knots can be regarded as a single knot of
multiplicity k* 1In a case such as this the spline function S(x)
of degree n has n - k - 1 continuous derivatives instead of the
original n -1 as stated in section 2.1. For example, at a knot
of multiplicity 2 the cubic spline function is itself continuous
but has no continuous derivatives. Similarly, for a cubic spline
which has a multiple knot of degree 3, the function S(x) has a
jump discontinuity and it is therefore of no use to consider knots
of multiplicity which are greater than the degree of the spline
function itself.

2.4 Cubic 3-Splines

The use of B-splines or fundamental splines, for the case of



equally spaced knots, was first introduced by Schoenberg (1946).
These B-splines can be shown to be non-zero only over a small
number of intervals between successive knots.

For the particular case of the cubic B-spline we can define
this as being a cubic spline which is zero everywhere except over
four adjacent intervals between knots. Using the notation
employed in section 2.2 this means that the cubic spline function

with knots x. - x: , X. , X. and XX is zero everywhere in
the range a b4 b except within the interval < x XN,
These cubic B-splines have been shown to be useful for fitting

cubic spline surfaces to general sets of data by Hayes and

Halliday (1974).

-10-



CHAPTER 3

Hyperbolic Partial Differential Equations with Constant Coefficients

3.1 Simple Initial and Boundary Conditions
Suppose that u(x,t) satisfies the second order hyperbolic

partial differential equation

32u = a32u +b 3u+ cu (0 £ x £1, t>0) (3.1.1)
3t2 3x2 8x
where a,b,c are constants and a>0. We consider (3.1.1) to be

subject to the following boundary conditions

u(0,t) =fL(t) ; u @t = £f2 (v (3.1.2)

and initial conditions

u(x,0) =g (® ? 3u (x,0) = g9 (v (3.1.3)
1 3t

where f (t) , f2 (t), g”"x) and g2 (x) are known functions. These
conditions are only of a simple form but, as is shown in section
3.9, they can be of a more general nature and the following methods
of solution will still apply.
3.2 Cubic Spline Finite Difference Scheme

To obtain solutions to (3.1.1) we will initially consider the
interval 0 £ x £ 1 subdivided by equally spaced knots where the
step length between successive knots is h, so that x* = ih
i -0,1, ..., N). We now replace the time derivative in (3.1.1)
by a finite difference approximation and the space derivative by

a cubic spline thus obtaining, at the point (ih,jk)

-11-



U . - 20. + U - = OM. .t 1-20)M. . + OM.
i/9-t i/9 0 i/3+1 a0y gy b (12200M, 1/3+1
k2

+ b | 0L. . + (1-20)L. .+ OL. \
J 1/3-T 1/3 i/3+1f

+ c <0U. + (1-20)0. . + 0U. ...

i/3- i/3 i/9+1

(3.2.1)
(+=20,1, ... , N ; 3j=1,2, ... ;Nh =1
where L, . = S’ (X.) M. .=8S"! (x.) ; S.x® denoting the cubic
i/3 3 1 i/3 3 1 3

. . . .th |
spline interpolating the wvalues Ui/B.on the j time level.
With constant step length h the spline function (2.2.2), for

the jth time line within the interval rx.w X j’, becomes
R

S. =M .o (X.-x) M. . (x=x L) 3Hu. . hoM. |, . -
30 i1y Gy TRIML o b )R Gog o1y B
éh 6h 6 h
L /U . -h2M .\ (xx. ) A=1,2,...N) (3.2.2)

{ #t3 6 10 J --—-

A rst
and thus the continuity of the oooond-derivative of the cubic spline
with equally spaced knots on the j time line gives
1 M.+ 2 M..+1 M...*U. ;- 20, . + U . . (3.2.3)
~1-1,3 71,3 6 1+1,3 i-1,3 1,3 1+1/3
h2
(1= ce.. (N-1))
. . . th . .
This equation also holds on the (J—1) time line
1M + 2 M + 1M . = - 20. ,.. + . .
g i-1,j3-1 y 1l/j-1 y i+1,3-1 Ui—1,3—1 Ul/J—t- U1+1,j—I
h2
(i =1,2, ceey (N-1)) (3.2.4)

-12-



th
)

and on the (j+1 time line

2 + 1M =U - 20

1M + . .« o .+
y 1-1,3+1 y il\il3+1 y  1tL 3+1 i-1, 3+1 1,3+71 U§f1,3+1
h 2

i=1,2, ..., (N-1)) (3.2.5)
We nowwish toform a relationship similar to (3.2.3) incorporating
the firstderivative of the cubic spline. Writing L. 3 = s' (x.),

i, J 1
then (2.2.4) and (2.2.5) respectively become, on the time line
L. .=, (x-) =hM. . .+hM .+0U .-0U .
i»3 31 7 1-1/3°  y  i»3 1/3 1-1/3
6 3 h—————-

i=12, ...N (3.2.6)
L., ,.=23 x,t) = -hM. -h M .+ U.A. .- U.
1/3 3 ( 1 ) vy i,3 y 1+1,3 1+1/3 1/3

i1 =0,1,..., (N-1)) (3.2.7)
From (3.2.6) we have
L. .=h M .+h M .. . +u, . .- _U
1+r,3 g 1/3 "y 1i+1/3 i+l /3 i/3

h

i =0,1, ..., (N-1)) (3.2.8)
and from (3.2.7)
L. ., *=-h M_ ., -h M.. + U,
1-1,3 yi-1,”" 53 'y i,3 1/3 i-1/3

h
@ =12, ..., N) (3.2.9)

To obtain the required relationship, equations (3.2.6) and (3.2.7)
are now added together and the result addedto halfthe sum of

th
(3.2.8) and (3.2.9), thus giving on the j time line

_13_



141,35 © Yie1,9 7 Yi-1,4
2h

L (3.2.10)

Ll

-

.
o=

Gi=1,2, ..., (8-1))

As with the expression for the Mi j values, (3.2.10) also holds on

’

the (j-—l)th time line

Liv1,5-1 % Yi41,9-1 = Yi-1,9-1
2h

o=

. + 2L, . +
2 M-1,3-1 T £ 050
(1 =1,2, ..., (N-1)) (3.2.11)
Crx th . .
and on the (j+l1) time line

141,541 © P340~ Vi1, 941
2h

1L,
6

. + +
i-1,5+1 %‘Li,j+l %—L

(i = 1,2, e ey (N_l)) (3-2.12)

To obtain the finite difference scheme incorporating splines
we now combine the above relationships for the Mi,j and Li,j
values by performing the following operations:-
(1) Equation (3.2.3) is multiplied throughout by a(1-26)
.(ii) Equations (3.2.4) and (3.2.5) are summed and the resulting
equation is multiplied throughout by af.

(iii) Equation (3.2.10) is multiplied throughout by b(1-20)

{iv) Equations (3.2.1l1l) and (3.2.12) are summed and the resulting

equation is multiplied throughout by b0.

The expressions produced in (i) - (iv) are now summed together

giving the following result -

-14-



a@-20/1M. , ,+2H .+ 1M . .
(o " 3™, 7 6 1,3

4 a6ii Mi-1,3-1 + L Mi, 5-1 + | Mi+1.3-1 + | Mi-1,3+1 + | M1, j+1

+ 4 Nifl, 941 )

+ b (1-20) / 1 L. .+ 2L, .+ 1L . L0\
{6 30X'y 6 i41'3 1
R . S T . T S TS, . € M g O 1S S P T

+ | Li+l,J+1

- a(l-29 '"wi-i,i - 20i,3j+ v 1.1 %
h2 J
+ . o . . . T U ..t U - . + U.
30/0; gyamtr T Pyt %, T %t s T Figaer T Ve, me1
h2 h2 1
+ b (1-20 U. . — U. . + b0/ U. . - U. . .
( ) { J+1/3 x——1,3\ J /j i+l, 3-1 x-1,3-1
\Y% Zh 7 \ Zh
* Ui+l,j+1 ~ Ui-1,3+1 ) (3.2c13)
2h
We now eliminate the Mi§ and L. 5 values from the left hand
i,

side of (3.2.13) using (3.2.1). The following three time level

finite difference scheme incorporating splines then results,

(1=3,000s 1 349 + 4(A+0,90, oy + (1705000, 1 5
= 12+ 0 (1200 huy o+ 4{2-0,(1-20)uy o+ {2405(1-20) buy
- (1—e1e)uX_l,3_1 - 4d+e_f)u.i,3.~1. - u—e,je)ux__i_,l,,j,_I 3.2.14)

@=*12 ..., (N-1))

_15_



where O,l = par - 3brk +ck ; 0, = 3ar - ck ? O_7 - 6ar + 3brk + ck?
and the mesh ratio r = k/h.

This difference scheme is implicit in nature and has three
unknown values on the advanced time line t = (j+1)k. It can there-
fore be expressed in the form of a tridiagonal system of equations
and solved using an algorithm based on the Gaussian elimination
process. We will describe the solution of these tri-diagonal

systems in the Twrtwir appendix:**.
3.3 Truncation Error

To obtain the truncation error associated with (3.2.14) we
first rearrange the scheme into the form

(1-619 (Ui-1,3+1 +Vv1l.3j-11 + 4 U + 626) (Ui,j+1 + 0.

11§i)

+ @1 - 039) U )

.. . + U,
i+1,J+1 Ul+l,3—I

(2 + 0. (1-20)>U. .
1 l"

L+ 4(2 - 0=(1-20)>U.
1(3 2

i,J

+ {2 + 0_(1-20)>U .
3 1+1,3

(3.3.1)

We now expand each term of (3.3.1) about the mesh point (ih,jk)
using Taylor series approximations. The following expression,

to fourth order, thus results

-17-



+ 4(1+020) 20. .+ k2 t32u \ + k* / 3*u

ut2/. . 120tV . ..
1,3 1,3
+ d-e30) lu. . +n /3u \ h2 [32u \ +h3/33u\ +n*/ o)
11" \3x /i,7 2fUx2 /. 3T\ 3x3/. . 4*V3xV.
1,3 1,3 1
+k21/320\ +h /33 +ne/ By

3t2/ . ~3x3t2 21 v 3x23t2] . DI aes /. .

i, 3 1,3 i, 3 i, 3
* {2431 (1-26)> U. hi3u\ +h~/32u\ -h*/93u\ + N /3%u }

1,3 3xsi,5 AU 2/ . 3Msx3/ . el
i,3 i, 3

14

+ 4{2—3_2(1—20)} U, J

+{2+" (1-20)} U. h/3u\ +h2/32s \ +h3/33 \ + h* /3*u\
1,3 2' U A .3'Ux2/
il3 j—[3 i,3

(3.3.2)

Since the partial derivatives with respect to t in (3.3.2) are of
even order only we can use (3.1.1) to replace them by partial

derivatives with respect to x. After appropriate rearrangement

_18_
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we obtain the following truncation error for (3.2.14)

kZn2Ic2r2f (0O)u + Zbocr2f (6) 3u
T 3x

+)r2@Rac + b2)£0) - 1 c2k20 1 3fu

1 9x?
i
2abr £(0) - 1bcH®8lii3™u
= >
6 .
jax3
+/a2r2f 0) + 1 _a -1 ch2- 1 ack20{au (3.3.3)
12 72 o £ dx*
where f£(0) = 1 (@ -ck 0) -0 (3.3.4)
12

3.4 Stability Analysis
To examine the stability of (3.2.14) we use the well known
von Neumann method. Initially we replace U. ., by U in (3.2.14)
iid m, n

so as to avoid any conflict between variables and then look at

solutions of (3.2.14) which have the form (see Mitchell (1969))

0 = eim” einX U2 = W (3.4.1)
m,n

where Y is an arbitrary real number and X is a complex parameter
to be determined. Substituting (3.4.1) into (3.2.14) and dividing

by e*tYe*nA, we obtain

(1-70)e'lY (elAte~1A)+4 (1+7Q) (elAte~iA)+ (1-&30) elY (elA+e"1A)

= {2+61 (1-20) }e"1Y+4{2-32 (1-20)} + {243 (1-20) }elY

-19-



Due to the expressions

2Cos A = e + e

and Cos A = 1 - 2S8in2x
2

we can replace (eiA+e iA) in terms of Sin2 A , the result being

2 (1-2Sin2p) J(l—310)e“;Hﬁ4(l+320) + (1-330)elY]

= {243x (1-20) }e"1Y+4{2-32 (1-20)} + {2+33 (1-20) }elY (3.4.2)

If we now replace the factors 3%, 32 and 33 by their full expressions
as given in (3.2.14) and let h and k tend to zero in such a way

as r remains fixed then we obtain

Sin2 A = 3ar2sin2y/2
2 3-2(1-6ar26)Sin2y/2
For stability we require n to be bounded. Therefore A must

be real and hence the condition

O * Sin2 A * 1 (3.4.4)
2

must be satisfied. Substituting (3.4.3) into (3.4.4) and noting

that Sin2y/2 £[0,1] we have

r2 £ {3a(1-40)}1™“1

-20-
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Hence the following conditions governing the stability of (3.2.14)

are obtained

@ 1if 0 z n it is unconditionally stable

) if 0 < \ it 1is stable when

r * (3a(1-40)J"% . (3.4.5)

It should be noted that the stability condition (3.4.5) does
not depend on the coefficients b or c. Fox (1962) indicated that
when solving the general parabolic partial differential equation

3u = a 32u +b 3u+ cu +d (3.4.6)
dc 3x% 3x

where a, b, ¢ and d are functions of x and t only, then it is
reasonable to assume that the presence of the lower order terms,
u and 3u/3x, have no great effect on the stability condition for
a particular finite difference scheme. This assumption is borne
out in two examples given by Richtmyer and Morton (1967). In the
hyperbolic equation (3.1.1) it appears that this conjecture is
also true since the quantities u and 3u/3x are also effectively
multiplied by h and h respectively as was the case in parabolic
equations. However, although the stability condition is practically
unaffected by these lower order terms, it must be noted that they
may require a smaller value of k to be used. For example (see
Richtmyer and Morton (1967), page 195) if a large value of c is
present in (3.1.1) then a small value of k, and hence k2, must

be used to counteract this.
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3.5 Comparison with a well known finite difference scheme

As a comparison to the method incorporating cubic splines,
which was derived in section 3.2, we now consider the well known
implicit finite difference scheme as an approximation to (3.1.1).
This method was described by Mitchell (1969) for the solution of
the wave equation and is easily extended to our more general case,

giving at (ih,jk)

r

U. . .-2u, * ar2fa (u

+u.
1,3-7 71,3 71,341

+(1-2a) (u

+(l—2a)(uj1.+.1 3—u1_T73

+ck2{au. . .+(1l-2a)u. .+au. (3.5.1)
i, 3-1 i, 3 i,3+1

@»1,2, ..., @©N-1) ;3 =12, ... ; Nh = 1)

where r = k/h. Rearranging this into a form similar to (3.2.14)

we have

a(-ar +bhr )u

20—



= jfar2-bhr2 1(1-20t)lu, , .+ {2+(-2ar2+ck2) (1-2d) } u,

+ J *'a’+ bhr2 ) (1-2a) i u. . .
3 | ~20— 1 '3

-ot'-ar2+bhr2 \u. , . ,-{l+ot(2ar2-ck2)} u. . ,-a/-ar2-bhr2 \u. ,, ,
~2— ! '3 x»3-1 1 ~2— I i+1, 3“1
=12, ..., (N-1)). (3.5.2)

The choice of a=0 in (3.5.2) gives rise to the usual explicit
approximation to (3.1.1). Also, as shown by Raggett and Wilson
(1974), when solving the wave equation (a=1, b=c=0 in (3.1.1)) the

approximation (3.2.14) reduces to (3.5.2) when 0 =01+ 1
or2

3.6 Truncation Error and Stability conditions for (3.5.2)
The truncation error for the scheme (3.5.2) 1s obtained in
the same manner as that of (3.3.3) and is seen to be, at (ih,jk)

k2h2;c2r2f(ot)u + Zbcr2f(ct) “u + r2 Rac + b2)f(ct) S2u

| 9% Syt

r 7 f
+i2abr2f @ - 1b [ +)al2r2f@ -1 a (3.6.1)

1 >
1 6j s | 2 j o j
where the function f~is given by (3.3.4)

The nature of the two truncation errors (3.3.3) and (3.6.1)
are very similar, there being a number of like terms when the
parameters « and 0 are chosen equal. The two truncation errors
are 0O (k2h2) and both may be considerably simplified by choosing

the function f to equal zero. Thus from (3.3.4), 0 and a are
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chosen such that

6 = a = 1 (3.6.2)
12 + ck2

Methods of choosing a and 6in order to increase the accuracy of
the two schemes will be discussed in the later chapter covering
case studies.

A detailed von Neumann stability analysis of the scheme
(3.5.2) gives the following conditions for stability:
@ 1f &~ k it is unconditionally stable

) if a < h it is stable when

r * {a(l-4a)}"D . (3.6.3)

In view of the fact that the two truncation errors (3.3.4)
and (3.6.1) are of the same order and that the stability condi-
tions are very alike for both schemes (3.2.14) and (3.5.2), then
both schemes seem equally viable for obtaining the solution to
(3.1.1). Both schemes are three time level and require the evalua-
tion of a tri-diagonal system of equations. It is therefore accept-
able to assume that the computing times for both schemes will be
very comparable. Relative advantages of the two methods will be
discussed in the later case studies although it is clear that an
additional advantage of using the cubic spline scheme is that it
is possible to obtain a spline function from (3.2.2). This can
then be used to obtain solutions at points intermediate to the
mesh points on any particular time line. The procedure for
obtaining these intermediate solutions is included in the following

section.
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3.7 Numerical Procedure

The method for obtaining cubic spline solutions at points
intermediate to mesh points is similar to that given by Raggett
and Wilson (1974) for solving the wave equation. However for
the general hyperbolic partial differential equation (3.1.1),
the procedure is considerably more complicated by the presence
of the L. é’s in (3.2.1). The steps in the numerical procedure

1z

are as follows:

(i) Evaluation of the M.l o i-20,1, ..., N.

4

Using the function value initial condition given in (3.1.3)

equation (3.2.3) with j = 0 gives

(3.7.1)
i“a=1,2 .., @©N-1))
which is a tri-diagonal system with (N-1) equations and (N+1)
unknowns. As indicated in section 2.2 we require two "end condi-
tions" in order to obtain the M. values from (3.7.1). These

i,0

additional conditions are found by putting 6 = 3 =0 in (3.2.1)
and by making use of central difference approximations to represent
the derivative initial condition in (3.1.3). Thus on the boundaries

Xx =0 and x = 1 we have

(3.7.2)

and
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k2 (@l +bL ) = 2 (f,<k)-£,<0)-kg,<1>)-ck2f (0). (3.7.3)
N 7O N 7O m —

Similarly, from (3.2.7)

L —-hM - hM o+ gy ()-g,(0) (3.7.4)

and from (3.2.0)

Ln,o = mn.o +t Vi, o + gi(1l>gi @ i ) (377 '5)
3 6 h—-—————

Equations (3.7.1) - (3.7.5) are (N+3) 1in number and are solvable

for Mi,o ,1=0, 1, ..., N along with Lo,o and LN,O

(i1) Evaluation of the Li o , 1=1,2, ..., (N-1)

’

Averaging (3.2.6) and (3.2.7) gives

L. =h .. .- ML) +U40- .- U, . . 3.7.6
i,3 o 1+l>>3) §+1,3 i-1,3 ( )
2h
i=1,2, o (N-1))
Having obtained M.l o i=20,1, ...,N) in the previous step, we
now put j = 0 in (3.7.6) giving the required values of the 0'sx*

(1ii) Cubic Spline solution on the initial time line.

Using the fb Q values found in step (1) equation (3.2.2) is used

directly to evaluate spline solutions at any point on t = O.

(iv) Mesh point solutions on time line t = k.

Putting j = O in (3.2.14) and using a central difference approxima-

tion to represent the derivative initial condition in (3.1.3)
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gives the set of (N-1) equations

2U -ei6)Ui-1,1 + 8 1+629)ul,1 + 2 (1-639)ui+l,1

= {2 + ei (1-2e)}gl (xi_ 15+ 4{2-e2 (1-20) }gl (x*)

+ {2463 (X-20) }gl (xi+1) + 2k(1-610)g2 (xi 1)

+ 8k (1-826)g2 (x1) + 2k (1-830)g2 (x1+1) . (3.7.7)

=12, ..., N-1))

Since ug ~ = f°(k) and * 2.= *~2" the* these with (3.7.7) give
an easily solvable tri-diagonal system for the unknown mesh points

values U, o i=1,2, ..., (N-1).

’

(v) Evaluation of the M.1 11 ,1-0,1, ..., N.

’

These values are evaluated in a similar manner to the correspon-

ding M1 o values found in step (i). From (3.2.3) with 7 = 1 we

B rt B I T P a7
h2
1=1,2, , (N-1))

As in step (i) we require additional conditions in order to obtain
the required values. These are obtained in a similar manner,

giving the following results

k2 (aM_ .+bL %) (3.7.9)

L, 1P, 1) = £1 O £, () +£. (2Kk) —ck2?

1
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k2 (aMN x+bLN x) = £2 (0)-2£f2 (k)+£2 (2k)-ck2f2 (k) (3.7.10)

(3.7.11)

(3.7.12)

Again we have (N+3) equations which are solved for MXfX

_@=0,1, ...,N), L . and L
M

0fx /AL

(vi) Evaluation of the L_/1 i=1,2 ., (N-1)
1

These values are evaluated in a similar manner to the correspond-
ing LXfO values found in step (ii). Thus equation (3.7.6) is

used with j = 1, the x values required being known from step (v).

(vii) Cubic spline solution on t = k.

As in step (iii) equation (3.2.2) is used directly, with j =1
in this case.

(viii) The General scheme.

A full spline solution over two successive time lines is now
known. Suppose the scheme is fully developed and that solutions
are known along the (j-1)”" and 3th time lines. Then equation

(3.2.14) along with the boundary conditions (3.1.2) constitute
a tri-diagonal system of linear equations which is solvable for

the mesh point wvalues u i=11,2, ..., (N=-1).

1,341
For the evaluation of solutions at points intermediate to

mesh points on the (j+1)**1 time line, the following procedure

is adopted. Using the known values of L, ,, M. ., L. and
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M./. ., 1=0,1, ..., N (3.2.1) gives (N+l) equations in the
1/3F

2 (N+1) unknowns L. i=20,1, ...,N. A further two
1,3+1 1,3+1

equations are obtained from (3.2.7) with i = 0 and from (3.2.6)

with i = N. The remaining (N-1) equations are obtained from (3.7.6)

th
)

now evaluated at the (j+1 time line. Equation (3.2.2) then

give any required intermediate values on this new time line.

3*8 Evaluation of Truncation Errors

To estimate the accuracies of the finite difference formulae
(3.2.14) and (3.5.2) we will obtain numerical values of their
respective truncation errors. The derivative terms within the
truncation errors are evaluated using relevant forward and backward

difference approximations on the boundaries and central difference

approximations for the internal mesh points. For example
S*u \ -1 (@, —4U. . _.+6U. —-4U0. . U J) (3.8.1)
- i+2,3 i+1,3 i/j 1-1/3 1-Z,3
\ Sx /L L b
1/3

and using mean central differences, to avoid having to evaluate

solutions at half-way points between mesh points, we have

93u \ =1 (U. =20, . A20. . UL ). (3.8.2)
- 7 — 7 1+2'3 1+1'3 1-1'3 1-213
3 /. , 2h
i/]
3.9 Derivative Boundary Conditions
The boundary conditions given in (3.1.2) can be generalised

to the form

ax (b)uO,t) + 2 () 3u O,t) = £fx () (3.9.1)
3x
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a,(t)u(l,t) + a,(t) du (1,t) = £ _(t) (3.9.2)
3 4 - 2
ox

where al(t), uz(t), a3(t), a4(t), fl(t), fz(t) are known functions
which are continuous and bounded as t + ®, The implementation
of (3.9.1) and (3.9.2) is reasonably simple and, for convenience,
we will illustrate the procedure for (3.9.1) only. It is usual to
represent the derivative in (3.9.1) by the central difference

approximation giving (see for example Fox (1962) p 248)

\ = fl(t) . (3.9.3)

a. (t)u . +a. (t), U, , - .
1‘ ) 0,3 2 )( i,9 7 %1,5

2h /

' Rearranging to make U_, . the subject of the equation we have

1,3

(t) - ocl(t)uo,j ) (3.9.4)

!

U =u, .- 2h ( £

-1,3 1,3 &_;(—tT

The finite difference scheme (3.2.14) on this boundary is of the -
form

(1-516)0

o1 F ALB,0) 0

41 F 180T S

= {2+81‘1"26’}U-1,j+ a{2-,(1-20) Ju_ . + {2+B3(1—26)}U1'j

¢J

-(1-816)0_1'.

jo1 = 4 (1+f326)uo'j

- (1-539)U1’ (3.9.5)

-1 3-1

By using (3.9.4) we can eliminate the external value U 1,5 from
=d

(3.9.5) giving

{4(1+329) + 2hal(t) (1-816)}U°’j+1 +!2-(31+83)E?Ul'j+1
az(t) L
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=041 2-3, (1-26) | +2ha,1ﬂfe+g,1 (1-20)j 1o, o+ 14+(6]+B.) (1-28)L Y,

~ az (v !

13°
{4(1+8,281 + 2ha']_<t) (1—316) }UO,3._I —{2~ (B‘j_+3'3)0}u’1,3.—1

2hfl () 31 (3.9.6)

Applying this procedure to the other boundary condition (3.9.2) we
can obtain an easily sovable tri-diagonal system of equations on
each time level. This method a:)plies identically to the implicit
scheme (3.5.2) and has been used in a later case study.

When the equation (3.1.1), or the equivalent equation with
variable coefficients, has derivative boundary conditions, then
the truncation error for the scheme under consideration will also

be affected. This is because we have used the central difference

formula
/3u \ = U. .- U. . . =-h2/93 \ + ... 1i=o0,N
~1. . -itiu iii " 77 3
2h 1/3
(3.9.7)
to eliminate the external values U . _. and U .. The third and
-1,3 K+1, 3

higher order derivative terms in (3.9.7) must therefore be included
in the truncation error and due account has been taken of this in

the later case studies.
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It must also be noted that the von Neumann stability analysis
given'in sections 3.4 and 3.6 does not take into account the
boundary conditions. A more rigorous analysis of stability can
be performed by employing the matrix method (see for example
Ames 1969). In this case it is extremely complicated since our
finite difference schemes are three time level and we shall not

attempt to employ it in this thesis.
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CHAPTER 4

Hyperbolic Partial Differential Equations with

Variable Coefficients

4.1 Cubic Spline Finite Difference Scheme

In this case it is required to solwve the equation

3%y = a_'{a(x,t)_a_g 5 (x,£)3u + c(x,t)U (4.1.1)
32 ox | ox x

(O€x€1, t>0)

where a(x,t), b(x,t) and c(x,t) are variable coefficients and
a(x,t)>0 at all points of the solution domain. For ease we will
rewrite (4.1.1) in the form

%u = a(x,t)9%u + (a'(x,t) b (x,t))du + c(x,t)U (4.1.2)
at2 ax? 0%

where the prime denotes partial differentiation with respect to
X. We will consider the initial and boundary conditions associa-
ted with (4.1.2) to be the same as those given in section 3.1 for
the constant coefficients case. This is only for convenience
since the method described for derivative boundary Conditions in
section 3.9 applies equally well here.

If we again replace the time derivative in (4.1.2) by a
finite difference approximation and the space derivatives by a

cubic spline we obtain at (ih, jk)

- =0 6
Us,3-172%,5%% 901 = 3, 42", 5 1,3M,5%°%, 50, 50

k2
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+ P L, . .+(1-20 L JL. .
e(ai,J_l bi,j-l) i,4-1 ( ) (a 1,3 bi,J)LL,J
8@y 5Py, 5000, 541
- 4.1.3
+ eci,j-lui,j—l+(l 26)ci,jUi,j+eci,j+1Ui,j+l (4.1.3)

(i =0,l, o-o,N H j = 112' so e H Nh =1)

where the prime again denotes partial differentiation with respect
to x and the M, .'s and L, .'s are as given for (3.2.1).
i3 1,3

To derive the finite difference scheme incorporating splines
for (4.1.1) we perform the same analysis as for the constant
coefficient case given in section 3.2. We again make use of the

continuity relationships (3.2.3) and (3.2.10) by taking combina-

tions in the following manner -

(i) Equation (3.2.3) is multiplied throughout by a (1-26).

i,3
(ii) Equations (3.2.4) and (3.2.5) are multiplied by ay j-1
14
and a; 41 respectively. The resulting equations are
1

added together and multiplied throughout by ©.
(iii) Equation (3.2.10) is multiplied throughout by (a'i 3 +
14
. 1-20).
bl'J) ( )
(iv) Equations (3.2.11) and (3.2.12) are multiplied by

+ b,

] L
(a b ) and (a i 1,941

i,5-1%4,5-1

The resulting equations are added together and multi-

L5+l ) respectively.

plied throughout by 6.
These expressions are now added together giving the following

equation
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epj__l +(1—2e)pj + epj+1 = e“j-l

+(1-2e)uj + Guj+l (4.1.4)

where pj =a (% Mi-l,j + _.‘_25 Mi,j + % Mi+l,j)
+ ' +b, . 1L, .+ 2L, + 1L, . .
(@ i,j 71,3 (’é" i-1,j 'é’ 1;) '6' i+ll])
= =20, .\t ' . . )7 ~U, .
and Hy ai’j(ui_l'j 2Ul’j+ui+l'3) (a i,3+bi,3)(vi+1,3 U1,
n2 2h
In order to eliminate the Mi j's and Li j's from (4.1.4) we now
4 H4

use (4.1.3) directly and with i

replaced by both (i—li and (i+l).

Following this procedure for the constant coefficients case we

immediately obtained the required finite difference scheme.

In

this case however, use must also be made of Taylor Series expan-

sions such that (4.1.3) can be employed to replace the M's and L's

in (4.1.4) by mesh point values.

We can therefore write (4.1.3),

with i replaced by (i-1), in the form

Yi-1,5-172%-
k2

1,351,941 = e(ai,

.~ha',
v] 1

+(1-26) (ai

2 .
. ,~ha', . .+h%a", |,
J-l ilj-l 2| llj‘
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+8(a', . . - ha" +hn®a" . -n¥av
(é i,j-1 a i,j-1 37 a i,5~-1 3T i,j-1
' 21 3t by

+bilj—l llb ilj-l -}?-rb ll]"'l ‘I‘l—'—b i,j"'l+ b’;“b i,J"l) 1"1' -

+{1-20) .~ha" + h? am - n? aw
1,37 1,3 27 1, 37 1,]
+b, .-hb', +h®b". -n¥b" +n*b™ .|L .
i,] i,J 21 i,J 3’:‘ 1;] i il]) i-1,3

] - " L1} - v
+9(a 1,541788% 441 9— a5+ TR ga

- 210 31 nt Ly ¢
by, 5417y, st 5 DobY ga1” BPYy gapt BPY 3+JZ)L1-1,j+l

ey 1, 5-105-1,9-17 @20 ey U39, 57905 1, 541051, 541

(4.1.5)

where again the primes denote partial derivatives with respect to
x,which are shown to fourth order only. By expanding (4.1.3) with
i replaced by (i+l) in a similar manner we can now use the results
to express (4.1.4) in the form of the following finite difference

scheme at (ih,jk)

¢, . ...-6V,

i-1,5417 %5, 5410 Uiy, g1 49, 5411307y

i, j+l 1,j+l

O, 341075, 5410 Vi, 541

~3(1-20)Y, .}u

_ 2 _ 2
—{2¢i_l’j+k ¢ 1,570 2e)wi'j}u _l'j+4{2¢i'j+k c 1,57Y%, 4

i i,3

+{2¢ +(1- 29)x }

i+1,3 i+l,3 1+l,j
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“O0i1,5-1 7 W, eV, e T 40y 5o 30 5000 50

“0541,9-1 = i, 5-170%41,51

(4.1.6)
(i=1,2, ..., (N=1))
where
= 1-k%0c, . ;Y. . =r%a, . ;U0 .=6Y, .~-B., .
¢i.j i,j erJ i,J wlrj Yl,] 81.3
.= 6Y, . + B, .
xi'J Yl:J Bl,J
= '

and where Bi,j 3rk(a 1,3 + bi,j)'

In deriving (4.1.6) we have neglected some lower order terms
from (4.1.5) and its equivalent expansion. These additional terms
are given in section 4.2 and have been included in the estimate of
the numerical wvalue of the truncation error for case study 5 where

(4.1.6) has been employed.

4.2 Truncation Error and Stability conditions for (4.1.6)

The truncation error for the scheme (4.1.6) is obtained in
the same manner as for the cases with constant coefficients. It
is, however, much more complex and in fact involves some deriva-~
tives of the variable coefficients and also some odd order deriva-
tives of u with respect to t. Thus (4.1.1) cannot be used to
eliminate these latter derivatives and we obtain the truncation

error at (ih,jk)
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-r?0 /6 32c+h?

e +_}§i d%c

o

6 \ at?

ax2ot2 2 ot

) el

9%c +

ox?

h2 ENC)
a y

J

)}

+ -r’-e{ 9%a' + 3% + l‘i( 8"a'+a”b))—kze 3% (223c+k2 3% ) du
ae2 at? 12 Nget ot 3 xpe? 6\ X2 s Ox
+{-r26(§_2_§_+1<_2_ 3%a ) - k26,(2 3%c + n? d*c +;_<_2_§js)
2 12 4 12 2 2n,2 © 4
_ at ot ot 9x“ot ot
- _1_( 2c+h? 3%c+n* a"c) 2%u + -kze(aza- + 3% + g,(a"a-
121 ax? 12 ax* /[ ox? 6 \ae2  ae2 Mgk
+ 2 dami- ptitorts - (250 e n % ) | 2%
st /1 6 3 axerz 30N ¥ 3 5] (gl
+ |- kzﬁ( 32a+}_gf_ d*a >- a_ - k%h%0 (282c +h? 3% + }_ci d'c )
! 2 ;
12 9" 12 g4/ 12 144 at? ax23t2  © ot
- <2c+h232c + h* d%¢ ) 3%u + |- 9(12 3c + k2 3%
144 o2 12 g ) (oo 1 6 3 2
+2n? 3¢ > du + f-gjg_(12c+sk2 d%c + 2k* 3%c + k2n2 3%c ) 52y
atax?/ [ Ot 12 at2 3 ot ax2at?/ | at?
+ _;_gnge(lz 3c +2n? B3¢ +2k? 3%c )} O%u + P2 x 6(12c+8k2 3%c
3 ot 3tax? ae? / [ aed |12 144 A at?
__15_ 3%c +k2%h? 3'c ) %u + J—rze’z(ég__-i-_@p_ )+ ﬁ( 3%a'+3°% )
3 ot ax2at2 /[aer | L N9t 9t/ 3 Ngps gy
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oxot 3

) (2 9%c + 1 (h®4x?) 3¢
2

3 3tdx® /|

L -
e

+1€*(a“aa + 3% ) -k29 ( 23c +k* 3% ¢ +h® 3¢ ) } 3%u

121 oet ot! 6 ox axot’ 3 ax3 3t2ax

+ J-rze(zgéfgi 3%a )4k2 ho/2 3% + 1 (h¥?%) _d'c ) } 3’
| Bt 3,/ 6 | 3 oxat? / | atox?

4—{—k2r2 6(2(_§§L + b )+ x2 ( 2%at + 3% )— x"g (2 d%c

y ot 3t 2 3t3 3t3 18 9tox

- r%0 ( 2a + k% 3%a + 51 d"a )

+ 1 (h%+?) d%c ) 3%u +I
J ae2 12 gt

3 px0t%/ | at%dx |

- k" 6/ 2c+2k? 9%c + k2 d'c + k?n® _3%c )1 3%u
1z 4 at2 & ae* 2 ax?ae?/f ar?ex?

+J’— kze( 2('aa' + b ) + k2 ( 5%a’ + 3% )> - k% h%g ( 2 3%¢
' 9tIx
ots o3 18

(h2+k?) 3*c ) ] o%a o+ .. (4.2.1)
4
3

In addition to this expression from the Taylor series expan-
sion of each term in the scheme (4.1.6), we also have some terms
resulting from the derivation of the scheme itself. These
terms result in the following expression and must be added to

(4.2.1) to give the full truncation error for (4.1.6)
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- + (1- : + 1
k [eaj_l Miy,ger T (20BN, o BB M L

+ 0 + (1-28)C. L, + 0
J 1~

€4-1 Pi-1,3-1 1,5 ¥ %54 b1, 90

+ 0 + (1—26)Dj M + B

Dyi1 M1, 4-1 141,35 T P41 Mida, 0

FOES ) Lyyp,ger b 2OES Ly S F 0B Tin5a
o
(4.2.2)
where
B. = =-ha', ., + hf_ a", |~ Ei. a" |+ E:_ awv |
J llj 2 lIJ 6 lIJ 24 llj
¢, = -ha", . +h?a" h® a®f . -mp', . +h%b", -hp"
J 'J 2 1, 6 IJ IJ 2 lIJ 6 'J
4 v
+h' b
—_— i,
24 J
D. = ha', . +h%®a", . +h%®am . +n* awv |
J i,] 2 i,] 6 1,] 24 1,J
E, = ha", _ +h%®a" _+h%®a™ _+hb' _+h2b" _+hdb" |
J i,] 2 1,3 6 1,3 1) 2 i,3] 3 1,37
+h" bV |
ﬁ i,]

The von Neumann stability condition for (4.1.6) is obtained
by applying the method locally. This is because the method,
which is based on Fourier series, is only applicable to difference

schemes with constant coefficients. If we therefore derive the
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stability condition by considering the coefficients to be con-
stant then it is reasonable to assume that the scheme with
variable coefficients will be stable if the condition obtained is
satisfied at every point in the solution domain. Since the

scheme (4.1.6) reduces to (3.2.14) when the variable coeffi-
cients are considered to be constant then the stability conditions

are naturally the same. Thus for the splines scheme (4.1.06)

(i) if © 2 % it is unconditionally stable

(ii) 4if 6 < % it is stable when r Sf3a(x,t)(l-46)}—%
(4.2.3)

is satisfied independently at each point of the solution domain.

4.3 Comparable Finite Difference Scheme

Again as a comparison to the scheme incorporating splines
we consider the well known finite difference approximation. The
method is analogous to the constant coefficients case described
in section 3.5 in that, at (ih,jk), we consider as an approxima-

tion to (4.1.2) the expression

~2
-2U, .+U, . = aa, , .6°U, .
Ui,j—l 201'3 i, g+l L t i,j-1 xulyj-l
k2 n?

+ (1-2)a, . 8% u, .
1,] X 1,3

+ 0 62,,L
35 .5+1 °x Yi,5+41

}

+1 jo(a 4+b, . )6 U, . .+(1-20)(a'. .+b. . .
= (a i,4-1 bl’J_l) xullj_l (1-20) (a i3 bl;j) xul'J

]
oty s thy sa) 9 U5 g }

contd. ...
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+o.c l+(:l.--20£) c, .U

+
1,9-171, - 1.3%,5 T %494 Y90
(4.3.1)

(1 =0,1;...,N; §J=1,2, ... ; Nh = 1)

2
u, . = . . .. . .
where Ui 1.9 Ui 1,4 2U1,3 *Ui,5
and x V1,5 7 Yie,g T Vel o

Collecting like terms in (4.3.1) and letting r = k/h we have the

tri-diagonal system

¢

{
{—arza. . .+ohr? ra'
2

2 2
+ -ak .
1,410 i,j+l+bi,j+l)}ui-l,j+l+{l 20x%ay s41 ci,j+l}U1,3+l

’

2 _ 2, .
+{ MR T OB (B gt bi,j+l)}ui+l,j+l

5

={(1-20)r%a, .-(l-20)hr?(a', .+b. .)lu. .+J2-2(l—20t)r2a.
i3 B Y B T B G A i
L

2 2 2 )
+ (1~ + - +(]- -+ . A .
(1-20)k“c, i u, . (1-20)r®a, .+(1-20)hr (a i, bi,j)} U 1,9

’ i;3 I 2
2 21 2 2
- + - -
ox ai,j-l ah; (a ',j—l+bi,j-1i$ui_1,j~l {l+2ar a‘,j-l ok ci,j-l

)

2 2,
.y - f +
Yi,5-1 {o‘r 8,31 a%— (3%, 5-1%1,5-1 § Yis1,5-1

(4.3.2)

(1 =12, ..., (N-1))
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4.4 Truncation Error and Stability Conditions for (4.3.2)

In the usual manner we expand each term of (4.3.2) abcut
the mesh point (ih,jk) and thus obtain the expression for the

truncation erroxr

-

k%n? -ar2(32c+k2 d%c )U - Ocrz(l_Bza'+32b+]§_2_ l' 3“a‘+§f_§_" du

\\
/ ox

ae2 12 gyt 92 pe2 12 ot" att

-ozrzigig + }_\iﬁé) 32 +{- 1 (a‘+b) - _l_gz_a( 9%a' + 3%
\oe? 12 at* / ax? ° e ot?  at?

121 ges at" | %3 1212 A\5e2 10 pet ox"

- ocrz(zg_g_ + 5_3_ 3%c ) du —(xﬁ (2c+k2 3%¢c + Ei d*c ) 52u
9t 3 43 ) 0t 2 3?2 12 st

-0 k2r? (280+k3 3%¢ ) _83\1 +{r2 -a k?r? (2c+k232c+}_:_'_'_ d4¢c ) } ?*u

6 8t 3 5p3 / geo 12 24 ot? 12 ot* ot

—arz( 2{3a"' +38p ] + gj[zﬁa' + 3% [ \92u_ -a r2 !2(a'+p)
%t %] 3 | a3 et /e 2 \
+k% [ 9%a'+3%p |+ k2 F3%a' + 3% \‘; 8%u_-a k%r? /2] da + b |
ae2 ot2 | 121 ae% 5et |/ aelox 6\ |9t ot

) o*u -arz(z_a_a_+lc_3__3_ia_) 3%uw - r? (Za
3£30x 0t 3 443/ peox?

+k % 4kt 3%a ) 3w a2 [3a 4+
32 12 atH 3+25x2 6 ot ot
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- !
9%a' + 3% ! ) 9%y ... (4.4.1)

This truncation error (4.4.1), for the fully implicit finite
difference scheme (4.3.2), is slightly simpler than that fox
the scheme incorporating splines. This is due to the fact

that there are no terms such as ¢ etc. in the

i-1,3" %i-1,3-1
finite difference scheme.

The von Neumann stability condition for (4.3.2) is found
by again applying the method locally. Hence by considering the
coefficients to be constant we can obtain the following condi-
tions governing stability.

(1) 4if o > % the scheme is unconditionally stable.

(ii) If a < % the scheme is stable provided
]
r € {a(x,t) (1-40)} ~ (4.4.2)

is satisfied independently at every point in the solu-~
tion domain.
The stability condition (4.4.2) can also be rewritten in

the alternative form
-
r € {max a(x,t) (1-40)} . (4.4.3)
This form is used by Saul'yev (1964) when considering parabolic

equations with variable coefficients and is equally applicable to

the stability condition (4.2.3).



Although our method of obtaining the conditions (4.2.3} aqd
(4.4.2) is not a rigorous proof of stability it is supported by
numerical evidence in the case study 5 where the coefficients are
varying throughout the range 0£x<£l. A more thorough analysis of
stability can be performed using the energy method. It has, in

fact. been shown by Lees (1560} that the finite difference

approximation

2 - { 2 _ 2 2 3
18 %, 5 a(x,t){;_(aaxui'j_lul 20)870; o ¥ aﬁin,jH) &
k 2 f
h }

+bx,t) J 1 8 U . {+eclxt) )}l S U |

2h & 2K -]
+ A(x,t) Ui 3 + e(x,t) (4.4.4)

of the equation

“u = a(x,t)§i2_+b(x,t[§5 + c(x,t) du + di(x,t)U + e(x,t)
at? 9x? 9% ot
(4.4.5)

has the same condition governing unconditional stability as the
equivalent scheme for constant coefficients. The stability condi-
tions for (4.4.4) with constant a,b,c.d and e are the same as
(3.6.3). Unfortunately the energy method used in the Lees paper
gives no information about the conditional stability of the scheme
although this has since been remedied by Friberg (1961). In his
paper, Friberg modified the method used by Lees to examine the
conditional stability of (4.4.4) with b(x,t) = c(x,t) = d(x,t)

= e{x,t) = 0. By constructing a system of first order equations

equivalent to
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9%2u = a Qig where a = a(x,t) (4.4.6)

9t? ox?
he showed that (4.4.4) (with b=c=d=e=0) is stable for a<% when

r? ¢ a(l-40) (4.4.7)

which is identical to the condition (3.6.3) governing stability
of the scheme for constant coefficients. -

These results deribed by Lees and Friberg indicate that the
change from constant coefficients to variable coefficients will
not greatly affect the stability conditions for a particular
shceme provided that they are satisfied at every point in the
solution domain.

4,5 Numerical Procedure and Evaluation of Truncation Errors

The numerical procedure for finding cubic spline solutions
at points intermediate to mesh points for the equation with
variable coefficients (4.1.1) is almost identical to that given
in section 3.7. The only major difference is in deriving the
"end conditions", since the continuity expression (3.2.3) will be
unchanged and thus used in the same manner. As an example, the
"end condition" (3.7.2) on the boundary x=0 will become
kz{ao’OMo,o+(a'o'o+bcpo)Logo} = 2(£; (k)-£, (0)~kg, (0)) - kzco,ofl(o)o

(4.5.1)

Similarly equations (3.7.3), (3.7.9) and (3.7.10) are affected

by the variable coefficients and with the exception of replacing
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(3.2.1) by (4.1.3) in the general scheme, the remaining procedure
is unchanged.

The estimates of the truncation errors (4.4.1), for the
implicit scheme, and (4.2.1) plus (4.2.2) for the splines echeme
are obtained using the method outlined in section 3.8. In this
case, however we have to evaluate the derivatives of the wvariable
coefficients with respect to both x and t and also some mixed
derivatives of the coefficient c(x,t). This is easily done using
difference approximations similar to (3.8.1) provided the variables
a(x,t) ,b(x,t) and c(x,t) are sufficiently differentiable. Assuming
this is so, then it can be seen that the truncation errors (4.2.1)
and (4.4.1) are both O(k?’hz) as was the case for the equivalent
schemes with constant coefficients. The expression (4.2.2) which
is added to (4.2.1) to give the full truncation error for the
scheme (4.1.6), is O(kzh) although in practice it should be noted
that the numerical values of these truncation errors will greatly
depend on the actual values of a, b and c.

When obtaining an estimats of the truncation error for the
splines scheme (4.1.6) we must first use the numerical procedure to
find values for the M's and L's since these are required in (4.2.2)
This might be thought cf as a disadvantage in that it requires more
calculations to obtain the full truncation error but since we will
use the numerical procedure to find solutions at points intermediate

to mesh points then little extra work is required.
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4.6 Singularities in the variable coefficients

It is sometimes the case that one or more of the variable
coefficients a(x,t), b(x,t) or c(x,t) will have a singularity at
& point in the range O € x € 1. This problem is best discussed
using an example due to Collatz (1966), where the equation under
consideration is given by (4.1.1) with a(x,t) = 1, b(x,t) = 1/x
and c(x,t) = 0. In this case finite difference approximations
require special consideration at the singular point x = 0. One

method is to employ L' Hospitai's rule, which in this case gives

lim  Ju/dx = lim 9%u/dx? = [ 5%u )
x>0 ble x>0 1 ‘ 2
\ ox <=0
(4.6.1)
whereby the differential equation becomes at x=0
2 3%u =3% (4.6.2)

ax?  at?

A finite difference sCheme can now be used to approximate (4.6.2)
and hence the problem has been removed. In a similar manner other
singularities occuring in (4.1.1) can be dealt with and the schemes
(4.1.6) and (4.3.2) modified to give the required solutions. The
equation under consideration in case study 5 does in fact have a
singularity at x=2 since the coefficient b(x,t) = 2(x—2)—l.
Fortunately this poses no problem in this instance since the equa-
tion (4.1.1) has only been considered in the range O € x £ 1.

Using L'Hospital's rule is only one method of dealing with
singularities of this form. We will return to this problem in the

next chapter where the altarnative method of mesh refinement is

discussed.
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CHAPTER 5

Unequal Step Lengths

5.1 General Considerations °

As indicated in section 2.2 the knots x, (i = 0,1,...,N) need

i
not necessarily be equally spaced in the range a € x € b. The
distance between successive knots given by

'hi = Xi - xi_l (i = 1,2,...,N) (5.1.1)

is chosen as the cons;anf valqe h in chapters 3 and 4 simply because
it is usual in deriving finite differencevapproximations to have a
constant step length. As will be shown in tﬁis chaptef both the
’well known finite difference scheme and the scheme incorporating
splines can be generalised to the case of non-uniform step lengths.
Before deriving these latter schemeé it is convenient to first
consider the relative merits of employing a variable mesh; the main
advantage of this over the constant step length schemes being
obtained when the initial function g, (x), as given in (3.1.3) is

of the form illustrated in Fig. 1.

3‘t?31
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Here, as suggested by Saul'yev (1964), we would use a smaller step
length h in the first third of the interval [O,l] than in the
remaining two thirds. This is because the function is varying
rapidly in the first third of the interval and hence more solution
values are required. The alternative to using variable step lengths
in this case, is to employ a very small constant step length through-
out the range [0,1] and thﬁs cbtain the required solutions. This

is very uneconomical with regard to computing time since the number
of arithmetical operations is greatly increased and thus a.Vaxiabie
step length scheme is desirable.

The major disadvantage of using a non-uniform mesh to solve
partial differential equation is that the schenes produced are
rather more complex and are also likely to have a larger error.

The reason for this is that there are errors associated with all
finite difference approximations which usually depend on the siée of
the step length h. If we therefore inﬁrease h in one portion of

the réhge‘so as to decrease it in another than the order of the
error will still depend on the larger step length used. This ié
also the case in the finite difference schemes incorporating splines
since the spline function is, by definition, a piecewiée polynomial
in each of the intervals between successive knots. If we therefore -
increase the distance between knots in one part of the range then

we would naturally expect the truncation error to be'large in that
vicinity. We have found that this can be counteracted to some
extent in our schemes by choosing the parameters o and 0 to eliminate
some terms in the truncation errors. This technique is discussed

in section 5.5 where we use varying values of & and 0.
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An additional advantage of employing schemes with unequal mesh
lengths may occur when the equation (4.1.1) has a singularity in
one of the variable coefficients. As indicated by Ames (1969), a
very common method of dealing with this type of problem is to
attempt to diminish the effect of the singularity by refining the
mesh in the region where it occurs. Thus by reducing the size of .
the step length around the singularity we minimize the ‘area of
infection' it causes. If we were solving a problem of this type
using- either of the constant step lencth schemes (4.1.6) or (4.3.2)
we would have to reduce the size of the mesh throughout the whole
range O € x € 1. This is again:very uneconomical with regards . to
computing time, particularly when a large amount of solutions are
not required in the x direction. It would therefore be useful if
we had a scheme with variable step lengths where we could use small
mesh widths around the -singularity and larger mesh widths in the
remainder of the range. -

5.2 Cubic Spline Finite Difference Approximation to (3.1l.1)

Recalling the results of Ahlberg, Nilson and Walsh (1967),
outlined in section 2.2, we can show that equation (2.2.6) becomes

on the'jth time line.

By Mg,y * By P Mg g My
6 3 "6
e O T R Sy U e V0 A £ Ut 1 U
by ha
(i = 1,210'00'(N-l))' . (5.2-1)
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where h, is as given in'(s.l.l). Similarly (5.2.1) also holds on
the (j--l)'th and (j+l)'th time lines, these three equations being
equivalent to (3.2.3),(3.2.4) and (3.2.5) for the case of constant
'smplamﬂm. |

To ﬁbtain the expressions corresponding to (3.2.19) we first
multiply (2.2.4) and (2.2.5) by h, and h, , respectively thus

obtaining on the«jth time line

_n? h? '
h, L ioM0L+ oy 4 - (5.2.2
i ij —6—- i l,] -3 i,3 i,3 Ui“lrj ( )
] = -h% M . -ph2 _ o _
hiv Ty ,4 Shia Mo Myt Y,y o Y,y 50293

3 6

These equations are now added together giving

_ .2 : 2 _
(hythga)By,q =By My, gti-ng M - B Mia1,9%0a, 5701, 5

6 | 3 6
(5.2.4)

Replécing i by (i+l) and (i-1) in (5.2.2) and (5.2.3) respectively

= h2 2 _
By+Bie1,9 = B M5t Pia M, 37 %, 7 %y (5.2.5)
6 T3 .
; _’2 -2 _ ’
i"11‘5.-1,j S My, MMty Y,y (5.2.6)
3 6

aAdding these equations together we obtain the expression

‘ 2 2 2
hiLi—l,j+hi+lLi+1,j =y Mg,y t Bias LN i P, 5

3 6 3

U1, = Yim1,q ° (5.2.7)

The final expression corresponding to the constant step lengths
equation (3.2.10) is obtained by adding (5.2.4) to half of (5.2.7)

thus giving the required result

-52-



By Lo,y PR By 5 Y B Biag

6 . 3 6
o 2 a2 o
= by -hi )M 5t Y57 Yy (5.2.8)
12 2

As in all previous cases (5.2.8) again holds on the (j-l)th and
(j+1)th time lines. Thus by following the steps given in

section 3.2 we take combinati§ns §f (5.2.1) and (5.2.8) in such

a way as to eliminate the majority of the M's and L‘s.using

(3.2.1). Unfortunately in this case, we have no way of elimina-
ting the terms in Mi,j' Mi,j-l and Mi,j+l resulting from

(5.2.8) and they therefibre appear in the following finite difference

scheme

'v‘?1‘719)U151,j+1*2(1+X19’Ui,j+1+‘81‘wie’ui+1,j+1

2
+ bk~ (b, . -h,) (6N, i,5- 1*‘1'26""1,3-*9“

5 A+l 1,441

={2¢1+Yi(1'29’}01-1,3*2{2'X1‘1'29)}Ui,j+{26i+wi‘l'2°’}U1+1,j

a7 FOOL AR e, L A e e L L A Y (5.2.9)

(i=1,2, ..., (N-1))

vwhere
Yy T Gary - Ihy s+ ehhyas
X; = 6ay - ck?,
wi = 6asi + 3bh r, + ch, hi+l i
T M r By = hyy
h, +h by + gy
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and the mesh ratiqfri, si and))i are given by

r, = k2 P8 = k2 Py S k2
hy (hy+h, ) by thythy ) 2hihy

Due to the presence of the M's in (5.2.9) we cannot calculate
solutions of (3.1.1) in the usual manner common to most finite
difference approximations. Assuming the scheme (5.2.9) is fully
developed in that mesh point solutions on the (j-—l)th and jth
time lines are known, then we must cbviously determine the M
values on both these and also the advanced time line (j+l) before
further solutions can be found. To overcome this problem we use
a numerical procedure, similar to that given in section 3.7, at
each stage of the computation. Thus by following the steps given
below (5.2.9) can be used to obtain the required solutions to
(3.1.1):

(1) Putting 6=0 in (5.2.9) and by making use of the deriva-

tive initial condition in (3.1.3) we have

2 -
205U,y ,1+H40; 1 %2805 g 10K (hy R,
2

= (2¢i+yi)Ui_l'o+2(2-xi)Ui’°+(281fwi)ui+l'o

+2k¢igz(xi_l)+4kg2(xi)+2kBigz(xi+l) (5.2.10)

(ii) To evaluate Mi ° (i =0,1,...,N) we follow the procedure
14
given in step (i) of section 3.7, where (3.7.2) and
(3.7.3) will be unchanged and where the equations (3.7.1),

{(3.7.4) and (3.7.5) will be replaced respectively by
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By Mgt By My o+ B Mo
6 3 76
=9y (xy4g) = Bty )0, (%) + By, 08 y)
i
(5.2.11)
(i=1,2,...,(N-1))
Lo = ~ El_Mo,o - El_Ml,o + gl(h)—gl(o) (5.2.12)
3 6 h,
1
LN,O = E_ MN,O + E__MN-I,O + gl(l)—gl(xN_l) (5.2.13)
3 6 h

N

As in section 3.7 the values Lo o

14

and LN o will also result from
14

these equations.

‘(1ii) The remaining L values (i = 1,2, ...,(N-1)) are again

i,o
obtained by averaging (2.2.4) and (2.2.5), thus giving

on the jth time line

Li,g =0y Mg 5t B Bi) My 5B Mg
12 6 12
030,57 B ) B Y, (5.2.14)
by

(i =1,2,...(N-1))

(iv) Having found M (i =0,1,...,N) we can now proceed with

i,o
the solution of the tri-diagonal system (5.2.10) in the
usual manner, This results in our obtaining the required

mesh point solutions Ui 1 (i =0,1, ...,N).

?
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These solutions are now used in finding Mi~1 (i =0,1,...,N)
~ L4

by the method given in step (v) of the section 3.7. Again only

the equations (3.7.8), (3.7.1l1) and (3.7.12) are affected by the

change from constant to variable step lengths and hence the

required Mi 1 values are easily found.
r

Using equation (5.2.14) the values L (1 =0,1,...,N) are

i1

also found at this stage.

(v)

(vi)

Since we have now determined Mi,o' Mi,l' Li,o‘and Li,l

(i =0,1,...,N) we can hence develop the general scheme

for obtaining Mi, and subsequently Ui,j+1 for

j+1
j=1,2, ... . We do this using a simple iterative

process, beginning with an initial approximation
(0)

Mi,j+l , to Mi,j+l' given by
G ~ L
Mygen = By g oMy 5 =00 g = 12,

(5.2.15)
Substituting (5.2.15) into the scheme (5.2.9) we thereby
reduce it to an ordinary finite difference formula which
is easily solvable for initial approximations to Ui,j+l'
(0)

which we denote by Ui,j+l'

Suppose now that the iterative process is fully developed
and that we wish to obtain improved approximations to

M This is done by reconsidering (5.2.1) which, on

i,5+1°
. (n+1) .

denoting the improved values by Mi J4+1° can be written in
L4

the form

(n+l) (n+l) (n+l)

by My qe1 TRy ) M S YD Mg

6 3 6

=nu® o U™ o) (5.2.16)

239541, 5417 Bi407Y% 3010 V%i-1 941 0

by M
(i = 1,2,...,(N-1))
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As the values on the right-hand-side of (5.2.16) are known
then this system is (N-1l) equations in (N+1l) unknowns.

The two additional equations required to express (5.2.16)
in tri-diagonal form are obtained by firstly letting i=O
and i=N in (3.2.1). This introduces two édditional
unknowns Lo,j+l and LN,j+l which we can eliminate using
the continuity expressions (see (2.2.4) and (2.2.5))

L (5.2.17)

1,9 = P, PiaMie, 50,570, 4
3 3 h,
i+l

(i = olll°"‘l(N_l))

iy~ ﬁ_“i—l,j + E_l_ My 5+ U0 57U,y (5.2.18)
6 3 h,

(t=1,2,...,N)
Thus by substituting for Lo,j+1 and LN,j+l the two addi-

tional equations become

(n+1) (n+1)
(ae'l_’l_‘_l_e )Mo,j+1 - i’f_l_e My, 541
3 6
=U -20 +U(n) - a{6M + (1-20)M_ .}
0,3-1"°%0,5" "0,§+1 0,3-1 0,3
k2
. | (@ () |
-b{GLol j_l+(1-26) Lo, j+e(ul' 5417 Y%, § +1)}
ny
_ - (n)
¢{6U0'1f1+(1 26):10'j + euo;j+1} (5.2.19)
and
(n+l) : (n+1)
(a8+ph @ity Sy POMy1 5n
3 6

contd. ...

-57~



=u , -2u ol iGMN L HA-200M jl

N,J N,J+l J
k2

..{n) (n) .
_b{BLN'j_1+(l-29)LN'j+ e(uﬁ,j+l_UN-l,j+l):}

Py

(n)
-c{ euN'j_1+(1—2e)u 50 N,3+1} , (5.2.20)

Equations (5.2.16), (5.2.19) and (5.2.20) form an easily

solvable tri-diagonal system from which we obtain the

(n+l)

improved approximations M i, 9410

(n+l)
i’j"'l

in the finite difference scheme (5.2.9), which in itera-

(vii) The values M as obtained from (vi) are now used

tive notation, is

(n+1y (n+l) (n+1)
(@;-¥30)U; 3 5aa ¥ X0y iy +(B39;0005 41 50

+ bk? (h, )

-h,) (6M
> i+l i

(n+l)
i'j_l-o-(l--ZB)Mi'j+BM

i,j+1

={2¢i+yi(l—26)}Ui_l'j+2{2—xi(l—26)}Ui'j+{281+wi(l-29)}Ui+1,j

—(¢i-Yie)Ui—l,j-l~2(1+Xie)ui,j-l-(Bi-wie)ui+l,j-l .

(i = ll21 o-'l(N"l)) (5.2.21)

Thus by solving (5.2.21) we obtain improved approxima-

{n+1)

tions to U, . which we have denoted by Ui,j+l'

i,5+1

(n+l)
i,j+1

examining numerical values of the inequality

(viii) A test is now performed on these U values by
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| Ui(.n;ﬁ. - U:{n)3+1l <€ G =1,2, ...,01) (5.2,22)

for some fixed tolerancef . ,
. (n+1)
If (5.2.22) is satisfied for all i then Ui j41 are taken
’ .
as the required mesh point solutions. However, if (5.2.22)
(n+l)

is violated then the U,

1,541 values must be re-employed in

(5.2.16) before proceeding as before.

This iterative process might seem a rather uneconomical
method of solution when compared with the simpler finite
difference scheme described in the next section. Fortunately

“ the M and L values which we have found in the process of

" evaluating the mesh point solutions are also of further use.
As mentioned earlier, a major advantage of the splines schemes
is that by making use of the spline funcﬁion (2.2.2) we can
easily obtain solutions at points intermediate to those at
mesh points. This is done in the constant step length case
by following the numerical procedure described in section
3.7. In this variable step length case however the numer;gal
procedure is incorporated into finding the mesh point solu-
tions and thus there is little extra computation required

when intermediate solutions are to be obtained.

5.3 Finite Difference Approximation to (3.1.1)

141, and Ui-l,j by the well known Taylor series

Expanding U
expansions we find

= 4 b 2 2
%ﬂd ULj+%ﬂ\?) +%ﬂ(3u) + ...
x /. . 2
i,j 2! 9x

i.3

(5.3.1)

+h2.(32u) - ... (5.3.2)
i
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where h, is as given in (5.1.1). Mﬁltié]ying the equations (5.3.1)

and (5.3.2}) by hi and hi+l respectivély we cbtain, cn addition of

the results, the_followihg expression

2 o= - (] .
. (a :) =200, =(hthy )0, Ty ) O . (5.3.3)
ox ~
i,3 hybypy (Bt 4y)

Here we are assuming that the mesh lengths are such that

h = O(hl) = O(hz) R O(hN) . (5.3.4)

As was mentioned earlier, the use of variable step lengths in
approximating derivatives is likely to Yield errors of a larger
order of magnitude than for the comparable approximaticns: with
constant #tep lengths. This is borne out by the error of O(h) in
(5.3.3) when we know that for the equivalent approximation using
cénstant steps the error is o(hz).

This problem also has to be considered for the similar finite
difference approximation to aulax. In this case the constant
step length approximation has an error O(hz) and by multiplying

2 2

(5.3.1) and (5.3.2) respectively by hi and hi+l

error can be kept of the same order. We thus cbtain the following

we find that the

expression

= h2 - (w22 “h2 2
(a“) BUi41,9 = By PiadY 5 " RigUiog,g Y OBD.

x
i.3 hjhy gy (y+hy )

" (5.3.5)
The approximations (5.3.3) and (5.3.5) are now used to replace
the derivatives in (3.1.1). After suitable re-arrangement of the

terms these substitutions result in the finite difference scheme
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r,)u, +(1+4aov, +2bav, (h,-h, ., )-0ck?)U

(-2a0x, +boh -1,9+1 f 1 BBy i,j+1

i inti

+ (-2aas - boh, 81)01+1,3+l

~—{2a(1-2a)r ~b(1-20)h. i+ r. }u

153 i-l,j

- - - 3 2 -
+{2-4a(1 2a)vi 2b(1 2a)vi(hi hi+f+ck (1 Za)}Ui'J

+{2a(l—2a)si+b(1-2a)hisi}Ui+l,j

2
- (_zaari"'bahiﬂrz)ul 1,5-1 (1+4aav +2bav (h h ) -ack )U -1

=-(~2als —bah s.)U, (i=1,2, ..., (N-1)) 15,3.6)

i i’7i+1,3-1
where
r, = k2 r 8y = k2 B P x?
h; (hy+hy ) hy 1 (B0 ) 2n; By
(5.3.7)

5.4 Truncation Errors and Stability Conditions

Using the Taylor series expansions (5.3.1) and (5.3.2) we

can easily obtain the following truncation errors

k’[ezsz(e)u+{2bck2f(e)+ 1 c*k®Bh;-h,, )} du
3 ax

2 2 _ 2ay 27,.2a1.3_1.3 2
+{k? (2ac#b?) £(8)+ 1 b(hy~h, ) (1+ck?0)- 1 c®k?6hj+n] , | 3’u
s > mpgmg
i7i+l

8 B\ g,

2 2 _ 2y _ b_p b
+{2abk £@)+ 1 k e(hih )(2ac+3b )- 1 c(hih +l)
i +1

20 11,3433 3 2 2
- é_ bck“6 hj+h/ l\ 3°u +{a k“£(0)+s abk 9(hi hy o)
h +h

i+1/
3,3 o2 4_y b 5,.5 - 4
+1 aghd+d |\ (-20k%0)+ 1 byhd-h! ¢ 1 c/hS+ns, | 3w
17 (2 4 () 7 (2 )

h;+hy hy+hy hythyn

(5.4.1)
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for the scheme (5.2.9) incorporating splines and

kzF:Zsz(a)U+2b¢2f(a) du + k2 (2ac+b?) £(a) 3%u
9x 2
- ax

2 _ - 3
+ {2abk®f(@)+ 1 a (h;-h, )= 1 bhh, .} 3%
3 6 5xd

L 24 h,+h, ox*

2,2 o - 3,33 N '
+{a k“f(a)+ Lbhihi+l(hi hi+l) % a(hi+hi+1 ) } 3'u ]
i 714l ,

(5.4.2)

for the fully implicit finite difference scheme (5.3.6). In both
these expressions £(8) and £(Q) are as given by (3.3.4).

Due to the variable step lengths in the x direction the
usual von Neumann stability analysis cannot be employed on either
of the schemes (5.2.9) or (5.3.6). This is because the procedure
depends on letting the step lengths tend to zero in such a way that
the mesh ratio remains fixed. Since in this case, at each mesh
point, the mesh ratios depends on two different step lengths hi
and'hi+l then we would have to let hi and hi+l tend to zero at
the same rate.

As the two schemes (5.2.9) and (5.3.6) naturally reduce to
the equivalent approximations for constant step lengths when
hi = hi+l' then it is very likely that the stability conditions
will be similar to (3.4.5) and (3.6.3). We have in fact, found
by numerical examples, that for values of O and 6 greater than or
equal to % then the schemes (5.2.9) and (5.3.6) are always stable.
In addition we have discovered that values of a,8 and r which
gave stable solutions for the constant step length case do like-
wise for problems employing a variable mesh when the mesh ratio

r is taken as kzlmin{hih }. Using the notation as given in

i+l
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Saul'yev (1964) we can therefore express the stability conditions
in tﬁe following algebraic form
(a) for the scheme incorporating splines (5.2.9)

(1) if ©6 2 % it is unconditionally stable.

(ii) if 6 < 4 it is stable provided

k2 < 1
min{hihi+1} 3a(1-40) (5.4.3)

(b) for the finite difference scheme (5.3.6)
(i) if o 2 % it is unconditionally stable

(ii) 4if o < % it is stable provided

k? 1 . (5.4.4)
mln{hihi+l} a(1l-4qa)

In the following chapter on numerical case studies we use values

of a, 9, k, hi and hi+ which either satisfy or violate the

1
above stability conditions.

5.5. Difference Schemes with variable 0 and 0.

In certain simpler problems with constant coefficients the
truncation errors for the schemes (3.2.14) and (3.5.2) can be
reduced to simpler forms by choosing ¢ and O to eliminate some
of the terms. This unfortunately is not so simple when the
mesh lengths are varying in the x direction since we require a
different value of O or 6 to eliminate these terms at each mesh
point. If we are therefore to simplify the truncation error and
reduce it a lower order of magnitude we must derive difference
schemes comparable to (5.2.9) and (5.3.6) with variable values
of a and 9.

For the fully implicit finite difference scheme this is

simply done by replacing O by ai in the initial approximation
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to (3.1.1) as follows .

- = 3 2 - 2., 2
U,3-17%Y% 5% 91 T 2 “i(-a—l’-) *a 2“1)(3—&) “i(—a—g)
ax? ax2/, ax?

2 i,3-1 i3 i3+
+b{ai(g_§) +(1-20,) (_g%) *o, (g_:)

{ i,3-1 i,3 /1,341

[ ]
+°1fi”i,j-l*‘l'zai)ui,j+“iui,j+1 I

(i =12, ..., (N-1)) (5.5.1)
where azu'ax2 and 8u|ax are respectively given by (5.3.3) and
(5.3.5). As would be expected this results in the scheme (5.3.6)
with o replaced by ai.

If we adopt this procedure for the finite difference scheme
incorporating splines we are unable to eliminate the Mi,j and
Li,j values which result from following the steps in section 3.2.
However since the nine-point formula (5.2.9) is applied indepen-
dently at each of the mesh points (ih,jk) we can use a different
value of the parameter § at each of these points. This simply
means we replace 6 by ei in (5.2.9) and thus the method of obtain-
ing solutions will be as given in the iterative procedure described
in steps (i) ~ (viii) of this section.

The truncation errors for these new schemes will be the same
as (5.4.1) and (5.4.2) again with 6 and o replaced by 6i and O v
respectively. To illustrate the usefulness of the variable 6

and o schemes consider solving the wave equation using (5.2.9).

The truncation error for this scheme becomes, on setting a=1,

b=c=0,
k?Jx23f1 -8} +1 h3+h3 o%u . (5.5.2)
12 12 (u&) —";
By /o
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With the exception of letting 6= 1/12'We”cannot'simplify‘this
expression any further. If we now consider using the variable
6 extension of (5.2.9) then the truncation error (5.5.2) will
be unchanged except for © being replaced byiei. This whole

expression ((5.2.9) with 6=61) can now be eliminated”b§ choosing

3413 '
1+ ndaml | (5.5.3)

=
L kZ(hg+h, 00 )

By using values of Gi given by (5.5.3) we will have no contribu-
tion to the truncation error from the 4th order term andee there-
foré need only consider lower order terms. This ptécess is eéual ly
vapplicable to the ordinary finite differehéé approximation and is
discussed again in the following chapter.

Unfortunately it is sometimes the case that the value of ai
or 9i which eliminates a derivative term:: also‘givés unstable
solutions when it is used in the particular”scheme‘géncerned. We

must therefore ensure that the parameters 0, and Bi'always satisfy

fl
the stability conditions (5.4.4) and (5.4.3), respectively, where

o and 6 are again replaced by o, and ei.

i

5.6 Eguations with Variable Coefficients

The use of upeqﬁal step lengths can also be adapted ﬁb'the
solution of equations with varying coefficients. The method of
obtaining both the finite difference scheme incorporatintiégiines
and the fully implicit finite difference apprbximation i§>éimply
a combination of the procedures described in chapter 4-and sections

2 and 3 of this chapter.
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For the scheme incorporating splines we thus obtain the

tri-diagonal approximation to (4.1.1) at (ih,jk)

)6} U

{B (GS a i+1,341

+3h, iT4P

i,j+1 3+l 1hi+l i 1+l j+1

+2{1+(6v,a -k2c, )6} U

i i,3+l i, j+vl i, j+1

+{¢ -(6x;a 3h h.,h, .s.c )e}u

1,341 P141%1P5+1 454151 %0 41,5417 9050, 50

+h.h ) (1-20)} v,

={28;+(6s;a; ;#30;x,p #hihy iTici,) g 141,73

— —2 -
+ 2{2 (eviai'j k ci'j)(l 20) } v

J1-20)} u

-3h 1P1415:%-1,5 i-1,3

+{2¢i+(6ria. 5405 +h

i,3 714174

y8}u

~18;-(Bs;ay 5y TyPy PiP34%1%00, 312 0, 501

-2{ 1+(6v,a

12
123, 3-1 k ci'j_l)e}u

i,3-1

p. .+h ,h, .s.c y6}u,

~{9,-(6x,a, §-14141%3% -1, 5-1" P V441, -1

i'i,5- 1 1+l i

2 -
- g__{h e )[epJ My, 4oyt @200, j+9pj+lMi'j+l} (5.6.1)

(i=12, ...,(8-1))
where Bi' ¢i, ris s and vi are as given for (5.2.9) and
= ' +
Py = a'y 3+Pi 5 (5.6.2)

Due to the Mi 541 term in (5.6.1) we must again use the itera-
’

tive procedure described in section 5.2.
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A similar approximation to (4.1.1) can élso be dérived for
the fully implicit finite scheme. This is again easier to use in
practice\since no iterative procedure is necessary.

As was found previouslyv, the von Neumann method for
examining stabiiity can not be applied directly to schemes having
either variable coefficients or unegual step lengths. However,
as was the case for these earlier equations, the von Neumann
stability analysis can be applied locally to give the following
conditions:

For the scheme incorporating splines
(1) provided 6 2 % it is unconditionally stable and
(11) 4if O < 4 it is stable when

k2 < 1 . (5.6.3)
minih.h, .7} - .
min hihi+1 3a(x,t) (1-498)

Similarly for the implicit finite difference approximation
(i) if o 3 % it is unconditionally stable and

(ii) if a < % it is stable provided

k2 < 1 . (5.6.4)
minlh.h, _J a(x,t) (1-40;
min hihi+l a(x,t) (1-4a)

The conditions (5.6.3) and (5.6.4) must again be satisfied inde-

pendently at each point of the solution domain.
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CHAPTER 6

Case Studies

6.1 Case Study 1

As an illustration of the constant coefficient methods we
shall consider the well-known wave equation ((3.1.1) with a=l,

b=c=0)

%u = 3% (0£x<1, t>0) (6.1.1)
at? ax?

together with the initial conditions

u(x,0) = Sinmx ; Ju (x,0) = O (6.1.2)

ok

and the boundary conditions

u(o,t) = Uu(1,t) =0 ' (6.1.3)

(a) Uniform step lengths

Numerical solutions to this problem have been found using
both the finite difference scheme incorporating splines (3.2.14)
and the fully implicit finite difference scheme (3.5.2)./'The
truncation errors for these aéproximations were’given to fourﬁh
order in chapter 3 and it is not a difficult task to show that,
for the simpler wave equation, they take the form

k*h? |1 (14r2-12r%0)3%u+ 1 h? ((r*-1)+5(1-6x?0) (r?+1)) 3%

(6.1.4)

for the splines scheme and

k*h* 1 (r*-1)-ar?}d*u+r 1 n?{(x*-1)-300r? (r2+1)) 3%u (6.1.5)
12 oy 360 o

t!
for the finite difference scheme, where terms to 6 h order are

now given.
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These truncation errors are both 0O(k’h2+k") but as
mentioned in section 3.6 they can be reduced to a lower order
of magnitude by optimally choosing values of the parameters Q,
® and r. Thus for the expression (6.1.4), if we choose 0 such

that

1 (1+r?) (6.1.6)
12r?
then the 4th order term is eliminated and the truncation erxor
is O(kzh"+k6). Using this value of O, if we now choose r such
that the Gth order term in (6.1.4) equals zero then it can be
shown, by evaluating terms up to the Sth order derivative, that
the truncation error is now O(k*h®+k®). This optimal value of r
is simply r=1.

The truncation error (6.1.5) for the finite difference scheme
can also be reduced to lower order of magnitude using the same

method. By choosing

o= 1  (r?1) (6.1.7)
12r?

the truncation error becomes O(k?h"+k®) and with this value of o
and r=1 it is reduced further still to O(k®h®+®).

As can be seen, although the expressions for ¢ and 6 given
by (6.1.6) and (6.1.7) are different, the resulting values of r
which eliminated the Gth order terms are the same. It should also
be noted that the truncation errors using these optimal values of
r, 6 and a are also of the same orders.

This procedure of reducing the order of a truncation error

has also been used by Crandall (1955) where he employed a finite
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difference scheme analogous to (3.5.2) in the numerical solution
of the heat conduction equation.

If we now substitute the value r=1 into (6.1.6) and (6.1.7)
we see that the values 6=1/6 and 0=0, together with this value of
r, reduce respectively the scheme incorporating splines and the
finite difference scheme to 0(k’h®+®). as these values of
and 0 are less than % we do not have unconditional stability and
must therefore check that the conditions (3.4.5) and (3.6.3) are
satisfied. In this case with r=1 the conditions are satisfied
but in using this value of r we place severe restrictions on the
choices of h and k. For example, if we require a small mesh length
in the space direction then we must use an identically small
value for the mesh length in the time direction.

To overcome this restriction on the mesh ratio r it is
advisable to just eliminate the 4th order terms in the truncation
errors (6.1.4) and (6.1.5) using values of 6 and o from (6.1.6)’
and (6.1.7). 1In doing this in practise we find we have a slightly
larger error but are able to use a wider range of values of h and
k.

Once numerical solutions to (6.1.1) have been found using
both of the schemes (3.2.14) and (3.5.2) we will compare their
respective accuracies in two ways. Firstly by obtaining numerical
values of the truncation errors (6.1.4) and (6.1.5) at each of
the mesh points and then by comparing the maximum absolute values
out to a certain point in time. This error we denote by TESC
for the splines scheme when approximating an equation with con-

stant coefficients and TEDC for the ordinary difference scheme
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when approximating equations of the same form. The second method
of examining the accuracy of either scheme is done by finding the
maximum absolute value of the difference between the numerical
solutions and the analytic solution to the same point in time.
For this error, when considering equations of the form given by
(3.1.1), we denote the error for the splines scheme by ESC and
similarly by EDC for the finite difference approximation. It
should be noted that for some problems the analytic solution will
be unknown and therefore only the errors TESC and TEDC can be
examined.

It is easily shown by either separation of variables or
Laplace Transforms that the analytic solution to the wave eguation

(6.1.1), with the prescribed initial and boundary conditions (6.1.2)

and (6.1.3), is given by

U(x,t) = 8inmx CosTt . (6.1.8)

The numerical solutions to (6.1.1) have been evaluated for
a range of values of the parameters 0 and 6 and for various mesh
lengths h and k. The results given in tables 1 and 2 have been
found when the space step length h has been taken as 0.1 and where
computations for both schemes have been taken out to t=0.5. The
truncation errors TESC and TEDC have been evaluated to 4th order
using the expressions given in section 3.8.

It can be seen from tables 1 and 2 that for k = 0.05 the
values of 6 = 5/12 and 0 =-1/4 reduce their respective truncation
errors to zero when derivative terms upto and including 4th order

are evaluated. This is also the case when 6 = 17/12 and

@ = -15/12 are used with k = 0.025. The reason for this is simply
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because 6 and o have been chosen such that the expressions (6.1.6)

and (6.1.7) are satisfied.

As an illustration of the effect of eliminating both 4th
and 6th order terms from the truncation errors we have used
h=k=0.1 and € = 1/6 in (3.2.14) and the same values of h and k
with 0=0 in (3.5.2). On examining the same errors as given in
tables 1 and 2 we find that E . = 2.20x10"° and Epe = 5.40x10"°
where errors to t = 0.5 have again been considered. The trunca-
tion errors TEg and TEDC are 0(k*h®+®) with these values of

0, o and r and will therefore be of negligable size.

(b) vVariable step lengths

For the second part of this case study we again consider
the wave equation (6.1.1) which, together with the initial and
boundary conditions (6.1.2) and (6.1.3), is now to be solved
by varying the size af the step lengths in the space direction.
Initially these numerical solutions have been found by using both
(5.2.9) and (5.3.6), these having constant values for the para-
meters O and 0 at each of the mesh points.

In this particular problem the use of variable step lengths
is not very advantageous since neither the function value
initial condition nor the shape of the plotted numerical solu-
tions are of the form illustrated by Fig. 1. It does however
illustrate the usefulness of schemes such as (5.2.9) which allow
the mesh points to be unequally spaced.

For simplicity we have initially arranged the step lengths

as if they were to be used on two different problems. Firstly
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if the "peak", as shown in fig. 1, was of the form

Fig.2.

then the step lengths near the centre of the range [o,l] have to
be smaller than those in the remainder. For our first numerical

computations we use the following x values as internal mesh points
0.15, 0.30, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, 0.85.

For future reference we will call these values mesh set A.

As a comparison the second variable mesh has been chosen as
if the solutions are varying rapidly near each of the boundaries
x=0 and x=1. The smaller step lengths have thus been arranged near

these boundaries and are given by the following internal mesh values
0.075, 0.15, 0.25, 0.35, 0.50, 0.65, 0.75, 0.85, 0.925

which we refer to as mesh set B. As can be seen both this mesh
and mesh set A have nine internal mesh points. The reason for
this is that in part (a) of this case study numerical solutions
are derived to (6.1.1) using h = 0.1, in which case there were

again nine constantly spaced mesh points. Thus the solutions
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obtained hére can be suitably compared with those obtained wifh

uniform step lengths having the same number of internal mesh points.
Using ‘both mesh sets A and B the numerical solutions to

(6.1.1) are evaluated by the scheme (5.2.9) which incorporated

cubic splines and also by the more common finite difference approxi-

mation (5.3.6). To examine their respective accuracies we obtain

numerical values for the same errors as given in tables 1 and 2.

We again denote the maximum absolute value of the truncation

errors by TE c for the splines schemes and TE for the difference

S DC

scheme. - Similarly ESC and E_ | are used to represent the maximum

DC
absolute difference between the numerical solutions and the
analytic solutions which are again found from (6.1.8). The results
for mesh set A are given in tables 3 and 4 and those for mesh set
B in tables 5 and 6 where the time step length k has again been
taken as 0.05 and 0.025.

As was indicated in section 5.5 the truncation errors for
both variable step length schemes can be considerably simplified
by choosing values of the parameters © and 0 which eliminate the
major contributing terms. Since these expressions for the trunca-
tion errors vary with the size of the step lengths then it was
shown that only by making use of schemes with‘variable 6 and o
can any significant simplification be made. For the splines
scheme with variable 6, the choice of Gi as given by (5.5.3)
results in the elimination of the 4th order term of the truncation
error when considering the wave equation. Similarly for the
variable step length finite difference scheme with variable

th . .. .
parameter 0 the 4 order term can again be eliminated by choosing
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ui such that

(6.1.9)

3 3
thy +hy,y)

a, = 1 1l -

1 — —

2
k% (h;+h; 4)

It should be noted that, whereas for the splines truncation error
the choice of Si subject to (5.5.3) meant no terms upto and includ-
ing 4th order had to be considered the values of ai given by

(6.1.9) still leave a 3rd order term in the expression for the
truncation error which must be taken into account. We can therefore
reasonably expect that the errors for the splines scheme will be
smaller than those for the ordinary finite difference approximation
when the step lengths are unequally spaced, and when values of Gi
and o, are obtained from (5.5.3) and (6.1.9) respectively. This

is borne out by numerical results when both mesh set A and mesh

set B are used in the solution of the wave equation. Using the
previously adopted notation for errors we find that these results
are as given in table 7 where the truncation errors have been evalua-
ted to 4th order only and K has been taken as equal to 0.05.

The choice of mesh points using variable step length schemes
is obviously not limited to our mesh set A and mesh set B arrange-
ments. We can in fact arrange the mesh points in any way that may
be helpful for solving a particular problem, although we must
remember that the order of the truncation error is dependent on
the size of the spacing between these mesh points. As a further
example on the use of our variable step length schemes we have
used as mesh points both the zeros and extrema of the shifted

Chebyshev polynomials. These points have been shown to be advan-
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tageous in the solution of ordinary differential equations by
several authors, for example Picken (1970), Kizner (1966). The
extreme values of the Chebyshev polynomial have in fact been used
by El-Gendi (1975) for solving parabolic partial differential
equations where his method was one of transforming the parabolic
equation to a system of ordinary differential equationms.

Within the range O<x<1l the zeros and extrema of the shifted

Chebyshev polynomial

T; (x) = Cos (nCos ' (2x-1)) (6.1.10)

are respectively given by

A
x. = 111+Cosf2i+l} 7 (i =0,1, ...,(n-1)) (6.1.11)
* 2 2n
. |
and
x, = 1|1+ Cos(}ﬂ) (1 =1,2, ...,n) (6.1.12)
2 n

where n denotes the number of internal mesh points. In order to
compare the results produced using the above points with the
results of earlier calculations we again use nine internal mesh
points for both the splines and finite difference schemes. Thus
using a time step length k of 0.05 we solve the wave equation by
employing both (5.2.9) and (5.3.6) on a mesh with space step
lengths given by (6.1.11) and (6.1.12). Some of the maximum
absolute errors E are given in table 8 and as can be seen they are of
similar magnitude to those of tables 3 and 5 where mesh sets A
and B are used.

We can again hope to improve on these results by employing

the variable parameter extensions to (5.2.9) and (5.3.6), and
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then by using values of the variable parameters Si and ai which
are obtained from (5.5.3) and (6.1.9), respectively. In doing
this terms up to and including 4th order are again eliminated
from the splines and finite difference truncation errors with
the exception of a 3rd order term remaining in the latter. Results
obtained by employing this procedure are given in table 8 where
truncation errors have been quoted to 4th order terms.

Due to time considerations this is the only case study we
have computationally considered where variable step lengths have
been used. Obviously the theory derived in chapter 5 can easily

be extended in principal to solve more complex problems.

6.2 Case Study 2

As a second example of solving equations with constant
coefficients we consider the general hyperbolic partial differen-

tial equation (3.1.1) with a=b=c=1 so that

3%u =3%u +3u + U . (0£x51, t>0) (6.2.1)

5.2 ox®  ox
For simplicity we again consider (6.2.1) to have the function
value initial and boundary conditions given by (6.1.2) and (6.1.3)
respectively.

Numerical solutions to (6.2.1) are found using both the scheme
(3.2.14) which incorporates splines and the ordinary finite
difference approximation (3.5.2). Using the notation described in

the previous case study we again let TE_. and TEDc denote the

sc
numerical values of the truncation errors for the splines and

difference schemes respectively since (6.2.1) has constant
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coefficients. 1In order to examine the effect of the lower order
terms in (6.2.1) we again use a space step length h of 1/10 thus
enabling us to compare the results produced here with those of

the previous case study. Similarly the time step length K has
also been taken as 0.05 and 0.025 and the absolute maximum values
for the errors obtained out to t=0.5. These lw norm values for
the truncation errors are given in tables 9 and 10 where various
values of the parameters 8 and @ are given. The truncation errors
shown are again evaluated to 4th order- derivative terms.

In section 3.6 it was suggested that the truncation errors
(3.3.4) and (3.6.1) could be considerably simplified by choosing
values of the parameters 0 and o such that they reduce the function
f to zero. This was done by obtaining values of 6 and 0 from
(3.6.2) which in this case, with a=b=c=l1, becomes

6= a= 1 (6.2.2)
124k 2

Using k = 0.05 we here solve (6.2.1) using both the splines and
finite difference approximations with 0 and & being found from

(6.2.2) . The maximum absolute values of the truncation errors

out to t=0.5 are given in table 9.

As with case study lwe also use both schemes (3.2.14) and
(3.5.2) with values of 8, 0 and r that violate the stability condi-
tions (3.4.5) and (3.6.3). This has been done purely to test the
conditions and will be used in a later case study with variable
coefficients where the von Neumann stability analysis is not as

stringent as that for equations with constant coefficients.
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6.3 Case Study 3

As a more practical application of the use of the constant

coefficient theory described in chapter 3 we consider the eguation

1 3% = 3% -ypPu, (6.3.1)
cl2 a2 ax?
which is a dispersive wave equation. The parameters cl and U are

constant with dimensions of velocity and 1/length respectively.

Equation (6.3.1) occurs in several areas of mathematical
physics. It is, for example, the one-dimensional form of the
Klein-Gordon equation which is of some interest in the field of
quantum mechanics. 1In this context u(x,t) is the wave function,
c, is the velocity of light and

1l
H = Mcl/h . h = Planck's constant/27m , (6.3.2)

where M is the mass of the particle.

The equation has also been derived by Richtmyer (1960) and
by Briscoe and Kovitz (1968) in work on the development of corru-
gations in the shape of plane shock fronts. The governing equa-
tion for pressure fluctuations p(x,t) in the gas behind the

advancing shock front is given here by

1 ¥p = ﬁ*& : : (6.3.3)
cl2 at? ox? ay2

where the constant <y is now the sonic speed. With the assumption

that pressure variations are of the form

p{x,7,t) = u(x,t)eiuy (6.3.4)

equation (6.3.3) reduces to equation (6.3.1).

-~ 79 -



A simple physical situation which can be modelled by (6.3.1)
is that of a vibrating string embedded in an elastic medium. Such
a system will exhibit all the features of the more complex systems
mentioned previously.

If the displacement of the string from its equilibrium posi-

tion is given by u(x,t) then the restoring force on an element of
length dx will consist of two parts. Firstly a force due to the
tension T in the string and secondly a force vudx due to the
elasticity of the medium. The constant v will depend on the
elastic properties of the medium. The differential equation for
u(x,t) is now given by (6.3.1) with

u? = vy (6.3.5)
and

c, = T4° (6.3.6)

wherefg is the mass per unit length of the string.

Now suppose that the string is embedded in an elastic medium
with end fixed at x=0 and x=4& Let the string in an equilibrium
position be subject to an initial velocity Vo acting perpendicular
to the string. The displacement u(x,t) now satisfies (6.3.1)
subject to the boundary conditions

u(o,t) = 0, u(f,t) = 0 (6.3.7)
and the initial conditions

u(x,00 = 0 , %u (x,00 = V (6.3.8)

"a‘E o
The equation (6.3.1) and the above conditions may be

expressed in a nondimensional form by introducing the nondimen-

sional primed variables
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x' =x/%, t'-= c1t|2 ;o ou' o= clu/(VOZ) . (6.3.9)

Equation (6.3.1) thus becomes on dropping the primes

%u = d%u - A%u (6.3.10)
ot? 9x?
subject to
u{(o,t) = 0, u(l,t) = o (6.3.11)
and
u(x,0) = 0 , du (x,0) = 1 (6.3.12)
ot
where
A2 = v/p (6.3.13)

The equation (6.3.10) is solved numerically by both the cubic
spline technique (3.2.14) and the well known finite difference
approximation (3.5.2). The value X is taken to be unity without
any loss of generality. As with the two previous case studies
various values of 0, a, k and h are used in the computations.
Tables 11 and 12 show the maximum absolute values for the trunca-
tion errors (3.3.3) and (3.6.1), each of which is evaluated in
the program at every mesh point.

From the tables We see that values of the parameters 6 and
0 in the vicinity of 5/12 and -%, respectively, best mipitnise
the numerical values of the truncation errors when k=0.05 is used.
vFor a time step length of 0.025 the corresponding values of @and
o are 17/12 and -15/12 respectively. At first sight these results
are hardly surprising in view of the fact that the above values

of 8 and o reduce the leading term of the truncation errors (3.3.3)
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and (3.6.1l) to zero when solving the one-dimensional wave equa-
tion, this being very similar in nature to (6.3.10).

The procedure for reducing terms in the truncation errors to
zero for the wave equation is discussed earlier in section 6.1.

It is equally applicable in this case study and it is easily shown

that
6 = a(l+ar?) - ch?/6 (6.3.14)
ack? (2+ar?) +12a2r?
and
a = (ar?-1) (6.3.15)

ar? (12+ck?)

reduce the 4th order terms of the truncation errors (3.3.3) and
(3.6.1), respectively, to zero. Thus by choosing values of 6 and

0 from the above we find that for h=0.l1 and k=0.05

5

3.96 x 10 (6.3.16)

TESC

5

5.24 x 10 (6.3.17)

TEDC

where the notation TESC and TEDC is as used in the previous case
studies. It should be noted that the values of 8 and o from
(6.3.14) and (6.4.15) only eliminate the 4th order terms from the
truncation errors and that the terms in u, Sulax, 82u|8x2 and
83u|8x3 still have to be considered when solving equations other
than those with b=c=0.

We can also hope to improve the accuracy of the results for

both splines and finite difference schemes by again choosing 0

and 0 such that they reduce the function f in (3.3.3) and (3.6.1)
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to zero. For this particular case sudy with A=1 we thus choose €.

and O from the following expression

6= a= 1 (6.3.18)

12-x?

Results for both schemes using values of 6 and o from (6.3.18)
are given in table 11 where a time step length of k = 0.05 has
been employed.

The use of (6.3.18) means that the truncation errors for this
case study are of higher order than they would normally be. This
would lead one to suppose that these values of 6 and awould
produce the bestSLc° approximation of the truncation errors.
However, as can be seen from table 11, this is not the case. This
anomaly indicates the possible pitfalls of depending completely
on truncation errors to indicate accuracy. In this case study
the analytic solution is not easily derivable so no other choice of
examining accuracy prevails.

6.4 Case Study 4

It was suggested in section 3.4 that the lower order terms
baulax and cu in equation (3.1.1) have no great effect on the
stability conditions (3.4.5) and (3.6.3). In this case study
we test the effect of large values of the coefficient c on both
the unconditional stability condition and the accuracy of the

schemes (3.2.14) and (3.5.2). Setting a=l1 and b=0 equation (3.1.1)

becomes
3%u = 3%u + cu (6.4.1)
ot? ox?
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which we consider together with the simple initial and boundary
conditions given by (6.1.2) and (6.1.3) respectively. The
analytical solution to this problem is given by

1
U(x,t) = Sinmx Cos (m2-C)° t. (6.4.2)

Again using a constant space step length of h=0.1 the numerical
solutions to (6.4.1) are found from the tri-diagonal splines
scheme (3.2.14). As with the previous case studies we compare
the results using this method with those obtained from the
ordinary finite difference approximation (3.5.2). The values of
c have been chosen to be negative to avoid any occurence of
negative square roots in (6.4.2). Tables 13. 14 and 15 show
maximum absolute numerical values of both the truncation errors
and the errors between the numerical solutions and the analytic
solutions. The notation used is again as given in case study 1.
All results shown have been found using a value of 1/3 for the

parameters 6 and o.

6.5 Case Study 5

This case study is included to illustrate a practical appli-
cation of the theory for variable coefficients.

A certain type of cutting device, known as the velocity
transformer, has a symmetric cutting tool of varying cross-sectional
area. A velocity which is varying sinusoidally in time is applied
to one end of the cutting tool which is so shaped that the ampli-
tude of the velocity is greatly increased at the other cutting

edge.
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If it is assumed that the velocitv transmitted through the
tool is dependent only on time and the distance x measured down
the tool then, for small amplitude velocity variations, the

differential equation for the velocity U(x,t) is

pa(x) 3%u = 3 [ EA(x) du (6.5.1)
32 ox ox

wvhere E and p are taken as constanks .. and are respectively the

Young's modulus and the density of the material comprising the

cutting tool, whose cross-sectional area at any point is A(x).
Consider a velocity of the form

U = Uo Sin wt (6.5.2)

applied to one end of the cutting tool at x=0. The other end of

the cutting tool, x=£, is a free end and therefore

dJu (2,£) = 0 (6.5.3)

ox

To specify the initial conditions for the problem suppose
that

U(x,0) = 9du (x,00 = O, ogx<h. (6.5.4)
ot

Suppose that the ends of the cutting tool at x=0 and x=£

have, respectively, radii ro, r. and cross-sectional areas Ao'

1

A Fig. 3 illustrates such a tool in the form of a truncated

1
cone. At any general point x the cone will have radius r(x) and

cross-sectional area A(x) given by

2 ’ y 2
A(x) = Tr 1 - l-r X . 6.5.5
(x) 2 R ( )
— / L
rl
o
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The problem can be nondimensional by introducing new

variables defined by
x ,t'=1[Et, u=u ,A' =2 ,w=2~Lp w.
9 u A E

In these variables the problem becomes (on dropping the primes)

A(x) 3%u = 3 f A du (6.5.6)
9t2 ax ox

with

A(x) ={1 - (1 -1, ) X } (6.5.7)
r
(e]

subject to
u(o,t) = sinwt, (6.5.8)
du (1,£) = O (6.5.9)
x
and N
U(x,0) = du (x,0) = 0 (6.5.10)
ot

Rearranging (6.5.6) gives

%u= 3%u +1 d (6.5.11)
3¢2 3x? A dx 9x
and by using (6.5.7), equation (6.5.11) becomes
2 2
u = du- 2R )u (6.5.12)
32 x> 1-Rx  9x
with
R = 1- r, {6.5.13)
r_
o
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Using Laplace Transforms the analytical solution to (6.5.12)
can be obtained in the form of a series of step functions. Provi-

ded x+t<4 the first three terms of this solution are given by

U(x,t) = | Sin {w(t—-x):l H(t-x)
1-Rx ’

~

- AlSin{w(t—x—Z)—d) §+ 20, et"x-2 ] H(t-x-2)
L T a4l

+{ A.Sin {w(t+x—2)- ol+ 2a et+x—2 } H(t+x-2)

1
024w’
(6.5.14)
where 0 = R , A1 = (w2-0L2)2+4CL2 ;¢ = arctan( 20 )
1-R (wz-!-otz)2 w2-a? ;

Rl -x)

and the function H{x,t) is the Heaviside unit function given by

H(E—'») Hixsty = 1 when =x<t

O elsewhere . (6.5.15)

For simplicity the parameters ror Iy and w have been taken

as 1, 0.5 and 1l respectively. The equation (6.5.12) thus becomes

B%u = 3%u + 2 du. (6.5.16)
at? ax?

x-2 9%

Although the analytical solution to this equation can be found
directly from (6.5.14), it is sufficient in practice to test the
accuracy of numerical éolutions by simply using the first term
of the expression (6.5.14). This is only possible when x+t<2
and thus for the equation (6.5.16) we can obtain theoretical
solutions from the expression

U(x,t) = _2 Sin (t-x) (6.5.17)

2-x
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when x+t<2 and x<t.

Equation (6.5.16), subject to (6.5.8), (6.5.9) and (6.5.10),
is solved numerically both using the splines scheme (4.1.6) and
the finite difference approximation (4.3.2). As for the previous
case studies computations are performed using both methods with
h=0.1 and with a range of values of K, 6 and ¢. Numerical values
of both truncation errors and differences between numerical solu-
tions and analytic solutions are examined at all mesh points. The
maximum absolute values of the truncation errors are denoted by
TESV and TEDV for the variable coefficient spline and difference
schemes, respectively. Similarly, we represent the maximum
absolute difference between the numerical solutions and the analy-

Tables 16 and 17 give results for

tic solutions by E and ED

sv v’
k=0.05and k=0.025, respectively, where errors have been examined
out to t=0.5 in both cases.

For equations with variable coefficients it is illustrated
in section 42 that the stability conditions for both the splines
scheme and the finite difference approximation can be obtained by
considering the equation to have constant coefficients. To test
the validity of the conditions obtained by making this assumption
we have chosen values of 6, 0 and k which both satisfy and violate
(4.2.3) and (4.4.2). With h=0.1 and k=0.05 the stability conditions
(4.2.3) and (4.4.2) are satisfied provided 6 2 -1/12 and o > -3/4
respectively. As can be seen from table 16 stable numerical

solutions are in fact obtained when these values of 0 and o

are used.
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As with all previous case studies the collocated spline
function (3.2.2) is used to obtain solutions at points intermediate
to those found at the mesh points. For this particular case study
these additional solutions .are found at points mid-way between
mesh points. To test the accuracy of obtaining additional solu-
tions using the spline function we again compare the results with
those found from the analytic solution (6.5.17). Table 18 gives
the errors between the spline solutions and the analytic solutions
when 6=1/3 and k=0.05. All results shown are for the time line
t=0.5 and only solutions up to x=0.45 are given due to the nature

of the Heaviside function present in the analytic solution.
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CHAPTER 7

Conclusions and Extensions

Conclusions

The computational results obtained from the case studies cited
in chapter € are best examined initially in a piecemeal fashion
prior to obtaining more general conclusions.

In case study 1 we considered the well-known one-~dimensional
wave equation and obtained solutions by initially employing equally
spaced knots. As can be seen from tables 1 and 2, for all positive
values of the parameters O and 6, the scheme incorporating splines
always has smaller errors than does the well-known finite difference
scheme. The cases where negative values of O and O are used will
be discussed with respect to all case studies later. In an attempt
to increase the accuracy of both the splines and difference schemes
a method of eliminating terms from the truncation errors was also
employed. By equating the fourth order terms of the truncation
errors to zero we found that errors were significantly reduced in
size for both schemes with the splines scheme still maintaining
a smaller error than that of the difference approximation. Simi-
larly, by reducing both the fourth and sixth order terms to zero
the %, norm errors between the numerical solutions and the analytic
solution were again decreased. However this approach has required
that values of the mesh lengths h and k be equal thus placing a

severe restriction on both spline and finite difference schemes.
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To illustrate the theory described in chapter 5, case study
1 was also solved by considering the knots to be unequally spaced.
We initially employed the two mesh sets A and B, as previously
defined,and obtained results using both a scheme incorporating
splines and a finite difference approximation. For mesh set A
the splines scheme always gives a smaller maximum absolute value
for both the truncation errors and the difference between the
numerical solutions and the analytic solution. However, as can
be seen from tables 5 and 6, results obtained using mesh set B
show that the errors associated with the finite differnce approxi-
mation are sometimes smaller than those associated with the splines
scheme.

As a further study of the methods employing arbitrarily spaced
knots we considered them to be located respectively at the zeros
and at the extrema of the shifted Chebyshev polynomials. Here
we again found that the splines scheme was more accurate than the
well known finite difference approximation although there was no
reduction in the size of the errors when they were compared with
results obtained using either mesh sets A or B.

It should be noted that all the numerical solutions cbtained
using unequally spaced knots produce larger errors than do the
corresponding solutions with the same number of equally spaced
knots with a fixed knot length h. This is hardly surprising since
the spline approximation is a cubic between each pair of adjacent
knots and there will always be at least one knot interval of
length greater than h when unequal knots are employed. This will

give rise to a larger error at some points of the x range so



that the 2'c,onor’m is likely to be increased for the‘unequally spaced
knots case, even thouch some of the errors may be reduced over
knot interval lengths smaller than h.

In section 5.5 variable parameter extensions of both the
splines and difference schemes were derived in order to remove some
terms from their respective truncation errors. Whereas the trunca-
tion error for the splines scheme only contains a fourth order
derivative term when solving the wave equation, the truncation
error for the comparable finite difference scheme contains both a
third and fourth order derivative term. We can therefore choose
values of Gi which eliminate the fourth ordér derivative term
from the splines truncation error, but unfortunately we cannot
choose values of di which eliminate both the third and fourth
order terms from the truncation error associated with the finite
difference scheme. As can be seen from tables 7 and 8 the use
of the ei values which eliminate the fourth order term from the
truncation error does in fact result in more accurate solutions,
than with fixed 0 valﬁes, for all the unequal knot spacings pre-
viously described. Since the parameter ai can only be chosen to
eliminate either the third or fourth order derivative term from
the finite difference scheme's truncation error, the splines
scheme is obviously more accurate when these optimal values of
Gi and ai are employed. This is borne out by results shown in
tables 7 and 8.

As mentioned in the appendix, for the one-dimensional wave
equation, the Evans algorithm can be employed to solve the symmetric

tri-diagonal systems resulting from both the spline and difference
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schemes. Unfortunately in this particular case no significant
improvement in accuracy is gained when results are compared with
those found from a more well known method of solution.

The equation considered in case study 2 is a second example
of an equation with constant coefficients. Here we again found
that for positive values of 0 and & the truncation error for
the splines scheme was always smaller in absolute magnitude than
that of the finite difference approximation when a time step length
of k=0.05 was used. On halving k we found that, with the single
exception of when 6=0=%, the same conclusions held. For the values
off=0=% with k=0.025, the truncation error for the finite difference
method was slightly less than that of the splines scheme although
as can be seen from table 10 the difference is negligible.

In chapter 3 a method for eliminating the function f from the
truncation errors of both schemes was discussed. It was indicated
that this did not suggest that the truncation errors would be
reduced in magnitude but only that they would be considerably
simplified. From table 9 it can be seen that the truncation errors
for both schemes do in fact remain of the same order of magnitude
when the function £ is removed.

In section 6.3 the schemes for solving equations with constant
coefficients were employed on a problem of a more practical nature.
The time step length k was again initially taken to be 0.05 and
results obtained show that the scheme incorporating splines
always has a smaller absolute value for the truncation error
than does the finite difference approximation. When the time

step length is reduced to 0.025, only values of O and ¢ equal to
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1 and 17/12 give better results for the splines scheme, the
remainder resulting in smaller errors for the difference approxi-
mation. As with case study 2 the function £, as given by (3.3.4)
can be eliminated from the truncation errors by optimally choosing
the parameters 6 and a. If this is done in this case study, again
no improvement in the accuracy of either scheme is achieved.

The accuracy of both the splines and difference schemes has
been shown to be improved by at least an order of magnitude when
choosing the parameters 6 and ¢ such that the fourth order deriva-
tive terms are eliminated from their respective truncation errors.
By doing this the maximum absolute numerical value of the trunca-
tion error for the splines scheme is seen to be smaller in magni-
tude than that of the finite difference approximation.

The final example of obtaining solutions to equations with
constant coefficients was discussed in case study 4. Here the
values of a and b in equation (3.1.1) were taken to be unity and
zero, respectively, whilst the constant coefficient c was allowed
to take various negative values. As can be seen from tables 13,
14 and 15 the scheme incorporating splines has smaller errors
than the well-known finite difference approximation when the time
step length k is taken to be esither 0.05, 0.025 or 0.0125. It
should also be noted that the larger the constant c is made the
less accurate the resulting solutions are found to be. However,
since c is effectively multiplied by k1 in both the splines and
difference schemes, then as k is decreased in size the accuracy

of the results from both methods is significantly increased.
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All computational results shown for this case study have
been found using a value for the parameters O and o equal to 1/3.
From the stability conditions (3.4.5) and (3.6.3), both schemes
should be unconditionally stable since values of ¢ have no effect
on the stability. This is confirmed from tables 13,14 and 15 for
the computations performed.

To illustrate the procedure for finding solutions to equations
with variable coefficients a problem with engineering applications
was discussed in case study 5. As is shown in tables 16 and 17 the
scheme (4.1.6), which incorporates splines, almost always yields
smaller maximum errors than the finite ddifference aprnroximation
(4.3.2) ,when values of 6 and ¢ are chosen such that both methods
are unconditionally stable. There is, in fact, only one value of
® and o which gives more accurate solutions for the finite differ-
ence scheme, this being when O=0=% is used with a time step length
of k=C.025. As can be seen from table 17 these values of 08, o
and k give almost equal maximum absolute errors from the analytic
solution and thus no significant difference in the accuracies of
the methods is observed.

As was suggested in section 4.4 the stability analysis for
both the scheme incorporating splines and the finite difference
approximation is not very rigorous for equations having variable
coefficients. We have therefore endeavoured to add numerical
support to these stability analyses by using some values of 6, o
and r in the computations which violate the stability conditions.
These solutions were always found to be numerically unstable,

all others being stable.



In all computations performed, we have found that for values
of the parameters 6, o > O the spline schemes nearly always give
an improvement over the more well-known finite difference approxi-
mations. In a vast number of cases a significant improvement in
accuracy has been observed when the &w norm values of both the
truncation errors and the difference between the numerical solu-
'tions and the ahalytic solutions have been examined.

Conversely, for the values 0, o < O we have found that the
finite difference methods always yield more accurate solutions than
do the spline schemes. However, negative values of 0 and o are
liable to violate the étability conditions as has been seen from
the tables of results. They are therefore of limited applicability
particularly as we have found that they give no significant improve-
ment in accuracy over results obtained when positive values of 6
and 0 are used. In 75% of the solution sets we can, in fact, choose a
positive value of O which gives more accurate solutions than do
any negative values of the parameter .

An additional advantage of the schemes' incorporating splines
is that, by using the spline function (2.2.2), it is possible to
obtain solution values at any points intermediate to the mesh
points on any particular time line. As was illustrated in section
6.5, these additional solutions have always been found to be in
error from the analytié solutions by an amount of the same order

of magnitude as were the solutions found at the mesh points.
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Extensions
The spline techniques employed in this thesis may also ke
of use in obtaining solutions to the following more general problems

(1) sSystems of first order equations

The second order one-dimensional wave equation

3%y = 3%

at? x>
can be expressed in the form of the two simultaneous first order
equations

9p = 39 ., 93 = 2p
3x ot x at

" where
p = du and q = Qﬁ .
ox ot

Discussions with Professor Morton of Reading University have
indicated that the above system of equations may be solved using
a spline technique similar to that employed in this thesis. He

has suggested that,even by using linear splines, instead of cubic splines,

superconvergence may also be obtained.
This may also be the case if spline techniques are applied to
more general systems of first order equations, for example, the.

equations of unsteady one-dimenNsional isentropic flow of compressible

- fluid
Bu +Udu +a® 3 = o0 -
ot ox 0 ox , o
P Ju +3p +UJP = O
- 9x ot ax
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where p is the density of the fluid, a is the velocity of sound,

x is the displacement and u is the velocity in the x direction.

(ii) Problems in two and three space dimensions

The obvious major extension of the work described in this
thesis is to partial differential equations in two or three space
dimensions. Here it may be advisable to initially consider para-
bolic equations rather than hyperbolic in order to avoid any
problems caused by the characteristics in higher space dimensions.
In the present one-dimensional work we have been careful to choose
values of h and k so as not to violate the characteristics.

For equations in two dimensions various space regions might
be considered. Many finite difference methods are available for
obtaining solutions in a rectangular space region and the spline
techniques should also be readily applicable to cases of this type.
Problems, however, will be encountered when circular or elliptic
regions are considered. For curved boundaries of this form a
transformation might be available such that each point inside the
region can be mapped onto a point inside a rectangular region.
Some methods of transforming irregular shaped regions onto rectan-.

gular regions are discussed: in Ahlberg, Nilson and Walsh (1967).
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6=0
-15/12
~1/4
1/4
1/3
5/12

2/3

17/12

0=0
~-15/12
-1/4
1/4
1/3
5/12

2/3

17/12

TABLE 1

Errors for case study 1 with k=0.05

TESC

Unstable
Unstable

9.98x10">

4.99x107°
(o]

1.50x10™%

3.40x1074

5.99x10

ESC

Unstable

Unstable

3.25%10 >

1.63x1073

1.11x10"°

4.83x1073

1.12x10"2

1.90x10-2

TABLE 2

TEDC

Unstable

0

2.99x10™ 2

3.409x10™%

3.99x10" %

5.49x10" %

7.49x10" 2

9.98x10~ 2

Errors for case study 1 with k=0.025

TESC

Unstable

6.24x10 >

4.37x10"°

4.06x10™°
3.74x10™°
2.81x10 >
1.56x10°

o

ESC

Unstable

8.15x10 >

5.72x10" >

5.15%10 >

4.75x103

3.63x10 >

2.01x10 >

2.53x10"°
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TEDC

(@)

3.74x10"°

5.62x10"°

5.93%10"°

6.24x10°

7.18x10"°

8.42x10"°

9.98x10">

Epe

Unstable

3.72x10 >

9.55%x10 >

1.12x10"2

1.28x10 2

1.74x10"2

2.37x10" 2

3.13x10" 2

Epc

2.31x10

4.56x10 >

7.02x10">

7.54x10">

7.79x10™3

8.95x10 >
1.o7x10"2

1.25x10"2



O=0x
-1/4
1/4
1/3
5/12

2/3

17/12

CE)

-1/4
1/4
1/3

| 5/12

2/3

17/12

TABLE 3

Errors for case study 1l using mesh A with k=0.05

TEsc
Unstable

3.73x10"°

7.46x10 >

1.12x10"2

2.24x10" 2

3.73x10" 2

5.50%10 2

ESC

Unstable

3.67x10

2.02x10" >

1.23x10 >

4.47x10"°>

1.10x10"2

1.89x10" 2

TABLE 4

3

TEDC

Unstable

2.02x10"2

2.23x10™2

2.44x10"2

3.07x10"2

4.48x10" 2

6.34x10 2

Errors for case study 1 using mesh A with k=0.025

EDC

¢

Unstable

2.40x10" 2

2.54;:10'2

2.69%10 "2

3.14x10"2

3.73x10_2

4.45x10" 2

TESC

Unstable

1.32x10>

1.19%10"°

1.05x10" >

6.99x10" 4

1.63x10 2

2.80x10 ">

ESC

Unstable

6.25%x10 >

5.84x10 >

5.43x10 >

4.20x10">

1.44x10">

1.27x10°°2
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TEDC

Unstable

4.25%x10"3

4.38x10"°2

4.51x10 >

4.91x10™3

5.43x10°

6.09x10">

Epc

Unstable
2.15x102
2.19%10"2
2.24x10" 2
2.35x10 2
2.49x10"2

2.67%10 2



TABLE 5

Errors for case study 1 using mesh B with k=0.05

-1/4
1/4
1/3
5/12

2/3

17/12

-1/4
1/4
1/3
5/12

2/3

17/12

TE
sC

Unstable

1.54x10"°

1.32x10°°

1.10x10>

9.24x10" 2

2.16x10">

3.70x10">

E
SC

Unstable

7.60x10">

5.99%10 >

4.38}:1()-3
8.99x10™ 2
6.79x10 >

1.46x10™2

TABLE 6

TEDC

2.62x10 >

3.29%10>

3.41xlo'3

3.52x10"°

3.85x10>

4.39x10’3

6.16%10 >

Errors for case study 1 using mesh B with k=0.025

EDC

7.17x10

3

4.19%10 3

5.22x10

3

6.46x10 >

1.11x10
1.75x10

2.55x10°

TESC

5.49x10~2

4.67x10 2

4.53x10 2
4.39x10"%
3.98x10~*
3.43x1074

2.75x10"4

ESC

1.27x10" 2

1.01::10'2

9.74x10-3

9.31x10">

8.11x10 >

6.45%x10 >

4.49x10"°>
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7.39x10

7.81x10" 2

7.89x10

7.96x10™3

8.17x10" 2
8.45x10" 4

8.80x10" %

EDC

2.74x10°
2.86x10
2.96x10

3.28x10

2

2

2

3

3

3

3

3.90x10"°>

4.87x10

6.39x10

3

3



TABLE 7

Errors for case study 1 using variable parameter schemes

Mesh
A

A

6/a
(5.5.3)
(6.1.9)
(5.5.3)

(6.1.9)

TESC

0

E
sC

3.07x10 2

1.49x10 2

TABLE 8

TEDC

1.01x10"

1.08x10

3

3

EDC

1,35x10‘2

1.15310'2

Errors for case study 1l using zeros and extrema of

. Mesh

(6.1.12)
(6.1.12)
(6.1.11)
(6.1.11)
(6.1.12)

(6.1.12)

Shifted Chebyshev Polynomial

6/0

1/3

5/12
(5.5.3)
(6.1.9)
(5.5.3)

(6.1.9)

TEgc

ESC

8.83x10‘3

7.21x10">
2.05x10""

1.55x10
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TEDC

Unstable

2.97x10

3

Epc

9.04x10™3
;.02x10—2

Unstable

1.25%10 2



TABLE 9

Errors for case study 2 with k=0.05

0=0 TE TE

SC DC

-15/12 Unstable Unstable
-1/4 Unstable 6.02x10">
1/4 4.14x10"% 8.78x10 2
-4 -3

1/3 2.53%10 1.01x10
5/12 1.42x10 2 1.05x10"3
2/3 4.58x10 2 1.43x10°°>
1 9.21x10°% 2.02x10"°>
17/12 1.50x10"> 2.67x10 3
(6.2.2) 7.11x10" 2 5.61x10" 2

TABLE 10
Errors for case study 2 with k=0.025

0=01 TESC TEDC
-15/12 Unstable 1.50x10">
-4 -4

-1/4 2.15x10 1.07x10
-4 -4

1/4 1.64x10 1.62x10
-4 -4

1/3 1.55x10 1.72x10
5/12 1.44x10~2 1.82x10" 2
-4 -4

2/3 1.18x10 2.11x10
1 7.45x10° 2.43x10"2
-5 -4

17/12 3.54x10 2.62x10
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TABLE 11

Errors for case study 3 with h=0.1 and k=0.05

6=0.

-15/12
~-1/4
1/4
1/3
5/12
2/3
1
17/12

(6.3.18)

TESC

Unstable

Unstable

2.21x10 >

9.73x10" 2

4.01x10"°

1.58x10">

3.03x10">

4.52x10"°3

4.33x103

TABLE 12

TEDC

Unstable

5.19%10 >

2.68x10 >

3.01x10 >

3.55x10 >

4.12x10">

4.83x10"°>

5.95%10 >

1.98x10 >

Errors for case study 3 with h=0.1 and k=0.025

0=0.

-15/12

-1/4
1/4
1/3
5/12

2/3

17/12

TE
SC

Unstable

1.28x10° 2

1.02x10"°

9.35x10 2

8.20x10™%

6.31x10" 4

2.98x10™%

1.02x10 >
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TE
DC

1.27x10°

3.64x10 2

5.22x10 2

5.45x10

5.66x10 2

5.97x10
7.38x10" 4

8.60x10



TABLE 13

Errors for case study 4 using k=0.05

TE E TE E

SC sC DC DC
4.01x10™4 7.53x10™3 8.10x10™4 1.49x1072
1.15x10"3 1.42x10"2 1.58x107>  1.90x1072
2.20x10"> 2.02x1072  2.65x107>  2.38x10 2
3.55%10"> 2.63x10™2 4.03x10"3 2.92x10" 2
5.19%10° 4.33x1072 5.71x10"> 4.63x10 2
1.77x10"2  1.52x107%  1.85x1072  1.55x107%

TABLE 14
Errors for case study 4 using k=0.025
TESC ESC TEDC EDC

1.29%10 " 9.24x10"%  8.81x10™>  6.37x107>
3.37x107°  1.77x10°°  1.37x10%  6.65x107°
9.94x10™° 3,79x10"> 2.o4x1o"4 7.40%10">
1.84x10"7 5.56x10 > 2.91x10°%  8.46x107°
2.88x10 2 1.01x10"2 3.08x1077 1.34x10"2
1.09x107°  3.91x1072  1.22x10°°  4.26x10 2
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-10

-20

-30

-40

~50

~100

TABLE 15

Errors for case study 4 using k=0,0125

TESC

1.03x10"°

7.60x10 °

3.60x10"°

1.50x10"°

7.90x10™°

5.74%10"°

ESC

3.37x10°

1.60x10" >

5.26x10

2.49%10" 2

1.24x1073

8.4Oxlo'3
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TEDC

1.49x10
1.79x10
2.22x10
2.78x10
3.43x10°

8.60x10

5

5

5

5

5

5

EDC

4.34x10" >

3.59x10>

2.89x10 >

2.97x10*3

4.47x10">

1.20x10'2



0=x

2/3
5/12
1/3

1/4

-1/12

-3/4

Errors for case study 5 using k=0.05

TABLE 16

T
ESV

2.63x10 >

1.81x10>

-4
7.32x10

5.72x10 ¢

4.54x10 2

1.97x10"°>

3.33x107°3
Unstable

Unstable

E

2.5

1.8

6.5

2.9

6.9

1.7

2.1

Uns

Uns

SV
6x10 "2

5x10" 2

leo--3

4x10~3

7x10"3

3x10-2

3x10"2
table

table

TABLE 17

Errors for case study 5

TE
DV

3.79%10" 2

3.39%10"°

2.88x10 2

2.55%10 >

2.42x10"°>

1.73x10 3

1.38x10° 3

5.07x10'-3

Unstable

using k=0.025

TESV

2.18x10

1.81x10™ %

1.49x10 2

-4
1.37x10

1.25x10°4

2.12x10"4

2.30x10™4

4.97x10™2

6.74x10" 4

E

1.3

1.6

1.9

2.06x10

2.1

2.4

2.5

2.9

2.9

Sv

1x10™2

2x10-'2

4x10~2

2

7%x10™2

8xlo-2

6x10—2

8x10~2

Sx].o_2
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—_—
DV

6.61x10" 2

6.05x10 2

5.68x10

5.57%10 2

5.45x10 2

5.03x10 °

4.88x10 2

3.56x10" 2

3.01x10 "2

EDV

3.14x10" 2

3.53x10 2

2.90x10 2

2.72x10"2

2.60x10 2

2.01x10"2

1.69x10 2

2.00x10" 2

Unstable

E
DV

2.54x10"2

2.36x10 2

2.25x10 2

2.20x10" 2

2.16x10"2

2.00x10-2

1.94x10™2

1.32x102

1.00x10"2



TABLE 18

Comparison between intermediate solutions found using

(3.2.2) and mesh point solution found using (4.1.6),

for case study 5.

X Intermediate Solutions Mesh point Solutions
values (3.2.2) (4.1.6)
0.05 1.31x1073
0.lo 6.46x10-4v
0.15 3.72x10" %

0.20 A 1.73x10"°
0.25 1.48x1073
0.30 2.94x10"3
0.35 1.30x10"3
0.40 1.02x10"3
0.45 3.78x10™3

TABLE 19

Comparison between the Evans algorithm and the

more well known methcd. Errors for case study 1

Evans algorithm. Well known method, (AP2) to (AP7)
0=0 TESC Esc TEDC EDC
1/4 9.98x10"> 3.21x10"> 9.98x10 > 3.25x%10 >
1/3 4.99x10"° 1.61x10™3 4.99x107° 1.63x10°3
5/12 0 2.41x10™° 0 1.11x10™°

- 108 -~



w00p buTiino Sucs pejesunzy

a £ .mﬁm,.

'&\L




APPENDIX

The Solution of Tri-diagonal Systems

The difference schemes derived in this thesis are all implicit
in nature and have three unknown solution values on the advanced
time line t = (j+l)k. They can therefore be expressed in the tri-

diagonal form

b, 9 O Uy,541 d,
a, by o Uy, 541 d,
a; b3 c3 Us,j41 = d,
\ A\ \ I }
\ \ \ i |
\
b . ¢ u a
(:> an-l n-1 n-1 n-1,j+1 n-1
an bn Un,j+1 dn
i 4 L i - _
(aP1)

An efficient method for solving systems such as (APl) has been
described by numerous authors, see for example, Todd (1962),
Richtmyer and Morton (1967) and Mitchell (1969). The method which
is based on the Gaussian Elimination process takes advantage of
the sparsity of the matrix in (APl). A simple derivation of the
method is as follows.

Letting

Ui,j+1 = ai + 61Ui+1,j+1 (i=1,2,...,(n-1)) (apP2)

then by rearranging the first line of (APl) to the form

U = (d

1,541 )/bl (AaP3)

1~ % Y2541
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we can easily see that

= = - AP4
ql dl and Bl ¢, . ( )

bl bl

Similarly for the ith row of (APl), which becomes on substitution

from (AP2)

Us,g0 = 9 7 %%-1 7 SY%a 90 (a5)

3 By by

we can show that

o, = 4 -a@ , ., B = —c, i (AP6)
2By 1 by a;B85.1 * by
(i = 2'3, ee ey (n-l))

By similar reasoning it can be shown that from the nth line of

(AP1l) we have

Un,j+l = dn - anan-l ’ (aP7)
aan-l + bn
Using the above expressions the values Ui 341 (i=1,2,...,n)

are found by firstly evaluating the @, and Bi (i =1,2,...,(n-1))
from (AP4) and (AP6). We then determine the value Un j+1 from
) 1

(AP7) and subsequently the remaining solutions u, 41
’

(i = (n-1),(n-2),...,1) are easily evaluated from the expression

(AP2).
Provided the matrix in the system (APl) is diagonally domi-

nant it has been shown by Douglas (1959) that the above method

does not introduce large rounding errors into the solutions
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4] However, when solving partial differential equations

i,j+1°
using either splines or differences, care must be taken in choosing
values of the mesh lengths h and k if the round-off errors are to
be controlled. This is because whilst the truncation errors will
diminish as h and k are made smaller the rounding errors will
become larger unless more significant digits are considered. This
fact is borne out by some of the results shown in the earlier case
studies.

It has recently been shown by Evans (1972) that an improve-
ment on the above method is available for certain symmetric tri-

diagonal systems. When solving equations of the form

cxi_l + bxi + cxi+l = dj_ (i = 1,2,. . 'n) (APB)

tke Evans algorithm required 5n multiplications and 4n additions
as opposed to the 6n multiplications and 4n additions required by
the method described earlier.

In the numerical case studies discussed in chapter 6 we have
solved all the tri-diagonal systems using the method given by
equations (AP2) to (AP7) above. For case study 1 the wave equa-
tion does in fact result in a system of the form given by (AP8)
when either the splines scheme (3.2.14) or the difference approxima-
tion (3.5.2) are used. We have therefore applied the Evans algorithm
to case study 1 and obtained, along with the solutions, numerical
values of both the truncation errors and the difference between
the analytic solution and the computed solutions. Some results
using the spline technique (3.2.14) are given in table 19 where
the notation used is that of the previous case studies and where
the step lengths h and k have been chosen as 0.1 and 0.05 respec-
tively. The comparative results from table 1 of case study 1 are

also shown.
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