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Abstract

A new testing facility for fully reversed tension-torsion high cycle fatigue testing has 
been designed. The specimens used for the test programme were solid and made 
from a medium carbon steel. The test programme involved a tension-torsion 
multiaxial non-proportional loading sequence i.e. fully reversed torsion followed by 
a push-pull load interruption and then the continuation of the same torsion loading to 
failure. The push-pull load interruption represented a significantly low damage i.e. 
4% damage according to Miner’s linear damage theory, and was applied after 
different prior torsion cycle ratios. The tests were conducted with various 
interruption stress amplitudes all of which had fatigue lifetimes in the high cycle 
fatigue region.

The torsion fatigue life was found to change significantly due to the application of 
push-pull load interruption which was considered to cause only a minor damage due 
to Miner's rule. Miner's linear damage theory cannot account for the predicted 
cumulative fatigue damage (En/Nf) for the push-pull interrupted torsion fatigue 
loading sequences used in the current test programme. The fatigue life was markedly 
enhanced when the interruption was applied at an early stage of torsion loading 
whilst the effect was less prominent when the interruption was applied at a later stage 
of torsion loading. At higher interruption stress amplitudes the torsion fatigue 
lifetime was reduced considerably and the damage summation was well below the 
unity predicted by the Miner's rule. The inability to predict damage accumulation by 
Miner's rule can be attributed to the complexity in the crack growth associated with 
the application of push-pull interruption.

Crack growth equations to represent microstructural short crack (MSC) and the 
physically small crack (PSC) growth were determined for the material of the form;

MSC - & aim = Cm(di-a)...................................(1)

and

PSC - d a im = C p a - D ................................... (2)

Material parameters for the models were derived using torsion and uniaxial constant 
amplitude fatigue S-N data, no crack coalescence, branching or re-initiation was 
considered.

The crack growth model was able to predict the fatigue life in loading cases which 
were dominated by an uninterrupted crack growth. However, such a model was 
shown to significantly underestimate the torsion fatigue life in situations where the 
fatigue life was affected by secondary crack initiation due to the push-pull load 
interruption.



Notation

a = crack length

a0 = initial crack length (or surface roughness) 

as = short crack length

at = transition crack length between short and long cracks

a/= failure crack length

dfl/dN = crack growth rate

d = microstructural length parameter

A, B, D, m,n = material constants

a, p = constants

C, m = empirical constants

n = number of cycles

Nf = number of cycles to failure

A ct = normal stress range

Acjeq = equivalent normal stress range

Ax = shear stress range

A xeq =  equivalent shear stress range

AT = torque range

Asp = plastic strain range

AK = stress intensity factor range

AKth = threshold stress intensity factor range

rp = plastic zone size

rP(S) = plastic zone for microstructural short crack (MSC) 

R = stress ratio

x



Chapter 1

Introduction

The fatigue behaviour of an engineering component can be very difficult to resolve 

under multiaxial loading, especially where the influence of crack-load interaction 

has a significant effect on fatigue life. Why therefore should research and 

expenditure be committed to understand the complexity of fracture under such 

conditions. Many answers could obviously be given, but now probably none are 

more pertinent than to seek sustainability and the efficient use of materials and 

energy.

The sustainability and efficient use of materials and energy is an issue emphasised 

strongly today, because of the noticeable increase in natural disasters globally that 

are associated with climatic change. The uncertainties surrounding this phenomenon 

have promoted increasing pressure internationally, to limit environmental damage 

and reduce the use of natural resources. Engineering is at the forefront of this 

requirement since the economies of the developed and developing countries are 

driven by technology. The European Council for Automotive Research (EUCAR) 

recently published a summary document outlining the need to aim for high 

efficiency of energy use, by promoting intensive research into major improvements 

in all power train and vehicle characteristics. This is obviously an objective in 

principle that can be applied to most industries and supporting institutions that 

undertake research for whatever application.

1



The research programme undertaken here which involves fatigue damage 

assessment under multiaxial loading for a common engineering material is one such 

area of research that can play a vital role in understanding problems that can 

adversely affect the efficient use of engineering components. Substantiating that 

sustainability and fatigue although seemingly diverse terms are not inseparable, 

since endurance and fatigue failure are directly related in an engineering context.

Fatigue failure occurs by various mechanisms attributed to the many different 

applications of engineering components and structures. Where today, customer 

demands, competitiveness of the global work place, and the increasing sophistication 

of engineering designs have necessitated materials to be taken to further limits of 

endurance. Understandably failure of engineering components and structures over 

the years, has driven research to find answers to these problems. The results of that 

have promoted a greater understanding of fatigue behaviour that enables it to be 

largely controlled today, rather than be left to chance. Certainly different from the 

early experiences of fatigue damage where failures were not so predictable, but 

nevertheless these failures became a very important starting point on the 'long road' 

to understand fatigue behaviour.

Braithwaite mentioned the term 'fatigue' for the first time in 1845 [1], to describe the 

failure of engineering components according to Schutz [2]. Although the reported 

history of fatigue began in 1837 with a German mining engineer Albert [3], who 

carried out the first recorded study of metal fatigue, as a result of in service cage 

suspension chain failures. Since then to the present time there have been numerous 

fatigue failures that has demanded adequate explanations. None more so to me
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personally than the fatigue failure of a winding engine brake rod that was responsible 

for the fatal injuries of 18 miners [4], as I was employed at that time in the mining 

industry and not so aware of the underlying dangers that fatigue presented. Also the 

events leading to very recent fatal train accident at Hadfield, reportedly caused by 

fatigue failure as a result o f the so-called 'gauge comer cracking' of the rails, another 

fatigue mechanism that is still not fully understood [5].

Obviously the fatigue o f critical engineering components can have devastating 

effects, but in more general terms fatigue has been a problem for over 150 years and 

continues to be so. However, despite some significant advances over the years, there 

are still several problem areas [6], especially engineering components subjected to 

complex loading systems. Conditions that can influence the fatigue behaviour 

considerably, which is a feature of the research work presented here.

The current work relates to an investigation of torsion-tension multiaxial non

proportional sequential loading of how the torsion fatigue lifetime and crack growth 

behaviour are affected, when the specimen is subjected to a push-pull load 

interruption at various stages of the torsion fatigue life. It is widely accepted that 

certain changes in the stress/strain field can affect the fatigue life of an engineering 

component. The degree of influence is dependent on the interactive nature of the 

different loading and the effect it has on crack growth. But, there are still unanswered 

questions of how torsion fatigue life is affected where multiaxial loading is 

concerned, since the effects from the variability of loading and modes of loading 

have not been fully investigated and are as yet not complete.
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Engineers however, need information on how different loading systems affect the 

integrity of engineering components. In some instances the applied loading may 

create the conditions for assisting a dominant crack to progress more easily or to the 

contrary and assist in the retardation of crack growth. The micro-mechanisms of 

fatigue crack growth are generally complex as a result of changes in the stress/strain 

state, conditions that are frequently encountered in engineering components. This is 

especially so for high cycle fatigue (HCF) where the growth of short cracks play a 

significant role in the fatigue life of engineering components. A specific case in 

question is the current work, which involves multiaxial and multi-phase loading 

conditions in the HCF regime.

The literature review examines how previous work has approached the problems of 

analysing fatigue crack growth under uniaxial and multiaxial loading and the 

summation of fatigue damage and how this may be considered to interact with the 

current work.

The main objectives of the test programme were,

1. To examine fatigue damage accumulation under multiaxial non-proportional 

multi-phase loading, which focuses on the effects on the torsion fatigue lifetime of 

specimens, as a result of a change in stress state by the introduction of a push-pull 

load interruption. The push-pull load interruption selected intentionally represents 

a significantly low fatigue damage i.e. 4% damage according to Miner's linear 

damage theory (LDR). But, more importantly what is the effect of the crack-load
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interaction and how does this influence the summation fatigue damage compared 

to the LDR.

2. To design a new experimental facility for applying the fully reversed torsion and 

push-pull loading, loading which could be applied individually or simultaneously 

which is discussed in Chapter 3.

3. To conduct constant amplitude and multi-phase tests as outlined in Chapter 3. 

Initially the fatigue characteristics of the material for pure torsion and pure push- 

pull fully reversed loading are determined. The multi-phase test programme 

involved multiaxial loading sequences of torsion (Phase 1) followed by push-pull 

load interruption (Phase2) and then the continuation of the same Phase 1 torsion 

loading to failure (Phase 3). In total 33 tests are carried out, which includes 17 

multi-phase tests. The material used for this research programme is 0.42% carbon 

steel to BS 970 080A42 and supplied as 25mm diameter cold finished bright bar 

manufactured to BS EN ISO 9002:1994.

4. To use crack growth models to obtain a best-fit to torsion constant amplitude S-N 

fatigue and develop the model to predict fatigue damage accumulation under 

push-pull and multi-phase loading as discussed in Chapter 5. The models 

represent two phases of crack growth, firstly, microstructural short crack (MSC) 

and secondly, physically small crack (PSC). MSC growth is the initial Stage I 

crack growth that is significantly influenced by the microstructure in addition to 

the loading condition, whereas the PSC growth is Stage II crack growth which is 

less sensitive to microstructural influences. The cumulative affect of these two
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separate and distinctive crack growth behaviours reflect crack growth associated 

with the HCF regime, which is a feature of the current work.

5. To examine crack growth patterns found on the surface of specimens, the crack 

growth patterns of sectioned specimens and the examination of the fracture 

surfaces of specimens for the different multi-phase loading using a scanning 

electron microscope (SEM). The observations are discussed in Chapter 6.

It is concluded that the introduction of a push-pull load interruption can significantly 

affect the torsion fatigue life. The Miner's linear damage theory (En/Nf = 1 )  was 

found to give non-conservative results for some of the non-proportional loading 

sequences used in the multi-phase test programme.

The crack growth model was capable of predicting the fatigue lifetimes of push-pull 

constant amplitude tests, and multi-phase tests for the more damaging loading 

sequences that encouraged uninterrupted crack growth. The crack growth model also 

gave conservative predictions for all the multi-phase loading tests carried out.

As discussed in Chapter 3 for the material, cracks were found to initiate in the softer 

ferrite grains whilst the stronger pearlite regions promoted the apparent retardation or 

arrest of Stage I crack growth creating non-propagating cracks.

The density of Stage I cracks significantly increased where crack growth was 

interrupted, whereas Stage I cracks were less densely populated, but, longer where 

crack growth was uninterrupted.
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Chapter 2

Literature Review

2.1 Multiaxial Fatigue

Multiaxial fatigue is a term used to describe a fatigue process under a multiaxial state 

of stress where two or more principal stresses, of the stress state, vary with time. 

Whereas for uniaxial fatigue only one principal stress exists that varies with time. 

Therefore, the physical fatigue mechanisms involved with multiaxial fatigue and the 

analysis to account for crack growth can be more complex, since the nucleation of 

cracks may have different orientations and grow on different planes depending on the 

applied stress state. Although, the growth rate of cracks is considered one of the most 

important aspects of multiaxial fatigue crack growth since this is the determining 

factor for the endurance of an engineering component.

Fatigue behaviour in engineering components is predominantly controlled by a 

localised stress state at or near the surface which is almost always biaxial, as is the 

case for most structural components where most fatigue cracks propagate in biaxial 

stress or mixed mode conditions [7]. In some cases triaxial stress systems can be 

generated by the application of a high hydrostatic pressure, but, even in this case the 

stress normal to the surface is always a principal stress which provides simplification 

to stress analysis because two of the three shear stresses are zero [8] i.e the shear 

stresses in the surface plane are zero.
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Machine components can experience a complex state of stress because generally they 

are not of simple geometry or as a result of multiaxial stress fields that develop due 

to the application of two or more loads which can be applied either simultaneously or 

in sequence. Such circumstances are still a cause for concern for designers who are 

confronted by 'real' life problems on industrial component [9]. Since multiaxial stress 

fields can result from some particular design feature that may include the presence 

and shape of notches on the component. For instance the stress at a constrained round 

notch in a thick plate that experiences plane strain conditions [8].

Multiaxial fatigue is concerned with the influence of the stress and strain state on 

particular fatigue fracture features such as the orientation of cracks, the direction of 

crack growth and the growth rate, and crack shape and how these affect the fatigue 

life. Therefore, fatigue behaviour under multiaxial loading is best understood by the 

examination of crack propagation mechanics, since it is arguably correct that the 

physical growth of cracks controls the accumulation of fatigue damage. The crack 

mechanistic approach is to focus on the mechanics of fracture and to describe 

engineering failures in terms of generation and growth of fatigue cracks.

2.2 Generation and Growth of Fatigue Cracks

2.2.1 Introduction

It is understandable that fatigue concepts developed from the 1950s involving the 

generation and growth of fatigue cracks have been widely accepted since cracks are a 

visible form of fatigue damage and are a precursor to failure. The understanding of

8



the fatigue process has been greatly enhanced by the development of various 

techniques to observe fatigue cracks, especially short fatigue cracks [10]. The advent 

of new technology has provided sophisticated tools and techniques which have 

enabled the measurement and observation of very small cracks of the order of 1pm. 

De Lange [11] in 1964 used a plastic replica technique to study crack propagation, a 

method that is commonly used today. This technique has the uniqueness to measure 

several surface cracks on each replication, and can also refer crack length to the 

surrounding microstructure as well as observing crack interactions. Also, even 

though the method is somewhat protracted because the test machine has to be 

stopped periodically to take a replica and has the disadvantage of not being able to 

measure crack depth, its simplicity and affordability make it a very useful technique.

Other techniques such as electrical potential drop (PD) measurement [12] and 

acoustic emission (AE) [13] have the ability to continuously record crack growth 

during testing. However, the PD technique is not readily used for monitoring short 

crack growth (Stage I cracks) unlike the AE technique that has been widely 

developed over the last three decades and reportedly [13] can detect microscopic 

events in a material, crack initiation and propagation. AE is also claimed to be 

sensitive to frictional processes i.e. monitoring crack-face contact during crack 

closure, a process synonymous with torsion loading, but normally difficult to 

monitor.

Obviously differing crack measuring and observation techniques established over the 

years appear to be best suited for selective stages of crack development. For instance, 

for crack initiation, Haworth et al [14] used holographic techniques, and Baxter [15]
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used laser beam technology, to observe topographic changes such as slip band 

development, microcracking and crack propagation. Fisher and Sherratt [16] used a 

highly sensitive eddy-current detection technique together with microscopic 

observations, and postulated the possibility of identifying a point in the fatigue life at 

which the rate of damage accumulation or microcrack growth increases very rapidly. 

More recently Doquet [17] examined the development of fatigue damage of thin 

tubular specimens by observing crack initiation mechanisms in torsion fatigue, using 

square metallic microgrids with a 5pm mesh size laid on the electropolished surface 

of the specimens. Where reportedly [17] the localised distortion of the microgrids 

clearly highlighted the grain boundary regions where slip intensifies to ensure strain 

compatibility between neighbouring grains.

However, fatigue in most engineering components is concerned with the birth of a 

fatigue crack from an origin at the surface or within the material and the progressive 

process of crack development. Forsyth [18] divided the fatigue fracture process into 

three distinct phases namely,

(1) Crack Initiation

(2) Stage I crack growth

(3) Stage II crack growth

2.2.2 Crack Initiation
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Fatigue crack initiation in metals is a very complex process and depends largely on 

the microstructural properties of the material, the surrounding environment, loading 

conditions and the engineering constraints of the component geometry. However, the 

role of microstructure at this stage of crack development is considered of primary 

importance [19]. The more complex the microstructure, the more pronounced the 

effect on fatigue life, since the development of cracks by slip along crystallographic 

planes is influenced by the local differences in microstructure [20]. Therefore the 

time taken for the development of a micocrack to reach the macro crack stage will 

vaiy accordingly.

The initial effect from the application of constant low-medium stress amplitude in a 

ductile metal usually produces microscopic deformation of the metal surface. This is 

caused by atoms moving along particular crystallographic planes and is referred to as 

slip involving the movement of dislocations in crystals or grains in the material [21]. 

The dislocations are line defects in the metal lattice and their movement produces 

slip and interaction that are responsible for strain hardening and dislocation 

accumulation. Fatigue loading results in the formation of slip bands [18], orientation 

along slip plane (45° to tensile axis). These slip bands generally appear after a few 

cycles and broaden into persistent slip bands (PSB) [22]. The movement of 

dislocations intersecting the free surface of the material along slip bands, cause 

microscopic surface discontinuities which are known as extrusions or intrusions or 

slip band pits depending on the operative slip direction in relation to the metal 

surface [18] as shown schematically in Fig.2.1. Extrusions are thin bands, which are 

extruded out of the surface of the material, and intrusions are small crevices, which
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penetrate into the surface of the material along planes of the maximum resolved 

shear stress.

Since surface grains are the only part of a polycrystalline structure that are not 

wholly restrained by adjoining grains they will therefore deform plastically more 

readily than the grains constrained in the body of the metal [20]. The reduced bulk 

constraint effect on these grains is the obvious place for the initiation of slip and 

usually this becomes the most vulnerable location for crack initiation in the largest 

grain. Although, difficulties in distinguishing some crack nuclei in slip bands may 

arise by the observation of surface micrographs alone and Neumann and Tonnessen

[23] considered it to be very important to section specimens perpendicular to the 

original surface in order to detect crack nuclei reliably.

intrusions
metal surface

extrusions

slip plane

Fig. 2.1 Schematic representation of slip band formation - cyclic stress [18]

The mechanisms of crack initiation for high strength metals may not involve the 

formation of slip bands and crack initiation can occur at other sites such as grain 

boundaries and at discontinuities like inclusions, voids and second phase particles

[24] [25] [26]. These discontinuities are weak spots or points of stress concentration
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and are normally referred to as ’defects'. The debonding of inclusions from the matrix 

can also promote crack initiation, which is caused by the break down of the inclusion 

from the onset of fatigue cycling [24]. Although it is important to have metals free of 

inclusions to prevent crack initiation at these sites, the efforts to produce ’cleaner’ 

metals to eliminate inclusions cannot increase the fatigue strength indefinitely since 

crack initiation in slip bands is still operative. Generally though in clean and sound 

ductile metals (metals clean enough to avoid major inclusions), which are subjected 

to low or intermediate stress amplitudes, the initiation of cracks usually occurs in 

localised slip bands within the single grain [27] [23].

In torsion loading it has been suggested that persistent slip bands do not intersect the 

free surface and extrusions and intrusions are not able to form in the same manner as 

for uniaxial loading. Kompek et al [28] conducted some torsion experiments on 

smooth specimens and observed almost no signs of deformation and suggested that 

the deformation process was veiy localised in well spaced out fatigue bands similar 

to that of fatigue in monotonic tension. Whereas in other tests [28] on notched 

specimens, slip bands were shown to form on the maximum shear planes at the root 

notch, coincident with the higher strain region.

The differences between tensile and torsion fatigue lives are very pronounced for 

some alloys and it is considered that purely mechanical reasons do not entirely 

explain these differences and that the fatigue lives may be affected by the different 

crack initiation mechanisms under torsion loading [17].

2.2.3 Stage I Crack Growth
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There is probably universal acceptance that the onset of crack formation is generally 

by the deepening of the slip band groove by an atomic process of dislocation 

movement, with crack growth occurring in the slip plane, resulting from a shear 

dominant fracture mechanism. This mode of crack growth is termed Stage I crack 

growth after Forsyth [18]. Stage I cracks in a polycrystalline metal are considered to 

form on those planes aligned with the maximum shear-stress directions and are 

therefore controlled by the maximum shear strain range (Aymax) of the applied stress 

state [29].

The cracking mechanism of Stage I crack growth can persist for an appreciable 

proportion of the endurance. This can result in the formation of non-propagating 

cracks especially at stress levels below the fatigue limit, where Stage I cracks grow 

in relation to the extent of the localised plasticity of the order of a microstructural 

unit [30], but will eventually be arrested by a microstructural feature. Although, 

Miller et al [30] also found that Stage I cracks arrested at stress levels below the 

fatigue limit can have a significant effect on any subsequent damage accumulation at 

stress levels just above the fatigue limit. Stage I crack however can propagate below 

the air fatigue limit by extraneous factors such as aggressive environment [26] [59].

Stage I crack growth is also dependent on the grain size and the yield strength of the 

material for cracks developing in both smooth surfaces and notched components 

[31]. This is because small-grains introduce more physical barriers i.e. grain 

boundaries to restrict crack growth, since grain boundaries are positions of mis- 

orientation of slip systems, and materials with a higher yield strength the reverse 

plasticity required to propagate the crack is of a lesser extent [32].
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The fatigue limit of smooth specimens can be considered to be the limit at which 

Stage I crack growth is contained by the strength of the microstructural barriers of 

the material. This microstructural-threshold reflects a boundary condition for the 

limit of propagation of cracks, where the stress levels are not sufficient to overcome 

the microstructural barriers of the material [33], and as a consequence cracks are 

arrested i.e. the crack growth rate d<z/dN = 0. Therefore, for such a crack to propagate 

a greater strain intensification at the crack tip is required for the subsequent transition 

to the next phase of crack growth referred to as Stage II crack growth.

2.2.4 Stage II Crack Growth

The transition to this next stage of crack growth is dependent on the magnitude of the 

maximum principal stress operating in the component or specimen in the region of 

the crack tip. This mode of crack growth represents what is considered a rational 

division from that of Stage I crack growth and is termed Stage II crack growth [18]. 

Consequently with the extension of crack length within the grains there is an increase 

in the stress intensity at the crack tip that favours the activation of new slip systems. 

The new shear planes associated with the crack advance are now not limited to the 

initial maximum shear planes previously existent in the surface grains. Unlike Stage I 

crack growth that is confined to only one active slip system the new slip system 

involves simultaneous or alternating flow along two separate slip planes [34], as 

shown in Fig 2.2.

The attendant crack growth process for Stage II crack growth continues with the 

increment of crack extension for each loading cycle. This new active slip system is
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usually related to the formation of striations on the fracture surface in push-pull 

loading once stable crack growth occurs and their presence is proof that failure was 

fatigue dominant [35]. The microcrack transition from Stage I shear-dominated to 

Stage II normal stress-dominated occurs after attaining a length in excess of several 

grains [33] [36]. However, the precise dependence of this transition phenomenon on 

grain size, slip planarity and local microstructural detail is still not fully understood 

[37].

slip bands

fatigue crack

Fig. 2.2 The idealisation of Stage II fatigue crack growth [34]

The length of time that Stage I cracks grow along slip planes before the transition to 

a Stage II crack is dependent on several factors, such as the applied strain range, 

strain biaxiality, environment effects and microstructural features [20]. Although 

when a fatigue crack nucleates at inclusions in high strength alloys, Stage I crack 

growth is not always apparent and the transition to Stage II crack growth can occur 

even within one-grain [38].
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2.2.5 Multiaxial Fatigue Crack Growth Mechanisms

Since the present work involves complex loading conditions, the crack growth 

mechanisms associated with these loading systems need to be considered. Therefore, 

the development of multiaxial crack growth theories are examined, with the 

emphasis on multiaxial HCF which is a feature of this work.

The study of fatigue behaviour under combined stresses has been ongoing since the 

early part of the last century, culminating in a number of theories which present 

various criteria for predicting fatigue strength under complex stress-strain systems 

[39]. For HCF of ductile materials, the criteria most often used include the maximum 

shear theory or Tresca and the distortion energy criterion or Von Mises, whilst for 

brittle materials the Rankine principal stress criterion is used. Although these 

theories offer good correlation to experimental data for proportional loading, they 

have not been found to be successful for non-proportional loading [40]. Also, neither 

the Tresca nor Von Mises can account for the influence of superimposed hydrostatic 

pressure, a condition that is known to affect fatigue lifetime [39].

The early work of Gough and Pollard [41] demonstrated that the effective stress 

amplitude was insufficient to correlate HCF under combined bending and torsion and 

proposed the ellipse quadrant and ellipse arc concepts for ductile and brittle 

materials, respectively. An historical common form which has been used to 

distinguish fatigue crack initiation behaviour of a number of stress states [42] is 

given by,
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G eff+  g(Oh) = C (2.1)

where <jejf is the Von Mises effective stress amplitude, g  is a stress related 

parameter, Gh is the mean value of hydrostatic stress over a cycle, and C is a constant 

for a given fatigue life. The 'fatigue life' in this instance represents the development 

of a crack of the order of 1mm.

Although these modified effective stress concepts have been used as the basis for 

some engineering HCF design practice during the past four decades, they do not 

however, reflect the physics of crack initiation and propagation and as a consequence 

do not agree with experimental data [42],

The later work by Guest [43], Stulen and Cummings [44] and Findley [45] proposed 

the earliest forms of the so-called critical plane approaches. Where the effects of 

maximum shear stress amplitude Axmax/2 is modified by the influence of the 

amplitude of normal stress with respect to that plane Aan/2. In the Findley model, 

fatigue failure is deemed to occur when

ATmax/2 + A A gJ2 = B ................................................ (2.2)

where A and B are material parameters determined experimentally, which are 

constants for a given fatigue life.
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Later Brown and Miller [39] proposed a method of evaluating multiaxial fatigue life 

again using the critical plane approach, but it reportedly represented a more realistic 

crack growth ideology. The method is based on the physical quantities that control 

fatigue crack growth, namely, the maximum shear strain and the tensile strain normal 

to the plane of maximum shear, although it has more emphasis on LCF. Thus 

expressed by the equation

(s i-8 3)/2 = f[(8i + s3)/2].......................................... (2.3)

Fatemi et al [40] suggested that shear based critical plane approaches are appropriate 

for situations where a Mode II (shear mode) failure mechanism is predominant, 

although there are exceptions where combinations of materials and loading 

conditions can result in different failure modes.

McDiarmid [45] recently proposed variations to his previous critical plane model, a 

model based on the Findley criterion, which now attempts to take account of 

different crack patterns. Crack patterns that were first proposed by Brown and Miller 

[39] and known as Case A and Case B cracks. This terminology characterised the 

different directions of crack growth, such that cracks growing along the surface are 

termed (Case A) and cracks growing in from the surface are termed (Case B). The 

differences allow these specific cases of crack growth to relate two distinct classes of 

multiaxial fatigue [39].

2.2.6 Multiaxial Fatigue Crack Paths
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Multiaxial fatigue crack paths exhibit Stage I and Stage II propagation [29], but, 

crack patterns differ depending on the applied multiaxial state of stress. Fig. 2.3 [29] 

shows the planes of crack growth for different multiaxial strain states that relate to 

stress states commonly found in engineering practice. Although in HCF the local 

conditions at the tip of a Stage I microcrack are mixed mode regardless of the remote 

loading mode combination due to crystallographic growth, local anisotropy and 

constraint of neighbouring grains, analogous to bimaterial interface cracks [42]. 

Therefore, multiaxial behaviour can be regarded as an inseparable feature of the HCF 

small crack problem.

applied
strains

torsion

crack growth planes 

Stage I Stage II

surface crack directions 

Stage I Stage II

normal inclined 
to surface to surface

uniaxial

plane strain A

—V £ /

(1-v)

0 < a >  180°

equibiaxial Z?7I
-2vs
(1-v) IkL /

8 I
0 I

0 < 0 £ 180°
□

Fig.2.3 Typical crack planes for various states of strain [39]
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To understand multiaxial fatigue crack growth mechanisms, some pertinent questions 

arise, such as, when and where will cracks initiate and in what direction and how fast 

will they grow. The intersection of the crack planes with the free surface plane is of 

particular importance, since the different attitudes of the planes of Stage I and Stage 

II cracks can dictate whether the fatigue life is lengthened or shortened. Similarly the 

orientation of a defect plane in a critical location of an engineering structure can 

affect fatigue life. Which indicates that crack shape and crack speed can change 

considerably depending on the directionality of the applied equivalent stress or strain 

state relative to the surface of the component or specimen

The physical behaviour of crack planes can be represented by the generalised 3-D 

fatigue theory proposed by Brown and Miller [39]. This particular theory considered 

the nucleation and growth of fatigue cracks and suggested two specific cases known 

as Case A and Case B for an isotropic material shown in Fig. 2.4.

The different cases are represented by showing how the free surface influences crack 

growth rate and shape, when considering loading of material subjected to fatigue and 

where the principal strains ( s i  > 8 2  > 8 3 ) .  Case A is where the greatest range of 

principal strain amplitude ( s i  - S 3 )  both lie in the plane parallel to the free surface and 

the intermediate strain ( 8 2 )  lies in the plane normal to the free surface. Whereas for 

Case B the minimum principal strain amplitude ( 8 3 )  acts normal to the free surface. 

As for instance in biaxial tension (Case B) where the direction of the shear stress acts 

to promote the cracks to grow into the material. The Case B types of cracks are 

obviously considered to be more dangerous since they propagate away from the free 

surface into the material.
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Case B cracks 
(dangerous)

Fig. 2.4 A three-dimensional strained system Stage I 

and Stage II - Case A and Case B cracks [39]

2.3 Non-Proportional Loading

Many engineering components and structures, such as, axles, crankshafts, ground 

vehicles, pressure vessels, aircraft parts and nuclear reactors generally experience 

non-proportional loading. Non-proportionality of loading can refer to combined out- 

of-phase loading or for sequential loading where the non-proportionality occurs in 

this case if the principal directions of the applied stress differ with respect to the 

crack plane, which is a loading system used in the current work.

Fig. 2.5 illustrates the strain-time histories and loading paths for (a) non-proportional 

combined loading, (b) non-proportional sequential loading, and (c) proportional 

loading for a cylindrical specimen subjected to torsion and axial fatigue loading.
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Fig. 2.5 Non-proportional and proportional loading paths
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Non-proportional loading causes non-proportional straining in which the principal 

strain proportions and directions change during cycling. These are conditions that 

often cause additional cyclic hardening of the materials [46] and is considered to be 

the reason why low-cycle non-proportional loading is more damaging than low-cycle 

proportional loading [47]. The additional cyclic hardening during non-proportional 

loading can cause a dramatic decrease in fatigue life and Fatemi and Socie [40] 

proposed a modification to the original formulation of Brown and Miller’s critical 

plane approach to account for this phenomenon. They considered that the strain 

parameters cannot account for cyclic hardening and thus proposed a change to the 

Brown and Miller's equation by incorporating a normal stress term instead of a 

normal strain term given by the equation,

Ymax (1*̂ “ n C n m a x / ^ y )  — Constant................................. (2.4)

where n is a constant found by fitting uniaxial data against the pure torsion data, 

Cninax is the maximum normal stress and ay is the yield strength of the material.

Unlike proportional loading where the principal stress/strain ratios and the principal 

planes remain unaltered during loading, the principal stress/strain ratio and principal 

planes change in relation to the crack plane in sequential non-proportional loading 

and therefore this could have a significant effect on crack growth behaviour.

Gao and Fernando [48] reported that for non-proportional sequential overloading, 

Stage I and Stage II crack advance is dependent on their respective favourable crack 

orientations in relation to their multiaxial stress state. For instance in the HCF
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regime, particularly for in-plane shear non-proportional overloading, an increase in 

crack growth rate can occur and consequently cause a reduction in fatigue life. This 

was reportedly [48] attributed to the reduction in crack tip blunting and the crack tip 

becoming sharper. Although in this case it maybe better to relate this effect to lower 

compressive residual stresses normal to the crack plane, rather than imply a change 

in the crack tip profile which is obviously difficult to ascertain.

It is generally accepted that non-proportional loading is more damaging than 

proportional loading for a variety of loading, but is this so for a relatively marginal 

non-proportional load interruption in sequential loading. Especially where the 

interrupted loading may appear insignificant in terms of the number of fatigue cycles 

applied and furthermore maybe incorrectly dismissed in fatigue design analysis. The 

work presented here examines this particular case of how a non-proportional loading 

sequence affects Stage I crack growth and subsequent fatigue life of specimens for 

various stress states in the HCF regime.

2.4 Sequential Loading

It is known that sequential loading has an effect on fatigue life where load changes of 

the same stress state are significant. Such that the damage summation according to 

Miner's linear damage rule LDR for low-high or high-low loading sequences will be 

greater or less than unity respectively. However, where different stress states are 

involved i.e. push-pull and torsion, it has been reported that lifetimes can be changed 

significantly depending on which stress/strain state is applied first in the loading 

sequence [49] [50].
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Brown et al [51] outlined the above effects for a particular stress-strain state which 

gave the same endurance in reversed torsion and push-pull loading with R = -1. The 

fatigue lifetime was reportedly [51] dramatically reduced when the original stress 

state was initially applied in torsion then in push-pull. Conversely an unusual 

increase in lifetime was observed if the stress states were reversed i.e. push-pull 

loading followed by torsion loading. Indicating that the reduction in lifetime was due 

to broad Stage I crack (see Fig. 2.3 torsion Stage I crack growth planes) naturally 

continuing propagating in Stage II (see Fig.2.3 uniaxial Stage II crack growth 

planes). Whilst the enhancement in lifetime was considered to be as a result of Stage 

I cracks generated in push-pull (see Fig 2.3 uniaxial Stage I crack growth planes) 

hindering the development and extension of shear cracks in torsion (see Fig. 2.3 

torsion Stage I crack growth planes). This is because in this case the cracks form on 

different planes. Probably because of the incompatibility of existing slip plane 

configuration that does not reconcile with the maximum shear planes associated with 

different stress state, for such small cracks at these stress amplitudes.

Obviously, the fatigue life of engineering components can be affected quite 

dramatically for sequential loading, depending on the configuration of the applied 

stress states. The effect the different loading system has on crack advance is mainly 

dependent on the extent of the interactive nature of deformation and fracture process 

of each loading mode. Zhang [50] reportedly found that for medium carbon steel 

subjected initially to push-pull and then to torsion loading, that push-pull cracks 

which were less than a critical crack length (equivalent to the Stage I-Stage II crack 

transitional length), new cracks formed at the onset of torsion loading in preference 

to continued crack growth of existing cracks.
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2.5 Analytical Concepts of Crack Growth

Stage II crack growth is the dominant period for fatigue lifetime at high strain 

amplitude whereas at low strains it is Stage I which occupies the majority of the 

lifetime. The physics of fatigue damage as a crack advances has culminated in 

considerable work to propose theories to describe the kinetics of crack growth [10]. 

Therefore, since the fatigue lifetime of smooth engineering components is usually 

cumulative of Stage II and Stage I crack growth, then the mechanics of crack growth 

associated with these stages are necessary to describe the complete fracture process. 

Fracture mechanics provides the basis for analytical concepts. However, the fracture 

mechanics terminology used for long and short cracks is different since the 

mechanisms associated with crack propagation for each type of crack are influence 

by totally different parameters.

2.5.1 Long Crack Growth

The Stage II crack growth region is generally associated with the term long cracks 

and linear elastic fracture mechanics (LEFM) or elastic-plastic fracture mechanism 

(EPFM) is usually invoked to quantify the propagation behaviour of these long 

fatigue cracks. The crack surface displacements in LEFM as shown in Fig. 2.6 [34], 

can be in three principal modes namely,

1. Mode I - The tensile opening mode

2. Mode II - The in-plane sliding mode
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3. Mode in - The tearing or anti-plane shear mode

The application of LEFM in crack growth considers only the macroscopic aspects of 

crack growth and is based on the intensity of the stress field at the crack tip [20]. The 

characterisation of this elastic stress distribution near the crack tip is denoted by a 

single parameter the stress intensity factor (K) after Irwin [52].

Fig. 2.6 The modes of fracture (a) Tensile opening (Mode I), (b) In-plane sliding 

(Mode II). (c) Anti-plane shear (Mode III). [34]

Depending on the deformation mode K is usually defined accordingly. For the case 

of a Stage II fatigue crack in push-pull loading which grows by a Mode I mechanism 

then K is given in the more general form as,

v

(a) (b) (c)

Ki =Y a (n a)1/2 (2.5)
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where Y is a geometry factor and is dependent on crack configurations, cr and an are 

stress perpendicular to the crack and crack length respectively. The solutions for 

values of Y are available for idealised geometry, crack tip displacement and mode of 

deformation [53].

In the analysis of fatigue crack growth LEFM assumes that the crack growth rate 

da/dN is a function of AK, given by the Paris and Erdogan [54] equation,

da/dN = C (AK)m ............................................................ (2.6)

where da/dN is the rate of crack growth, a is the crack length and N is the number of 

fatigue cycles. The terms C and m are empirical constants which are functions of the 

material properties and microstructure, test frequency, mean stress or load ratio, 

environment, loading mode, stress state and test temperature [34], and where AK is 

defined as,

A K  =  K max -  K min ..........................................................................................  ( 2 .7 )

where K max and K min are the maximum and minimum stress intensity factors 

corresponding to the maximum nominal stress a max and minimum nominal stress 

a min. However, for cyclic loading the compressive load is assumed to be carried by 

the faces of the crack, thus avoiding the intensification of stress around the crack tip. 

It is therefore conventional to take Kmm equal to zero, when the stress ratio (R < 0), 

where R = cjmirAw, on the assumption that crack will close up at zero load [55].
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Engineering structures that are subjected to low levels of stress and have inherent 

flaws of a size (0.5-lmm) are generally the parameters that allow designers to benefit 

from LEFM analysis [56]. Where the evaluation of crack growth up to a critical size 

using LEFM analysis could be in the order of several hundred millimetres. However, 

the majority of engineering components have no pre-crack present and therefore, A K  

is zero, but, fatigue cracks will initiate and grow if the applied stress is of significant 

magnitude as described earlier. The critical value of A K  below which long cracks 

will be arrested is termed the stress intensity threshold (A K th). The cracks that grow 

in the region below AK* are the so-called short cracks i.e. cracks that do not behave 

in principle as long cracks, and where LEFM is not considered applicable [57]. 

McDowell [37] found that this was particularly so for lower stress amplitudes where 

the deceleration of crack growth was observed and which corresponded to a dip in 

the dfl/dN vs. A K  behaviour. It is therefore very important to evaluate the growth of 

short cracks when considering the fatigue life of materials and components [33] [57].

2.5.2 Short Crack Growth

The term 'short cracks' is usually referred to cracks which are not considered long 

enough to be described by LEFM, since LEFM becomes inapplicable to characterise 

the growth of fatigue cracks which are of crack size less than 0.3mm [34]. This is 

because the relationship between the far-field loading conditions are quite different 

to the near-tip conditions when comparing the crack size of short and long cracks. 

For instance short cracks in the order of 5-10 times the microstructural scale in 

length [37] require a high stress to propagate them, whereas long cracks being on a
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macroscopic scale greater than 1mm in length [33] usually require a low stress to 

propagate them.

The schematic diagram of idealisation of short and long crack growth is shown in

Fig.2.7 Schematic diagrams of idealisation of short and long cracks [95]

It is only the upper limit of a short crack length that will conform to LEFM analysis 

where AK* approximates to a limiting value. Although Allen et al [58] suggested 

that LEFM may be able to predict the behaviour of short cracks as the crack length 

tends to zero by introducing some criteria to account for the changes in the stress 

field at the vicinity of the crack tip. McDowell [37] however, presented a view to the 

contrary, that whilst several quantitative attempts have been made to explain the

Fig. 2.7
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fatigue propagation of short cracks in terms of plasticity-induced closure, along with 

adoption of an additional component of the driving force e.g. crack tip opening 

displacement, to reflect the contribution of cyclic plastic strain, suggested that the 

models are complex and depend on idealised assumptions that neglect microstructure 

properties such as local anisotropy and heterogeneity. It would appear to date, that no 

apparent work has been done in this field in which models based on LEFM analysis 

is recognised to adequately reflect the behaviour of short crack growth regime.

The inability of established methods of fatigue analysis, such as fracture mechanics, 

to provide acceptable mathematical models, has therefore, created considerable 

interest in the behaviour of short fatigue cracks [58-62] . The interest in short fatigue 

cracks has been brought about by the realisation that even below the fatigue limit 

cracks can form. Thus offsetting the traditional belief that the fatigue limit and the 

region below it was coincident with no apparent crack initiation, rather than what is 

now recognised as the limit for non-propagating cracks to exist [63].

For the design analysis of defect tolerant structures the method of predicting fatigue 

lives is generally based around the base-line da/dN data which is obtained from 

laboratory generated results on test specimens containing relatively long cracks. 

However, engineering components are generally free from any defects on the scale 

that allows any immediate transition to long crack growth, and as a consequence a 

large proportion of the lifetime will be spent in the short crack domain. Keiro et al 

[96] who studied the behaviour of small fatigue cracks for a medium carbon steel 

found that the growth of small cracks shorter than approximately 1mm represented 

80% of the fatigue life. It is therefore, very important to understand the role of short
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cracks so that a more complete and realistic fatigue analysis is achieved. If fatigue 

lifetimes do not take into account the short crack regime then any fatigue lifetime 

prediction reliant on LEFM alone, would probably not only be inaccurate, but, could 

be non-conservative.

Several workers [64] [65] have noted the anomalous behaviour of short cracks that is 

uncharacteristic of long crack growth. Pearson [59] was first to report observations of 

accelerated growth of small cracks compared to long cracks. Who examined the 

effect of crack size on propagation rates that were subjected to the same nominal AK. 

Other workers [37] [67] have also found that short cracks consistently exhibit higher 

crack growth rates than those cracks associated with LEFM. However, Morris [66] 

and Lankford [67] found the opposite effect in that short crack growth was slower 

than for long crack growth. Nevertheless, irrespective of whether short cracks 

propagate faster or slower than LEFM predictions, the behaviour of short cracks 

cannot be considered to be consistent with that of long cracks. Consequently the 

short crack domain can represent a major part in the total fatigue lifetime of most 

engineering components and as such this domain is examined further.

2.5.3 Short Crack Domain

The short crack domain can be considered as the region of endurance that is 

dominated with the growth of these so-called short cracks. Whilst the propagation of 

short cracks can be a substantial feature of HCF there is no universal interpretation 

for short cracks or any definitive demarcation between long and short cracks,

33



although several possible definitions have been proposed. Suresh and Richie [68] 

suggested that short cracks might be defined as being short when,

(1) Fatigue cracks are of a size which is comparable to microstructural dimensions 

i.e. same order as the grain size (pm).

(2) Small fatigue cracks in smooth specimens for which the near-tip plasticity is 

comparable with the crack size.

(3) Fatigue cracks classed as being simply physically small when of a macro-length 

(<1.0 mm).

When considering the extent of the plastic zone the size and shape depends on the 

plastic flow properties of the material, but, its dimensions are proportional to (Ki/<jy)2 

[69]. In fracture mechanics the yielding at the crack tip is approximated to a plane 

strain condition and the nominal plastic zone (rp) is given by [69], as

rp = l/27t (Ki/(<jy)2 .......................................................... (2.8)

However, for LEFM analysis the limitation of small scale yielding for the plastic 

zone size at the crack tip [53], is given by

rp < a/50 (2.9)



But, for short cracks the plastic zone size is generally taken to be of the same order 

as the crack length where the ratio (a/rp «1) [33]. This is obviously of such a scale 

that makes LEFM non-compliant in the short crack domain. Although, Tokaji [57] 

found that for a coarse grained low alloy steel, cracks behaved as long cracks even 

though the cracks were physically small.

The short crack domain implies a region where cracks are physically small and 

Miller [56] suggested that all cracks be considered short except for those-propagating 

at low stress levels i.e. Aa < 2cjcy/3. Whereas McDowell [37] suggested that cracks 

are considered short when all pertinent dimensions are small compared to some

characteristic length scale. However, Miller [33] outlined a more detailed and

physical crack demarcation by grouping short cracks with respect to particular modes 

of crack growth and an associated dimensional constraint. For instance the so-called 

microstructural short cracks having a crack length of microstructural scale («2pm) 

and physically small cracks having a crack length in the order 1mm. The Kitagawa- 

Takahashi diagram [70], is modified to represent the distinct regimes of crack 

behaviour described after Miller [56] namely,

(1) Microstructural short cracks (MSC), where a <&■$

(2) Physically small cracks (PSC), where d^<a> I

(3) EPFM type cracks - highly stressed cracks where a > I and Aa > 2acy/3

(4) LEFM type cracks - long cracks where Aa < 2acy/3
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Fig. 2.8 The three regimes of short crack behaviour [56]

The lower limit for a short crack can be taken to be 2-3 pm corresponding to the 

surface roughness of the best prepared engineering component [71] or assumed to be 

zero since the crack growth from 0-3 pm makes only minimal difference to the 

lifetime [30]. The upper limit of a short crack is that length which can be calculated 

from LEFM analysis in which the stress intensity is equivalent to AKth.

The current research work involves the fatigue lifetime of smooth specimens under 

high cycle multi-stage loading conditions. Under these particular loading conditions 

the influence of MSC and PSC growth are a dominant feature and the parameters that 

are influential to these cracks are examined in more detail below.
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2.5.4 Microstructural Short Cracks (MSC)

The extent of the influence of microstructure on fatigue crack growth is an important 

factor when considering the behaviour of short crack growth of metals, because the 

microstructural properties of the material determines the extent of the MSC growth 

[56]. MSC growth is specifically associated with the microstructural-dependence of 

crack growth and as such these cracks are represented by the term - microstructural 

fracture mechanics (MFM) [33], shear dominant Stage I cracking regime or Mode II 

and Mode III mechanism.

The degree of influence of MSC growth centres around the composition of a 

polycrystalline metal and for the adequacy of this work, its composition is considered 

to be basically a crystalline structure made up of grains, where the grain boundaries 

are obstacles to slip [72]. Consequently these boundaries will not generally afford 

easy passage for crack growth, unless there is sufficient crack driving force. Miller 

[33] suggested that twin boundary; grain boundaries and pearlite stringers in medium 

carbon steel are barriers to MSC growth. In some instances MSC growth may be 

limited to one grain [73], but, it can however, extend to several grains in some metals 

[74] [75] [76].

In a ferritic-pearlitic banded structure a material similar to the one used in this work, 

the softer ferrite grains are generally the sites for crack initiation [50], and MSC 

growth may extend through several ferrite grains before arresting at a pearlite colony 

[56]. Although typically for a ferritic-pearlitic structure, several different 

microstructural barriers may exist to preclude crack growth [76], As shown
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schematically in Fig 2.9 the successive resistive barriers can only be overcome by 

increased stress levels

successive barriersmicrostructural
fracture
mechanics

major barrier

Log Act

elastic plastic 
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da/dN = 0

conventional fatigue limit
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Fig. 2.9 Schematic representation of the effect of successive 

microstructural barriers on fatigue crack growth [33]

The increase in stress level to overcome these barriers is necessary to induce the 

cross slip or the operation of secondary slip systems in the next grain [77]. The 

pearlite regions are the barriers of greatest strength and therefore, represent a much 

more formidable barrier to crack growth. These pearlite barriers have been observed 

to be particularly influential in arresting transverse cracks in torsion where the 

pearlite banding is normal to the crack direction [77].
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If grain boundaries are the dominant barriers to crack growth then the reduction in 

grain size can improve the fatigue resistance of smooth specimens [78], although this 

is only beneficial for smooth engineering components where an increase in the 

fatigue limit is desired. Since the AKth tends to reduce with the reduction in grain 

size, possibly because smaller grain sizes afford less sustainable deformation at the 

crack tip [62]. Kage et al [79] reported on the grain size effect being due to barriers 

to MSC growth for two different carbon steels (A) and (B) having grain sizes of 

15pm and 50pm respectively. It was found that cracks stopped propagating in the 

smaller grain material after fewer cycles.

The MSC regime involves complexities in crack growth that arise from the 

individuality of microstructural properties of the material. The microstructural effect 

on a growing crack is generally not infinite, and the mechanisms of crack growth 

change at some point, which is a function of, crack length and the applied stress 

range. Therefore, the upper bound of MSC growth is the start of cracks that are 

considered to grow under markedly different criteria to MSC and are referred to as 

physically small cracks.

2.5.5 Physically Small Crack (PSC)

PSC growth is the behaviour of cracks that is bounded by the upper limit of MSC 

growth and the lower limit of long crack growth the LEFM threshold A K th. The 

transition from a MSC to a PSC usually occurs when the crack has reached a length 

in the order of several grain diameters. McDowell [37] suggested that when the crack 

reached sufficient length a PSC begins to exert an influence on cyclic deformation
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and damage process at the crack tip in accordance with elastic plastic fracture 

mechanics (EPFM) crack opening and singularity concepts. EPFM concepts become 

applicable when the scale of plastic deformation at the crack tip are small compared 

to crack length and span over sufficient number of microstructural barriers, but 

where microstructural influence is still evident [37]. This has been justified by the 

application of EPFM concepts to the PSC in the short crack growth regime [80] [81]. 

Some workers [82] [83] have suggested that crack density is a precursor for the 

transitional boundary between MSC and PSC growth. They observed that the crack 

density increased with fatigue cycling in the MSC stage and at the transition point 

into the PSC stage, it reached a saturation point, then decreased until failure. 

However, other workers [84] [85] have found the contrary, that crack density 

increased throughout the entire fatigue lifetime of the specimens.

Whereas MSC growth is the region governed mainly by the effects of microstructural 

barriers, PSC growth is the region where crack growth is more dependent on stress 

level [86]. The stress level must be above the fatigue limit stress if PSC are to 

propagate beyond MSC growth barrier. The PSC growth regime is therefore, 

considered to be an intermediate stage of crack growth between MFM and LEFM 

stages where a higher stress is required to overcome the more persistent 

microstructural features to crack growth. It appears to be appropriate to signify the 

growth of PSC in terms of some controlling cyclic stress parameters since the fatigue 

limit stress is the upper threshold for non-propagating MSC growth, and 0.3 x cyclic 

yield stress (0.3crcy) is the upper threshold where LEFM analysis prevails [62]. 

Although at and above the cyclic yield stress cracks may be considered long in 

LEFM terms but behave as short cracks [59] where the PSC growth regime is
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dominant and therefore EPFM need to be invoked. In fact once the stress limit of 0.3 

Gcy is exceeded then EPFM analysis should strictly be used [67], and Skelton [87] 

proposed a variety of parameters to correlate fatigue crack growth under this 

behaviour. The types of equations that are given in literature to quantify the growth 

of cracks in the EPFM region [62] are of the form,

dfl/dN = A(Asp)n a ........................................................... (2.9)

where Asp is the cyclic plastic strain range and A and n are material constants. 

Ibrahim and Miller [88] indicated that the index 'n' was approximately 2.0 for two 

plain carbon steels.

PSC growth is also synonymous with greater growth rates where the so-called 

'anomalous behaviour' does not always conform to LEFM analysis [65] [66], 

especially just beyond MSC growth region where the microstructure is still 

influential in part. However, this microstructural influence has a diminishing affect 

as the crack length increases to the point of AKth where the microstructural effects 

become insignificant.

2.6 Short Fatigue Crack Model

2.6.1 Introduction

Since short crack propagation generally comprises a significant part of the fatigue 

lifetime of smooth clean engineering components, its degree of influence must be
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recognised and adequately accounted for. The behaviour of short cracks has been 

known of for some time [89] [65], and there has been considerable attempts to model 

them embracing several techniques e.g. dislocation-based models [90] [91], models 

based on LEFM and EPFM [65] [87], models based on statistical analysis [92]. 

However for the current work, crack growth models based on short crack growth of 

the form developed empirically by Hobson [93] are used. These crack growth models 

have been shown [93] to be capable of predicting MSC and PSC crack growth for a 

medium carbon steel, which reflect crack growth initially dependent on 

microstructural features and the subsequent crack growth beyond this dependency. 

The models however, have been used mainly for restricted loading paths i.e. uniaxial 

loading or torsion loading. Therefore the validity of these models are considered 

under multiaxial and multiphase loading by this current work. The schematic 

representation of short crack growth is shown in Fig. 2.10

crack length (a)

Fig. 2.10 Schematic representation of linear graphs for short crack growth
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2.6.2 Theoretical Model - MSC Growth

To model the behaviour of MSC growth, the model must theoretically replicate the 

resistive nature of the material's microstructure if accurate representation of crack 

advance is to be realised as it negotiates the successive microstructural barriers. 

Therefore, it is essential for the model to account for these microstructural influences 

and Hobson [93] derived an expression for crack growth using the method of 

dimensional analysis. This expression detailed in ref. [93] considered parameters that 

might be expected to affect the propagation of a crack embedded within the grain 

containing a nucleation site, from which the solution is given below;

da/dN = Cid-a)1'11 aa .................................................... (2.10)

where C is a stress or strain related parameter, d is the microstructural barrier length, 

a  is a material constant and a is crack length.

The above crack growth equation has been used to describe the propagation of short 

cracks in aluminium [94] that analysed experimental data collated by Lankford [95]. 

Where Hobson [94] used a 'best f i t ' analysis and reportedly found that for 7075-T6 

Aluminium alloy a =  0.4, and extended the analysis to a medium carbon steel 

subjected to push-pull loading found that a  = 0 [93]. Carbonell and Brown [96] and 

Miller et al [55] also used the same value for a  = 0, for a similar medium carbon 

steel, but, subjected to fully reversed torsion loading and reported to have obtained 

similar results. Also more recently Zhang [50] carried out push-pull and fully
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reversed torsion loading tests on medium carbon steel again with a  = 0, and again 

reported good results.

A further interesting point in the crack growth model analysis used by Zhang [50], 

was the method for the determination of the microstructure parameters. Where du 

was taken as the upper bound of the average ferrite grain and the subsequent grain 

sizes d2, di, etc. taken to be equal to the mean ferrite grain size. It was reported [50] 

that there was good agreement between the experimental results and theoretical 

calculations, indicating that the method of determining d was acceptable for medium 

carbon steel. The work by Zhang [50] confirmed the proposal Hobson et al [97] had 

suggested earlier, that from experimental observations performed in fully reversed 

tension-compression loading on a medium carbon steel, the value of d could be 

reasonably equated to the ferrite plate length.

To equate the parameter d to a microstructural feature appears appropriate, since in 

practice the measurement of d for each crack is difficult to obtain [97], whereas, 

micrographic techniques enable easy determination of grain sizes and other surface 

microstructural features. Also the determination of d estimated in this way, although 

it may appear somewhat subjective, research work [67] has indicated that statistical 

analysis of the microstructure can adequately reflect the barriers to crack growth. 

Murtaza et al [98] using surface replica techniques found that crack growth 

retardation position of the average crack length coincided well with the prior average 

austenite grain size for a heat treated low-alloy steel. Although this is not the case for 

all materials, for instance, in some aluminium alloys the microstructural barriers are 

not so evident as to influence any appreciable retardation in crack growth [99].
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However, there appears to be reasonable confidence in relating the parameter d to the 

mean ferrite grain for a medium carbon steel.

It would appear that equation (2.10) represents reasonable analysis of MSC growth 

for polycrystalline materials although its application has been somewhat limited for 

different materials. However, several workers [96][93][55][50] have shown that for 

medium carbon steel, MSC maybe characterised adequately by the crack growth law 

in the form given below,

If a crack continues to propagate, then the transition to Stage II crack growth is 

influenced by different criteria as discussed previously and subsequently the model 

has to reflect the growth of PSC and the eventual establishment of a long crack.

2.6.3 Theoretical Model - Long Crack

Long crack growth is the region of accelerating crack growth beyond the MSC 

growth region extending to failure at a point beyond AKth, which then conforms, to 

LEFM. The threshold effects on fatigue crack growth of long cracks as they 

approached AKth are accounted for by modifying the equation (2.6) [54], which 

introduces a parameter to describe LEFM data down to the threshold [100], given by 

the equation of the form,

da/ON = C {d-d) (2.11)

d a m  = C((AK) m - ( AKth)m) (2.12)
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where AK and AKth are the stress intensity factor range and threshold respectively, 

and C and m are material constants.

Hobson [44] developed equation (2.12) to express the crack growth equation as 

function of a instead of AK in a dimensionally correct form (which implies m = 2 ), 

given by

da/dN = Bat - D ........................................................... (2.13)

where B is a stress or strain related parameter, D is a material constant and a is crack 

length.

2.7 Fatigue Life Assessment

2.7.1 Introduction

It is common for engineering components to be subjected to different states of cyclic 

stress with loading of various magnitudes. Therefore, it is necessary to have some 

form of accountability of the loading to give confidence in the working life of the 

engineering component. The question of quantifying fatigue damage sustained 

during each cycle and the necessary summation is still unanswered in certain 

complex fatigue patterns. Although obviously there is a requirement for accurate 

fatigue life prediction methodologies especially in an engineering dominated society 

we have of today. However, there appears to be no universally accepted definition of 

fatigue damage, although there have been many attempts to provide suitable
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explanations. All attempting to apply different criteria and approaches to account for 

fatigue damage. This review will examine some of the theories relevant to this work, 

to see how they have developed over the years to account for complex loading 

patterns.

2.7.2 Linear Damage Rule

The early recorded fatigue damage models date back to the 1920s and 1930s 

[101][102][103], and it is over seventy-five years since Palmgren put forward the 

hypotheses of linear summation of fatigue damage, now accepted as the - linear 

damage rule (LDR). This concept later expressed mathematically by Miner [104] in 

1945 in the form of,

D = E(nj/Nfi)=l..................................................... (2.14)

where D represents the damage, n,- the applied cycles at stress level a* and Nf, the 

total cycles to failure under constant amplitude loading.

The Palmgren-Miner rule is the most common empirical law used to predict fatigue 

life subjected to variable stress levels because of its simplicity. The fatigue damage 

(D) that occurs at the various stress levels is assumed to accumulate linearly and is 

considered to be independent of any microstructure, the possible effect of any 

micromechanism and sequential loading and/or type of loading. However, it is well 

known that if loading sequence is from low to high stress, then D>1; and conversely 

for high to low stress, D<1. Furthermore it as been shown previously [105] [106]
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and again recently [50] that fatigue damage accumulation under sequential loading 

for different types of loading is non-linear. Fatemi and Yang [107] in their recent 

survey of cumulative fatigue damage and life prediction theories also concluded that 

due to the inherent deficiencies of the LDR these are generally unsatisfactory 

irrespective of any modified version [108] [109].

To overcome the anomalies of LDR many later studies [110-112] put forward 

predictions for fatigue damage accumulation on different themes without expressing 

any definition of the physical damage mechanism. However, Manson et al [113] 

proposed a double linear damage rule (DLDR) which considered the damage process 

to have two separate linear phases, but, not necessarily associated with crack 

initiation and propagation as shown in Fig. 2.11.

The approach by Manson was built on Grover's [114] qualitative hypothesis of 

separating crack initiation and crack propagation that considered cycle ratios for the 

two separate stages in the fatigue damage process. The co-ordinates of the ’transition 

knee-point' (knee) for the DLDR theory are approximated from the following 

empirical equations

[ni/N nW  = 0.35 (Nn/Nn)025......................................(2.15)

[i /̂NcJknre — 0.65 (Nfl/Na) °’25......................................(2.16)

where the subscripts 1 and 2 represent the initial and second stress level respectively.
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Applied cycle ratio ni/Nfl 

Fig. 2.11 Diagram showing DLDR for (H-L) two level load cycling [107]

In order to refine the DLDR, Manson and Halford [113] developed a damage curve 

approach (DCA) and a subsequent double damage curve approach (DDCA). The 

DCA was developed to refine the original DLDR in order to account for 

phenomenological factors associated with the complex processes of crack growth 

such as dislocation agglomeration, sub-cell formation, multiple micro-crack 

formation and the independent growth of these cracks to form a dominant crack 

[107]. The refined DLDR knee points in a damage verses cycle ratio (D-r) plot, 

divide the damage process into two phases given by,

D k n e e  = A (Nr/N)a + w  = 1 - (1 - ,4)(Nr/n)a ................ (2.17)
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where A  and a  are material constants. The DDCA refines further the DCA by the 

addition of a linear term and with some mathematical manipulation and may be 

represented [107] of the form,

D = [(pr)k + (1 - pk) ikq]1/k............................................ (2.18)

where k is a mathematical exponent, q is a load level parameter and p is given as,

p = D k n e e /r k n e e  = [A (Nr/N)a] / (1 - (1 - 24)(Nr/N)a) ....... (2.19)

The comparisons of the DDCA to the DLR and DCA for high to low (H-L) 

interactive test for a 316 stainless steel are shown in Fig. 2.12 [113].
/

y

1.0

O 316 stainless steel0.8

0.6

DDCA
LDR

0.4

DCA
0.2

0 0.2 0.4 0.6 0.8 1.0

nj/Ni

Fig. 2.12 Comparison of DDCA to LDR and DCA for a H-L interaction test [33]
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2.7.3 Crack Growth Concepts

Cumulative fatigue damage and fatigue life theories from the 1970s to date have 

seen the continual development of crack growth concepts, because cracks are 

directly related to fatigue damage and are widely accepted.

The earlier crack growth concepts centred around LEFM which resulted in the 

development of macro crack growth models to account for load interaction effects in 

the propagation phase (Stage II). The macro-crack growth retardation model or yield 

zone model proposed by Wheeler [115], modified the Paris constant amplitude 

growth rate equation da/dN = A(AK)m by employing an empirical retardation factor 

Ci such that,

da/dN = Q [A(AK)m ] ................................................... (2.20)

where Ci = (rpj /rmax )p, and where rpj is the plastic area associated with the loading 

cycle, rmax is the distance from the current crack tip to the largest prior elastic-plastic 

area created by the overload, and the exponent p is dependent on the material and 

load spectrum.

The model proposed by Wheeler [115] assumes that crack growth rate is related to 

the interaction of crack tip plasticity affected by residual compressive stresses 

created by overloads. Another similar model [116] based on crack tip plasticity 

introduced variations in the crack tip stress intensity, A K i, to reduce this factor to an
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effective stress intensity range (AKefr ). This was to account for the increased 

residual compressive stress created by the overload.

In many instances the current design methodology based on LEFM provides an 

accurate estimate of fatigue life when the initial size of the fatigue flaw is larger than 

0.3mm [40]. There are however, a number of fatigue critical components such as 

turbine discs and blades, whose design considerations fall outside the boundary of 

LEFM. Hudak et al [117] indicated that life predictions based on LEFM may be 

non-conservative for a nickel-base superalloy - Astroloy ( a disc material for aircraft 

gas turbine engine). An area of concern that was emphasised by a review made by 

Cowles [118] in 1996, who reported that approximately 24% of fatigue failures in 

military gas turbine jet engines were as a result of HCF. Indicating that LEFM 

cannot readily account for damage in the short crack regime a region that is 

dominant in HCF, which is a view that is increasingly acknowledged today.

There is wide acceptance that components subjected to HCF require a greater 

understanding of the influence fatigue cracks having significantly smaller 

dimensions i.e. short cracks, have on fatigue lifetime. This is especially so for the 

extremely long-lifetime regime (107 < Nf < 1012 cycles to failure) where MFM and 

EPFM play a primary role in the overall fatigue life [32]. Therefore, other 

approaches for fatigue damage accumulation [105] [106] are necessary to take into 

account the effects of short fatigue cracks.

To account for damage accumulation for crack initiation and Stage I growth Miller 

and Zachariah [119] introduced an exponential relationship between crack length
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and the life for each phase, an approach which is termed - double exponent law. 

Later Miller and Ibrahim [120] modified the model such that damage accumulation 

in the short crack propagation phase is related to EPFM crack growth of the form,

ckz/dN = cj> (Ayp)a a (2 .21)

where § and a  are material constants, and yp is the plastic shear range.

More recently Miller et al [121] examined the effects of increasing stress amplitude 

for a 0.4% carbon steel and used a two-stage crack growth method to predict 

cumulative fatigue damage. Miller [121] used crack growth models proposed by 

Hobson [93] by applying derivations based on the short and long crack growth rate 

expressions of the form,

for short cracks

where A, B, C, m and n are material constants, Ayp is the plastic shear range, d 

represents the distance to the major microstructural boundary and a is crack length.

da/dN = A (Ayp )n (d -a); (2.22)

and for long cracks

<k/dN = B (Ayp )m a - C (2.23)
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Comparisons made of the above crack growth models, with the Corten-Dolan-Marsh 

method and Palmgren-Miner method for fatigue life predictions, indicated the latter 

two methods to be somewhat non-conservative as shown in.Fig 2.13.

Final Ax 
(N/mm2)

1 3 5 7 . 9  a

Cycles to failure (xlO6)

Fig. 2.13 Lifetime predictions of the three models: (i) Palmgren-Miner,

(ii) Corten-Dolan-Marsh (iii) short and long crack growth equation [42]

It is acknowledged that for sequential loading of the same stress state that non

conformity to LDR can be conservative or non-conservative, for cases where the 

load changes from L-H or H-L in the loading sequence. However, non-conformity to 

the LDR has been reported for stress-strain states that give the same endurance (4 x 

105 cycles) in reversed torsion and push-pull loading in sequential loading [51]. In 

this instance the fatigue lifetimes can be changed dramatically depending on which 

loading mode is applied first. The effects of push-pull - torsion sequential loading 

and vice versa are shown in Fig. 2.14, and where reportedly [51] the Palmgren-

180

Experimental results 
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Crack growth model predictionsPalmgren-
160

\o Corten-Dolan-

Constant amplitude140
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Miner hypothesis is approximately applicable if a single cracking system is 

dominant throughout lifetime.

1.0

0.8 

0.6

0.4 

0.2

(n /N f D
torsion 1. 0 

0.8 
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0.4
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0
0 0.2 0.4 0.6 0.8 1.0

(n/Nfp.p) push-pull

Fig. 2.14 The effects of push-pull - torsion sequential loading and vice versa [51] 

(Aa = 598 MPa, Nfp.p = 4 x 105 cycles and Ax = 413 MPa, Nft = 4 x 105 cycles)

Fig 2.14 also shows that for increasing fatigue life, the departure from Miner’s rule 

can be quite severe for such sequences and can be considerably non-conservative as 

a consequence of the variability of loading mode.

Experiments 

O (Push-pull)-torsion 

O  Torsion-(push-pull)

Palmgren-Miner

\  O
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2.8 Summary

After decades of fatigue research the understanding of complex cyclic loading is still 

incomplete and as such the answers to all fatigue related problems is still not 

definitive. Some advances have been made in particular areas of fatigue life 

assessment with the development of predictive fatigue life models, but none has 

universal acceptance. The complexity of the problem generally allows the models to 

account for only one or more factors [107] i.e. load dependence, multiple damage 

stages, non-linear damage evolution, load sequence and interaction effects, overload 

effects, small amplitude cycles below fatigue limit and mean stress. The effect these 

phenomenological factors have on fatigue lifetime, present problems in establishing 

simple predictive models that can account for cumulative fatigue damage.

The consequences of inadequate fatigue knowledge is often reflected in design 

analysis, which can be subject to compromise to allow for the unknown and 

consequently result in over-engineering and expensive monitoring of the engineering 

components in service. Therefore waste is inevitable in this context where fatigue 

behaviour is difficult to ascertain, the results of which can affect 'sustainability' 

which is a key-point made in Chapter 1.

Thus from this literature review it demonstrates objectively the necessity for the 

greater understanding of fatigue behaviour and the need to examine the effects on 

fatigue damage surrounding particular fatigue conditions that have no established 

fatigue criteria. Several workers [48] [49] [50] [96] [98] have examined the effects of 

fatigue damage accumulation under torsion and push-pull loading for different

56



loading regimes. But, the crack growth data obtained from these loading systems and 

others cannot necessarily be extended to other similar loading systems to establish 

reliable predictive fatigue criteria. This is because the unknowns surrounding crack

load interactions can differ considerably for different loading conditions and as yet 

the understanding is not complete and further research is necessary.

The current work therefore, focuses on a torsion loading case of how torsion Stage I 

crack growth and the subsequent torsion fatigue lifetimes of 0.42% carbon steel 

specimens are affected by the introduction of a non-proportional interrupted push- 

pull loading. Whereby for all the tests the fully reversed torsion loading remains 

constant for a stress range of Ax = 410MPa that corresponds to a torsion fatigue 

lifetime of 1.8 x 106 cycles. The push-pull load interruption is applied after various 

prior torsion cycle ratios of 0.22, 0.26, 0.33, 0.53 and 0.73 ni/Nfl. The prior torsion 

cycle ratios are selected so that no torsion Stage II crack growth prevails under the 

initial torsion loading. The influence on torsion fatigue life is examined under 

different push-pull load stress ranges of 600, 640, 760 and 820 MPa. The push-pull 

load interruption represents limited damage of only 4% according to LDR, chosen to 

examine the effects of minimal multiaxiality of loading on the specimens.

Furthermore as outlined in the literature review the LDR is still widely used today 

despite of its major shortcomings, which makes it extremely important that any 

deficiencies of the LDR are highlighted, especially where multiaxial loading is 

concerned. Since as shown by this case of multiaxial sequential loading, although 

the fatigue cycles of an interrupted load may seem innocuous, the effect can be more 

damaging compared to the LDR.
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Chapter 3

Experimental Work

3.1 Introduction

To facilitate this research testing programme one of the main criteria was the design 

of a new specimen-loading set-up for the biaxial test machine. This was necessary 

because the biaxial test machine used for the experimental programme had originally 

been designed and used only for fretting experimental work. Therefore a new facility 

to apply the required multiaxial torsion and push-pull loading required for this work, 

was designed, fitted and commissioned prior to the experimental test programme.

The specimen material used for the test programme was conventional industrial 

medium carbon steel.

The experimental programme involved various combinations of non-proportional 

sequential loading. The loading sequence involved initially torsion, followed by 

push-pull and then torsion to failure.

The following sections and sub-sections of this chapter outline, the material used for 

the experimental work, the specimen - profile, preparation, surface profile 

measurements, section measurements, microstructure, grain size counts, the 

multiaxial test machine and the associated new design for torsion and push-pull
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cyclic loading, the torque measurement system, the experimental procedures, test 

programme and the definition of failure for the specimen.

3.2 Material

The material used in this research work was a medium carbon steel which had the 

following specification - BS 970 080A42 cold finished bright bar manufactured to 

BS EN ISO 9002:1994. The material had the following nominal chemical 

composition (weight %), as shown in Table 3.1.

Table 3.1 Nominal chemical composition of the medium carbon steel

c Si Mn P S

0 . 4 2 1 0 . 2 1 9 0 . 7 8 0 . 0 1 1 0 . 0 0 8

The mechanical properties of the specimen material were obtained by carrying out 

tensile tests on a 20kN capacity test machine manufactured by J. J. Lloyd. Fig. 3.1 

shows the engineering stress-strain curve for the material and the specimen geometry 

used for the tensile test.

The test pieces for the tensile tests were manufactured from off-cuts of the specimen 

bar material and machined to the profile as shown in Fig. 3.1. The mean results of the 

three tensile tests were,
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Ultimate strength...................730 MPa

Yield strength........................ 499 MPa

R A ......................................... 34%

Elongation............................. 14%

800

700 -

600 -

500 -

b 400 -
212

w 300 -

200  -

25.2

100  - tensile test piece 
(dimensions in mm)

0.05 0.15 0.2
Strain

Fig. 3.1 Monotonic tension stress-strain curve

The hardness of the material was measured using a Vickers diamond indenter 

machine. Seven specimens were tested and these were indented on the largest 

diameter (25mm section - the section that was not subjected to any fatigue loading) 

using a 20kg indentation mass and the mean Vickers hardness number calculated 

from the results was 217.
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3.3 Specimen

The specimens used for the test programme were solid, having a machined hourglass 

profile as shown in Fig. 3.2.

185

({>25

R5
(j) 13

2/45

R 102.5[Dimensions in mm]

Fig.3.2 Test specimen geometry

The specimens were manufactured from 25mm diameter cold finished bright bar 

material purchased locally from a steel stockist and machined to the required profile 

using a CNC machine in the University's workshop. The specimens were not 

subjected to any specific material refining or heat treatment process, because the 

experimental tests were to study the fatigue characteristic of a material in the 

annealed and normalised ferrite and pearlite condition.

3.3.1 Specimen Preparation

The specimens were numbered prior to the preparation of the surface with a prefix 

letter T  for the constant amplitude tests and 'S' for the sequential loading tests. The
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hour glass section of the specimens was polished, first, with silicon carbide paper by 

the application of successive finer grades of 320, 400, 600, 800 and 1200, and then 

with diamond pastes of 6pm and 1pm respectively. The polishing was carried out in 

the longitudinal direction on the hour glass section in accordance with BS 3518 : Part 

3 : 1963 Section 6 - Preparation of test piece - Surface finishing paragraph (6e). The 

polished test specimens had an appropriate mirror like finish free of any machining 

marks or scratches as illustrated by the sample test specimen in Fig. 3.3.

Fig. 3.3 Test specimen 

3.3.2 Specimen Surface Profile Measurement

To ensure that the polished surface of specimens had some consistency of finish and 

an acceptable level of surface roughness, three specimens were examined using a 

Taylor-Hobson surface-measuring machine in the University's Metrology laboratory.
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The principle operation of the machine is that a diamond stylus having a radius 

profile (2pm radius) is traversed across the hour glass section of the surface of the 

specimen in a longitudinal direction. The vertical movements of the stylus are 

measured coincidentally by the machine with the aid of laser beam displacement 

technology and converted into electrical signals by the so-called gauge. Different 

types of gauges are used for varying applications of surface roughness measurement 

and the type used in this machine was a laser interferometric gauge with digital 

transducers. It is a gauge that is very responsive to stylus movement and has a gauge 

resolution in the order of lOnm. A close-up illustration of a test specimen with the 

stylus in contact with the surface of the specimen is shown in Fig. 3.4.

Fig. 3.4 Illustration of a test specimen and stylus set-up of the measuring machine

An illustration of the complete Taylor-Hobson surface measuring machine is shown 

in Appendix 1.
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The vertical movements of the stylus are converted by the transducers to digital 

outputs, analysed, and recorded by the computer interface to give the surface 

roughness measurements and graphic display. The recorded maximum values for the 

surface valley measurement ( R v )  and the surface roughness ( R a )  were 1.04pm and 

0.031pm respectively. For this work it is considered pertinent to use the R v  value for 

fatigue evaluation, since microscopic valleys are probably the likeliest sites for 

accelerated crack initiation. Although in this case not necessarily where R v  is a 

maximum on the specimen. The surface profile measurement trace recorded by the 

surface measuring machine is shown in Fig. 3.5.

208

.288 CM*

Fig. 3.5 Surface measurements of a test specimen profile

The recorded values of R v  and R a  are considered well within the acceptable levels for 

fatigue analysis since it has been suggested that crack growth from 0 to 3pm makes 

minimal difference to fatigue lifetime [30]. Therefore, the measured surface
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roughness results indicate that the method used is appropriate for the surface 

preparation of the test specimens.

3.3.3 Measurement of Specimen Section

The minimum diameter (dmjn) of the hour glass section of the specimen was obtained 

using the Societe Genovoise MU-214B universal measuring machine as shown by 

the illustration in Appendix 2. The specimen was mounted in V-supports blocks 

secured to the machine table which facilitated accurate alignment for measuring and 

enabled easy rotational movement to change measuring position. Two sets of 

measurements were taken in positions ~ 90° apart and the mean of the two results 

were taken to represent dmjn. The precise measurements for dmjn is achieved by the 

aid of the two reading microscopes which are integral with the machine and record 

displacement of the microscope attachment in the 'x\ 'y\ and 'z' planes. A spherical- 

ended 6mm-diameter microscope attachment was used for this work and the 

principle of the measuring technique is shown schematically illustrated in Fig.3.6.

The measurement of dmin by this method although it is more time consuming than the 

more conventional method of a point micrometer, accuracy is more precise and 

consistent since there is no dependency on experience and feel which is necessary 

with a micrometer. This method also has the additional benefit that its use prevents 

any undesirable surface indentations and scratches on the surface of the specimen 

that can result from the use of a point micrometer. A factor that is especially 

important for this work involving HCF testing since such surface markings could be 

sites that lead to premature crack initiation.
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spherical-ended feeler

specimen minimum diameter

displacement measured by a slide 
and prism set-up in the machine 
for stylus alignment

Fig. 3.6 Schematic of the feeler measuring system

3.3.4 Specimen Microstructure

The microstructure of the specimen consists of ferrite and pearlite grains, which is 

typical of a medium carbon steel grain structure as shown in Figs. 3.7 (a-d). The 

illustrations shown are viewed with decreasing magnification to demonstrate the 

characteristics of the ferritic and pearlitic regions of this particular medium carbon 

steel. The micrographs show the considerable differences in grain size and shape that 

are randomly distributed throughout the material. The complexity of the grain 

structure clearly illustrates the obstacles to MSC growth i.e. grain boundaries and the 

stronger pearlite regions, and why grain size in particular is important in short crack 

growth as discussed earlier in Chapter 2.
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Figs. 3.7 (a-d) Specimen grain structure (medium carbon steel)
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3.3.5 Analysis of Ferrite Grain Sizes

As discussed in Chapter 2 the modelling of short crack growth was to be based on 

the MSC growth equation (2.11). The parameter d used in the equation is 

approximated to ferrite grain sizes of the material, as illustrated in Fig 2.8.The ferrite 

grain size is used because they are the weaker grains (pearlite stronger) and cracks 

generally initiate in the larger grains as discussed in Chapter 2. Therefore the 

parameter (di) in the model is taken as the upper limit of grain size and the 

parameters (d2 , d3 , cU,...) taken as the mean ferrite grain size. Therefore the upper and 

mean ferrite grain sizes were determined from the material’s microstructure by 

preparing a sample from an unused specimen. The specimen was sectioned so that 

the surface area used for grain size analysis was taken normal to the specimen 

surface to account for any grain size directionality from previous manufacturing 

processes i.e. cold rolling operations.

The ferrite grain sizes were measured using an Image analyser in the University's - 

Materials Research Institute laboratory. The machine analyses the grain structures of 

materials and computes the grain counts using the recognised BS 4490 : 1989 - 

Micrographic determination of the grain size of steel; or the ASTM designation: E 

112-95 - Standard test methods for the determination of grain size.

The field areas for each of the ferrite grain counts was approximately 1.8 x 104 pm2 

and ferrite grains counted for the field areas that were between 32 to 89. However, to 

get a good representative sample for the ferrite grain sizes, 20 field areas were taken 

and these were chosen randomly on the prepared surface. This obviously resulted in
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varying ferrite grain sizes for each count taken, but, these differences are not 

unexpected when considering the irregularity of the grain structure of the material.

The irregularity in grain structure was also an important factor in which method was 

used for the determination of the ferrite grain sizes analytically, since grain shape can 

effect the results considerably as was found by using the interpolated grain area 

method. The best method that was considered to give the most accurate computed 

results, was the mean linear intercept method as detailed in the ASTM E 112-95. 

When the results from this method of the ferrite grain sizes for this material were 

compared against sample hand counts they were found to be in good agreement. The 

ferrite grain size results obtained by the mean linear intercept method were 

subsequently used for the crack growth model predictions.

Figs. 3.8 (a) and (b) are two of the micrographs that were used for the ferrite grain 

analysis. Correspondingly a sample field summary result sheet is shown in Fig. 3.9 

that outlines the computed data obtained from one of the micrographs that was used 

for the grain size determination, in particular the maximum and mean grain sizes. For 

information the maximum and mean grain size results used, are denoted by the max 

and mean terms respectively that are given in the field summary column in Fig. 3.9.
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Fig.3.8 (a) Micrograph of field area (1) used for grain size analysis
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Fig 3.8 (b) Micrograph of field area (5) used for grain size analysis
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Fig.3.9 A sample field summary result sheet for ferrite grain count

3.4 Multiaxial Test Machine

Multiaxial test machines vary in configuration to enable different experimental 

fatigue tests to be performed and there are a number of different types described in 

past literature [20] [29] [122]. The machine used for the current test programme is a 

closed-loop servo hydraulic test machine that comprises of four actuators, two 

positioned in the vertical axis and two in the horizontal axis. The movement of all 

the actuators are purely axial centred on the x and y planes contained within the 

predetermined structural envelope of the machine as illustrated in Fig. 3.10.
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Fig 3.10 Multiaxial testing machine set-up for torsion and push-pull cyclic loading

The control parameters for the actuators can be for either axial load (with a range of 

± 0-25 OkN), or stroke (with a range of ± 0-25mm). The electronic control unit has an 

in-built variable-phase signal generator having two oscillators of the switched 

integrator type, generating a sinusoidal waveform. There are two other auxiliary 

outputs; square and triangular wave, however, for the current works only the 

sinusoidal wave was used. One of the oscillators is variable phase, switched to be 

either leading or lagging from the other reference phase. The frequency range of the 

signal generator is from 0.01 Hz to 1kHz, although the maximum frequency 

achievable for torsion loading was of the order of 10Hz with the present hydraulic 

servo set-up.
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Fig 3.10 Multiaxial testing machine set-up for torsion and push-pull cyclic loading

The control parameters for the actuators can be for either axial load (with a range of 

± 0-250kN), or stroke (with a range of ± 0-25mm). "The electronic control unit has an 

in-built variable-phase signal generator having two oscillators of the switched 

integrator type, generating a sinusoidal waveform. There are two other auxiliary 

outputs; square and triangular wave, however., for the current works only the 

sinusoidal wave was used. One of the oscillators is variable phase, switched to be 

either leading or lagging from the other reference phase. The frequency range of the 

signal generator is from 0.01 Hz to 1kHz, although the maximum frequency 

achievable for torsion loading was of the order of 10Hz with the present hydraulic 

servo set-up.
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3.4.1 New Design for Torsion and Push-Pull Cyclic Loading

The biaxial machine used for the current test programme had no facilities to apply 

push-pull and torsion loading, so a new design arrangement had to be thought 

through, designed and manufactured. The detailed design drawings for the push-pull 

and torsion loading are outlined in Appendix 3.

The objective of the new design features was to incorporate engineering simplicity 

whilst maintaining practical functionality for the testing application. Especially for 

the application of the torsion loading which was the main consideration of the new 

design arrangement. This was because load transfer from the reciprocating actuators 

to develop the necessary shear strain on the specimen is the more complex to realise 

effectively. Also any design arrangement had to be accommodated within the 

constraints of the machine's structural envelope that encompasses the location and 

operational space of the biaxial actuators. This meant that any proposed design 

arrangement had component size limitations whilst considerations had to be given to 

the maximum design loading capabilities of the machine. Although it was possible to 

limit the load control settings to be within the constraints of the proposed design 

arrangement. To the effect that the settings were selected in the range of ± 0-50 kN 

for the axial load range and ± 0-5 mm for the stroke range to accommodate safely the 

push-pull loading and torsion cyclic straining respectively. The appropriate control 

trip settings also gave over-riding protection in the event of accidental overloading, 

but, it is important to note that the trips are only effective if the correct load and 

stroke ranges are selected.
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The new design arrangement centred on the principle to apply the torsion loading, 

since obviously load transfer for torsion loading by actuators involves a more 

complex design arrangement to that for push-pull loading. The design principle that 

met the above requirements for applying the torsion and push-pull loading is shown 

schematically in Fig. 3.11.

specimen housingpush-pull

torque plate

torque arms

____ i
torsion / torsion

■i_

machine
actuator /  rod end bearing

pivot pin

Fig. 3.11 Schematic of the principle of the loading arrangement

To eliminate any unwanted bending stress on the specimen, the torsion mechanisms 

were designed such that there was no net lateral load on the specimen due to torsion. 

The basic design arrangement for the torsion loading was achieved by bolting 

circular torque plates (see Fig. 3.11) on to the horizontal actuator load cells. To 

ensure accurate dimensional tolerance for the fit of the torque plates and specimen 

housings to the load cells. Consequently the load cell spigot bore dimensions (see Fig
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3.12) were checked in the Metrology laboratory using Societe Genovoise MU-214B 

universal measuring machine. The recorded load cell spigot dimensions are shown in 

Table 3.1 and for supplementary information a diagram of the load cell is shown in 

Fig. 3.12.

Table 3.1 Spigot dimensions of the load cells

diametrical

position

spigot axial 

position

Load cell No 

1535A

Load cell No 

1535B

Load cell No 

1535C

Load cell No 

1535D

0°

top (mm) 136.152 136.04 136.222 136.046

middle (mm) 136.101 136.028 136.211 136.031

bottom (mm) 136.068 136.009 136.182 136.022

90°

top (mm) 136.112 136.057 136.168 136.045

middle (mm) 136.078 136.047 136.146 136.027

bottom (mm) 136.073 136.013 136.108 136.018

90°

x

load cell

load cell spigot position

top

middle

bottom

section x-x

Fig. 3.12 Diagram of load cell

It is worth noting that although simpler diagonal fixings could have been designed 

for the torsion-loading requirement. The torque plates were purposely designed 

circular for positive and correct location to the existing load cell circular recessed
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spigot, ease of ensuring correct alignment for the torque arm axes (could be indexed 

drilled for accuracy) and flexibility of use for further applications.

In order to provide the necessary turning moment for the torsion loading the torque 

plate was linked to the specimen housing by torque arms as illustrated in Fig. 3.13.

r a H B f c . . a

Fig. 3.13 Illustration of torsion mechanisms

The torque arms were positioned diagonally on the torque plate to give the necessary 

horizontal offset from the actuator axis to facilitate rotational movement of the 

specimen housing. Which in turn applied the controlled shear strain to the specimen. 

The torque arm end fixings had a screw fastening to the torque plate and a bearing 

connection at the pivot pin on the specimen housing. The reason for incorporating
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end pivot bearing mechanisms was to ensure minimal backlash and thereby maintain 

a smooth load waveform with minimal peak transient effect.

The bearing mechanisms were precision rod end bearings, supplied by IKO Nippon 

Thompson having a dynamic load capacity of 2 kN, which gave a component factor 

of safety of 12:1. The rod end bearing was chosen also to afford a good fit to limit 

the tolerance in the pivot mechanism. The mechanisms were greased on assembly to 

reduce the effects of fretting, especially on the contact areas of the pivot pins, 

although any appreciable wear effects could be easily monitored by inspection after 

each test. The torque arm mechanism gave adequate control for the reciprocating 

motion whilst allowing for the relatively slight rotational movement during cycling. 

The torque arm connection to the torque plate was designed to give fine longitudinal 

adjustment to facilitate accurate set-up. This allowed precise positional control so 

that zero loading on all torque arms was achieved prior to the strain application. The 

zero load values were accurately sensed by the load cells and displayed on the 

control panel of the machine.

To prevent any rotational movement during cycling, the actuators that applied the 

torsion loading were fitted with side stabilising rod assemblies, two for each actuator. 

These were mounted on to the supporting structure of the machine as shown in Fig. 

3.14. The stabilising rods were aligned horizontally by the aid of a dial gauge, to give 

the necessary relative positional accuracy to the torque plate load cell- 

interconnecting fixture. The stabilising fixture (see Fig. 3.14) that was bolted to the 

load cell, had adjustable screws (see Fig. 3.14) that were positioned diametrically 

opposite in the hole of the fixture that the stabilising rod passed through. The screw
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design ensured that there was adequate contact pressure to give the appropriate 

degree of stabilisation, whilst affording compensation for any wear taking place as a 

result of successive testing. Even so the stabilising rod and screw faces were 

adequately lubricated by grease, prior to each test to limit wear. Although it was 

considered that any marginal amounts of wear would have an insignificant affect on 

the attitude of loading during testing.

stabilising fixture adjusting screw

side stabilising rod assembly

Fig. 3.14 Illustration of the side stabiliser rod assembly

The application of the torsion loading from the specimen housing to the specimen 

was achieved by large grub screws located diagonally opposite in the specimen 

housing, which on tightening secured the specimen in a positive drive position. The 

contact face area of the grub screw was designed to maximise the resistive moment,
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such that the diameter of the screw approximated with the face width of the specimen 

flat. The grub screws had a machined flat face that was ground finished and set-up to 

be perpendicular with the screw axis. This ensured a good contact area between the 

flat faces of the screw and the specimen on tightening. The design of the specimen 

housing also accommodated the provision to mount strain gauges that were necessary 

for the torque measurements associated with torsion loading.

For push-pull loading the specimen housings were bolted to the load cell faces of the 

two vertical actuators, again with a spigot connection for centralisation. The 

application of the load to the specimen incorporated the more conventional design 

method of split retention collets, secured in the specimen housing by a bolted spigot 

mounted collet retaining ring as shown by the design drawings in Appendix 3. The 

collet retaining ring assembly provided accurate alignment of the specimen to 

prevent any unwanted bending loads and thereby allowed the precise axial push-pull 

cyclic load application.

The new design arrangement is considered to be somewhat unique for HCF torsion 

testing, in so much that the design affords simplicity and practicability, yet it is an 

inexpensive retro-fit assembly that can be accommodated to most biaxial testing 

machines of similar construction. In this case it has extended the capabilities of the 

existing machine to perform additional experimental procedures. Especially for 

experimental work involving variability in multiaxial loading patterns for push-pull 

and torsion loading, either cyclic or monotonic and for combined or sequentially 

loaded cases.
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3.4.2 Torque Measurement System

Since the horizontal actuators in stroke control carried out the application for the 

torsion loading, it was necessary initially to calibrate the machine under this 

condition. The calibration of the horizontal actuators of the machine was carried out 

by recording displacement against an applied voltage. To achieve maximum 

sensitivity of control set-up of the machine, the minimum stroke range of ± 0-2.5mm 

was selected for the torque calibration. The accurate displacement of the actuators 

was recorded using dial gauge. The voltage was successively increased from 0 volts 

in increments of 200 mV and the displacement (mm) of the actuator recorded. The 

results are shown by the graph of displacement verses applied voltage in Fig.3.15.

L/H actuator

R/H actuator

— 2t 5 j --------------

V oltage (V )

Fig. 3.15 Graph of displacement verses voltage
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The linearity of the graph shows that the displacement of both the R/H and L/H 

actuators are proportion to the applied voltage and therefore demonstrated the 

acceptability of the machine's torsion load control system. .

It is worth noting that the calibration for the push-pull loading that involved load 

control for the vertical actuators was not necessary because the manufacturer had 

previously calibrated the individual load cells.

The torque was measured using a full Wheatstone bridge composition, made up of 

high sensitive 350 Q gauges suitable for 12V DC input. Rosette gauges where used 

for ease of installation and the gauges were cemented on to the outer centre section 

of the specimen housing in a four active gauge configuration. To maximise strain 

sensitivity whilst affording adequate strength the specimen housing had a purposely 

designed hollow cross section. Although to assist in overcoming the geometry 

constraints of the specimen housing, the gauges used were specifically selected to 

give high strain sensitivity. This also enabled less amplification of the output voltage 

from the strain gauges and in effect ensured greater accuracy of the measured torque 

imparted to the specimen. The gauges were also temperature compensated and so 

positioned on the specimen housing as to eliminate bending strain.

The DC output signal from the bridge was amplified by a FYLD (FE-379-TA) 

transducer amplifier which was part of a multi-channel modular instrumentation unit. 

The gain setting was set to within limit detection to provide the necessary stable 

signal appropriate for the required predetermined torque values and the strain gauge 

sensitivity as outlined above. A supplementary peak hold instrument FYLD (277 PH)
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processed the amplified signal to determine dynamic peak ± signal values. Peak 

values that were also continuously recorded on a chart recorder and the recorded 

results showed clearly the reduction in dynamic peak voltage (drop-off in load) with 

time as the failure criteria is reached. Fig 3.16 shows a sample recorder sheet (part) 

which outlines the drop-off in dynamic peak voltage i.e. torsion load peak values.

L/H Actuator 
recording

R/H Actuator 
recording

Fig. 3.16 A section of a chart recorder sheet showing the drop-off in peak value

A multi-channel Gould (DSO) 1604 oscilloscope monitored the signals for the above 

circuits and others from the machine control panel. The fatigue cycle count was
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recorded by an integral counting unit located on the control panel that was linked 

internally to load sensors for predetermined trip conditions.

To calibrate the bridge circuit on the specimen housing, a known calibrated special 

test specimen was used. The special test specimen having been calibrated previously 

using a certified in-house torsion machine manufactured by Avery - Birmingham.

The torque measuring system adopted is needed to eliminate any changes in 

extraneous load effects of seal friction from the actuator cylinders, effects that can 

arise from changes in oil temperature and axial load characteristics. Although the 

latter effect is not appropriate to this test programme since the axial loading was 

sequential and not combined. The full control and monitoring arrangements used 

during the testing programme are illustrated in Fig. 3.17

Fig. 3.17 Instrumentation for the test machine
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3.5 Experimental Procedure

All the fatigue tests for the complete test programme that involved fully reversed 

torsion loading and fully reversed tension-compression loading were conducted at 

room temperature and in laboratory air. The test machine control parameters were 

load control (upper actuator while stroke control for the lower actuator) for push-pull 

loading and stroke control for the torsion loading.

(Note - The control arrangement for push-pull loading having positional control set 

by the lower actuator allowed for the easy set-up for the assembly of the specimens 

to the specimen housings and also enabled the precise positioning of the torque arms 

axes).

The push-pull and torsion loading fatigue tests were carried out with R = -1. The 

torsion shear stress was calculated using the elastic analysis and no account was 

made for the hour glass shape of the specimen, since comparative evaluations to 

other similar experimental work for pure torsion was not to be undertaken. For the 

multi-phase tests the torsion stress amplitude used is close to the fatigue limit and 

therefore no elastic- plastic analysis was necessary. For the push-pull load the tensile 

stress was calculated using the applied load and the minimum cross sectional area.

The analysis of fatigue crack development and fracture of the specimens subjected to 

multi-phase loading were studied using a SEM.
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3.5.1 Test programme

The test programme set out to initially determine the fatigue characteristics of the 

material for pure torsion loading and pure push-pull loading, where 8 specimens 

were tested in each mode to obtain the respective S -N curves for the material. The S- 

N curves for both stress states were required for the determination of the material 

constants used in short crack growth models.

For the main experimental test programme 17 specimens were tested which involved 

multi-phase tests of non-proportional loading sequences. Tests which comprised of 

fully reversed torsion loading followed by a push-pull load interruption and then a 

continuation of the initial fully reversed torsion loading to failure as shown in Fig 

3.18.

Stress

push-pull 
phase 2torsion 

phase 1
torsion 
phase 3

\J V

n2 cyclesni cycles n3 cycles to failure

A

A L

Ax Ac

y

Fig. 3.18 Non-proportional loading sequence
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The multi-phase test programme was undertaken to establish the effect the push-pull 

load interruption had on the fatigue crack growth and how this subsequently affected 

the torsion fatigue life. The interruption is considered to influence the propagation of 

the Stage I and or Stage II cracks developed under the initial and final torsion 

loading. The degree of influence being dependent mainly on the amplitude of the 

push-pull loading and the prior torsion fatigue cycle ratio since the cyclic torsion 

loading remains constant. The selected push-pull load ranges were all above the 

material’s fatigue limit.

All the specimens for the fully reversed torsion loading were subjected to the same 

stress amplitude of Ax = 410MPa corresponding to 1.8 x 106 cycles to failure. For the 

initial torsion loading (Phase 1) the fatigue cyclic ratio ni/Nn was varied (0.22- 

0.73Nfi), followed by the push-pull load interruption (Phase 2). The push-pull fatigue 

cycle ratio was chosen to represent a very low damage interruption (112 = 0.04Nf2) 

with stress ranges of 600, 640, 760 and 820 MPa. The final torsion loading (Phase 3) 

continued with the same loading as Phase 1 until failure.

3.5.2 Definition of Failure

The definition of failure varies with the perceptions of different investigators for 

their particular work undertaken as outlined in supporting literature. For instance in 

strain controlled torsion tests, where there is a stress gradient, failure may be defined 

at the point in time when the specimen cannot sustain a significant load [123] i.e. 

load instability due to rapid development of cracking. Other investigators have used 

failure criterion such as crack length [124] [125], the percentage drop off in torque
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amplitude [126] or the torsion load carrying capacity radically changed [127], and 

the complete fracture as for push-pull loading [49], which is probably the simplest of 

all the failure definitions.

Although the different failure criterion used cannot be considered definitive for any 

particular test, this may offer parameters that can be used for future comparative tests 

by other workers. However, the definition of failure is associated with the inability to 

sustain the applied load for a given condition and can obviously be interpreted in 

many different ways. For this work programme failure is defined below;

For push-pull and torsion constant amplitude tests the fatigue lifetime was taken at 

the instant of complete rupture of the specimen. This criterion was chosen since the 

comparative evaluation of crack growth to failure is more precise (necessary for 

crack growth modelling). It was also easier practically to determine failure this way 

from the control aspects of the machine because the test machine had no under-load 

control facilities.

For the multiphase tests failure was determined by a 10% reduction in the steady 

state torsion loading which reflected the development of a Stage II crack system. 

Whereas non-failure was taken to be an endurance limit equivalent to a number of 

fatigue cycles of Zn/Nf > 2.45.
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Chapter 4

Test Results

4.1 Fatigue Results

4.1.1 Push-Pull Cycling

To obtain the fatigue endurance curve for push-pull cycling 8 specimens were tested 

and the experimental results are presented in Table 4.1.

Table 4.1 Push-pull fatigue lifetime results

Specimen

No

Specimen 

Diam. (dmin)

±P

kN

A ct

MPa

Nf (p.p) 

Cycles

T1 7.971 20.5 820 1.846 x 104

T2 7.956 18.9 760 3.877 x 104

T3 7.984 17.5 700 6.603 x 104

T4 7.973 17.0 680 1.462 xlO 5

T5 7.980 16.3 640 2.378 xlO5

T6 7.974 15.5 620 5.197 x 105

T7 7.979 15.0 600 4.418 x 106

T8 7.982 14.5 580 > 107
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As discussed in Chapter 3 the push-pull fatigue lifetime (Nf*p-p)) was taken at the 

instant of complete rupture of the specimen. The graph of the push-pull fatigue 

endurance data and the representative fatigue curve are shown in Fig. 4.1. The best- 

fit push-pull fatigue endurance curve determined by regression analysis could be 

described as follows,

Act (Nf)005= 1256.4!.................................................... (4.1)

900

800 -

•  unbroken

700 -

03

w 600 -

- 0.05Ac = 1256.4Nf(p.p)'

500 -

400 A------
1.00E+04 1.00E+05 1.00E+06

Log number of cycles to failure Nf(p.p)
1.00E+07

Fig. 4.1 Fatigue endurance curve for push-pull
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4.1.2 Fully Reversed Torsion Loading

To obtain the endurance curve for the fully reversed torsion loading, 8 specimens 

were tested and the experimental results are presented in Table 4.2.

Table 4.2 Torsion fatigue lifetime results

Specimen

No

Specimen 

Diam. (dmin)

ATorque

Nm

At

MPa

Nf(t)

Cycles

T9 7.948 55.2 530 6.090x10“

T10 7.914 51.6 495 1.583 x 10“

T il 7.968 48.7 460 2.852 x 105

T12 7.970 45.7 435 5.231 x 10s

T13 7.972 43.8 425 8.512 xlO 5

T14 7.951 41.5 415 1.297 xlO 6

T15 7.960 40.7 410 1.784 x 106

T16 7.975 37.8 385 >107

As discussed in chapter 3 the torsion fatigue lifetime was taken at complete failure of 

the specimen. The graph of the torsion fatigue endurance data and the representative 

fatigue curve are shown in Fig. 4.2. The best-fit torsion fatigue curve determined by 

regression analysis could be described as follows,

At (Nr)0'0649 = 1052.7 .................................................. (4.2)
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Fig. 4.2 Fatigue endurance curve for torsion 

4.1.3 Multi-Phase Loading

Fatigue tests under multi-phase loading were conducted such that three loading 

phases were carried out sequentially i.e. Phase 1 - fully reversed torsion loading, 

followed by Phase 2 - push-pull cycling and finally Phase 3 - fully reversed torsion 

loading to failure. In all 17 multi-phase tests were conducted and the results are 

shown in Table 4.3.
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Table 4.3 Multi-phase loading fatigue lifetime results

Specimen

No

Torsion 

ni/Nfi 

(Phase 1)

Push-Pull 

Ac (MPa) 

(Phase 2)

Torsion 

n3/Nf3 

(Phase 3)

S n/Nf 

Exp.

SI 0.22 600 1.35 1.61

S2 0.33 600 2.25 >2.62

S3 0.53 600 2.13 >2.70

S4 0.73 600 2.02 >2.79

S5 0.22 640 2.24 >2.50

S6 0.33 640 2.25 >2.62

S7 0.53 640 2.01 >2.69

S8 0.73 640 2.00 >2.77

S9 0.22 760 0.43 0.69

S10 0.26 760 0.49 0.75

S ll 0.33 760 0.50 0.88

S12 0.53 760 0.87 1.44

S13 0.73 760 0.96 1.73

S14 0.22 820 0.45 0.71

S15 0.33 820 0.36 0.67

S16 0.53 820 0.21 0.78

S17 0.73 820 0.55 ' 1.32

Where in Table 4.3 the torsion stress range Ax = 410MPa, and for the Phase 2 push- 

pull loading the number of cycles are A c  600MPa = 1.8 x 105 cycles, Ac 640MPa =

1.5 x 104 cycles, Ac 760MPa = 2.5 x 103 cycles and Ac 820MPa = 8.6 x 102 cycles.
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4.2 Grain Size Measurements

The results of the grain size analysis are presented in Table 4.4.

Table 4.4 Results of ferrite grain size analysis

Field Count 

No

Mean Grain Size 

(pm)

Upper Grain Size 

(pm)

1 4:669 20.137

2 7.181 34.520

3 6.876 40.011

4 4.884 21.986

5 5.014 28.151

6 5.357 31.633

7 5.460 30.816

8 6.751 36.161

9 4.891 18.775

10 6.058 27.593

11 7.316 25.890

12 5.271 38.612

13 6.492 23.781

14 5.874 29.593

15 6.981 32.701

16 6.432 27.771

17 4.965 23.897

18 7.053 39.105

19 . 6.084 27.953

20 6.310 24.679
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The ferrite grain size measurements used for the model parameter d were calculated 

for the material from the micrographs field areas as outlined in Chapter 3, to give a 

representative values for the upper and mean grain sizes. Both the upper and mean 

grain sizes were taken as the mean value of 1(20 field counts) respectively. The 

upper and mean ferrite grains sizes calculated from the results of the grain size 

analysis presented in Table 4.4 and are given below,

and therefore the MSC growth model values approximated to the above such that,

dupper = 583.777 / 20 = 29.1pm (4.3)

d m e a n  =119.936 / 20 = 5.996 pm (4.4)

di is taken as - 29pm (4.5)

d2, d3, etc. are taken as - 6pm (4.6)
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Chapter 5

Fatigue Crack Growth Modelling

5.1 Introduction

It is well established that the fatigue behaviour of metals can be described by three 

distinct regimes each having a different analytical approach to characterise crack 

propagation behaviour [128] i.e. MSC - MFM, PSC - EPFM and long cracks - LEFM 

as described in Chapter 2. Fatigue crack growth models developed to reflect these 

various stages of crack growth can prove difficult to realise for some cases where 

complex loading conditions are involved. This is particularly so for cases where short 

crack growth is the dominant fatigue process of the total- fatigue lifetime. Especially 

where distinct phenomenon such as the deceleration and acceleration patterns of 

crack growth play significant roles, the effects of which have been attributed to the 

interaction of crack-tip plastic zone with microstructural barriers to plastic flow. 

Although Hong et al [78] suggested that the fatigue damage process involving short 

cracks in metallic materials might present collective evolution characteristics in that 

fatigue damage may result from a large number of dispersed short cracks, combined 

with grain size and the grain-boundary obstacle effects. Crack growth models have to 

take account of these effects if they are to be representative of the actual crack 

growth behaviour associated with a particular complex loading system. This is 

particularly so in HCF since short crack growth represents a significant proportion of 

the fatigue lifetime and any effective changes in stress-strain state can readily 

influence micro-crack growth mechanisms. Ibrahim [49] and Zhang [50] have shown
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separately this to be the case for two-stage loading conditions where fatigue crack 

growth can be affected considerably depending on which stress-strain state is applied 

initially. Indicating that different loading conditions present formidable problems in 

modelling crack growth behaviour.

The experimental work carried out in this research programme featured multi-stage 

loading patterns that similarly influenced the underlying crack growth mechanisms, 

which had a pronounced effect on crack growth. Crack growth mechanism that 

produced distinct crack growth patterns, the consequence of which affected the 

fatigue lifetimes of the specimens considerably.

Crack growth models were developed to predict the fatigue behaviour of the medium 

carbon steel used in this research programme, for the push-pull and torsion constant 

amplitude tests, and the crack growth behaviour and fatigue lifetimes for the multi

phase loading

5.2 Crack Growth Models

The crack growth models developed for this work are based on short and long crack 

growth models proposed by Brown-Hobson [97]. The models describe both the Stage 

I shear crack development or short fatigue crack growth regime which is suggested to 

reflect MFM after Miller [33], and the Stage II tensile crack propagation or PSC and 

long crack growth regime corresponding to EPFM and LEFM analysis respectively.

The short fatigue crack equation may be expressed in the form,
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(W dN  = A(A<j)m {d - as) (5.1)

where A and m are material constants, Aa represents the applied stress range, d refers 

to the distance to successive microstructural barriers and as is crack length for a short 

crack.

Thus equation (5.1) represents the crack growth process which experiences 

retardation and acceleration in crack growth, that is governed by the balance of local 

driving and the resistive forces associated with periodic microstructural barriers [37]. 

The fatigue crack will continue to grow if the applied stress level is sufficient to 

overcome the dominant microstructural barrier and so develop into a PSC as the start 

of the long crack regime. At this transitional point in crack growth the role of the 

microstructure diminishes. The PSC equation may be expressed in the form,

where B, D and n are material constants and ap is the length of a PSC.

The parameter D in the original Brown-Hobson model, is determined by invoking a 

threshold condition i.e. dfl^dN = 0 in equation (5.2) such that;

dfl//dN = £ ( A a ) Bf lp -Z > (5.2)

D = B(Av)nath (5.3)

and

ath =  2(&K,h ) 2 /  [7 t(A e)2 Y 2 E 2] (5.4)
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where AKth is the threshold stress intensity factor range, E is Young's modulus and Y 

=  2/ t l

5.3 Fatigue Lifetime Models

For the purpose of this work computer programs were developed for torsion using 

torsion S-N fatigue data to predict push-pull fatigue data, based on the short and long 

crack equations (5.1) and (5.2). The crack growth models are purely stress state 

dependent for a given material and no account of load interaction on crack growth is 

considered whereby interrupted crack growth could occur. The models assume only 

uninterrupted crack growth for the loading cases. The predicted fatigue damage was 

derived by the summation of the MSC and PSC phases by integrating equations (5.1) 

and (5.2) of the form,

for MSC growth

ckz/dN = Cm (d\ - a) (5.5)

where Cm is stress state dependent rate such that;

for torsion

Cm(t) =A( Az)m (5.6)

and for push-pull

C m(p.p, = /f(Ac)m (5.7)
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NfS = (1/ Cm) In [{d - a0) !{d- alf\ (5.8)

where A and m are material constants, d is the distance to microstructural barrier 

(pm), a0 is the surface finish (pm) and at represents the transition point to physically 

small crack (pm), determined from equations (5.7) and (5.10) at the threshold 

condition i.e. da/dN = 0.

For PSC growth .

da/dN = Cptf-£>............................................................ (5.9)

where Cp is again stress state dependent such that;

for torsion

Cp(t)= B{&x)n ................................................................ (5.10)

and for push pull

C p (p-p )=     (5.11)

Nfp= (1/Cp) In [{at - D/B(Ao)n) /(af -D/B{Aa)")].......... (5.12)

where B, D and n are material constants and a/ corresponds to failure crack length 

(pm).
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The value for aQ here was taken to be (2 pm), the rounded-up equivalent of Rv which 

was determined from the measurements of the surface finish of polished untested 

specimens as outlined Chapter 3. For af this was taken to be half the minimum 

diameter of the specimen i.e. dmin/2 = 4000 pm. The total lifetime is the summation 

of the short and long crack fatigue lifetimes,

Nf = NfS + Nfp.....................................................................(5.13)

5.3.1 Determination of the Parameter d for the Model

In the short crack growth equation (5.1) the parameter d represents a crack length 

when the crack growth rate decreases to a minimum, corresponding to a position 

where the crack front meets a main microstructural barrier i.e. grain or phase 

boundary. Several workers have employed different methods to establish this 

parameter and Hobson [93] obtained d by applying a least-square fit to data points 

for crack growth rate (da/dN) versus the average crack lengths, approximated to 

where a marked retardation in crack growth was observed. The value of d was taken 

from the extrapolated least-square regression line at the point of intersection with the 

abscissa. Murtaza and Akid [98] using the same method reported some variations for 

d from the experimental analysis and suggested this was associated with the physical 

nature of the material, reflecting variations in grain size. Carbonell and Brown [96] 

used a different method to obtain d from empirical data by a best-fit third order 

polynomial passing through the origin. The point of inflexion of the polynomial was 

taken as the value of d that corresponded to minimum crack growth rate. Mohamed 

[129] used a more direct method and measured the value of d physically from plastic
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replicas and applied this value individually to each crack. Although, for this method 

the precise measurement of d could prove difficult to establish if cracks continue to 

propagate into the next grain. As discussed in Chapter 2 Zhang [50] however, used a 

method, which avoided numerical calculation, or plastic replica observations by 

equating d from the statistical evaluation of measured grain sizes.

For the current work the value of d was equated to the ferrite grain size of the 

material, since the weaker ferrite grains are generally the sites for microcrack 

initiation and Stage I crack growth. The method used here is considered appropriate 

since short crack growth is strongly dependent on microstructure, particularly for 

lower stress levels. The quantitative analysis of the microstructure of untested 

material was carried out using a Buelher Omnimet Imaging analyser and was based 

on the mean linear intercept method to analyse the ferrite grain sizes. The analysis 

was performed on ferrite grains from a surface area of the specimen, which was 

carefully sectioned with the grain structure coincidental with the longitudinal axis of 

the specimen. Some grains however, proved difficult for the system to distinguish, 

even though the final polish using ’Silico-Colloidar before etching achieved a highly 

polished surface finish. This was mainly where a few small ferrite grains had some 

minor dispersions of cementite, but, not characteristic of a pearlite region. 

Consequently some grains were ignored in the count by size limitation, but, the 

number was not considered to be significant in the statistical analysis of the field 

counts taken. The upper and mean grain sizes were calculated from the 20 field 

counts as outlined in Chapter 4. The grain sizes were based on ~ 657 grain 

measurements such that the upper grain size was calculated to be 29.1pm and the 

mean grain size calculated to be 5.996pm.
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Therefore, dj for the model is taken to be approximated to the mean of the upper 

bound grain sizes -such that dj = 29 pm, which is considered to be representative of 

the crack initiation site, since it is has been observed that cracks generally initiate in 

'large' ferrite grains [50]. The subsequent barrier lengths dj, d2, etc• are taken as dj plus 

the mean of the mean grain sizes which was calculated to be = 6 pm. Therefore the 

parameters di = 29pm, d2 = 35pm, d$ = 4 lpm...etc.

5.3.2 Definition of Plastic Zone at Grain Boundaries

The model assumes a crack retardation threshold condition where (da/dN -» 0) for 

crack advance in the first and subsequent grains to represent the characteristic of 

crack development as it approaches a grain boundary such that;

as = W -rP(S)).................................   (5.14)

where rP(S) is taken to represent the extent of plastic slip zone ahead of the crack tip 

for MSC growth, that theoretically corresponds to a critical point where rP(S) is 

restricted by the microstructural boundary at the instant crack propagation continues 

into the next grain as shown in Fig. 5.1.

The above threshold position represented by equation (5.14) is similar in principle to 

the approach of Zhang [50] who proposed that;

as = (ccdi) (5.15)



where a  is dependent on the microstructure of the material and who used an arbitrary 

value for a -  0.95. Therefore, a  can be related to plastic deformation ahead of the 

crack tip as suggested in equation (5.14) such that;

a = [ l - ( r p(s)/d /)].................................................................(5.16)

The threshold condition for the crack to advance to the next grain is consistent with 

the theory of continuously distributed dislocations to represent the activated slip 

region ahead of the crack tip which has been postulated by several authors 

[131][91][132].

surface

Fig. 5.1 Schematic showing plastic slip zone rP(S)for MSC

104



The model in effect corresponds to the onset of the fatigue process where the plastic 

slip deformation is caused by the movement of edge dislocations with Burger’s 

vector along the x direction [38] i.e. parallel to the plane of the crack. Conditions that 

are synonymous with MSC growth where dislocation movement is blocked to an 

extent as the crack approaches a grain boundary. The growth rate at this point falls in 

response to the diminishing plasticity [50], or probably more accurately described as 

a result of the reduction in slip band formation since MSC growth is of the order of 

microstructural features [132]. However, if the crack is to proceed into the next grain 

and to overcome the blocking response of the microstructural barriers, Navarro and 

Rios [133] suggested that the shear stress (r) ahead of the crack tip must be greater 

than the back stress (c>b), where Gb equates to the resistance to motion of dislocations 

by the ensuing barrier.

The crack retardation threshold can be expressed in terms of crack and crack-tip 

plastic zone relationship by the Bilby, Cottrell and Swinden model [90], for a freely 

slipping crack of the form;

ajdi= cos ( t i t  /  2 G b ) (5.17)

or,

as= [cos ( t i t  / 2 G b ) ] .  di (5.18)

or,

as-  (adj) (5.19)

where a  = [cos (m  / 2 Gb)]
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and

r p(s) = di [1-cos (71X / 2ab)] (5.20)

Whilst recognising that crack advance is generally associated with some order of 

plastic deformation, rp(S) being on a microscopic scale is physically somewhat 

indeterminate. However, Navaro and Rios [133] suggested that crack growth will 

progress beyond a barrier when the stress concentration ahead of the plastic zone 

reaches a critical value related to the initiation of slip in the next grain. In this context 

adi could be approximated to the point for crack growth into the next grain and the 

value a  in equation (5.25) which is obviously < 1 is therefore taken to be 0.95, same 

as that used in other similar work [50]. Therefore this representation of a critical 

crack length corresponding to a point within the grain that allows passage beyond the 

grain boundary can be considered consistent with the slip hypothesis put forward in 

the Navaro and Rios model.

5.4 Computer Modelling for Predicted Fatigue Lifetimes

5.4.1 Torsion and Push-Pull Loading

Computer model programs were developed to determine the predicted fatigue 

lifetimes for fully reversed torsion and push-pull cycling fatigue-loading conditions 

by utilising the Excel computer software package. These constant amplitude 

predictions were the first step for the later development of a computer program for 

multi-stage loading. The short and long crack growth equations (5.5) and (5.9) were
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used to generate the S-N curves for torsion and push-pull to correlate calculated 

fatigue data to experimental S-N data by graphic interpolation.

The material constants A, B, D , m and n in the short and long crack growth equations 

(5.6) and (5.10) are dependent on the material's individualistic microstructural 

characteristics and are normally determined empirically. This is because even for 

similar materials the determination of the material constants in this way generally 

results in some variations, since they are derived from crack growth data. However, 

for this research work the material constants were determined from the experimental 

S-N fatigue data for the material. This method was considered to be of significance 

since S-N data is generally widely available for different materials. Yet, beyond its 

minimalist use for the representation of a materials fatigue endurance characteristics 

and comparative evaluation against other materials, the data becomes limited for 

further work. This approach however, presented some problems initially, because, 

since fatigue data represents both the MSC and PSC growth phases, the material 

constants are difficult to resolve mathematically. Therefore, another approach was 

developed to determine the material constants by utilising computer technology

Modem computer-based techniques such as mathematical modelling and finite 

element analysis (FEA), are increasingly used in engineering research activities to 

enable designs to be synthesised and analysed so that aspects of performance can be 

measured. Therefore, since material constants for short and long crack growth 

equations are difficult to determine from S-N data by other methodologies, it is 

considered appropriate in this case where extensive iteration procedures are 

necessary to use computer technology.
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The computer programs for torsion and push-pull loading were developed initially to 

examine the validity of the short and long crack growth equations against the 

experimental results obtained. The fatigue limit in the computer model is equated to 

the experimental data for both stress states by invoking a fatigue threshold condition 

whereby the long crack fatigue lifetime equals zero;

N f j ,  (fatigue lim it) ~  0 ............................................................................................................. ( 5 . 2 1 )

The predicted fatigue lifetime calculated by the model assumed an idealised crack 

growth pattern whereby at the start of fatigue cycling a crack propagates from a 

defect size on the surface of the specimen and continues to grow until a failure 

criterion is reached. This short crack growth behaviour is determined by the 

collective MSC and PSC growth phases and the degree of influence each has, is 

dependent on the stress amplitude, loading mode and the material parameters specific 

to that material. As discussed in detail in Chapter 2, MSC growth is known to be 

particularly affected by the material's microstructure and the effect is more 

significant at lower stress amplitudes.

Fig.5.2 shows diagrammatically the representation of short crack growth outlining 

the MSC and PSC growth phases, the surface crack length <2 , the transitional crack 

length (at), the surface finish aQ, the material parameter D and microstructural barrier 

lengths di, d2 , d3 ....etc. The parameter D in the model is represented by the slope of 

du/dN versus the surface crack length a where the theoretical projected linear 

extension for PSC growth intercepts the da/dN axis (see Fig 5.2). Zhang [50] 

assumed the value at the point of intersection to be the 'short crack growth threshold'
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since dfl^/dN = 0. Therefore, the parameter D represents physically the Stage II crack 

growth rate threshold where ath is dependent on the applied stress range.

MSC growth 
[da/dN = CmM-fl)]

O-th

microstructural barrier length

Fig 5.2 Diagram showing representation of short crack growth

It can be seen in Fig.5.2 that the Stage I to Stage II crack growth transition point is at 

grain 3. This is an arbitrary position taken to show the representation of crack growth 

through subsequent grains that can occur if the stress amplitude is high enough. If 

however, the stress amplitude is of a higher magnitude then the transition to Stage II 

crack growth can occur at a lesser grain number as shown by the dotted arrows in
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Fig.5.2. Therefore for a given material and loading mode the transition point for 

Stage I to Stage II crack growth in the model is governed by the stress amplitude.

Computer programs were developed to correlate the experimental S-N data recorded 

for push-pull and torsion loading as the starting point for the later development of a 

computer program for multi-phase loading. The material constants were determined 

by theoretical analysis using the computer programs and applying iteration 

techniques, to the base values of known material constants obtained experimentally 

for a medium carbon steel [50]. This enables a best-fit analysis to be achieved for the 

material constants for the short and long crack growth equations. This is considered 

an acceptable method by the analysis of S-N data, since short and long crack growth 

equations are the collective representation of fatigue lifetime above the fatigue limit. 

The material constants obtained using the crack growth model equations (5.5) and 

(5.9) that gave good approximation to the torsion and push-pull S-N fatigue data are 

outlined below;

A = 1.800 xlO ' 39  

B = 6.523 x 10' 27  

Z> = 3.74x 10"3 

m = 13.400 

n = 8.129

The MSC and PSC growth equations were derived accordingly and are given as, 

for MSC growth
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da/dN = 1.800 x 10‘35 (Ate, , ) 13-400 (d-d) (5.22)

where Axeq =p Axmax

and p = 1 . 0 .............for torsion

P = 0.59..........for push-pull

and for PSC growth

da/dN = 6.523 x 1 0 ‘27 (Atjeq)8129 a - 3.74 x 10'3 ........ (5.23)

where Acjeq = <|> Aamax

and (j) = 1 . 0 ......... for torsion

(j) = 0.79........for push-pull

Note: plots using the above models are compared to the S-N results for torsion and 

push-pull and are shown subsequently in Figs 5.4 and 5.5 respectively.

5.4.2 Multi-Phase Loading

The crack growth model for multi-phase loading was developed by utilising the 

models developed for the torsion loading and push-pull to characterise the fatigue 

crack growth for any particular loading condition. The model accounted for crack
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growth and the cumulative damage sustained during the three cyclic loading phases 

i.e. torsion (Phase 1), push-pull (Phase 2) and torsion (Phase 3) to failure. Such that 

crack growth for the torsion and push-pull load interruption could be predicted for 

the cycle ratios respectively and the subsequent predicted torsion fatigue lifetime 

evaluated.

The multi-phase crack growth model reflects the crack growth from the onset of 

fatigue cycling with no account for crack nucleation. Each of the loading phases 

thereby accounts for the damage sustained by a pseudo dominant crack that 

continues to propagate during each phase unless the predetermined failure crack 

length is attained. The model can derive the crack length under Phase 1 for any 

conditions i.e. stress amplitude and number of cycles applied. Whereon the crack 

growth sustained in Phase 1 determines the initial crack size for Phase 2 and whether 

Stage I or Stage II which is dependent on applied stress amplitude of Phase 2. The 

model predicts the final crack position of Phase 2 again depending on the stress 

amplitude and the number of cycles applied during this phase. The crack growth 

starting point for the final Phase 3 from phase 2 and the number of cycles to failure is 

then computed for Phase 3 for any given stress amplitude . The model determines the 

transitional stage from Stage I to Stage II crack growth during any of the phases and 

establishes the number of cycles in Phase 3 corresponding to the predetermined 

failure crack length i.e. fatigue failure.

The procedural steps adopted for the multi-phase loading are shown in the flow chart 

in Fig. 5.3 and the computer program (part) for multi-phase loading (torsion - push- 

pull - torsion -» failure) is listed in Appendix 4.

112



Fatigue data

Torsion S-N data Test data

Ax

'fl(t)
Microstructural data

Specimen surface data

TORSION 
(Phase 1)

NoYes

PUSH-PULL 
(Phase 2)

NoYes

TORSION 
(Phase 3)

Fig. 5.3 Computer program flow chart for multi-phase loading
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5.5 Predicted Fatigue Lifetimes

5.5.1 Fully Reversed Torsion Loading

The experimental results obtained for the cyclic torsion loading are compared with 

the model predicted lifetimes results and are presented in Table 5.1.

Table 5.1 Comparisons of experimental and predicted lifetimes for torsion loading

Ax

MPa

Model 

Lifetime (NfS(t))

Model 

Lifetime (Nfp(t))

Total Nf(t)

Nfs(t) + Nfp(t)

Experimental

Results

530 2.324 x 103 7.134 xlO 4 7.367 x 10“ 6.090 x 104

495 1.289 x 104 1.258 x10s 1.381 x 10s 1.583 x 10s

460 6.578 x 104 2.779 xlO 5 3.437 x 10s 2.852 x 10*

435 2.322 x 103 3.673 x 10s 5.995 x 10s 5.231 x 105

425 3.884 x 10s 4.057 x 10s 8.391 x 10s 8.512 x10s

415 6.586 x 105 5.250 xlO 5 1.184 x 106 1.297 x 106

410 8.579 x 10s 5.966 xlO 5 1.454 xlO 6 1.784 xlO 6

385 3.403 x 106 9.503 x 10s 4.353 x 106 > 1 0 '

The torsion constant amplitude loading model predicted lifetime results are in good 

agreement with the experimental results as can be seen in Table 5.1. It further shows 

that the crack growth behaviour for this particular medium carbon steel subjected to 

torsion constant amplitude loading can be represented by the crack growth rate 

equation (5.5) for the MSC growth phase and (5.9) for the PSC growth phase.
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The torsion experimental fatigue data and the model fatigue curve are shown in Fig. 

5.4. The Excel spread sheets outlining the computed results for the model torsion 

loading tests are shown in Appendix 5.1

600

550 - model

specimen 
not failed

2  500 -

0 5

|  450 -

S 400-

350 -

300 -!-----
1.00E+04 1.00E+05 1.00E+06

Log number of cycles to failure N|

1.00E+07

Fig. 5.4 Model fatigue curve (torsion)

5.5.2 Push-Pull Loading

The experimental results obtained for the cyclic push-pull loading are compared with 

the model predicted lifetimes results and are presented in Table 5.1.

It can be seen in Table 5.2 that the model predicted lifetime results are in good 

agreement with the experimental results. It further shows again as for the torsion case
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that the crack growth behaviour for this particular medium carbon steel subjected to 

push-pull constant amplitude loading, can be represented by the crack growth rate 

equation (5.5) for the MSC growth phase and (5.9) for the PSC growth phase.

Table 5.2 Comparisons of experimental and predicted lifetimes for push-pull loading

A a  

MPa

Model 

Lifetime (Nfs(p.p))

Model 

Lifetime (N^(p.p))

Total Nf(p.p)

Nfs(p-p) + Nfp(p-p)

Experimental

Results

820 2.290 xlO2 1.659x10“ 1.682x10“ 1.846x10“

760 1.308 x 103 3.317x10“ 3.448 x 10“ 3.877 x 10“

700 3.723 x 104 5.701x10“ . 9.425 x 10“ 6.603 x 10“

680 5.784 x 104 7.761 x 10“ 1.354 x10s 1.462 x10s

640 3.347 x 105 1.299 xlO 5 4.647 x 105 2.378 x 105

620 7.496 x 106 1.717 x 106 9.213 x 105 5.197 x 103

600 1.659 xlO6 2.321 x 105 1.891 x 106 4.418 xlO 6

580 3.718 xlO6 2.815 x 106 3.999 x 106

["*oA

The pull-push experimental fatigue data and the model fatigue curve are shown in 

Fig. 5.5. The computed predictions for push-pull and torsion constant amplitude 

loading are outlined on the spreadsheet in Appendix 5.
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900

800 - model

specimen
unbroken

CD

600 -

500 -

400 -----
1.00E+04 1.00E+05 1.00E+06

Log number of cycles to failure Nf(p_P)
1.00E+07

Fig. 5.5 Model fatigue curve (push-pull)

5.5.3 Multi-Phase Loading

The model fatigue lifetime predictions are compared with experimental results 

obtained for multi-phase loading as presented in Table 5.3. It can be seen clearly in 

Table 5.3 that the model predictions are not in agreement with the experimental 

fatigue lifetime results, where interrupted crack growth has occurred and the torsion 

fatigue lifetime has been enhanced considerably under the lower interrupted loads. 

The model however, does give conservative predictions for all cases, which is 

significant since fracture can be dangerous and is generally the foremost requirement 

in most practical cases. The computed predictions for multi-phase loading are 

outlined on the spreadsheets in Appendix 6 and 7.
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Table 5.3 Predicted and experimental lifetimes for multi-phase loading

Test

No

Torsion 

ni/Nfi 

(Phase 1)

Push-Pull 

A g  (MPa) 

(Phase 2)

Torsion 

n 3 /No 

(Phase 3)

£ n/Nf 

Exp.

£ n/Nf 

Model

SI 0.22 600 1.35 1.61 0.386

S2 0.33 600 2.25 >2.62 0.429

S3 0.53 . 600 2.13 >2.70 0.581

S4 0.73 600 2.02 >2.79 0.770

S5 0.22 640 2.24 >2.50 0.469

S6 0.33 640 2.25 >2.62 0.512

S7 0.53 640 2.01 >2.69 0.664

S8 0.73 640 2.00 >2.77 0.845

S9 0.22 760 0.43 0.69 0.678

S10 0.26 760 0.49 0.75 0.571

S ll 0.33 760 0.50 0.88 0.568

S12 0.53 760 0.87 1.44 0.706

S13 0.73 760 0.96 1.73 0.884

S14 0.22 820 0.45 0.71 0.681

S15 0.33 820 0.36 0.67 0.570

S16 0.53 820 0.21 0.78 0.707

S17 0.73 820 . 0.55 1.32 0.886

Where in Table 5.3 the torsion stress range A t  = 410MPa, and for the Phase 2 push- 

pull loading the number of cycles are A g  600MPa = 1.8 x 105 cycles, A a  640MPa =

1.5 x 104 cycles, A g  760MPa = 2.5 x 103 cycles and A g  820MPa = 8.6 x 102 cycles.
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Chapter 6

Discussion

6.1 Fatigue Damage Accumulation

6.1.1 Introduction

The accumulation of fatigue damage generally results in fatigue failure irrespective 

of whether the load cycles are uniform or of irregular manner. Although loading 

cycles of more irregular manner can result in a more complex accountability of 

fatigue damage. Therefore, for cases involving the lifetime predictions of 

complicated cyclic loading programs this has been referred to as the cumulative 

damage problem [134]. Notably since the Palmgren damage accumulation concept 

and the Miner linear damage rule (LDR) were introduced, more than fifty damage 

models have been proposed since the 1970s to the early 1990s [107]. However, none 

of these models are widely used, because their applications can become very 

complicated. In the attempt to evaluate the mechanisms and kinetics of crack 

initiation and propagation in variable loading cases even one as simple as that of a 

two-step test can be difficult and tedious to reconcile [134]. Whilst the endeavour is 

to seek more simplistic methodologies, these maybe difficult to realise and 

consequently the Palmgren-Miner LDR is still dominantly used despite its major 

shortcomings.
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There are many factors affecting fatigue damage accumulation, such as loading 

sequence, residual stress, cyclic softening or hardening, fatigue life dispersivity and 

loading that is less than the fatigue limit [135]. The degree of influence these and 

other factors have on fatigue damage accumulation is sometimes difficult to predict, 

since the failure mechanisms involved can be very complex to evaluate. Realistically 

there are probably no simple resolvable solutions to the complexities surrounding the 

many fatigue processes, even though considerable real life working components are 

confronted with them.

Experimental analysis though can serve as an aid to seek improvement in the 

understanding of how these factors effect fatigue damage accumulation. Especially 

engineering components subjected to different loading modes and where the 

variability in the stress state is known to have a significantly affect on fatigue 

behaviour.

In cases where variable amplitude loading is involved it is customary to use LDR to 

quantify fatigue damage accumulation because of its simplicity. But, although the 

LDR is widely used in engineering design applications the damage calculated by this 

method does not actually reflect the actual fatigue damage which is mainly attributed 

to the formation and growth of fatigue cracks. Furthermore the LDR has been 

proposed predominantly for single mode loading situations such as uniaxial or 

torsion, and will not work satisfactorily for situations where the loading mode is 

changed periodically or in cases that involve sequential loading [49,50].
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The main questions that arose from this work and discussed in detail in this chapter

are,

• Could the LDR quantify fatigue damage accumulation if a push-pull load 

interruption that represented only 4% damage according to the LDR was 

introduced at different stages in the torsion fatigue lifetime of a specimen?

• What are the effects of the interaction of short fatigue cracks on multi-phase 

loading?

• How do changes in values of the parameters in the short and long crack growth 

equations affect fatigue lifetime predictions?

• Could the short and long crack growth models used for this work satisfactorily 

predict the crack growth behaviour under constant amplitude and non

proportional loading?

• What were the effects on crack growth behaviour as a result of the multi-phase 

loading?

• Are there any distinguishable features of crack growth behaviour from the 

micrograph observations of surface cracking systems and fractography analysis?
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6.1.2 Multi-Phase Loading Fatigue Analysis

For recollection purposes the experimental procedure outlined in Chapter 3 is 

summarised as follows. The multi-phase loading tests were carried out to examine 

the effects that a non-proportional push-pull load interruption had on the torsion 

fatigue lifetimes of solid hourglass specimens manufactured from 0.42% carbon 

steel. The torsion stress range of Ax = 410MPa remained constant for all the tests, 

whereas different interrupted push-pull stress ranges of 600, 640, 760 and 820 MPa 

were used. The push-pull cycles of 0.04n/Nfp-p were applied after prior torsion cycle 

ratios of 0.22, 0.26, 0.33, 0.53 and 0.73n/Nft.

The work programme demonstrated how the torsion fatigue life could be changed 

significantly for different torsion cycle ratios together with the introduction of the 

push-pull load interruption. This outlined how a the push-pull load interruption 

which represented only 4% damage according to the LDR significantly affected the 

crack growth behaviour and the torsion fatigue life of the specimen. In the case 

where the push-pull load interruption amplitude was less than «1.3 a cy (cyclic yield 

stress) then the experimental tests indicated that the torsion fatigue life could be 

expected to increase. However, if the push-pull load interruption amplitude was 

greater than «1.5 a cy then the torsion fatigue life could be dramatically reduced. 

Indicating that the degree of microscopic deformation at or near the crack tip as a 

consequence of push-pull load can play a significant role in affecting existing crack 

growth. In so much that at the higher stresses Stage I cracks start to develop, but at 

the lower stresses slip band formation is limited such that growth dependency is
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considered to be a function not only of the magnitude of push-pull stress amplitude, 

but also its cycle ratio (n/Nfp.p).

It can be seen clearly from the Fig. 6.1, that Miner's linear damage rule cannot 

account for the cumulative fatigue damage (En/Nf) for the push-pull interrupted 

torsion fatigue loading sequences used in the current test programme. The marginal 

push-pull load interruption of 4% should have been accounted for by the LDR, if the 

LDR is correct. However, the linear damage summation only came close to unity 

(«0.88 in test SI 1) with the remaining number of tests either significantly above or 

below unity as shown by the test results in Table 4.3.

3.5

Z  2 .5  -

0.5 LDR

450 550 650 750 850
Interruption stress range (MPa)

Fig.6.1 The total cycle ratio versus interrupted stress amplitude
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The trend lines (solid lines) in Fig. 6.1 are included to indicate the predicted total 

cycle ratio —» to unity as the push-pull load interruption amplitude falls below a cy 

(A g  = 580 MPa), since below this threshold it’s effect on the torsion fatigue lifetime 

is considered to -» 0.

As shown by the test results, the torsion fatigue life was found to change

significantly due to the application of push-pull load interruption, which was

considered to cause only a minor damage with respect to the LDR. The torsion

fatigue life was enhanced considerably when the push-pull interruption was applied

at a later stage of the torsion loading whilst the effect was less prominent when the

interruption was applied at an early stage of torsion loading. At higher interruption

stress amplitudes the torsion fatigue lifetime was reduced considerably and the

damage summation was well below unity predicted by the LDR. The inability to

predict damage accumulation by the LDR can be attributed to the complexity in the

crack growth associated with the application of push-pull interruption. A similar

behaviour has reportedly [48] been observed in non-proportional low cycle fatigue
€

tests.

The introduction of the push-pull load interruption although minor in relative terms 

with respect to the number of applied fatigue cycles, demonstrated that it could have 

a marked effect on the torsion fatigue life of a component. Such that the application 

of a number of fatigue cycles of the different stress state need not be that significant 

to bring about a conservative or non-conservative effect on the torsion fatigue life 

with respect to the LDR.
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6.2 Fatigue Lifetimes using Crack Growth Model

6.2.1 Fatigue Lifetime - Constant Amplitude Loading

The crack growth model was developed using torsion constant amplitude loading S- 

N fatigue data. The crack growth model was then used to predict the push-pull 

fatigue lifetimes for constant amplitude loading using an equivalent stress criterion 

i.e. Axeq = P Aamax for MSC growth and Aaeq = <j) Aamax for PSC growth as discussed 

in Chapter 5 (see pages 110 and 111). The crack growth model was found to be 

capable of predicting the fatigue lifetime for both stress states as shown by the results 

in Table 5.1 and 5.2 and Figs. 5.4 and 5.5 for each loading mode respectively.

Since the equivalent stress criterion used for the model predictions were derived by 

correlation to the material's S-N fatigue data, the push-pull experimental results are 

compared to the push-pull predicted fatigue lifetimes using the equivalent maximum 

shear stress theory of Tresca and the maximum shear strain energy theory of Von- 

Mises.

Therefore since the Tresca criterion based on the maximum shear stress gives,

and for the Von-Mises criterion based on the maximum shear strain energy gives,

At = 0.5 Acreq (6.1)

At = 0.5 A(Jeq (6.2)
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where the equivalent stress range (Aaeq) is equal to Aamax in push-pull loading.

Hence the cumulative fatigue lifetime calculated for Tresca for M S C  and P S C  

growth is (M S C jresca  P SC jrescaX  and for Von-Mises (hfSCvon-M ises P S C y  on-Mises)j 

therefore the Tresca and Von-Mises criterion stress coefficients p and <j) used in 

equations (5.22) and (5.23) are taken as;

for MSC growth

P Tresca = 0.50................................................................ (6.3)

P Von-Mises 0.58 ...............................    (6*4)

and PSC growth

<|> Tresca = 0.50............................................................... (6.5)

^  Von-Mises 0.58 ...............    (6.6)

The push-pull experimental results and predicted fatigue lifetimes for the (M SC rresca  

+  P SC jresca) and (M SCvon-M ises +  P S C v 0n-Mises) criteria are given in Table 6.1.

It can be seen from the fatigue lifetime values listed in Table 6.1 that the M S C v o n -  

Mises +  PSCvon-M ises and M SC jresca  +  P SC jresca predictions are considerably longer than 

the experimental results, with the M SC jresca +  P SC iresca  predictions being the more 

conservative.
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Table 6.1 Push-Pull experimental results and predicted fatigue lifetimes for the

M SC von -Mises PSCvon-Mises and MSCjresca PSCjresca criteria

Stress Amp. 

A g  (M P a )

Experimental

Nf(p-p)

M SCvon-M ises PSCvon-Mises 

Nf(p.p) Von-Mises

M S C jresca  PSOpresca 

N f(p.p) Tresca

820 1.846x10“ 2.224 x 10“ 1.454 x 106

760 3.877 x 10“ 4.337 x 10“ 5.628 x lO8

700 6.603 x 10“ 1.367 x 106 2.912 x 10'

680 1.462 x 105 2.241 x 108 5.134x10'

640 2.378 x 101 6.743 x 10” 1.908 x 108

620 5.197 x 105 1.285x10' 3.762 x 10s

600 4.418 x 106 2.447 x 10' 7.525 x 108

580 V o 4.947 x 107 1.563 x 10*

The predictions of the current work are similar to the findings reported by Zhang 

[50], who for a 0.45% carbon steel also found that neither the Tresca nor the Von- 

Mises criterion could give good push-pull fatigue lifetime predictions for a change in 

stresss state. This suggest that the short crack growth models used in this form are 

not capable of predicting the fatigue behaviour of a medium carbon steel for push- 

pull loading

The above predictions based on the Tresca and Von-Mises criteria for both MSC and 

PSC growth are clearly unrepresentative of the cumulative Stage I and Stage II crack
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growth for the 0.42% carbon steel. However, since Stage II crack growth is largely 

dependent on the maximum principal stress normal to the crack direction, fatigue 

lifetime predictions based on the principal stress for PSC growth are considered. 

Such that Tresca and Von-Mises criteria are used for MSC growth and the Maximum 

Principal Stress (cii) for P S C  growth i.e. (M SC rresca +  P S C CTi) ,  and ( M S C v on-Mises +  

PSCcl).

Therefore since

C l C m ax................................................................................................................... ( 6 * 7 )

hence the coefficient and (J) used in the PSC growth equations (5.23) is taken as,

^  Max. Prin. Stress — 1 * 0 0 ..........................................................................................( 6 * 8 )

Therefore the push-pull experimental results and the predicted fatigue lifetimes for 

the M SCvon-M ises +  P S C CTi and M S C Tresca +  P S C CTi criteria are given in Table 6.2.

It can be seen from the values in Table 6.2 that the predicted lifetimes for the 

M SCvon-M ises +  P S C c i and M SC rresca + P S C a i criteria are much less than the 

experimental results, the M S C v on-Mises +  P S C a i predictions are the more non

conservative.
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Table 6.2 Push-Pull experimental results and predicted fatigue lifetimes for the

hfSCvon-Mises PSC^j and MSCjresca PSCqj criteria

Stress Amp. 

A g  (MPa)

Experimental

Nf(p-P)

M SCvon-M ises +  P S C o l  

Nffp-p) Von-Mises - c l

M S C iresca  +  P S C a i

Nf(p-p)Tresca - cxl

820 1.846 xlO4 2.680 x 103 2.680 x 103

760 3.877x10“ 5.193x 103 6.335 x 103

700 6.603 x 10“ 1.253 x 10“ 1.806x10“

680 1.462 x 105 1.390x10“ 2.437 x 10“

640 2.378 x 105 2.940 x 10“ 7.178 x 10“

620 5.197 x 105 4.198x10“ 1.333 x 105

600 4.418 xlO 6 7.295 x 10“ 2.815 xlO 5

580 > 10' 1.353 xlO5 6.614 x 105

It can therefore be concluded that neither the M S C v on-Mises +  PSCvon-M ises and 

MSCjresca PSCiresca nor the MSCyon-Mises PSC(ji and -MSCiresca PSC^i criteria 

can adequately predict the fatigue lifetime for the change in stress state.

Fig. 6.2 shows more clearly the relationship of the M S C i r e s c a  + P S C a i criteria and the 

M S C j r e s c a  + P S C j r e s c a  criteria to the experimental data, where the former criteria 

underestimates and latter over-estimates the experimental push-pull fatigue data.
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Fig. 6.2 Predicted fatigue endurance curves for MSCiresca and 

PSC for different values of <J)

Fig. 6.2 also shows the effect of decreasing stress coefficients of $ = 1.0, 0.9, 0.8, 

0.7, 0.6 and 0.5 as illustrated by the series of curves and indicates that the principal 

stress is the more realistic criterion for the model PSC growth. This is probably not 

unexpected since PSC growth (Stage II crack growth) is dependent largely on the 

maximum principal stress operating in the specimen or in the region of the crack tip.

The relationship for M SCvon-M ises and P S C  for different values of c[) to the 

experimental data is also clearly demonstrated by the curves for decreasing values of 

<|> (<1> = 1.0, 0.9, 0.8, 0.7 and 0.58) are shown in Fig. 6.3. Where in Fig 6.3 the 

predicted fatigue endurance curve for M S C v on-Mises and for P S C  where <j) = 0.80
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approximates well to the experimental data. The criteria that approximates well to the 

push-pull fatigue data in Fig. 6.3, is very close to the best-fit values of the Model, 

since Pmodei 0.59 and (J)modei 0.79.

850

O e x p e rim e n ta l da ta800
cd
§  750 

'S
< 700
uej)
|  650

i «
MSCvon-Mises + PSC0i

550 = 1.0 ->  0 .9 0.7 0.58

500 -\-----
1.0E+03 ' 1.0E+071.0E+05

Log number of cycles to failure N ^ )

Fig. 6.3 Predicted fatigue endurance curves for M SC von-Mises and for 

PSC  for different values of <j)

From Figs. 6.2 and 6.3 it could be argued that to obtain a suitable fatigue criterion to 

model the different stress states, it has to take account of the different crack growth 

behaviours. Therefore, it could be reasoned that the orientation of cracks plays a 

significant role in the determination of fatigue lifetimes for the different stress states. 

Since crack initiation and subsequent propagation are in different directions and on 

different planes for torsion and push pull loading as shown in Fig. 6.4. However, to 

relate crack growth behaviour to a change in stress state, can be difficult to model
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considering planes of crack advance alone. Different material constants have been 

used in short crack growth equations to reconcile the differences in crack growth 

behaviour, but the appropriateness of this approach seems questionable, since crack 

directionality should have no effect in an isotropic material.

Notably here, to unify the torsion and push-pull fatigue data, the model predictions 

were obtained by changing the stress coefficient (<j>) for PSC, which gave acceptable 

predictions. Whereas, changing the stress coefficient (p) for MSC were found to give 

less satisfactory predictions, where the change in the curves were not as expected in 

comparison to the S-N curve.

A further point is that the propagation of fatigue microcracks in push-pull may also 

be influenced by the involvement of Mode I and II. The mixed mode condition may 

assist in the progressive development of Stage I crack growth and the earlier 

transition to Stage II crack growth, because a normal stress (an) exists on the 

operative slip planes in push-pull loading (see Fig 6.4), whereas there is none in pure 

torsion loading. Since there is no tensile stress on the crack plane,. there is a 

possibility of crack interlocking in torsion. The mechanical interlocking between the 

crack faces produces high frictional forces and as a consequence the stresses and 

strains at the crack tip are reduced and are purported to result in a lower crack growth 

rate. But, in tension loading the stresses perpendicular to the shear crack opens the 

crack surfaces and reduces or eliminates the frictional effect. Therefore, the stresses 

and strains at the crack tip will be higher and result in increased crack growth rates 

[136].
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Fig. 6.4 Crack initiation and growth shown schematically for .

(a) push-pull loading and (b) torsion loading

6.2.2 Fatigue Lifetime - Multi-Phase Loading

The multi-phase crack growth model was capable of predicting the fatigue life in 

cases which where dominated by uninterrupted crack growth as shown by the results 

in Table 5.3. In this case where the crack growth rate increased, it could be argued 

that the less densely populated short Stage I cracks created by the initial torsion 

loading combined with the effects of the higher push-pull load interruption resulted 

in an earlier transition to a Stage II crack.
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However, the model was not able to predict the fatigue life where the push-pull load 

interruption affected crack growth behaviour to such an extent that the crack growth 

rate was significantly retarded. The retardation in crack growth rate could be due to 

many contributory factors such as crack growth interaction, localised residual 

stresses, secondary crack initiation, the effects of crack blunting and cyclic strain 

hardening. One if not more of these factors may affect the behaviour of short fatigue 

cracks, since it is very difficult to isolate any individual contribution that could be 

influential, or not, in crack growth retardation. Especially for the work here, since the 

damage of the push-pull interruptions were relatively small and therefore the 

retardation effect on existing or new cracks can be difficult to establish with the 

absence of any distinguishable microstructural features. Since as discussed later, the 

observations of micrographs revealed a preponderance of surface extrusions 

generally aligned in a direction parallel to the specimen axis, but with only torsion 

Stage I cracking systems present.

The model gave conservative predictions for all the multi-phase loading conditions 

used in the testing programme as shown in Fig.6.5. The predictions were comparable 

with the experimental results for the tests with the higher push-pull interruption 

stress amplitudes, in particular where the prior torsion cycle ratio was small. 

However, the model significantly underestimated the fatigue damage for the lower 

interrupted loading, because the model does not account for interrupted crack growth 

i.e. the effect the crack-load interaction has to cause crack growth retardation. 

Nevertheless it should be emphasised that in fact the model was capable of predicting 

the fatigue life for the multi-phase loading that caused an acceleration of fatigue 

damage, which is important in view of safety.
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Fig. 6.5 Experimental results compared with model predictions

The mean of total , damage summation of all the loading phases (n/Nf) tends to 

increase as the cycle ratio for Phase 1 torsion loading increased as shown by the solid 

lines in Fig. 6.6. This is evident for both the experimental and model predictions. The 

increase in gradient of the trend line is somewhat less for the model predictions than 

the experimental results, although for the experimental tests this might have been 

different if a pre-determined endurance limit 2 n/Nf > 2.45 had not been invoked.
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Fig. 6.6 Experimental and model trend predictions

Considering the trend of the model predictions statistically, the damage summation is 

not so significant since it has a standard deviation of only 0.158 En/Nf considering all 

Phase 1-torsion loading cycle ratio (n/Nf(t)) values. The statistical results do however 

decrease as the n/Nf(t) increases, but not with any significance. In so much that for all 

the push-pull load interruptions applied after a cycle ratio of 0.22n/Nf(t) the standard 

deviation calculated is 0.168Sn/Nf, whereas after a cycle ratio of 0.73n/Nf(t) the 

standard deviation was only 0.052 En/Nf. Thus indicating that the fatigue lifetime 

predictions are very close for all n/Nf(t) values and push-pull load stress amplitude. 

But, this is unrepresentative of the experimental results, since the model does not 

account for interrupted crack growth due to the crack-load interaction as discussed 

earlier.
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This is evident by the closeness of the standard deviations for statistical evaluations 

for all the push-pull stress amplitudes, since for all cases the model predicts 

transition to Stage II crack growth after Phase 1 torsion loading. This is because the 

computed crack lengths after Phase 1 torsion loading, are of a size that meet the 

condition set by the model for immediate transition to Stage II crack growth at the 

onset of the push-pull cycling. Or more precisely the computed crack length is 

«141pm after the lowest Phase 1 torsion cycle ratio (0.22n/N^t)), which is longer 

than the longest computed transitional crack length (at « 106pm), for the push-pull 

load interruption phase.

The comparisons of the computed transitional crack length (at) for all the push-pull 

stress amplitudes to the computed torsion crack length (a) after the prior torsion 

loading are given in Table 6.3.

Table 6.3 Computed crack lengths - at (push-pull) and a (torsion - Phase 1)

Push-Pull Torsion (Ax = 410 MPa)

Ag transitional crack length 

at (pm)

crack length 

a (pm)

cycle ratio 

n/Nf(t)

600 105.62 141.14 0.22

640 63.45 199.17 0.33

760 16.51 304.70 0.53

820 10.40 373.53 0.73
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For comparative purposes the experimental Stage I crack lengths of the dominant 

cracking systems for multi-phase loading are presented in Table 6.4. For information 

the Stage I cracks were measured using a travelling microscope and the crack lengths 

were approximated to the nearest one tenth of a mm.

It is worth noting here that there are slight increases in Stage I crack lengths for 

increasing prior torsion cycle ratios, but these are not unexpected. Since, increased 

torsion cycling should promote the development of longer Stage I cracks by the 

coalescence of Stage I microcracks. The exception to this (specimen S10) could be 

explained by the local differences in microstructure (ferrite and pearlite) for this 

0.42% carbon steel. Since for this non-uniform material the transitional crack length 

from Stage I to Stage II is somewhat random as discussed previously in Chapter 2.

Table 6.4 Stage I crack lengths for failed specimens under multi-phase loading

Specimen

No
Torsion (Ax = 410 MPa) 

ni/Nfi

Push-Pull 

Ag (MPa)

Exp.Stage I 

crack length (mm)

SI 0.22 600 2.1

S9 0.22 760 2.1

S10 0.26 760 1.0

S ll 0.33 760 2.1

S12 0.53 760 2.2

S13 2.73 760 2.6

S14 0,22 820 2.2

S15 0.33 820 2.4

S16 0.53 820 2.7

S17 0.73 820 2.7
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As shown in Table 6.4 the longest experimental dominant Stage I crack is 2.7 mm 

(2700 pm) compared to the longest computed torsion Stage I crack length of 335 pm 

for Ax 410 MPa (see at appendix 5). The comparative evaluation is not totally 

explicit, but it does suggest that although the model is capable of reasonably 

predicting the lifetime of uninterrupted crack growth, the model predictions of Stage 

I crack growth are not representative of actual Stage I crack lengths.

6.3 Interaction of Short Fatigue Cracks

The nucleation and early growth of fatigue cracks are considered responsible for a 

substantial part of the fatigue life of an engineering component. This is attributable to 

the development and behaviour of MSC, which is fundamentally the important 

fatigue crack growth process in HCF. The behaviour of short cracks varies 

considerably depending on the local microstructure and in particular the applied 

stress level, where the dependency increases with decreasing stress level [137]. Also 

the mechanisms and interactive relationship between individual short cracks are 

complex and the non-uniformity in local microstructure can cause differences in 

fatigue life for the same loading condition [138]. The development of short fatigue 

cracks generally exhibits a collective behaviour, which is quite different to that of a 

single long crack. Several workers [82] [83] [135] have observed that in the MSC 

growth stage that the density of fatigue cracks increases with fatigue cycling. Such 

that the progressive accumulative behaviour of microcracks continues until at the 

transition point into the PSC stage where it reaches a maximum value and then 

decreases as cycles to failure.
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The generation and accumulation of microcracks were evident on test specimens that 

were examined by SEM and the observations of the micrographs indicated similar 

formations of microcrack patterns as discussed above. The micrographs show that 

the crack density and length of microcracks change as the number of torsion cycles 

applied in Phase 1 increased i.e. 0.22-0.73 Nf(t) as shown in Fig. 6.7 (a)-(d).

From observations of the micrographs it appears that the density of microcracks 

increase up to a torsion cycle ratio of 0.53Nf(t) (see Figs 6.7 (a), (b) and (c)), after 

which for the torsion cycle ratio of 0.73Nf(t) (see Fig. 6.7 (d)) the micro-cracks 

become longer but the crack density decreases. The accumulation of microcracks in 

this case is consistent with the network of longitudinal microcracks that have been 

found to develop under torsion loading and where frequent coalescence was reported 

[17].

Fig.6.7 (a) Torsion loading Ax = 410 MPa (0.22Nf(t))
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Fig.6.7 (c) Torsion loading Ax = 410 MPa (0.53Nf(t))
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Fig. 6.7 (d) Torsion loading Ax = 410 MPa (0.73Nf(t))

The effect of accelerating coalescence of microcracks as fatigue cycling increases is 

also similar to the interactive behavioural concepts put forward by Zhao [137], where 

the formation of individual micro-cracks tend to interact and coalesce to become 

regions where so called dominant effective short fatigue cracks are formed. Although 

for this work the effects of the apparent differences in crack density during Phase 1 

did not reflect any significant changes in the cumulative fatigue lifetimes after the 

application of the other two Phases (2 & 3). In fact, the lowest cycle ratio values 

applied for the prior torsion loading (0.22Nf(t)) actually gave the lowest total 

cumulative fatigue lifetimes for the higher push-pull load interruptions. Indicating 

that whilst increased fatigue cycling in the MSC stage may result in increased 

interactive behaviour of short fatigue cracks, this is not necessarily the dominant 

activity that effects cumulative fatigue lifetime for this case.
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It would therefore suggest from these tests that the application of the push-pull load 

interruption is an influential factor on crack growth and thus seemingly affects the 

controlling fatigue mechanism and the final damage summation. The interactive 

effect the push-pull load interruption had on subsequent crack growth rate was found 

to be dependent on the applied stress level. For the higher load interruption i.e. A g  >  

760 MPa the crack growth rate was increased significantly, having a lesser effect as 

the prior torsion loading cycle ratio increased. Whereas for the lower interruption 

loads i.e. A g  < 640 MPa the crack growth rate was reduced dramatically irrespective 

of the extent of the prior torsion loading.

The significance of the above effects must be related to the behaviour of short cracks 

under the different loading conditions, where the mechanisms of crack advance 

whilst different are complementary or non-complementary to the prevailing fracture 

process for the current work. How this occurs is probably best understood by 

examining the individual fracture process under push-pull and torsion loading 

conditions. From which an evaluation of the crack growth behaviour resulting from 

the push-pull load interruption maybe considered to substantiate the above effects. 

To aid this evaluation, representation of the Stage I and Stage II crack orientations 

with respect to the specimen surface for push-pull and fully reversed torsion loading 

are shown in Fig. 6.8 [139].

143



Maximum 
shear stress planes

Stage I 
planes and cracks

Transition 
to Stage II cracks

Ax Stage II plane

AxAx Act

45°

Surface

Ax

Act

Ax

Ax

Ax

(b)

Fig. 6.8 Stage I and Stagell crack orientations with respect to the surface of the 

specimen for (a) push-pull and (b) reversed torsion loading modes [138]

Now considering the fracture process here, the initial development of Stage I cracks 

under torsion loading have maximum shear planes with distinctive orientations, and 

one of these orientations coincides with the same orientation as the Stage II crack in 

push-pull. It is therefore possible for a dominant torsion Stage I crack to advance
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under the influence of the higher push-pull loading, such that the transitional stage 

under the application of the final torsion loading is encouraged and thus reducing the 

lifetime of the specimen. However, for the lower push-pull loading no Stage II crack 

development occurred, but, less favoured slip activation could result to promote the 

blocking of any future torsion Stage I crack advance. This is considered possible 

because of the application of the marginal push-pull cycle ratio (4% Nf(p.p)) and the 

lower stress amplitude, since the development of Stage I cracks in push-pull can take 

up to 20% of the lifetime to initiate [50]. Also the relatively fine grain size (dmean = 

6pm) of the specimen material, could have had an influence on the size of Stage I 

cracks, because finer grained material has been found to exhibit a decrease in crack 

propagation rate and a smaller non-propagating crack limit [79].

6.4 The Effect of Material Constants on Model Predictions

As discussed in Chapter 5, the material constants were obtained using short crack 

growth models to obtain an iterative best fit to the fatigue endurance curve for 

torsion. The models developed were capable of predicting experimental fatigue data 

for both stress states as shown in Figs. 5.3 and 5.4. The model does not predict a 

distinguishable fatigue limit even though a fatigue limit threshold was invoked for 

PSC growth. Consequently the model predictions at or close to the fatigue limit are 

more conservative compared to the experimental values. Although the error between 

the predicted and model results may have been somewhat closer if a greater number 

of experimental results had be achieved and statistically evaluated. Since significant 

scatter is apparent in S-N curves and scatter tends to increase as the stress amplitude 

decreases [140]. However, above the experimental fatigue limit both model curves
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gave good agreement with the experimental data, suggesting that the procedures for 

deriving the material constants give good approximations. The derivation of which 

indicated that the short crack growth equations could adequately reflect the uniaxial 

and torsion fatigue characteristics of this 0.42% carbon steel.

The use of the computer software to obtain the material constants by iteration and 

interpolating the model S-N curve to the experimental data proved an extremely 

capable technique. The sensitivity in which each parameter affected the model curve 

made it easy to achieve good correlation to the experimental data. This was evident 

by the closeness of curve fitting achieved by different persons that was carried out 

independently and having only a known base value of parameters taken from other 

experimental work obtained for a similar material.

To demonstrate the sensitivity of the iteration technique used and the effect the 

changes the material constants had on the torsion model fatigue curve; each material 

constant is changed independently as shown in the following figures. For instance in 

Fig. 6.9 the material constant A is increased in two steps, leaving all the other 

constants to remain the same.

(Note for greater clarity the data points have been included for the original model 

fatigue curve in all corresponding figures).
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Fig. 6.9 Effect on model torsion endurance curve of changes in material constant^

The changes in the fatigue curves in Fig. 6.9 are more significant at the lower stress 

amplitudes, showing the increased effects of MSC dominance. Changes, which are 

expected since the material constant A, are a microstructural coefficient for MSC 

growth. Whereas, the influence is to the contrary for changes in the material constant 

B, since this has greater effect on PSC growth and is more pronounced at higher 

stress amplitudes. The decreasing influences of MSC growth and the increasing 

influences on PSC growth are reflected by the changes in the model fatigue curve as 

shown in Fig. 6.10.
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Fig. 6.10 Effect on model torsion endurance curve of changes in material constant B

As discussed earlier in Chapter 5 on page 108 the material constant D is normally 

derived empirically from crack growth data and reportedly [50] the projected crack 

length (ath) (see Fig 5.2) is associated with the start of a PSC crack and represents the 

short crack threshold since dath/dN = 0. The parameter D is solely dependent on the 

physical properties of the material and since it is associated with this threshold 

condition for PSC growth (Stage II crack growth) it is a stress independent 

parameter. The effects on the model curve of changes in the parameter D are shown 

in Fig 6.11. It can be seen in Fig 6.11 that small changes in the parameter D give 

noticeable changes in the model curve and these effects are consistent with a relative 

increase in the material's fatigue strength, which are in this instance proportionate to 

the increases in the parameter D.
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Fig. 6.11 Effect on model torsion endurance curve of changes in material constant D

The material parameter m and n are exponents of the MSC and PSC growth 

equations respectively and they reflect the non-linearity relationship of crack growth 

for these separate and distinctive crack growth phases. Such that, the material 

constant m reflects the retardation in crack growth associated with the presence of 

microstructural barriers of the shear dominant Stage I crack growth phase. Whereas 

the material constant n reflects acceleration in crack growth associated with PSC 

growth, at the start of the tensile dominant Stage II crack growth phase. The values 

for these exponents depend on the physical properties of the material under these 

separate conditions of crack growth and differ for different materials.

The effect on the model curve of changes of the exponent m and n are shown in Fig. 

6.12 and 6.13 respectively.
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Fig. 6.12 Effect on model torsion endurance curve of changes in material constant m
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Fig. 6.13 Effect on model torsion endurance curve of changes in material constant n
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It can be seen from the above figures the effect on the model fatigue curve that 

changes of all these material constants are noticeable. The material constants show 

distinguishable but differing effects which allows for ease of attaining interpolated 

data to experimental data. This is emphasised particularly strongly by changes in the 

material constant n, where only marginal changes in n have a dramatic effect on the 

model fatigue curve (see Fig. 6.13).

The changes in the material constant have been carried out to examine the effects 

each has on the model fatigue curve for simplicity, but the collective effect of the 

material constants is obviously more involved. This is because the derivation of the 

model fatigue calculations are cumulative of the short and long crack growth 

equations for all stress amplitudes above the model's fatigue limit threshold. 

Therefore the material constants can have an interactive effect and as such have to be 

set within the overall experimental fatigue data. However, not withstanding this point 

it has been shown that material constants can be approximated adequately by this 

iterative method.

Although only cases for increased values for the material constants have been 

considered the effects on the model fatigue curve for decreased values are similar, 

but have opposite effects on the model curve to those shown

6.5 The Effect of a  on the Model Predictions

The model parameter d for this work was calculated from the statistical evaluation of 

ferrite grain size measurements from a sectioned sample of an untested specimen as
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discussed in section 5.2.1. The value of d was taken to be representative of the ferrite 

grain sizes (upper and mean) of the material and used in the model in the MSC 

growth equation da/dN = AA<5m(dra). The controlling parameter for MSC growth 

into the next grain is a function of the value adit which reflects the position of crack 

growth that equates to the point immediately before transition occurs into the next 

grain. The value of a  = 0.95 taken for this work recognised that a degree of micro

plastic deformation existed ahead of the crack tip and reached a critical size which 

equated in principle to the unlocking mechanisms of plastic slip into the next grain 

[133]. This is a fatigue process that is acknowledged as a prerequisite for the 

continuation of crack growth into the next grain, but at what precise position in the 

grain this occurs is difficult to ascertain as discussed earlier in Chapter 5. The effect 

on the model curve of different values of a  for torsion loading is shown in Fig. 6.14.
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Fig. 6.14 The effect on fatigue lifetimes of different values of a
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In Fig.6.14 the comparisons to the model fatigue lifetime for torsion loading of Ax 

410 MPa and a  = 0.95 give differences in lifetimes of -24% and +30% for a  = 0.80 

and a  = 0.99 respectively for the same torsion stress amplitude. Obviously there are 

wide variations in the values of Nf for different values of a, but, the difference —» 0 

as the stress amplitude increases, due to the reducing influence of MSC growth. This 

influence on MSC growth is because the function f[a) = ad\ used in the model, is 

taken to represent the crack length which equates to a proposed equilibrium position. 

A position where the localised stress concentration at the crack tip corresponds to the 

microstructural strength of the material near the grain boundary or some other 

microstructural feature. This therefore reflects a higher or lower fatigue lifetime to 

correspondingly higher or lower value of a  for MSC growth for a given stress 

amplitude.

However, the differences in the model fatigue lifetimes may appear significant for 

changes in a, but they are not unrepresentative of the scatter in experimental fatigue 

lives that are prevalent at or near the fatigue limit. A factor that is associated mainly 

with localised differences in microstructural properties of the material and as such 

affect MSC growth [20]. Although, the degree of scatter can differ for different 

materials, but generally ductile materials such as the medium carbon steel used here 

exhibit a greater degree of scatter.

For simplicity the value a  in the model was taken to remain constant irrespective of 

crack length, but this is idealistic rather than realistic since the stress concentration 

will increase as the crack length increases and therefore a  should decrease. Although 

the degree of stress concentration is complex to resolve for an advancing crack on a
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microscopic scale. Especially through a non-uniform grain structure such as the 

material used for the current work. The computer program does however, allow for 

the easier derivation of the value of a  to be used in the evaluation of the model 

endurance curves. This was reflected by the good approximation of the predicted to 

the experimental fatigue lifetimes for this material as shown by calculated fatigue 

lifetimes in Table 5.1 and 5.2.

6.6 Use of Neural Networks for the Determination of d

Neural networks is another computational method that has been used increasingly in 

a range of engineering applications such as condition monitoring and process control 

to extract key characteristics from large complex sets of data. Recently neural 

networks have been used [141] to model the chaotic behaviour of the growth of short 

fatigue cracks, which was exclusively trained and tested on experimental data 

obtained by Hobson [93][94]. The neural network used in this study was the 

multilayer perceptron neural network using the back-propagation algorithm as 

detailed in reference [142]. Seed and Murphy [140] used the neural network 

simulation for the determination of the parameters a , d and C of the non-linear short 

crack growth equation [93] of the form given below,

da/dN = Caa(d-a)l'“ ...................................................(6.9)

The parameter d was reportedly [140] derived by eliminating a  and C from equation 

(6.1) to obtain the following expression,
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In [(da/dN)2 (d-a\)l(dal(M)\(d-a2j\ ln[(a3(</-fl2)/fl2(^-a3)] - 

ln[(tk/dN)3 (tf-a2/(da/dN)2(J-a3)] ln[(a3(J-fli)/fl2( ^ 2)]

= 0  (6.10)

where subscripts 1, 2 and 3 indicate the three different samples points. Equation 

(6.10) is then solved by iteration using the Newton-Raphson method.

The predictions of parameter d by this method i.e. 63 < d < 400 (jam), increased 

considerably as the stress amplitude increased. Notably different from that taken by 

Hobson, who equated d = 116pm the mean ferrite plate length. The differences are 

probably not unexpected since the effect on short crack growth decreases as the 

stress amplitude increases and as such the short crack growth data is less significant 

and therefore errors are more pronounced. However, even the predictions 63 < d < 

219 (pm) for the lower stress amplitude (639 MPa) are somewhat under and over 

approximated. The above approximations for d appear too conservative and non

conservative to give reasonable fatigue lifetime predictions. Since only slight 

changes in the value of d affects the fatigue curve quite considerably as shown in 

Figs. 6.15 and 6.16. Which supports the comments made by Seed and Murphy [139] 

that "although the determination of an exact value of d is difficult, it is important that 

d is not underestimated when performing lifetime predictions".

Neural networks is obviously best suited for analysing large amounts of chaotic data 

and it maybe a valuable computational technique for short crack growth analysis if 

specifically adapted for low stress amplitude conditions.
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Fig. 6.15 Parameter d increasing of reversed torsion loading
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Fig. 6.16 Parameter d decreasing of reversed torsion loading

156



6.7 Fatigue Crack Development and Fracture

6. 7.1 Introduction

The crack patterns of specimens subjected to the different multi-phase loading 

conditions were analysed by taking micrograph observations of microcrack 

development and fracture of the fatigued specimens using a SEM. The micrographs 

observations were mainly of microcracks that had developed at positions within close 

proximity to the dominant cracking systems. This was necessary particularly to 

record crack initiation sites within the grain structure since reversed torsion loading 

promotes frictional surface contact of the dominant crack faces and generally 

destroys the crack initiation site.

Micrographs of sectioned specimens were taken to observe the differences in crack 

growth behaviour of non-propagation and propagation of shear dominated cracks. 

Micrographs were also taken of the fracture surface of a specimen subjected to a 

multi-phase loading regime, to examine the fracture process from the crack initiation 

site to complete fracture.

6.7.2 Fatigue Crack Development

It was found that the dominant fatigue crack system of failed specimens for the 

multi-phase loading is similar to that of pure torsion loading. A micrograph of the 

dominant crack profile of a failed specimen subjected to multi-phase loading (torsion 

- push-pull - torsion loading to failure sequence), is shown in Fig. 6.17.
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Fig. 6.17 Dominant crack system for multi-phase loading sequence 

(0.26 n/Nf (t) 410 MPa - 0.04 n/Nf(p.P) 760 MPa - n/Nf (t) 41 0 MPa ->)

The fatigue crack system of the failed specimens for the multi-phase tests being 

similar to that of pure torsion loading are probably not unexpected in this case 

because of the low cycle ratio (4% Nf(p.p)) of the push-pull load interruption. The 

only difference was usually a longer Stage I crack length which could extend up to

2.7 mm before branching into the Stage II crack planes, that generally related to the 

increasing effect of the prior torsion cycle ratio. Where the exceptions to this could 

be as a result of the effect of the push-pull load interruption on MSC growth and 

possibly some localised differences in the microstructure of the material.

It was discussed in section 5.2.1 that ferrite grains are generally the sites for crack 

initiation for a medium carbon steel since the ferrite grains are much weaker than the
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pearlite grain structure. However, as stated in the introduction of this chapter the 

crack initiation sites are usually impossible to determine because of frictional 

rubbing of the crack faces, due to the action of shear crack growth as a result of 

reversed torsion loading. Also in some cases it was found that the predominance of 

the torsion loading caused a degree of 'spalling* of material that occurred around the 

initiation site which could be seen to develop on a macroscopic scale by the use of a 

magnifying glass whilst the test was in progress. Fig. 6.18 shows a micrograph of the 

frictional disturbance that has been somewhat extreme because of the interaction of 

Mode I and Mode II crack growth causing crack branching. The combination of such 

a localised concentrated crack growth pattern would in effect make it particularly 

problematic to distinguish the crack initiation site. The specimen in this case was 

subjected to multi-phase loading (torsion - push-pull - torsion loading to failure).
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Fig. 6.18 The effects of crack branching and frictional disturbance 

(0.33 [n/Nf (t)]  410 MPa -  0.04 [n/Nf(p.P)] 820 MPa - [n/Nf(t)] 410 MPa —> )
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It was discussed in Chapter 3 that ferrite grain sizes would be taken as parameter 

for the MSC growth model equation (5.22). This was substantiated to be correct 

since it was found that for all the micrographs taken, cracks had initiated in ferrite 

grains.

The majority of Stage I microcracks observed were generally aligned longitudinally 

to the specimen axis with very few in the transverse plane, probably due to the 

effects of grain directionality of the material. Fig. 6.19 and Fig. 6.20 are micrographs 

of the surface of the specimen subjected to multi-phase loading, which show clearly 

torsion Stage I cracks that have initiated in a ferrite grain, but in different planes 

relative to the specimen axis.

specimen
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Fig. 6.19 Torsion Stage I crack in a ferrite grain (longitudinal plane) 

(0.26 [n/Nf (t)] 4 1 0 MPa" 0.04 [n/Nf(p.p)] 7 6 0 MPa - [n/Nf(t)] 4 1 0 MPa —» )
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Fig. 6.20 Torsion Stage I crack in a ferrite grain (transverse plane)

(0.26 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 760 MPa - [n/Nf(t)] 410 MPa - >  )

Figs. 6.19 and 6.20 show fatigue cracks that are in positions that reflect the 

complimentary torsion shear planes and transitional stage from Stage I to Stage II 

crack growth which is transgranular. The micrograph also shows the possible arrest 

position for these secondary-cracking systems (not associated with the dominant 

crack) which are typical for this material. In so much that a crack initiated in the 

weaker ferrite grain and in overcoming the grain boundary developed into a Stage II 

crack which then is retarded or arrested by the stronger pearlite grain structure.

The development of a Stage I crack in a ferrite grain can also be seen in the 

micrograph of specimen subjected to multi-phase loading, but, which did not fail as 

shown by Fig 6.21. Interestingly the Stage I crack appears to be associated with the 

boundary of the ferrite platelet.
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Fig. 6.21 Stage I crack (specimen not failed)

(0.22 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 640M Pa - [n/Nf(t)] 410 MPa —> )

Observations were also carried out of surface microcracks of specimens that did not 

fail through the development of a dominant Stage II crack, but, which did however 

reach a pre-determined fatigue endurance limit i.e. En/Nf >2.45. It would be expected 

that specimens that had undergone such high fatigue cycles that non-propagating 

Stage I crack growth should be a prominent feature. This was substantiated by the 

detailed examination of surface area of the specimens and no apparent Stage II crack 

growth was observed. Although, this may have been different if the practicality of 

allowable testing time had not been a factor then the Phase 3 torsion loading fatigue 

cycles could have been greater.

The micrographs of the specimens that were subjected to multi-phase loading and did 

not fail, revealed signs of considerable plastic deformation which extended over the

JSsAcc.V Spot Magn Det WD I- - -
? |2 0 .0 k V 4 .0  3000x SE 14.5 T15u
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surface area of the specimens The positions of these intrusions and extrusions were 

generally coincidental with the directions of the longitudinal torsion shear planes. 

These extrusions are visibly dominant on the surface of the specimens as shown by 

the micrograph in Fig. 6.22.

extrusion

specimen
axis

Fig 6.22 Surface extrusions on a specimen (not failed) subjected to multi-phase 

loading (0.53 [n/Nf (t)] 4 io M P a -  0.04 [n/Nf(p.P)] 600MPa - [n/Nf(t)] 410 MPa —> •)

It can be seen more clearly in Fig. 6.23 that the initiation of the torsion crack in this 

instance is related to a localised area of plastic deformation. Showing that the plastic 

deformation is part of the evolutionary process for multi-phase fatigue cycling and 

subsequently is the likeliest birthplace for Stage I cracks.
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Fig. 6.23 Stage I crack initiation site of a specimen (not failed) subjected to multi

phase loading (0.53 [n/Nf (t)] 4ioMPa- 0.04 [n/Nf(p.p)] 6ooMPa - [n/Nf(t)] 4 ioMPa -» )

It was evident from observations of the micrographs of the surface of specimens that 

did not fail that only torsion Stage I cracks of a varying lengths were present and Fig. 

6.24 shows one of the longer Stage I cracks found, which is approximately 200 pm 

in length. Although the profile of this crack has sharp defined minor changes in 

directionality, which could suggests that its length be attributed to the coalescence of 

smaller microcracks.
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Fig.6.24 A long Stage I crack of a specimen (not failed) subjected to multi-phase 

loading (0.53 [n/Nf (tJ  4 i o M P a -  0.04 [n/Nf(p.p)] 600MPa - [n/Nf(t)] 4 iOMPa —> )

It is evident from the micrograpghs taken that the surface of the specimens changes 

considerably by the fatigue process under multi-phase loading. However, the changes 

in the surface topography of the specimens were not only confined to the specimens 

that had not failed and had undergone relatively extensive cumulative fatigue cycles 

(>2.25 n/Nf), but were also evident on specimens that had failed.

The changes in the surface topography, which show surface extrusions and Stage I 

crack growth present around and integrated into the Stage II crack system of a 

specimen subjected to multi-phase loading that failed, is illustrated in Fig. 6.25
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Fig. 6.25 Extrusions around a Stage II crack system 
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Fig. 6.26 Surface of an untested specimen
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For comparative purposes to show the extent of the surface deformation process that 

occurs on the surfaces of specimens subjected to multi-phase fatigue cycling, the 

surface of an untested specimen is shown in Fig. 6.26.

6.7.3 Crack Growth through Section of Specimen

Specimens were sectioned to examine how cracks had developed in the material for 

specimens that had not failed and failed in accordance with the failure definition for 

the multi-phase tests outlined in section 3.5.1. For the specimen that did not fail the 

specimen was carefully sectioned at the centre of the hourglass section where Stage I 

cracks were dominant. Whereas, for the specimen that had failed this was sectioned 

in such a manner that both the Stage I (section x-x) and Stage II (section y-y) crack 

systems could be examined as shown in Fig 6.27.

Fig.6.27 Schematic of specimen section positions

The micrographs of cracking system of a sectioned specimen that did not fail are 

shown in Fig. 6.28 (a) and (b).
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Fig. 6.28 (a) and (b) Stage I crack (specimen not failed) 

(0.22 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 640 MPa - [n/Nf(t)] 410 MPa —> )
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It can be seen in Figs 6.28 (a) and (b) that the shear cracks generally extended into 

the material for approximately 20 pm for the specimens that did not fail. It can also 

be seen in Figs 6.28 (a) and (b) that the Stage I microcracks have negotiated 

preferential routes along the grain structure to align with the weaker ferrite material.

In Fig. 6.29 again of a specimen that did not fail some degree of branching has 

occurred, to suggest that the push-pull load interruption has affected the prior torsion 

crack profile.

Fig. 6.29 Crack branching associated with the interrupted push-pull loading 

(0.22 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 640 MPa - [n/Nf(t)] 410 MPa - »  )
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The changes in direction of the crack are coincident with the orientation of a Stage I 

crack in push-pull and this could explain why the crack did not continue to propagate 

at resumption of the torsion cycling. That no other cracks of this section have similar 

branching characteristics could be because of the different crack orientation normally 

associated push-pull Stage I crack and thus excluded by the sectioning process. 

Alternatively, the effect on the prior torsion crack growth by the push-pull load 

interruption is much more localised because of the complexity of the microstructure 

of the material creating a non-overload crack blunting effect.

The shear cracks for the specimens that failed extended into the material 

considerably further compared to those that did not fail as shown by Fig. 6.30.

Fig. 6.30 Stage I crack (specimen failed)

(0.33 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 820 MPa - [n/Nf(t)] 410 MPa —>)
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The progressive development of the shear cracks illustrated in Fig.6.29 is in fracture 

mechanics terminology by Mode III into the specimen. The continuation in crack 

growth in this case is because the higher push-pull stress amplitude is of sufficient 

magnitude to promote a change in crack orientation favourable for the Stage I (push- 

pull) to Stage II (torsion) transition.

Fig. 6.31 shows a Stage II crack that has branched considerably as the Stage II crack 

penetrates the material which is different from the surface Stage II crack path which 

exhibited coalescence with Stage I microcracks (see Fig. 6.25).

specimen
surface

Acc.V Spot Det WD I-- - - - - -
20.0 kV 6.0 BSE 18.1 T25S8

100 pm

Fig. 6.31 Stage II crack showing microcrack branching in the material 

(0.33 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 820 MPa - [n/Nf(t)] 410 MPa —>)
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The microcrack branching from the Stage II crack into the material as illustrated in 

Fig. 6.31, could be caused by the increasing stress concentration at the crack tip with 

crack depth and or weak microstructural features that enables subsidiary cracks to 

propagate from the main crack as it advanced. However, the microcrack branching in 

this case may not have had any significant effect on crack retardation since the 

branched cracks are relatively small. It is worth noting that the cumulative lifetime 

for this specimen was E n/Nf = 0.67.

6.7.4 Fractography

Micrographs were taken of the fracture surface of a specimen that was subjected to 

multiphase loading i.e. torsion - push-pull - torsion sequential loading. The fracture 

surface cannot usually provide any indication of crack initiation sites under torsion 

loading, due to frictional contact of the fracture surfaces during cycling. This is 

evident from the micrograph of the fracture face of a specimen subjected to 

multiphase loading as shown in Fig. 6.32. It can be seen in Fig. 6.32 that some 

oxidation of the fracture surface is apparent, which is reflected by the area of the 

micrograph that appears to have some blurring of the image. This surface texture is 

attributed to the frictional damage process as a result of the shear mechanism of the 

reversed torsion loading and the high resilient closure forces of the material at the 

early stages of crack propagation.

172



specimen
axis

Fig. 6.32 Oxidation on the fracture surface by the shear mechanism of the torsion

loading and material closure effects 

(0.73 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 760 MPa - [n/Nf(t)] 410M Pa - > )

The Stage I and Stage II crack growth process in fracture mechanics terminology - 

Mode II and Mode III shear and Mode I tensile, modes of fracture are shown in Fig 

6.33. It can also be seen in Fig, 6.33 that the specimen failed in the latter stages by 

the continuation of the Stage II crack, which grew along planes of 45° and 135° to the 

longitudinal or transverse directions, consistent with the planes exhibiting the 

maximum normal stress amplitude.

This crack growth pattern was found to be similar for all the specimens that were 

taken to complete failure.
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Mode III

Mode II

Mode I

Mode I

specimen
axis

Fig. 6.33 Fracture surface of a specimen subjected to multi-phase loading 

(0.73 [n/Nf (t)] 410 MPa - 0.04 [n/Nf(p.p)] 760 MPa - [n/Nf(t)] 410M Pa —> )

Although the crack growth pattern shown in Fig. 6.33 was found to be consistent for 

all the specimens that were taken to complete failure, fatigue crack growth in torsion 

has however, been reported [126] to exhibit no transition to Stage II crack growth. 

Where for this case [126] crack growth in fracture mechanics terms was reportedly 

by Mode II along the specimen surface and by Mode III into the specimen. Although 

this crack growth pattern was for the material BS 970 605H32 (EN16) which had 

been heat-treated to obtain a martensitic microstructure.



Chapter 7

Conclusions

1. The introduction of a push-pull load interruption significantly affected the torsion 

fatigue life of 0.42% carbon steel. The fatigue life was increased or decreased 

depending on the magnitude of the push-pull load interruption and the prior 

torsion cycle ratio. For the higher interruption stress ranges (A g  760 and 820 

MPa) the torsion fatigue lifetime was reduced and conversely for the lower 

interruption stress ranges (A g  600 and 640 MPa) the torsion fatigue lifetime was 

enhanced.

2. The reduction or enhancement of the torsion fatigue lifetime was considered to be 

attributable to crack interaction as a result of the push-pull load interruption. The 

decrease in fatigue lifetime is attributed to the generation of push-pull Stage I 

cracks under the higher interrupted stress amplitudes. Since Stage I crack planes 

for push-pull are complimentary to torsion Stage II cracks and the introduction of 

the push-pull load interruption can lead to the early transition and the formation of 

a dominant crack. The increase in fatigue life is probably due to a blocking effect 

of the torsion Stage I cracks by localised microstructural changes i.e. 

unfavourable crystallographic slip band formation in the grains ahead of Stage I 

cracks.

3. The Palmgren-Miner linear damage rule could not account adequately for the 

multi-phase loading sequences used in this work, even though the push-pull load
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interruption only represented 4% damage according to the LDR. This highlighted 

the inadequacy of the LDR to account for crack-load interactions that result in 

interrupted crack growth under this non-proportional multi-phase loading.

4. Fatigue failure of the specimens used for the multi-phase loading tests produced 

dominant fatigue crack paths similar to that of those specimens subjected to pure 

torsion fatigue. For this type of loading the length of the Stage I crack at the 

transition tends to increase as the prior torsion cycle ratio (n/Nf (t)) is increased.

5. The fatigue cracks observed on the surface of the specimens subjected to pure 

torsion loading showed that the density Stage I cracks increased as the torsion 

cycle ratio increased from 0.22 n/Nf(t) to 0.53n/Nf(t). The crack density reached 

saturation as the cycle ratio approached 0.53 n/Nf (t). However, as the cycle ratio 

approached 0.73n/Nf(t) the crack density appeared to decrease with the 

coalescence of Stage I cracks.

6. Longer and less populated network of Stage I cracks were observed with the 

introduction of the higher push-pull interruptions. Whereas shorter and greater 

number of Stage I cracks were observed for the lower push-pull load interruption.

7. A crack growth model was proposed that reflected the physical characteristics of 

Stage I and Stage II crack growth based on the MSC and PSC growth equations of 

the form,

for MSC growth (Stage I)
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da/dN = Cm(di - a)

and for PSC growth (Stage II) 

da/dN = Cpa-D

where Cm and Cp are stress state dependent, d\ is a microstructural barrier length, 

D is a material constant and a is crack length.

The model parameters were obtained using torsion constant amplitude S-N fatigue 

data for 0.42% carbon steel. The crack growth model developed was used to 

predict uniaxial constant amplitude fatigue lifetimes. The accuracy of the torsion 

predictions ranged from « 2-17% error, and for push-pull« 7-57% error. It should 

be noted that the model was derived using limited fatigue data and it is thought 

that the accuracy could have been improved if more data had been used. Also 

generally higher error is expected at or near the fatigue limit, which may reconcile 

the highest percentage error predicted for the push-pull loading.

8. The crack growth model gave non-conservative predictions for the higher push- 

pull load interruptions, where uninterrupted crack growth was evident. However 

for the lower push-pull load interruptions the model considerably underestimated 

the fatigue lifetime. This was because the model did not account for any crack

load interaction that could affect interrupted crack growth.
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9. The microstructural parameter d\ used in model for MSC growth was taken as 

mean of the ferrite grain sizes obtained from statistical analysis of the 

microstructure for the 0.42% carbon steel. This approach was found to work well 

since the model predictions for constant amplitude loading were in good 

agreement with the experimental fatigue lifetime results. Furthermore since 

torsion Stage I cracks were observed to initiate and propagate in ferrite grains, this 

also justified the principle of the method used for the determination of the 

parameter di.
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Apendix 1. Taylor Hobson Surface Measuring Machine



Apendix 2. Societe Genovoise MU-214B Universal Measuring Machine
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Appendix 4

The computer program (part) represents crack growth for multi-phase loading 

(torsion - push-pull - torsion -» failure) where crack propagation starts from the 

onset of fatigue cycling and continues for each of the successive loading regimes.

Computer program notation

ni = number of cycles selected - phase 1 loading

nsi = number of cycles for small crack growth for grain 1 - phase 1 loading

nS2 = number of cycles for small crack growth for grain 2 - phase 1 loading

nSith = number of cycles for small crack growth for the ....ith grain (from nS2 to nst)

nst = number of cycles for the transition grain from small'to long crack growth

nsp = number of cycles for long crack growth - phase 1

asi = crack length for grain 1 - phase 1 loading (pm)

aS2 = crack length for grain 2 - phase 1 loading (pm)

aSith = crack length for ....ith grain (pm)

ast = crack length for the transition grain (pm)

api = crack length for long crack regime (pm)

a2si = crack length for grain 1 - phase 2 loading (pm)

S2s2 = crack length for grain 2 - phase 2 loading (pm) 

a2sith = crack length for the ....ith grain (pm) 

a2P2 = crack length for long crack regime (pm) 

n2 = number of cycles selected - phase 2

I



n3si = number o f  cycles for small crack growth for grain 1 - phase 3 loading

n3s2 = number of cycles for small crack growth for grain 2 - phase 3 loading

n3sith = number of cycles for small crack growth for the ....ith grain (from n3S2 to n2St)

n3st = number of cycles for the transitional grain from short to long crack growth

nP3 = number of cycles for long crack - phase 3 loading

d = length of grain 1 (pm)

dm = length of mean grain size (pm)

nsi = IF(at<ad, 0,l/(A*AxAm )*LN((d-dm)/(d-a*d)))

nS2 = IF(nsi>10A6,0,

(If ( at< a*d, 0,l/(A*AxAm )*LN((d+dm-a*d)/(d+dm)-(d+a*dm)))))

nsith = IF(nsi>10A6,0,

IF(at<d+dm+a*dm,0, l/(A*AxAm )*LN((d+2*dm)-(d+a*d)

/(d+2*dm)-(d+dm+a*dm))))*INT((at-d-dIn)/dm)

nst = IF(at<a*d,l/(A*AxAm )*LN((d-ao)/(d-at))),

IF(at<d, l/(A*AxAm)*LN((d+dm-a*d)/(d+d-at))), l/(A*xAm)* 

(LN(((INT((ar d)/dm)*dm+d+dm-(INT((ar d)dm)*dm+d-dm+a*dm)) 

/INT ((at-d)/dm) *dm+d+dm-at))))))

npi = IF(at>=af,0,

II



IF(nsi>10A6,0,l/(A*ATAn )*LN((ar-(D/B*AxAn)))/ar ( B*AxAn)))))) 

Nf(t> = nsi+ ns2+ ns3 + nst + npi

asi = IF(ni>nsi,a*d,

IF(m< nsi,d-((d-a0)/(EXP(n]*A*AxAm))), d-((d-ao)/(EXP(nsl*A*AxAm)))))

as2 = IF(ni>nsi,0 

IF(asi<a*d,0

IF(ni-nsi<nS2 ,(d+dm)-(((d+dm-a*d))/(EXP((ni-nsi)*A*AxAm)))-asi , . 

(((d-dj- (((d+dm-a*d))/(EXP((ns2)*A*AxAm)))-asl)))

aSith = IF(at<d,0,

IF(asi<a*d,0,

IF(ni<=nsi+nS2,0

IF(ni-nsi-nS2<nsith,((d+2*dm)-((d+2*dm-(d+a*drn))/(EXP((ni-nsi-

ns2)*A*AxAm)))/INT((ar d-dm)/dm)))-asi-as2)+(INT((ar d-2*dm)

/(dm)*dm*((ni-nsi-nS2)/nSith)),((d+2 *dm)-((d+2 *dm)-(d+asisd))

/(EXP((nsith*A*AxAm)))/INT((at-d-dm)/dm))))-asl-as2)

+INT ((ar d-dm)/ (dm) *dm)))))

ast =  IF(ni<nsi+ns2+nSith,0,

III



IF(asi<a*d,0, 

IF(at<d,(d+drn-(d+dm-a*d)/(EXP(nst*A*ATAm)))-asi, 

INT((at-dm+d+dm-(asi+aS2+aSith)/(EXP((nst* A*AxAm)))))

api = IF (n i< nsi+ns2+nsith+nst,0.(at-(C/B*TAn)))*EXP(((ni-nsi-nS2-nsith-nst) 

*(B *(AxAn)))+(C/B * AxAn))-(asi+as2+aSith+ast))

aitotai=  a si+ a s 2+ a sith+ast+  api

a2si -  IF(aitotai>-3000,0,

IF(aitotai>=a*d,0,

IF(aitotai=0,d-((d-ao)/(EXP(W28*A*AaAm)))}

IF(aitotai<a*d,0,d-((d- a ltotei )/(EXP(W28*A*AaAm)))))))

W28 = IF(n2si>n2,n2si,n2

a2s2 = IF(at<d+a*dm,0,

IF(aitotai>=:3000,0,

IF(at<d,0,

IF(aitotai +a2si>d+d 

IF(a2si=0,(d+dm)-(((d+dm-aitotai))/(EXP((X48* A*AaAm)))- auotai, 

IF(a2si<a*d,0,(d+dm)-(((d+dm-a*dm))/(EXP((n2-n2si)

IV



* A*AaAm)))-a2s 1))))))

X28 — IF(aitotai +a2si>d+dm,0,

IF(n2>n2si+n2s2,n2si

IF(n2>n2si+n2s2,0,l/(A*AaAm)*LN((d+dm-(aitotai)/((d+dm)-(d+a*dn,)))))))

a2ith = IF(n2<X48,0,

IF(at<d+a*dm,0,

IF (a2si+a2s2=0,((d+2*dm)-((d+2*dm))/(EXP(( Y48 * A* AaAm)))

-  aitotal -a2sl-a2s2),

IF(n2<X48+Y48,((d+2*dm)-(EXP((Y48*A*AaAm)))-a2si-a2s2-aitoui)

*INT((at-d-dm)/dm),0,((d+2*dm)-((d+2*dm-(d+a*d)

/(EXP((Y48) *A*AaAm)))-a2si-a2s2- altotai)*INT(ar d-dm)dm))))))

Y28 = IF(aitotai+a2si+a2s2>d+a*d,0,(l/(A*AaAm))LN((d+2*dm)-( aitotai -a2s2))

/ ((d+2*dm)-(d+dm+a*dm))))

a2t= IF(a2si+aitotai<a*d,D-((d-a0)/EXP(Z48**A*AaAm)))

IF(aitotai>=3000,0,

IF(aitotai >at,0,

IF(n2>X48+Y 48,ROUNDUP((at-d)/dm,0)*d+dm- a itotai -a 2si-a 2s2 -a 2ith) 

/(EXP((Z48*A*AaAm)))- aitotai,

IF(aitotai +a2si+a2S2+a2ith<at,0,INT((ar dm)dm)*dm+d-(INT((ar dm)dm) 

*dm+d+dm-(a*dm+INT(ar d)/EXP((n2ith)*A*AaAm)))))))))

V



Z28 -  IF(at< aitotai +a2Si+a2S2+a2ith,0,

IF(a2si+ aitotai<cx*d, l/(A*AaAm)*LN(d-ao)/(d-at)

IF(at<a*d, l/(A*AaAm)*LN((d+dm-a*d)/(d+dm-at))), 

l/(A*AaAm)*LN(((INT((at-d)/dm)*dm+d+dm- aitotai -a2si-a2s2-a2ith))

/INT ((at-d(/dm) *dm+d+dm-at)))))))

a2p= IF(g<580,0,

IF(aitotai >at,( aitotai-(D/B*aAn)))*EXP(((n2* B*AaAn))-(a2si+a2s2+asith+a2t), 

(ar (D/B*aAn)))*EXP(((n2*W48-X48-Y48-Z48)*( B*aAn)+ (D/B*AaAn))

-(a2s 1 +a2s2+a2ith+a2t)))) 

a2totai= a2s 1 +a2s2+a2sith+a2st+a2P

n3si = IF(a2totai<a*d,0,

IF(a2totai=0, l/(A*ATAm)*LN((d-ao)/(d-a*d)))5l/(A*ATAm)

*LN((d- a2totai)/(d-a*d)))))

n3s2 = IF(a2totai>at,0,

IF(at<a*d,0,

IF(a2totai >d+a*d,0,

IF(a2totai >a*d,l/(A*ATAm)*LN((d+dm)- a2totai)/((d+dm)-(d+a*dm))), 

l/(A*ATAm)*LN(((d+dm)- (a*d))/((d+dm)-(d+a*dm)))))))

V I



n3sith = IF(at<d,0,

IF(a2totai >=at,0,

IF(a2totai >INT(((at-d/dm)*dm+a*dm,0,

IF(a2totai >=d+a*dm,l/( A*AxAm)*LN((ROUNDUP((a2totai -d)/dm),0) 

*dm+d+dm- a2totai)/((ROUNDUP((a2totai -d)/dm,l ) :i:dIn+d+dm- 

(R0UNDUP((-d)/dm,l)*dm+d+a*dm)))+l/(A*AxAin)*LN((d+3*dm)- 

(d+dm+a*dm))/((d+3 *dm)-(d+2*dm+a*dm)+INT((ar d-3 *dm)/dm, 

l/( A*AxAm)*LN((d+2*dm)-(d +a*dm))/((d+2*dm)-(d +dm+a*dm))) 

*INT((at-d-dra)dm)))))

n.3st— IF  (a 2totai ^tjO,

IF(a2totaI >INT((at-d)/dm+d, l/(A*AxAm)*LN(( INT((ar d)/dm)*dm 

+d+dm-a2totai)/ INT((ar d)/dm)*dm+d+dm-at))), l/(A*AxAm)*LN 

((INT((at-d)/dm)*dm+d+dm-(INT((at-d)/dm)*dm+d+dm-dm+adm))

/ INT ((at-d)/dm)*dm+d+dm-at))))))

n3p = IF(a2totai>=af,0,

IF(a2totai>at,l/(  B*AxAn)))*LN((ar (D/B*AxAn)))/( a2totai -(D/B*AxAn))))), 

( l /(  B*AxAn)))*LN((ar (D/B*AxAn)))/( ar (D/B*AxAn)))))))

Nf3(t) = n3si+ n3s2+ n3sith + n3st +  n3pi

V II



A= 1.800E-39 
B = 6.523E-27 
C = 3.74E-03 
n= 8.129 

m = 13.4 
P = 0.59 
<{>=0.79 

d., = 29 |im
d2= 6 jam
a = 0.95 

a0 = 2 nm 
af= 4000 jam

Axj (MPa) ns1 ns2
530 508 557
495 1268 1393
460 3387 3720
435 7161 7866
425 9780 10743
415 13456 14780
410 15829 17387
385 36777 40398

Act (MPa) ns1 ns2
820 0 0
760 0 0
700 14941 16412
680 22033 24203
640 49647 54535
620 75972 83452
600 117889 129496
580 185680 203962

nsith nsp
528 731 71342

7919 1706 125775
52891 5783 277895

208761 8398 367290
356372 11452 450743
616389 13977 524958
807494 17198 596567

3292845 32761 950278

a sith nst n sp

0 229 16587
0 1308 33170
0 5878 57014
0 11600 77610

206752 23794 129939
553670 36461 171720

1350106 61275 232073
3286364 42168 280497

Nf
1.682E+04 
3.448E+04 
9.425E+04 
1.354E+05 
4.647E+05 
9.213E+05 
1.891 E+06 
3.999E+06

Nf
7.367E+04 
1.381E+05 
3.437E+05 
5.995E+05 
8.391 E+05 
1.184E+06 
1.454E+06 
4.353E+06

at
46.9
76.9 

131.0 
208.8 
250.8
304.7
334.7 
556.5

at
10.40
16.51
33.01
39.65
63.45
81.45 

105.62 
139.76

Computed results for push-pull and torsion 
(constant amplitude loading)

Appendix 5



CRACK LENGTHS FOR nA VALUE
ni 1 Nfi a s1 a s2 a sith a st a sp a 1 TOTAL Aii(MPa)

0.22 27.55 7.15 106.44 0.00 0.00 141.14 410
0.33 27.55 7.15 164.47 0.00 0.00 199.17 410
0.53 27.55 7.15 269.00 0.00 0.00 303.70 410
0.73 27.55 7.15 294.00 6.04 38.80 373.53 410
0.22 27.55 7.15 106.44 0.00 0.00 141.14 410
0.33 27.55 7.15 164.47 0.00 0.00 199.17 410
0.53 27.55 7.15 269.00 0.00 0.00 303.70 410
0.73 27.55 7.15 294.00 6.04 38.80 373.53 410

CRACK LENGTHS FOR n2 VALUE
FI2 / Nf2 a 2s1 a 2s2 a 2tith a 2t a 2p a 2 TOTAL ACTj(MPa)

0.04 0 0 0 0 652.71 793.86 600
0.04 0 0 0 0 1524.67 1723.84 600
0.04 0 0 0 0 3095.29 3398.99 600
0.04 0 0 0 0 3626.47 4000.00 600
0.04 0 0 0 0 305.97 447.11 640
0.04 0 0 0 0 484.77 683.94 640
0.04 0 0 0 0 806.83 1110.53 640
0.04 0 0 0 0 1022.00 1395.53 640

n 3s1 n 3s2 a 3sith n 3t n 3 p N3f a 3TOTAL Sn/Nf
0 0 0 0 182826 1.828E+05 4000 0.386
0 0 0 0 85557 8.556E+04 4000 0.429
0 0 0 0 15804 1.580E+04 4000 0.581
0 0 0 0 0 0.000E+00 4000 0.770
0 0 0 0 304696 3.047E+05 4000 0.469
0 0 0 0 206748 2.067E+05 4000 0.512
0 0 0 0 136811 1.368E+05 4000 0.664
0 0 0 0 109297 1.093E+05 4000 0.845

Computed results for multi-phase loading 
Act ( 600 MPa and 640 MPa)

Appendix 6



CRACK LENGTHS FOR n, VALUE
n,/Nf1 a s1 a s2 a sith a st a sp a 1TOTAL Ax^MPa)

0.22 27.55 7.15 106.44 0.00 0.00 141.14 410
0.33 27.55 7.15 164.47 0.00 0.00 199.17 410
0.53 27.55 7.15 269.00 0.00 0.00 303.70 410
0.73 27.55 7.15 294.00 6.04 38.80 373.53 410
0.22 27.55 7.15 106.44 0.00 0.00 141.14 410
0.33 27.55 7.15 164.47 0.00 0.00 199.17 410
0.53 27.55 7.15 269.00 0.00 0.00 303.70 410
0.73 27.55 7.15 294.00 6.04 38.80 373.53 410

CRACK LENGTHS FOR n2 VALUE
n2 / Nf2 a 2s1 a 2s2 a 2tith a 2t a 2p a 2TOTAL Aa^MPa)

0.04 0 0 0 0 191.66 332.81 760
0.04 0 0 0 0 273.00 472.17 760
0.04 0 0 0 0 419.50 723.20 760
0.04 0 0 0 0 517.37 890.91 760
0.04 0 0 0 0 188.59 329.73 820
0.04 0 0 0 0 267.35 466.52 820
0.04 0 0 0 0 409.20 712.90 820
0.04 0 0 0 0 503.97 877.50 820

n 3s1 n 3s2 n 3sith n3t n 3p N3f a 3TOTAL 2n/Nf
0 0 0 11487 596567 6.081 E+05 4000 0.678
0 0 0 0 287505 2.875E+05 4000 0.568
0 0 0 0 197443 1.974E+05 4000 0.706
0 0 0 0 166026 1.660E+05 4000 0.884
0 0 0 16227 596567 6.128E+05 4000 0.681
0 0 0 0 291101 2.911 E+05 4000 0.570
0 0 0 0 199791 1.998E+05 4000 0.707
0 0 0 0 168164 1.682E+05 4000 0.886

Computed results for multi-phase loading 
Aa ( 760 MPa and 820 MPa)

Appendix 7


