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Abstract

Sol-gel science and techniques have mainly been used to synthesize inorganic 
oxides. Thousands o f inorganic oxides or mixed oxides have been manufactured by 
the sol-gel method. They can take the form o f thin films, powders, monolithic, and 
fibres. M any sol-gel oxides systems have been studied. One o f the most important 
systems is the Y2O3-AI2O3 system which has been studied for many years by sol-gel 
methods. In this system, there are several phases which have widespread uses in 
industry such as Y3AI5O5, YAIO3, and Y4AI2O9. For example, Nd doped Y3AI5O5 is 
presently the most widely used solid-state laser material. Yb doped YAG is one o f the 
most promising laser active materials and is more suitable for diode pumping than the 
traditional Nd-doped YAG. In fact, the rare earth aluminium garnet family is one o f 
the most active areas o f activities in recent years because o f their optical, mechanical, 
and thermodynamical properties.

In this thesis, the production and properties o f the sol-gel Yb2 0 3 -Al2 0 3  system are 
studied using sol-gel science and techniques. Ytterbium is a rare earth element in the 
lanthanide series and belongs to the same group as yttrium in the periodic table and 
hence, the oxides that they form often have very similar properties and applications in 
industry. The research focuses on the sol-gel synthesis, sol-gel processing, 
crystallisation, and structures o f alumina garnets in the Yb2 0 3 -Al2 0 3  system. The 
thermal behaviour o f the sol-gel Yb2 0 3 -Al2 0 3  system was studied by DTA and TG. 
The crystallisation characteristics were investigated in the pure Yb2 0 3 -Al2 0 3  system. 
The effects o f the crystallisation were also studied after other elements were doped in 
this system. Thin films, thick coatings, and nanosize powders o f the pure and doped 
alumina garnets were produced by the sol-gel method. Their morphologies and 
structures were studied and consideration was given to their potential uses in industry.

In this thesis, novel Mo doped YbAG garnets were synthesised for the first time by 
the sol-gel technique. Their application depends on the existing state o f Mo (VI) 
cations in the YbAG matrix. Laser materials, Yb doped YbAG garnets, were 
successfully produced for the first time using the sol-gel method and their structural 
changes have been studied. The host crystal structures deform after doping with 
various concentrations o f  Yb3+. However, this deformation does not show a linear 
relationship with the doped Yb concentration, which could, in part, explain why 
around 20 atomic % doped Yb:YAG generally exhibits good properties in laser or 
scintillator applications.
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Chapter I

Introduction

1.1 Subject of the thesis

The first use o f sol-gel synthesis was to form silica as described by Ebelmen in 1844. 

The first commercial application o f sol-gel coatings onto glass appeared in the early 

sixties o f last century. However, the development o f sol-gel science only really started 

twenty years ago with the "First International Workshop on Glasses and Ceramics from 

Gels" in 1981. Yoldas’s work [1] [2] in the late seventies o f  last century led to the 

explosion o f activity that continues today. In this very short time, sol-gel science and 

technique has advanced rapidly. Sol-gel processes are now widely used for the 

synthesis o f multicomponent ceramics and nanophase materials. More than 10000 

papers have been published during the past twenty years. Especially with the 

development o f hybrid organic-inorganic materials in recent years, the area o f  sol-gel 

applications has been expanded significantly [3]. It seems that sol-gel technique has 

been used in every area o f industry.

Generally, sol-gel techniques include several basic steps such as hydrolysis, 

condensation, and crystallisation. The sol-gel science in these processes has been 

widely studied by numerous researchers. Two basic routes were divided according to 

the chemical nature o f the precursors, namely: the aqueous route and the metal-organic 

route. The most common sol-gel products are SiC>2 , T i0 2 , AI2O3, ZrC>2 , and 

multicomponent systems in which at least one or more o f these components are 

included. The characteristics o f these components in sol-gel processes are quite well
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known due to their valences and their binding energies which make it easy to form the 

network structure. Many useful materials have been produced from these components; 

e.g. TiC>2 thin films and AI2O3 supported catalysts.

The first purpose o f this thesis is to study the binary Yb20 3 -  AI2O3 system by sol-gel 

methods. Ytterbium is rare earth element in the lanthanide series and belongs to the 

same group as yttrium in the periodic table. It has almost the same properties with 

yttrium apart from a slightly smaller effective radius. Thus, the Yb203-Al203 system 

and the Y2O3-AI2O3 system are very similar. In fact, our interest in this system really 

comes from the Y20 3 - AI2O3 system. Many sol-gel studies on the Y2O3-AI2O3 system 

have been reported. There are three widely utilized phases in the Y2O3-AI2O3 system, 

i.e. YAIO3, Y4AI2O9 and Y3AI5O12. Y3AI5O12 is the most important phase in this 

system and belongs to the rare earth alumina garnet family. Rare earth alumina garnets 

such as Y3AI5O12 and Y t^A bO ^ have many important applications. Rare earth 

alumina garnets are corrosion resistant because of their chemical inertness even at high 

temperature and recently are chosen as one of the promising candidates for next 

generation thermal barrier materials [4] [5] due to their low thermal conductivity and 

phase stability with the change of temperature. However, it is generally required to 

fully crystallise under 800°C or even much lower than 800°C if  the use of rare earth 

alumina garnets involves application of the coating to a substrate, and in particular a 

thermally sensitive substrate, for example metals. Many of these substrates suffer 

irreversible and detrimental changes in their properties if  they are heated at very high 

temperature. Thus, a fully crystallised alumina garnet produced at under 800°C will be 

very useful in industry. One possible such application is an alumina garnet coated on 

stainless steel as a corrosion resistance coating. Rare earth alumina garnets such as 

YAG powders are conventionally manufactured via the solid-state reaction at very high
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temperature (up to 1600°C). Recently, rare earth alumina garnets have been prepared 

by low temperature sol-gel techniques, but the reported lowest sintering temperature for 

producing fully crystallised pure or doped yttrium aluminum garnets by sol-gel methods 

is currently about 900°C. Thus, whilst the sol-gel processing route offers a considerably 

lower sintering temperature than that associated with conventional ceramic processing 

technique, a significant problem still exists if  alumina garnets are used as coatings on 

metal substrates by sol-gel methods. Thus, the second purpose o f this thesis is to 

synthesize rare earth alumina garnets in the Yb2 0 3  -  AI2O3 system by sol-gel methods 

and lower their crystallisation temperature by doping.

Rare earth alumina garnets can be used as corrosion resistant or thermal barrier coatings 

on various substrates. However, the most important applications o f rare earth alumina 

garnets are currently used as laser materials and phosphors. By doping different 

cations into alumina garnets, many useful properties can be achieved through the 

change o f their structures. For example, Nd3+, Cr3+, or Yb3+ doped YAG are very 

useful laser materials; Tb3+, Ce3+ or Eu3+ doped alumina garnets are important 

phosphors used in the colour display devices. The most widely used solid-state laser 

material is the N d3+ doped YAG that can only commercially be produced via single 

crystal growth (Czochralski [6 ] method). It is well known that the process o f  single 

crystal growth is very sluggish and it is very difficult to dope more than 1 at. % Nd 

homogeneously in a YAG single crystal. Nd heavily doped YAG single crystals (< 5 

at. %) are necessary for obtaining high-power output laser, but they cannot be produced 

by the single crystal growth method. Thus, in recent years ceramic laser materials have 

received much attention [7-10]. Especially with the development o f nanomaterials, 

transparent high quality ceramics o f YAG have become possible by the isostatically 

pressed method. Very recently, a high optical quality Nd:YAG ceramic prepared from
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nano-size powders by sol-gel methods presented almost the same laser properties as the 

single crystal rod [9]. Compared to single crystal growth, the technique of 

manufacturing ceramics offers many advantages for the application o f solid-state laser 

materials such as inexpensive, easily high-doped concentrations, mass production, large 

size, and graded ceramic structure. However, it is still quite difficult to obtain high 

quality single-phase polycrystalline YAG. The reason for this is attributed to the 

complicated crystallisation pathway o f YAG from the amorphous phase in sol-gel or 

other techniques. YAIO3 or other phases often crystallise and appear as impurities in 

YAG phases.

Very recently, heavily ytterbium doped YAG has been found to be potentially good 

scintillators for solar neutrino detection and can be optimised in terms o f efficiency and 

lifetime [11-14]. Moreover, especially, heavily ytterbium doped YAG ( »  5 at. %) is a 

new-generation laser material [15] [16]. It is attractive for Q-switching operations to 

obtain a higher peak power optical pulse compared with those o f Nd-doped YAG. We 

are aware that there are no reports about the synthesis o f Yb doped YAG by sol-gel 

techniques. Sol-gel chemistry and rare earth alumina structures will change after 

ytterbium cations with various concentrations are heavily doped into yttrium aluminum 

garnets. We also find that formation o f YbA 1 0 3  perovskite in the Y f^C ^-A fC h system 

corresponding to YAIO3 in the Y 2O3-A I2O3 system is not observed in the high 

temperature phase diagram o f the Yb2 0 3 -A l2 0 3  system [17] and YbAP is an unstable 

phase. This advantage will be very beneficial for preparing single phase YbAG or 

heavily Yb doped YAG because it decreases the chance o f forming one o f  the most 

common crystallised impurities (i.e. perovskite phase) and makes it easier to obtain 

high-quality single-phase heavily Yb doped YAG than for Nd:YAG by sol-gel methods.
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Hence, the third purpose o f this thesis is to extend our studies to the synthesis o f heavily 

Yb doped YAG by sol-gel methods.

1.2 Organization of the thesis

The thesis is organized as follows. In this first chapter, we present an overview o f the 

thesis, i.e. the study o f a novel Yb2 0 3 -Al2 0 3  system and rare earth alumina garnets by 

sol-gel techniques. We are interested in the crystallisation process o f this system. The 

most important phase in the system is YbAG which belongs to rare earth alumina garnet 

family. Since rare earth alumina garnets currently and potentially have many important 

applications in industry, we further extend our research to the sol-gel synthesis o f rare 

earth alumina garnets related to ytterbium, i.e. YbAG, Mo:YbAG, and Yb:YAG. Our 

objective is to lower the crystallisation temperature o f rare earth alumina garnets and to 

synthesize novel doped alumina garnets using sol-gel techniques. We also consider 

extensions to the novel applications o f rare earth alumina garnets by sol-gel methods.

In Chapter 2, we present a literature review about sol-gel science, sol-gel system, sol-gel 

synthesis o f rare earth alumina garnets, and their applications. In Chapter 3, we 

describe the experimental process o f preparing samples by our sol-gel techniques. The 

preparation o f  characteristic samples is also presented in this chapter.

In Chapter 4, we describe the techniques which were used to characterise our samples. 

In Chapter 5, we present our sol-gel studies o f the pure and doped Yb2 0 3 -A l 2 0 3  system. 

The phase development o f this system is investigated by choosing three typical 

compositions in the system and by doping other elements.

In Chapter 6 , we describe our sol-gel synthesis o f pure or doped YbAG garnets on the 

basis o f sol-gel studies o f the YI3 2O3-A I2O3 system. Especially, a novel M 0 O 3 doped 

YbAG garnet is described in this chapter. This discovery could bring us some new
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applications for rare earth alumina garnets. A fully crystallised Mo doped ytterbium 

aluminium garnet was obtained at a very low temperature heat treatment. 

Crystallisation kinetics o f the pure and doped YbAG were studied. In Chapter 7, the 

morphologies o f  rare earth alumina garnet coatings are described. We also consider 

some possible applications for rare earth alumina garnet coatings; e.g. corrosion 

resistance in this chapter.

In Chapter 8 , we present our sol-gel synthesis o f Yb doped YAG. W hen Yb3+ with 

different concentration is doped into the host YAG crystal, it causes different crystal 

structural deformations and the adjustment o f the crystal lattice constant. These 

changes will have some effects on the optical properties. Finally in Chapter 9, we 

conclude our work with a summary o f the thesis and directions for future work.

Several o f research achievements in this thesis have been published, patented, submitted 

or prepared for publication during the course o f this research. Part o f the work about 

sol-gel studies o f the Yt^Ch-AhOs system was published in [18]. Rare earth alumina 

garnet coatings were introduced in [19]. Mo doped YbAG was patented pending in 

[20] and will be submitted for publication in [21]. Sol-gel synthesis o f Yb:YAG was 

accepted for publication in [22]. A paper about crystallisation kinetics o f rare earth 

alumina garnets is in preparation.
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Chapter II

Literature review

In this background chapter, we describe the normal sol-gel processing in Section II.1. 

Then, sol-gel studies o f some important cations and their relevant systems are described 

in section II.2, specifically for the Y 2O3-AI2O3 and Yb2 0 3 -Al2 0 3  systems. In section

II.3 and II.4, we describe the most important phase in these two systems, i.e. the rare 

earth alumina garnets YAG and YbAG. Structures, properties, and sol-gel studies o f 

YAG and YbAG were given in section II.3 and current or potentially extensive 

applications o f rare earth alumina garnets are described in section II.4.

II. 1 Processes of sol-gel technique

II. 1.1 Hydrolysis

Hydrolysis is the first step in sol-gel processing. Generally, there are two routes used to 

produce the sol according to the chemical nature o f the precursors, i.e. the aqueous route 

and the metal-organic route. The aqueous route is based on inorganic salts dissolved in 

water whereas the metal-organic route uses alkoxides dissolved in organic solvents. A 

lot o f research work is being carried out now on both types o f sol-gel chemistry, but 

alkoxides are much more expensive and difficult to handle than aqueous solutions. 

Thus, the aqueous route is more suitable for industrial applications.

In the aqueous route, when a metal cation is solvated in pure water, it forms a complex 

or a solvated cation according to:

M z+ + :0
\ H

(2.1)
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The formation o f M-OH 2 bonds with the metal cation draws electrons away from the 

O-H bond o f the water molecule toward the empty orbitals o f the metal ion. This 

electron transfer weakens O-H bonds and makes coordinated water molecules behave as 

stronger acids than solvent water molecules. The magnitude o f the charge transfer is 

attributed to the water acidity. The equilibra are established in the following equation, 

which is defined as hydrolysis:

[M(OH2)] zV +  [M -O H] (z'1)+ + H + <-► [M =0] (z'2)+ + 2H + (2.2)

+7

+4
+3

OH'

+2

+ 1

0 7 14pH

Fig.2.1. pH-charge diagram showing two lines corresponding to h=l and h=2n-l 
separating three domains in which H20 ,  OH- or O2” ligands are formed. From ref. 
[25].

Spontaneous deprotonation for any aquo-cations may take place as follows:

[M(OH2)n]z++ hH20  <- [M(OH)h(OH2)n.h]<z-h>+ + hH 30 + (2.3)

where n is the coordination number o f water molecules around M and h can be defined 

as the hydrolysis ratio. It corresponds to the number o f protons that have been removed 

from the solvation sphere o f the aquo-cation.

A partial charge model [23] [24] was developed by Livage and coworkers to quantify 

the pH-charge relationship. The hydrolysis ratio usually increases with the pH o f the
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[Al (OH)3](OH2)3]d :

pH

(a)
1.0

0.5

0

10
V

15

20

5 7 93 4 8

pH

(b)

Fig.2.2. Hydrolysis of Al3+ in dilute aqueous solutions (a) from the partial 
charge model, and (b) from thermodynamic data. From ref. [23] [24] and [27].
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H R
\  /

H— O + M -  OR —> O : —► M — OR —> HO — M <— O
I /  \
H H H

—> M — OH + ROH. (2.6)

For example, aluminium alkoxide, Al(OR)3 , normally [Al(OC4H 9) 3 or Al(OBus)s], was 

hydrolysed in a large o f excess o f water at 80 ~ 100°C, resulting in the precipitation o f 

fibrillar boehmite, followed by condensation with a mineral acid (H N 03) to yield a 

stable sol [1] [29]. Some research has found that lower hydrolysis temperature (< 80°C) 

and /or higher acid concentrations (> 0.28 HNO 3/AI) result in substantial concentration 

o f tetrahedral aluminum atoms relative to aqueous solution o f AICI3 or A 1(N 0 3)3  [30] 

[31]. At a lower acid concentration, the octahedrally coordinated A1 species: 

[Al(OH2)6]3+, can easily be formed [32]. High-temperature (90°C) hydrolysis resulted 

in alumina sols containing only octahedrally coordinated A1 species for all acid ratios.

II. 1.2 Condensation

Monomeric species can generally be observed in very dilute solution only (< 1 O' 4 mol/1). 

At higher concentration, condensation reactions often occur. It can proceed by either o f 

two nucleophilic mechanism (substitution and addition) via the nuleophilic attack o f

C  C l

HO groups onto metal cations M , depending on the coordination o f the metal. In all 

cases, at least one nucleophilic OH group has to be present in the coordination sphere o f 

the hydrolyzed precursor. When the preferred coordination is satisfied, condensation 

occurs by nucleophilic substitution
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When the preferred coordination is not satisfied, condensation can occur by nucleophilic 

addition with an attendant increase in the coordination number o f the metal cation

X

M 1- O X  + M2 - O Y  -> Mi - O - M2- O Y  (2.8)

The size o f condensed species depends on many parameters such as pH, concentration 

or temperature, the main being the hydroxylation ratio 1 = OH/M.

The "charge-pH" diagram is then a very useful guide for sol-gel chemistry as 

condensation only occurs within the OH domain (Figure 2.1). Condensation is 

generally initiated via acid-base reactions by adding a base to low-valent aquo-cations 

or an acid to high-valent oxy-anions.

H H
I 1

O — H  0
° x  -H jO  /  \

M —» M M (b)(a) M

-rhO

(d)

Fig.2.3. A schematic diagram of olation.

The two main mechanisms for condensation are called olation and oxolation. In both 

cases polynuclear species are formed via the elimination of water molecules from the 

coordination sphere o f the metal cation containing at least one M-OH group [33]. 

Olation is a condensation process in which a hydroxy bridge ('ol' bridge) is formed
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between two metal centres. According to Ardon et al [34] [35], olation occurs via a 

intermediate reaction involving H3 O2 bridging ligands. It is shown in Figure 2.3.

Since H2 O is the leaving group, the kinetics o f olation are related to the lability (ability 

to dissociate) o f the aquo ligand, which depends on size, electronegativity [36] [37], and 

the electronic configuration o f M [38]. In general, the smaller the charge and the larger 

the size, the greater the rate of olation.

Oxolation is a condensation reaction in which an oxobridge (—0 —) is formed between 

two metal centres. For the co-ordinately unsaturated metal, the oxolation occurs 

according to:

O O
/  /  \

— M + M —  —► — M M — Edge-shared polyhedra (2.9)
/  \  /

O O

O O
/  /  \

— M + 0  —  M  > — M - O - M  — Face-shared polyhedra (2.10)
\  \  /

O O

For the co-ordinately saturated metal, oxolation occurs by two-steps in the following:

H
I

M — OH + M — OH ->  M— O — M — OH (2.11)

H OH
I I

M — O — M ->  M — O — M + H2 O (2.12)

The first step (Eq. 2.11) is catalysed by bases (Eq.2.13 & 2.14).

M — OH + 0H~ —> M — 0 " +  H20  (2.13)

M — 0 “ + M — OH—»M — O — M + OH-  (2.14)
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The second step (Eq. 2.12) is catalyzed by acids (Eq. 2.15 & 2.16):

H H
i i

M — O — M — OH + H3 0 + -► [M — O — M — OH;.]* + H2 0  (2.15)

I
H
I

M — O — M + H3 0 + [M — O — M]+ + H20  (2.16)

Compared to olation, oxolation occurs over a wide range of pH, but due to the two-step 

process, kinetics is slower and never diffusion-controlled.

3+
As an example, Figure 2.4 shows early stages o f the hydrolysis and olation of A1 

which could be expressed as the following [39]:

1). The dimerization o f the h=l [Al(OH)(OH2 )s]2+ precursor leads to edge sharing 

dimers.

H
I

O
/  \

2[AI(OH)(OH)5]2+ <-> [(H2 0 )4—Al Al—(OH2)4]4+ + 2 H2 0  (2.17)
\  /

0
1

H

2). Further hydrolysis leads to trimeric species formed by adding one hydrolysed 

monomer (h=2) to the previous dimer.

[Al2(OH)2(OH2)8]4+ + [Al(0H)2(0H 2)4]+->[Ab(0H)4(0H2)9]5++H20  (2.18)

Olated polycations are formed during the first steps o f condensation [40] [41]. Only a 

few polycations are known for Al3+. The first hydroxylation stages (l=OH/Al < 2) leads 

to the formation of [Al(OH)(OH2 )s]2+ and [Al(OH)2 (OH2)4]+. Olation then leads to 

oligomeric species in equilibrium with monomers. Some Al polycations have been
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evidenced [27]; such as [Al2 (OH)2 (OH2 )s]4+ dimer, [AI3 (OH)4 +x(OH2) 9-x](5~x)+ as well as 

the well known AI13 polycation [Ali3 0 4 (0 H)2 4 (0 H2 )i2 ]7+I2 7 ] by X-ray crystallography 

of the corresponding sulphate salts, SAXS, and a narrow 2 7A1 NMR resonance. It is 

made of one tetrahedral [AIO4 ] surrounded by four groups of three octahedral [A106]. 

The trimeric species [Al3 (OH)4 (OH2 )9]5+ is easily deprotonated by:

[Al3 (OH)4(OH2 )9]5++ H20  -> [A13 0(0H )3(0H 2 )9]4+ + H3 0 + (2.19)

Then a nucleophilic oxygen atom is formed, which can react with [Al(OH2 )6]3+ species. 

The nucleophile addition o f four deprotonated trimers onto a single aqui-ion leads to the 

formation of the [Ali3 0 4 (0 H)2 4 (0 H2 )i2 ]7+ polycations.

Fig.2.4. Early stages of the hydrolysis and olation of Al3+; o=OH group. From ref. 
[39].

Hydrolysis and condensation are actually affected by many other factors such as 

temperatures, anions [42-44], and catalysts [45]. Heating allows a faster diffusion of 

solute species. The dielectric constant o f water decreases drastically when the 

temperature increases and water looses its properties as a good solvent toward ionic
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species. Ionic dissociation becomes less important so that ion-pairs and neutral 

complexes are more often observed.

II. 1.3 Gelation, aging and drying

The hydrolysis and condensation lead to the growth o f clusters that eventually collide 

and link together into a gel. Some models have been set up to explain the process of 

gelation [46-48]. However, most o f these models must generally be studied by 

computer simulations and are not very good when compared with experimental 

observations. Due to the complicated nature o f the gelation process, there is no model 

that can wholly describe the process o f the gelation.

The processes o f change during aging after gelation are classified as polymerisation, 

coarsening and / or phase transformation.

The typical polymerisation process is demonstrated in a Si02 gel. The increase in 

connectivity o f the network is produced by condensation reactions, such as

= Si -  O -H  + H -  0 - S i  = —» = S i - 0 - S i  = + H20  (2.20)

Apart from condensation, aging can result in other reactions such as further hydrolysis:

= Si -  O -  R + H20  —> = S i - 0 - H  + ROH (2.21)

Shrinkage is the most important phenomena in the aging process, which results in the 

expulsion o f liquid from pores. Aging a gel before drying helps to strengthen the 

network and thereby reduces the risk o f fracture [49].

After aging, the gel is heated to around 200°C and the absorbed water or structured 

water or other organic solvents are evaporated from the gel. This process is called 

drying. Drying produces a pressure gradient in the liquid phase o f a gel, which leads to 

differential shrinkage o f the network when the exterior o f the gel tries to shrink faster 

than the interior, tensile stresses arise that lead to fracture the network at the exterior as 

shown in Figure 2.5.
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The classic work o f Griffith [50] has given the mechanism of fracture of brittle 

materials. The theory of linear elastic fracture mechanics (LEFM) [51-53] indicates that 

catastrophic crack propagation occurs when

<jx-J n c > K IC (2.22)

where Kic is a material property called the critical stress intensity factor; c is the crack 

size; and ox represents the applied stress (see Figure 2.6).

Fig.2.5. Schematic illustration of stress relief by cracking at the drying surface of a 
gel. From ref. [55].

Crack growth is called ‘catastrophic’, because the stress intensity (the left side o f Eq. 

(2.22)) increases with the size o f the crack, so the bigger the crack gets, the faster it goes 

until it reaches the speed o f sound.

Cracking is sometimes attributed to the existence o f pore size distribution in the gel [54] 

as is indicated in Figure 2.7. The higher tension in the smaller pore creates stress that
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cracks the ‘wall’ between the pores. This provides a simple explanation for the 

observation that cracking often occurs at the critical point, as the pores begin to empty.

Fig.2.6 Illustration of applied stress on sample containing cracks. The stress at 
the tip of the crack, oc, is greater than the stress applied to the body, <rx, and
increases with the crack size according to a c oc crx4 c  . From ref. [55].

It does not explain cracking in the drying process when there is slower evaporation. 

The process o f slow drying is very complicated, accompanying with continuous 

hydrolysis and condensation. Some modified models have been selected to explain the 

mechanism of cracking during the drying process, especially in the process o f slow 

drying.

Many techniques have been developed to prevent cracking during drying such as 

chemical additives, supercritical drying and freeze-drying.

For thin films, the problem is very interesting. In general, inorganic films thinner than 

~0.5 pm do not crack, regardless of the drying rate, whereas films thicker than -  1.0 pm
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are virtually impossible to dry without cracks [55-58]. The drying stresses due to 

shrinkage o f films in the drying process lead to the cracking. This behaviour may be 

analogous [59] [60] to crack growth in composites containing inclusions, where the 

thermal expansion mismatch causes cracks to appear near large inclusions, but not near 

small ones.

A p t<  A p 2

C rack

( b )

C rack

Fig.2.7. Schematic illustration of cracking resulting from draining of nonuniform  
pores (a) Liquid covers surface before drying starts; (b) larger pores empty first, 
after critical point. The higher tension in the smaller pore creates stress that 
cracks the “wall” between the pores. From ref. [59].

II. 1.4 Heat treatment

The dried gels are further heated at a higher temperature and a series o f structure 

changes occur during this heat treatment process.

In general, between 200°C ~ 600°C heating, concurrent weight loss and contraction are 

attributed primarily to the removal o f organics (principally weight loss), polymerisation 

(shrinkage and weight loss) and structure relaxation (shrinkage only). For example,
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structure changes o f silicate xerogels prepared from TEOS using an acid-catalyzed 

process with a large excess o f water are shown in Figure 2.8a and b [61], where IR and 

Raman spectra are respectively compared to the corresponding spectrum of the silicate 

precursor, TEOS. The major features o f the Raman spectra associated with network 

vibrational modes are the 430, 800, and 980 cm ' 1 bands. Corresponding IR bands are 

observed at 460, 800, and 1080 cm'1. The 980 cm' 1 (Raman) and the 1080 cm' 1 (IR) 

bands are assigned to Si-O-Si anti-symmetric stretching modes, respectively. The -800  

cm' 1 vibration is associated with symmetric Si-O-Si stretching or vibrational modes of 

ring structures. Bertoluzza et al [62] assigned the 430 (Raman) and 460 (IR) cm ' 1 

vibrations to Si-O-Si bending modes. The removal of organics is attributed to the 

weight loss, but it occurs with little associated shrinkage [63] [64]. Shrinkage in this 

process is caused by continuing condensation reactions, which occur both within and on 

the surface o f the inorganic skeleton. The network is further densified through 

structural relaxation, an irreversible process in which the free energy decreases through 

bond restructuring or rearrangement with no associated weight loss [65]. Structural 

relaxation occurs by diffusive motions o f the network. Both condensation and structural 

relaxation contribute to skeletal densification.

In the crystalline system, the conversion of amorphous to crystallisation [6 6 ] is 

occurred. Structural evolution may be dominated by the effects o f phase transformation 

[67], which often occurs in conjunction with dehydration or when metastable 

transitional phases are involved. The changes o f the coordination numbers o f the 

network species (e.g. Al3+ or Ti4+) may happen during both phase transformation and 

crystallisation o f amorphous system. The addition o f "seeds" can be used as a viable 

approach to control the microstructure during nucleation and crystal growth.
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Fig.2.8. Structure changes of silicate xerogels prepared from TEOS using an acid- 
catalyzed process with a large excess of water; (a) IR spectra; (b) Raman spectra. 
From ref. [61].
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One o f the most thoroughly studied crystalline gel system is alumina, in which 

structural and morphological changes accompanying phase conversions have been 

investigated by many researchers [1] [29] [68-72]. A typical sequence o f crystallisation 

deduced from XRD [68-70] is the following:

300°C 850°C 1100°C > 1200°C
AIOOH ->  Y-AI2O3 ->  5-AI2O3 ->  0-AI2O3 ->■ a-AI203 (2.24)

or

400°C 1150°C
AI(OH)s -► n-AI20 3 -> 0- and a-AI20 3 (2.25)

Heating causes dehydration and rearrangement leading to a series o f transitional 

aluminas and finally 01-AI2 O3 .

II. 1.5 Crystallisation kinetics

Crystallisation is the final stage o f sol-gel processing for a crystalline system, in which 

it is very important to control the crystallisation process. In general, allowing for 

nonspherical crystals and time-dependent nucleation rates, the amount o f transformed 

crystals can be expressed by the John-Mehn-Avrami equation [73-76] as the following:

x = 1 -ex p  [-(&?)"] (2.26)

where x is the ratio o f transformed crystals, k is a temperature-dependent function 

related to viscosity and the rate of crystal growth, n is a constant. Eq.(2.26) applies 

only for isothermal phase transformation.

A common method of analysis o f nonisothermal crystallisation data is to assume that k 

in Eq.(2.26) can be represented by the Arrhenius equation,

k = k0 exp(Q/RT)  (2.27)

where ko is a constant and Q is an activation energy for crystallisation.
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II.2 Sol-gel studies of some important systems

II.2.1 Sol-gel processing o f  Si4+, Zr4+, Ti4+, and Al3+

m o

o 2 4 6 8 12 1410

pH

Fig.2.9. Hydrolysis of Si 4+ in dilute aqueous solutions from the partial charge 
model. From ref. [23] [24].

Numerous sol-gel systems have been studied. The systems, including Si0 2 , AI2 O3 , 

ZrC>2 , or Ti0 2  components, are widely studied due to their structures, properties and 

widespread applications in various industries.

The polarising power of tetravalent cations (Si4 +,Ti4 +,Zr4+) is too strong for aquo-species 

to be formed, even at low pH. They usually give aquo-hydroxo, hydroxo, or 

oxospecies in aqueous solution [77].

II.2.1.1 For Si4+, the partial charge model [23] [24] leads to four different hydrolyzed 

precursors [HnSi0 4 ](4*n), ranging from {Si(OH)3 (OH2 )}+(h=3 ) at pH=0 to [Si0 2 (0 H)2 ]2' 

(h=6 ) at pH=14 as shown in Figure 2.9. Si4+ remains tretrahedrally coordinated over 

the whole range o f pH. Condensation occurs via oxolation due to the lack o f any 

coordinated water molecules in the tetrahedral [HnSi0 4 ](4'n) precursors.
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The amorphous hydrated silica gels are formed from the major precursor neutral 

[Si(OH)4 ]° via oxolation in the pH range o f 3-9  as following:

Si(OH) 4  <-> S i0 2 + 2H20  (2.28)

MONOMER

I
DIMER

I
CYCLIC

pH < 7  OR pH 7-10 
WITH SALTS ^ 

PRESENT /  
A

THREE-DIMENSIONAL 
GEL NETWORKS

PARTICLE

10nm B

30nm

pH 7-10 WITH 
SALTS ABSENT

lOOnm

SOLS

Fig.2.10. Polymerization of silica in basic and acid conditions. From ref. [60].

Gelation is very slow and goes through a minimum around pH~3, but the reaction rates 

can increase significantly after adjusting the pH. The oxolation reactions are 

significantly affected by the catalysis. At pH>3, base catalysis occurs. Anionic 

precursors [SiO(OH)3 ]“ are better nucleophiles than [Si(OH)4 ]° increasing the rate of the 

nucleophilic addition. Gelation occurs readily around pH 7~8. Large colloidal particles 

are formed and dense opaque gels are obtained. Condensation between surface OH 

groups then leads to fast aggregation and the formation o f unstable gels. Upon drying, 

these gels give highly porous silica. Below pH -3 , acid catalysis leads to the 

protonation of the leaving silanol groups and the chain polymers are formed.
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Crystalline phases (quartz or crisobalite) can be formed after very high-temperature heat 

treatment. The processes are shown in Figure 2.10.

One o f the most useful multicomponent systems including Si02 is the Al2 0 3 -Si0 2  

system. When the silica and alumina sources are mixed, a gel is formed. Silicate 

anions react with Al3+ precursors to give alumino-silicate compounds [78]. The well- 

known zeolites can be produced by these reactions.

II.2.1.2 For Zr4+, when ZrCL is dissolved in water, it is readily hydrolysed to form

• 2d- *the species [Zr(OH)2 (OH2)6] (h=2). Then, olation leads to the well-known cyclic

tetramer, [Zr4(OH)8(OH2)i6]8+ in which Zr atoms are eightfold coordinated by four 

bridging OH groups and four terminal water molecules as shown in Figure 2.11.

Fig.2.11. Solid phases formed via the precipitation of Zr4+ precursor: 
Z r0C l2 .8H2 0 .  From ref. [60].

The precipitation o f amorphous hydrous zirconia Zr02.nH20  occurs by adding 

ammonia. The change in the final pH from 8 to 10 can alter the crystallisation 

temperature by 200°C and the tetragonal-monoclinic transformation temperature by 

more than 1000°C. The variation o f the final pH is attributed to CF anions. CF anions 

become complexing between pH 5~9. They are then released at higher pH but a 

considerable amount o f anions remain absorbed in the amorphous oxide. M any other
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precursors with non-complexing Cl- anions have been used to produce zirconia and 

pure crystalline monoclinic zirconia can be obtained.

In the metal alkoxide route, Zr(OPr!) 4  is often used as the precursor in the ZrC>2 sol-gel 

technique. However, such precursors are highly reactive. This arises mainly from 

their tendency to increase the coordination number o f zirconium up to 7 or 8  as in 

crystalline zirconia. Coordination expansion occurs as soon as water is added to the 

alkoxide solution leading to the uncontrolled precipitation o f polydispersed powders. 

Therefore, complexing ligands such as acetylacetone (acacH = CH3COCH 2COCH 3) 

have to be added to the alkoxide solution prior to hydrolysis in order to decrease its 

reactivity [79].

One o f the most important multicomponent systems including Zr0 2  is the well-known 

Y 2 0 3 -Zr0 2  system which is used as thermal barrier materials at high temperature [80]. 

Generally, 8 % Y 2O3 is doped in Zr0 2  to stabilise the cubic Zr0 2  phase (YSZ). YSZ 

has a very low thermal conductivity at 1000°C.

II.2.1.3 For Ti4+, a lot o f Ti alkoxides are used to produce Ti0 2  using the sol-gel 

techniques. The hydrolysis and condensation rate o f Ti(OR )4  at pH=7 is more than five 

orders o f magnitude greater than that o f Si(OR ) 4  [81]. Ti0 2  sol-gel science has been 

widely studied due to its various applications in recent years.

Sol-gel processing o f the multicomponent Ti0 2 -Si0 2  system is o f  significant 

technological interest for the low-temperature formation o f refractory, ultralow thermal 

expansion glasses as well as the preparation o f graded refractive index optics. A 

hetercondensation reaction is as following:

(R '0 )3Si-0H  + RO-Ti(OR ) 3 ->  (R '0 )3Si -  O -  Ti(OR ) 3 +ROH (2.29)
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where R' in this case could be H, or an alkyl group. But, on the other hand, Ti(OR )4  

catalyses silanol condensation [82], promoting homocondensation o f the silicate species 

rather than uniform incorporation o f Ti at the molecular level.

II.2.1.4 Finally, the hydrolysis and condensation o f Al3+ have been presented in 

section II. 1. Alumina based systems are very useful, which are extensively studied by 

many researchers such as the M g0-A l20 3, Li20 -A l20 3, and Y20 3-A120 3 systems.

II.2.2 Sol-gel studies of the Y2 0 3 -A12 0 3 system

In this section, we will describe sol-gel studies o f  the Y 2 0 3-A12 0 3 system. As 

mentioned in Chapter I, our research interests in the Yb20 3-Al20 3 system initially came 

from this system. Although a lot o f research work on this system by sol-gel techniques 

has been done, the study o f the hydrolysis and condensation o f this system, typically for

3_l_

Y , were actually reported very rarely. Almost all research work focuses mainly on 

the final stage o f sol-gel processing, i.e. crystallisation. The reason is that there are 

three important transition compounds in this system, i.e. Y 3A150 i 2, YA103, and 

Y 4A120 9. These three phases have many important applications in industry, especially 

in optics. The phase diagram o f the Y 20 3-A12 0 3 system is shown in Figure 2 . 1 2  [83].

In general, sol-gel processing o f the Y 2 0 3-A120 3 system can be divided into five stages 

as following:

200°C 600°C Above 900°C
Sol —* Gel —> Xerogel —> Amorphous —» Crystallites (2.30)

The sol is prepared, and then it becomes gel either as a bulk, particles or films. After 

carefully heating at about 200°C, the wet gel transforms to xerogel. By further heat 

treatment below the temperature 600°C, an amorphous metal oxide is formed. Finally, 

this amorphous phase converts to a crystalline structure by calcination at above 900°C.
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J.R. Lo and T.Y. Tseng [84] studied the phase development o f the Y 2 O3 -AI2O3 system 

by a modified sol-gel process. Aluminium butoxide [Al(OBus)3] and yttrium nitrate 

dissolved in 2-methoxyethanol were used as starting materials. The chemical 

inhomogeneity o f yttrium caused by their sol-gel processing could exist in the prepared 

gel-derived powders. Three compositions for YAG, YAM, and YAP respectively were 

studied in this report. For the YAG composition, a considerable amount o f Y 3AI5O 12 

crystallites appeared at about 1000°C. For Y 4AI2O9 composition, the formation of 

Y 2O 3 began at 650°C and there were three phases (YAP, YAM, and Y 2 O 3) that co

existed at 1300°C. Finally pure YAM was achieved at 1500°C. For YAP composition,

2500

2300 -
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Cft
2100 - A120 3 + LIQ.

YAG+ LIQ.

£  1900 -

e

H  1700 -
YAG+
YAP

YAP+
YAM
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Mole fraction Y2 O3 (%) 1 2  3

Fig.2.12. Phase diagram of the Y2 O3 -AI2 O3 system. From ref. [83].

the phase development was quite complicated. Y 2O3 and YAG initially crystallised at 

650°C, but a relatively large amount o f Y2O3 and YAG appeared only at 1000°C. At 

this temperature, YAM initially crystallised, which coexisted with Y 2O 3 and YAG. 

Then YAP began to grow at 1300°C. The high purity perovskite phase YAP can only
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be obtained at 1500°C for 40 hours heat treatment. Thus, the formation o f YAP was 

deduced by the reaction YAG + YAM —> YAP.

R.S. Hay [85] studied a phase transformation in sol-gel-derived yttrium-aluminium- 

gamet films. In the report, the yttria sol and the alumina sol were prepared separately 

from yttrium and aluminium isopropoxide. The films were formed on nickel or 

platinum grids for TEM studies. In this system, hydrated Y2 O3 and AI2 O3 particles 

formed first as the sol-gel films were heated; consequently, mixing was not on an 

atomic level. The phase evolution o f the bulk gel with a Y: A1 mole ratio o f 3:5 during 

heat treatment was also observed. There were four phases that appeared in the study. 

The transition alumina phase crystallised at 800°C and Y4 AI2 O9 appeared at 850°C. 

The YAG phase nucleated between 800°C-950°C and then the pure YAG appeared at 

1050°C. Nucleation was weakly correlated with the transient presence of YAIO3 

(YAP). The crystallisation pathway with several intermediate phases before YAG 

finally crystallised was quite complicated. Hay [85] postulated that the nucleation of 

YAM before YAG was due to lower yttria mobility combined with influence o f strain 

energy effects. The nucleation o f YAG from the matrix was reported to be site 

saturated, and crystal growth occurred by consumption o f the parent phases. 

Crystallisation was described as being a cellular transformation with spherulitic growth 

and with a constant number o f nuclei. Crystal growth was essentially two dimensional 

due to very thin film thickness in comparison to spherulite size.

Yamaguchi et al. [8 6 ] [87] used an alkoxy-derived stoichiometric precursor for 

synthesizing YAIO3 , Y4 AI2 O9 , and YAG. For YAG and YAP composition precursors, 

the formation o f an intermediate hexagonal YAP phase was observed at approximately 

800-900°C. For YAG composition precursors, the hexagonal YAIO3 phase converted 

to YAG and was single phase at 1050°C. For YAP composition, the crystallisation
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pathway was more complicated. Hexagonal YAP crystallised between 870 and 900°C 

and transformed into an intermediate cubic solid solution phase [Y3A 1Y(A1 0 4 )3 ] from 

1000-1060°C. The cubic YAIO3 phase then decomposed to a YAG + YAM mixture 

between 1080 and 1200°C, which subsequently underwent a solid-state reaction to form 

single-phase orthorhombic YAP by 1650°C.

In the Y2 O3 -AI2 O3 system, it is said that synthesizing the pure YAIO3 single phase has 

been difficult because of preferential formation of other phases by sol-gel methods or 

other wet chemical processes. M. Harada et. al. [8 8 ] used a polymerised complex 

method to produce the doped YAIO3 . The most important feature o f this method is the 

formation o f a mixed metal citric acid complex with a stoichimetric ratio stabilised in a 

polyester based resin. In this study, yttrium nitrate and aluminium nitrate as well as a 

combination o f aluminium isopropoxide and yttrium acetate were the starting materials. 

The crystallisation temperature o f the YAIO3 phase was 1100°C. T. Tachiwaki et. al 

[89] manufactured YAIO3 using the sol-gel method. YAIO3 solid solution phase 

crystallised at 880-935°C from amorphous materials which were prepared in the mole 

ratio Y3+/A13+=1:1 or 3:5 using yttrium chloride (YCI3 .6 H2 O), aluminium chloride, 

(AICI3 .6 H2 O), and hydrazine monohydrate [(NH2)2 .H2 0 ] as starting materials. The 

hexagonal YAIO3 phase transformed to YAG for the Y /Al =3:5 composition at 1005- 

1075°C.

Rao [90] reported the preparation o f YAG, YAM and YAP doped with rare earth 

elements using the sol-gel process. In the experiment, yttrium hydroxide and 

aluminium hydroxide xerogels were used as the precursors and the samples were found 

to be fully crystallised at 1000°C. Hess et al [91] studied the formation o f YAG, YAP 

and YAM via combustion synthesis o f aqueous glycine-nitrate solutions with 

stoichiometric yttrium-to-aluminum cation ratios. This process produced amorphous
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powders that were crystallised by subsequent heat treatment. The heat treatment 

temperature has affected the crystallisation pathway; e.g. for YAG composition, at 

temperature 800°C YAG initially crystallised directly from the amorphous precursors. 

At higher temperatures, hexagonal YAP formed as a metastable intermediate product. 

Since the fuel concentration could possibly affect the ultimate temperature reached 

during combustion synthesis, the crystallisation pathway is related to the fuel 

concentration and the initial heat treatment process.

S.L Liu [92] et al synthesized doped Y4AI2O9 by the sol-gel method. Yttrium and 

aluminium citrate complexes were used as starting materials. The single-phase Y4AI2O9 

was crystallised at 900°C as opposed to the conventional solid-state reaction, which led 

to the formation o f other impurity phases.
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Fig.2.13. A phase diagram of the Yb203-Al203 system. From ref. [17].

II.2.3 Sol-gel studies of the Yb2 0 3 -Al2 0 3 system
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In the above section, we described the extensive sol-gel studies o f the Y 2 O3 -AI2 O3 

system due to its widespread applications in industries. The Yt^C^-ALCb system 

described in this section is a novel system for sol-gel science. To the best o f our 

knowledge, there have been no published papers about sol-gel studies o f the Yb2 0 3 - 

AI2O3 system besides our research work in this thesis. Although the Yb2 0 3 -Al2 0 3  

system is very similar to the Y 2 O3-AI2O3 system, there are some differences that existed 

between them. This is evident by comparing phase diagram o f the Yb2 0 3 -Al2 0 3  system 

(shown in Figure 2.13) [17] to that o f the Y 2O3 -AI2O 3 system (Figure 2.12). According 

to phase diagram o f the Yb2 0 3 -Al2 0 3  system, there are only two transition compounds, 

i.e. Yb3Al5 0 i2 and Yb4Al2 0 9 , whereas formation o f YbAlCb perovskite phase 

corresponding to YAIO3 in the Yb2 0 3 -Al2 0 3  system is not observed. The reason is that 

Yb3+ has a smaller radius (0 .8 6 A) than that o f Y+3 (0.89A) [26]. Thus, it is unsuitable 

for any site o f the perovskite structure. It is too large for the octahedral positions 

(CN=6 ) and too small for the sites with coordination number (twelve). Thus, YbAlCb 

perovskite is an unstable phase. This is an advantage when preparing pure-phase 

ytterbium aluminium garnet because it decreases the chance o f  forming the perovskite 

impurity phase.

II.3 Rare earth alumina garnets

II.3.1 Crystal structures of rare earth alumina garnets

As we mentioned in II.2.2, there are three important transition compounds in the Y2O3- 

AI2O3 system, i.e. Y3AI5O12, YAIO3, and Y4AI2O9. However, the most important phase 

among them is the well-known yttrium aluminium garnet. YAG is host materials for a 

number o f phosphor systems and typically famous as a host laser material. YAG 

belongs to the rare earth alumina garnet family. It is a body-centred cubic structure with
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the space group Ia3d, the most symmetric space group o f the cubic system. Natural 

garnets are silicates and they are known as beautiful precious stones. They have a 

general formula [A]3 [B]2 [C]3 0 i2 (for silicate garnets, C is Si and B is Al; for alumina 

garnets, B and C are Al). A, B, C cations occupy particular sites, depending on cation 

radii. In most cases o f natural garnets, and also in artificial obtained crystals with the 

garnet structure, the same sites o f A, B, or C cations can be occupied in a statistical 

manner by more than one type o f ion.

Fig.2.14. A schematic diagram of yttrium aluminium garnets.

Figure 2.14 shows the structure o f yttrium aluminium garnets. There are eight 

molecules per unit cell and 160 atoms. 3/5 aluminum atoms occupy the [AIO4 ] 

tetrahedral, 2/5 aluminum atoms occupy the [AlCy octahedral and yttrium atoms exist 

in [YOg] dodecahedron. F. Euler et. al. [93] studied the oxygen coordinates with 

alumina garnet structures. Each oxygen belongs to two dodecahedra, one tetrahedron,
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and one octahedron. Thus, the alumina garnet crystal structure consists o f a 3D network 

of oxygen polyhedra.

Y3+ cations in alumina garnets can be replaced partly or completely not only by rare 

earth elements in the lanthanide series, but also by other transition metals that have 

similar radii of atoms. Al cations also can be substituted by other metal cations. All 

these substitute ions may cause the structure deformation and the adjustment o f the 

crystal cell constant. When Yb3+ cations replace Y3+ ions totally, it is ytterbium 

aluminium garnet in the Yb2 0 3 -Al2 0 3  system. YbAG theoretically has a smaller crystal 

lattice constant (11.93A) than that of yttrium aluminum garnet ( 1 2 . 0 1  A) [94]. This is 

attributed to the fact that Yb3+ has a smaller radius (0.86 A) than that o f Y 1’3 (0.89A) 

[26]. When Yb3+ cations partly replace Y3+ ions, it is ytterbium doped yttrium 

aluminium garnet which has very recently shown promise as a novel laser material and 

potentially good scintillator. The unit cell constant becomes 11.978 A [95] after 30 at. 

% Yb atoms substitute for yttrium. Many o f the optical properties o f alumina garnets 

are achieved by doping other rare earth or transition metal elements in their structures, 

which lead to additional energy levels on their energy band structures such as Yb:YAG 

and Nd: YAG.

Generally, the sites (rare earth ions) o f the oxygen dodecahedra in alumina garnets are 

substituted by the cations with the +2 or +3 chemical valence whereas the oxygen 

tetrahedral or octahedral sites (Al3+ cations) are replaced by other cations with the +3, or 

+4 chemical valence. The chemical valence and the radius o f the doped elements are 

very sensitive to form solid solution alumina garnets. To the best o f our knowledge, 

nothing has been published on alumina garnets doped by transition metal with the + 6  

chemical valence and especially where the substituted cations occupy the dodecahedron 

sites o f alumina garnets.
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N. Gautier et. al [96] investigated aluminium-gallium substitution in yttrium garnets via 

the sol-gel method by NMR and X-ray absorption. J. Carda et al. [97] studied the 

cation substitution between uvrovite and yttrium aluminium synthetic garnets obtained 

by sol-gel methods and the cation distribution in dodecahedral, octahedral and 

tetrahedral sites and bond distances in these garnets using the Rietveld method. The 

work shows the incomplete substitution in small sites. The smaller site the smaller 

substitution that is possible.

II.3.2 Basic properties of rare earth alumina garnets

There is an enormous volume o f literature on the physical properties o f rare earth 

alumina garnets. In this section, we only describe some elementary important 

properties o f YAG and YbAG as a comparison. They present many similar properties 

which can be extrapolated on the basis o f their being iso-structured.

Rare earth alumina garnets are very stable from room temperature to their melting 

points (about 2000°C). They keep the body-centred cubic structure regardless o f the 

change o f  temperature. The melting point o f YAG is 1970°C and that o f  YbAG is 

2000±20°C. The density o f YbAG can be calculated as 6 . 6  g/cm 3 whereas the density 

o f YAG is 4.6 g/cm3.

The reported Hv hardness values o f YAG are in the range o f 1100 -1700  kg/mm 2 [98]. 

Doping o f a garnet crystal generally leads to a greater hardness [99]. W ithin a group o f  

related crystals, the lattice constant is a measure o f  the strength o f bonding. The larger 

the lattice constant, the weaker the bonding. Research results have indicated decreasing 

hardness with increasing lattice constant for alkali halides [1 0 0 ], divalent and tetravalent 

crystals [101] with NaCl structure by plotting the hardness against the lattice constant. 

Since the lattice constant o f YbAG is smaller than that o f YAG, it is extrapolated that
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the Hv hardness o f YbAG is in the range o f 1100 -1700  kg/mm 2 too. The relationship 

between garnet hardness and lattice constant can be seen in Figure 2.15 [98].

The thermal expansion coefficient o f YAG is 9.1 x 10‘6 (1/°C) [ 1 0 2 ]. YbAG possesses 

almost the same thermal expansion coefficient as YAG [103].

The elastic modulus o f YAG is 280 GPa. YbAG should have a similiar elastic modulus 

as YAG.

Oxygen diffusivity in YAG is appoximately 10‘20 m 2/s (1100°C) [104]. Oxygen 

diffusivity in YbAG is o f the same level as it is in YAG [104].
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Fig.2.15. Plot of hardness (Hv) against lattice constant a. From ref. [98].

The thermal conductivity o f YAG is 3.2 W/m.K [5] at the temperature o f 1000°C. The 

relationship between the thermal conductivity o f YAG, the temperature and the grain 

size is shown in Figure 2.16 [5]. It can be extrapolated that YbAG has lower thermal 

conductivity than YAG because atomic masses o f Yb is heavier than that o f Y.
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Generally, the heavier the atomic masses in one cell, the lower the thermal conductivity. 

W hen Yb is doped into YAG garnets, the thermal conductivity decreases greatly at 

room temperature, especially at high doping levels [95]. The thermal conductivity o f 

Yb:YAG single crystals decreases with the increase in temperature shown in Figure 

2.17 [95]. The reduction o f thermal conductivity at a higher doping concentration is 

regarded as the result o f possible changes o f phonon modes [95]. In Yb doped YAG 

crystals, there are no free electrons, so the main mechanism o f heat transfer is heat 

transfer by phonons. Therefore, the change o f lattice vibration directly influences the 

thermal conductivity o f Yb doped YAG.
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Fig.2.16. Theoretical relationship of the thermal conductivity of YAG, the 
temperature, and the grain size. Circles are measured values for 2 pm grain size. 
From ref. [5].

II.3.3 Sol-gel studies of YAG garnets

More and more papers on the synthesis o f YAG and doped YAG by sol-gel or other 

low-temperature chemical methods have been published in recent years [105-109].
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Some of them have been described in section II.2.2. The interest in the synthesising 

YAG by sol-gel methods is due to the need for high-quality powders and transparent 

ceramics. Synthesis by the sol-gel method has many advantages such as atomic level 

mixing of high purity precursors and low processing temperature compared with the 

conventionally sintering method. Most work on sol-gel synthesis has shown that YAG 

does not transform directly from an amorphous precursors. In general, crystallisation of 

YAG by the sol-gel method occurred at approximate to 900-1000°C and can be 

densified to transparency under 1600°C. The crystallisation pathways o f a selected 

YAG synthesis via different precursors are listed in Table 2.1.

—  2.5 at % doped Yb; YAG 
-*— 20 at % eloped Yb: YAG

50 100 150 200 250

Temperature (°C)

Fig.2.17. Thermal conductivity of 2.5 at. % and 20 at. % doped Yb:YAG. From  
ref. [95].

Many authors [110-114] have reported sol-gel studies of YAG: RE (RE = Eu, Ce, Tb or 

other elements) in recent years. J.Y. Choe et. al [115] studied the cathodoluminescencs 

of sol-gel derived Tb doped YAG powders and thin films using alkoxide organic
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precursors: yttrium isopropoxide, Al butoxide, and Tb acetyl acetonate. Fully 

crystallised pure single phase YAG was obtained at 900°C.

D. Ravichandran et al [116] prepared Eu doped YAG thin films and powders for field 

emission display application using sol-gel methods. D. Hreniak [117] reported 

synthesis and optical properties o f Nd doped YAG semitransparent nanoceramics by 

sol-gel methods. It was found that with increasing the temperature o f heat treatment, 

the size o f grains increased. The size o f polycrystallites had significant effects on 

luminescence properties of Nd doped YAG.

Table 2.1 Crystallisation pathways for YAG synthesis via different precursors.

Precursors Pathway Reference

Al(N0 3)3 andY(N 0 3 ) 3 -► YAG (~900UC) P. Vaqueiro et al.[109]

Alkoxy precursors YA103 (hex) —» YA103 (ortho) 

—»YAG (1050°C)

Yamaguchi et al 

[8 6 ], [87]

Organometallic

(nitrates)

YA103 (hex) -> YAG (1100UC) Vietch [106]

Glycine- nitrate YAIO3 (hex) — YAG (~ 875UC) Hess et al [91]

Diphasic sol-gel e-Al20 3 + YAIO3 -► YAG 

(900°C)

Hay [85]

Y & Al Isobutyrate -►YAG (910gC) Y. Liu et al. [107]

PVA + Y & Al nitrates —►YAG (940UC) Nguyen et al. [108]

J.R. Lo and T.Y. Tseng [118] studied the effects o f crystallisation behaviour when a 

LiCl flux was used in heat treatment o f single-phase Tb or Cr doped YAG sol-gel- 

derived powders. It was found that the 20 wt. % addition o f LiCl increased the 

crystalline size of powders and lowered the crystallisation temperature.
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YAG fibers produced by sol-gel techniques have also been reported [119-122]. Rare 

earth aluminium garnet ceramic fibers were found to be able to be used as 

reinforcements in ceramic matrix composites [123], which are high-temperature 

structure materials. The alumina is often added as seeds in the preparing process of 

YAG fibres by the sol-gel method to promote crystallisation and to form the composite 

fibre materials [124-126].

II.3.4 Activation energy of YAG crystallisation

B.R. Johnson et al. [127] studied crystallisation kinetics o f yttrium aluminum garnet. In 

this report, YAG powders were prepared from the starting materials; yttrium nitrate 

hexahydrate [Y(N0 s)3 .6 H2 0 ] and aluminium nitrate hexahydrate [Al(N0 s)3 .6 H2 0 ]. 

They were dissolved in hydrolysed polyvinyl alcohol [PVA] [108] [128]. The direct 

crystallisation temperature was at 940°C, which was similar to the 910°C crystallisation 

temperature reported by Y. Liu [107] from the metalorganic system they used. The 

powders were then heated and melted at high temperature 2200°C and rapidly quenched 

(at approximately 250°C/s) to form an amorphous phase with some YAG 

nanocrystallites. The material crystallised directly into stoichiometric YAG at 

temperature as low as 840°C; no intermediate phases were observed. Crystallisation 

most likely occurred with a constant number o f sites due to pre-existent crystals. 

Isothermal crystallisation kinetics were studied by DTA. Several different kinetic 

models were examined and were applied to the data to determine which one best 

described the amorphous to crystallisation transition. The model that best described the 

data was the JMA equation [73-76]. The activation energy for YAG crystallization was 

then obtained as 437 kJ/mol and the measured Avrami exponent was 2.47, which 

corresponded to three dimensional crystal growths with a constant number o f nuclei.
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E.A. Aguilar studied the rapidly solidified AI2O3-Y2O3 fibres [129]. Crystallisation 

activation energy calculated from scan-rate dependence o f DTA peaks was 390 kJ/mol 

for the Kissinger method and 352 kJ/mol by the Augis-Bennett method.

R.S. Hay [85] reported the activation energy for YAG formation from hydrated Y 2O 3 

and AI2O3 particles as 280 kJ/mol. This was considered to be related to YAG -YAM 

boundary diffusion or surface diffusion due to the microstructural and microchemical 

phase composition o f the parent intermediate phases.

J.R. Lo and T.Y. Tseng [84] estimated the activation energy o f YAG crystallisation at 

about 289 kJ/mol by the isothermal process as fitted with the John-Mehl-Avrami 

equation [73-76] and this result is very similar to Hay’s result [85]. The morphology 

exponent is about 0.8, which is related to the mechanism o f crystal growth. However, 

the activation energy is about 929±8 kJ/mol by the continuous heating method as fitted 

with Kissinger and Sotgiu plots [130] [131]. The difference in activation energies 

between the two methods was explained by the different phase-transformation 

mechanisms o f YAG for the methods. From the continuous heating method, it includes 

surface nucleation and crystal growth in the system they studied.

Zhukovskaka et al. [132] estimated the activation energy o f YAG using the Zhuravlev 

equation and studied the quantitative effect o f Y 2 O3 . They found that the composition 

with a mole ratio o f Y:A1 = 3:5 possessed the lowest activation energy o f 96 kJ/mol. 

Kumar et al. [133] studied the thermodynamics and nucleation behaviour in the YAG 

system using the regular solution model. They reported that the free energy barrier o f a 

YAG critical nucleus was high under homogeneous conditions.
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Chapter III

Experimental procedure

In this chapter, we describe the preparation and processing of samples by our sol-gel 

techniques. Characterisation o f samples is presented in the corresponding sections. In 

section 1 , we present the process o f preparing sols o f the pure and doped Yb2 0 3 -Al2 0 3  

system. In section 2, the sol-gel process o f preparing thin films and thick coatings is 

described. In section 3, we present the preparation o f nano-size powders by our sol-gel 

methods.

III. 1 Preparation of sols

Aluminium chloride (AICI3 , 99.99%) was used as the starting material. Aluminium 

chloride was dissolved in distilled water to prepare aluminium chloride solution with 

the concentration 10 wt. %. Then, 10 wt. % aqueous ammonia solution was added 

dropwise into the stock aluminium chloride solution, while stirring using a magnetic 

stirring rod. A precipitate o f Al(OH) 3  was formed according to the following reaction: 

AICI3 + 3 NH4 OH ~  Al(OH)31 + 3 NH4 CI (3.1)

The precipitate was then filtered and washed for 3 times using distilled water and then 

dried overnight. An organic solvent (e.g. ethanol, methanol and/or isopropanol) and 

water were mixed with the precipitate and stirred for at least 1 0  mins at room 

temperature in a three-necked flask which was equipped with a reflux condenser, a 

dropping funnel, a stirring rod, a thermometer, and a thermocontroller. The schematic 

diagram is shown in Figure 3.1. Then, 10 wt. % aqueous acetic acid was added 

dropwise to the mixed suspension at temperature 60~80°C with continuous stirring for
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at least 2 hours. The as-prepared alumina sol was sealed in a glass bottle and allowed to 

age for 2 ~  3 days.

Reflux Condenser

Cooling Water —►

Three-necked Flask

Stirring Rod

Controller

Fig.3.1. The schematic diagram of manufacturing devices in sol-gel methods.

Sample sols o f the pure Yb2 0 3 -Al2 0 3  system were prepared by adding Yb chemicals 

that were dissolved in the distilled water and allowed to hydrolyse. The pH value was 

controlled in the range o f 3-5 to allow the sol further hydrolysis and condensation. 

Sample sols o f the doped Yb2 0 3 -Al2 C>3 system were obtained by adding the doping 

chemical according to the desired mole ratio into the as-prepared sol o f the pure Yb2 C>3 - 

AI2 O3 system.

Figure 3.2 shows a schematic representation o f the processing steps. The prepared 

sample sols of the pure and doped Yb2 0 3 -Al2 0 3  system with their compositions are 

shown in Table 3.1. All sample sols were prepared for further use to produce thin films, 

coatings, or nano-size powders. Samples #1-7 were prepared to study sol-gel
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processing o f the pure and doped Yb2 C>3 -Al2 C)3 system. Sol-gel synthesis and 

crystallisation kinetics o f the pure and Mo doped YbAG were investigated using 

samples #5, #7, and # 8 . Samples #9~12 were prepared to manufacture phase-pure Yb 

doped YAG nano-size powders and thin films.

precipitation

Aging for at least 24 h

solution mixed with NHjOH

Heat treatment at high temperature

Filtering and washing by deionized water

Adding Yb or other chemicals

on the substrate or producing powders

A1(0H)3 + Organic solvent+ water + CH3C 0 0 H  mixed and stirred for at least 2 h

Fig.3.2. A schematic representation of the steps of preparing samples.
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Table 3.1 Sample sols with their compositions.

Samples Compositions Doping

Sample #1 Yb3+/Al3+=2:1 No doping

Sample #2 Yb3+/Al3+=1:1 No doping

Sample #3 Yb3+/Al3+=1:1, Li+/Yb3+= 8 at. % 8 at. % Li+ doping

Sample #4
Yb3+/Al3+=1:1, Li+/Yb3+= 8 at. %, 

Mo6+/Yb3+=4 at. %

8 at. % Li+ &

4 at. % Mo6+ doping

Sample #5 Yb3+/Al3+=3:5 No doping, Pure YbAG

Sample #6
Yb3+/Al3+=3:5, Li+/Yb3+= 4 at. %, 

Mo6+/Yb3+=4 at. %

4 at. % Li+ &

4 at. % Mo6+ doping

Sample #7
(2Mo6++Yb3+)/Al3+=3:5 

Mo6+/Yb3+=10 at. %
10 at. % doped Mo6+:YbAG

Sample #8
(2Mo6++Yb3+)/Al3+=3:5 

Mo6+/Yb3+=30 at. %
30 at. % doped Mo6+:YbAG

Sample #9
(Yb3++Y3+)/Al3+=3:5 

Yb3+A,3+=10 at. %
10 at. % doped Yb:YAG

Sample #10
(Yb3++Y3+)/Al3+=3:5 

Yb3+/Y3+=20 at. %
20 at. % doped Yb:YAG

Sample #11
(Yb3++Y3+)/Al3+=3:5 

Yb3+/Y3+=50 at. %
50 at. % doped YbrYAG

Sample #12
(Yb3++Y3+)/Al3+=3:5 

Yb3+A"3+=100 at. %
100 at. % doped Yb:YAG
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III.2 Preparation of coatings

III.2.1 Thin films

The prepared sols were spin or dip coated on Si or stainless steel substrates. Si 

substrates were single crystals with the surface normal orientation [ 1 0 0 ] and were cut to 

1 x 2  cm. Prior to coating, substrates were cleaned with soap, water and then distilled 

water, and finally ultrasonically cleaned in ethanol and acetone. After each coating, the 

substrates were annealed at 400°C for 30 minutes. The coated samples were then heated 

at various temperatures at the heating rate o f 10°C/min to study the crystallisation 

process. The coated samples were also heated at very fast heating rate (100°C/min) to 

investigate the crystallisation kinetics with various calcination times at the designated 

crystallisation temperature. This very fast heating rate was used to avoid the effects on 

the crystallisation during the heating process. All samples that were used to study the 

crystallisation kinetics were prepared under the same conditions.

For the sake o f clearly describing our research, thin film samples on Si (100) coated by 

the prepared sols listed in Table 3.1 were divided into four groups as following:

Group 1: TFL1-GP1.

Group 2: TFL2-GP2, TFL3-GP2, and TFL4-GP2.

Group 3: TFL5-GP3, TFL6-GP3, TFL7-GP3, and TFL8-GP3.

Group 4: TFL9-GP4, TFL10-GP4, TFL11-GP4, and TFL12-GP4. 

where the abbreviation “TFL” stands for the thin film; the “number” following the 

“TFL” means that this thin film was coated by the corresponding “number” o f the 

sample sols listed in Table 3.1; the abbreviation “GP” represents the group; and the 

“number” following the “GP” is the group number.
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Polished 304 stainless steel substrates were prepared for the study o f corrosion 

resistance. The prepared sample #7 sol in Table 3.1 was dip coated 4 times on the 

stainless steel substrates at the dip speed rate o f 3 cm/min. After each coating, the 

substrates were annealed at 400°C for 30 minutes. The final heat treatment was 600°C 

and 750°C for 1 hour, respectively. We assign this is Group 5 as follows:

Group 5: TFL7-GP5-a (600°C calcination) and TFL7-GP5-b (750°C calcination)

All samples in Group 1, 2, 3, and 4 were annealed at various temperatures for different 

times and then characterised by XRD.

Thin film thermal behaviour o f samples TFL2-GP2, TFL3-GP2, TFL4-GP2, and TFL6 - 

GP3 in the sol-gel processing was studied by DTA. DTA samples were prepared by 

scratching off the gel thin films which had been dip coated on Si substrates.

Thin film samples TFL3-GP2 and TFL7-GP3 after heating respectively at 850°C were 

analysed by XPS.

The xerogel thin film thickness o f the sample TFL5-GP3 was measured by SEM. The 

sample was prepared by carefully dropping 3.0 wt. % aqueous ammonia solutions onto 

the one-time dip coated xerogel thin film surface, which made the thin film corrode and 

roll up on the substrate. The thin film surface morphology o f samples TFL5-GP3 and 

TFL7-GP3 after full crystallisation at 850°C annealing was characterised by AFM.

The electrochemical polarisation o f thin film samples TFL7-GP5-a and TFL7-GP5-b as 

well as the stainless steel were tested. After testing, the surface morphologies were 

observed by SEM.

IIL2.2 Thick coatings

In general, it is very difficult to make thick coatings with the thickness o f  more than ten 

microns directly by the conventional sol-gel method. However, a modified sol-gel 

coating technology may be a way to overcome this problem. Fine powders can be
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added into the sol as the so-called filler to form the mesastable slurry. The slurry is then 

coated on substrates either by dip coating or by spray coating. Thick coatings can be 

obtained. The shrinkage o f the coatings is reduced dramatically because there is no 

shrinkage o f the added particles. However, the bonding between the coatings and the 

substrate or among particles is weak and it is necessary to modify the coatings to 

strengthen the bonding. Adding an organic polymer such as PVA into the slurry could 

be very useful, which can be used to stabilize the suspension and to enhance the 

bonding.

Ni superalloy substrates were prepared by polishing the surface to within one micron, 

and then were ultrasonically cleaned in ethanol and acetone. YAG powders with the 

particle size about 1 pm were added and mixed ultrasonically with the prepared 1 0  

atomic. % Mo doped YbAG sol (sample #7 in Table 3.1) for at least 2 hours. The slurry 

was then dip coated on the Ni superalloy substrate for 4~5 times. After each slurry 

coating, the sample #7 sol without the YAG powder fdler was dip coated on the sample 

to fill in the spaces or pores in order to enhance the bonding o f  particles. After each 

coating, the substrate was annealed at 400°C for 30 minutes. Finally, the coated sample 

was heated to crystallise at 750°C for 8  hours at the heating rate o f 1 0 °C/min and the 

thick composite coatings o f Mo:YbAG and YAG were produced. Surface and cross 

section morphologies o f the thick composite coatings were observed by SEM.

III.3 Preparation of nano-size powders

The prepared sol was added dropwise to the 10-30 wt. % aqueous ammonia solution 

with continuous vigorous stirring. Urea [(M U ^C O ] [167], Polyacrylamide (PAM) 

[168], or other polymers can be added into the sol before dropping it into the ammonia
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solution. The added organics serve as a dispersing medium to limit the agglomeration 

o f particles.

The precipitate was filtered and allowed to dry in an air oven at 80°C. The dried 

powders were then heated at various temperatures at the heating rate o f  10°C for the 

required time to obtain xerogel powders, amorphous powders, and finally calcined at 

the required temperature to realise the full crystallisation. Finally, nano-size powders 

were produced.

The prepared powders are divided into two groups as following:

Group 6 : POW5-GP6, POW7-GP6.

Group 7: POW 9-GP7, POW10-GP7, POW11-GP7, and POW12-GP7. 

where the abbreviation “POW ” stands for powders; the “number” following the “POW ” 

means that the powders were prepared by the corresponding “number” o f the sample 

sols listed in Table 3.1; the abbreviation “GP” represents the group; and the “number” 

following the “GP” is the group number.

Thermal behaviour o f samples POW5-GP6 and POW7-GP6 using the wet gel powders 

was analysed by DTA and TG, separately.

Samples POW 5-GP6 and POW7-GP6 were heat-treated at 200°C, 300°C, 400°C, 500°C, 

600°C, 750°C or 850°C for 30 minutes, respectively. The heated powders were directly 

used as the samples for IR spectra and Raman spectra. After 850°C for 30 minutes heat 

treatment, samples POW5-GP6 and POW7-GP6 were characterised by XRD, 

respectively. IR transmittance spectra were also carried out by using disk samples 

which were prepared by mixing and pressing POW 5-GP6 and POW 7-GP6 samples after 

850°C for 30 minutes annealing with KBr in the mass ratio 10:100.

Samples POW9-GP7, POW10-GP7, POW11-GP7, and POW 12-GP7 were heat-treated 

at 800°C for 3 hours and 850°C for 11 hours, respectively. The heated powders were
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characterised by XRD and Raman spectra. IR transmittance spectra were also 

performed by using disk samples which were produced by mixing and pressing the 

samples after 850°C 11 hours heat treatment with KBr in the mass ratio 10:100.

The morphologies o f samples in Group 7 after 850°C 11 hours heat treatment were 

observed by SEM. Nanosize powders o f the sample POW12-GP7 were characterised 

by TEM. Specimens for TEM observation were prepared by briefly and ultrasonically 

dispersing the nanosize powders in acetone. One drop of the solution was then placed 

on a copper grid coated with an evaporated amorphous carbon film.
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Chapter IV

Techniques

In this chapter, we describe the techniques which are used to characterise our samples. 

These techniques were DTA, TG, XRD, IR and Raman spectra, XPS, SEM, AFM, and 

TEM. The electrochemical polarization tests o f coatings are also included in this 

chapter.

IV. 1 Differential thermal analysis and thermogravimetric 

analysis

Fig.4.1. A schematic diagram of differential thermal analysis. F: Heating Furnace; 
1: Temperature controller; 2: Gas controller; 3: Differential thermal recording 
equipment; S: Sample; R: Passive material.

A schematic diagram o f a typical DTA apparatus is shown in Figure 4.1. Temperature 

differences between the sample material, heated at a controlled rate to a pre-determined 

temperature, and alumina are recorded. Any physical or chemical emissions o f heat or
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absorption o f heat from the sample appear in the curve as exothermic or endothermic 

peaks. The precise temperature at which a reaction takes place is determined or a phase 

change or reaction product is identified.

Thermogravimetric analysis (TG) is a precise measurement o f the weight change o f a 

solid as it is heated at a controlled rate to a pre-determined temperature. For example, 

TG can be used to determine the amount o f chemically attached water or the organic 

content o f an otherwise inorganic substance.

DTA thermal analysis was performed with a Perkin-Elmer thermal analyser. DTA 

curves were recorded over a wide range o f temperatures (up to 1000°C) at a heating rate 

o f 10°C in an air atmosphere. TG analysis was performed with M ettler TG50. TG 

curves were recorded in an air atmosphere at a heating rate o f 10°C over a wide range o f 

temperatures from 30°C to 900°C.

IV.2 X-ray diffraction analysis

The high voltage maintained across the electrodes draws electrons toward a metal target 

(the anode). X-rays are produced at the point o f impact, and radiate in all directions. 

Metal copper is commonly used as a target. It produces the strongest characteristic 

radiation (K a l) at a wavelength o f about 1.5 angstroms (A).

Bragg’s law describes the situation when an incident X-ray beam encounters a crystal 

lattice (shown in Figure 4.2) in the following equation:

2d (sin 0) = A0 (4.1)

where d is the lattice interplanar spacing o f the crystal; 0 is the X-ray incidence angle 

(Bragg’s angle); and Ao is the wavelength o f the characteristic X-rays.

In general, X-ray are scattered and most scattering interferes with itself and is 

eliminated (destructive interference). However, a peak in X-ray intensity occurs when



Chapter IV Techniques 63

scattering from one set o f  X-ray planes is in phase with scattered rays from other atomic 

planes. Under this condition the reflections combine to form new-enhanced wave fronts 

that mutually reinforce each other (constructive interference). The position o f these 

peaks in intensity corresponds to the d-spacing o f the crystal lattice. This diffraction 

pattern o f intensity v.s 2 0  is unique for each crystalline material like a fingerprint and 

material can be identified by comparison with a database o f known materials. XRD can 

be used as research tool for confirming the presence o f crystalline phases, rapid 

identification o f unknown materials, the study o f thin films or powders, etc.

S catte red  X -rays
Inc iden t X -rays

3

Layered  S truc tu re

Fig.4.2. A schematic diagram of X-ray diffraction with a crystal lattice.

The basic geometry o f an X-ray diffractometer is shown in Figure 4.3. A source o f 

monochromatic radiation and an X-ray detector are situated on the circumference o f  a 

graduated circle centred on the powder specimen. Divergent slits, located between the 

X-ray source and the specimen, and receiving slits, located between the specimen and 

the detector, limit scattered (non-diffracted) radiation, reduce background noise, and 

collimate the radiation. The detector and specimen holder are mechanically coupled
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with a goniometer so that a rotation o f the detector through 2 x degrees occurs in 

conjunction with the rotation o f the specimen through x degrees, a fixed 2 : 1  ratio.

The X-ray patterns o f all samples were collected in the mode o f a Philips PW3710 

diffractometer using Cu K a radiation. The tube current and voltage were 35 mA and 40 

kV, respectively. The scan step time was 4s and the step size was 0.02°. Usually, the 

2 0  range examined was 15 ~ 60°.

X-ray tube

Diffractometer circle

Powder
specimen

Divergent slits

Receiving slits

Counter

Fig.4.3. The basic geometry schematic of an X-ray diffractometer.

IV.3 Infrared and Raman spectra

IV. 3.1 Infrared spectra

Infrared spectroscopy includes far (400-10 cm '1), mid (4000-400 cm '1) and near 

(10000-4000 cm '1) infrared regions. However, most vibrational transitions (o f the 

chemical bonds in materials) are generally within the mid-infrared spectroscopy range. 

When infrared radiation is incident on the sample, it will only be absorbed under certain
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conditions even if  resonance occurs with the vibrational frequency o f  a given vibration. 

Thus, a change in dipole moment with molecular vibration is required for a vibrational 

transition to be seen in ER absorption spectroscopy. The rules determining optical 

activity are known as selection rules. For example, the symmetric stretch in a linear 

heteroatomic molecule is ER active, but for a homonuclear diatomic, it is not. 

Obviously, the more symmetric the molecule, the fewer transitions are ER active.

Fixed mirror

Beam splitter Movable mirror

Source

Sample

Detector

Fig.4.4. A schematic technique for obtaining the Fourier transform infrared 
spectroscopy using a Michaelson Interferometer.

Basic infrared spectroscopy can be interpreted in terms o f normal modes o f  vibration. 

The number o f normal modes available to a molecule depends upon the number o f 

atoms, N, it contains. There are 3N-6 normal modes for non-linear molecules and 3N-5 

for linear molecules. And generally there are 3N-4 normal modes for polymer 

molecules.
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A schematic technique for obtaining the Fourier transform infrared spectroscopy using a 

Michaelson Interferometer is shown in Figure 4.4. An interferogram is obtained from 

two light beams by the beamsplitter. One beam is from the fixed mirror and another is 

from the movable mirror. The interferogram intensity can be expressed as the 

following:

I(x) =  B (v )c o s (2 jw x )  (4.2)

where I(x) is the intensity as a function of mirror position, x; and B(v) is the radiance of 

the source as a function of frequency, u.

The modulation frequency is affected by two factors in the following:

f v =  2 * v * v  (4.3)

where fj> is the modulation frequency, v is the speed of the movable mirror.

For a polychromatic source, the interferogram intensity is the sum of all amplitudes of 

all monochromatic radiation.

Thus, it can be expressed as:

I(x)  = f  B{v)cos(2nvx)du  (4.4)
•Loo

This is one half of a Fourier Transform pair. The other half is

B(u) = c f  I(x)cos{2nvx)dx  (4.5)
•Loo

We can measure the interferogram, I(x), and obtain the spectrum B(v) by taking the 

Fourier transform.

IR spectra were performed in Magna-IR 860 spectrometer made by Nicolet and the 

examined wavenumber range was from 4000 to 500 cm'1. IR transmittance spectra
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were recorded in Genesis Series FTIR™ made by ATI Mattson and the examined 

wavenumber range was from 1 0 0 0  to 2 0 0  cm '1.

IV.3.2 Raman spectra

Raman spectroscopy is based on light scattering phenomena. When a photon strikes a 

molecule, and is scattered with no transfer o f energy, i.e. at the same wavelength, this is 

elastic scattering or called Rayleigh scattering. Conversely, there can be an interaction 

that changes the energy o f the scattered radiation. This is inelastic in nature and is 

called Raman scattering. If  the ground state molecules gain the energy between excited 

states by the interaction with the photons, this gives rise to Stokes lines. The Raman 

scattered light is at lower energies (longer wavelengths) than the incident radiation. 

Interaction with excited states also produces scatter at wavelengths shorter than the 

excitation line. This gives rise to anti-Stokes lines. They are shown in Figure 4.5.

------------------- x
Source (Laser) Q V \A /W V Sample

Analyzer and Detector

Rayleigh Scattering

Anti-Stokes UnesStokes Unes 

w0 - to

Fig.4.5. A schematic diagram of Raman spectra.
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For Raman activity the selection rules are different from Infrared absorption and there 

must be a change o f polarisability with molecular vibration. If a molecule has a centre 

o f symmetry, vibrational modes active in the infrared will be Raman inactive and vice 

versa. If  a molecule has no a centre o f symmetry, the infrared and Raman spectra are 

sometimes very similar.

Raman spectra were obtained using a Renishaw Ramanscope system 2000 spectrometer 

using the helium/neon laser with the laser wavelength 633 nm and 25 mW  power. The 

examined vibrational frequency range was from 1 0 0 0  to 2 0 0  cm '1.

A

Photoelectrons ( e -)

X-rays (hii)

Fig.4.6. Schematic diagram of the interaction process of photons and atoms.

IV.4 X-ray Photoelectron Spectroscopy

When photons with energy hu interact with atoms o f a material, the atom gains an 

energy amount equal to hu by absorbing a photon. Incident X-ray photon results in the 

ejection o f a single photoelectron. The released photoelectron obtains all the energy
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from the striking photon. It can then escape from the atom, and even further from the 

matter and kinetic energy keeps it moving. The atom is ionised. Incident photons 

usually carry an energy ranging from 1 to 2 KeV. This process is expressed as (Figure 

4.6):

hu + A —> A* + + e ‘ (4.6)

where A is the neutral atom, hu is the energy of a photon, A* + is the atom in the ionised 

state, e ' is the ejected photoelectron.

Vacuum
or

Vacuum

either

2p

2s

1 s

© -  I-23

e - •-

• — • K

Excitation and emission Final state

Fig.4.7. Schematic diagram of the process of Auger and X-ray photoelectrons.

Consequently, there will be some atoms lacking electrons in the shells from which 

photoelectrons have been released. To recover from this ionised state, an electron from 

a higher orbital descends to fill the vacancy created by the photoelectron resulting in an 

energy release, which in turn, ejects a second (Auger) electron. It is shown in Figure 

4.7. The principle o f the conservation o f energy allows us to write the energy balance 

equation, valid for the absorption of a photon carrying energy of hu:
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hi) E Kinetic E Binding W Work function ('4*7)

where hu is X-ray beam incident energy; E Kinetic is the electron kinetic energy when 

leaving the specimen; E Binding is the electron binding energy inside the atom.

From equation 4.7, we can obtain:

E Binding — hu - E Kinetic “ W Work function (4-8)

Incident

electrons

Fig.4.8. The schematic diagram of the interactions of the incident electrons and the 
surface of the sample.

Since hu is known from X-ray beam incident energy and W work function is a constant for 

the instrument under same conditions (generally 4 eV), E Binding will be dependent on E

Kinetic*

Chemical analysis was performed via XPS using a Kratos AXIS 165 instrument with 

monochromatic Al K a radiation (1486.6 eV). Survey scans were taken at pass energy 

o f 80 eV. High-resolution scans were taken at pass energy o f  20 eV. In the latter 

configuration the Ag 3d 5/2 peak has measured FW HM of around 0.6 eV. The spectra 

were analysed and the background subtraction was carried out using XPSPEAJC
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software. All the curve fitting was done with 80% Lorentzian and 20% Gaussian 

curves.

IV.5 Scanning Electron Microscopy

The well-known results are shown in Figure 4.8 after the incident electrons strike the 

sample and interactions occur inside the sample. Morphologies o f SEMs are patterned 

from the secondary electrons, or part o f background electrons. A typical SEM functions 

is shown in Figure 4.9.

A stream o f monochromatic electrons is produced from the electron gun. The stream is 

condensed by the first condenser lens. This lens is used to both form the beam and limit 

the amount o f current in the beam. The second condenser lens forms the electrons into 

a thin, tight, coherent beam. The condenser apertures work to eliminate the high-angle 

electrons from the beam. A set o f coils then "scan" or "sweep" the beam in a grid 

fashion, dwelling on points for a period o f time determined by the scan speed. The final 

lens, the Objective, focuses the scanning beam onto the part o f the specimen desired. 

The signals from the sample are detected with various instruments.

SEM samples were observed using XL30 ESEM-FEG or Joel-800 at 20 kV work 

voltage. Gold thin films are coated on the samples to make them as good conductors if  

samples are examined by SEM Joel-800.

IV.6 Transmission Electron Microscopy

The incident electrons strike the sample and elastic or inelastic scattering interactions 

occur. When the sample is very very thin, part o f the electrons are transmitted and 

projected onto a phosphor screen to form TEM patterns. A typical TEM working is 

shown in Figure 4.10.
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First Condenser Lens

Condenser Aperture 

Second Condenser Lens

Objective Aperture 

Scan Coils

Objective Lens 

Sample

Fig.4.9. A typical SEM functions diagram.

A stream o f monochromatic electrons is produced from the electron gun. This stream is 

focused to a small, thin, coherent beam by the use o f condenser lenses 1 and 2. The first 

lens largely determines the "spot size", i.e. the general size range o f the final spot that 

strikes the sample. The second lens (intensity or brightness) actually changes the size o f 

the spot on the sample, changing it from a wide dispersed spot to a pinpoint beam. The 

beam is restricted by the condenser aperture (selectable), knocking out high angle 

electrons. The beam strikes the specimen and parts o f it are transmitted. This 

transmitted portion is focused by the objective lens into an image. Optional Objective 

and Selected Area metal apertures can restrict the beam. The Objective aperture 

enhances contrast by blocking out high-angle diffracted electrons and the Selected Area 

aperture enables the user to examine the periodic diffraction o f  electrons by ordered

Electron Gun
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arrangements o f atoms in the sample. The image is passed down the column through 

the intermediate and projector lenses, being enlarged all the way.

TEM characterisation was performed on Phillips CM20 at 200 kV.

i Electron Gun

* "> First Condenser Lens

Second Condenser Lens 

Condenser Aperture

Sample

Objective Lens
Objective Aperture
Selected Aperture 

First Intermediate Lens 

Second Intermediate Lens

> Projector Lens

Main Screen (phosphor)

Fig.4.10. A typical TEM schematic diagram.

IV.7 Atomic Force Microscopy

A sharp tip (approximately radius ~ 20 nm) formed on soft cantilever is used to probe 

the interaction (force) between the tip and surface. There is a small attraction force that
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can be calculated around a separation distance o f 0.4 nm between two atoms. W hen the 

separation distance gets smaller and smaller the repulsive force increases steeply.

For practical AFM probe tip and the sample surface, attraction force between them 

could be much larger than that o f a two-atoms system. This is because, at least, the size 

o f the tip is much larger than an atom. Also, much longer-range forces could occur in 

practice.

The interaction between the tip and sample surface is measured through the deflection 

o f the cantilever using a laser beam and photodetector in today’s commercial AFMs. 

There are two types o f AFM: contact mode and dynamic force (tapping, non-contact) 

mode AFMs.

In the contact mode AFM, after a mechanical contact between the tip and the sample 

surface, there is a repulsive force between them. The force is used as the feedback 

parameter (by maintaining a constant force through adjustment o f the sample height 

while the tips scans the surface) to obtain AFM images.

Dynamic force mode AFM was developed to measure soft surfaces where the contact 

mode AFM could result in degradation on the surface due to a large applied force. This 

mode is operated with a stiff cantilever with a typical spring constant o f  ~ 40 N/m, 

which is oscillated at around its resonant frequency. The amplitude decreases when the 

tip ‘feels’ attraction and/or repulsive forces as the tip is brought closer to the sample 

surface. The decrease o f  the oscillation magnitude when the tip is approaching toward 

to the sample surface is used as the feedback parameter to obtain surface morphology. 

The main point for using dynamic force mode AFM is that the lateral force during 

scanning is tremendously reduced comparing to the contact mode AFM.

AFM was performed on a Nanoscope Ilia in tapping mode using a standard silicon 

nitride tip.
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IV. 8 Electrochemical Polarization Tests

The test procedure is widely used in corrosion studies and employs a potentiostat in 

combination with a three-electrode cell arrangement as shown in Figure 4.11.

Computer Controlled 
Potentiostat and Scan 
Generator

V

RE WE

A -

AE

Aqueous Solution

Reference 
I electrode

WE

AE

Working
electrode

Auxiliary
electrode

Fig.4.11. Three-electrode cell arrangement for electrochemical measurements.

In DC-Anodic polarisation tests, the sample under investigation is forced to become the 

net anode in an electrochemical cell and therefore the specimen corrosion is accelerated. 

This is achieved by forcing the electrode potential o f the sample in the positive direction 

from the free corrosion potential (E corr). As the potential is shifted away from E corr 

there is a driving force for the electrochemical anodic reaction to occur at an accelerated 

rate on the sample and by monitoring the current flowing in the external circuit, as a 

function o f potential, the corrosion kinetics can be determined. Thus, accelerated DC 

polarization test data for a material which is actively corroding can be plotted as an E -  

Log I plot.
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All measurements were performed under the conditions consisting of an aqueous, air- 

exposed, sodium chloride (3.5%) NaCl solution. Each sample was sealed with 

resistance adhesive tape in order to prevent premature corrosion along the edges o f the 

substrate. A 7.0 mm x 7.0 mm area within the centre o f each sample was exposed to 

the solution during testing. Polarization measurements were carried out 

potentiostatically at room temperature using a saturated calomel reference electrode 

(SCE) and a platinum counter electrode. Prior to the measurements, each sample was 

immersed in 3.5% NaCl solution for at least 15 mins.
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Chapter V

Phase conversion of the Yb20 3 -Al203  system

V. 1 Introduction

In this chapter, we will present the phase transformation in the sol-gel processing o f the 

pure and doped Yb2 0 3 -Al2 0 3  systems. As we already highlighted in Chapter II, there 

are no published papers on the study o f  this system by sol-gel methods. The phase 

diagram o f the Yb2 0 3 -Al2 0 3  system (Figure 2.13) shows that only two stable transition 

phases exist in this system, i.e. Yb3Al5 0 i2 and Yb4Al2 0 9 . According to the phase 

diagram in the Yb2 0 3 -Al2 0 3  system, we chose three typical compositions to investigate 

their phase transformation in the sol-gel processing. We also doped two oxides into 

this system to investigate their effect on the phase conversion. One o f them was Li20  

with valence one, and the other one is M 0 O3 with six-coordination number.

V.2 Results

V.2.1 Thermal behaviour of the pure and doped Yb2 0 3 -Al2 0 3  system

Thermal behaviour o f  the pure and doped Yb2 0 3 -Al2 0 3  systems in sol-gel processing 

was studied by DTA. The experimental procedure was presented in Chapter III. The 

investigated samples were TFL2-GP2, TFL3-GP2, TFL4-GP2, TFL6-GP3, POW 5-GP6, 

and POW 7-GP6, where the former four samples were gel powders from thin films (see 

page 56 in Chapter III) and the latter two are directly from wet gel powders (see page 59 

in Chapter III). The latter two samples are designed the pure and doped garnet 

compositions i.e. YbAG and MoiYbAG, which will be further specifically present in
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chapter VI, their weight losses during the sol-gel processing were studied by TG.

V.2.1.1 DTA traces o f samples TFL2-GP2, TFL3-GP2, and TFL4-GP2 are shown in 

Figure 5.1a, b, and c. These three samples have the same matrix composition i.e. 

Yb2 0 3 /Al2 0 3  = 1:1. Characterisation o f the thermal processes can be divided into 

three stages as follows:

Processes I (below 200°C): There are two endothermic peaks for sample TFL2-GP2 

(Figure 5.1a) under 200°C. The endothermic peak that is attributed to the removal o f 

organic solvents is overlapped in the first peak centered at about 125°C, which is 

possibly due to the existence o f residual excess acetic acid [169] [170] in the wet gel. 

The second peak centered at 160°C is attributed to the removal o f absorbed structural 

water. The characteristics o f the thermal process in samples TFL3-GP2 and TFL4- 

GP2 below 200°C are different from the sample TFL2-GP2. For sample TFL3-GP2 

(Figure 5.1b), the centers o f two endothermic peaks shifted to 140°C and 180°C. For 

sample TFL4-GP2 (Figure 5.1c), there are two endothermic peaks. A small one 

centered at 100°C and a very large one centered at 170°C. These changes are possibly 

due to the effects o f  the doped Li+ or M o6+.

Processes II (between 200°C and 500°C): Endothermic peaks for sample TFL2-GP2 are 

located at 240°C, 280°C, and 370°C. For sample TFL3-GP2, there are three 

endothermic peaks centered at 300°C, 337°C, and 418°C. Two peaks centered at 

300°C and 337°C are much smaller than the one centered at 418°C. Sample TFL4- 

GP2 has three endothermic peaks in the processes II, which centered at 229°C, 330°C 

and 467°C. In sol-gel chemistry, the endothermic peaks between heating temperature
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Fig.5.1. DTA traces of samples; (a) TFL2-GP2; (b) TFL3-GP2; (c) TFL4-GP2.
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200°C and 500°C are generally attributed to carbonization or dehydroxylation. These 

three samples all show three endothermic peaks in the process II region which indicates 

a very complicated process.

After the process II, the gels have formed the amorphous network or glass structures. 

The amorphous oxides will transform to polycrystalline structures by further annealing 

at temperatures higher than 500°C. This is the process III.

Processes III (above 500°C): In sample TFL2-GP2, a small exothermic peak is observed 

at 850°C. For samples TFL3-GP2 and TFL4-GP2, the small exotherms are at around 

805°C and 780°C, respectively. These exothermic peaks correspond to the 

characteristics o f crystallisation. It is expected that the corresponding temperatures o f 

these exothermic peaks have a relationship with the crystallisation temperature. XRD 

results below show that the sample TFL2-GP2 has the highest initial crystallisation 

temperature in these three samples, followed by the sample TFL3-GP2. The sample 

TFL4-GP2 has the lowest initial crystallisation temperature in these three samples. 

V.2.1.2 DTA traces o f samples POW5-GP6, POW7-GP6, and TFL6-GP2 are shown 

in Figure 5.2a, b, and c, respectively. Thermo gravimetric curves o f samples POW 5- 

GP6  and POW7-GP6 are also presented in Figure 5.2a and b together with their 

corresponding DTA curves. These three samples have very similar matrix 

compositions i.e. (1) POW5-GP6, the pure garnet composition Yb2 0 3  / Al2 0 3 = 3 :5 ; (2)

POW7-GP6, 10 at. % Mo:YbAG and (2 M o0 3+Yb2 0 3)/Al2 0 3 = 3 :5 ; (3) TFL6-GP2, 

Yb2 0 3 /Al2 0 3 = 3 : 5  and dopants 4 at.% M 0 O3 and 4 at. % Li20 .
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Fig 5.2. DTA and TG curves of samples; (a) POW5-GP6; (b) POW7-GP6; (c) 
TFL6-GP2.
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Processes I (below 200°C): Figure 5.2a, b, and c are all very similar; i.e. only one strong 

endothermic peak. It is centered at about 120-130°C. This strong peak is mainly 

attributed to the removal o f organic solvents and the absorbed structural water. Most 

o f the weight losses (about 60% -  80%) occurred below 150°C.

Processes II (between 200°C and 500°C): Figure 5.2a and b show no peaks in this 

region. However, Figure 5.2c presents two endothermic peaks; the very small one is 

centered at 220°C and the large one is centered at 300°C, which are possibly due to the 

effect o f the doped Li2 0 .

In this process, there was a continuous weight loss (about 5 -  10%) for samples POW5- 

GP6  and POW 7-GP6 although DTA traces did not show any endothermic peaks. It is 

attributed primarily to carbonisation or dehydroxylation.

Processes III (above 500°C): No sharp exothermic peaks related to the crystallisation 

temperature are found in all three cases. They present a broad and smooth exothermic 

process. This is an interesting result. The former two DTA traces are very similar to 

a sol-gel processing o f SiC>2 prepared from TEOS [171]. XRD results below show that 

only one single-phase ytterbium alumina garnet appeared in this crystallisation process 

for all three samples.

V.2.2 Phase conversion of the Yb2 0 3  -AI2 O3 system

V.2.2.1 Sample TFL1-GP1 with a composition YT^CE / Al2 0 3 =2 :l in the Yb2 0 3 - 

AI2O3 system was investigated by XRD. Combined plots o f XRD spectra are shown in 

Figure 5.3. The single-phase YT^AhOg was crystallised after 950°C heat treatment, 

which was identified by JCPDS #34-0368 [94].

V.2.2.2 Samples TFL5-GP3, TFL6-GP3, and TFL7-GP3 (see page 55 and 56 in 

Chapter III) with a matrix composition YT^Ch/ Al2 0 3 = 3 : 5  in the Yb2 0 3 -Al2 0 3  system 

were investigated by XRD. Combined plots o f their XRD spectra are shown in Figure
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5.4 a, b, and c, separately.
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Fig.5.3. XRD patterns of sample TFL1-GP1; (a), i: 850°C, lh; ii: 950°C, lh .

For sample TFL5-GP3 ( Figure 5.4a), the peaks are attributed to the only crystallised 

phase i.e. YbsAlsO^, identified as JCPDS #73-1369 [94]. The initial garnet phase 

appeared at 850°C. Fully crystallised YbAG garnets can be obtained after a long time 

heat treatment at 850°C or a relatively short time annealing at higher temperature than 

850°C, e.g. 950°C. It must be emphasized that this is the first time that single-phase 

YbAG garnets have been produced by sol-gel techniques.

For sample TFL6-GP3 ( Figure 5.4b), single phase YbAG garnet was obtained at 700°C 

and no other phase was detected. This crystallisation temperature was about 150°C 

lower than sample TFL5-GP3. The doped Li+ or M o6+ has significantly lowered the 

crystallisation temperature o f single-phase ytterbium aluminium garnets.

For sample TFL7-GP3 (Figure 5.4c), the temperature for the onset o f crystallisation o f 

single-phase YbAG garnets was found to be 700°C. This temperature is the same with 

sample TFL6-GP3 and 150°C lower than that o f sample TFL5-GP3.
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Fig.5.4. XRD patterns of samples; (a) TFL5-GP3;(b) TFL6-GP3;(c) TFL7-GP3.
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In summary, phase transformations o f Group 3 in the Yb2 0 3 -Al2 0 3  system are listed in 

Table 5.1, from which we can find that M 0 O3 has significantly lowered the 

crystallisation temperature o f  YbAG garnets when it is doped into the Yb2 0 3 -Al2 0 3  

system.

Table 5.1 Crystallisation of Group 3 in the Yb2 0 3 -Al2 0 3  system

Samples
Heat treatment conditions

600°C 700°C 800°C 850°C 950°C

TFL5-GP3 Amorphous Amorphous Amorphous YbAG YbAG

TFL6-GP3 Amorphous YbAG YbAG YbAG YbAG

TFL7-GP3 Amorphous YbAG YbAG YbAG YbAG

V.2.2.3 Samples TFL2-GP2, TFL3-GP2, and TFL4-GP2 (see page 55 and 56 in 

Chapter III) with a matrix composition Yb2 0 3 / Al2 0 3 = l : l  in the Yb2 0 3 -Al2C>3 system 

were investigated by XRD. They present a more complicated phase transformation 

than that o f Group 1 and Group 3 materials. Their XRD patterns at different heating 

temperatures and various times are shown in Figure 5.5a, b, and c, respectively.

For sample TFL2-GP2, two phases were found in XRD patterns in Figure 5.5a. They 

are the cubic-Yb2 0 3  (#43 -  1037 from the JCPDS database [94]) and the Yb3Al5 0 i2 

garnet (JCPDS #73-1369 [94]). Cubic-Yb2 0 3  is easier to crystallise than YbAG 

garnets from the amorphous oxides. It initially appeared at 700°C and YbAG garnets 

began to crystallise at 800°C.

Sample TFL3-GP2 was amorphous at 500°C. Cubic-Yb2 0 3  crystallised at about 600°C.
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Fig.5.5. XRD patterns of samples; (a) TFL2-GP2; (b) TFL3-GP2; (c) TFL4-GP2.
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Table 5.2 Crystallisation of Group 2 in the Yb2 0 3 -Al2 0 3  system

Samples 500°C 600°C 700°C 800°C

TFL2-GP2
Amorphous Amorphous c-Yb20 3 c-Yb20 3

YbAG

TFL3-GP2
Amorphous c-Yb20 3 c-Yb20 3 c-Yb20 3

YbAG

TFL4-GP2
c-Yb20 3 c-Yb20 3 c-Yb20 3

YbAG

c-Yb20 3

YbAG

This crystallisation temperature is 100°C lower than that o f sample TFL2-GP2 with the 

same matrix composition but no dopants. The initial appearance o f YbAG garnet was 

at about 800°C (the same as that o f sample TFL2-GP2). Two phases, cubic-Yb2 0 3  and 

YbAG garnet, were obtained at 800°C.

For sample TFL4-GP2, there were no crystallised phases until cubic-Yb2 0 3  appeared at 

500°C. It is 200°C lower than sample TFL2-GP2. Garnet YbAG crystallised about 

700°C. This is 100°C lower than that o f sample TFL2-GP2.

In summary, phase transformations o f Group 2 materials in the Yb2 0 3 -Al2 0 3 system are 

listed in Table 5.2, from which we can observe that doped Li20  lowers the 

crystallisation temperature o f c-Yb2 0 3  phase while doped M 0 O3 promotes the 

crystallisation o f  YbAG garnet.

V.2.3 Chemical analysis (XPS)

Sample TFL3-GP2 had the matrix composition Yb2C>3 / Al2 0 3 = l : l  and was only doped 

by Li20  oxides. The XPS wide scan spectrum o f sample TFL3-GP2 (after heating at
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800°C) in the range o f 0 ~  1200 eV was obtained, and is shown in Figure 5.6. The

Table 5.3 XPS core level binding energies (BE ± O.leV) of sample TFL3-GP2 
(values have been charge corrected for C Is = 284.8 eV)_________________________

O Is Al 2p3/2 Al 2pi/2 Yb 4d5/2 Li Is

530.1 74.4 73.6 185.0 55.7

major features were identified. The most intense peak at 530 eV corresponds to the O 

Is peak. The Li Is and A1 2p peaks appear at 48 -  62 and 7 0 -  80 eV, respectively. 

The Yb 4d peaks occur at 1 7 6 -2 1 3  eV. High-resolution spectra were performed for 

all elements and the deconvoluted Al, Yb and Li peaks spectra for sample TFL3-GP2 

are shown in Figure 5.7a, b and c. The binding energy (BE) data are shown in Table 

5.3. The Al 2p in Figure 5.7a has been deconvolved into two peaks (73.6 eV and 74.4 

eV for p3 /2  and p1/2 respectively), which show reasonable in agreement with that 

expected for an oxidized form which has reported values of around 74.0 eV [172]. 

There is no obvious evidence of the aluminium occupying tetrahedral and octahedral 

sites in the garnet structures. The differences in binding energies are probably too 

small to result in separate peaks. The Yb 4d spectra in Figure 5.7b have five peaks 

between 180 ~ 210 eV which can be attributed to an ytterbium oxidation state. Five 

complicated peaks are due to the configuration of the d and f  electrons, which results in 

the satellite peaks [173]. The binding energy o f the principal 4d peak is 185.0 eV 

which is very close to that reported values o f 185.2 for Yb2 0 3  by Uwamino et al [174]. 

The Li Is spectrum (Figure 5.7c) has a well-resolved peak at around 55.7 eV which
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shows in good agreement with reported value o f 55.6 eV for IA2O [175]. Doped Mo6+ 

was confirmed too from XPS analysis of the fully crystallised sample TFL7-GP3 at 

850°C heat treatment. Sample TFL7-GP3 is 10 at. % M0 O3 doped YbAG. The result 

will be described in next chapter.

O Is

in
C33O
U
1 *Era
s

O KLL

Yb 4pLils
C .I sA12p

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Binding Energy/eV 

Fig.5.6. The XPS wide scan spectrum of sample TFL3-GP2.

V.3. Discussion

V.3.1 Crystallisation characteristics o f  the pure Yb2 0 3 -Al2 0 3  system

Crystallisation characteristics in the pure Yt^Oa-AhCh system are dependent on the 

compositions (the molar ratio of Yl^CVAhCb) when produced by sol-gel techniques. 

When the crystallisation temperatures are compared in samples TFL1-GP1, TFL2-GP2, 

and TFL5-GP3, it is evident that the amorphous phase having the YbsAlsO^ or 

Yb4 Al2 0 9  composition is a more stable structure than that possessing the composition 

Yb2 0 3 /Al2 0 3 = l: l. In the sample TFL2-GP2 (Yt^CVAhC^l:!), cubic-Yb2 0 3  

appeared at 700°C followed by the crystallisation o f YbsAlsO^ at 800°C. There are
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Fig.5.7. High resolution XPS spectra of Al, Yb and Li.
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four possible phases that can crystallise from the amorphous oxides in the pure Yf^CV 

AI2 O3 system; i.e. AI2 O3 , Yh>2 0 3 , Yb3Al5 0 i2 , and YT^A^Og. The cubic-Yb2 0 3  has the 

lowest crystallisation temperature. The YbAG garnet crystallises at a higher 

temperature. The Yl^AhC^ phase presents the highest crystallisation temperature. 

The AI2 O3 is very difficult to form in our investigated compositions by sol-gel methods. 

AI2 O3 did not appear below the temperature 950°C.

V.3.2 The effect o f  dopants on the crystallisation temperature 

In Table 5.1, it is clear that doping with M0 O3 has lowered the crystallisation 

temperature of YbsAlsO^ by about 150°C when compared with undoped compositions 

(TFL5-GP3). Sample TFL6-GP3 has the same crystallisation temperature with sample 

TFL7-GP3 even though both M0 O3 and Li2 0  were doped in the sample TFL6-GP3. 

Furthermore, it is evident that the doped Li+ has lowered the crystallisation temperature 

of cubic-Yb2 0 3  when we compare the sample TFL2-GP2 to the sample TFL3-GP2 in 

Table 5.2. In the sample TFL2-GP2, cubic-Yb2 0 3  appeared at 700°C whereas it 

crystallised at 600°C in sample TFL3-GP2. The same effect o f lowering the 

crystallisation temperature can be confirmed in the sample TFL4-GP2 that has the 

lowest crystallisation temperature at 500°C for the transition of the cubic-Yb2 0 3  phase. 

It can also be seen that the transition temperature o f YT^AhO^ in sample TFL4-GP2 is 

correspondingly 100°C lower than that in sample TFL3-GP2. This again confirmed 

that doping with M0 O3 promotes the crystallisation of YbsAlsO^.

V. 3.3 The mechanism o f  lowering the crystallisation temperature

It is well known that a xerogel has an amorphous network structure after hydrolysis and
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condensation. It behaves as a disordered structure in the long-range and as an ordered 

structure in the short-range. The basic central cations here are Al3+ and Yb3+ ions. In

o i

the xerogel, the cations Al can exist in the oxygen or hydroxyl group o f octahedral or 

tetrahedral sites in the Yh^C^-AhCb system due to its small ionic radius (0.51 A ) [26]. 

However, the radius o f the Yb3+ ion (0 . 8 6  A ) [26] is much larger than that of the Al3+ 

ion. Thus, it generally occupies the oxygen or hydroxyl group o f octahedral or 

dodecahedron sites.

O I

Yb ions can easily form the basic crystal growth units [YbC>6] octahedral with oxygen 

and hydrogen. In this case, the chain consists o f these octahedral units that are bonded 

through the comer, the edge and the face. The bonding between the chains is by the 

hydroxyl group OH- . Thus, the crystallisation of cubic-Yb2 0 3  is actually the 

convergence and order arrangement process of ytterbium oxygen coordination 

octahedral. The greater the number of basic octahedral growth units [YbOe] linked 

together by OH- , the easier the crystallisation of Yh>2 0 3 . With the increase o f heat 

treatment temperature, the motion o f atoms was enhanced in the structure and the 

viscosity will decrease in the amorphous stmcture. This will be beneficial to 

overcome the energy barrier for the crystallisation. However, the problem here is that 

the hydroxyl group will be lost due to heat treatment and lead to the change o f the 

cation coordination status and the decrease in the number o f basic growth units. When 

the small radius lithium ions are doped in the material, they may substitute some 

hydrogen positions during the process o f heat treatment. The replacement will keep 

the basic growth units o f Yb2 0 3  at the same number density during the firing process
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and hence be beneficial to the formation of cubic-Yb2 0 3 . Hence, doped Li+ ions in the 

structure catalyse the Yb2 0 3  crystallisation. Furthermore, it may form a very unstable 

intermediate phase Yb2 C>3 .X Li2 0  that can then decompose very quickly to yield Yb2 C>3 

and Li2 0 . Although our X-ray diffraction patterns did not identify the existence of  

Li2 <D due to the very small amount present, a high molar concentration o f Li2 0  on the 

very top surface of the sample TFL3-GP2 has been confirmed by the XPS chemical 

analysis in section V.2.3. The appearance o f Yf> 2 0 3  polycrystallites will promote the 

YbAG crystallisation via heterogeneous nucleation that will lower the energy barrier of  

YbAG nucleation. This is shown in the crystallisation process of the sample TFL2- 

GP2.

However, the cubic-Yb2 0 3  does not crystallise from the amorphous phase when the 

xerogel has the composition of YbAG or YbAM. The crystallised phase is YbAG or 

YbAM after annealing at high temperature. The reason is that the aluminium oxygen 

and ytterbium oxygen amorphous polyhedra network structures in these two cases are 

very stable. Hence, it limits the convergence and order arrangement o f Yb oxygen 

coordination octahedron and leads to the formation of YbAG or YbAM directly at high 

temperature because of the change of the cation coordination status.

Doped M o6+ has lowered the crystallisation temperature of YbAG garnets in our sol-gel 

techniques. The reason is that doped Mo6+ has significantly decreased the activation 

energy of YbAG crystallisation. Doped Mo6+ has very high valence that promotes the 

convergence and order arrangement o f aluminium oxygen and ytterbium oxygen 

polyhedra and lowers the activation energy o f crystallisation. A detailed discussion
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about the activation energy of crystallisation is given in Chapter VI.

V.4 Summary

Crystallisation in the pure and doped Yb2 0 3 -Al2 0 3  system produced by the sol-gel 

method was widely studied in this Chapter. Three phases appeared in the 

crystallisation process in different samples, i.e. cubic-Yb2 0 3 , YbAG and YbAM. This 

is the first time that single phase YbAG and YbAM were synthesized by the sol-gel 

method. Doping with Li2 0  and M0 O3 significantly lowered the crystallisation 

temperatures of cubic-Yb2 0 3  and YbAG, respectively.
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Chapter VI

Synthesis of the pure and Mo doped YbAG

VI. 1 Introduction

YbsAlsO^ belongs to the crystal family of rare earth aluminium garnets with the space 

group Ia3d and crystallises in the body-centred cubic lattice. The most well known 

crystal in this family is the YAG garnet that has been described in Chapter II. YAG 

has widespread applications especially in near-infrared solid-state lasers and in 

phosphors as a host material. Rare earth aluminium garnets have also been chosen as 

promising high-temperature thermal barrier and corrosion resistance materials based on 

their stable phases and complicated crystal structures. Very recently, rare earth 

aluminium garnets with ytterbium have attracted much attention because o f the simple

o I

and proper electronic structure of Yb .

Conventionally, YbAG single crystals are grown by the Czochraski technique [6 ] at the 

melting temperature (about 2000°C). The process is very sluggish. Polycrystalline 

materials are manufactured by sintering methods at about 1600°C. The sol-gel 

techniques offer us a considerably low temperature route to produce the YbAG garnet 

compared to the conventional methods. However, it is still a problem to realise the full 

crystallisation by heat treatment below about 850~900°C when the use of YbAG garnets 

involves application o f the coating to a substrate such as metals. In this chapter, we 

describe the pure and Mo doped YbAG by sol-gel methods. As we discovered in 

Chapter V, doped Mo6+ can significantly lower the transition temperature o f YbAG
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garnets.

VI.2 Results

V I.2.1 Crystallisation o f  the pure and doped YbAG garnet thin films 

The preparation of the pure and doped YbAG garnet thin films has been described in 

Chapter III. Coated samples were heated to the desired crystallisation temperature 

very quickly (at 100°C/min) and then were taken out o f the furnace immediately after 

the required holding time. After each crystallisation under isothermal condition, the 

samples were quantitatively analyzed by X-ray diffraction.

XRD spectra of the samples TFL5-GP3 (pure YbAG garnets) at 850°C, 875°C, 900°C 

and 950°C with various crystallisation times are shown in Figure 6.1a, b, c, and d, 

respectively. With the increase in heating time, the amorphous phase gradually 

transformed into the YbAG garnet phase. The samples were converted to the 

well-crystallised single phase YbAG when the heat treatment time was long enough. 

Two peaks at about 20=18° and 34° have approximately the same intensities. An 

unidentified peak at 20 ~  16.9° was sometimes found after the initial crystallisation 

process. This is possibly due to the fast heating rate. However, the peak disappeared 

after further annealing and the thin films transformed to the single phase YbAG garnet. 

In Figure 6.1, it is found that the crystal growth in the thin films has a highly preferred 

orientation. Comparing XRD spectra in Figure 6.1 to that o f YbAG powders in 

JCPDS #73-1369 or those we produced by the sol-gel method below in VI.2.2, typically, 

the peak (211) at 2 0 ~ 18° in the thin film XRD pattern has the relative intensity almost 

equal to that of the maximum intensity peak (420) at 20 ~ 33.4 0  when it reached a
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(i): 1 h; (ii): 3 h; (iii): 8 h; 
(iv): 16 h; (v): 50 h.

<C)
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t*>

(i): 5 mins; (ii): 30 mins; 
(iii): 1 h; (iv): 3 h; (v) 8 h; 
(vi): 16h.

(i): 5 mins; (ii): 1 h; (iii): 3 

h; (iv): 8 h; (v): 16 h.

Fig.6.1. XRD patterns of sample TFL5-GP3 with the varying time and temperature; 
(a): 850°C; (b): 875°C; (c): 900°C; (d): 950°C.
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saturation level. While the peak (211) at 2 0 ~  18° in the powder XRD pattern has the 

relative intensity equal to that o f 30-50% of the maximum intensity peak (420) at 

20-33.4°. Thus, the YbAG garnet thin films are of textured growth. The maximum 

texture is the orientation in the plane (211). The relative intensity o f the (211) peak 

increased much faster with increasing the annealing time than other increasing peaks in 

the corresponding XRD spectra. The higher the isothermal heating temperature, the 

shorter the crystallisation time of reaching the saturation level.

0.6 -VI

£  0.2 -

30000 60000 90000 120000 150000 1800000

Time (Seconds)

Fig.6.2. The combined plot of the crystallised fraction via the change of time for the 
sample TFL5-GP3. (a) 850°C; (b) 875°C; (c) 900°C; (d) 950°C.

Hence, the combined plot of the crystallised fraction versus time (and hence 

temperature) is shown in Figure 6.2 for the samples TFL5-GP3. The figure was built 

up as follows. Because the peak 211 shows a strong (211) texture and its intensity 

changes with time for a given isothermal treatment and reached a saturation value, it can 

be used to express the amount of crystallised garnet. The quantitative phase 

development was estimated by calculation of the integrated intensity o f this peak after
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(i): 1 h; (ii): 2 h; (iii): 5 

h; (iv): 8 h.

(i):l h; (ii): 2 h; (iii): 5 

h; (iv): 8 h.

(i): 30 mins; (ii): lh ;  
(iii): 3 h; (iv): 5 h.

(i): 5 mins; (ii): 30 
mins; (iii):lh; (iv): 3 h; 
(v): 5 h.

2 a (Degrees)

Fig.6.3. XRD patterns of sample TFL7-GP3 with the varying time and 
temperature; (a): 750°C; (b): 775°C; (c): 800°C; (d): 850°C.
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Fig.6.4. XRD patterns of sample TFL8-GP3 with the 
temperature; (a): 750°C; (b): 775°C; (c): 800°C; (d): 850°C.

(i): lh ; (ii): 2 h; 
(iii): 5 h; (iv): 8 h.

(i): lh ; (ii):2 h; 
(iii): 5 h; (iv): 8 h.

(i): 15 mins; (ii): 1 
h; (iii): 3 h; (iv): 5 

h.

(i): 15 mins; (ii): 1 

h; (iii): 3 h; (iv): 5 

h.

varying time and



Chapter VI Synthesis of the pure and Mo doped YbAG 101

utilizing 100% symmetry Gaussian curves fitting. The use o f a maximum profile 

intensity technique was not adopted here because o f decreased sensitivity in the case o f 

diffuse and broad profiles. The integrated intensity o f the (211) peak, normalised to 

the saturation value, was used to monitor the crystalline fraction o f  the film, x. Thus, 

each curve point corresponds to the integrated intensity o f the (2 1 1 ) line, at that time 

and temperature, divided by this saturation value. Thus, a direct and quantitative 

crystallisation characteristics affected by time and temperature are obtained for the 

sample TFL5-GP3. The disadvantage o f this method is in the initial stages o f 

crystallisation. It is difficult to obtain the data from the experiments due to the very 

fast nucleation and crystallisation rate, especially at the high temperature heat treatment. 

This method has been used to study the kinetics o f the thin film growth by many other 

researchers [176] [177].

1

■g 0.8

I  0.6
bo
§  0.4 

£ 0.2 

0

0 5000  10000 15000 20000  25000  3 0 000

Time (Seconds)

Fig.6.5. The combined plot of the crystallised fraction via the change of time for the 
sample TFL7-GP3. (a) 750°C; (b) 775°C; (c) 800°C; (d) 850°C.



Chapter VI Synthesis of the pure and Mo doped YbAG 102

The same method as above was used in samples TFL7-GP3 and TFL8-GP3 which are 

10 and 30 at. % Mo: YbAG, comparatively. Their XRD patterns are shown in Figure 

6.3 and Figure 6.4, separately. Only single-phase alumina garnets appeared at 750°C, 

775°C, 800°C, and 850°C heat treatments. The combined plots o f the crystallised 

fraction via the change o f time and temperature are shown in Figure 6.5 and Figure 6 . 6  

for the samples TFL7-GP3 and TFL8-GP3, separately. A rapid nucleation and 

crystallisation rate at the initial stage o f crystallisation is seen from Figure 6.5 and 6 .6 .

0.8CD
C /3

to 0 .6
PCJ
e  0.4_o
y-J0
1  0.2
Itmm

0 5000 10000 15000 3000020000 25000

Time (Seconds)

Fig.6 .6 . The combined plot of the crystallised fraction via the change of time for the 
sample TFL8-GP3. (a) 750°C; (b) 775°C; (c) 800°C; (d) 850°C.

VI.2.2 Crystallisation of the pure YbAG and Mo: YbAG powders

Two powder samples POW5-GP6 and POW7-GP6 have been prepared in Chapter III. 

They were heat-treated at various temperatures for half an hour. The same mass o f the 

pure YbAG and 10 at. % Mo: YbAG powders were characterized by XRD. The 

sample POW5-GP6 was amorphous below heat treatment at 850°C. Its XRD pattern at
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850°C half hour calcination is shown in Figure 6.7a, which gives evidence o f YbAG and 

amorphous phase. For the sample POW7-GP6, YbAG crystallised at 750°C. Its 

XRD pattern at 850°C half hour calcinations, the same treatment as for sample

2000

1600

A  1 2 0 0

400

15 20 25 30 35 40 6045 50 55

2 0 (Degrees)

( a )

4000
3500

3000

3 25000
£  2000

1  1500 
1000

15 20 25 30 35 40 6045 50 55

2 9 (Degrees)

(b )

Fig.6.7. XRD patterns of the pure and 10 at. % Mo doped YbAG powders at 850°C 
half hour heat treatment; (a) POW5-GP6; (b) POW7-GP6; H: Holder of 
aluminium.
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Fig.6 .8 . High resolution XPS spectra of O, Al, Yb and Mo.
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POW 5-GP6, is shown in Figure 6.7b, which is well crystallised YbAG. Comparing 

Figure 6.7a to 6.7b, it is evident that doped Mo(VI) promotes the crystallisation o f 

YbAG garnets.

VI.2.3 XPS surface analysis

The XPS wide scan for the sample TFL7-GP3 (10% Mo doped YbAG thin film) which 

was heated at 850°C for 10 hours was taken in the range o f 0 -  1200 eV. The major 

features were identified. The most intense peak at 530.6 eV corresponds to the O l s  

peak. The A1 2p peaks occurs at 72 -75  eV. The Yb 4d peaks and the Mo peaks 

occur at 176 -  210 eV and 225 ~ 240 eV, respectively. High-resolution spectra were 

performed for all elements that are shown in Figure 6 .8 . The binding energy (BE) data 

are shown in Table 6.1.

Table 6.1 XPS core level binding energies (BE ± 0.1 eV) of the sample
TFL7-GP3 (values lave been charge corrected for C Is = 284.8 eV.)

O Is A1 2p Mo 3d5/2 Yb 4d5/2

530.6 74.0 232.6 185.11

The O Is binding energy (Figure 6 .8 a) is 530.6 eV which is in agreement with that 

reported value in oxides, e.g. the O Is binding energy for single oxides Ti0 2  and Zr0 2  is 

530.1 and 530.4 eV, respectively [178] [179]. The A1 2p in Figure 6 .8 b show 

reasonable agreement with that expected for an oxidised form which has reported values 

o f around 74.0 eV [172]. The Yb 4d spectra in Figure 6 .8 c have five peaks between 

1 7 6 -2 1 0  eV that can be attributed to an ytterbium oxidation state. The binding energy

• • 5/2o f the principal 4d peak is 185.11 eV which is in good agreement with reported values
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o f 185.2 for Yb2C>3 by Uwamino et al [174]. The Mo 3d spectra in Figure 6 .8 d has 

been deconvolved into two peaks at 232.68 and 235.88 eV, characteristic o f the two 

spin-orbit components o f Mo (VI) oxidation state, which are well in agreement with 

reported values o f 232.6 and 235.8 eV [180]. XPS analysis o f the sample POW7-GP6 

also confirms that Mo is in the six valence state or 6 + oxidation state.

VI.3 Discussion

VI. 3.1 Crystallisation kinetics of YbAG garnet thin films 

V I.3.1.1 Theoretical model

Crystallisation is the process by which the regular lattice o f the crystal is generated from 

the less ordered amorphous, super critical liquid structure.

In its simplest form, crystallisation is observed when a melt o f a single pure element or 

compound is cooled; conversion from liquid to solid state occurs at a fixed temperature 

for a given pressure and is known as the freezing point. Thus, if  a glass (network 

structure) composition is heated from room temperature to the nucleation temperature 

zone, a large number o f nuclei can be generated within the mass o f glass. W hen the 

glass is then further heated to the crystallisation temperature, crystals will grow on these 

nuclei leading to the transformation o f the glass into a polycrystalline ceramic material. 

The formation o f nuclei requires the formation o f an interface with a specific energy y 

between the two phases. Because o f this, the formation o f very small particles usually 

requires an increase in the free energy o f the system. Once the particle has reached a 

sufficiently large size, the interface energy is small compared with the volume energy 

decrease so that the overall change in free energy on forming the new phase becomes
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negative. Consider a spherical nucleus o f radius r. The free energy change when it 

forms is [170]

where y is the interface energy and AGV is the free-energy change per unit volume for 

the phase transition, neglecting interface energy. The first term on the right is positive, 

as energy is expended to form the surface o f the nucleus, and the second term is 

negative. An increase in the size of the crystal will decrease the free energy o f the 

system only if d(AG r) /d r < 0, so the critical radius o f the nucleus (i.e. the size beyond 

which it will grow spontaneously) is found by setting d(AG r) /d r = 0 in Eq.6.1. The 

result is

This means there is a barrier for crystallisation. If this barrier is surmounted, 

crystallisation will proceed and the system can move directly toward equilibrium by 

growth of the crystal. The barrier decreases as the temperature drops, because

where AHV is the heat o f fusion. Tm is the melting point. At the melting point T=Tm, 

AGV = 0, the nucleation barrier is infinite. At low temperatures AGV is large and the 

critical nucleus becomes small enough to be formed with ease. However, the rate of  

formation o f nuclei, Iv, depends on the viscosity [ 170]

(6 .1 )

r — t— (here AGv<0) 
AGV

(6.2)

(6.3)
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where ki and k2 are constants. Thus, nucleation is energetically favorable at lower 

temperatures, but may be inhibited kinetically by the high viscosity.

The process o f formation o f a critical nucleus is called homogeneous nucleation, when 

only the liquid and corresponding crystals are involved. If another substance 

facilitates nucleation by lowering the energy in creating the surface o f the nucleus, the 

process is called heterogeneous nucleation.

Generally, the total rate o f crystal growth is dependent on two processes, i.e. nucleation

and crystal growth. It can be expressed by the crystallised fraction, x, dependent on

the crystallisation time, t. When an amorphous phase with a volume V is kept at the

temperature o f crystallisation for a time t, then

A \  = I / ‘dr  (6.5)

where Nx is the number o f the crystallised new phase during the time dx, Iv is the rate o f

formation o f nuclei, and V 1 is the non-crystallised amorphous volume.

If  the crystal growth begins after the time x, then,

V’ = —  U \ t - r Y  (6 .6 )
4

where Vs is the volume o f the crystallised new phase during the time t, U is the rate o f 

the crystal growth considering a spherical crystal with the same growth rate in all 

directions. At the initial stage, the size o f the new phase is very small, thus, V 1 ~V. 

Hence, at the moment o f time t, the volume o f crystallisation, dVs, is equal to the 

volume o f formation o f the new phase in the time interval o f x and (x + dt).
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Vs 4n 'r
x  = —  = —  \ l vU \ t - T Y d t  ( 6 . 8 )

0

Ajr
dx=— (6.9)

Considering the impact o f particles and the decrease o f V with the crystallisation

process, a correlation factor (1 - x) is used for Eq.(6.9), hence,

4tc
d x  = (1 -  x )—— I vU 3 (t -  t ) 3 dt (6.10)

When the rate o f formation o f nuclei and the rate o f the crystal growth are independent

o f the time, Eq.(6.10) will become, after integration as follows,

x = l - e x p ( - y / lJC/V) (6.11)

This is the well-known Johnson - Mehl - Avrami (JMA) [73-76] equation. Consider

the rate o f formation o f nuclei and the rate o f the crystal growth varying with the

crystallisation time, thus,

x(t) = 1 -  exp[ ~ ( k t ) n ] (6 .1 2 )

where x(t) is the volume fraction o f the transformed phase, k is the reaction rate, t is the

heating time, and n is the Avrami exponent which is related to the crystallisation

mechanism and describes the geometry o f the crystal growth front. The JMA model is

generally used in the isothermal growth data. The reaction rate, k, could itself follow

the Arrhenius equation:

k(T) = k0 exp(—£ - )  (6.13)
K1

where ko is the pre-exponential factor (units o f inverse time), E is the activation energy, 

R is the gas constant (8.314 J m ol'1), and T is temperature.

Equation (6.12) can be rearranged as follows:
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l - x  ( t ) = ex p [-(k t)n ] (6.14)

-In (1-x ( t ) )  = ( k t )n (6.15)

In [- In (l-x  ( t ) ) ]  = n In ( k ) + n In ( t ) (6.16)

i—ii

126 7 8 9 1 0 115

In  (t)

Fig.6.9. The relationship of In [ - ln(l- x )] versus ln(t) of sample TFL5-GP3. (a) 
850°C; (b) 875°C; (c) 900°C; (d) 950°C.

R = 0 .9 5 3 1

-12

0 .0 0 0 90 .0 0 0 8 4  0 .0 0 0 8 6 0 .0 0 0 8 80 .0 0 0 8 20 .0 0 0 8

1/T

Fig.6.10. The relationship curve of In(k) and 1/T of sample TFL5-GP3.

Thus, plots are generated o f In [- In (l-x  ( t ) ) ]  verse In ( t ) for each hold crystallisation
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temperature, and values o f k and n can be determined from the linear fitting of the data.

Furthermore, values o f the activation energy and pre-exponential factor can be obtained

by rearranging Eq.(6.13) as follows:

ln(k) = ln(k0) - ~  (6.17)
K1

A plot is then generated of In (k) versus 1/T, and a linear fit is applied to the data points 

to determine the activation energy E and the pre-exponential factor ko from the slope 

and y-intercept of the line, respectively.

All o f the pertinent variables (n, k, Ea and ko) for the JMA equation [Eq.(6.12)] are thus 

obtained. Time - temperature -  transformation (T-T-T) curves which map the phase 

transformation as a function of time and temperature, are then calculated by rearranging 

the JMA equation and analytically calculating the temperature required for a fixed

fraction of conversion as a function of time:

F  1 1
T = - { — ---------------------   } (6.18)

R ln(&0/) n ln[- ln(l -  x )]

VI.3.1.2 Activation energy

From the combined plots o f the crystallised fraction variation with time and temperature 

from the isothermal growth experiments shown in Figure 6.2, 6.5, and 6 . 6  for the pure 

and doped garnet thin films, according to Eq.(6.16), a plot of In [- In (l-x  ( t ) )] versus 

In t should yield straight lines with slopes equal to the exponent n and from which the 

value of k can be derived.

For sample TFL5-GP3 of the pure YbAG thin films, linear regression analysis o f the 

plots In [ - ln(l- x )] versus ln(t) according to Eq.( 6.16) is shown in Figure 6.9.
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Linear correlation coefficients are 0.9552, 0.9831, 0.9656, and 0.9987 at 850, 875, 900, 

and 950°C, respectively. The exponent n is provided as 0.7494, 0.4086, 0.7879, and 

0.3251 and the average exponent n is calculated as 0.5678.

Four rate constants from Figure 6.9 by the four intercepts with the vertical axis o f the 

plots are also obtained. Hence, using Eq. (6.17), the relationship curve o f Ink and 1/T 

after plotting is shown in Figure 6.10. The correlation coefficient was 0.9531. From 

the slope o f the line, the activation energy can be calculated as 327±10 kJ/mol.

1.5

1

0.5

0

-0 .5

1

11106 8 975
In  (t)

Fig.6.11. The relationship of In [ - ln(l- x )] versus ln(t) of sample TFL7-GP3; (a) 
750°C; (b) 775°C; (c) 800°C; (d) 850°C.
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0.00088 0.0009 0.00092 0.00094 0.00096 0.00098 0.001

1/T

Fig.6.12. The plotting curve of ln(k) and 1/T of sample TFL7-GP3.
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The same method was used for samples TFL7-GP3 and TFL8-GP3. Linear regression 

analysis o f the plots In [ - ln (l- x )] versus ln(t) according to Eq. (6.16) is shown in 

Figure 6.11 and 6.13 and the relationship curves o f Ink and 1/T after plotting are shown 

in Figure 6.12 and 6.14 using Eq. (6.17). The activation energy can be calculated as

1.5

1

0 .5

0

- 0 . 5

1

116 7 9 105 8

1 n (t)
Fig.6.13. The relationship of In [ - ln(l- x )] versus ln(t) of sample TFL8-GP3; (a) 
750°C; (b) 775°C; (c) 800°C; (d) 850°C.

fade

R = 0 .9 4 5 5

0 .0 0 0 8 8  0 .0 0 0 9  0 .0 0 0 9 2  0 .0 0 0 9 4  0 .0 0 0 9 6  0 .0 0 0 9 8  0 . 0 0 1

1 / T

Fig.6.14. The plotting curve of In(k) and 1/T of sample TFL8-GP3.

217±10 kJ/mol and 212±10 kJ/mol from Figure 6.12 and Fig 6.14 for samples
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TFL7-GP3 and TFL8-GP3, respectively. The relative values obtained are all tabulated 

in Table 6.2.

The calculated activation energy o f Mo doped YbAG garnet thin films are about one 

third lower than that o f pure YbAG garnet films. Doping with M o6+ has greatly 

decreased the energy barrier o f crystallisation and thus lowered the temperature o f 

crystallisation. It was also found that the activation energy o f samples TFL7-GP3 and 

TFL8-GP3 were very similar even though the concentration o f M 0 O 3 in the two 

samples was greatly different. This suggests that only a low level o f doping is required 

for the purpose o f lowering the transition temperature o f YbAG.

The average exponent n obtained from samples TFL5-GP3, TFL7-GP3 and TFL8-GP3 

are between 0.5-0.7. Within the framework o f a proposed classification o f 

diffusion-controlled transformations [181], an exponent n greater than 2  indicates that 

the transformation is nucleation limited and the activation energy can be related to 

nucleation energy. In contrast, values o f n less than 1 indicate that crystal growth 

dominates. This conclusion is in agreement with our experimental observations by 

X-ray diffraction that show fast nucleation and crystal growth in the initial stage. Thus, 

the data obtained from the transformed fraction in Figure 6.2, 6.5, and 6 . 6  is 

representative o f the crystal growth process.

V I.3.1.3 T -  T - T  diagram o f YbAG garnet crystallisation

Using the data listed in Table 6.2, Eq (6.18) can be deduced as the following equation 

for sample TFL5-GP3 when the fraction crystallised is equal to 1%,
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t ( k ) = 1 {6A9) ln(?) + 32

or r ( ° C ) = ---------------- 273 (6 .2 0 )
ln(0 + 32

Table 6.2 Activation energy and all related parameters.

Samples n k ko Ea (kJ/mol)

TFL5-GP3

850°C, 0.7494 

875°C, 0.7879 

900°C, 0.4087 

950°C, 0.3251 

Average: 0.5678

1.23 X I 0 ' 5 

4.25 X10 ' 5 

9.31 X 10' 5 

2.34 X 10' 4

2.61X1010 327+10

TFL7-GP3

750°C, 0.9859 

775°C, 0.8093 

800°C, 0.5952 

850°C, 0.4071 

Average: 0.6994

1.27 X lO' 4  

1.75 X 1 O' 4 

4.87 X 10‘4 

1.10 X 10' 3

1.42 X 107 217+10

TFL8-GP3

750°C, 0.8807 

775°C, 0.7595 

800°C, 0.4550 

850°C, 0.6261 

Average: 0.6803

1.05 X 10-4 

1.88 X 1 O' 4 

5.15 X 10' 4 

9.11 X 10' 4

7.76 X 106
2 1 2 + 1 0

W hen the fraction crystallised is equal to 99%, Eq(6.18) will be as follows:
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T{K)=  4-0098 (6.21)
ln (0  +  21

r0 _  40098
or, r ( ° C )= ----------------273 (6.22)

ln(0 + 21

For sample TFL7-GP3, Eq(6.18) will be as follows:

T ( ° Q =  2-6691— 273 (6.23)
ln(0 + 23

while the fraction crystallised is equal to 1%, and

r(°C ) = - - 66~ — 273 (6.24)
ln(0 + 14

while the fraction crystallised is equal to 99%.

For sample TFL8-GP3, Eq(6.18) will be as follows:

T(° C) = 2-607-  -  273 (6-25)
ln(t) + 23

while the fraction crystallised is equal to 1%, and

T ( ° Q =  26076—  273 (6-26)
ln(*) + 14

while the fraction crystallised is equal to 99%.

Using Eq.(6.20, 6.22 and 6.23 ~ 6.26), T -  T -T  diagram of YbAG garnet crystallisation 

can be generated in Figure 6.15a, b, and c. The T -  T -T  diagrams describe 

crystallisation as a function of time and temperature. This data may be useful for 

controlling the microstructure of pure and doped YbAG garnet thin films during 

crystallisation by sol-gel techniques.

VI.3.2 Crystalline size and lattice constant o f  the pure and doped YbAG  

thin films
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Fig.6.15. T -  T -T  diagram of YbAG garnet Film crystallisation, (a) pure YbAG 
garnets; (b) 10 at. % Mo: YbAG garnet, (c) 30 at. % Mo: YbAG garnet.
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The size o f the crystallites are estimated from Debye-Scherrer formula [182], given by

L = Q'9A- (6.27)
BcosO

where L is the coherence length, B is the full width at half maximum (FWHM) o f the 

peak, X is the wavelength o f the X-ray radiation, and 0 is the angle o f diffraction. In 

the case o f spherical crystallites, the relationship between L and D, the diameter o f the 

crystallite, is given by

L = — * D(6.28)
4

32 32.5 33 33.5 34 34.5 35

2 8 (Degrees)

Fig.6.16. XRD peaks at about 33.5° (420) of the pure and Mo doped YbAG thin 
films; (a) pure YbAG; (b) 10 at. % Mo:YbAG; (c) 30 at. % Mo :YbAG

The estimated size at 850°C or 950°C heat treatment after full crystallization is about 

30-40 A from the FWHM of the maximum texture peak at 20 -  18.1° in either the pure 

or doped alumina garnets. This value is smaller than that we observed by AFM  in 

Chapter VII. The difference is possibly contributed by the broadening o f  the FW HM
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in XRD patterns due to the strain on small particles.

Lattice constant can be calculated from the 20 angle position o f the strongest intensity 

(420) about 33.5° in XRD patterns by using the equation (32). For cubic crystals, it is 

expressed as the following:

a = d j h  2 + / t 2 + / 2 = —*̂yfh(6.29)
2  sin#

where a is the crystal lattice constant and the (h, k, 1) is the crystal plane index. The 

XRD peaks at about 33.5° o f the pure and Mo doped YbAG are shown in Figure 6.16.

^  11.94 

§ 11.93
m
o 11.92o
<D

• H I L 9 1  +->
31 11. 9
i—I

I  11-89 
>>

°  11.88
35%20% 25% 30%10% 15%0% 5%

Dopant concentration (mole%)

Fig.6.17. The plot of the lattice constant with Mo doping concentrations.

The calculated lattice constants in thin films are 11.93 A, 11.92 A, and 11.89 A for the 

pure YbAG, 10 and 30 at. % Mo doped YbAG respectively. The value o f the pure YbAG 

is equal to that o f JCPDS 73-1369 [94]. The relationship between the lattice parameter 

and Mo concentration is shown in Figure 6.17. A nearly linear relationship is apparent 

from Figure 6.17.
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Fig.6.18. Infrared spectra of the pure YbAG powders; (a) structural changes due to 
30 minutes heat treatment at various temperatures; (b) 850°C, 30 mins.
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Fig.6.19. Infrared spectra of the 10 at. % Mo doped YbAG powders. (A) structural 
changes due to 30 minutes heat treatment at various temperatures; (B) 850 C, 30 
mins.
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VI.3.3 Infrared and Raman spectra of the pure YbAG and Mo: YbAG

powders

VI.3.3.1 Infrared spectra

Infrared spectra o f the pure and Mo doped YbAG powders at different annealing 

conditions were recorded. Figure 6.18a shows the infrared spectra in the wavenumber 

range o f 4000-500 cm ' 1 for the sample POW5-GP6. Figure 6.18b is the infrared 

transmittance spectra o f this sample at 850°C 30 minutes heating in the range o f  1000 -  

400 cm '1. The spectra between 400-200 cm ' 1 were abandoned due to the exited peaks o f 

KBr in this range.

Correspondingly, the infrared spectra o f the sample POW7-GP6 (10 at. % Mo: YbAG) in 

the range o f 4000-500 cm ' 1 are shown in Figure 6.19a. The infrared transmittance 

spectra o f this sample at 850°C 30 minutes heating in the range o f 1000 -  400 cm ' 1 are 

shown in Figure 6.19b.

Table 6.3 Comparison of IR vibrational frequencies of the pure YbAQ 10 at. 
% MoiYbAG, and reference YbAG powder data.

Pure YbAG 
(u / cm '1)

Mo: YbAG 
(d / cm’1)

Reference data [185] 
(u / cm '1)

800 806 805

737 742 742

702 704 709

565 565 569

510 511 516

461 465 468

431 435 439

390 394 397
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There is no significant difference between the pure (Figure 6.18a) and 10 at. % Mo 

doped YbAG compositions (Figure 6.19a). The wet gel exhibited intense and broad 

bands at 2800-3600 cm '1. The bands between 3200 -  3600 cm " 1 are due to the v (O-H) 

stretching vibration o f absorbed H 2 O in the sample as well as other broad hydroxyl 

stretching frequencies. Most o f absorbed water was lost after 200°C heat treatment. 

The C (0)-O H  stretching frequencies can be identified at 3300-2800, 1640-1600, 

1340-1290 and 1050-1000 cm '1. Besides, other C-H and C -0  stretches can also be 

assigned in the regions 3000-2800 and 1600-1250 cm '1, respectively, arising from 

metal-attached alkoxy groups [183]. Nearly all the characteristic peaks had 

disappeared after 500~750°C heat treatment for the pure YbAG sample and after 

500~600°C calcination for the Mo doped YbAG sample. The three typical 

characteristic metal-oxygen vibrations in garnets [184] in the examined range were 

present at about 692, 728, and 795 cm ’ 1 after heat treatment at 850°C for the pure YbAG 

samples and at about 689, 725, and 792 cm ' 1 at 750°C for the 10 at. % Mo:YbAG 

sample. The pure and 10 at. % Mo:YbAG powders exhibited little difference in colour. 

The pure YbAG powders were a very white colour while the 10 at. % M o:YbAG 

powders were white with a greyish tinge. In comparing IR spectra, it is again 

confirmed that Mo doped YbAG has a lower crystallisation temperature than the pure 

YbAG. The structural changes characterised by the infrared spectra o f the pure and 

Mo doped YbAG powders at different annealing conditions are in agreement with that 

studied in Chapter V by DTA and TG.

Because o f the limit in the wavenumber range in our IR instrument, the infrared
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transmittance spectra were recorded on another instrument using the pressed disk 

sample to confirm the obtained single-phase alumina garnet. The infrared active 

vibrations o f the pure and 10 at. % Mo:YbAG powders in Figure 6.18b are in good 

agreement with the experimental [185] and theoretically calculated IR vibrations of 

YbAG garnets [184]. Comparison o f our IR spectra data and the experimental data of 

YbAG powders from ref. [185] is tabulated in Table 6.3. The infrared spectra, 

especially emphasis on the 10 at. % Mo:YbAG sample, does not show any IR 

frequencies corresponding to other phases [e.g. M 0 O3 , Yb2 0 3 , Al2 (M o0 4 ) 3  ]• 

Especially in general, the IR band o f M o=0 in crystalline M 0 O3 appears at 1000 cm ' 1 

due to the stretching vibration mode [186-188]. FT-IR spectra have also confirmed that 

the single phase YbAG garnet was obtained by our sol-gel methods. Comparing the IR 

spectra o f the pure YbAG and 10 at. % Mo:YbAG reveals that the frequencies o f all 

characteristic peaks are the same, apart from some frequency changes due to Mo doping 

in the YbAG. This observation suggests that Mo is statistically well dispersed in the 

YbAG lattice, which is also supported by XRD data.

VI.3.3.2 Raman spectra

Raman spectra o f the pure and Mo doped YbAG powders at different annealing 

conditions were recorded. There is no Raman shift for the sample POW 5-GP6 that 

was heat-treated below 850°C in the range 200-1000 cm ' 1 wavenumbers. Raman 

vibration lines were observed for the pure YbAG composition after 850°C heat 

treatment. Raman spectra o f the sample POW5-GP6 powders are shown in Figure 

6.20. There exist 25 Raman active modes in rare earth aluminium garnets according to
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theoretical calculations [189]. 10 Raman active vibrational modes were observed in

the range 2 0 0 - 1 0 0 0  cm '1, most likely because either the samples had not fully 

crystallised or other experimental causes. The vertical solid lines in Figure 6.20 

indicate the observed phonon peaks which are in good agreement with the experimental 

and calculated Raman mode frequencies o f Y ^ A ^ O ^  or rare earth aluminium garnets 

[189] [190]. This indicates again that the single-phase ytterbium aluminium garnet 

was obtained.

In particularly for the sample POW7-GP6 with the 10 at. % Mo doped YbAG 

composition, the Raman shift can initially be seen in the sample heat treated at 600°C, 

30 minutes in the range o f wavenumber 200 -1000  cm"1. Raman spectra o f the sample 

POW7-GP6 powders are shown in Figure 6.21. This suggests that the initial

crystallisation temperature o f Mo: YbAG could be as low as 600°C (Figure 6.21a).

Table 6.4 Comparison of Raman active vibrational frequencies of the pure 
and 10 at. % Mo doped YbAG powders.__________

Pure YbAG 

(u / cm"1)

10% M o6+:YbAG 

(n / cm"1)

— 893
860 869
825 —

792 792
723 722
700 —

550 550
378 378
360 360
321 321
256 256

There are 9 Raman active vibrational lines in the range o f 200-1000 cm " 1 that are
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observed for the 10 at. % Mo:YbAG sample at 750°C, 30 minutes heat treatment in 

Figure 6.21b. Raman active vibrational frequencies are tabulated in Table 6.4. In 

comparing the Raman spectra in Figure 6.20 and 6.21, a distinct difference is that there 

is a strong vibrational line at the frequency o f  893 cm ' 1 (shown by the dotted vertical 

line in Figure 6.21b) in the 10 at. % Mo:YbAG sample. This line does not belong to 

the vibrational mode in YbAG garnets with the pure composition [189] [190]. Thus,

• • 4-this line is clearly caused by the vibration which is related to Mo doping. Furthermore, 

this line does not belong to any other possible phase such as M 0 O3 or A ^ M o O ^ .  

Hence, this strong Raman mode is attributed to the fact o f R-site order-disorder in 

MoiYbsAfrOn garnets because o f the replacement o f Yb3+ by M o6+. The Raman 

spectroscopy o f order-disorder has been reported in the structures o f many other solid 

solution ceramic materials; e.g. Sr(Mgi/3Nb2/3)0 3 , xCaTi0 3 -(l-x)N dA 1 0 3 , 

Ba(M gl/3Ta2/3 ) 0 3  [191] [192].

VI.3.4 States of Mo (VI) cations in YbAG garnets

XPS analysis in section VI.2.3 has confirmed that Mo cations are in the six coordination 

state in the doped YbAG. This raises the question: what position does the dopant Mo 

(VI) occupy in YbAG garnets? This is a very interesting and important question and is 

discussed here.

On the one hand, as we highlighted in Chapter II, the formation o f solid solutions in the 

rare earth alumina garnets are very sensitive to the chemical valence and the radius o f 

the doped cations. Rare earth alumina garnets have a general formula 

[RE]3 [Al]2 [Al]3 0 i2 . RE and A 1 cations occupy particular sites, depending on cation
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Fig.6.20. Raman spectra of the pure YbAG powders.

900 1000400 500 600 700 800200 300

Raman Shift (cm '1)

Fig.6.21. Raman spectra of the 10 at. % Mo doped YbAG powders.

radii and their valences; (i) 3 A l3+ cations are located at tetrahedral sites; (ii) 2 A l3+ 

cations occupy octahedral sites; (iii)‘R E’ cations occupy dodecahedral sites; (iv)
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oxygens are located at normal positions. Therefore, the garnet crystal structure 

consists o f a three-dimensional network o f polyhedra (tetrahedra, octahedra, and 

dodecahedra) having an appropriate cation at their centers and surrounded by the 

appropriate number o f  oxygen ions. Each oxygen belongs to two dodecahedra, one 

tetrahedron, and one octahedron. The radius o f Al3+ is about 0.51 A. The radius of 

RE3+ is about 0.9 A; e.g. Y3+ (0.92 A) and Yb3+ (0 . 8 6  A).

On the other hand, it is well known that M 0 O3 plays an important role as catalysts in 

petroleum refining, chemicals production, and environmental protection industries 

[193-195]. In these applications, M 0 O3 is mainly supported by y- or 01-AI2 O3 [180]. 

Many other multicomponent supports have also been developed in recent years such as 

Ti0 2 -Zr0 2  and La2 0 3 -Ti0 2  [196] [197]. The dispersed state o f supported M 0 O 3 has 

been widely investigated from room temperature to 800°C (the melting point o f M 0 O 3 is 

793°C). In general, it can be divided into two categories: the first suggests that a 

monolayer o f the dispersed ionic compound is formed on the surface o f  the support, and 

the second proposes that the dispersed metal cations are incorporated into surface 

vacancy sites o f the support with their accompanying anions staying on top o f them for 

charge neutrality. M 0 O3 generally exists as an amorphous phase below 500°C and 

above 500°C, it can transform to its crystalline form or react with other support oxides 

to form new phases such as AfeCMoO^ and ZrMo2Og[180] [197]. The structure o f 

the dispersed molybdenum species is closely related to the nature o f the specific oxide 

support, the loading amount, the preparation procedure, and the heating temperature.

In our experiments from XRD patterns o f Mo:YbAG, there is no crystalline phase
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transformation below 700°C heat treatment. Only single-phase aluminium garnets 

appeared above 700°C, even in the fully crystallised sample at 850°C heat treatment. 

No other crystalline phases were detected by XRD even though the doped concentration 

o f Mo(VI) is very high. Furthermore, IR and Raman spectra also confirm these results. 

Hence, two possibilities are left to choose for the existence o f  Mo (VI) species as 

follows:

VI.3.4.1 Mo (VI) species exists as an amorphous phase similar to that that exists 

below 500°C, even at temperature up to 950°C heat treatment that have been studied in 

this thesis. Mo (VI) species may be dispersed as a monolayer on the surface o f  the 

YbAG or incorporated into surface vacant sites o f the YbAG. In this circumstance, 

YbAG garnets will be a good support for M 0 O3 catalysts due to their phase stability and 

chemical inertness even at very high temperature. However, one question is why the 

dispersed Mo (VI) species does not transform into a crystalline phase when it cools 

down from the heating temperature that is much higher than its melting point.

VI.3.4.2 It is suggested that Mo6+ cations are doped into YbAG garnet lattice

positions. But, the effective radius o f M o6+ is 0.62 A [26] that is closer to the radius o f 

Al3+(0.51 A) than that o f Yb3+ (0.86 A). In general, the ionic radii o f A l3+ and M o6+ in 

the tetrahedral (0.39 A and 0.41 A) and octahedral (0.53 A and 0 . 6  A) configuration, 

respectively, are similar, which means that M o6+ should replace some positions o f Al3+ 

in garnets. However, doped Mo here is in a six valence state or 6 + oxidation state that 

is twice the chemical valence state o f Al3+. Thus, it is unlikely that M o6+ cations 

substitute Al3+ because such replacement will result in aluminium vacancies with Mo
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cation producing one aluminium vacancy for charge neutrality. This means that it will 

break down the three-dimensional network o f oxygen polyhedra in alumina garnets and 

form other crystalline phases such as Al2(Mo0 4 )3 , and in fact, there is no evidence o f 

M o6+ cations in the positions o f Al3+ sites in XRD patterns, which would lead to big 

changes in the peak positions [96]. The other possibility is that Mo6+ cations substitute

o I t
for the Yb cations at the dodecahedral sites o f alumina garnets even though the radius 

o f M o6+ (0.62 A) is much smaller than that o f Yb3+(0.89 A). This will cause the 

structure deformation and the adjustment o f crystal cell constant, decreasing the crystal 

lattice constant. The decrease o f the crystal lattice constant in Mo:YbAG has been 

confirmed in Figure 6.17. Because the chemical valence o f Mo6+ is twice greater than 

that o f Yb3+, the replacement o f the Yb3+ by M o6+ will occur in a 1:2 mole ratio 

replacement for charge neutrality. That is, for every molybdenum ion included within 

the garnet structure two Yb3+ ions are replaced whereby cationic voids in the 

dodecahedral are created within the garnet structure. Clearly, such substitution would

O I

happen when the replaced Yb sites are kept below a limited mole ratio. Our research 

suggests that this mole ratio o f M o6+/Yb3+ generally does not surpass 1/3. Furthermore, 

if  we consider the sample TFL6-GP3 that we described in Chapter V with the ytterbium 

alumina garnet matrix composition and dopants i.e. M o6+ and Li+, it transformed into 

the single-phase ytterbium alumina garnet after annealing at 800°C. Li+ cations are 

likely to occupy the dodecahedral vacancy sites that are caused by the replacement o f 

Yb3+ for M o6+.

To the best o f our knowledge, no other reports exist o f M o6+ doped aluminium garnets
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either by naturally occurring or artificial synthesis. Further work is required to 

confirm the position o f M o6+ in the YbAG garnet or Mo (VI) species state when they 

are doped into YbAG garnets.

VI.4 Summary

The pure and Mo doped YbAG garnet powders and thin films by sol-gel methods have 

been studied in this Chapter. Fully crystallised single-phase pure YbAG garnets can be 

produced after 850°C heat treatment and this transition temperature decreases to at least 

750°C by doping Mo into YbAG. The initial crystallisation temperature o f Mo: YbAG 

is possibly as low as 600°C according to evidence from Raman spectra. The

well-known JMA model was used to investigate the crystallisation kinetics. The

results o f crystallisation kinetics show that doped Mo has significantly lowered the 

activation energy when comparing the Mo:YbAG to the pure YbAG However, only

low levels o f doping by Mo were needed to lower the crystallisation temperature. The

T-T-T diagram from the crystallisation kinetics may be useful to control the structure in 

the preparation o f YbAG garnets by sol-gel methods.

XPS analysis confirmed that Mo existed in the six valence state or 6 + oxidation state in 

the samples. XRD, FT-IR, and Raman spectra have shown that doped Mo was 

statistically well dispersed in the matrix o f YbAG. Two possibilities for the 

incorporation o f the Mo (VI) species state into the YbAG garnet matrix have been 

described. We consider that it is more likely that M o6+ cations are doped into the 

YbAG garnet lattice in the Yb3+ positions.
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Chapter VII

Morphologies and applications

VII. 1 Introduction

YbAG garnets were manufactured by our sol-gel methods. In this Chapter, we present 

the morphologies o f YbAG or Mo:YbAG thin films and thick coatings. As we 

mentioned in Chapter II, thick films with thicknesses greater than 1 or 2 microns are 

extremely difficult to produce by the conventional sol-gel method. Some 

modifications to the conventional sol-gel method are required to achieve this purpose. 

We will also describe some possible applications for pure or doped YbAG materials in 

this chapter. Possible applications o f ytterbium aluminium garnets are corrosion 

resistance and thermal insulating coatings which can be coated on various substrates 

such as ceramics, stainless steels, or Ni superalloys. Many other potential applications 

are available by further research in the near future.

VII.2 Results and discussion

VII.2.1 Morphologies

VII.2.1.1 Morphologies o f thin films

The four-time dip coated xerogel thin film on the stainless steel with the composition o f 

10 at. % Mo doped YbAG (sample “Group 5” in Chapter III) is shown in Figure 7.1. 

This had a very smooth surface with a porous structure and the substrate surface was 

well covered by the thin film. The scratch resulting from polishing is clearly visible 

on the right top o f the image. The xerogel films o f the pure YbAG compositions had
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the same surface morphologies.

After being heated at 600°C, its surface morphology is shown in Figure 7.2. The 

surface appeared more dense than that o f the xerogel thin film in Figure 7.1. This was 

an amorphous structure and exhibited still an integral surface structure.

• "in. .  i . - -  .

Fig.7.1. Morphologies of the xerogel film with the composition 10% Mo doped 
YbAG after heating at 200°C. (SEM by Joel-800).

After further heat treatment at 750°C, the surface is shown in Figure 7.3a. The thin 

film structure transformed from amorphous to YbAG garnets. We can see that the thin 

film has broken up under these circumstances. A high magnification image is shown 

in Figure 7.3b. It was found in Figure 7.3b that some parts in the thin film were still 

interconnected but some parts were pulled away. The film cracked by the stress 

caused by the mismatch o f the thermal expansion coefficient between the YbAG garnet 

and the stainless steel substrate due to the conversion o f the amorphous phase to the
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YbAG garnet. The crack width is about half a micron in Figure 7.3b.

Fig.7.2. Morphologies of the amorphous thin film of sample TFL7-GP5-a.

The film thickness is estimated by the method which we described in Chapter III. We 

carefully dropped 3 wt. % aqueous ammonia solutions onto the one-time dip coated 

xerogel thin film surface, which made the thin film corrode and roll up on the substrate. 

This is shown in Figure 7.4. The film thickness is then measured by choosing an 

appropriate area as is shown in Figure 7.5 where the thickness is about 700 nm. After 

further heat treatment at high temperature, the final thickness could be 200 -  300 nm 

after shrinkage.

Thin film surface morphologies o f  sample TFL7-GP5 were also obtained using AFM 

and are shown in Figure 7.6a. It consisted o f agglomerates o f very small grains. The 

morphological aspects are better seen in Figure 7.6b. The size o f nanograins is about 

50 ~ 60 nm. This size is larger than calculated using Debye-Scherrer formula [182] by
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XRD in Chapter VI. The difference is contributed to the broadening o f the FWHM of 

peaks in XRD patterns because o f the strain in the thin film.

(a)

(b)

Fig.7.3. Sample TFL7-GP5-b surface morphologies (SEM by Joel-800).



Chapter VII Morphologies and applications 136

Fig.7.4. Surface of 3.0 wt. % aqueous ammonia solutions treated xerogel thin film.

A cc V Spot  Magn Det WD Exp
10 0 kV 4 0 6400x GSE 13.1 71

Fig.7.5. A piece of the rolled up xerogel film after 3.0 wt. % aqueous ammonia 
solutions etching.
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Fig.7.6. AFM surface morphologies of sample TFL7-GP3.
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Fig.7.7. A typical surface morphology of the composite thick coatings.

Fig.7.8. A cross-section structure of the composite thick coatings.

VI.2.1.2 Morphologies o f MorYbAG and YAG composite thick coatings 

Figure 7.7 presents a typical scanning electron micrograph o f the composite thick 

coating. It shows agglomerated particles with a porous structure. Particles on the top 

surface can still be seen in the image. The porous structure could be helpful in
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lowering the thermal conductivity caused by the radiative contribution at the very high 

temperature if  this coating is used as a thermal barrier coating (TBC).

Figure 7.8 shows a cross section structure o f the thick composite coating on Ni 

superalloys. The sample was heated at 750°C. The thick coating was prepared 5 

times by dip-coating methods using Mo doped YbAG sol and YAG powders. Some 

layers are seen in Figure 7.8, which were possibly caused by the multicoating process. 

The diameter o f the packed YAG powders is about 1 micron. The thickness o f coating 

is about 80 pm. The density o f thick coatings can be improved by packing the 

nano-size aluminium garnet powders into the sol.

Thick coatings o f the composite alumina garnets are prepared on the superalloys by the 

sol-gel method. This suggests that we could manufacture thermal barrier coatings 

using sol-gel methods. The sol-gel method offers us a lot o f advantages such as 

low-cost and simple equipment. An anticipated novel thermal barrier coating o f  rare 

earth aluminium garnets could be the Mo doped YbAG or YAG.

VII. 2.2 Applications of Mo: YbAG

VII.2.2.1 Potentiodynamic evaluation o f thin films with the 10 at. % Mo Y bA G  

composition

The polarization behaviour o f the bare and the coated 304 stainless steel substrates was 

studied. The polarization curves o f the sol-gel coated 304 stainless steel substrate and 

the bare substrate are compared in Figure 7.9. The film composition is the 10 at. % 

Mo doped YbAG which was heat-treated at 600°C and 750°C, separately. There are 

two coated samples; TFL7-GP5-a (600°C calcination) and TFL7-GP5-b (750°C
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calcination). Sample TFL7-GP5-a is an amorphous film. The surface morphology 

was shown in Figure 7.2. Sample TFL7-GP5-b is a crystallised YbAG film. Its 

surface micro structure was shown in Figure 7.3. Sample ST is the bare 304 stainless 

steel substrate.

TFL7

0.4 ST

w
8  -0 4 Vi 
>

£
1.2
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Fig.7.9. Polarisation curves of the bare and the coated 304 stainless steel substrates 
with the 10% Mo doped YbAG fdm composition.

7 2A passive region with a low passivation current density o f ~ 1 x 10' A/cm was present 

in the polarization behaviour o f the coated sample TFL7-GP5-a, which implies that the 

sol-gel coating indeed provided a physical barrier for blocking the electrochemical 

process. Such a barrier would fail only at a very high electric potential o f  -  1100 mV.
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For the coated TFL7-GP5-b, a similar passive region was observed, as evidenced by the 

very low constant current density o f ~ 3 X 10' 8 A/cm 2 with increasing electrical 

potential. With this rather low passivation current density, the sol-gel coating 

resembled a physical barrier for inhibiting the corrosion process. However, this type 

o f barrier would break down at an electric potential o f ~ 300 mV. A further increase in 

the electric potential increased the current density quickly, indicating an active 

electrochemical reaction. The increase in current density slowed down at a current 

density o f ~ 5.75 X 10' 7 A/cm2, indicating the possible formation o f a second passive 

layer. Further increase in electric potential resulted in a rapid increase in the current 

density.

The bare stainless steel substrate exhibited a significantly different potentio-dynamic 

polarisation curve. An increase in the electric potential leads to the current density 

increase. The increase in current density slowed down at a current density o f ~ 1 X 

10° A/cm2, indicating the formation o f a passive layer. Further increase in electric 

potential resulted in a rapid increase in the current density. No obvious secondary 

passive regions were found.

The polarisation curves o f the sol-gel coated substrates were appreciably different from 

that o f the bare stainless steel substrates indicating that the coating had an effect on the 

corrosion behaviour. The open circuit potential, Eoc, o f the coated substrates was 

significantly lower than that o f the bare stainless steel. In addition, a distinct passive 

region was present for the coated substrates, whereas no definitive passive region was 

found for the bare stainless steel substrates. Furthermore, the samples TFL7-GP5-a
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and TFL7-GP5-b present a different passive region and passivation current density. 

The passivation current density o f the sample TFL7-GP5-b is smaller than that o f 

sample TFL7-GP5-a but it presents a much lower electric potential of ~ 300 mV for the 

breakdown of the passive region. Rapid corrosion then occurred. With a further 

increase in electric potential, the sample TFL7-GP5-b behaves like the uncoated 

stainless steel substrate. Sample TFL7-GP5-a has a greater passivation current density 

but presents a much higher electric potential of ~  1100 mV for the breakdown of its 

passive region.

Fig.7.10. SEM images of a pit corrosion on the surface of sample TFL7-GP5-a.

After the electrochemical tests, the samples were carefully analysed by SEM. In 

sample TFL7-GP5-a, a single pit from the electrochemical reaction on the surface was 

found. It is this single pit that caused the failure of the coating as shown in Figure 7.10. 

It is well known that small pores exist in the sol-gel coatings. The diameter o f these 

pores depends on the sol-gel processing. Such pores may be controlled below several
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nanometers or they could be o f a micron scale. The electrochemical test has confirmed 

the coating as an effective barrier against electrolytic corrosion, and hence these pores 

must be assumed to be closed and not interconnected. However, the thin film may 

have some microscopic defects that formed during the sol-gel processing, which allow 

corrosive ions, such as chloride anions, be able to diffuse through these microscopic 

pores at the high electric potential and react electrochemically with the metal at the 

interface between the coating and substrate. This type o f reaction led to the 

breakdown o f the coating.

For sample TFL7-GP5-b, no distinctive changes on the surface morphology were found 

after the electrochemical test. YbAG garnet exhibits good corrosion resistance. It 

presents a rather low passivation current density in the initial passive region. However, 

this passive region failed only at a low electric potential. It is clear that the corrosive 

ions pass through the thin film resulting in attack at the interface between the coating 

and substrate, which causes the failure o f the coating. We have seen in Figure 7.3 that 

the thin film has broken up but some parts in the thin film were still interconnected. 

This contributes to the breakdown o f the coating at a low electric potential. However, 

its low open circuit potential still confirms that the YbAG garnet film is a very good 

corrosion resistance material. To overcome the break-up is the key to enabling this 

coating to be used on the surface o f the stainless steels to protect them from corrosion 

and wear. Hence, a sublayer coating may be necessary to eliminate the mismatch o f 

the thermal expansion coefficient.

VII.2.2.2 Thermal conductivity o f Mo: YbAG garnets
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YAG garnets have been reported to be potentially a new-generation o f thermal barrier 

materials [4] [5] because o f their low oxygen diffusivity. However, the thermal 

conductivity o f YAG is still a greater than YSZ (YAG=3.2 and YSZ=2.7 W/m.K at 

1000°C). Weak binding, large atomic masses, and structural complexity (the number 

o f atoms in one cell) all tend to reduce the intrinsic conductivity. This is why the rare 

earth alumina garnet has a very low intrinsic conductivity. However, the conductivity 

is also influenced by lattice defects and grain boundaries. Y 2O3 doped ZrC>2 (YSZ) is 

currently the state o f the art TBC material and doped Y 2O3 not only stabilises the cubic 

phase o f ZrC>2 but also greatly affects the thermal conductivity o f ZrC>2 by causing point 

defects; i.e. the solute cations and oxygen vacancies. However, the oxygen diffusivity 

in YSZ is high due to the oxygen vacancies and leads to the pre-failure o f TBCs due to 

oxygen diffusing to the bonding interface and oxidizing it.

In Chapter VI, we have discussed the possible states o f Mo (VI) doped into YbAG 

garnets. One possibility is that Mo cations substitute for Yb cations which will 

produce another cation vacancy in the structure. The solute cations and the cation 

vacancies will further lower the thermal conductivity o f the doped aluminium garnets. 

However, the oxygen diffusivity o f Mo:YbAG or Mo doped other rare earth alumina 

garnets does not increase. Thus, Mo:YbAG or Mo doped other rare earth alumina 

garnets are potentially promising thermal barrier materials. If  Mo (VI) species are 

dispersed as a monolayer on the surface o f the YbAG or incorporated into surface 

vacant sites o f the YbAG, Mo: YbAG has still a low thennal conductivity because o f the 

structural complexity and the low thermal conductivity o f M 0 O3 . In this circumstance,
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M 0 O3 supported by YbAG garnets is also a promising catalyst.

VII. 3 Summary

The morphologies o f the thin film o f Mo:YbAG and the composite thick coating o f 

Mo:YbAG and YAG have been studied. The xerogel thin film on stainless steel 

exhibited a porous surface which became dense after being heated at 600°C. However, 

the thin film was seen to break up after being annealed at 750°C. It has been shown 

that the thin film transformed into the garnet structure, which leads to a large mismatch 

o f the thermal expansion coefficient between the thin film and the substrate. The 

electrochemical polarisation test showed that the YbAG coating is good corrosion 

resistance coating but it is necessary to solve the problem of cracking.

Mo:YbAG has a low thermal conductivity and could be a future thermal barrier coating. 

Sol-gel techniques have been used to produce the 80 pm thick composite coating of 

Mo:YbAG and YAG. The morphologies o f the thick coating show the density o f  the 

coating is not very high because the size o f the added YAG powders is about 1 pm. 

However, the density o f the composite coating will be improved if  nanosize rare earth 

alumina garnets are used for packing.
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Chapter VIII

Synthesis of Yb-doped YAG

VIII. 1 Introduction

As we highlighted in Chapter I, Yb doped YAG has become one o f the most important 

microchip laser materials and potential scintillators for neutrino detection in recent 

years. Synthesis o f the high quality single crystal by the Czochralski [6] method is 

very sluggish, expensive, and difficult. However, the development o f nanoceramic 

techniques recently has made it possible to produce high quality transparent ceramics, 

which can be less expensive and allow mass production among other advantages. 

High quality transparent ceramics have shown the potential to achieve the same quality 

laser as with the single crystals [9]. In this chapter, the nanosize Yb doped YAG 

produced by sol-gel methods are described. To the best o f our knowledge, we are the 

first to manufacture the Yb:YAG using sol-gel techniques. The properties o f Yb doped 

YAG used as laser and scintillator materials with the doping concentration from 1 to 

100% are being widely studied [11] [14] [17] [95] [157] by many other researchers. 

However, the optical properties o f Yb:YAG materials are significantly affected with the 

increase o f the doped Yb3+ concentration in Yb:YAG due to the crystal lattice 

deformation and the change o f the lattice constant. This is attributed to the change o f  

the phonon vibration modes. These properties are important to the design o f  the laser 

devices. However, very little research about these properties has been published. In 

this chapter, Yb doped YAG with the doping concentration from 10 to 100 at. % have
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been produced and the crystallisation kinetics and structural changes have been studied.

VIIL2 Results

VIII.2.1 Crystalline structure conversion of Yb doped YAG

VIII.2.1.1 Yb doped YAG nanosize powders

The procedure o f producing the Yb doped YAG powders with typical doping 

concentrations 10%, 20%, 50%, and 100 at. % respectively has been described in 

Chapter III. Their XRD patterns are shown in Figure 8.1a, b, c, and d. In Figure 8.1, 

pattern “i” is the sample at 800°C 3 hours heat treatment; pattern “ii” is the sample at 

850°C 11 hours heat treatment. The labeled peak “S” belongs to the aluminium holder. 

All four samples annealed at 800°C show a very similar structure to that o f the rapidly 

quenched (at approximately 250°C/s) YAG powders studied by B.R. Johnson et al. [127] 

from a melting temperature 2200°C; i.e. the powders were found to be amorphous, with 

small crystallites whose size was in the nanoscale. Garnet phases were fully 

crystallised after being heated at 850°C for 10 -1 2  hours. Traditionally, a high 

synthesis temperature o f up to 1600°C is required by solid state sintering methods. An 

unidentified peak at 2 0-16.9° in XRD patterns was sometimes found in the initial 

crystallisation process but this peak disappeared after further heating. The largest peak 

was located at 20-33.4°. The relative intensity o f the peak at 20-18° is about 20%. 

Apparent structural changes can be seen in Figure 8.1 by comparing the patterns. 

Typically, the relative intensities o f two peaks at about 27.8° and 29.6° are seen. The 

change is dependent on the doped Yb3+ molar ratio from 10% and 20% to 50% and then 

100%.



Chapter VIII Synthesis of Yb-doped YAG 148

s

15 20 25 30 35 40 45 50 55 60

2 6 (Degrees)

!

3015 20 25 40 45 50 55 60
2 0 (Degrees)

I <C)

2 0 (Degree*)

15 30 35 4020 25 45 50 55 60
2 0 (Degrees)

Fig8.1. XRD patterns of Yb:YAG powders; (a) 10%; (b) 20%; (c) 50%; (d) 
100%.
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Fig.8.2. XRD patterns of 100 at. % Yb doped YAG thin films; (a) 850°C; (b) 900°C; 
(c) 950°C.
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The size o f the powders was estimated from the Debye-Scherrer formula [182] 

expressed in Eq.(6.27) and was approximately 60 ~ 80 A. This size is smaller than 

was observed by SEM and TEM (see below). The reason for this was attributed to the 

broadening o f the FWHM of peaks because o f the microstrain in the particles.
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Fig.8.3. The combined plot of the crystallised fraction via the change of time for 
100% Yb:YAG thin films, (a) 850°C; (b) 900°C; (c) 950°C.

V III.2.1.2 Texture growth o f Yb doped YAG thin films

Yb doped YAG thin films with the heaviest Yb doping concentration, 100 at. % Yb: 

doped YAQ were prepared on Si (100) substrates. The crystallisation process was 

quantitatively analysed by X-ray diffraction under the isothermal conditions. A 

combined plot o f XRD patterns at 850°C, 900°C and 950°C with varying crystallisation 

times is shown in Figure 8.2a, b, and c, respectively. Only a single phase (garnet) is 

evident in Figure 8.2. It exhibits the same crystallisation characteristic as the YbAG 

garnet thin film in Chapter VI. The intensities o f all peaks increased with the increase 

in the calcination time until they reached a saturation level. When the peak intensities
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o f thin film XRD patterns at various heat treatment conditions are compared with that of 

the powder XRD patterns, e.g. the thin film sample at 850°C for 23 h in Figure 8.2a to 

that in Figure 8.1, it was found that the crystal growth in thin films exhibits highly 

preferred orientation growth. The texture maximum is the (211) peak at 20-18°, which 

can be used to represent the amount or degree o f thin film crystallisation. After the 

same method in Chapter VI is used, the combined plot o f the crystallised fraction with 

the change o f time and temperature is shown in Figure 8.3 according to the isothermal 

growth experiments.

VIII.2.2 Morphologies of nanosize Yb doped YAG powders 

A scanning electron microstructure o f Yb doped YAG powders is shown in Figure 8.4. 

The morphologies o f samples POW9-GP7, POW10-GP7, POW11-GP7, and 

POW 12-GP7 are the same. No difference in morphology was observed with the 

change in the doped Yb concentration in YAG. It was observed that the particles do 

not have a very regular shape. They generally exhibited lengthened, rounded, irregular 

shape. Some particles aggregated but mainly they were still dispersed. The particle 

size is well distributed and the mean size was about 100 nm.

A bright-field TEM image o f the Yb doped YAG is shown in Figure 8.5a. A micro 

area electron diffraction pattern o f a Yb:YAG crystal is shown in Figure 8.5b, 

correspondingly. The observed shape and the size o f particles agree with the results o f 

the scanning electron microscopy. The diffraction patterns in Figure 8.5b characterise 

the garnet structure. The corresponding crystal plane indexes were all labeled in the

picture. The examined axis o f the zone is the index [210].
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Fig.8.5a. A bright-field transmission electron image of Yb doped YAG powders.

A scanning electron image of Yb doped YAG powders.

Fig.8.5b. Micro area electron diffraction patterns of 100% Yb:YAG.
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VIII.3 Discussion

VIII.3.1 The effect of Yb concentrations on the crystal lattice constant

Yb doped YAG is a new generation laser and scintillator material. The properties o f 

Yb doped YAG are significantly affected by lattice deformation. Thus, the lattice 

constant change was studied from XRD patterns in Figure 8.1. Because the effective 

radius o f Yb3+(0.86) [26] is smaller than that o f Y3+ (0.89), it will decrease the crystal 

lattice constant and lead to the structure deformation after Yb was doped into the host 

crystal YAG. The maximum peaks (420) o f samples POW9-GP7, POW 10-GP7, 

POW11-GP7, and POW 12-GP7 at the 20 angle o f 33-34° are shown in Figure 8.6. 

They are Kai X-ray peaks and K a 2 were stripped from the peaks. The change o f the 20 

angle in Figure 8.6 is clearly seen.

■rHwa<D
+->e

32 33 34 35

2 0 (D eg rees)

Fig.8.6. The maximum peaks (420) of the Yb doped YAG powders; (a) 10%; (b) 
20%; (3) 50%; (d) 100%.

The lattice constants were calculated using Eq (6.7) from the (420) peak position.
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They are 12.023A, 11.991 A, 11.988 A, and 11.960 A for 10%, 20%, 50%, and 100% 

doped Yb:YAG, respectively. The relationship between the lattice parameter and Yb 

concentration is shown in Figure 8.7. It does not show a linear relationship. When 

the Yb doping concentration is below 20%, the lattice constant decreases sharply. 

There was almost no change o f the lattice constant between the doping concentration 

20% and 50%. Then, the lattice constant decreases smoothly again with the increase 

o f Yb dopant concentration. Thus, it could be divided into three ranges; i.e. 10 ~ 20%, 

20 ~ 50 %, and 50% ~ 100%. Clearly, these changes are dominated by the distribution

o I %
of the occupied positions o f Yb in YAG.
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Fig.8.7. The plot of the lattice constant with Yb doping concentrations in YAG

The fact that the crystal lattice constant decreases with the increase o f Yb concentration 

in YAG is well in agreement with the theoretical prediction. However, the crystal 

lattice constant o f the pure YAG garnet is 12.01 A [94]. The lattice parameter values 

o f our Yb doped YAG are slightly larger than that it should be. Similar behaviour has
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Fig8.8. Infrared spectra of Yb:YAG powders; (a) 10%; (b) 20%; (c) 50%; (d)
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been reported for small particles o f the pure YAG or other materials [109] [198-200]. 

It is said generally that nanoparticles o f oxides exhibit a lattice expansion w ith reduction 

in particle size while metal particles exhibit a lattice contraction. In oxide particles, 

the bonds have a directional character and there could exist unpaired electronic orbitals 

at the outer surface o f each particle, which would repulse each other [201]. This 

contribution from the surface layer increases with decreasing particle size and is 

attributed to a slightly larger crystal lattice constant than that in the bulk materials.

VIII.3.2 Infrared and Raman spectra

VIII.3.2.1 Infrared spectra o f  Yb doped YAG powders

Infrared spectra o f Yb doped YbAG powders after heating at 850°C for llh rs  were 

recorded. Infrared transmittance spectra o f samples POW9-GP7, POW 10-GP7, 

POW11-GP7, and POW12-GP7 are shown in Figure 8 .8 a, b, c, and d. The spectra 

between 400-200 cm ' 1 were abandoned due to the exited peaks o f KBr in this range. 

They are in good agreement with rare earth aluminium garnets [202]. A comparison o f 

IR spectra o f our Yb doped YAG powders with the experimental absorption data o f pure 

YAG powders from ref. [200] is listed in Table 8.1. There were no other phases in the 

IR spectra apart from ytterbium doped yttrium aluminium garnets (e.g. Y 2 O3 , Yb2 C>3 , 

AI2O3 , or YAIO3). When the vibrational peaks listed in Table 8.1 are compared, we 

can see that the peak at ~ 566 cm ' 1 is relatively stable and other peaks shift according to 

the doped Yb concentration in YAG matrix. The similar changes were found in 

Chapter VI for the pure and Mo doped YbAG. This confirms that Yb cations are 

statistically well dispersed in the YAG lattice. Furthermore in Figure 8 .8 , the
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Fig8.9. Raman spectra of Yb:YAG powders; (a) 10%; (b) 20%; (c) 50%; (d)
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wavenumber shift value is very small or no change between 20% and 50% Yb doped 

YAG garnets (e.g. 790 ~ 790 cm '1, 723 —> 725 cm '1 and 690 —> 692 cm '1). However, 

the wavenumber change is relatively large from 10 at. % to 20 at. % Yb:YAG and from 

50 at. % to 100 at. % Yb:YAG (e.g. 781 —> 790 cm '1 and 790 —> 798 cm '1). This 

tendency is in agreement with the lattice deformation that was shown in Figure 8.7.

o i

Thus, we conclude that the doped Yb has caused the crystal deformation but the 

change does not express a linear relationship with the increase o f  Yb3+ concentration in 

the YAG matrix.

Table 8.1 Comparison of IR vibrational frequencies of the Yb:YAG and
reference YAG powder data.__________________________________________

Yb:YAG

(10%)

Yb:YAG

(20%)

Yb:YAG

(50%)

Yb:YAG

(100%)

Reference
data
[202]

781 790 790 798 794

711 723 725 732 726

680 690 692 698 691

563 566 566 566 567

- - - - 532

501 510 510 513 522

458 462 462 462 463

428 430 430 430 432

390 392 392 392 396

VIII.3.2.2 Raman spectra o f Yb doped YAG powders

Raman spectra o f Yb doped YbAG powders after being heated at 850°C for 11 hours 

were observed. They are shown in Figure 8.9a, b, c, and d. The lines o f  the observed
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Raman active vibrational modes were in the same range o f the frequencies when the 

four samples are compared with each other, which are in good agreement with the 

experimental and theoretically calculated Raman mode frequencies o f YAG or rare earth 

aluminium garnets [189] [203]. For 10 at. % Yb:YAG particles, 7 Raman active 

vibrational modes were observed in Figure 8.9a; For 20 at. % Yb:YAG particles, 9 

Raman active vibrational modes were found in Figure 8.9b; For 50 at. % Yb:YAG 

particles, 10 Raman modes were observed in Figure 8.9c; For 100 at. % Yb:YAG 

particles, 9 Raman modes were seen in Figure 8.9d, which are all indicated by the 

vertical solid line in the figures. A comparison o f Raman vibrational frequencies o f 

the Yb doped YAG powders is listed in Table 8.2. Some frequency changes o f the 

Raman vibrational lines are observed in Figure 8.9. For instance, the frequency o f the 

line in Figure 8.9d at 785 cm '1 for 100 at. % Yb:YAG particles becomes 777, 778, and 

779 cm '1 respectively for the three lower concentrations. The frequency o f the line in 

Figure 8.9a at 391 cm"1 for 10% Yb:YAG particles increases to 394 and 393 cm '1 at 20 at. 

% and 50 at. % Yb:YAG powders (in Figure 8.9b and c) and then decreases to 390 cm '1 

at 100 at. % Yb:YAG powders (in Figure 8.8d). Other Raman vibrational lines also 

show similar changes. A distinct difference can be observed when comparing the 

relative intensities o f two lines, with frequencies located at 365 and 390 cm '1 for the 100 

at. % Yb doped YAG. The intensity o f the line at about 365 cm '1 was smaller than that 

o f the line at ~ 390 cm '1 in the former three samples (Figure 8.9a, b and c). However, 

the intensity o f the line at 365 cm '1 becomes greater than that o f the line at 390 cm '1 for 

the 100 at. % Yb:YAG. Other observed lines in Raman spectra, which can be
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compared with each other, do not show big changes in the relative intensity. Raman 

vibrational changes indicate that the doping concentration of Yb in the YAG matrix 

affects the phonon vibrational modes. But it does not present a linear relationship with 

the doping concentration. The change of structures is thus confirmed again by the 

observed Raman spectra. The tendency is in good agreement with that of the crystal 

lattice constant that was shown in Figure 8.7 and the infrared spectra which are listed in

4̂-Table 8.1. It explains that the doped Yb affects the lattice vibration modes and is

**> |

related to the doping concentration and the distribution o f the occupied sites o f Yb 

cations in the host garnet structure.

Table 8.2 Comparison of Raman active vibrational frequencies of the Yb doped 
YAG powders.___________________________________________________________

Yb:YAG

(10%)

Yb:YAG

(20%)

Yb:YAG

(50%)

Yb:YAG

(100%)

- 850 850 857

I l l 778 779 785

712 713 714 720

- 688 689 695

541 541 542 548

- - 459 -

391 394 393 390

372 368 366 365

335 335 333 330

256 257 257 258

The changes in lattice vibrations will influence the interaction between the Yb3+ ion and 

the host YAG. These changes will have some effect on the spectra and the laser 

performance o f Yb:YAG materials when Yb: YAG is used as laser materials.
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VIII.3.3 Crystallisation kinetics of the 100% Yb:YAG thin film 

The same JMA model and method as that showed in Chapter VI was used to study the 

crystallisation kinetics o f 100% Yb doped YAG garnet films. The combined plot o f 

the crystallised fraction with the change o f time and temperature was shown in Figure 

8.3.
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Fig.8.10. The plot of In [ - ln(l- x )] versus ln(t) of 100% Yb:YAG thin films, (a)
850°C; (b) 900°C; (c) 950°C.
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Fig.8-11. The relationship curve of Ink and 1/T for 100% Yb:YAG thin films.

The plot o f In [- ln (l- x )] versus ln(t) for each crystallisation hold temperature
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according to Eq.(6.16) is shown in Figure 8.10, where x is the crystallised fraction; t is 

time. We can obtain three rate constants by the three intercepts with the vertical axis 

of the plots.

Table 8.3 Activation energy and all related parameters for 100% Yb:YAG films

Samples n k ko Ea (kJ/mol)

100% Yb 

doped YAG 

garnet films

850°C, 1.1428 

900°C, 0.3029 

950°C, 0.168 

Average: 0.5379

3.93 X 10'5 

3.87 X10-4 

1.23 X I  O'2

8.03X1025 653±10

Using Eq.(6.17), the relationship curve o f Ink and 1/T after plotting is shown in Figure 

8.11. On the basis of the experimental results, the effective activation energy of 

crystallisation in the thin films was calculated as 653±10 kJ/mol. Other parameters 

such as the Avrami exponent n and the reaction rate k are all tabulated in Table 8.3. 

The average exponent n calculated from 100% Yb doped YAG thin films is 0.5379 and 

this indicates that the crystal growth dominates. However, the three values of the 

exponents are widely spread. In particular, the exponent value n is 1.1428 (greater 

than 1) at 850°C. This suggests that the mechanism of crystallisation at this 

temperature could be nucleation together with the crystal growth limitation. In other 

words, if  the sample is heat-treated at a relatively low temperature (e.g. < 850°C), the 

process of crystallisation is controlled by nucleation and the crystal growth. If it is 

heated at a higher temperature than at 850°C, overcoming the nucleation barrier
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becomes easier and the process o f crystallisation is dominating the crystal growth.

The calculated activation energy o f 100% Yb doped YAG thin films is twice that o f the 

pure YbAG films and three times higher than that o f Mo doped YbAG  It indicates 

that 100% Yb doped YAG has a higher crystallisation barrier than that o f YbAG. This 

is in agreement with the results described in Chapter II. The transition temperature o f  

YAG by sol-gel methods generally is about 900 ~ 1000°C. Thus, this suggests that the 

YbAG garnet is easier to crystallise than the YAG produced by sol-gel methods.
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Fig.8.12. T-T-T diagram of 100% Yb doped YAG thin films.

The 3T diagram of 100% Yb doped YAG thin films was obtained and is shown in 

Figure 8.12. When the fraction crystallised is equal to 1% using Eq(6.18), it w ill be as 

follows:

0 _ 80319__273
ln(0 + 68

(8.1)
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When the fraction crystallised is equal to 99%, Eq(6.18) will be as follows:

,0 ~  80319T( C) =  273 (8.2)
ln (0  +  57

The 3T diagram can be used to control the crystallisation process and the 

micro structures when Yb:YAG garnets are produced by sol-gel techniques.

VIII.4 Summary

To the best of our knowledge, we are the first time to produce Yb doped YAG thin films 

and nanosize powders by the sol-gel method. Four samples o f Yb:YAG nanosize 

powders from 10% to 100% doping concentrations were synthesized by our sol-gel 

techniques. The doped Yb3+ cations lead to the crystal lattice deformation and phonon 

vibrational changes of the solid solution rare earth aluminium garnet crystals. The 

changes could be divided into three ranges according to the doped Yb3+ mole 

concentration (i.e. 0 ~ 20%, 20 ~ 50 %, and 50% - 1 0 0  at. %). This result is very 

important in order to understand the properties o f Yb:YAG materials when they are used 

in optics such as laser crystals or scintillators. This could, at least in part, explain why 

Yb:YAG with about 20 at % dopants generally presents the better laser and scintillation 

properties that have been studied by many other researchers.

The crystallisation kinetics of 100 at % Yb:YAG thin films have been investigated. 

The activation energy was calculated as 653±10 kJ/mol, which shows that Yb:YAG 

garnet has a higher crystallisation barrier than YbAG
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Chapter IX 

Conclusions

IX. 1 Thesis summary

Yb203-A l203 and Y2O3-AI2O3 systems are very important in industry. YbAG, YbAM, 

YAG, YAP, and YAM are all very useful materials in many areas. In particular, YbAG 

and YAG are the most significant of these materials due to their crystal structures. The 

Y2O3 -AI2O3 system and rare earth doped YAG has been studied by many authors using 

sol-gel technologies. In this thesis, the Yb203 -AI2O3 system and rare earth aluminium 

garnets with ytterbium produced by sol-gel methods have been studied. The sols of the 

pure and doped Yb203-Al203 system and ytterbium doped YAG were successfully 

prepared. The prepared sols were used to produce thin films, thick coatings, and nano

size powders. This is the first time sol-gel methods have been used in this area. We are 

the first to synthesize YbAM, YbAG, Mo:YbAG, and Yb:YAG via the sol-gel method. 

This thesis can be summarised as follows:

IX. 1.1 In the Yb2 0 3 -A l2 0 3  system, three typical compositions produced by sol-gel 

methods were studied; i.e. with the mole ratio Yb3+/Al3+ = 3:5, Yb3+/Al3+ = 2:1, and 

Yb3+/Al3+ =1:1. Sol-gel techniques have successfully produced the sols in the Yf^CV 

AI2 O3 system, which can be used to prepare thin films, powders, or other possible 

applications; e.g. fibers. The structural transformation from gel to polycrystalline was 

characterised as three stages:

Processes I (below 200°C): The removal o f the absorbed organic solvent or water. 

Processes II (between 200°C and 500°C): Carbonisation and dehydroxylation.
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Processes III (above 500°C): Transformation from amorphous to crystalline structures. 

The final phases for the composition o f Yb3+/Al3+ = 3:5, Yb3+/Al3+ = 2:1, and Yb3+/A l3+ 

=1:1 in the Yf^CX-AbCL system were YbAG, YbAM, and Yb^CL + YbAG, 

respectively. The crystallisation temperature in the system was significantly affected by 

doping other elements. In particular, the effects on the Yb^CX-AbCX system were 

studied when Li+ and M o6+ cations were doped in them. The chemical analyses by XPS 

confirmed the existence o f Li or Mo in the YbAG garnets. It was found that the doping 

with Li+ and M o6+ evidently lowered the crystallisation temperature o f  the Yb2 0 3 -  

AI2O3 system. The mechanism by which doping with Li+ decreased the crystallisation 

temperature is likely to be that o f promoting the nucleation and crystallisation o f c- 

Yb2 C>3 , which further affects the crystallisation o f YbAG due to the heterogeneous 

nucleation. Doping with M o6+ apparently lowered the transition temperature o f YbAG 

by decreasing the activation energy o f YbAG crystallisation.

IX . 1.2 Thin films o f the pure and Mo doped YbAG on various substrates have 

successfully been produced by the sol-gel method. The YbAG thin film had a 

maximum texture during the growth process in the orientation o f the plane (2 1 1 ). 

Kinetics studies on the crystallisation process o f  the pure and Mo doped YbAG have 

revealed the mechanism o f the YbAG thin film crystallisation. It is dominated by 

crystal growth. The calculated activation energy from the JMA model is 327±10, 

217±10, and 212±10 for the pure YbAG, 10 at. %, and 30 at. % Mo doped YbAG, 

respectively. It is evident that Mo has significantly decreased the activation energy o f 

YbAG crystallisation and it also shows that the concentration o f M o()+ does not 

significantly affect the values o f the activation energy. The derived T -T  -T  diagram 

o f YbAG garnet crystallisation may be useful for controlling the microstructure o f
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amorphous pure and doped YbAG garnet films during crystallisation by sol-gel 

techniques.

Furthermore, pure and Mo(VI) doped YbAG powders have successfully produced by 

the sol-gel method. The effect o f the crystal lattice constant is linearly dependent on the 

doped M o6+ concentration. Infrared and Raman spectra have further confirmed the 

experimental results o f single-phase garnet. The infrared characteristic peaks appeared 

in the samples after 750°C for Mo doped YbAG powders and after 850°C heat treatment 

for the pure YbAG powders. Both Mo doped YbAG or the pure YbAG powders exhibit 

the single-phase YbAG specta and there were no characteristic peaks belonging to other 

phases. When the infrared spectra o f the pure and Mo doped YbAG were compared, 

the frequencies o f the garnet characteristic peaks changed because o f the effect o f doped 

M o6+. In Raman spectra, the Raman active vibration modes were initially detected in 

the sample after 600°C heat treatment. This was considerably lower than the pure 

YbAG (850°C). All the observed lines were attributed to the vibration modes in rare 

earth aluminium garnets. However, a large vibration line in Mo doped YbAG at the 

frequency o f 893 cm "1 appeared which did not belong to any other possible phases and 

thus was very likely caused by the fact o f R-site order-disorder in M oiY bsA bO n 

garnets because o f the replacement o f Yb3+ by M o6+.

The doped Mo in YbAG existed in the six valence state or 6 + oxidation state and was 

statistically well dispersed in the matrix o f YbAG. Two circumstances o f Mo(VI) 

doped in the YbAG garnet matrix are possible. If  Mo(VI) species exists as some kind 

o f amorphous phase, then YbAG garnets will be a novel stable support for M 0 O3 

catalysts. However, it is more likely that M o6+ cations are doped into the YbAG garnet 

lattice. In this situation, it may result in novel applications o f rare earth aluminium 

garnets.
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IX. 1.3 The morphologies o f the YbAG garnet thin films on stainless steel were 

observed to change from the xerogel to amorphous phase and then to the 

polycrystalline. The material presented a porous surface in the xerogel thin film, then a 

dense amorphous thin film after being heated about 600°C, and finally the garnet 

crystalline thin film after 750°C heat treatment. The thin films consisted o f nano grains 

with the diameter about 50-60 nm by AFM.

IX. 1.4 The electrochemical polarisation test showed that the YbAG coating is a very 

good corrosion resistance coating. The sol-gel coating provided a physical barrier for 

blocking the electrochemical process. Such a barrier would fail only at a high electric 

potential. This was 1100 mV for the amorphous film. However, this electric potential 

was only 300 mV for the Mo doped YbAG polycrystalline. The reason for this is the 

micro cracking due to the large mismatch o f the thermal expansion coefficient between 

the film and the substrate after the thin film crystallised. Thus, for the use o f 

polycrystalline YbAG garnets on stainless steel, a sublayer may be necessary to 

eliminate the mismatch o f the thermal expansion coefficient between the film and the 

substrate. The amorphous thin film also presented good corrosion resistance 

behaviour.

IX. 1.5 We prepared the thick composite rare earth aluminium garnet coatings by 

adding small particles into the sols to decrease the shrinkage. The thick coating was 

about 80 microns thick. The prepared thick coatings present the possibility o f 

manufacturing novel TBCs by sol-gel methods. Theoretically, Mo doped YbAG will 

have a very low thermal conductivity and low oxygen diffusivity.

IX. 1.6 Nanosize powders and thin films o f Yb doped YAG were synthesized by 

sol-gel methods. Single-phase garnets were obtained directly at significantly lower



Chapter IX Conclusions 169

temperatures than that by the traditional sintering method. Infrared and Raman spectra 

confirmed the existence o f single-phase Yb doped YAG. The garnet structure was also 

characterised by SEM and TEM. TEM and SEM showed that the nanosize Yb:YAG 

powders had a generally lengthened, rounded, irregular shape with the mean size about 

100 nm.

Yb:YAG has recently been shown to be a promising novel laser material in which the 

doping Yb concentration is key to obtaining high quality lasers. There is an interaction 

between the doped Yb3+ and the host crystal YAG. The doped Yb3+ causes lattice 

deformation and the change in the phonon vibrations. These changes will affect the 

laser performance. This research shows that the crystal lattice constant decreased with

T-f-the increasing concentration o f the doped Yb , however, the variation o f the lattice 

constant with the doping concentration did not show a linear relationship. The infrared 

and Raman spectra also confirmed the change o f vibrational modes o f phonons, which

• T4-
is contributed to the lattice deformation caused by the Yb doped in the matrix YAG. 

The changes in infrared and Raman spectra show the same behaviour as that o f the 

lattice constant. The behaviour could be divided into three ranges according to the 

doped Yb3+ mole concentration (i.e. 0 ~ 20%, 20 ~ 50 %, and 50% - 1 0 0  at. %). This 

could, at least in part, explain why about 20 at. % Yb:YAG generally exhibits the better 

laser and scintillation properties, which have been studied by many other researchers. 

This result is very useful in designing the laser system when Yb:YAG is used as the 

laser materials.

The crystallisation kinetics o f Yb.YAG were studied by the Avrarni model, and the 

activation energy was 653±10 kJ/mol. This value was twice that o f the pure YbAG and 

three times that o f Mo doped YbAG. It indicated that Yb doped YAG had a higher 

crystallisation barrier than that o f YbAG.
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IX.2 Future work

The work in this thesis has laid a foundation for future application o f these materials 

based on the Yl^CX-AhCX system, especially rare earth alumina garnets. However, 

there are several issues that remain to be explored. In the following, some possible 

areas in which further study is required are discussed.

IX.2.1 Mo doped YbAG garnets

Mo doped YbAG is a novel doped aluminium garnet. The exact sites occupied in the 

matrix by doped M o6+ cations need to be identified further. NM R may be a useful 

technique to determine the oxygen environment around M o6+ cations. Furthermore, 

understanding the basic properties o f Mo doped YbAG (such as thermal conductivity, 

thermal expansion coefficent, electricity conductivity, and so on) is necessary not only 

for using as TBCs but also in identifying other novel applications.

IX.2.2 Applications of the pure or doped YbAG coatings 

YbAG coatings are clearly very useful due to their phase stability, high hardness, good 

corrosion and oxidation resistance as well as other properties. The substrates could be 

ceramics or high-temperature superalloys. A possible research area could be to develop 

the TBC coating on Ni superalloys. Studying the sublayer between the coating and the 

substrate would be necessary if  it is used as a coating on high-temperature metals.

IX.2.3 Yb doped YAG ceramics

Transparent Yb doped YAG ceramics could be achieved using nanosize powders. One 

o f the most important future directions is to study the technique o f  producing the 

transparent Yb:YAG ceramics. These materials will have widespread applications as 

laser optical materials or scintillators.
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Yb-doped YAG is becom ing a  very  prom ising  optical m ateria l. We p re se n t a sy n th esis  of 
sing le-phase Yb-doped YAG pow ders and  th in  film s a t a sign ifican tly  lower te m p e ra tu re  by 
sol—gel m ethods th a n  by o ther conventional techniques. Yb-doped YAG pow ders and  th in  
film s on Si(100) su b s tra te s  w ith  a  series of d ifferent doping concen tra tions w ere p repared . 
The la ttice  deform ation, IR, and  R am an  v ib rations w ere stud ied  via the  change of th e  doped 
concentra tion . T his could be one of th e  reasons why, in  general, abou t 20 atom ic % Yb:YAG 
p rese n ts  the  b e tte r  la se r  and  sc in tilla tion  properties. S cann ing  electron m icroscopy and  
tran sm issio n  electron m icroscopy w ere used to investiga te th e  m orphology of th e  s tru c tu re s . 
A strong  preferred  o rien tation  of crystal grow th in th in  films w as found during  th e  conversion 
of th e  s tru c tu re  from  am orphous to crysta lline. The A vram i model w as used  to analyze th e  
iso therm al tran sfo rm atio n  kinetics. On th e  basis of th e  experim en ta l resu lts , th e  effective 
ac tiva tion  energy  of c ry sta lliza tion  in  the  th in  film s w as calcu lated  as 653 ±  10 k j/m ol.

1. In trod u ction

Y3AI5O12 (YAG) has excellent therm al properties and 
is well established as a laser host m ateria l.1 Conven
tionally, these m aterials such as Nd- or Cr-doped YAG 
are single crystals fabricated by the Czochralski (CZ) 
method.2 The schematic diagram  of the CZ method, also 
called a “puller”, is shown in F igure 1. Such a puller 
generally has four subsystem s, which are the  furnace, 
pulling mechanism, gas control, and control system. The 
high-purity raw  m aterials are melted a t extremely high 
tem perature (2000 °C). The growth of a single crystal 
is very sluggish. Heavily doped Nd:YAG crystals (<5 
atomic %) are necessary for obtaining a high-power 
output laser. However, in general, it is extremely 
difficult to dope more than  1 atomic % Nd homoge
neously in a YAG single crystal because the effective 
segregation coefficient3 of Nd for the YAG single crystals 
is quite low (~0.2). YAG single crystals doped w ith more 
than  2 atomic % of elem ental Nd have a relatively 
inferior optical quality  th a t cannot be used as laser 
devices. Thus, in recent years, ceramic laser m aterials 
have received much atten tion .4-8 Especially w ith the 
development of nanom aterials, it has become possible 
to produce tran sp aren t high-quality ceramics of YAG 
by the  isostatically pressed method. It has been re
ported8 th a t a high optical quality Nd:YAG ceramic 
presents alm ost the sam e laser property as the single-

(1) Zayhowski, J. J. J. Alloys Compd. 2000, 303-304 , 393.
(2) Kvapil, J.; et al. J. Cryst. Growth 1981, 52, 542.
(3) Shiroki, K. Solid-state Laser Mater. Oyohutsuri 1969, 38, 117.
(4) Sekita, M.; et al. J. Appl. Phys. 1990, 67, 453.
(5) lkesue, A.; Furusato, I.; et al. J. Am. Ceram. Soc. 1995, 78 (1), 

225.
(6) lkesue, A. Opt. Mater. 2002, 19, 183-187.
(7) Hreniak, D.; Strek, W. J. A lloys Compd. 2002, 341, 183-186.
(8) Lu, J. R.; Uede. K.; Yagi, H.; Yanagitani, T.; Akiyama, Y.;

Kaminskii, A. A. J. Alloys Compd. 2002, 341, 220—225.
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Figure 1. Schematic representation of a CZ crystal pulling 
furnace.

crystal rod lately. Compared to single-crystal growth, 
the technique of m anufacturing ceramics offers the 
advantages of being inexpensive and having an  easy 
high-doped concentration, m ass production, large size, 
and gradient ceramic structure. Furtherm ore, we no
ticed th a t Yb-doped YAG has recently been suggested 
as a new-generation laser m edium .910 It is a ttractive  
for Q-switching operations to obtain high-peak-power

(9) Shimokozono, M.; Sugimoto, N.; et al. Appl. Phys. Lett. 1996,
68, 2177.
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optical pu lses11-12 because it has relatively low cross- 
sections th a t lead to larger pulse energies (4 tim es 
higher) compared w ith those of Nd-doped crystals. 
Heavily Yb-doped YAG is also found to be a  potentially 
good scintillator for solar neutrino  detection very re 
cently and can be optim ized in term s of efficiency and 
lifetime.1314 The laser and scintillation properties of Yb- 
doped YAG w ith a doped concentration from 1 to 100% 
are being widely stud ied .14-19 However, the optical 
properties of Yb:YAG m ateria ls have been significantly 
affected w ith the increase of the  doped Yb3+ concentra
tion in Yb:YAG due to the  crystal lattice deformation 
and the  ad justm ent of the lattice constant. This is 
attribu ted  to the change of the  phonon vibration modes. 
These properties are  im portant to the design of the 
system  of laser devices, bu t very little research  about 
these properties can be found.

Here, we report the m anufacturing of Yb:YAG pow
ders w ith different doping concentrations from low to 
high by so l-g e l methods. The change in the  phonon 
vibration IR and Ram an spectra was studied. The s o l-  
gel way has m any advantages such as atomic level 
mixing of high-purity precursors and low processing 
tem perature. Nanosize particles are  very significant in 
preparing high-quality ceramics. Although a lot of s o l-  
gel or sim ilar chemical syntheses of th e  pure YAG20-22 
and doped YAG (mainly Ce3+, Eu3+, and Tb3+) powders 
were reported recently, m ost of them  are used as 
phosphors and the  doped concentration is norm ally 
lower th an  5%. To the best of our knowledge, we are 
the first to synthesize the heavily Yb-doped YAG m ate
rial by the  so l-g e l method.

2. E x p e r im e n ta l  S e c tio n

Al sol was prepared first from AICI3  (99.985%, Alfa), and 
then the yttrium and ytterbium chemicals were added to the 
Al sol. The molar ratio of Yb:Y was controlled to 10%, 20%, 
50%, and 100%. The ratio of (Yb + Y):A1 was kept as 3:5. After 
several hours of mixing at 80 °C, a clear transparent sol was 
obtained. Details can be found in ref 23.

The gel for the preparation of Yb:YAG powders was formed 
by putting dropwise the clear sol into the 35 wt % NH 4OH 
solution that is stirred continually. The ammonia solution 
became opaque because of the formation of gel. Then, the 
suspension solution was filtered, and the residue gel was dried 
at 200 °C for about 1 or 2 h to get a white powder and further 
heat-treated in air at the crystallized temperature with a 
heating rate of 10 °C min-1.

(10) Patel, F. D.; Honea, E. C.; et al. IEEE J. Quantum Elect. 2001, 37(1), 135.
(11) Shimada, T.; Ishida, Y.: et al. Opt. Commun. 2001, 194, 238.
(12) Spiihler, G. J.; Paschotta, R.; et al. Appl. Phys. B 2001, 72, 

285.
(13) Raghavan, R. S. Phys. Rev. Lett. 1997, 78, 3618.
(14) Guerassimova, N.; Gamier, N.; et al. Chem. Phys. Lett. 2001, 339, 197.
(15) Antonini, P.; Belogurov, S.; et al. Nucl. Instrum. Methods Phys. Res. A 2002, 486, 799-802.
(16) Antonini. P.; Belogurov. S.; et al. Nucl. Instrum. Methods Phys. Res. A 2002. 488, 591-603.
(17) Saikawa, J.; Kurimura, S.: et al. Opt. Mater. 2002, 19, 169— 

174.
(18) Qiu, H.; Yang, P.; et al. Mater. Lett. 2002, 55, 1—7.
(19) Zhou, Y.; Thai, Q.; et al. Opt. Commun. 2003, 219, 365-367.
(20) Manalert, R.; Rahaman, M. N. J. Mater. Sci. 1996, 31 (13), 

3453.
(21) Paz Vaqueiro, M.; Lopez-Quintela, A. J. Mater. Chem. 1998, 8

(1). 161.
(22) Veith, M.; Mathur, S.; etal. J. Mater. Chem. 1999, 5(12), 3069.
(23) Wang, H. M.; Simmonds, M. C.; Rodenburg, J. M. Mater. Chem. Phys. 2003, 77, 802-807.
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Thin films were deposited on the substrate of single-ciystal 
Si(100) by dip coating, and the specimens were cut into pieces 
of 1 x 1 cm2. The thickness of the film was under 1 pm. The 
thin film samples were calcined separately at 850, 900, and 
950 °C for various times with a very fast heating rate of 100 
°C s-1. A ramp rate of 100 °C s-1 was sufficiently fast to 
prevent transformation during heating and allowed the direct 
application of a JMA model24-27— for transformation kinetics.

X-ray diffraction (XRD) patterns of powders and thin films 
of YbrYAG were characterized using a Philips PW-3710 
diffractometer equipped with Cu Ka radiation. The tube 
current and voltage were 35 mA and 35 kV, respectively. The 
scan step time was 4 s, and the step size was 0.020. The 26 
range examined was 15-60°. Disk samples for the experiment 
of infrared transmittance spectra were prepared by mixing Yb: 
YAG powders with KBr according to the mass ratio 10:100. 
Infrared spectra of Yb:YAG powders were performed in a 
Genesis series Fourier transform infrared (FT-IR) made by ATI 
Mattson, and Raman spectra were finished in a Renishaw 
Ramanscope system 2000 spectrometer using the helium/neon 
laser with a laser wavelength of 633 nm and 25 mW power. 
The examined wavenumber range of IR is from 1000 to 400 
cm-1. For Raman spectra, it is in the range of 200-1000 cm-1.

The surface morphology of powders was investigated using 
XL30 ESEM-FEG. Specimens for transmission electron mi
croscopy (TEM) observation were prepared by briefly dispers
ing ultrasonically the powders in acetone. One drop of the 
solution was then placed on a copper grid coated with an 
evaporated amorphous carbon film. TEM characterization was 
performed on a Philips CM20 at 200 kV.

3. R e su lts  a n d  D isc u ss io n

3.1. C ry s ta llin e  S tr u c tu r e  C o n v e rs io n . 3.1.1. The
powders annealed a t 800 °C w ere found to be am or
phous, w ith sm all crystallites whose size was in the 
nanoscale. However, the  fully crystallized phase was 
identified as a garnet struc tu re  for powders after being 
heated a t 850 °C (JCPDS28 No. 33-40 for YAG and  No. 
73-1369 for YbAG). Traditionally, th e  synthesis tem 
pera tu re  high up to 1600 °C is required by solid-state 
sin tering  methods. The XRD p atte rn s  are  shown in 
Figure 2 A—D respectively for 10, 20, 50, and 100 atomic 
% Yb:YAG. The m axim um  line locates a t  about 20 of 
33.4°. The relative in tensity  of th e  peak a t  26 of 18° is 
about 20%. A pparent s tru c tu ra l changes can be found 
in Figure 2 by com paring them  w ith each other. Typi
cally the  relative in tensities of two peaks a t  about 27.8° 
and 29.6° are  seen. The change is dependent on the  
doped Yb3+ m olar ratio  from 10% and 20% to 50% and 
then  100% Yb:YAG.

The 26 angle position change of the  m axim um  line 
(420) of four Yb-doped YAG powders is shown in Figure
3. They are Kcti X-ray peaks, and  Kot2 peaks were 
stripped. Hence, the  cell constants calculated from 
Figure 3 are 12.023, 11.991, 11.988, and 11.960 A for 
10, 20, 50, and 100 atomic % doped Yb:YAG, separately. 
These values are g rea ter th an  w hat theoretically  they 
should be (a =  11.931 A for YbAG, JC PD S28 No. 73- 
1369, and a =  12.01 A for YAG, JCPDS No.33-40; thus, 
we know the cell constant of Yb:YAG lies between
11.931 and 12.01 A). The reason m ay be caused by the

(24) Avrami, M. J. Chem. Phys. 1940, 8, 212.
(25) Avrami, M. J. Chem. Phys. 1941, 9, 177.
(26) Marotta, A.: Buri, A.; Valenti, G. L. J. Mater. Sci. 1978, 13, 

2483.
(27) Znidarsic, V.; Kolar, P. O. J. Mater. Sci. 1991, 26, 2490.
(28) PCPDFWIN, Version 2.1, JCPDS ICDD International Centre 

for diffraction Data, June 2000.
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Figure 2. XRD patterns of Yb:YAG powders: (A) 10 atomic %;
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Figure 3. XRD peaks at about 33.5° (420) of the Yb-doped 
YAG: (a) 10 atomic %; (b) 20 atomic %; (3) 50 atomic %; (d) 
100 atomic %.

powder consisting of nanoparticles, which results in the 
lattice expansion .29 30 Thus, w ith the increase in tim e 
or tem perature of the calcination, the  cell lattice will 
become close to the theoretical value as the particle size 
increases. The relationship between the lattice param 
eters and the  Yb concentration then  is shown in F igure
4. I t  does not presen t the linear relationship. Because 
the effective radius of Yb3+ (0.86)31 is sm aller than  th a t 
of Y3+ (0.89), doping Yb into YAG garnets will decrease 
the crystal lattice constant and  lead to the structu re  
deformation. W hen the  Yb3+ doping concentration is 
below 20  atomic %, the lattice constant decreases 
sharply. However, there is alm ost no change of the 
lattice constant between the doping concentrations of 
20 and 50 atomic %. Then, the lattice constant decreases

(29) Ayyub, P.; Multani, M.; et al. J. Phys. C: Solid State Phys. 
1988, 21, 2229.

(30) Lamber, R.; Wetjen, S.; Jaeger, N. I. Phys. Rev. B 1995, 51, 
10968.

(31) Klein & Hulburt, Manual of Mineralogy, 20th ed.; 1985.
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Figure 4. Plot of the lattice constant with Yb doping 
concentrations in YAG.

smoothly again from 50 to 100 atomic %. Clearly, these 
changes are dom inated by the d istribution  of th e  oc
cupied positions of Yb3+ in YAG.

3.1.2. Typical XRD patte rn s  of 100 atom ic % Yb:YAG 
th in  films on Si substra tes th a t were heated  a t 850 °C 
for various tim es are shown in Figure 5. A stru c tu re  
composed of very fine nanocrystallites and  an  am or
phous phase are  observed (850 °C for 1 h). Only a single 
phase (garnet) is shown in Figure 5. The in tensities of 
all peaks increased w ith the increm ent in the calcination 
tim e un til they reached a sa tu ra tion  level. W hen the 
peak in tensities of th in  film XRD p a tte rn s  a t various 
hea t-trea tm en t conditions are compared, e.g., the th in  
film sam ple a t 850 °C for 23 h in  Figure 5 to th a t of the  
powder XRD pattern s in F igure 2, it was found th a t the 
crystal growth in th in  films exhibits highly preferred 
orientation growth. Especially, it  is seen th a t th e  
relative in tensity  of the  (211) peak a t  20 of about 18° is 
enhanced from 45% a t 850 °C for 1 h  of calcination to 
85% a t 850 °C for 23 h of hea t treatm ent. This percent
age value is m uch higher th an  about 20% for powders 
heated a t 850 °C for 11 h: 37.24% for YAG (JCPDS28
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Figure 5. XRD patterns of 100 atomic % Yb-doped YAG thin 
films on Si. Heat treatment at 850 °C: (a) 1 h; (b) 3 h; (c) 8 h; 
(d) 23 h.
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Figure 6. Combined plot of the crystallized fracture via the 
change of time for 100 atomic % Yb:YAG thin films: (a) 850 
°C; (b) 900 °C; (c) 950 °C.

No. 33-40) and 65.37% for YbAG (JCPDS No. 73-1369). 
The sam e resu lt of the preferred orientation of Yb:YAG 
w as found a t o ther heating tem peratures. An unknown 
peak a t 26 of 16.9° shown in the initial stage is due to 
the  fast heating  rate , but it d isappeared upon further 
calcination. Hence, the tex ture m axim um  is the (211) 
peak, which can be used to stand  for the am ount or 
degree of th in  film crystallization.

3.2. A c tiv a tio n  E n e rg y  o f  C ry s ta llin e  G ro w th  in  
th e  T h in  F ilm s. The Johnson—M ehl—Avrami equation, 
shown below, w as used to model the  isotherm al growth 
d a ta .24-27

x{t) =  1 -  exp [—(At)"] (1)

I t can be rearranged  as

In ln [l — -v(*)]_1 =  n  In A +  n  In t  (2)

where x(f) is the volume fraction of the transform ed 
phase, t  the heating  time, and n  a morphology index, 
which is related  to the crystallization m echanism, and 
k  could follow as the A rrhenius equation

k('n =  k0 exp(-EJRT>  (3)

Thus,

In A =  In A0 — E JR T  (4)

where Ao is a  constant, T  is the tem perature, R  is the 
gas constant (8.314 J  mol-1), and Ea is the activation 
energy associated w ith nucleation and growth. F igure 
6 shows the results corresponding to the  isotherm al 
growth experim ents a t  850, 900, and 950 °C. The figure 
was built up as follows. The integrated  in tensity  of the

2.5

KI

-1.5

-2.5
1210 115 6 7 8 9

lnt
Figure 7. Plot of In ln(l — a) 1 versus ln(() of 100% Yb:YAG 
thin films: (a) 850 °C; (b) 900 °C; (c) 950 °C.
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1/T
Figure 8. Relationship curve of In K and 1 IT of 100 atomic 
% Yb:YAG thin films.

tex ture m axim um  (211) in the  XRD patte rn s  increased 
un til they reached a sa tu ra tion  level. The in tegrated  
intensity of the (211) peak, normalized to th is sa turation  
value, was used to m onitor the  crystalline fraction of 
the film, x(t). Thus, each curve point corresponds to the 
in tegrated  in tensity  of the (211) line, a t th a t tim e and 
tem perature, divided by the  sa tu ra tion  value. Here, it 
should be reasonable th a t we use the  in tegrated  in ten 
sity  of the tex ture maxim um  (211) because it increased 
much faster than  other increased peaks in XRD patterns 
w ith the increm ent in the calcination tim e and, on the 
other hand, we do no expect any sintering to occur under 
the  relatively low calcination tem peratu res used here.

L inear regression analysis of the plots In ln [l — x(/)]-1 
versus ln(f) according to eq 2 is shown in F igure 7. We 
can obtain th ree  ra te  constants by the  th ree  intercepts 
w ith the  vertical axis of the  plots. U sing eq 4, the 
relationship of In K  and T~l is shown in Figure 8 . The 
correlation coefficient is 0.98. From the slope of the line, 
the activation energy can be calculated as 653 ± 1 0  k j / 
mol. O ther param eters such as the Avrami exponent n 
and the reaction ra te  A are  all tabu lated  in  Table 1. 
W ithin the  fram ework of a proposed classification of 
diffusion-controlled transform ations ,32 an  exponent n 
greater th an  2 indicates th a t the  transform ation is 
nucleation limited. The activation energy can be related  
to nucleation energy. In contrast, values of n  of less than  
1 indicate th a t the  crystal growth dom inates. The 
average exponent n  calculated from our experim ents is
0.5379, and th is  indicates th a t the crystal growth 
dominates. However, th ree values of exponents are  
dispersion. Especially, a t 850 °C the exponent value n 
is 1.1428 g rea ter th an  1. This m eans th a t the  m echa
nism  of crystallization a t th is tem peratu re  could be

(32) Rao, C.; Rao, K. Phase transformation in solids; W & J  Mackay
Ltd.: Chatham, U.K.. 1978.
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Table 1. Crystallization K inetics Param eters for 100% Yb:YAG Film s

Wang et al.

sample ko Ea (kj/mol)

100% Yb-doped YAG 
garnet films

850 °C, 1.1428

900 °C, 0.3029 
950 °C, 0.168 
average: 0.5379

I

350 400 450 500 550 600 650 700 750 800 850 900

Wavenumbers (cm’1)
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Figure 9. Infrared spectra of Yb-doped YAG powders: (A) 10 atomic %; (B) 20 atomic %; (C) 50 atomic %; (D) 100 atomic %.

nucleation together w ith the crystal growth lim itation. 
At high tem perature, overcoming the nucleation barrier 
becomes easier. This conclusion is in  agreem ent w ith 
our experim ental observations by XRD th a t show a very 
fast nucleation a t the  in itial stage a t h igh-tem perature 
hea t treatm ent. The results of th is  p a rt of the work are 
very close to the studies of crystallization kinetics 
reported by Johnson and Kriven33 recently. However, 
Johnson and Kriven used the sam ple th a t was prepared 
by the  rapidly (at approxim ately 250 °C/s) quenched 
YAG glass beads from a m elting tem perature of 2200 
°C. The crystallization kinetics was carried out by using 
differential therm al analysis exotherms. The YAG com
position glass beads were populated by the nanoscale 
crystals of YAG. The m ateria l crystallized directly into 
stoichiom etric YAG a t tem peratures as low as 840 °C. 
The nanoscale crystals in the glass beads are  studied 
m ost likely as seeds for subsequent crystal growth. 
Their obtained activation energy for crystallization was 
437 kj/m ol. In  general, crystallization in th in  films has 
a higher activation energy than  th a t in bulk m aterials.

3.3. F T -IR  a n d  R a m a n  S p e c tra . IR transm ittance 
spectra of Yb-doped YAG powders are shown in Figure 
9A—D. They are in very good agreem ent w ith rare-earth

Table 2. Com parison o f  IR V ibrational Frequencies o f  the  
Yb:YAG Pow ders

Yb:YAG
10% 20% 50% 100% ref data34

781 790 790 798 794
711 723 725 732 726
680 690 692 698 691
563 566 566 566 567

532
501 510 510 513 522
458 462 462 462 463
428 430 430 430 432
390 392 392 392 396

alum inum  g arne ts .34 A comparison of the  IR  spectra  of 
the Yb-doped YAG is given in Table 2. There a re  not 
any o ther phase infrared vibration peaks in the IR 
spectra ap a rt from alum inum  garnets (e.g., Y2O3, YbzOa, 
AI2O3, or YAIO3). In  Table 2, th e  peak a t  ~566 cm -1 is 
relatively stable and some other peaks will shift accord
ing to the  Yb-doped concentration in the  YAG m atrix . 
The w avenum ber sh ift value is very sm all betw een 20 
and  50 atomic % Yb: YAG garne ts (e.g., 790 —* 790, 723 
-*725, and 690 — 692 cm-1). However, the w avenum ber 
change is relatively large from 10 to 20 atomic % and 
from 50 to 100 atomic % Yb:YAG (e.g., 781 —* 790 and 
790 —* 798 cm-1). The changing tendency is in  agree-

(33) Johnson, B. R.; Kriven, W. M. J. Mater. Res. 2001, 16, 1795— 
1805.

(34) Hofmeister, A. M.; Campbell, K. R. J. Appl. Phys. 1992, 72, 
638.
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Figure 10. Raman spectra of Yb-doped YAG powders: (a) 10 atomic %; (b) 20 atomic %; (c) 50 atomic %; (d) 100 atomic

Table 3. Com parison o f  Raman A ctive Vibrational 
Frequencies o f the Yb-Doped YAG Powders

10% 20% 50% 100%
850 850 857

777 778 779 785
712 713 714 720

688 689 695
541 541 542 548

459
391 394 393 390
372 368 366 365
335 335 333 330
256 257 257 258

m ent w ith the lattice deformation we discussed in
section 3.1.1.

Ram an spectra of Yb-doped YbAG powders are shown 
in F igure 10a—d: (i) 7 Ram an active vibrational modes 
are observed in Figure 10a for 10 atomic % Yb:YAG 
particles; (ii) 9 R am an active vibrational modes are 
found in Figure 10b for 20 atomic % Yb:YAG particles; 
(iii) 10 R am an modes are observed in F igure 10c for 50 
atomic % Yb:YAG particles; (iv) 9 Ram an modes can be 
seen in F igure lOd for 100 atomic % Yb:YAG particles, 
which are all indicated by the vertical solid line in the 
figures. A comparison of Ram an vibrational frequencies 
of the Yb-doped YAG powders is given in Table 3. The 
lines of the observed R am an active vibrational modes 
are in good agreem ent w ith the  experim ental and 
calculated Ram an mode frequencies of YAG or rare- 
ea rth  alum inum  garne ts .35 36 Some frequency and in
tensity  changes of the Ram an vibrational lines are 
found. The changing tendency presents the sam e way 
w ith the IR spectra and the  cell constant. For instance,

(35) Hurrell, J. P.; Porto. S. P. S.; et al. Phys. Rev. 1968. 173. 851.
(36) Papagelis. K.; Kanellis, G.; et al. Phys. Status Solid1B 2001, 223. 343-347.

Figure 11. Typical scanning electron micrographs of Yb- 
doped YAG powders.

the frequency of the  line, which is a t  711 cm-1 for 10 
atomic % Yb:YAG particles, increases to alm ost the 
sam e 723 and 725 cm-1 a t 20 and 50 atomic % Yb:YAG 
powders (Figure 10b,c) and then  becomes 732 cm-1 in 
100 atomic % Yb:YAG powders (Figure lOd). Especially, 
a distinctive change can be observed in the  com parison 
of the relative in tensities of the two lines, th e  frequen
cies of which are  located a t  about 365 and  390 cm-1. 
The in tensity  of the line a t about 365 cm-1 is sm aller 
th an  th a t of the  line a t about 390 cm-1 in  the  form er 
th ree sam ples (Figure 10a—c). However, the in tensity  
of the line a t 365 cm-1 becomes g rea ter th an  th a t of the  
line a t 390 cm-1 for 100 atomic % Yb:YAG.

The s truc tu ra l changing tendency is now confirmed 
again by the  observed R am an spectra. This explains 
th a t the  doped Yb3+ affects the  lattice vibration modes, 
which is related  to the doping concentration and  the
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Figure 12. (a) Bright-field transmission electron image of Yb- 
doped YAG powders, (b) Micro area electron diffraction pattern 
of Yb:YAG crystals.

distribution of the  occupied positions of Yb3+ cations in 
the  garne t structure . However, th is change could be 
divided into three circumstances according to the doping 
concentration of Yb3+, i.e., 1—20, 20—50, and 50—100 
atomic %. The changes of lattice vibrations will influence 
the  interaction between the Yb3+ ion and  the host YAG. 
These changes will a t la s t have some effect on the

Wang et al.

spectra and the  laser and scintillation perform ance of 
Yb:YAG m aterials. This could be one of the  causes why 
these m ateria ls presen t b e tte r  laser and  scintillation 
properties th a t have been studied  by m any research- 
e rs i2.i6,i7 jn about  20 atomic % Yb:YAG crystals.

3.4. M o rp h o lo g ie s  o f  N a n o s iz e d  Y b-D oped YAG 
P o w d e rs . A typical scanning electron micrograph of Yb- 
doped YAG powders is shown in Figure 11. The m or
phologies of various concentrations of Yb-doped YAG are 
the sam e and show no differences w ith the  change of 
the Yb-doped concentration in  YAG. I t  can be observed 
th a t the  particles do not have very regu lar shape. They 
exhibit generally lengthened, rounded irregu lar shape. 
Some particles are  aggregated bu t m ainly are still 
dispersed. The particle size is well d istributed, and the 
uniform  size is about 100 nm.

A bright-field TEM image of Yb-doped YAG is shown 
in F igure 12a. A micro area electron diffraction p a tte rn  
of a  Yb:YAG crystal is shown in Figure 12b, correspond
ingly. The shape and size of the  particles a re  the sam e 
as those w ith the resu lts of th e  scanning electron 
micrograph. The diffraction p a tte rn s  were identified as 
the  garne t structure . The corresponding crystal plane 
indexes were all labeled in the  picture. The axis of the 
zone is of the indice [2 , 1, 0].

4. C o n c lu s io n s

Powders and th in  films of Yb-doped YAG w ith nano
sized crystallites were prepared by so l-g e l m ethods a t 
significantly lower tem perature th an  the  trad itional 
method. The crystal transform ation in  th in  films on Si- 
(100) shows a  strong preferred texture (211) growth. The 
crystallization kinetics was studied  by the Avrami 
model, and the  activation energy w as 653 ±  10 kj/m ol. 
The crystallization m echanism  is m ainly dom inated by 
the crystal growth. The studies of XRD, IR, and  R am an 
spectra of Yb:YAG w ith various doped concentrations 
show the crystal lattice deformation, and the  phonon 
vibration changes according to the  Yb3+-doped concen
tration  in YAG, which could be divided into th ree ranges 
of Yb3+ mole concentration (i.e., 1—20, 2 0 -5 0 , and 50— 
100 atomic %). This could, in  part, explain why about 
20 atomic % Yb:YAG crystals generally  p resen t the  
better laser and scintillation properties th a t  have been 
studied by m any other researchers.

A ck n o w le d g m en t. H.M.W. acknowledges the help 
of Dr. C hristopher Sammon in MRI of Sheffield H allam  
U niversity to finish the  Ram an spectra experim ents.
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Abstract

In addition to their widespread use as optical scintillators, recent research has shown that garnet structures, such as YAG (Y3 AI5 O1 2), 
may be promising candidates as thermal barrier coatings (TBCs), or as oxidation or erosion resistant materials. We report here for the 
first time the fabrication of YbAG (YbaAlsO^) garnet coatings via a relatively low temperature sol-gel technique. Crystallisation under 
the firing temperature up to 800 °C of a pure and Li20-doped Yb2 0 3 -Al2 C>3 system was investigated on single crystal Si(l 0 0) and steel 
substrates. A single-phase polycrystalline YbAG garnet film was manufactured for the first time at the comparatively low temperature 
of 700 °C. This is in contrast with traditional sintering methods that require at least a temperature of 1600 °C to produce YbAG garnet 
ceramics. When coated on a hardened steel substrate, a mesoporous surface with a relatively high hardness is produced. The thermal 
behaviour of the processing method was analysed by DTA and the structure of coatings was characterised by XRD, SEM and XPS. Such 
films may have widespread application as a wear-resistant TBC.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Sol-gel; YbAG garnet; Coating; Yb2 C>3-Al2 0 3  system

1. Introduction

Ytterbium is rare earth element in the lanthanide series 
and belongs to the same group as yttrium in the periodic 
table. Hence the compounds that they form often have 
similar applications and properties. For example, Y2O3 
or Yb2C>3 is a commonly used dopant to stabilise ZrC>2 
ceramic films that are widely used as thermal barrier coat
ings (TBCs). Yttrium oxide or ytterbium oxide is also 
an addition to self-reinforce silicon nitride ceramics [1]. 
Neodymium-doped YAG is presently the most widely used 
solid-state laser material, and ytterbium-doped YAG is one 
of the most promising laser-active materials and is more 
suitable for diode-pumping than the traditional Nd-doped 
crystals. Highly ytterbium-doped YAG (concentration up 
to 100%) thin films also show promise for various laser 
waveguide applications in photonic devices and they can 
be produced by many methods, one of which is where 
amorphous thin films were prepared at 400 °C using pulsed 
laser deposition and then heat treated for 3h  at a tem
perature of 1000 °C to obtain epitaxially grown films [2]. 
More recently, it has been shown [3,4] that garnet structural

* Corresponding author.
E-mail address: h.wang@shu.ac.uk (H.M. Wang).

ceramic coatings are promising as TBCs, or as oxidation 
and erosion resistant materials that could, for example, 
be used in military and commercial gas turbine engines. 
Because of their utility, much research has been done in 
the Y2O3-A I2O3 system by sol-gel techniques. Phase de
velopment was studied for the sol-gel method by Lo and 
Tseng [5]. The reported lowest temperature of producing 
single-phase YAG by sol-gel synthesis is 900 °C at present 
[6]. Generally, higher calcination temperatures are required 
to realise the crystallisation o f YAG thin films.

According to the phase diagram of Yb203 -A l2C>3 bi
nary system [7], ytterbium sesquioxide, Yb2C>3, has a cubic 
structure below 1870°C and it is used as a catalyst in the 
petrochemical industry [8]. At higher temperatures it exists 
as both monoclinic and hexagonal phases [9]. However, 
formation of YbA103 perovskite is not observed and it is 
extrapolated that ytterbium aluminium garnet (YbAG) the
oretically has a smaller lattice parameter than that o f YAG 
[10] because the radius of Yb3+ (0.86 A) is smaller than 
that of Y3+ (0.89 A).

The published papers and applications of YbAG garnet in 
the Yb20 3 -A l203  system are relatively rare. As far as we 
are aware, the synthesis of a thin film coating o f YbAG via 
the sol-gel method has not been reported in the literature. 
We present here a novel low temperature synthesis technique

0254-0584/02/$ -  see front matter © 2002 Elsevier Science B.V. All rights reserved. 
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for YbAG, which is facilitated by the addition o f lithia and 
an inorganic-organic polymer agent. The technique offers a 
route for coating metal alloys at relatively low temperature 
in order to produce novel high-temperature thermal insula
tion and oxidation resistance ceramic materials [4]. It may 
also be o f use in the synthesis o f optically active coating 
materials.

2. Experim ental

2.1. Preparation of sol

Aluminium sol was prepared from the precursor AICI3 
(99.985%, Alfa). A small quantity of an inorganic-organic 
hybrid solvent (abbreviation AOS) with a polymer-like 
structure was used to stabilise and strengthen the network 
structure of the sol. For reasons of commercial sensitivity, 
we are unable to reveal the exact details o f the AOS. The 
addition of the AOS solvent into the sol was found to be 
beneficial for improving film adhesion with metal substrates 
and for obtaining thick coatings. We have also found that 
the addition o f lithia as a precursor significantly lowers 
the temperature required for crystallisation. Fig. 1 shows a 
schematic representation of the processing steps. For com
parison, four different composition sols were produced ac
cording to the following molar ratios. They are: (1) sample I: 
Al20 3 /Yb203  =  1:1, with no lithia doping and no AOS sol
vent; (2) sample II: Al20 3 /Yb203  =  1:1, with 8 mol% lithia 
doping and no AOS solvent; (3) sample III: Al20 3 /Yb203  =  
1:1, with 8 mol% doped lithia and AOS solvent; (4) sam
ple IV: Al20 3 /Yb203  =  5:3, with 4mol%  doped lithia 
and AOS solvent. The prepared sols were aged 24 h before 
coating.

Coated Final Samples

Al(OI I)i precipitation

Aging for 24 h

AICI3 solution mixed with NH4OH

Heat treatment at high temperature

Filtering and washing by deionized water

Coating on the substrate and diying at 50°C

Al(OH)3  + CH3COOH mixed and stirred for 2 h

Adding AOS solvent or Yb or Li chemicals

Fig. 1. Flow chart for preparation of samples.

2.2. Preparation of thin films

We have used two substrates to test the coatings: silicon 
and hardened steel. Si crystals with surface normal orienta
tion [100] were prepared in 1 x  1 cm2 samples. The hard
ened steel samples consisted o f 30 mm diameter coupons 
which surfaces were polished to within 1 p,m. All sub
strates were cleaned by soap and water and then deionised 
water, and finally ultrasonically cleaned in ethanol and 
acetone.

The sol was dropped directly onto the Si substrates which 
were kept horizontal at a temperature of 50 °C. The sol dried 
quickly to form a thin film. The coated samples were heated 
within three temperature regimes to study the crystallisa
tion: (1) 200 °C for lh ;  (2) 450 °C for 1 h; (3) 500, 600, 
700, and 800 °C for 1 h at each temperature. For the hard
ened steel substrates the coatings were obtained by the mul
tiple dip technique with each layer calcined, respectively, 
at 400 °C for 30min. The elevation speed was 3 cm m in-1 . 
After more than 10 dipping processes and calcination at 
450 °C for 2 h, a coating with a thickness of about 10 |im  was 
prepared.

2.3. Thermal analysis

Thermal analysis o f the samples was performed by first 
scratching off the gel thin films which were multicoated on 
the Si substrates. Thermal analysis was performed with a 
Perkin-Elmer thermal analyser. DTA curves were recorded 
over a wide range of temperatures (up to 1000 °C) at a heat
ing rate o f 10°C m in_1 in an air atmosphere.

2.4. Characterisation techniques

The X-ray diffractograms of samples I and II were col
lected in the low-angle mode o f a Philips PW1710 diffrac
tometer using Cu K a radiation. XRD patterns o f samples 
III and IV were obtained in Philips PW3710 diffractometer 
using Cu K a radiation. The tube current and voltage were 
40 mA and 40 kV, respectively. The scan step time was 4 s 
and the step size was 0.02°. The 26 range examined was 
15-60°. The peak intensity o f the Si substrate is affected 
by the exact orientation of samples and the thickness of 
thin films. The surface morphology of the films was ex
amined using Jeol 800 SEM at 20 keV incident beam volt
age. Chemical analysis o f the surface o f sample III was 
performed after 800°C and l h  heating via XPS analysis 
using a Kratos AXIS 165 instrument with monochromatic 
Al K a radiation (1486.6 eV). Survey scans were taken at 
a pass energy of 80 eV. High resolution scans were taken 
at a pass energy of 20 eV. In the latter configuration the 
Ag 3d5/2 peak has a measured FWHM of around 0.6 eV. 
The spectra were analysed and the background subtraction 
was carried out using XPSPEAK software. All the curve 
fitting was done with 80% Lorentzian and 20% Gaussian 
curves.
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2.5. Hardness tests

Knoop hardness o f the coatings on the hardened steel 
substrate was measured using MVK-H2 Mitutoyo hardness 
tester with an indentation load of lOOmN.

3. Results and discussion

3.1. Thermal behaviour of the coatings

Fig. 2 shows thermal analysis traces of samples I-IV. The 
very strong endothermic peaks between 100 and 200 °C in 
the DTA are due to the removal o f residual organic solvent 
and absorbed structural water. The endothermic peaks be
tween 200 and 600 °C can be attributed to dehydroxylation 
of the residual hydroxyl groups. The main broad and shal
low endotherm centred around 240 and 370 °C for sample I; 
300,337, and 418 °C for sample II; 229, 330, and 479 °C for 
sample III; and 218, 300, and 467 °C for sample IV. A rela
tively narrow exothermic peak at around 850 °C was found 
for sample I. But for samples II and III, a broad exother
mic peak were found around 805 and 780 °C. Distinctively, 
a very broad exotherm of sample IV centred around 700 °C. 
These different exotherms of samples I-IV  illustrate that the 
samples have different characteristics o f crystallisation.

3.2. Phase transformation processes

Table 1 lists the relationship of phases and heat treat
ment conditions. At a heat treatment temperature of 450 °C 
all samples had an amorphous structure. Cubic-Yb203  ini
tially appeared at a temperature of 700 °C for sample I 
(Al20 3 /Yb203  =  1:1, with no doped lithia and no AOS 
solvent); the associated XRD pattern is shown in Fig. 3.

o
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Fig. 2. DTA traces of samples I-IV.
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Fig. 3. XRD patterns of sample I.

Cubic-Yb203  was identified as #43-1037 from the JCPDS 
database [11]. YbAG garnet peaks (identified by JCPDS as 
#73-1369) were found at a temperature o f 800 °C.

Sample II (Al203 /Yb203  =  1:1, with 8 mol% doped lithia 
and no AOS solvent) was found to be amorphous at a tem
perature of 500 °C and strong cubic-Yb203  peaks began to 
be observed at a temperature o f 600 °C in the XRD pattern, 
as shown in Fig. 4. Very small amounts of YbAG garnet ap
peared at temperature of 800 °C. The weak peaks o f YbAG 
in Fig. 4 imply that it is comparatively difficult to crystallise 
YbAG without the AOS solvent, although crystallisation is 
facilitated to some extent by the lithia.

Among these four samples, the lowest temperature at 
which cubic-Yb203 appeared was 500 °C in sample III 
(Al20 3/Yb203  =  1:1, with 8 mol% doped lithia and AOS 
organic solvent). YbAG garnet formation in sample III was 
observed at a temperature of 700 °C; the associated XRD

■ Yb20 3
■ YbAG garnet 
s Substrates

s
03

Va4>
700°C

15 20 25 30 35 40 45 50 55 60
20(Degrees)

Fig. 4. XRD patterns of sample II.
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Table 1
Relationship of crystallisation and heating conditions

Samples Heat treatment conditions

450°C and lh 500°C and lh 600°C and lh 700 °C and lh 800 °C and lh

I Amorphous Amorphous Amorphous Cubic-Yb2 0 3 Cubic-Yb2 C>3 , YbsAIsOn garnet
II Amorphous Amorphous Cubic-Yb2 0 3 Cubic-Yb2 C>3 Cubic-Yb2 C>3 , YbsAIsOn garnet
III Amorphous Cubic-Yb2 C>3 Cubic-Yb2 0 3 Cubic-Yb2 C>3 , Yb3 Al5 0 i2 garnet Cubic-Yb2 0 3 , Yb3 Al5 0 i2 garnet
IV Amorphous Amorphous Amorphous YbsAIsOn garnet YbsAIsOn garnet
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Fig. 5. XRD patterns of sample III.

pattern for sample III is shown in Fig. 5. This result is at
tributed to the addition of AOS solvent. The promotion of 
YbAG garnet crystallisation by AOS solvent, at the same 
time, was confirmed by sample IV (Al203 /Yb203  =  5:3, 
with 4 mol% doped lithia and AOS solvent). Sample IV is 
amorphous at a temperature of 600 °C shown in Fig. 6 and 
the strongest peak of YbAG (at 29 =  33.56°) in the sample 
seems to be observed but it is very weak. The single-phase 
YbAG garnet was obtained at the 700 °C low calcination

■ s ■
■ YbAG

garnet 
s Substrates

■ ^  ^

800°C

700*0

600°C

15 20 25 30 35 40 45 50 55 60
20(Degrees)

Fig. 6. XRD patterns of sample IV.

temperature. There were no other phases that can be de
tected for 25 h calcination at a temperature of 800 °C apart 
from YbAG. It must be emphasised that this is the first time 
that the single-phase YbAG film has been manufactured, as 
far as we are aware, at this very low temperature.

3.3. The effects o f lithia and AOS solvent on the 
crystallisation

When we compare sample I to sample II, it is evident that 
the doped lithia has lowered the crystallisation temperature 
for cubic-Yb203  by about 100°C. Similarly, comparison of 
samples II-IV  suggest that the AOS solvent has lowered 
the crystallisation temperature of YbAG garnet by at least 
100°C.

The exact mechanism of the lowering o f the crystallisation 
temperature is not known, although we can postulate that 
the sol-gel process may be modified by both the presence 
of lithia and AOS solvent as follows. It is well known that 
the gel film has a porous and amorphous network structure. 
The central cations such as Al3+ and Yb3+ here are bonded 
by the bridged oxygen Ob, > A l-0 -  The oxygen may also 
exist as the non-bridge oxygen Onb, H -O -A K . As the calci
nation temperature rises, some bridged oxygens may break 
up and become non-bridged oxygen. This results in the de
crease of the bridge oxygen and causes structural changes 
and subsequent changes in the co-ordination o f the cations. 
However, with further increasing calcination temperature, 
the non-bridge oxygen transforms back to the bridge oxy
gen. Thus, cation positions in the oxygen polyhedral also 
change correspondingly.

The cations Al3+ can exist in the oxygen octahedral or 
tetrahedral sites. However, the radius o f Yb3+ (0.86  A) is 
larger than that o f Al3+ (0.39 A). It generally occupies the 
oxygen octahedral or dodecahedron sites. Yb3+ form the 
basic crystal growth units [YbOe] octahedral with O and H. 
In this case, the chain consists o f these octahedral units that 
are bonded through the comer, the edge and the face. The 
binding between the chains is OH-  and so the crystallisa
tion of YID2O3 is actually the convergence and order arrange
ment process o f Yb oxygen coordination octahedral. The 
more the number o f basic octahedral growth units [YbC>6] 
are bound together, the easier the crystallisation o f Yb2C>3. 
However, the problem here is that the hydrogen will be lost 
due to heat treatment and lead to a decrease in the basic
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Table 2
XPS core level binding energies (BE ±  0.1 eV) of sample III (values have 
been charge corrected for C Is =  284.8eV)

O Is Al 2p3/2 Al 2pi/2 Yb 4d5/2 Li Is

530.1 74.4 73.6 185.0 55.7

growth units. Thus, the small radius lithium ion that was 
added in the sol may replace the hydrogen position to keep 
the basic growth units at the same number density during 
the firing process and hence be beneficial to the formation o f 
cubic-Yb203 and to catalyse the Yb2C>3 crystallisation. Fur
thermore, chemically it might form a very unstable interme
diate phase Yb2 0 3 v£Li2 0  which is then decomposed very 
quickly to yield Yb203 and Li2 0 . A high molar concentra
tion of Li2 0  on the very top surface has been confirmed by 
the XPS experiments described below.

The YbAG garnet structure consists o f [AIO4] tetra
hedral, [A106] octahedral and [YbOs] dodecahedron. A 
perfect oxygen coordination polyhedral network structure 
is significant for the YbAG crystallisation. In other words, 
increasing the amount o f Ob will promote the YbAG 
crystallisation. The AOS solvent decreases the amount of 
non-bridge oxygen and enhanced the network structure by its

bonding with cations. Hence, this may account for the 
observed temperature decrease of 100 °C for the YbAG 
crystallisation.

3.4. XPS spectra

The XPS wide scan spectra o f sample III after heated 
for 1 h at 800 °C in the range 0-1200 eV was obtained and 
the major features were identified. The most intense peak at 
530eV corresponds to the O Is peak. The Li Is and Al 2p 
peaks appear at 48-62 and 70-80 eV, respectively. The Yb 
4d peaks occur at 176-213 eV. High resolution spectra were 
performed for all the elements and the deconvoluted Al, Yb 
and Li peaks spectra are shown in Fig. 7. The binding en
ergy (BE) data are shown in Table 2. The Al 2p in Fig. 7a 
has been deconvoluted into two peaks (73.6 and 74.4 eV for 
P 3 / 2  and p i/2, respectively), which show reasonable agree
ment with that expected for an oxidised form which have re
ported values o f around 74.0 eV [12]. The somewhat lower 
peak value may be as a result o f aluminium atoms sitting in 
the YbAG structure. There is no obvious evidence of alu
minium occupying tetrahedral and octahedral sites. The dif
ferences in binding energies are probably too small to result 
in separate peaks. The Yb 4d spectra in Fig. 7b have five 
peaks between 185 and 210 eV which can be attributed to 
a Yb203 type phase. The BE of the principal 4 ds/2 peak is 
185.0eV which shows good agreement with reported val
ues of 185.2 for Yb2C>3 by Uwamino et al. [13]. The Li Is 
spectra (Fig. 7c) has a well-resolved peak at around 55.7 eV

Al 2p

c

77.4 75.4 73.4 69.4 67.4
(a) Binding Energy /eV

Yb4d

Cao0
£
c
c

196.4 176.4

(b) Binding Energy/eV

LI 1sv>c
3ou
I?
co>£

59.4 57.4
(c) Binding Energy/eV

Fig. 7. High resolution XPS spectra of Al, Yb, and Li.

which shows good agreement with reported value o f 55.6 eV 
for Li2 0  [14]. The Li spectra has a weak diffuse peak below 
the principal peak (not shown in Fig. 7) which may be due to 
Li-doped into Y2O3 or YbAG phase which exists as intersti
tial cations. Further research is required to identify the exact 
Li+ sites in the structure. The detailed studies about this and 
YbAG finer structural features will be discussed elsewhere.

3.5. Coating surface characterisation and hardness

The coating surface structure was observed by SEM. 
Figs. 8 and 9 show the surface structure o f coatings on 
S i(100) and hardened steel substrates, respectively. The
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Fig. 8 . Surface structure of thin films on the Si substrate.

Fig. 9. SEM characterisation of the coating on the harden steel substrate.

coating on the hardened tool steel substrate was heated at 
450 °C for 2 h. There is an even distribution o f pores which 
have a mean diameter of about 1-2 pm  for both coatings.

Hardness tests were performed on the coating on the 
hardened steel substrate. The average Knoop hardness was 
1024 kg mm-2 . These results lay the foundation for poten
tial future application of garnet ceramic coating as a thermal 
barrier, or oxidation and erosion resistant material.

4. Conclusions

Single-phase YbAG garnet polycrystalline films were pro
duced first time and at very low heat treatment temperature 
by a modified sol-gel method. In the Yb203-A l2C>3 system,

when the mole ratio o f Al203 /Yb203 is 1:1, doped lithia 
promotes the cubic-Yb203 crystallisation. Adding the AOS 
inorganic-organic hybrid solvent has been found effectively 
to lower the crystallisation temperature of YbAG garnet by 
at least 100 °C and to be beneficial to the adhesion with the 
coated metal substrates. DTA traces have shown different 
thermal behaviour o f these different samples crystallised at 
the temperature range of 600-800 °C. A porous and thick 
coating can be obtained on hardened steel substrate by mul
tiple dip technique. The coating possesses a relatively high 
hardness even when in the amorphous phase produced via 
heat treatment at 450 °C. We conclude that porous coatings 
of considerable hardness and easy, low temperature manu
facturing can be produced by the sol-gel method. The low 
thermal conductivity of garnet and the thermal stability of 
the phases produced suggest that a coating of garnet ceramic 
structure may be a good prospective candidate as a hard, 
corrosion-resistant TBC.
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