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Abstract

The detection of pollutants (such as toxins, heavy metal ions, and pesticides) in 
water and food plays an important role in human health and safety regulations. Different 
optical biosensing techniques enabling the monitoring of these compounds were chosen 
for this study.

Low molecular weight (LMW) environmental toxins, such as simazine, atrazine, 
nonylphenol and T-2 mycotoxin were registered with the methods of surface plasmon 
resonance (SPR) and the recently developed total internal reflection ellipsometry 
(TIRE). The immune assay approach was exploited for in situ registration of the above 
toxins with specific antibodies immobilized onto a gold surface via a polyelectrolyte 
layer using electrostatic self-assembly (ESA) technique. TIRE showed a higher 
sensitivity than the SPR technique. The obtained responses of the TIRE method were 
higher than estimated for the immune binding of single molecules of nonylphenol or T- 
2 mycotoxin. The mechanism of the binding of large aggregates of these toxins to 
respective antibodies was suggested as a possible reason for this. The formation of large 
molecular aggregates of toxin molecules on the surface was later proven by the AFM 
study.

The prototype of the portable sensor array device for water pollution monitoring 
was based on a SiCVSis^ planar waveguide with a sensing window coated with ESA 
film containing pH sensitive organic chromophore molecules and different enzymes 
(namely, urease, acetyl- and butyryl- cholinesterase) adsorbed on a disposable nylon 
membrane. The sensor was capable of registration of enzyme reactions as well as their 
inhibition by traces of some typical water pollutants, such as heavy metal ions Cd2+, 
Pb2+, and Ni2+, and pesticides imidacloprid and DVDP over a wide range of 
concentrations (from 1000 ppb down to 0.1 ppb). A portable prototype sensor array 
device comprises a fan-beam laser diode, a semi-cylindrical lens, a planar waveguide 
with a three-channel cell attached, and a CCD array photodetector. Dedicated software 
was developed for CCD image processing and further data analysis with an artificial 
neural network.

The large internal surface area within a small volume, efficient room- 
temperature visible photoluminescence and biocompatibility of porous silicon (PS) has 
stimulated recent interest in its applications for sensor development. The method of 
spectroscopic ellipsometry was applied to study in situ the adsorption of bovine serum 
albumin (BSA) into PS. The porosity and amount of adsorbed BSA were determined by 
fitting the ellipsometric data to the Bruggeman effective medium approximation model. 
The presence of intermediate adsorbed layers of polyelectrolytes was found to increase 
protein adsorption.
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Chapter 1. Introduction

fflfflPBlMfl t

INTRODUCTION

This chapter presents a brief review of the problem of environmental pollution, 

analytical methods for their monitoring, and gives a short description of the biosensors 

concept.



§1.1 Environmental Pollutions

1.1 Environmental Pollutions

A major current ecological problem is the contamination of the environment 

with by-products of industrial and agricultural activities, such as heavy metal ions, 

pesticides, herbicides and toxins -  because of toxicity leading to health problems.

The use of some pesticides and herbicides, such as atrazine and simazine, is 

subject to control due to their high level of toxicity to humans and organisms in the 

ecosystem and their low degradability in the environment. However, in 1995 

approximately 149-160-106 kg of atrazine were used across the world[1]. Due to 

extensive use, persistence, water solubility, and relatively weak adsorption in the soil, 

atrazine is present in the aquatic environment via agricultural run-off, leaching and 

atmospheric input and is therefore regularly and most frequently detected in surface 

water[2].

More chemicals were developed and used to increase agricultural productivity; 

among them were insecticides, pesticides, and herbicides. The release of pesticides 

(even those having relatively low human toxicity, such as an imidacloprid) into the 

environment has led to both surface and ground water pollution, and the risk to human 

health is increased because they enter into drinking water[3]. In other instances, 

organophosphates, such as dichlorvos, have been designed for use as insecticides but 

can also be used as agents of warfare [4]. Dichlorvos has a high acute toxicity and has 

been classified by the World Health Organization as “highly hazardous”. Like many 

organophosphate insecticides, it inhibits cholinesterase levels in humans, which may 

result in disruption to the nervous and muscular systems. The compound can leach into 

groundwater due to its high solubility[5]. Despite the fact that dichlorvos is a mutagen 

and a suspected carcinogen, it is still in use in many countries across the world as an 

insecticide.

Many chemicals are released into the environment irrespectively of their 

toxicological risks. Many of them have the capacity to disrupt the functioning of the 

endocrine system[6]. Nonylphenol has attracted attention as an estrogenic environmental 

contaminant and has been implicated in the disruption of endocrine function in 

wildlife[7]. Nonylphenol is widely used as an antioxidant and polymer stabilizer, and is

2



§1.1 Environmental Pollutions

also utilized in the synthesis of non-ionic surfactants. It has been identified in sewage 

and river water. A survey of 190 food samples purchased in Japanese markets revealed 

that some fish, meat and vegetables are contaminated with nonylphenol at the levels of 

10 -  723, 9 -1 8 0  and 7 -1 3 1  ng/g, respectively181. In other surveys, the plastics used in 

food processing and packaging often contained a high level of nonylphenol, and it was 

suggested that nonylphenol in these plastics can migrate into the fatty foods upon 

contact'9' 10-111.

T-2 (also known as “Yellow Rain”), a trichothecene mycotoxin, is a naturally- 

occurring mould, a by-product offusarium fungus which is toxic to humans and animals. 

It is the only mycotoxin known to have been used as a biological weapon. It can be 

produced from mouldy whole grains such as wheat, oats, barley, maize. It has even been 

encountered at very high concentrations in feed mixtures for poultry breeding[12]. Toxic 

residues in contaminated poultry products, such as meat, liver or eggs as well as those 

delivered via the food chain have been proved harmful to humans[13]. The world-wide 

problem of mycotoxicosis is reflected by the fact that the legislation controlling 

mycotoxins in both animal feed and human food exists in over 60 countries [14].

Despite the introduction of water quality targets in the European Union (EU) (i.e. 

EU Drinking Water Directive (98/83/EC), EU Dangerous Substances Directive 

(76/464/EC), and EU Groundwater Directive (80/68/EC)), there has been no overall 

improvement of water quality since the beginning of the 1990s. An estimated 20% of all 

surface water in the EU is seriously contaminated[15].

There are many sources of water pollution which can be split in two categories: 

point contamination sources and diffuse contamination sources. Point sources include 

effluent outlets from factories and waste treatment plants, that emit fluid of varying 

quality directly into urban water supplies[16]. Although the industrial and agricultural 

contamination of water resources is controlled by EU legislation, these pollutants can 

still be found in water. Diffuse sources include contaminants that enter into the water 

supply from soil or ground waters and from the atmosphere via rain water. Diffuse- 

originated pollutants are determined by the sort of activity taking place in the area: in 

urban and industrial areas, the pollution is mostly caused by heavy metal ions, aromatic 

and aliphatic hydrocarbons, while in agricultural areas, it is mainly due to nutrients, 

herbicides and insecticides[17].

3



§1.1 Environmental Pollutions

According to Pearce and Mackenzie1181 the level of contaminants in rain water 

regularly exceed the legislation limit for drinking water. It was reported[19] that in rain 

and roof runoff, the maximal pesticide concentration, originating primarily from 

agricultural use, occurs during and immediately after the application of pesticides. 

According to this research, the maximum average concentrations of atrazine (903 ng/1), 

alachor (191 ng/1), and R-dichlorprop (106 ng/1) were registered after a rainfall in 

Switzerland. These chemicals appeared to have evaporated from the fields and were 

present in the clouds. For obvious reasons diffuse sources are much more difficult to 

control.

The quality of drinking water in Britain is controlled by standards set by the EU 

and Water Quality Regulations[20]. 99.93% of all tests carried out on drinking water 

supplies in Sheffield, UK, complied with the Water Quality Regulations1̂21 1 (see 

Table 1.1-1).

Table 1.1-1 Guidelines for some chemical parameters in the Water Quality Regulation

and results of water analysis in Sheffield (UK) and Kiev (Ukraine).

Pollutant
EU

legislation,
pg/l

Sheffield (UK) 
Real value, 

min -  maxa, pg/l

Kiev (Ukraine) 
Excess o f  limit in 

comparison with EU  
legislation[22\  %

Aluminium 200 8 -5 5 1 3 -5 1 0

Cadmium 5 0.03-0.07 0

Iron 200 11-112 5 -1 0 0

Lead 25 0.14-5.68 0

Mercury 1 0.04-0.046 0

Nickel 20 0 .5 -1 .12 No information

Pesticides 
-  Total Substances

0.5 0.05 No information

Atrazine 0.1 0.0008 5 5 -2 5 5

Dichlorvos 0.1 0.0017 (total content o f

Simazine 0.1 0.001-0.0017 organic substances)

a Reporting period: 1st January 2005 -  31st December 2005

4



§1.1 Environmental Pollutions

In spite of the number of regulations in the Ukraine (i.e. Water Code of Ukraine 

(1995), Ukrainian Law on Environmental Protection (1991) etc.) the quality of water is 

unsatisfactory[23]. In 1998, the content of iron, aluminium, and organic substances in the 

water supply in Kiev was in excess of the EU limits (see Table 1.1-1). Almost all river 

basins in the Ukraine are classified as “polluted” or “very polluted”0. The large rivers 

(Dnepr, Dnestr, Southern Bug) are all polluted with oxygen-consuming substances, 

heavy metal ions, oils, and phenols[24]. Since water resources are interconnected, 

pollution in one region can spread widely and uncontrollably to another.

The EU environmental legislation is based on human health criteria, and also 

challenges the technical limits of current state-of-the-art analytical instrumentation as it 

is determined by the current ability to detect pollutants. For instance, the maximum 

permitted concentration for any individual pesticide given in the EU Drinking Water 

Directive is 0.1 pg/l[25] which corresponds to one-tenth of a parts per billion (ppb). 

Therefore, detection of heavy metal ions, environmental toxins, and biological warfare 

agents especially in drinking water in the range below 0.1 pg/1 is playing an 

increasingly important role in human health and safety regulations[26].

a Nevertheless, there are plenty of fish in these rivers.



§1.2 Analytical Methods for Environmental Pollutions Analysis

1.2 Analytical Methods for Environmental Pollutions Analysis

In areas such as environmental control, food quality control, medical diagnostics, 

industrial process control, and monitoring of biological warfare agents, information 

about the presence or absence of additives, contaminants, and natural compounds is 

required. Nowadays, the quantitative analysis of different environmental pollutants in 

water and food is carried out using standard analytical methods, such as high- 

performance liquid chromatography, gas chromatography, mass spectroscopy, and 

microbial inhibition tests[27l  These methods have been proven to be both highly 

sensitive and reliable. However, they are mostly laboratory based and not suitable for 

on-site express analysis. They are both time consuming and need highly trained 

technicians; the sample preparation procedure is complicated. As a result, the above 

methods are generally too expensive128'331.

Alternative environmental analysis techniques based on different principles are 

therefore required for environmental pollutant monitoring. Many methods for the 

detection and analysis of inorganic and organic compounds in water, food and other 

environments are already available and a comprehensive review of the devices currently 

employable has recently been published134]. Among the most widely used tools are 

sensors. These devices are usually low cost and can be used either in situ or on-line for 

the rapid assessment of contamination[35].

Sensors can be systematized by the type of chemical reaction registered, or by 

the type of transducer, or by the signal processing principle, etc. For instance, 

depending on the environment, sensors can be divided into two categories: gas sensors, 

and sensors working in a liquid environment. Based on the nature of chemical processes 

in the sensitive membrane, two types of sensors can be defined: sensors of multiple use, 

and single shot (or disposable) sensors. A device that uses a biological element, such as 

an immobilized enzyme, cell, immunosystems, tissues etc. to detect (bio-) chemical 

compounds, as a sensor is called biosensors[361.

Biosensors can also be divided into two large classes:

1. Affinity sensors based upon highly specific binding of biomolecules, 

such as reactions between antibodies and antigens in immune sensors;

6



§1.2 Analytical Methods for Environmental Pollutions Analysis

2. Catalytic sensors, which, in addition to specific binding of analyte 

molecules from the environment, decompose them into smaller products.

There are many advantages associated with the use of biosensor technology as a 

sensitive detection method. The most important of these include specificity as a result of 

using biological sensing elements, which can distinguish between the analyte of interest 

and other molecules and relatively rapid response time[37].

7



§1.3 Biosensors for Analytical Measurements

1.3 Biosensors for Analytical Measurements

1,3.1 The concept of biosensors

A biosensor is an analytical device which converts a biological/biochemical 

reaction into any measurable physical parameter (current, potential, optical constants, 

mass etc./381. Generally, biosensors use two types of biological molecules as a sensing 

element: (i) enzymes, which specifically catalyse the reaction of decomposition of 

substratum and (ii) antibodies, which bind specifically target molecules.

Monitoring those molecular interactions and the use of those molecules as 

recognition elements (bioreceptors) will give information on the presence of the target 

analyte and its concentration. As shown in Figure 1.3-1, a biosensor comprises of three 

major elements:

1. Bioreceptor, where molecular recognition, or biochemical reactions occur;

2. Transducer which transforms the reactions into some physical parameters;

3. Signal processing system to quantify this physical parameter and to deliver 

information in a suitable form to the external receive/391.

Impurity

Enzyme
■=}

Antibody

■=>
M icro­

organism

Cell

Tissue ■=)

E lectroactive 
su bstance  * E lec trode

pH change — ► pH e lec tro d e

H eat — Thermi s t or

Light — ► Photon coun ter

M ass    P iezoelectric
chanqe device

Ligand
(Analyte)

Bioreceptor Signal
Transducer Signal

Figure 1.3-1 Schematic of a biosensor (adapted from Ref.[40])



§1.3 Biosensors for Analytical Measurements

The most important characteristics of biosensors are sensitivity or resolution, 

selectivity to the target analyte (i.e. the ability to discriminate between different 

analytes), response time, recovery time (i.e. the time before the biosensor is ready to 

analyse the next sample), and working lifetime (usually determined by the instability of 

the biological material)[41].

1.3.2 Recognition elements

Various types of biosensors have been developed in the field of environmental 

monitoring. Depending on the nature of the biological sensing element, they can be 

divided into microbial sensors, affinity sensors, and enzyme sensors.

a . The concept o f  microbial sensors

The microbial sensors principle is based on the fact that microorganisms 

consume oxygen during their metabolism. Microorganisms can assimilate organic 

compounds, resulting in a change in respiration activity, and can produce electroactive 

metabolites[41].

The oxygen concentration or electrode-active compounds, such as ammonium 

ions, hydrogen sulphide, or carbon dioxide can be measured by monitoring pH. The 

measurement of the index of organic pollution in water (biological oxygen demand)[42], 

the detection of the presence of toxic compounds for the food industry[ 43 ], and 

environmental monitoring[44] are the major application fields for microbial biosensors. 

The response time of microbial sensors varies from 0.1 to 360. minutes; and the 

detection limit is 0.04 -  125 mg/l[41,45].

The main advantages of microbial sensors are the following: they are cheap 

because an active enzyme does not have to be isolated, and they are tolerant of 

suboptimal pH and temperature. However, they have a long recovery time, often contain 

many enzymes and therefore, may have low selectivity^1,46l

9



§1.3 Biosensors for Analytical Measurements

b. Affinity sensors concept

Affinity biosensors depend on the use of antibodies, proteins or DNA to 

recognise and bind a particular target analyte[47]: The most common affinity biosensors 

are antibody-based biosensors and are known as immunosensors[48].

It is well established[46] that antibodies are synthesised by animals as a part of 

the response to the presence of foreign substances. Macromolecules capable of eliciting 

such a response are known as antigens or immunogens. In order to elicit the antibody 

formation the hapten (low molecular weight substance) must be bound to a 

macromolecule. The specificity of an antibody is associated with a particular site on an 

antigen, which is known as the antigenic determinant or epitope. An antibody will 

combine specifically with the corresponding antigen or hapten.

When this occurs an antibody-antigen complex, which has different physical- 

chemical properties such as mass, volume, current etc., is formed (for electrochemical 

detection of an immunoreaction is necessary to use enzymes that will generate 

electrochemically-active products[49]). Transducers that enable the detection of changes 

in the physical properties of the system (electrochemical, optical or acoustical) can be 

used in such measurements^9,50]. Due to their high specificity, immunosensors satisfy 

the requirements of the EU legislation for detecting pesticide residues in drinking 

water[51].

As has been mentioned above, antibodies are not the only receptor that can be 

used as the recognition element, but also DNA, cells, and tissues. The main advantages 

of these types of biosensors are the wide range of affinities available, thus expanding 

the number of analytes that can be selectively detected[52].

c. Enzyme sensors concept

In enzyme (or catalytic) biosensors the bio-recognition element is an enzyme, 

which reacts selectively with its substratum (i.e. a molecule upon which the enzyme 

acts). The effect of inhibition of enzymes by pollutants is used for their detection[53]. 

The substrate binds with the enzyme's active site (i.e. the region where binding of the 

substrate and the reaction occurs). An enzyme combines with its substratum to form an

10



§1.3 Biosensors for Analytical Measurements

enzyme-substrate complex, the substratum is then decomposed into several reaction 

products and released from the active site (Figure 1.3-2)[54].

Two simultaneous processes control the reaction: the enzymatic alteration of the 

substrate to the product and the diffusion of the product from the enzyme layer. The 

enzyme reaction is usually accompanied by a change in pH, heat emission, and the 

expenditure or production of compounds (such as, oxygen or ammonia), which can be 

detected by the transducer1551. It is possible to use enzyme reactions to monitor 

environmental pollutants, such as heavy metal ions, pesticides, and herbicides, which 

act as inhibitors of enzyme activity. The majority of enzyme biosensors are based on 

either electrochemical transducers or ion-selective field-effect transistors (ISFET)[561.

(a) Reaction

su b stra te

Substrate molecule 
binds with the active 
site of enzyme

enzyme

active site Reaction occurs 
and product 
molecules a re  
generated

(b) Inhibition

inhibitor

enzyme

active site

Inhibitor molecule binds 
with the  active s ite  of 
enzyme molecule

Inhibitor molecule 
prevents th e  
bindings of 
su b s tra te  molecules

Figure 1.3-2 Enzyme reaction (a) and inhibition (b) (adapted from Ref.[57])

The sensitivity of such sensors is in the ppm (parts per million) range, which is 

at the limit of electrochemical and ISFET sensors, which does not match the EU 

legislation levels for environmental control^11. However, the response time for
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electrochemical sensors varies from 0.1 to 30 minutes, and for ISFET is of the order of 

milliseconds[38,561.

Among the advantages of enzyme biosensors are their high selectivity and fast 

response time. However, enzymes are expensive and they often lose their activity when 

immobilized on transducers^11.

1.3.3 Transducers

Depending on the analyte, the transducer, which is linked to the bioreceptor, 

could utilise one of the following sensing principles described below.

a. Thermal transducers

Thermometric (or calorimetric) biosensors exploit the adsorption or emission of 

heat, which is proportional to the molar enthalpy and to the total number of product 

molecules created in the biochemical reaction158,591. This is reflected as a change in the 

temperature within the reaction medium. The majority of thermal transducers use 

enzymes as biological recognition elements, so-called enzyme thermistors[60].

According to Ramanathan et al.[61], enzymatic reactions generally have a heat 

emission of 28 -100 kJ/mol, which makes them suitable for versatile applications. For 

affinity reactions, such as antibody-antigen, the thermal changes are not substantial^21.

b. Electrochemical transducers

There are two main principles used in biosensors based on electrochemical

transducers1631:

(a) The potentiometric: Approaches depend on changes in the electric 

potential at a constant current.

(b) The amperometric: Approaches detect changes in the current as a

function of the concentration of electroactive species.

12
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Potentiometric biosensors are usually based on ion-selective electrodes. These 

devices measure the changes in ion concentration during the reaction. A simple sensor 

consists of an immobilized enzyme membrane surrounding the probe of a pH meter 

where the catalysed reaction takes place. For example, the change in pH, which can be 

easily read, is induced by the formation of an organic acid during the hydrolysis of the 

choline ester by an appropriate esterase. Using thit principle, Tran-Minh et al.[64], 

achieved the detection of 0.3 ppb (parts per billion) paraoxon, acetylcholinesterase 

(AChE) being immobilized on a glass pH electrode by cross-linking with 

polyacrylamide. With the exception of this work, the detection limits reported are 

generally close to 3 ppb[51].

Amperometric detection is based on measurements at the fixed potential of the 

current generated when electroactive species are either oxidized or reduced at the 

electrode. The current produced is directly related to the concentration of the 

electroactive species[65].

c. Gravimetric transducers

The physical phenomenon behind acoustic (also called “gravimetric”[39]) 

transducers is based on interaction of the acoustic waves with the material, and the 

changes in either the added mass or acoustic wave velocity due to molecular adsorption 

or biochemical reactions on the surface of the piezoelectric material (for instance, quartz 

crystal). The crystals are placed in an oscillating electric field and the resonant 

frequency of the crystal is measured. This resonant frequency depends on the crystal’s 

chemical nature, its size, shape, and mass[39,66].

Two different types of acoustic biosensors are known: bulk acoustic waves 

(BAW) also known as quartz crystal microbalance (QCM) and surface acoustic waves 

(SAW).

The principle of QCM transducers is based on measurement of a resonance 

frequency of quartz crystal, which is affected by the added mass of adsorbed molecules. 

The method of SAW transducers is based on the registration of changes in the velocity 

of surface acoustic waves due to molecular adsorption1391.

13
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d. Optical transducers

Optical transducers, based on fundamental optical principles such as reflectance, 

fluorescence, interference, and polarization, allow the quantitative characterisation of 

optical radiation such as amplitude, phase, frequency, and polarization[67’68]. Optical 

biosensors often employ different techniques such as ellipsometry, surface plasmon 

resonance, total internal reflection fluorescence, or planar waveguides to measure 

changes in the refractive index, thickness or light intensity of the bio-layer caused by 

different biochemical reactions.

e. Porous silicon transducers

Porous silicon (PS) based biosensors are another special type of biosensors to be 

mentioned. Due to the extremely large surface area (200 -  500 m2cm'3)[69] of PS and 

thus the great adsorption properties, and low cost, PS has been employed as a matrix for 

immobilisation for a variety of bio-molecules, such as enzymes[70], DNA[71,72], and 

antibodies[73,74]. Electronic or optical properties of porous silicon could be utilized to 

transduce biomolecular interactions in biosensor applications[ 75 ]. Several physical 

principles were exploited in PS transducers, namely, optical Fabry-Perot 

interferometry[76], ellipsometry1731, photoluminescence[77], and electroluminescence[78].

Current work has focused on the use of optical transducers for immune and 

enzyme sensors. A detailed description of their working principles and applications is 

given in chapter 2.
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1.4 Aims and Objectives of this Thesis

The main goal of this thesis is to develop optical transducers (sensors) for the 

detection of environmental pollutants. To achieve this aim the research has been divided 

into three parts.

The aim of the first part is:

To investigate and quantify the adsorption of proteins into porous silicon (PS) 

using the methods of spectroscopic ellipsometry.

In order to achieve this goal the following objectives are listed below:

• The development of the experimental set-up and technological protocol for the 

preparation of PS with required pore size.

• To design an experimental set-up and reaction cells for ellipsometric measurements.

• To immobilize proteins in the PS matrix and to study protein adsorption in PS with 

the ellipsometry method.

• To determine the thickness of the adsorbed layers by modelling and fitting the 

ellipsometric spectra.

• To study PS morphology using AFM and SEM techniques.

The aim of the second part is:

To employ the method of total internal reflection ellipsometry (TIRE) for the 

registration of low molecular weight environmental toxins, such as atrazine, simazine, 

T-2 my cotoxin, and nonylphenol in low concentrations down to ng/ml range.

For this task, the following objectives were specified:

• To develop the TIRE experimental set-up on the bases of an M-2000V J. A. 

Woollam spectroscopic ellipsometer using the Kretschmann's surface plasmon 

resonance geometry and a flow reaction cell.
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• To immobilize antibodies on a solid surface using the method of ESA.

• To register low molecular weight (LMW) environmental toxins using a cost 

effective direct immune assay approach, when molecules of toxins are binding to 

immobilized specific antibodies.

• To perform fitting of the TIRE spectra in order to establish a model of specific 

binding of LMW toxins.

The aim of the third part is:

To develop a portable prototype sensor array device intended to detect in situ 

heavy metal ions and pesticides in water and to evaluate their concentration. The system 

is based on the Si/SiCb/SisNVSiC^ a planar waveguide transducer operating in the 

regime of attenuated total reflection (ATR), with a sensing window, coated with an 

electrostatically self-assembled sensing membrane. This membrane contains pH 

sensitive organic chromophore molecules; enzymes were immobilized on nylon 

membranes and placed on the top of the coating. The measurements of both the enzyme 

reactions and their inhibition by traces of some water pollutants are used.

The following objectives are specified for this part of the research work:

• To design a portable CCD-based sensor array device and a multi-channel reaction 

cell and to develop the software for CCD image processing.

• To produce composite sensitive membranes comprising of disposable nylon sheets 

with immobilized enzymes and pH sensitive electrostatically self-assembled (ESA) 

films containing chromophore molecules of cyclo-tetra-chromotropylene tetra- 

sulfonic sodium salt (CTCT).

• To investigate the response of the produced composite membranes to different 

pollutants using the effect of attenuation of light intensity propagated through the 

planar waveguide.

• To build a database of sensor array responses to different pollutants; then to 

identify and quantify the pollutants using a standard MATLab pattern recognition 

algorithm.

a Si/Si02/Si3N4/Si02 = Silicon/Silicon dioxide/Silicon nitride/Silicon dioxide
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Chapter 2. Optical Biosensors: Theoretical Background and Literature Review

OPTICAL BIOSENSORS: 

THEORETICAL BACKGROUND 

and LITERATURE REVIEW

This chapter comprises four sections and provides the literature review and 

theoretical background related to this study. It begins (section 2.1) with a brief theory of 

porous silicon formation and optical properties of porous silicon from the bio-sensing 

point of view.

The next section 2.2 is devoted to the theory, principles of work and applications 

of optical immune sensors; principles of immune reactions and optical methods of their 

registrations, such as ellipsometry, surface plasmon resonance, total internal reflection 

ellipsometry, and planar waveguide are taken into consideration.

Section 2.3 reviews a background of the concept of optical enzyme sensors for 

organophosphates and heavy metal ions detection.

Finally, section 2.4 introduces and gives a brief description of analytes of 

interest.
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2.1 Porous Silicon Based Optical Biosensors

2.1.1 Porous silicon basics

a. Pore formation

Porous silicon (PS) is fabricated by an electrochemical etching of silicon (Si) in 

a hydrofluoric (HF) acid solution. Pore initiation occurs at surface defects or 

irregularities[1]. Because of the electrochemical reaction occurring on the surface of the 

silicon, a partial dissolution of Si occurs. The exact chemistry of silicon dissolution is 

still uncertain, and several models have been proposed[2,3]. Excellent reviews of PS 

technology are available (see Ref.[4], for instance).

Lehmann and Gosele[5] have proposed a surface bound oxidation scheme of the 

formation of the divalent silicon oxidation state by capturing a hole and subsequent 

emission of the electron, as shown in Fig. 2.1-1.

\  / r r  \  /  

x A V 11 \ / \ / F 

“ " A A /

/ K  H /  \  ■

Hole injection and attack on a Si—H  

bond by fluoride ion;

\ f  e  \  /
\ / K t < \  / \  /  t

A  K _ ,  / \  ’

Second attack by a fluoride ion with 

hydrogen evolution and electron 

injection into the substrate;

A < “  r  N p

HF attacks the Si—Si backbonds. The 

remaining Si surface atoms are 

bonded to the H atoms and a 

tetrafluoride molecule is produced;

/ F 2HF 
jSi *  HjSiF6 ► SiFj2* + 2H*

A p

The silicon tetrafluoride reacts with 

two HF molecules to give H2SiF6 and 

then ionizes.

Figure 2.1-1 Silicon dissolution scheme proposed by Lehmann and Gosele (after Ref.lbJ).

23



§2.1 Porous Silicon-based Optical Biosensors

This model has become the most popular. According to this model, the silicon 

dissolution process requires the presence of fluorine ions ( F ~) and holes h+ . The 

fluorine ions supplied by the HF solution and the holes on the silicon surface must be 

supplied from the bulk. In order to achieve a significant hole current in n-type Si", 

external illumination of the sample is required, depending on the doping level[7].

b. PS fabrication

A principal sketch of the cell for PS fabrication is given in Fig. 2.1-2. A silicon 

wafer (2) with the contact on the back is fixed on a holder (7) and brought into contact 

with the Teflon (PTFE) cup (4) filled with electrolyte (5) through the rubber O-ring (5). 

After applying a voltage (positive anode on Si and negative cathode on platinum (Pt) 

electrode (<5)) between the back side contact of the wafer and an electrode in the HF 

solution, a pore growth by silicon dissolution eventually starts[8].

Figure 2.1-2 Scheme of a cell for porous silicon fabrication; 1 -  Teflon base; 2 -  Si wafer 
with back side contact; 3 -  rubber O-ring; 4 -  Teflon cup; 5 -  electrolyte; 6 -  Pt 
electrode.

a Si has four electrons in its valence band. An w-type Si is obtained by doping, i.e. adding a valence-five 
element (for instance, arsenic (As)) in order to increase the number of free charge carriers. When a Si 
crystal is doped with As, some Si atoms are replaced by As atoms, which have five valence electrons. The 
“extra” electron moves into the conduction band and can carry current. If a Si crystal is doped with an 
element that has three valence electrons (such as boron (B)), holes are introduced into the crystals. Holes 
can “jum p” from atom to atom, carrying current. These are called p-type Si1'1.
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Due to the hydrophobic character of the clean Si surface, ethanol (C2H6O) is 

usually added to the HF solution in order to increase the wettability of the Si surface 

(water is part of the electrolyte merely because the hydrofluoric acid was supplied in a 

-49% aqueous form). Moreover, during the reaction there is hydrogen evolution. 

Bubbles form and stick on the Si surface in pure HF aqueous solution, whereas they are 

promptly removed if ethanol or other surfactant is present[9].

c. PS morphology

SEM images of PS reveal that PS consists of isolated crystallites and/or chains 

of crystallites linked by narrow silicon walls[10]. The properties of PS, such as porosity, 

thickness, and pore diameter depend on[11]:

(0 Doping type;

0a) Doping level;

(iii) Anodization current density;

(iv) Electrolyte composition;

(v) HF concentration;

(Vi) Anodization time.

For instance, porosity increases with increases of the current density and 

anodization time. Increases of the HF concentration lead to porosity decreases. For p- 

type doped substrates (at given HF concentration) the porosity increases with increasing 

current density. In n-type doped Si, the porous layers obtained at low current density 

have a finer structure.

A p-type silicon substrate forms a uniform and highly interconnected network of 

random pores, resulting in a spongy structure (Fig. 2.1-3a). In H-type samples, the pores 

are formed only under illumination and are relatively linear (Fig. 2.1-3b).

At higher current densities, the pores widen further; in n-type, the linear pores 

tend to become pipe-like. At very high currents, silicon is uniformly etched away, 

leading to electropolishing[12,13].
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Figure 2.1-3 Scanning electron micrographs of PS samples made from p-silicon (a) and n- 
type silicon (b).

d. Current-Voltage characteristics

The current-voltage (I-V) curves show two distinct current peaks[141 (see 

Fig. 2.1-4a,b). PS formation occurs in zone A, when the current I  is less than the value 

at the first peak I PS (Fig. 2.1-4c). Zone B is a transition region to the electropolishing 

regime depicted as zone C.
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Figure 2.1-4 a, b -  Current-voltage (I-V) curves for p- and n-type silicon, respectively (after 
Refs.[15,16]). The solid line indicates the dark response and the dashed line shows 
a response under illumination; c -  typical anodic I-V characteristic for silicon in 
HF. The three zones represent the pore formation regime, a transition region 
and the electropolishing regime (taken from Ref.1'71).
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When Si is the anode, the system is forward biased for p -type silicon, whereas 

for w-type silicon it is reversely biased. Under illumination, rc-type and p-type Si exhibit 

similar I-V  characteristics.

e. Porosity

The sample porosity is the most exploited macroscopic parameter used to 

describe the PS morphologies. Porosity is defined as a fraction of voids within the PS 

layer and can be determined by weight measurements. The silicon wafer is weighted 

before anodization ( ti\ ), after anodization ( m2), and after removal of the whole PS 

layer from the substrate (rrij) by dissolution in a 3% potassium hydroxide (KOH) 

solution. The porosity p  can be calculated as[6]:

rt\ —m3

Porosity can be controlled by the etching current density. As it has been 

mentioned before, the Si dissolution process requires the presence of fluorine ions (F~)  

and holes (h +). At the low current density (pore formation regime), when the fluorine 

ions are delivered faster than the holes, the outer-pore regions of PS are depleted of 

holes, and further etching occurs only at the pore tips, where the holes are focused by 

the electric field (see Fig. 2.1-5). Decreasing the current density leads to a drop in the 

number of holes at the pore tips, and this leads to a smaller pore size[18].

The International Union of Pure and Applied Chemistry (IUPAC) has proposed 

the classification of pores according to their sizes[19] as follows:

7. Pores with diameter exceeding 50 nm are called macropores',

2. Pores of diameters between 2 nm and 50 nm are called mesopores;

3. Pores with diameters less than 2 nm are called micropores.
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Electrolyte ions

® Doping impurities®

Bulk Si

Figure 2.1-5 Schematic distribution of the electric field lines in the space charge region 
during anodization in the electrolyte (adapted from Ref.[20]).

f  Optical properties o f PS: photoluminescence

Normally crystalline silicon does not emit light due to it’s indirect band gap 

structure (i.e. the minimum energy in the conduction band is shifted by a ^-vector 

relative to the valence band). However, PS samples having a porosity of more than 60% 

and a pore size of less than 2 nm are found to luminesce in the visible regionf211 (see 

Table 2.1-1).

PS can (under different circumstances) produce photoluminescence in the near 

infrared, visible, and near UV ranges. The properties and origins of photoluminescence 

bands of PS are reviewed and discussed by Fauchet[221.
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Table 2.1-1 PS luminescence bands (based on Ref.[6]) and PL spectra of low p-doped 

PS layers of various porosities (taken from the Ref.[8]).

Spectral
range

Peak
wavelength

UV -350 nm

Blue-green -470 nm

Blue-red 400 -  800 nm

Near IR 1100-1500 nm

PI,-In tensity  (0  2  Q cm )

500

Wavelength
{nm]

800 Porosity
IV.]

g. Optical properties o f PS: electroluminescence

Halimaoui and colleagues[23] first observed visible electroluminescence (EL) 

from PS in 1991. PS exhibits EL during anodization in aqueous solution (wet EL) and 

also in solid state structures. Wet EL is not permanent and is quenched rapidly because 

of the oxide formation at the Si surfaceri2'. The peak position of EL depends on applied 

voltage; therefore, the colour of emission can be varied from dark red to bright green. 

Savir et al.f241 investigated wet EL intensity of PS upon applying an electrical current 

(Fig. 2.1-6).

500 600 700 800 900
WAVELEGTH [ nm J

Figure 2.1-6 Several EL spectra (assorted symbols) obtained at different times of the EL 
current flow. The solid curve represents the PL spectra (after Ref.[24]).
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EL intensity first rises with time, reaches a maximum, and then decays to zero. 

At the same time, the peak of the EL spectrum shifts from X = 850 nm in the beginning 

to X = 600 nm at the end of the process. An envelope of all emitted EL spectra during 

the anodic oxidation of a sample (i.e. time integrated spectra) is similar to the PL 

spectrum of that sample[24].

John and Singh in their review[12], suggested that the similarity between the time 

integrated EL and the PL spectrum is the result of a similar nature of radiative 

recombination in both processes. However, the mechanisms of the carriers involvement 

in radiative recombination are different. Carriers for PL are generated optically.

In the case of electroluminescence, the contribution to the EL, at the beginning, 

is mainly from the larger nanocrystallites. This is because such particles are associated 

with smaller energy gaps, so that electron injection from the electrolyte requires less 

energy (lower voltage). With time, these nanocrystallites become covered with oxide 

due to the EL current flow. At this point, the current is diverted to smaller 

nanocrystallites and electron injection into such crystallites requires a higher voltage.

2.1.2 Porous silicon for biosensing applications

The large internal surface area within a small volume, efficient room- 

temperature visible photoluminescence and biocompatibility of PS has stimulated recent 

interest in its applications for sensor development. The main advantages of sensors 

based on PS technology are[25]:

(i) The pore size can be easily adjusted from nanometers to micrometers by 

choosing appropriate etching conditions[261;

(ii) Sensing components (e.g. biomolecules like enzymes and other proteins) are 

protected against fast leaching out due to the sponge/maze morphology of PS;

(iii) A large surface area of PS promotes the miniaturization of sensors since the 

measuring signal (for instance, capacitance) raises with the increase of the effective
[271sensor area ,
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(iv) Due to a high concentration of adsorption sites on the PS surface, the 

sensitivity of PS transducers to molecular adsorption can be increased. The 

amplification of sensitivity via increasing the surface area can be achieved, for example, 

using antibody-coated nanoparticles[283 or surface-enlarging layers of polymers[29,30]. 

However, these methods are expensive, time consuming, and sample preparation 

procedure is complicated, also porosity is much smaller.

The immobilization of proteins^313 on solid surface has an important function in 

the technologies employing bio-recognition events. Understanding of the protein 

(enzyme)-solid substrate interaction and diffusion of biomolecules inside the PS matrix 

has a great impact on PS-based biosensor techniques^323. Several experimental attempts 

have been made to study molecular adsorption and to perform different chemical and 

bio-chemical reactions in a PS matrix. The most popular optical principles exploited in 

PS transducers include ellipsometry, Fabry-Perot interferometry, and 

photoluminescence.

a . Ellipsometry

The use of the powerful analytical tool of ellipsometry0 to monitor changes in 

optical parameters of PS in the course of bio-reaction was demonstrated by Arwin[333. 

The advantages of this transducing technique lie in a combination of the high sensibility 

of ellipsometry with the large adsorption area of PS and allow the registration of small 

molecules bonded to receptor proteins. Moreover, variable angle spectroscopic 

ellipsometry can be used for characterization of PS layer thickness, porosity and 

microstructure[34,35’363 and to monitor and quantify protein uptake by a PS matrix[37, 383.

Detection of the specific binding of small molecules to receptor molecules 

requires high sensitivity. Another spongy medium of porous silicon dioxide surfaces has 

been used by van Noort et al.[39] for monitoring the specific binding of low molecular 

weight molecules (biotin and oligopeptide) to streptavidin with the ellipsometry 

technique.

a A detailed overview of ellipsometry working principles is given in chapter 2.2.2.
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The performance of porous silicon dioxide (Si02) as a potential surface in 

biosensor applications was compared with a planar silicon dioxide surface. Porous 

silicon dioxide showed a 10-fold amplification of the response as compared to the 

planar silicon dioxide. It was possible to monitor the binding of biotin and oligopeptide 

in the concentration range of 2 -  40 pM and this proved the effectiveness of using 

ellipsometry for the detection of small molecules in the range 0.2 -  2 kDa.

b. Fabry-Perot interferometry

The sensors described in Refs.140,41,421 operate by measuring the interference 

pattern (Fabry-Perot fringes) created by multiple reflections of the incident white light 

at the top and the bottom of the porous silicon layer as shown in Fig. 2.1-7.

CCb
d e te c to r

L ight
so u rc e

Figure 2.1-7 The scheme of the PS based optical interferometer (adapted from Ref.1401).

Since the reflectometric interference spectrum is sensitive to both the refractive 

index n and effective optical thickness L of the PS layer, the wavelength shift in the 

fringe pattern can be induced when new molecules bind to the PS surface1431:

mX = 2 n L ,
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where m is the diffraction order and X is the wavelength of light. Binding of analytes to 

its bio-receptors, immobilized on the PS surface, induces changes in the refractive index 

of the PS layer and results in a wavelength shift of diffraction fringes.

Lin et al.[44] and Steinem et al.[45] used the hybridization of DNA oligonucleotide 

in neutral aqueous solutions with the complementary sequences immobilized into a PS 

matrix to test the selectivity and limits of detection of a Fabry-Perot interferometric 

sensor. In the presence of complementary DNA sequences (DNA concentration ranging 

from 2-1CT15 to 2 10~6 M  ), an unexpectedly large shift in the Fabry-Perot interference 

pattern to lower wavelengths was observed implying a decrease in the effective optical 

thickness of the PS matrix (Fig. 2.l-8a). In the presence of non-complimentary DNA 

sequences no significant shift in the wavelength of the interference fringe pattern was 

detected (Fig. 2.1-8b) under similar conditions.
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Figure 2.1-8 Interferometric reflectance spectra of DNA-modified PS layers (taken from
Ref.[44]).

Steinem at al.[45' suggested that the observed optical effect is due to the 

enhanced corrosion (oxidation-hydrolysis) of the PS layer triggered by the formation of 

complementary DNA duplexes. Authors postulated that the slow background corrosion 

process initiated at the exposed Si-Hx groups is dramatically enhanced as a result of
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changes in the carrier charge density of the porous silicon layer in response to the local 

increase in the electric field generated by hybridization of the nucleic acids.

The observed phenomenon is thus an example of an active sensor matrix, in 

which the molecular recognition signal is transduced and amplified by profound 

changes in the chemical reactivity and physical properties of the solid support itself. 

The lowest DNA concentration measured with the PS interferometric sensor is 

9 fg /m m 2 . For comparison, the detection limit of the surface plasmon resonance 

technique is 0.3 pg /m m 2 [46].

Biological interactions take place in an aqueous environment, usually at pH~7, 

and the PS surface has to be stable under these conditions. However, PS manifests 

various degrees of stability in aqueous media depending on the surface preparation. 

Stability of PS layers in aqueous solution has been investigated by Janshoff et al[47]. In 

their study the stabilities of freshly etched, oxidised, and linker-modified surfaces were 

investigated. PS stability towards corrosion in aqueous media varies substantially in the 

following decreasing order: linker modified > thermally oxidised > ozone oxidised > Si- 

H terminated. The observed decrease in the effective optical thickness with time appears 

to be caused by the oxidation or dissolution of porous silicon. Furthermore, dissolution 

of the porous layer can lead to a decrease in the layer thickness or an increase in the 

porosity.

Dancil et al.[40] investigated the use of PS as an immobilisation and transducing 

matrix for monitoring protein-protein binding, namely protein A with IgG. The Fabry- 

Perot transduction was achieved by monitoring the change in the effective optical 

thickness of a PS film upon analyte binding. The stability of PS surface towards 

oxidation in an aqueous buffer solution, reversibility, insensitivity to nonspecific 

interactions, and the correlation of signal response with analyte mass were observed in 

this work.

c. Photoluminescence

PS has received getting increasing attention in the biosensor field due to its 

luminescence being strongly reactive with the environment^1. The intensity and the
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spectral shape of PS luminescence are strongly dependent on the chemistry of its 

surface; moreover, adsorbed molecules can quench the photoluminescence (PL)[48]. 

Light emitting properties of PS were used by Starodub et al.[ 49 ] to create an 

immunosensor capable of detecting myoglobulirf in a buffer solution and human serum. 

The effect of the extinguishing of PS photoluminescence, due to the molecular 

adsorption and immunocomplex formation on the PS surface, was exploited by 

Starodub and colleagues[50]. It was shown that the absorption of immune components in 

PS and the following immune reactions affect the intensity of PL; the sensitivity of the 

above sensor was 10 ng / m l .

Di Francia and co-workers[51] have reported on the fabrication of an optical 

label-free DNA sensor using luminescent PS as an active transducer. The specific single 

strand DNA (ss-DNA)-complementary strand DNA (c-DNA) interaction has been 

directly “sensed” as a variation in the PS photoluminescence. The authors 

functionalised the PS surface by a linker and then exposed it to ss-DNA. The PL 

showed a 12% variation when the derivatised samples were exposed to 10 pM aqueous 

solution of c-DNA, while no effect was recorded with the non-complimentary (nc-DNA) 

at the same concentrations. The effect of the length and composition of DNA 

oligonucleotides on the PL intensity and peak position were also reported.

Bindings of short oligonucleotides of DNA to probe molecules immobilised on 

the PS chip were observed by Chan et al.[52] through the wavelength shifts in the 

photoluminescence peaks. Full-length viral DNA molecules were also detected in this 

work; a larger shift in the photoluminescence peaks was observed, due to the larger 

refractive index change of the binding molecules.

d. Electroluminescence

As a technique, electroluminescence (EL) seems to be more attractive because it 

combines the high sensitivity of luminescence measurements with the much easier and 

cost-effective method of its excitation as compared to PL. Moreover, EL can be 

performed by simple measurements of emitted light intensity at a fixed wavelength. In

a Myoglobulin serves as marker o f the development o f the heart disease
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addition, the use of an electrolyte contact in EL measurements allows easy operation 

with chemical and bio-reactions in the aqueous phase[531. However, much less work has 

been done so far on the application of EL for chemical and bio-sensing. The influence 

of polyelectrolytes on reproducibility and stability of EL in PS and effect of adsorption 

of bovine serum albumin (BSA) (as an example of common proteins) on EL quenching 

have been studied by Nabok et al.[54].

e. Non-optical principles

A novel enzymatic PS-based potentiometric method for detection of 

triglycerides0 has been reported by Reddy et al.[55]. PS was thermally oxidized and used 

to immobilise lipase, an enzyme which hydrolyses triglycerides resulting in the 

formation of fatty acids. This caused a change in the pH of the solution. The structure 

enzyme solution-oxidized porous silicon-crystalline silicon was used to detect changes 

in pH during the hydrolysis of triglyceride as a shift in the capacitance-voltage 

characteristics.

Biochemical sensors with a PS capacitor have been also developed by Liith et 

al.[56}, and according to their research, the measured capacitance value increased up to a 

factor of 30 due to the enlargement of the active sensor area.

a The amount o f triglycerides is a clinical parameter that is correlated to heart disease.
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2.2 Optical Immune Sensors

Adsorption of quite bulky antibodies on the surface is usually accompanied by a 

substantial increase in the mass and thickness of the sensitive layer and can be easily 

detected with optical biosensors, based on evanescent wave technology, such as surface 

plasmon resonance, ellipsometry, and planar waveguides as described below.

2.2.1 Surface plasmon resonance

a. Surface plasmon waves

The principles of surface plasmon resonance (SPR) are explained in detail 

elsewhere157,58,591. In brief, the SPR is the result of a resonant coupling between a light 

wave and a surface plasma (plasmon) wave (SPW) along the interface between a metal 

and a dielectric.

SPW is a TM-polarized electromagnetic wave (magnetic vector is perpendicular 

to the direction of propagation of the SPW and parallel to the plane of the interface) 

connected with a charge-density oscillation that may exist on the interface between a 

dielectric and a metal. The most suitable metals for the excitation of the SPR are those 

with a high negative value of the real part of the dielectric constant, like silver, gold and 

aluminium[60,61].

The SPW propagates along the metal/dielectric interface, and the associated 

electric field decays exponentially away from the surface1621 as an evanescent wave 

(“evanescent” from the Latin for vanishing). This decay is characterized by a 

penetration depth which is the distance from the interface (coordinate x), at which the 

amplitude of the electric field falls by a factor l/e , and a propagation length, which is 

the distance along the interface (coordinate z), at which the power decays by the factor 

\ / e . The field profile with a characteristic decay in the direction normal to the interface 

is depicted in the inset of Table 2.2-1.
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Typical values of the propagation lengths and penetration depths on the interface 

water/gold and water/silver for two different wavelengths are shown in Table 2.2-1.

Table 2.2-1 Characteristics of the SPW on the interfaces water/gold and water/silver 

(adapted from the Ref.[63])

Metal Gold Silver

Wavelength, nm 650 800 650 800

Propagation length, pm 4.1 16 20 44

Penetration depth into metal, nm 28 26 23 23

Penetration depth into dielectric, nm 180 320 230 380

d ie le c tr ic

m etaly

Kretschmann’s configuration fo r the excitation o f SPR

Two different experimental systems for excitation of the SPW were developed 

by Otto1641 and Kretschmann[ 65 ]. The only significant difference between these 

configurations is the location of the metal film. In the Kretschmann arrangement, the 

film is deposited directly on the coupling prism, whereas in the Otto-type device the 

film is separated from the prism by air (or an other dielectric material) at a distance of 

approximately one wavelength of excitation light[66]. Kretschmann’s configuration, 

which is more convenient and widely used, is described below.

Kretschmann’s configuration exploits the phenomenon of the total internal 

reflection (TIR). As illustrated in Figure 2.2-1, when a beam of light strikes the 

interface between two transparent media directed from the medium of higher refractive 

index (n, > n2), the total internal reflection occurs when the angle of reflection © is

larger than the critical angle ©t. , ©t =sin [67]

V ni
Although the incident light is

totally reflected, a component of this light, the evanescent wave, propagates along the 

surface but decays exponentially perpendicularly to it[68].
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Figure 2.2-1 Total internal reflection.

SPR occurs when a thin conducting film is placed at the interface between the 

two optical media (see Fig. 2.2-2). At the specific incident angle ®SPR , greater than the

TIR angle, a light beam penetrates through the metal and excites a SPW on the interface 

between the metal and the sample. In the conducting film, the SPW resonantly couples 

to the light (monochromatic, p-polarized) due to the matching frequencies. Since the 

propagation length of the SPW is very limited (see Table 2.2-1), coupling of SPW is 

only possible for thin metal films. In most cases, the required metal film thickness for 

optimal coupling is about 40 nm for silver and 48 nm for gold[69].

p-polarized incident detector
beam

metai layer-

evanescent wave
sensing layer

Figure 2.2-2 A Kretschmann’s configuration for excitation of SPW.

The wave vector of the evanescent field kev is given by equation:
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^ v = V W s in 0 > (2.1)

2 7twhere k0 = —  is the wave vector in vacuum, nglass is the refractive index of the dense 
X

medium (glass prism), and 0  is the angle of incidence of the light. The wave vector of 

SPW kSPW can be written as

e n l
k spw = k o J - f r l T ’ (2.2)

where £ = Ree + Im£ is a dielectric function of the metal, and n. is the refractivetn m  m 7 a

index of the dielectric1701. The evanescent wave of the incoming light is able to couple 

with the SPW at a specific angle of incidence corresponding to the condition:

ŜPW ~ êv ’ (2.3)

and thus the surface plasmon is resonantly excited. This causes the energy of the

incident light to be transferred to the SPW and to be adsorbed in the metal film due to 

the energy dissipation, resulting in a reduction in the intensity of reflected light, which 

can be detected.

The reflectance of the incident light at a given angle 0  can be calculated using 

the three-layer Fresnel equations relating /^-polarization for the sensing system 

consisting of three media: glass prism/metallic film/sensing layer (which are 

abbreviated p , m, and s, respectively) as follows1711:

R =
rm +rm, exp(2ifc d y 2
1+ c xp (2 ik d )

(2.4)

with the amplitude reflectance rpm for “glass prism-metal film” and rms for “metal film- 

sensing layer” interfaces, which are given by the following equations:
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k jz  =
a 1 ,

v c
for j  = p ,m ,s

k* = # 7 - s in 0 ’

(2.7)

(2 .8)

where sj and kJZ are the dielectric constant and the wave-vector component perpendicular 

to the interface in the medium j\ kx is the component of the incident wave vector parallel

271C
to the interface; d is the thickness of the metallic film; 0) =  is the frequency of the

X

incident light; c is the velocity of the light[72,73].

In practice, one of the two detection schemes of SPR can be employed1741:

The angular SPR: the wavelength is fixed and the reflected light intensity is 

recorded during the scanning of the angle of incidence;

The spectral SPR: the incident angle is fixed near the angle of total internal 

reflection and the spectrum of the reflected light intensity is measured by scanning over 

the wavelength range.

The SPR manifests as a characteristic dip in an angular or wavelength spectrum 

as shown in Fig. 2.2-3.

a
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n =1.321 n =1.35X5

, i ■. , v, , r ii'. i .i 11
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n =1.32 n = 1.35b

o>

M.

Wavelength

Figure 2.2-3 a -  a typical angular spectrum of SPR; b -  spectral SPR (angle of incidence 54°) 
(taken from the Ref.[75]).

The angular (or spectral) position and the shape of the SPR spectrum depend on 

the optical parameters (refractive index n and extinction coefficient k) and the thickness 

of the metal film. If these parameters are changed due to adsorption of molecules (see
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Fig. 2.2-4), a change in the angle of incidence is required to excite the SPW. Moreover, 

by monitoring the angle (or wavelength) at which resonance occurs (the SPR angle) 

during the adsorption process with time, the kinetics of molecular adsorption can be 

studied176,77].
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Y Y Y - W Y Y
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Bio layer refrac tive  index, n 
SPW propagation constant, p>
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n-5*- n + An 
P > ^  p. ♦ Afb

•  analyte

recognition molecule

Figure 2.2-4 Principle of SPR biosensing (adapted from the Ref.[70]).

c. Surface plasmon resonance-based biosensors

The use of SPR for sensing biomolecular interactions was first proposed by 

Liedberg and colleagues in 1983[781. Nowadays, rapid and label-free commercially 

available SPR apparata (for example, Biacore® (Uppsala, Sweden), Integrated SPR 

Sensors (Texas Instruments, USA), IBIS System (Windsor Scientific, UK), SPR-4 and 

SPR-5 (Ukraine) etc.) are designed to monitor different bio-reactions both qualitatively 

and quantitatively in real time.

The SPR technique has been widely used for the analysis of kinetics of the 

binding and desorption of the interacting molecules, concentration measurements of 

biomolecules and molecule recognition involving protein-protein, DNA-DNA, 

receptor-ligand interactions^91. An excellent review paper of fundamentals and recent 

advances in the development and applications of SPR biosensors has been written by 

Homola[70].

There are three most widely used configurations of SPR sensors, namely the 

prisms coupler-, which is described above, the grating coupler-, and the optical 

waveguide- based SPR systems (see Fig. 2.2-5).
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Figure 2.2-5 Most widely used configurations of SPR sensors: a -  prism coupler-based SPR 
system; b -  grating coupler-based SPR system; c -  optical waveguide-based 
SPR system (taken from the Ref.[57]).

In the diffraction grating SPR coupler, an optical wave strikes at a periodically 

modulated surface of a metallic grating with grooves perpendicular to the plane of 

incidence. Upon incidence on the grating, the light wave splits into reflected and 

diffracted waves (see Fig. 2.2-5Z?)[801. When the propagation constants of the optical 

wave and the SPW are equal, the coupling between the two waves can occurf811. The 

excitation of the SPW leads to an energy transfer between the optical wave and SPW 

and hence it is accompanied with a decrease in the reflected light intensity. This drop in 

reflectivity produces a narrow absorption dip in the angular or wavelength reflectivity 

spectrumf801. Gold-based SPR grating sensors have been used for monitoring 

biomolecular interactions in aqueous environments^2,831. A more detailed description of 

the grating couples-based SPR sensors and their practical applications can be found in

In the optical waveguide-based SPR-sensing structures, a light wave is guided 

by the waveguide, enters the region with a thin metal overlayer, and evanescently 

penetrates through the metal layer. If the SPW and the guided mode are phase-matched, 

the light wave excites an SPW at the outer interface of the metal. The sensitivity of 

waveguide-based SPR devices is approximately the same as that of the corresponding 

TIR configurations^61.

A variation of the SPR biosensor in an integrated optical format (IOSPR) has 

been reported by Harris et al.[8?1. A schematic representation of a practical IOSPR
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biosensor is shown in Fig. 2.2-6. The IOSPR device based on a channel single-mode 

integrated optical waveguide working with a reference arm, has been tested for simazine 

detection. The lower limit of the detection has been determined to be 0.16 pg/1 using 

anti-simazine IgG antibodies.

Surface Modified Gold Film 
(Antibody-Antigen Binding Region)

A ntibodyPolarised Laser 
Input

Reference Arm
/ /

W indow  in 
Isolation Layer

Transparent Teflon AF 
Isolation Layer

Reference Out Signal Out

Figure 2.2-6 A schematic diagram of the integrated optical SPR immunoprobe showing the 
binding of antibodies to the surface modified gold film (taken from Ref.[88]).

SPR sensors based on optical fibers offer a possibility of remote sensing. A 

sensor element can be placed on the tip of an optical fiber and inserted into a hazardous 

arear891. Homola et al.[901 excited a SPW on a thin metal film on a side-polished single­

mode optical fiber as shown in Fig. 2.2-7. Variations in the refractive index of analyte 

were detected by measuring changes in the intensity of the light back-reflected from a 

mirrored end face of the fiber. It has been demonstrated that the sensor is capable of 

detecting changes in the refractive index below 4 TO”5.

Analyte » i
|  Surface plasm on

Overayer wave (SPW)

G d d fS m
Silica
block
Core Fiber mode

C ladding

Single-mode optica! *iber

Figure 2.2-7 Optical fiber SPR sensing structure (taken from Ref.[90]).
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A multichannel SPR biosensor has been developed by Taylor et al.[91]. The 

sensor is based on the excitation of SPW in different sensing channels at different 

wavelengths and encoding information from different sensing channels into different 

regions of the light spectrum (Fig. 2.2-8A). The quantitative and simultaneous detection 

of four species of food-born bacterial pathogens has been done using an eight-channel 

SPR sensor based on wavelength separation multiplexing.

Another multichannel SPR biosensor described by Homola et al.f92] employs a 

thin dielectric over-layer, which shifts the resonant wavelength for a part of the sensing 

surface to longer wavelengths (Fig. 2.2-8B).

Polychromatic 
radiation rPolychromatic 

radiation Prism coupler
'vVaveisrg*Wavtlenflth Prism

  ---
Sam ple \ j  U /  (-)vei1

SPP1 f  fS P P 2  
C hannel A Channel B

Sample

Channel A Channel B

Figure 2.2-8 Dual-surface-plasmon spectroscopy: A -  geometry with two different angle of 
incidence; B -  geometry with a high refractive index over-layer (taken from 
Ref.[93]).

SPR biosensors are the main optical immunosensors developed for 

environmental monitoring and food safety analysis[941. Minunni and Mascini[95] used the 

commercial SPR apparatus BIAcore™ to detect the herbicide atrazine. They achieved a 

detection limit of 0.05 ppb, which is surprisingly small. SPR has been successfully 

applied to the detection of pathogens bacteria by Taylor et al.[961 and Oh et al.[97].

The development of SPR as a biosensor for investigation of specific biological 

interactions including adsorption and desorption kinetics, and antigen-antibody binding, 

has become the fastest growing application for SPR[981. A general method for the 

immobilization of proteins for applications of SPR as a biosensor uses a carbo- 

xymethyl-dextran matrix bound to the gold substrate, to which antibodies can be 

attached enabling specific antibody-antigen interactions to be investigated. This 

hydrophilic layer increases the SPR sensitivity, and protects the gold substrate from
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non-specific protein adsorption. In addition, the reversible binding chemistry of the 

antibody to this matrix allows the surface to be regenerated and reused[991.

Small molecule SPR-based immunoassays have suffered from poor limits of 

detection (LOD) due to high concentrations of primary antibody being needed to 

generate an adequate signal. Mitchell and co-workers[100] have developed techniques for 

gold nanoparticle enhancement of sensitivity in small molecule immunoassays, 

demonstrating a 13-fold signal enhancement and an improvement in LOD of more than 

two orders of magnitude. These methods offer a promising new means of assaying 

important small biomolecules at low concentrations previously inaccessible with SPR 

technology.

SPR has an advantage over other types of biosensors in its versatility and 

capability of monitoring binding interactions without the need for fluorescence or 

radioisotope labelling of the biomolecules as well as the ability to assay crude samples 

without purification. However, the main drawbacks of this technique lie in its 

complexity (specialised staff are required) and the high cost of equipment.

2.2.2 Spectroscopic ellipsometry

a. Ellipsometry basic

The mathematical theory for ellipsometric analysis based on the Fresnel 

reflection and transmission equations for polarized light encountering boundaries in 

planar multi-layers materials[ 1011 have been described elsewhere[ 102 ’103 ]. A brief 

description of ellipsometry will be presented here.

A description of ellipsometry as an optical technique is based on the Maxwell's 

theory. According to this theory, light is a wave represented by two orthogonal vectors 

of electric field (.E) and magnetic field (.B). Both E  and B  are perpendicular to the 

direction of propagation z. The electromagnetic wave is described by its amplitude and 

frequency11041:
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E  = E0 exp(i(kz -  ox)), (2.9)

where Eo represents the maximum amplitude of E  that propagates in the +z direction, co

"2.71c I nis the angular frequency ( 0) = ----- ); t is time; k is the wave number (k=  — ) and the
X X

magnitude of the propagation vector k (k = (2n/X)z). After introducing the phase term 

8 , the equation (2.9) becomes:

E = E0 cos(kz~OX + 8 ) . (2.10)

The vector E  is represented by a superposition of the two components: Ex and Ey that 

are orthogonal to the direction of propagation +z ( Ez = 0  )[103]:

Ex = E0l cos(kz -  OX+ SX)
(2 .11)

Ey = EQ2 c os  (kz -  OX + 8 y)

where 8 X and Sy are the phase constants, and Eoi and E02, amplitudes of the components 

(x,y) of Z?.

Preferential orientation of E  (or B) vector is called polarization. Any ordinary 

source of light is known as unpolarized because E  oscillates randomly in the plane 

perpendicular to the propagation direction (the polarization state of light is represented 

only by E  because it is a larger effect as compared with B)im].
There are several ways to produce polarized light, for example, by reflection 

from a surface. One of the most common ways of producing linearly polarized light 

from unpolarized light is by using a polarizer. To verify the state of polarization of light 

after passing the polarizer, a second polarizer is necessary (analyzer) and no light is 

transmitted through the two crossed polarizers[104] as shown in Figure 2.2-9a.

Regard, as in Figure 2.2-9b, light with two arbitrary azimuths propagating in the 

+z direction. If 8 ( 8  = 8 y -  8 X) is a multiple of ± n  ( 8  = m • n, m - 0, ±1, ±2, ...) ,th e  

propagating wave is linearly polarized. If the amplitudes of the Ex and Ey components 

are equal (Eoi=Eo2=Eo), and 8 is a multiple of ± n / 2 , the wave is called right-circularly 

polarized or left-circularly polarized when E  rotates clockwise or counter clockwise, 

respectively. In the case of elliptically polarized light, the resultant E  rotates and
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changes in magnitude in such a way that the locus of ends of the vectors traces an 

ellipse[104].

right-circular

crossed

Figure 2.2-9 a -  A linear polarizer, an analyser, and two crossed polarizers with no light 
transmitted through the analyser; b -  linear and right-circularly polarized light 
(taken from Ref.[104]).

unpolarized 
light

polarizer

analyser

polarizers

The elliptically polarized light can be produced by reflection from a flat surface. 

Ellipsometry is an optical method based upon the registration of changes in the 

polarization of light after its reflection from the investigated sample (see Fig. 2.2-10).

1. linearly polarized light
E p-plane

s-plane

J. A. Wool lam  Co., Inc

3. elliptically polarized fight I

E

plane of incidence

Z  reflect off sample...

Figure 2.2-10 Geometry of an ellipsometric measurement (taken from Ref.tl05]).
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Figure 2.2-11 illustrates the reflection of linearly polarized light from the surface. 

The plane of incidence (POI) includes the incident beam and the sample surface normal 

N, which is in the plane of the paper. The phase and amplitude between two components 

Ep (parallel) and Es (perpendicular) change upon reflection in a distinct way depending 

on the optical properties of the surface11041.

a)

Figure 2.2-11

POI

Ambient (N0)

Substrate (N^)

b)

Ambient (Nc )

Film (Nj)

Substrate (N2)

Reflection of polarized light: a -  bare surface; b -  film-covered surface 
(taken from Ref.[1051).

The state of polarization of the reflected electromagnetic wave can be described 

in terms of a ratio of complex Fresnel- reflection coefficients for s- and p- components of 

polarized light[102], and the ellipsometric measurement is normally expressed in terms of 

the ellipsometric angles and A:

p  = — = tan 'F exp(iA), (2 .12)

where i = V - I ; 'F is a ratio of Fresnel amplitudes of s- and p- components of polarized 

light (-rp and rs), and A is a difference in their phases (8S and 5P):

tan'F = , A = S —S7 p  s (2.13)

where dp and Ss are the phase changes for the p- and s- components.
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The expressions for rp and rs consider a single interface between medium 0 

(ambient), having a complex refractive index No, and medium 1  (substrate) having a 

complex refractive index N\ as follows:

In the case of three layers (ambient/film/substrate) systems Rp and Rs are given as:

where ft expresses the film thickness (L) (here medium 1 ) and the complex refractive 

index at the wavelength of incident light X at the angle of incidence 0q:

The resulting change in polarization after reflection from a surface can be 

expressed by Eq. (2.12), that for a model substrate/film/ambient can be written as:

where No, Ni and N2 are the indices of refraction for the ambient, film and substrate, 

respectively. Usually, No, 2 and @0 are known and N2, Nj and Li can be measured. The 

method of ellipsometry is extremely sensitive to changes in optical parameters of the 

reflecting substrate, i.e. the complex refractive index N  which represents the real and 

imaginary parts of the refractive index:

where n is the refractive index and k is the extinction coefficient, which describe a 

change in the phase velocity and amplitude, respectively, of the electromagnetic wave 

propagating through a medium. For transparent materials, due to the high penetration

(2.14)
_ Ers _  N0 cos @0 -  N{ cos 0j 

Eis N0 cos 0 O + N, cos 0j

The reflection coefficients for a surface covered with a thin film are:

2 (2.15)

rm, +ri2p exp(-i2yg) 

'' l + 'o i/i2„ exp(-(2/?)
and Rr =

roi, + rn, exp(-i2/?) 

1+ ''01/ 12, exp(-;2/?) ’
(2.16)

(2.17)

p  = f ( N 0, N t, N2, A, £,,© „), (2 .18)

N = n + ik , (2.19)
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depths of light, the k values are very close to zero and N = n. However, for many other 

materials, n and k are not constant parameters, but dependent on X, an effect known as 

dispersion.

Introduction of another layer(s) makes the procedure of adding the reflected and 

transmitted waves impractical. In the case of mutilayered system the method of a 

scattering matrix (S) should be used instead. S can be expressed as a product of the 

interface matrices (I) and layer matrices (L)[102]:

S = I mx L l x I l2 x L 2 x ...x  I x  Lj x  I  jJ+l. (2.20)

For instance, in the case of a four layers system containing two more layers (1 and 2) 

deposited on the substrate:

S — Tqj x Lxx  /|2 x L2x  / 23 — 1 )"1 r01 ~eif?1 0 ‘1 rn

i01

1 r23
V01̂ 12̂ 23 J 7 oi 1 0 e~iPx _ Jn 1 '©

i
i _r23 1 _

, (2 .21)

where t and r are Fresnel transmission and reflection coefficients at all interfaces and 

p x and p 2 are phase thickness of layers 1 and 2, respectively.

b. Spectroscopic ellipsometry: Biosensor applications

Optical methods, such as SPR and ellipsometry, are well established analytical 

tools for thin film characterisation and the evaluation of optical parameters, such as 

thickness and refractive index. Because of a high sensitivity to small changes in the 

above parameters, these methods have become suitable for the study of molecular 

adsorption and different chemical reactions on solid surfaces and have thus found a 

wide range of applications in chemical and bio-sensing.

Very attractive features of spectroscopic ellipsometry for sensor applications are 

the possibility to work with non-labelled molecules and the high resolution of the 

thickness and refractive index. For instance, sub-nanometre resolution can be achieved 

in bioaffinity-based sensing[106] and parts per million sensitivity in gas sensing11071. 

Ellipsometric sensor systems are based on monitoring changes in the thickness, the 

refractive index or the microstructure of a sensing layer. These changes are induced by 

the substance or process measured.
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A discussion of the possibilities for sensor applications based on ellipsometric 

read-out and a classification of sensing layers has been done by Arwin[ 1081 and 

summarised in Table 2.2-2.

Table 2.2-2 Classification of sensing layers (based on data from Ref.[108]).

Sensing layer Mechanism
Physical

parameter
measured

Examples and 
References

_ O Q  

\ °  O

Y Y ? Y t a Y ?
Substrate

AL: Affinity layer

A sensing layer is 
deposited on a substrate 
and ideally only specific 
interactions with the 
molecules to be detected 
should take place.

Change in 
the effective 
layer 
thickness

Determination of 
antigen-antibody 
binding in 
immunoassays11091, 
monitoring DNA- 
hybridization[110].

• • • 

E w h & M

Substrate 

ML: Matrix layer

The sensing takes place 
inside a thin (10 -  1000 
nm) surface layer -  the 
matrix. This matrix may be 
a porous layer into which 
molecules can diffuse and 
interact with its internal 
surfaces.

Both
thickness and 
refractive 
index 
changes

Gas sensors[107].

/  /  • •

Substrate 

IL: Integrating layer

i
The basic idea is to 
monitor the change 
(desorbtion or film growth) 
in layer thickness in situ.

Change in 
the effective 
layer 
thickness

In situ monitoring 
of film growth11111, 
(can be used for 
sensing as well).

\

........  A
N d

Substrate

tL: H om ogeneous laytir

Physical/chemical 
influences on the 
homogeneous layers’ 
thicknesses and refractive 
indices are monitored due 
to temperature or pressure 
variations in the ambient.

Both
thickness and 
refractive 
index 
changes

Sensor systems 
with polymer 
layers that can 
dissolve gases and 
thereby swell and 
change
properties[112’mi.

There are two main sensing principles used in ellipsometric biosensors:

• The affinity reaction of specific binding to receptors immobilised on the 

surface where the increase in the surface mass or thickness of the layer on a surface is 

measured.
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• The use of a polymer (or porous) soft sensing layer, which can absorb the 

substance to be detected. Absorption can lead to swelling of the layer and thereby to 

changes in its optical properties and thickness1114].

Various aspects of protein adsorption, mainly on reflecting metal surfaces and 

ceramic surfaces have been reviewed by Elwingtll5]. Special consideration has been 

given to biologically related surface phenomena, such as protein conformation changes 

and protein displacement effects. Ellipsometry gives the possibility of detailed and 

accurate determination of real-time adsorption kinetics of proteins without labelling the 

protein. It is also possible to detect protein adsorption with the use of antibodies that 

adsorb onto the antigen-coated surfaces.

2.2.3 Total internal reflection ellipsometry

a. Total internal reflection ellipsometry: Basics

A relatively novel method of total internal reflection ellipsometry (TIRE) is a 

combination of internal reflection and ellipsometry. As a result, the method of TIRE 

combines the advantages of the accuracy of the spectroscopic ellipsometry 

instrumentation with the conveniences of Kretschmann SPR geometry[116].

Although theoretically the TIRE method was known a long time ago[102], its 

experimental realisation has been achieved relatively recently1117 ’118 ]. In spite of 

ellipsometry and SPR being usually considered as separate detection methods, both 

effects, and hence the TIRE, can be described theoretically by Fresnel’s equations. The 

first simulations of the ellipsometric response under internal and external reflection and 

for different sample configurations has been done by H. Arwin and co-workers[116].

The difference between TIRE and conventional external reflection ellipsometry 

is, first of all, in the way of the light incidence and thus in the order of layers. In TIRE, 

the light enters the system from the glass side; so, the layers are placed as follows:
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(0) substrate (air or water);

(1) dielectric film (i.e. transparent (k = 0) organic layer with the refractive index

described by the Cauchy dispersion formula[119]:

B C
n = A + j 2 +Jj4- (2.22)

(2) thin gold film;

(3) ambient (glass prism), as shown in Fig. 2.2-12.

Secondly, the angle of incidence should be close to the angle of total internal 

reflection, which dictates the choice of the prism[116] and approximately can be given by 

the following equation[1I7]:

(2.23)

where Nj and N2 are the refractive indices of the glass prism and of the dielectric film, 

respectively; sm is the real part of the dielectric constant of the metal film.

Finally, the presence of a thin metal film is vital for TIRE because of the 

phenomenon of plasmon resonance in the interaction of the evanescent field with the 

surface plasmons in the metal film.

© = arcsin
1 emN l

Nt \ k + ^ 22

Ambient (3 )

HH H I l l l l l

C  - - dielectric film (1 )

Substrate (O )

Figure 2.2-12 The four layer system in TIRE.

b. External and internal reflection ellipsometry: Comparison

The calculations of T* and A spectra have been performed by A. Nabok11201 for 

both external reflection ellipsometry and TIRE in two media (air and water) by solving
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the main ellipsometry equation (Eq. 2.12) for different thicknesses (varied from 0 to 

30 nm with the step of 5 nm) and fixed refractive index of the dielectric layer or vice- 

versa for the fixed thickness (d =10 nm) and varied refractive indices. The results of 

such cumbersome calculations can be summarised as follows:

• TIRE is about 10 times more sensitive towards the changes in both the thickness 

and refractive index of thin films as compared to conventional external reflection 

ellipsometry;

• Within TIRE, the parameter 'P represents the amplitude ratio of p- and s- 

components of polarised light, and thus ^(A.) spectra are equivalent to SPR curves, 

while A()o) spectra give new information on the phase shift between p- and s- 

components of polarised light. A is about 10 times more sensitive than 'P to changes in 

both the thickness and refractive index of thin films. It can be therefore concluded that 

the A(^) spectrum in TIRE is about 10 times more sensitive than conventional SPR. 

This makes such phase SPR measurements highly desirable for film characterisation 

and sensing;

• The spectral shift of A is of the same order as that of *P but slightly larger. This 

enables another possibility for the kinetics study by monitoring the spectral shift of 

either T  or A during molecular adsorption as well as any chemical and bio- reactions on 

the surface.

c. Total internal reflection ellipsometry: Applications

The method of TIRE is a new field in the sensor area, even though the 

approaches to detect the phase information under SPR conditions" have been discussed 

previously[121], it still seems to be a terra nova among the measurement techniques. 

Before the pioneer work by Westphal and Bornmann[117] there was no demonstration of 

full ellipsometric measurements combined with SPR that showed the immobilization of 

antibodies or DNA in a spectral or time dependent manner.

a The system utilized a frequency-stabilised laser as a detection light source and was suitable for real-time 
phase measurement in SPR-sensing applications. The phase shift in an angular dispersion SPR excitation 
setup was measured around the SPR excitation region.
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In 2002 Westphal and Bornmann first used a method of TIRE (they called it a 

“surface plasmon enhanced ellipsometry” (SPEE)) to detect changes in the effective 

thickness of biomolecular layers. They demonstrated that SPEE/TIRE is actually able to 

detect the immobilization of small molecules. The experiments of immobilization of 

biotinylated DNA oligonucleotides and afterwards the hybridization of the 

complementary DNA oligonucleotides were performed and the hybridization process 

was clearly detected (see Fig. 2.2-13).

The method yields the sensitivity sufficient to detect changes in the effective 

thickness of biomolecular layers of less than 0.01 nm. In addition, the authors noticed 

that the method of SPEE/TIRE is less sensitive than traditional SPR to external stray 

light and to the intensity fluctuations of the incident light.

-0,45

-0,40

-0,35

-0,30 $Oo
-0,25 

-0,20 

-0,15
0 5 10 15 20 25 30 35 40 45

Time (minutes)

Figure 2.2-13 Kinetic measurements of the immobilization of biotinylated DNA 
oligonucleotides and the subsequent hybridization of the complementary 
DNA oligonucleotides (taken from Ref.[117]).

The method of TIRE was employed for in situ reaction monitoring at a solid- 

liquid interface for the investigation of protein adsorption on thin semitransparent gold 

films by Poksinski and Arwinf1181. Adsorption of a monolayer of the protein ferritin (1 

mg/ml) was monitored in situ. The ferritin layer optical properties were modelled with a 

Cauchy dispersion model resulting in a layer thickness of 9.2 nm in good agreement 

with the dimension of the ferritin molecules. Figure 2.2-14 shows the spectral variation 

of the parameter A measured before and after adsorption (angle of incidence 0 = 65.5°).

Hybridization of l ie  
complementary 
DNA strand

Immobilization 
of the first 
DNA strand
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Figure 2.2-14 Spectral variation in A in phosphate-buffered saline (PBS) before and after 
adsorption of ferritin at a protein concentration of 1 mg/ml at an angle of 
incidence of 65.6 deg. (taken from Ref.[118]).

Near the resonance ( X ~ 850 n m ), a change of more than 90° in the ellipsometric 

parameter A was observed in contrast to a 3° response of conventional ellipsometric 

measurements on gold1122'.

The two other applications studied at the same research group, are more 

technical, with possible industrial relevance: adsorption and subsequent cleaning of 

substances from milkf1231 (useful for pipeline monitoring in the diary industry) and 

copper corrosion monitoringr 1241 (with potential application in the microelectronics 

industry for circuit board control).

The last two examples are not connected with the optical biosensors but included 

here to give the full range of TIRE method applications. The TIRE method has been 

successfully exploited by Suryajaya et al.[1251 for monitoring the process of alternative 

deposition of poly-allylamine hydrochloride and semiconducting colloid nanoparticles 

(CdS or ZnS). Nanoparticles were deposited as thin films using the technique of 

electrostatic self-assembly. The fitting of TIRE spectra allowed the evaluation of the 

parameters (thickness, refractive index, and extinction coefficients) of all consecutively 

deposited layers.

The application and some advantages of the TIRE method over the conventional 

Kretschmann SPR technique for determination of organic vapours are demonstrated by 

Basovan26]. In this work, the sensor response of thin films of octasubstituted copper 

phthalocyanine derivative (CuPcRs) with bulky substituents to the vapour of benzene,
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chloroform, ethanol and butanol were investigated. The ability to conduct spectroscopic 

measurements of two ellipsometric parameters (T and A) in the TIRE method 

constitutes its main advantage over the SPR technique, where only one parameter was 

measured at a certain wavelength of incident light. During exposure to organic vapour, 

an appreciable shift of A was observed to give a better view of the effect of vapour 

exposure.

2.2.4 Planar optical waveguide

a. Multiple internal reflections principle

Planar optical waveguide is another technique that exploits the evanescent wave 

principle. As has been mentioned in paragraph 2.2.1, under condition of total internal 

reflection the evanescent wave is established by the dissipation of the incident intensity 

at the interface at each reflection. The evanescent wave intensity at the interface (Ie) per 

unit incident intensity ( I i)  is given by[127]:

Ie _  «2-4cos@f
L

1 -
f  \  n,

v"i /

(2.24)

where n\ and «2  are refractive indices of the more and less dense medium, respectively; 

0  is the angle of incidence. The depth of penetration dp of the evanescent wave is given 

by the equation:

XInx

(2.25)/  \ 2
2 k ^ sin2 0 , - n2

UJ
As can be seen from Eq.(2.25), when 0 . is close to the critical angle, the

evanescent field will penetrate more deeply into the medium with lesser density, and 

hence more light energy becomes available for interaction with the external medium. 

The depth of penetration is also proportional to the wavelength (A,) of the light and it is 

greater at longer wavelengths. However, a larger penetration depth will cause a larger
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lateral shift of the reflected beam at the interface. The lateral shift, Az (see Fig. 2.2-15), 

known as the Goos-Hanchen shift, depends on the angle of incidence and the 

penetration depth. It is:

Az » 2 • d tan 0 ., (2.26)

y

Figure 2.2-15 Multiple internal reflections in a planar optical waveguide with a part of the 
dense medium surface covered with a thin absorbing material (Figure was 
modified from Ref.[128]).

A large lateral shift may cause considerable impact on the distance between each 

neighbouring reflection. In this case the number of reflections N  at the interface of the 

waveguide is described as follows:

LN  = -------------------- , (2.27)
2{d tan 0 . + Az)

where L and d are the length and the thickness of the waveguide, respectively. As can be 

seen from Eq.(2.27), a decrease in the thickness of the waveguide will reduce the 

distance between reflections and hence increase the number of reflections. A close gap 

between the reflection points may produce a continuous evanescent energy distribution 

along the path of propagation.

However, not all light waves that have an angle of incidence greater than the 

critical angle will be propagated in the dense medium. This is because the light wave 

will interfere with itself as it travels through the waveguide. In order to propagate 

successfully, the light wave must not interfere destructively, and only certain reflection
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angles give rise to the constructive interference, which means only certain waves can 

exist in the waveguide. These constructive interference waves are called guided modes 

and are designated by an integer m = 0,1,2... The number of guided modes is dependent 

upon the light wavelength, waveguide thickness and refractive index, and can be 

estimated according to the equation below[129]:

M —Int
V

+ 1, (2.28)

where Int(x) is the integer function which drops the decimal fraction of x. A general 

waveguide condition for guided waves is given in the form:

2 n  -n{d —L— co s0 m -(j)m =7071, (2.29)

where 0 m is the incident angle at the interface for the specific guided mode; and (j)m is 

the phase change (j)m of the transverse electric field wave[129]:

<t>m= 2tan -i
sin2 -

{ \ 2 Wo

\ ni ;
C O S 0 .

(2.30)

V /

Thus, if the waveguide thickness, refractive index ratio and the light wavelength 

are known, the values of d and 0 m can be calculated[130].7 t  m tn

Light propagates through the waveguide without significant attenuation, since 

both mediums are transparent in the visible range. However, if a sensitive thin film has 

a non-zero absorption coefficient deposited on the dense medium, optical loss will occur 

each time reflection takes place at the interface between the medium and the sensing 

film. In this case, the attenuation of the transmitted intensity, Iout (output light intensity) 

will normally occur according to the Beer-Lambert law:

h „ =  4 ,exp(-A -A 0, (2.31)

where /,„ is the input light intensity, and A is the fractional absorption from each 

encounter with the sensing film, given by:
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A = 1 -  exp {-a  • S) , (2.32)

where a and d are the absorption coefficient of the film and the interaction length per 

reflection, respectively. For a very thin film, the product ( a  8 ) is very small and Beer- 

Lambert approximation of exp (-a  S)~l  - a  8 can be applied to Eqs.(2.31) and (2.32):

where Lf is the evanescent path length related to the thickness of the thin film, df. By 

substituting ///,- from Eq.(2.24) into Eq.(2.34), the interaction length can be expressed 

as follows:

guided mode m.

Multiple internal reflections in a planar waveguide can provide an extremely 

sensitive tool for registration of small changes in optical absorption in the thin film. The 

optical techniques that most frequently use the multiple internal reflections principle are 

attenuated total reflection (ATR), total internal reflection fluorescence (TIRF) and 

planar interferometry.

b. Modifications o f the planar optical waveguide

1. Planar waveguide as an attenuated total reflection (ATR) transducer

The presence of optically absorbing material on the waveguide interface is 

monitored as light energy absorbed from the evanescent wave of the internally reflected 

light beam. The sensitivity of the measurement increases linearly with the number of

h m = hn 6XP(-® S - N ) . (2.33)

The interaction length, 3 is calculated from the expression[128]:

(2.34)

S =
4 • nf df  cos 0^

(2.35)

where «/ is the refractive index of the thin film and 0 m is the incidence angle at the
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total internal reflections at the sample containing surface[129]. The optical losses at each 

reflection are proportional to the absorption coefficient and thickness of the deposited 

sensing film. ATR technique provides a direct measurement of the analyte with a simple 

preparation of the waveguide and experimental setup. Some examples of application of 

the biosensors based on ATR transducers have been described elsewhere1131,132,133,134]. 

Basic principles of ATR transducers will be described in chapter 3, section 3.6.

2. Planar waveguide as a total internal reflection fluorescence transducer

A TIRF transducer is constructed by placing a fluorescent material (labelled 

molecules) in contact with the reflecting surface of a planar waveguide. The evanescent 

energy generated from the propagating light may not only be absorbed as in the case of 

the ATR technique, but could also be used for excitation of fluorescence. The intensity 

of the emitted fluorescence is measured for quantification of the studied analytes. The 

TIRF technique provides high sensitivity and selectivity for detection of various analyte. 

However, it involves complex preparation prior to the experiment such as the target 

analyte or the sensing element needing to be labelled with fluorescent material. The 

sensitivity of an ATR transducer is lower than other optical techniques; examples of 

applications (as a proof of this statement) are given in Refs.[135,136,137,138].

3. Planar waveguide as a planar interferometer transducer

Planar interferometry is based on the change in the propagation velocity of the 

light passing through a planar waveguide. Two variations of the planar interferometer 

used are the Mach-Zehnder interferometer and the planar polarization interferometer.

a. Mach-Zehnder interferometer

The Mach-Zehnder interferometer (MZI) consists of a planar waveguide, having 

a core layer with a slightly larger refractive index than that of the cladding. The 

waveguide splits into two arms, as shown in Figure 2.2-16. One of the arms has a 

sensing window etched in to the top of the cladding layer. This arm, with the window 

coated with a chemically sensitive layer (membrane), forms a sensing channel, while the 

other arm serves as a reference.
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The output signal of the MZI forms by the interference of two waves from two 

arms at the point at which they meet, and thus depends on the phase difference between 

the main and reference channels. Adsorption of (bio-) molecules accompanied by 

changes in the refractive index and a phase shift between two branches, will develop, 

and result in periodic changes in the output signal, as shown in Figure 2.2-16 inset[139].

A

Si,N4 
Core layer

Sensing window

Si02

Cross section A-A

Figure 2.2-16 Mach-Zehnder interferometer: the top view and cross-section along the A-A 
line. The inset shows periodic changes in the output signal (taken from Ref. 
[I39]).

b. Planar polarization interferometer (PPI)

The same idea of an interferential transducer is realised in a simple planar wave- 

guiding structure, but with no grooving and splitting of the core. The wave-guiding 

structure SiCVSisN^SiC^ with thicknesses of 1.2 pm, 0.18 pm, and 1.2 pm, 

respectively, as shown in Fig. 2.2-17, accommodates a single mode of HeNe laser beam 

(X = 633 nm). A sensing window is etched in the top SiC>2 layer.

When a polarized laser beam propagates through the waveguide, the 77- 

component of electromagnetic wave is affected by molecular adsorption or chemical 

and biochemical reactions, while the 5-component is almost intact, and serves as a 

reference. The phase difference between p- and 5-components, developed in the course 

of reaction, causes the rotation of the polarization, which can be registered by placing 

the analyzer in the output. The resulting periodic change in the output light intensity is 

very similar to that in the MZI.
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input
cell

cylindric lens

0.1-0.9 mm
SI02

SE3N4 0.18 mem

SI02

Figure 2.2-17 Optical diagram of a sensor based on the planar-polarization interferometer 
(after Ref.[140]).

The PPI and MZI described above are used for the registration of adsorption of 

proteins and immune reactions (see, for instance Refs.[14i’ i42.143, 144, 1453̂  However? the 

disadvantage of both MZI and PPI transducers are a very slow rate of adsorption.
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2.3 Optical Enzyme Sensors

Chronologically, the first biosensor was an enzyme sensor developed by Clark 

and Lyons in 1962[146]. Since then, numerous enzyme sensors in different configurations 

have been developed. The motivation for designing enzyme biosensors for toxicity 

monitoring is to provide a reliable alternative to expensive and time-consuming 

classical chromatographic methods currently used. The majority of enzyme sensors on 

the market are electrochemical.

The main advantages of electrochemical methods are simplicity and low cost. 

The sensitivity of electrochemical methods is not high, but it is sufficient for the 

majority of biomedical applications. Optical enzyme sensors have proven to be both fast 

and highly selective[147]. Therefore, they have become the target of intense research and 

development. Recent developments in the field of enzyme sensors and relevant 

technologies as applied to environmental monitoring were reviewed by Karube and 

Nomura[147].

A successful enzyme biosensor should offer analytical performance comparable 

to, or even better than, the traditional chromatographic systems. Ideally, such sensors 

should be small, cheap, simple to handle and able to provide reliable information in 

real-time with, or without, minimal sample preparation. The use of the enzyme should 

also provide increased sensitivity and selectivity for the analyte of interesttl48].

The capability of enzyme sensors to operate in various media (i.e. aqueous 

solutions, organic solvents, and air) has been shown by different research groups (see, 

for instance, Refs.[149,150,151]). Another advantage of enzyme sensors is the wide 

selection of enzymes commercially available.

In enzyme-based biosensors, the biological element is the enzyme which 

catalyses the reaction selectively with its substrate[152]. In general, the detection of 

environmental pollutants is not based on their enzymatic transformation but on their 

capability to act as inhibitors of an enzyme reaction. The inhibiting effect of the 

chemicals on the response of the biosensor can be expressed as a relative decay of the 

response value after the contact of the biosensor with the sample tested. The 

determination of the inhibiting effect involves at least three stages[153]:

7. Determination of the initial response value (7o);
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2. The contact of a biosensor with an inhibitor;

3. Determination of the reduced response value (/,).

a. Parameters affecting the performance o f  enzymatic biosensors

1. Effect o f pH:

Enzymes are generally only active in limited pH ranges and each enzyme has his 

own optimal pH valuetl54]. For instance, the activity of the immobilized acetylcholine 

esterase (AChE) as a function of pH has been studied between pH 2 and 9 by 

Stoytcheva[155]. Author reported a decrease in the activity of approximately 70% at pH 2 

compared to that at pH , 7. The presence of an inhibitor changes different ionisation

states of the system governing the enzymatic activity[156]. Enzyme sensors utilising

various esterases are most sensitive to organophosphates at pH 8 - 9 ;  urease is 

proposed for the determination of heavy metal ions at pH 8 -1 0 .

2. Effect o f substrate concentration:

The substrate concentration can affect the degree of inhibition[154]. According to 

Kok et al.[ 157 ], the inhibition level (%) increases with increasing the substrate 

concentration. Dzyadevych et al.[158] however, showed that the sensitivity of a butyryl 

cholinesterase (BChE) biosensor to tomatine decreases with an increase in the substrate 

concentration.

3. Effect o f enzyme concentration:

The enzyme loading on the sensor element drastically influences the upper and

lower limits of detection. The highest sensitivity to inhibitors was found for a

membrane containing low enzyme loading[159]. This statement has been confirmed by 

Ciucu et al.[160] research: they studied a set of five membranes with different amounts of 

AChE and found that the response of the biosensors decreased with a decrease of the 

enzyme concentration.
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b. Cholinesterase-based optical biosensors for pesticide detection

Cholinesterases (ChE) are important enzymes which hydrolyze the 

neurotransmitter acetylcholine in the nervous system[161]. In the human body, ChE is 

responsible for the transmission of nerve impulses to the cholinergic synapses and is 

connected with human memory and Alzheimer's disease. ChE is commonly employed 

for toxicity monitoring for environmental, agricultural, food or military applications. 

Cholinesterases are commercially available and have a good stability and sensitivity.

The activity of ChE is inhibited by a variety of organophosphorus and carbamate 

pesticides[162]. Thus, biosensors based on the inhibition of enzyme cholinesterase such 

as acetylcholine esterase (AChE) or butyrylcholine esterase (BChE) are most frequently 

proposed for use in pesticide detection (see Fig. 2.3-1). When AChE  is used alone, the 

detection can be based on pH changes because AChE  hydrolyzes acetylcholine to acetic 

acid and choline {choline is a substratum for choline oxidase)ll63]:

AChE

Acetylcholine + H 20  —^ Acetate + Choline + H +.
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Figure 2.3-1 Distribution of enzymes used for the design of biosensors used for detection 
of inhibitors (taken from RefJ1641).

A number of biosensors that function on the principle of AChE inhibition have 

been proposed, including commercial AChE-based sensors (Charm Sciences, Malden, 

USA[ 165 ]). Numerous prototypes based on potentiometric1 166 ], amperometric1 167 ], 

piezoelectricf1681 and optical^691 transducers have been developed.
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Most cholinesterase biosensors using optical transducers have utilised the fibre- 

optic device as the light waveguide and used either pH-sensitive fluorescence or organic 

dye as the light indicator. For instance, Andres and Narayanaswamy[170] described a 

fibre-optic pesticide biosensor based on covalently immobilized AChE on pre-activated 

isothiocyanate glass mixed with the thymol blue indicator bound on the aminopropyl 

glass. The liberated acetic acid during the hydrolysis of acetylcholine chloride caused a 

local decrease in pH, and the resulting colour change of thymol blue indicator was 

detected, thereby leading to the increase in the reflected light intensity at X = 600 nm. 

The introduction of pesticides in the flow cell reduced the sensor response linearly in 

the concentration range from 5 • 10-8 to 5 ■ 10-7 M for carbofuron and 5 • 10-7 to 5 • 10”6 M 

for paraoxon. The detection limits, calculated at 10% inhibition, were 3.1 ppb and 24.7 

ppb for carbofuron and paraoxon, respectively.

An AChE fibre-optic biosensor using litmus dye indicator was reported by Choi 

et al.[171]. Instead of being immobilised in the sensor reaction cell, the litmus dye was 

dissolved in the potassium phosphate buffer and mixed with the enzyme substratum, 

acetylthiocholine iodide before it flowed to the reaction cell. The AChE was 

immobilised by the electrostatic adsorption on a support polymer viologen, which was 

transferred on a glass slide by the Langmuir-Blodgett technique.

Decreases in pH value, due to the formation of acetic acid from hydrolysis of 

acetylthiocholine iodide by AChE, caused the original blue colour of the litmus dye to 

change to red, which caused an increase in the absorption at 633 nm. When the pesticide 

was introduced a difference in the decrease of absorbance occurred due to the inhibition 

of AChE, which was the proportional to pesticide concentration. The sensor showed a 

narrow detection range for paraoxon that was of 0.2 to 2.0 ppm.

A few years later Choi and colleagues[172] developed a new type of sensing 

scheme of fibre-optic biosensors for direct detection of organophosphorus pesticide 

(such as paraoxon as a model pesticide). This fibre-optic biosensor employed the 

colourless substratum, o-nitrophenyl acetate, which was converted into a yellow 

product o-nitrophenol in the presence of AChE. The AChE was immobilised using a 

similar method as that described before[171]. In the absence of the pesticide, o- 

nitrophenyl acetate was completely hydrolysed, while in the presence of the pesticide 

the amount of yellow product was reduced. This change of absorbance at 400 nm by o-

68



§2.3 Optical Enzyme Sensors

nitrophenol production was related to the amount of phosphorus pesticide, and thus the 

enzyme reaction was not affected by the pH. This type of sensor deviated from the 

indirect detection method (from measuring the absorbance change of a pH-sensitive dye 

due to the formation of an acidic product), which was widely used by other optical 

AC/rE-biosensors. However, the detection range of the sensor was about 0.2 to 2 ppm, 

which was similar to the range obtained from the optical enzyme sensor described by 

Choi et al.[171] before.

Doong and Tsai[173] proposed an AChE fibre-optic biosensor with a better 

sensitivity to paraoxon. This sensor consisted of pH-sensitive fluorescent indicator 

encapsulated together with the enzyme AChE in a sol-gel network on a glass cap, which 

could be fixed on an optical fibre, and then integrated with a flow reaction to the cell for 

continuous monitoring. Nine fluorescent indicators were tested and FYTC-dextran was 

found to be the most suitable indicator due to the advantages of high sensitivity, low 

leaching rate, and low toxicity to AChE. The fluorescence colour of FYTC-dextran was 

blue in alkaline solutions and became colourless as pH decreased to 2. Therefore, the 

enzymatic activity of AChE, resulting in pH change, was given in terms of the decrease 

of fluorescence light intensity. The ability of the sensor to detect the organophosphorus 

pesticides was investigated with 152 ppb of paraoxon. A 30% inhibition of the sensor 

response was obtained after the paraoxon was introduced into the system.

Certainly ChE biosensors have limitations, which could be directly related to 

their selectivity in multi-composite mixtures and complex matrices and their inability to 

identify a specific toxic analyte. However, their sensitivity is enough to detect the 

minimum level of pesticides and heavy metals imposed by regulatory agencies[174].

c. Enzyme sensors fo r  heavy metal ions detection

In the case of heavy metal ions determination, the enzyme urease is commonly 

used as the bioreceptor. Preininger and Wolfbeis[175] have reported a quick and simple 

test for detection of heavy metals based on the inhibition of free urease contained in a 

disposable polystyrene cuvette. The wall of the cuvette was covered with membrane 

sensitive to either ammonia or ammonium ion. The sensing scheme of this biosensor 

was based on the change of light absorption by the ammonium sensitive membrane due

69



§2.3 Optical Enzyme Sensors

to the urease enzymatic reaction in the cuvette. Heavy metals were detected by their 

inhibitory effect. Heavy metal ions were found to inhibit urease in the following 

decreasing order:

Ag+>Hg2+>Cu2+>Ni2+>Co2+>Cd2+>Fe3+>Zn2+>Pb2+.

The lowest limits of detection were found for Ag+ (20 ppb), Hg2+ (70 ppb) and 

Cu2+ (250 ppb) (see Table 2.3-1). The authors also discussed the inhibitory effect of 

metal combinations on the activity of the enzyme and the effects of an incubation time.

Table 2.3-1 Limits of detection (LOD) and metal concentration giving 50% inhibition

(I50) of selected heavy metal ions (after Ref.[175]).

Heavy metal LOD (ppm) I  so (ppm)

V 0.02 0.13

Hgz+ 0.07 0.65

Ci/* 0.25 0.55

Niz* 3 7

Co3* 10 30

Cd3* 20 95

Fe3* 30 50

Zn3* 50 85

Pb3* 100 210

Registration of heavy metal ions based on the absorbance changes of a light was 

also described by Nabok et al.[176]. Here, a pH-sensitive dye cyclotetrachromotropylene 

(CTCT) was used. A composite film consisting of enzyme urease and CTCT was 

deposited on a glass slide using electrostatic self-assembly (ESA) to form a sensitive 

element of the sensor. The films obtained were characterised with UV-visible 

absorption spectroscopy. The lowest concentration of detected metal ions was 100 ppm. 

The spectral changes were not very significant for low concentrations of metal ions but 

the principle of optical registration of enzyme reaction by combining the enzyme urease 

and CTCT in the same membrane using ESA method was demonstrated.

Much higher sensitivity of registration of heavy metal ions was achieved by 

Nabok and co-workers[169] with a novel type of enzyme optical sensor based on a
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combination of Si0 2 /Si3N4/Si0 2  planar waveguide as an attenuated total reflection 

transducer with the composite electrostatic self-assembly coating containing both 

organic chromophore and enzyme urease molecules. The sensitivity of registration of 

Cd2+ and Pb2+ in the range of 1 ppb was reported.

Optical fibre chemical sensors (optrodes) are other systems that have been 

employed for quantitative determination of heavy metal ions. These systems are based 

on the use of immobilised indicators and are attached to the optical fibre tip, changing 

their colour or optical properties in the presence of metal ions (see for instance, 

Refs.[177’178].

d. Multi-enzyme sensor array

In the field of biosensors, multi-analyte detection has been an emerging area of 

interest in the last decade. The specificity of analyte detection can be increased by the 

use of an array of several enzymatic sensors acting concurrently. As a result, multi­

enzyme sensor arrays have been proposed to monitor various environmental pollutants 

simultaneously. Some of these sensor arrays are combined with an automated data 

analysis system (i.e. artificial neural networks (ANN)) to identify the analytes. The use 

of multi-enzyme sensor array sensors coupled with an ANN for data analysis could 

significantly improve biosensor selectivity and allow exact identification of the analyte 

present in a sample.

This approach has been used by Bachmann and Schmid[179]. They described a 

sensitive screen-printed amperometric multienzyme biosensor for the determination of 

the pesticides paraoxon and carbofuran and their mixtures. The multi-enzyme sensor 

used different types of native, recombinant and mutant AChE as the bioreceptors, which 

were immobilized on a four-electrode thick film transducer. The immobilized AChE 

hydrolyzed acetylthiocholine chloride to produce thiocholine, and this reaction was 

determined by thiocholine oxidation. The change of output current measured by a four- 

channel potentiostat was correlated to the, AChE activity[179].

The sensitivity of the multi-enzyme sensor towards pesticide was analysed using 

individual and binary mixtures of paraoxon and carbofuran in a concentration range of 

0 to 20 jug/1. These authors reported that the biosensor was able to detect both pesticides
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in very low concentration down to 0.2 pg/1. However, the relationship between 

concentration and inhibition observed for binary mixtures was not linear where each 

enzyme electrode displayed individual inhibition patterns, depending on the type and 

concentration of the pesticide analysed. ANN data processing was used to discriminate 

between the two tested pesticides[1791.

Most of the sensor arrays are based on integrated ion-selective field effect 

transistors (ISFETs). For instance, Arkhypova et al.[180] proposed an enzyme sensor 

array based on the combination of a potentiometric ISFET transducer with three types 

of biologically active membranes consisting enzyme urease, AChE and BChE. It was 

found that the inhibition of cholinesterase enzyme by pesticides (trichlorfon and 

carbofuran) and toxic ions (Ag+ and Hg2+) depended on pollutants’ concentration in 

different ways, while urease is not inhibited by tested pesticides but shows considerable 

inhibition by mercury ions (see Table 2.3-2).

Table 2.3-2 Level of inhibition (%) of enzymes by different toxic substances11801.

Analyte Urease BChE AChE

10 pM trichlorfon 0 50 5

50 pM trichlorfon 0 70 25

1 mM trichlorfon 0 100 85

100 pM carbofuran 0 100 50

10 pM Ag+ 0 3 25

50 pM Ag+ 10 7 70

10 pM Hg2+ 15 3 10

50 pM Hg2+ 40 7 70

10 pM Ag++10 pM Hg2++10 pM trichlorfon+10 pM carbofuran 20 100 30

50 pM Ag++20 pM Hg2++50 pM trichlorfon+20 pM carbofuran 95 100 90

50 pM Ag++50 pM Hg2++50 pM trichlorfon+50 pM carbofuran 100 100 100

With this sensor array, authors used a multi-enzyme analysis to recognize the 

heavy metal ions in solutions containing a mixture of different metal ions, as well as for 

determination of their content in the analysed samples. These authors demonstrated that 

multi-enzyme analysis followed by mathematical processing is an efficient approach to 

develop sensor arrays for the detection of toxic substrates.
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Starodub and Kukla[181,182] introduced a multi-enzyme electrochemical sensors 

array based on electrolyte-insulator-semiconductor (EIS) structures consisting of five 

sensors with an integrated flow-injection system (Figure 2.3-2).

(b)
SijN4

C2 C3
Ih 10

Figure 2.3-2 Schematic view of the 5-channel EIS enzyme sensor: 1 -  sensitive 
Si-Si02-Si3N4 structure, 2 -  steel contrary electrode, 3 -  A1 contact to Si, 4 -  
enzymatic membranes, 5 -  rubber sealing, 6 -  organic glass support, 7 -  
flow input, 8 -  flow output; 9 -  reference electrode, 10 -  CIV converter, 11 -  
connection to PC (taken from Ref.[182]).

All sensors were placed on the silicon nitride surface of the same silicon plate. 

The flow system consists of five separate parallel channels, each with its own input and 

output. Four channels contained enzymatic membranes and one channel served as a 

reference. Each channel consisted of a pH-sensitive multilayer Si-Si02-Si3N4 structure, 

an electrolyte and a metallic electrode. The acid produced during the enzyme reaction 

releases H+ ions that are detected by the pH-sensitive Si3N4 layer. The operating 

principle of each sensor channel is based on the measurement of high-frequency C-V 

curves for the aforesaid multilayer structure. The changes of this parameter with time 

served as a response of the sensor channel during enzyme reactions.

The enzyme membranes were prepared by deposition of 10% enzyme solutions 

on the nitrocellulose sheets. Enzymes urease, AChE, BChE and glucose oxidase were 

used for heavy metal ions detection. The registration procedure was as follows. At first, 

the responses of enzymatic reactions for pure substrata or their mixtures of known
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concentrations were measured. Then metal salt solution without substratum was added 

into the system and held there for approximately 15 minutes. After this, the responses of 

the sensor channels under similar conditions were recorded again. The residual enzyme 

activity AR was estimated from the response drop compared with its initial value. The 

concentrations of pesticides and heavy metal ions, which were detected by this sensor, 

were within the range of 10'4 to 10'7 M. The residual activity of BChE and urease" (as an 

example) inhibited by the heavy metal ions is shown in Fig. 2.3-3.

100
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Figure 2.3-3 Residual activity R of BChE (a) and urease (b) as a function of the 
concentrations of the following heavy metal ions: Sn2+, Cu2+, Co2+, Pb2+, 
Zn2+, Ni2+, Cd2+, Sr2+ (after Ref.[182]).

The sensitivity of BChE and AChE to the heavy metal ions was substantially 

lower than that of urease. Moreover, the inhibition of these enzymes by metal ions is 

reversible. Their activity can be restored by washing the enzymatic membranes with the 

buffer solution.

The sensitivity of the sensor array described above is in the parts-per-million 

range, which is at the limit of electrochemical sensors, but not high enough for 

environmental control tasks. Further increases in the sensitivity can be achieved with 

optical methods.

A highly sensitive optical enzyme sensors array for monitoring typically 

agricultural and industrial water pollutants has been proposed by Nabok and Haron[183]. 

The sensor is based on Si02/Si3N4 planar waveguide (as an ATR transducer) and has a 

sensing window coated with electrostatically self-assembled film containing pH

a AChE  enzyme behaves like BChE, the only difference being a higher inhibition effect of metal ions on it.
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sensitive organic chromophore molecules (namely, CTCT) and different enzymes i.e. 

urease, acetyl- and butyryl- cholinesterase.

The sensor was capable of registration of enzyme reactions as well as their

inhibition by traces of some typical water pollutants, such as heavy metal ions (Cd2+,
2+  *2+Pb , and Ni ), and pesticides (imidacloprid, dichlorvos and paraoxon).

For this purpose the authors designed a multi-channel reaction cell and light 

guiding system (see Fig.2.3-4). A mechanical chopper rotated by a stepper-motor and 

having four asymmetrical slits allowed a part of a laser beam to enter the section of the 

waveguide. By rotating the chopper, this light spot could be moved along the edge of 

the waveguide (see the inset in Fig. 2.3-4). The light coming out of the waveguide was 

collected by the power-meter.

5

Top view

Figure 2.3-4 The experimental set-up for planar waveguide sensor array: 1 -  laser diode;
2 -  semi-cylindrical lens; 3 -  beam chopper; 4 -  planar waveguide; 5 -

r i o a i
optical power-meter (after Ref. ).

Residual activity of the enzyme (AR, %) was calculated as a ratio of relative 

responses of fresh enzymes AI0 and those after inhibition by pollutants AIr, as shown in 

Fig. 2.3-5:

AR (%) = — £■• 100%. 
A/„
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Inhibited enzyme reacttonInitial enzym e reaction

Time (minutes)

Figure 2.3-5 Typical response of CTCT I urease film to urea substratum: initial enzyme 
reaction (first 10 min); inhibition process (next 15 min) and finally, inhibitedn QQi
enzyme reaction (last 10 min) (after Ref. ).

The analysis of the experimental results demonstrated that the multi-channel 

enzyme sensor was able to produce adequate responses to the presence of different 

pollutants of industrial and agricultural origin, in the concentration range from 1 ppb to 

1000 ppb. The distinct pattern of sensor responses was analyzed by the implementation 

of an artificial neural network algorithm. Despite a rather small amount of experimental 

data, the trained neural networks were able to classify and quantify the pollutants.
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2.4 Low Molecular Weight Analytes in Optical Immune 

Sensors

Pollutants, such as pesticides, herbicides, mycotoxins and alkyphenols (such as 

nonylphenol) found in water, food or environmental samples are frequently small 

molecules with low molecular weight (LMW) ( MW  < 1000 g / m ol).

Generally, optical transducers (which are the point of interest in this thesis) 

respond to the change in refractive index or light intensity on the sensor surface. The 

extent of the change is proportional to the mass of the molecules bound to the sensor 

surface. Therefore, a signal that is due to the binding of molecules with LMW is much 

smaller than one that is due to binding of high molecular weight compounds (if equal 

numbers are assumed). Moreover, the sensor surface area where the receptors can be 

immobilised is limited; and this also negatively affects the number of analyte molecules 

that can be bound[184]a. That is why LMW compounds are usually measured in indirect 

assays, such as competition or inhibition assays, where molecules with high molecular 

weight are introduced into the assay and their binding behaviour is monitored. In the 

following section these assay formats are described in detail.

a. Competition assay

The recognition molecule (e.g. antibody) is immobilised on the sensor surface. 

The sample is mixed with molecules, which in addition to the analyte also bind to the 

recognition molecule. These are called the tracers. The tracer is usually a large 

molecular weight compound (such as a globular protein); therefore, it can be easily 

detected by optical direct biosensors. The analyte and tracer now compete with each 

other for the available binding sites of the recognition molecule (Fig. 2.4-la). The 

number of these binding sites on the sensor surface is limited. Only the bound tracer 

will give a signal, but the amount of analyte present will reduce the tracer signal. As a 

result, the obtained signal depends on the sample concentration^851.

a The idea o f increasing sensor surface area has been realised in porous silicon-based biosensors.
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b. Inhibition assay

The inhibition assay is often used for the detection of small analytes like 

herbicides or drugs[186]. In the first step, the tracer molecules are immobilised on the 

sensor surface and the recognition molecules are mixed with the sample. Analyte 

molecules in the sample bind to antibodies and block their binding sites. After an 

incubation period, the sample with antibodies is brought to the surface with immobilised 

analyte molecules. According to the concentration of target molecules, a certain 

quantity of antibodies are prevented from binding to the sensor surface. The response is 

proportional to the analyte concentration (Fig. 2.4-lb).

c. Direct assay

In a direct detection assay, the analyte in a sample interacts with a biomolecular 

recognition element (antibody) which is immobilised on the sensor surface. The 

resulting signal change is directly proportional to the concentration of the analyte (Fig. 

2.4-lc).

• •  A  0 a  _ _  » a
0  0  § ® 0  0  0

Y Y V Y Y  y Y Y W

•  •  •  •  •  •  V  •  •  •  •  •  •  •  4

recognition molecule m m  «  #

'  , ,  Y Y  Y Y  Y  Y V Y Y Y0 tracer •  analyte

Figure 2.4-1 Competition (a), inhibition (b) and direct (c) assays for the detection of low 
molecular weight analyte.
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§2.4 ' Low Molecular Weight Analytes in Optical Immune Sensors

Experimentally determined detection limits of optical techniques for the 

detection of LMW environmental pollutants are summarised in (Table 2.4-1).

Table 2.4-1 Experimentally determined detection limits of optical biosensors for the 

detection of LMW pollutants.

Principle Analyte Detection limit Refs.

Surface Simazine 0.2 pg/1 [187]

Plasmon Atrazine 0.05 pg/1 [188]

Resonance (SPR) Estradiol and Estrone 0.1 pg/1 [189]

Aflatoxin B1 0.2 ng/ml [190]
• Ochratoxin A 0.1 ng/ml [190]

Fumonisin B1 (direct assay) 50 ng/ml [190]

Integrated optical Simazine (competition assay) 0.22 pg/1 [191]

SPR Simazine (inhibition assay) 0.11-0.16 pg/1 [192]

Grating-Coupler Simazine 0.25 pg/1 [193]

Ellipsometry Biotin (direct assay) 2 Pg/1 [194]

Resonant Mirror Atrazine 1 pg/1 [195]

Mach-Zender Atrazine 0.1 pg/1 [196]

Interferometry Simazine 0.1 pg/1 [197]

TIRF Simazine 26 ng/1 [198]

d. Target analytes

SPR combined with the direct immune assay approach does not provide 

sufficient sensitivity. That is why, generally, the SPR technique exploits other assays, 

such as competition and inhibition. More sensitive techniques are needed and the 

method of TIRE could be one of them.

In this study, the method of TIRE was adopted for the registration of low 

molecular weight toxins, such as common herbicides simazine and atrazine, T-2 

mycotoxin (from the dioxins family) and oestrogen mimicking nonylphenol.
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§2.4 Low Molecular Weight Analytes in Optical Immune Sensors

Registration of toxins was achieved using a direct immune assay approach, when 

molecules of toxins were specifically bound to respective antibodies. Antibodies were 

immobilised on solid surfaces (i.e. gold or silicon) using a method of electrostatic self- 

assembly. These low molecular weight toxins were registered in very low 

concentrations down to single ng/ml.

Analytes tested in this thesis are listed in Table 2.4-2.
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§2.5 Summary

2.5 Summary

This chapter provided the literature review and theoretical background related to 

this study. A brief theory of porous silicon formation and optical properties of porous 

silicon from the bio-sensing point of view were given. Porous silicon has received a 

great deal of attention due to its large surface area and easy fabrication procedure based 

on well-established silicon technology. It has been proven as a promising material for 

development of novel immunosensors.

This chapter also contained a review of optical immune and enzyme sensors 

developed for environmental analysis. Optical biosensors, based on evanescent wave 

technology, such as surface plasmon resonance, ellipsometry, total internal reflection 

ellipsometry, and planar waveguide were described.

In addition, the principles of detection of pesticides and heavy metal ions using 

the inhibition of cholinesterase enzyme and urease, respectively, were explained in 

detail. The theory of multiple internal reflections was revised and several types of 

waveguide structures such as ATR, TIRF and interferometer were reviewed.

The number of publications in the area of optical immune and enzyme 

biosensors is vast and, certainly, all of these cannot be reviewed in this thesis; only a 

few of the most interesting and successful works were described here.

Finally, the analytes of interest were introduced.
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Chapter 3. Experimental Methods

EXPERIMENTAL METHODS

This chapter provides a brief description of experimental methodologies used in 

this study and it is divided into five sections.

Section 3.1 gives a short introduction to atomic force microscopy and scanning 

electron microscopy techniques as methods of morphological study. The procedure for 

ellipsometric data analysis including modelling and a fitting routine is given in section 

3.2.

Section 3.3 provides experimental details for both dynamic and static 

spectroscopic ellipsometry measurements for the study of the in situ adsorption of 

bovine serum albumin (BSA) as a model protein into porous silicon (PS).

Section 3.4 covers the method of total internal reflection ellipsometry with a 

detailed description of the experimental set-up and protocol, analytes of interest, and the 

modeling and fitting routine.

Section 3.5 gives a detailed account of planar waveguide enzyme sensors array.

The principle of electrostatic self-assembly and introduction into kinetics of bio­

reactions are described in brief in sections 3.6 and 3.7, respectively.



§3.1 Methods of Morphology Study

3.1 Methods of Morphology Study

3.1.1 Introduction to the scanning probe microscopy technique

The atomic force microscope (AFM) was invented in 1986 by Binning, Quate, 

and Gerberm. AFM, like all other scanning probe microscopes, utilizes a sharp probe 

moving over the surface of a sample in a raster scan. In the case of the AFM, the probe 

is a tip on the end of a cantilever, which bends in response to the force between the tip 

and the sample. Unlike traditional microscopes, scanned-probe systems do not use 

lenses, so the size of the probe determines the resolution limit.

a. Force between the tip and the sample

The AFM is, as the name suggests, based on interactive forces between the 

sample and the tip. When the tip is brought into proximity of a sample surface, forces 

between the tip and the sample lead to a deflection of the cantilever according to 

Hooke's law:

F = —kx,  (3.1)

where F is the force, k is the spring constant, and x  cantilever deflection. The spring 

constant k (N/m) of the cantilever is strongly dependent on its physical dimensions (i.e., 

width -  w, length -  /, thickness - 1) and the elasticity of material (modulus of elasticity -  

E). For instance, the spring constant for the triangular cantilever is approximately 

expressed by[2]:

k = ^ -  (3.2)
4L
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The force most commonly associated with AFM is an interatomic force (van der 

Waals force). The relation between this force and distance is shown in Fig. 3.1-1. In the 

contact region the cantilever is held less than a few angstroms (1CT10 m) from the sample 

surface and the inter-atomic force between the cantilever and the sample is repulsive. In 

the non-contact region, the cantilever is held in the order of tens to hundreds of 

angstroms from the sample surface and the interatomic force between the cantilever and 

sample is attractive.

Force

repulsive force

intermittent-
contact

distance 
(tip-to-sample separation)contact

■n-contact

a t t r a c t i v e  f o r c e

Figure 3.1-1 Van de Waals force vs. distance (taken from Ref.[3]).

Different scanning modes operate in different regions of this curve: Non-contact 

mode is in the attractive region, Contact mode -  in the repulsive region and Tapping 

mode fluctuates between the two.

b. “Beam deflection ” detection system

Changes in the tip-sample interaction are monitored using an optical cantilever 

detection system, in which a laser beam is reflected back from the cantilever and 

collected by a position sensitive detector consisting of two closely spaced photodiodes 

connected to a differential amplifier. Angular displacement of the cantilever results in 

one photodiode collecting more light than the other photodiode, producing an output
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signal (the difference between the photodiode signals is normalised by their sum) which 

is proportional to the deflection of the cantilever (see Fig. 3.1-2). The accuracy of the 

detection of cantilever deflections is less than 1A (thermal noise limited). The long 

beam path (several centimetres) amplifies changes in the beam angle[4].

Figure 3.1-2 NanoScope Ilia beam deflection detection system: 1 -  laser; 2 -  prism; 3 -  
cantilever; 4 -  tilt mirror; 5 -  photodetector (taken from Ref.[41)

During scanning, a particular operating parameter is maintained at a constant 

level and images are generated through a feedback loop between the optical detection 

system and the piezoelectric scanners (see Fig. 3.1-3). The sample is scanned above a 

stationary probe tip (this is true for the NanoScope Ilia instrument, which was used in 

this study).

c. Contact mode AFM

Contact mode AFM operates by scanning a tip attached to the end of a cantilever 

across the sample surface while monitoring the change in cantilever deflection with a 

split photodiode detector. The tip is in close contact with the surface, providing a 

repulsive regime of the inter-molecular force curve (see Figure 3.1-1).

A feedback loop maintains a constant deflection between the cantilever and the 

sample by moving the scanner vertically at each (X, Y) point to maintain a “setpoint”
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§3.1 Methods of Morphology Study

deflection (see Fig. 3.1-3a). By maintaining a constant cantilever deflection, the force 

between the tip and sample (see Eq.(l)) remains constant. The data of vertical positions 

of the scanner at each (X, Y) point are stored in the computer to form the topographic 

image of the sample surface. AFM can operate in either a gaseous (air) or liquid 

environment.

Feedback Loop Maintains 
Constant Cantilever Deflection

Controller
Electronics

Laser

...—-f
1

X.Y

J 1

Scanner

Feedback Loop Maintains 
Constant Oscillation Amplitude NanoScope ilia 

Controller 
Electronics

Scanner

D e te c to r^
Electronics

HUS of
amplitude

Split 
Photodiode 
Detector

Cantilever & Tip

Sample

Figure 3.1-3 A feedback loop of contact mode (a) and tapping mode AFM (b) (taken
from Ref.[4]).

Advantages of contact mode AFM include firstly, the high scan speed and 

secondly, the possibility of scanning rough samples with extreme changes in vertical 

topography. The main disadvantage of contact mode AFM is that the tip may damage 

soft samples (i.e., biological samples, polymers, etc.) due to unwanted accidental 

touching of the sample surface (as a result of a large force between the tip and sample).

d. Tapping mode AFM

Tapping mode AFM operates by scanning a tip attached to the end of an 

oscillating cantilever across the sample surface. The cantilever is oscillated at or near its 

resonance frequency with the amplitude ranging typically from 20 nm to 100 nm. The
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frequency of oscillation is in the range of 200-400 kHz, and it should be close to the 

resonant frequency of a cantilever.

The tip lightly “taps” the sample surface during scanning, contacting the surface at 

the bottom of this swing. The feedback loop maintains a constant oscillation amplitude 

by maintaining a constant tip-sample interaction during scanning (Figure 3.1-3b). 

Operation can take place in both gaseous and liquid environments141.

Tapping mode tends to be more applicable to general imaging in air, particularly 

for soft samples, as the resolution is similar (or even better) to contact mode, while the 

forces applied to the sample are lower and less damaging. In fact, the only real 

disadvantages of tapping mode relative to contact mode are that the scan speeds are 

slightly slower and the AFM operation is a bit more complex, but these disadvantages 

tend to be outweighed by the advantages^1.

e. Probes

Silicon nitride probes for contact mode AFM

The contact mode AFM probes used in this research consist of a silicon cantilever 

integrated with a sharp silicon nitride tip on the end based on a gold-coated glass 

substrate.

For contact mode AFM imaging it is necessary to have a cantilever which is soft 

enough to be deflected by very small forces (i.e. small force constant) and has a high 

enough resonant frequency to not be susceptible to vibrational instabilities. This is 

accomplished by making the cantilever short, to provide a high resonant frequency, and 

thin, to provide a small force constant.

For the silicon nitride tips, there are four cantilevers with different geometries 

attached to each substrate, resulting in four different spring constants. The 

characteristics of the standard silicon nitride probes (model NP) used in this study are 

listed in Table 3.1-1.
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Table 3.1-1 Characteristics of the silicon nitride probe for contact mode AFM (after 

Ref.14')

Spring constant, N/m 0.58-0.06

Nominal tip radius of curvature, nm 2 0 -6 0

Cantilever lengths, pm 100 & 200

Reflective coating Gold

Silicon probes fo r  tapping mode AFM

Silicon probes are used primarily for tapping mode applications. The tip and 

cantilever are an integrated assembly of single crystal silicon, produced by etching 

techniques. Only one cantilever and tip are integrated with each substrate. These probes 

can be much stiffer than the silicon nitride probes, resulting in larger force constants and 

resonant frequencies. The characteristics of the Tapping Mode Etched Silicon Probes 

(Model TESP) are listed in Table 3.1-2:

Table 3.1-2 Characteristics of the silicon probe for tapping mode AFM (after Ref.[41)

Spring constant, N/m 2 0 -1 0 0

Resonant frequency, kHz 200 -  400

Nominal tip radius of curvature, nm 5 - 1 0

Cantilever lengths, pm 125

Reflective coating uncoated

f  AFM instrument

The AFM instrument (NanoScope Ilia (see Fig.3.1-4«)) used in this research is 

situated in a "clean" room, and the microscope itself (Fig.3.1-5) rests on an anti-
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vibration platform, which itself can be spring suspended on a tripod to reduce further 

the vibration noise as shown in Fig.3.1-4&.

The NanoScope Ilia instrument and its software give the opportunity to take 

images of the sample surface with nano-metre resolution and to determine their 

characteristics (i.e. sample features height, distributions, etc.). In addition, this software 

can analyse the sections, roughness, particle size, etc. and create pseudo 3-D images of 

the sample surface.

NanoScope™  Controller

Control monitor

Figure 3.1-4 NanoScope Ilia MultiMode™ SPM system components (a) and vibration 
isolation tripod (b).

Display monitor-

Keyboard
M ultiM ode SPM

g. Problems

Some typical problems that may occur during an AFM scan:

• a particle can become attached to the tip and stamped across the sample; this can 

lead to loss of resolution and false changes in height;

• the tip can become split in two (or more) by wear; this leads to multiple images 

of details (shown by obvious pairs of details everywhere);

• the sample could be warmer or cooler than the holder; this causes a thermal drift 

of the sample relative to the tip during scanning and leads to distorting the shape of 

investigated features.
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Scan times are in the range of 0.85 seconds per line, making for around 3.5 

minutes per entire scan (apart from the special cases such as porous silicon samples or 

very rough samples requiring a much slower scan rate). The frequency can be increased 

making for shorter times, but the tip will begin to miss small details. The frequency can 

be decreased giving better resolution but the scanning will take a much longer time and 

the image is more likely to be effected by the thermal drift.

Photodiode
adjustment

Tipholde:

Seamier 
(Shown: "A”)

Coarse adjustment

Mode
switch

Laser adjustment knobs

Base

sum display

X-Y head translator 

Retaining springs

Seamier support ring

Motor control 
switch

Figures 3.1-5 NanoScope Ilia MultiMode™ scan probe microscope (taken from Ref.t41).
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3.1.2 Introduction to scanning electron microscopy technique

a. Scanning Electron M icroscope history

The Scanning Electron Microscope (SEM) provides information regarding the 

surface structure. Electron microscopy is one of the traditional and well-established 

methods in surface science.

It is not completely clear who first proposed the principle of scanning the 

surface of a specimen with a finely focused electron beam to produce an image of the 

surface. The first published description appeared in 1935 in a paper by German 

physicist M. Knoll[6]. In 1942 Zworykin et al.[7] first described a true SEM with a 

resolution of 50 nm and a magnification of 8,000xt8].

b. Why was SEM used fo r  the morphology study?

There are a number of reasons why the SEM was used in this study. The first, 

and most obvious, is that it can give much more magnification than an optical 

microscope. The SEM has a maximum magnification of up to about 800,000x (for the 

Philips XL40 SEM instrument used).

Secondly, SEM itself is useful because it has great depth-of-focus. Most of the 

samples of interest (such as porous silicon) do not have flat surfaces, in fact at high 

magnification they often look like mountain landscapes. An optical microscope would 

be able to focus only on the peaks, or valleys, or some point in between. The SEM can 

have all of these features in focus at the same time, so it is possible to see and 

understand the true surface morphology. Finally, the images produced by the SEM are 

easy to interpret -  most look like an aerial view of some landscape, illuminated by a low, 

late-aftemoon sun. This means that a microscopic hole looks like a hole, a crack looks 

like a crack, etc.

The samples are put in the vacuum chamber of the microscope and a fine beam 

of high energy electrons is scanned across a small area. The scanning is done in a 

"raster" pattern, much like the way that a picture is built up on a TV screen[9].
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c. SEM basics

A SEM consists of an electron-optical column, a vacuum system and electronics. 

All of the components of the SEM are usually housed in one unit. Figure 3.1-6 shows a 

scheme of SEM. An electron beam is produced at the top of the microscope by heating a 

tungsten filament (lb) with a diameter of around 0.1 mm. Optimum filament 

temperature for the thermo-ionic emission of electrons is around 2700 K. The 

accelerating voltage, generally between -500 V and -50,000 V DC, is applied to the 

Wehnelt cylinder grid (la). Resistive self-biasing is usually used where an adjustable 

bias resistance connects the filament to the accelerating voltage. The biasing makes the 

filament slightly more positive than the Wehnelt; the anode (7c) is groundedrl0].

\

O D O D

Secondary  e lec tro n s

Back-
scattered
electrons

Figure 3.1-6 The scheme of SEM: 1 -  electron gun (consists of a tungsten filament (b), 
cathode -  Wehnelt cylinder (a), and anode (c)); 2 -  electromagnetic beam 
focusing system; 3 -  electromagnetic (X,Y) scanner; 4 -  backscattered 
electron detector; 5 -  secondary electron detector; 6 -  stage and specimen.
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Without the Wehnelt cylinder and anode, electrons emitted from the filament 

would tend to stay in the area of the filament. This would form a “space charge” or a 

cloud of electrons whose mutual repulsion resisted any further emission from the 

filament. The anode would attract the electrons away from the filament -  providing the 

primary acceleration for the electron beam. However, the current flow that would result 

would be very low and would be dependent on the accelerating voltage. By adding the 

grid, or Wehnelt cylinder, we have a way of controlling the space charge of the filament, 

shaping the beam and increasing the beam current111].

The electron beam follows a vertical path through the column of the microscope. 

It makes its way through electromagnetic lenses (2 and 3) which focus and direct the 

beam down towards the sample (6). Once it hits the sample, other electrons 

(backscattered or secondary electrons) are ejected from the sample. Detectors (4 and 5) 

collect the secondary or backscattered electrons and convert them into a signal that is 

sent to a viewing screen, producing an image[12].

d. Secondary and Backscattered electrons

When electrons strike the specimen, several phenomena occur[13]:

1. Electrons on collision with a sample atom may interact with the electron 

shell and create a free electron, which leaves the sample with very low kinetic energy 

(~5 eV); the free electron is called a “secondary electron” (Fig. 3.1-7a). Each incident 

electron can produce several secondary electrons. Production of secondary electrons is 

topography related -  only those near the surface (lying not “deeper” than 10 nm) can 

exit the sample;

2. Electrons colliding with the sample atom nuclei may be ‘backscattered’ 

to nearby 180 degrees (“elastic” process) (Fig. 3.1-7b). Production of backscattered 

electrons varies with atomic number -  higher atomic number elements appear brighter 

(or scatter more effectively) than lower atomic number elements.

Secondary electrons indicate sample topography whereas backscattered 

electrons indicate specimen composition (Fig. 3A-7c,d).
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Figure 3.1-7 SEM images of the same porous silicon sample formed by backscattered 
electrons (c) and secondary electrons (d).

SEM is often coupled with the X-ray analyser (energy dispersive X-ray 

spectroscopy (EDS)). The energetic electron beam-sample interactions generate X-rays 

that are characteristic of the elements present in the sample.

1 0 8



3.2 Ellipsometry Data Analysis Routine

a. The M-2000V ellipsometer

The main scheme of ellipsometry is shown in Figure 3.2-1. The optical part 

comprises a light source, two polarising elements, called respectively polarizer and 

analyser, and a photodetector.

P h o to d e te c to r

Polarizer

J. A. Woollam Co., Inc.

Light s o u rc e  A 
D if f ra c t io n  g ra t ing

Figure 3.2-1 The scheme of ellipsometry (after Ref.[14]).

The M-2000™-V spectroscopic ellipsometer system used in this study is based on 

advance diode array rotating compensator ellipsometer technology from J. A. Woollam 

Co. The model “V” (for visible) ellipsometer uses a quartz tungsten halogen lamp (beam 

diameter from 2 mm to 5 mm and spectral range 370 -  1000 nm) and diffraction grating

109



'I- 3

based in one unit (referred to in Fig. 3.2-1 as "input unit") with the beam collimation optics, 

a fixed polarizer, and a compensator located on a continuously stepped motor.

The "output unit" consists of the stepper motor, which drives a stage which houses 

an analyser. There is also a four-quadrant detector (used for alignment of the system and 

sample) and a detector array.

The ellipsometer has a manually adjusted angle-of-incidence system (angles may 

vary from -40° to 90°), which allows it to perform both in situ (dynamic) and ex situ 

(spectroscopic) measurements.

b. Ellipsometry data analysis routine

Variable angle spectroscopic ellipsometry (VASE) performs the measurement of 

two positions of cross-polarization which can then be recalculated into two ellipsometric 

angles T  and A as a function of both wavelength and angle of incidence^141. and A by 

themselves are not very useful in characterising a sample. Physical properties of the sample 

such as film thickness, optical constants and surface roughness are more informative. 

Ellipsometry does not directly measure these parameters; however, it measures functions of 

these parameters, namely T  and A. Analytic expressions can be written for predicting T  

and A as functions of optical constants and the layer thickness.

Film thickness and optical constants can be extracted through a model based 

analysis exploiting electromagnetic theory (Fresnel reflection coefficients, Snell's law 

etc.)[15] (see §2.2.2). Figure 3.2-2 outlines this process.

Firstly, the experimental T  and A data are collected within the spectral range at the 

desired angle of incidence. A model for the optical structure of the sample is then 

constructed. Secondly, the Fresnel equations (Eqs. 2.12 and 2.13, §2.2.2) along with the 

assumed model are used to predict the expected T  and A values for each wavelength.

The third part of the process outlined in Figure 3.2-2 is to compare the measured T  

and A with the prediction of the model based on Fresnel equations, assuming the values of 

the optical constants and thicknesses. The analysis procedure is usually called data fitting 

because the adjustable model parameters are varied to find the best fit of the generated data
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to the actual experimental data. The most common fit parameters are thicknesses (<d) and 

optical constants (e.g. refractive index n and extinction coefficient k).

Measurements.

Experimental Data:

<ri P e s  *  h " i

W iv d e ra tf t  ;nm)

Model: n, k, d
1 Glass Prism (BK7)
2 Cu
3 Cu| CuO (90%)
4 CuO
5 Water/HQ

Model Generated Data

Fit: Compare Generated and 
Experimental Data; Adjust 
model parameters to 
minimize difference

Generated and Experimental Data Results: 
n, k, d

Figure 3.2-2 Data analysis procedure.

Various fitting algorithms have been introduced, but will not be described here, as 

they are well documented in Ref.rl \  The aim is to quickly determine the model which 

exhibits the difference between the measured and calculated T and A values.

The mean squared error (MSE) is used to quantify the difference between 

experimental and predicted data. The MSE can be normalized by the standard deviations on 

the experimental data, so the noisy data are weighted less heavily. A smaller MSE 

corresponds to a better model fit to data[151. The MSE function commonly used is given as 

follows^171:

MSE =
1

2N - M  rS
/  \  2 
'  y y M o d   v p  Exp '

i=l
Exp

vr,i
+

/  \  2 ' pMod.  f^Exp '

' < 7 ‘
(3.3)

where N  is the number of C¥, A) pairs, M  is the number of variable parameters in the 

model, and a are the standard deviations on the experimental data points.

To minimise the MSE the method of iterative non-linear regression is used. Such 

regression analysis requires the correct model to achieve a good fit to the experimental 

data. If the model does not correctly represent the true sample structure, then good 

agreement between the experiment and model cannot be found, and the model needs to be 

revised. If the initial guess for a parameter value (thickness, for example) is too far from the
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actual value, the regression algorithm can land on a secondary minimum in the MSE, thus 

giving wrong values for parameters d, n and k (see Fig. 3.2-3).

In Figure3.2-3, there are a few MSE minima shown, but only one “global” 

minimum gives the correct thickness. To ensure that the true “global” minimum MSE is 

found, the regression algorithm can be started at different initial parameter values.

starting
thickness
(guess)

MSE> <

Local Minima

Thickness J. A. Woollam Co., Inc.

Figure 3.2-3 Illustrations of secondary MSE minima (taken from Ref.[I5]).

Ellipsometry has become a very popular instrument for characterisation of thin 

films and is a powerful analytical tool in chemical sensing and biosensing. However, its 

application is limited by the experimental difficulties of the light beam passing through the 

investigated medium. The variations of the medium refractive index can seriously affect the 

measurements (especially during the in situ investigation of the kinetics of chemical 

reactions). The cell design is quite complicated and requires the use of non-polarising 

transparent windows.

c. Model layers used in this study

1. Bruggemcinn effective medium approximations model layer

There are a number of models described in the literature for the calculation of the 

effective optical constants of a mixture of two or three materials, known as effective 

medium approximations (EMA). The usual interpretation of the EMA theory is that small
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particles of one material are suspended in a matrix of the host material. The simplest EMA 

model is to simply linearly interpolate between the constituent optical constants, as shown 

in Eq.(3.4):

& ~ f  A^A fc^C  ’ (3.4)

where £ is the effective complex dielectric function of the mixture, f A, f B, and f c  are the 

volume fractions (ranging from zero to one) of each constituent material; eA, eB and £c are

constituent EMA models (for two component EMA models f c  is fixed at zero). The linear 

interpolation EMA is not highly accurate, but is often used for graded layers to reduce 

calculation time.

The Bruggemann EMA makes the self-consistent choice of the host material

multi-constituent material. The Bruggemann EMA requires the numerical solution of the 

following equation, valid for three constituents, or for two constituents if f c  is fixed at zero:

the VASE software user must correctly choose the appropriate (physical and reasonable) 

solution.

The most commonly used layer for the calculation of the optical parameters and 

thickness of the transparent dielectric materials is the Cauchy layer. Over the part of the 

spectral range for dielectrics and semiconductors, the index of refraction n and extinction 

coefficient k  can be represented by a slowly varying function of the wavelength X and 

exponential absorption tail, respectively:

the complex dielectric functions of the constituent materials. The Eq. (3.4) is true for three

complex dielectric function equal to the final effective complex dielectric function of the

(3.5)

This is a complex equation and can yield an infinite number of solutions, such that

2. Cauchy model layer



k{X) = a  ex p 12400r \
x  r

(3.7)
' JJ

The six parameters in this dispersion model are A, B, C, the extinction coefficient 

amplitude a, the exponent factor p, and the band edge y. Each of these parameters except 

for the band edge can be defined as a variable fit parameter.
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3.3 Ellipsometric Study of Adsorption of Bovine Serum 

Albumin into Porous Silicon

The use of spectroscopic ellipsometry for studying porous silicon has been 

reported in literature (see chapter 2, section 2.1 and corresponding references). These 

studies have revealed many important aspects regarding the application of PS in 

biosensors, biochips and biomaterials for medical implants.

However, due to experimental difficulties of the ellipsometric measurements on 

PS, such as depolarisation and diffused scattering of the incident light, the majority of 

research work has been done on microporous PS samples with quite shallow (few 

micrometers deep) pores in contact with either vacuum or dry air[18].

The adsorption of proteins was mostly studied ex situ with ellipsometric 

measurements performed on dry PS samples before and after the protein adsorption[19]. 

However, the in situ registration of adsorption of protein and further biochemical 

reactions is more promising for bio-sensing.

In this work, the adsorption of bovine serum albumin (BSA) as a common 

protein, into the PS layers, was studied in situ at solid/liquid interface with the method 

of spectroscopic ellipsometry and subsequent fitting to the Bruggemann effective 

medium approximations (EMA) model. The influence of polyelectrolytes on the protein 

adsorption into the porous silicon has also been investigated. The microstructure of PS 

was modelled using the EMA model.

3.3.1 Experimental set-up for porous silicon formation

Porous silicon layers, investigated in this thesis, were prepared by a method of 

anodization of p-type and H-type <100> Si wafers of the resistivity in the range of 2 -

6.25 (Gbcm) in the electrolyte containing hydrofluoric acid (HF).
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The electrolyte was prepared by adding 49% HF to the (1:1) ethanol/water 

mixture up to a desired concentration of about 20%. The anodization of the Si surfaces 

was carried out at positive DC bias applied to the Si electrode with a current density of

density and etching time were monitored, controlled, and kept at a particular constant 

level required during the process.

The experimental set-up used for the PS formation is sketched in Figure 3.3-1. 

The anodization cell is made of a highly acid-resistant polymer, namely 

polytetrafluoroethylene (PTFE or Teflona). The silicon sample was sealed against the 

Teflon cell through a rubber O-ring, so that the front side of the silicon wafer was in 

contact with the electrolyte. The spiral cathode of the anodization cell is made of 

chemically inert metal platinum (Pt) immersed in the electrolyte and positioned about 2 

cm from the silicon wafer. The Si surface itself serves as the anode.

about 25 -  30 mA-cm'2. The etching time was 7 + 2 minutes. The applied anodic current

Power supply

PTFE
containe

Silicon
s u b s t r a t e

Plastic
window

E lec tro ly te M etal ring

Pt e le c t ro d e

Figure 3.3-1 The set-up for the formation of porous silicon.

aTeflon is the trademarked name of polytetrafluoroethylene (PTFE).
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In the case of n-type silicon, the holes necessary for pore formation were 

generated by illuminating the front side of the sample with a 300 W solar simulator 

lamp (Bentham 605, type IL 7S-X). In order to provide uniform electrical potential and 

thus homogeneous current density across the sample, the backside of the silicon wafers 

were coated with a thin layer of conductive silver paint. The electrical contact between 

the Si wafer and a power supply was provided via a metal ring.

Following anodization, the samples were rinsed with Millipore water for 10 min 

and then in a stop-solution (acetone or ethanol) for 5 - 7  min, rinsed again with 

Millipore water before being finally dried with nitrogen gas. The resulting PS samples 

had a circular shape with the area of about 2.54*cm .

Methods fo r  morphology study o f  porous silicon layers

The morphology of PS samples was studied by SEM and AFM. The Philips 

XL40 SEM instrument was used in the secondary electron emission mode. A typical 

accelerating voltage was 1 0 -1 5  kV.

The AFM study, was carried out using the NanoScope Ilia instrument equipped 

with SisN4 tips of 4 nm radius. The AFM pictures of the PS samples were obtained in a 

tapping mode and at a slow scan rate of about 0.1 -0 .2  sec'1. The latter was chosen 

because of the high surface roughness of PS samples previously observed with the SEM 

on a larger scale.

The pore size was determined using the SEM and AFM data. The cross-section 

SEM images allowed the evaluation of the pore depth, and thus the thickness of the PS 

layers.

3.3.2 Cell design for ellipsometric measurements

The ellipsometric measurements were performed in situ in a specially designed 

cell using a rotating analyzer ellipsometer M2000-V (J. A. Woollam Co.) operating in 

the 370 -1000  nm wavelength region. The cell of 2.2 cm3 in volume, shown
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schematically in Figure 3.3-2, has two transparent windows, made of standard 

microscopic glass slides (from Menzel-Glasser®), providing light incidence at a fixed 

angle of 68.13°.

Two plastic tubes (inlet and outlet) allowed the injection of different solutions 

into the cell. The samples were sealed against the cell through a rubber O-ring, so that 

the front side of the PS layer was in contact with the solution. The spectrum took ~2 

minutes to acquire.

68.13

Figure 3.3-2 Cross-section of the cell for ellipsometric measurements: 1 -  glass holder; 2 -  
the sample; 3 -  rubber O-ring; 4 -  glass windows; 5 -  outlet tube; 6 -  inlet tube.

3.3.3 Chemicals

Chemicals used in this research for the ellipsometric study of the adsorption of 

BSA into PS are listed in Table 3.3-1. All chemicals were obtained from Sigma- 

Aldrich® and used as received without further purification.

A buffer solution was made of Trizma-base, with its pH adjusted by adding an 

appropriate amount of HC1 (referred to as Trizma/HCl).
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Table 3.3-1 Chemicals used for ellipsometric study of the adsorption of BSA into PS.

Reactive Chemical formula
Molecular

weight

Concentration 

and pH  used

tris( hydroxymethyl )- 

aminomethane 

hydrochloride 

Trizma-base buffer 

solution

C4H11NO3 HC1;
1 2 1 . 1

g/mol

35 mM/1 

pH 7.5

Bovine Serum

Albumin

(BSA)

1 ^
-66000

g/mol

1 mg/ml in 

Trizma/HCl 

buffer 

pH 8.0

Poly (sodium 4- 

styrenesulfonate ) 

(PSS)
[C8H7N a03S]n

Average MW 

-77400 

g/mol

2  mg/ml in 

Millipore 

water 

pH 5.5

Poly (ally lamine 

hydrochloride) 

(PAH)
[-CH2CH(CH2NH2*HCl)-]n

Average MW 

-70000 

g/mol

2  mg/ml in 

Millipore 

water 

pH 4.0

3.3.4 Experimental procedure for ellipsometric study of the 

adsorption of BSA into PS

The ellipsometric study of adsorption of proteins in PS was carried out in two 

regimes:

7. static ellipsometric spectral measurements performed before and after 

adsorption of different species but always in the same aqueous environment, i.e. 

Trizma/HCl buffer solution;
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2. dynamic measurements, in which the whole spectrum was registered in 

situ during the injection of different solutions into the cell.

The procedure for the static ellipsometric study of adsorption of BSA into the PS 

was as follows. Firstly, the cell was filled with the Trizma/HCl buffer solution, and the 

ellipsometric spectrum was registered. Then the cell was filled with BSA solution in 

Trizma/HCl buffer and kept there for five minutes. The cell was then flushed several 

times with Millipore water in order to remove the excess of protein and finally, filled 

again with the Trizma/HCl buffer solution; the ellipsometric spectrum was measured 

once more.

The adsorption of polyelectrolytes, namely polyallylamine hydrochloride (PAH) 

and polysterylsulphonate sodium salt (PSS), and their effect on the immobilisation of 

BSA were studied in the same way using 2 mg/ml aqueous solutions of PAH and PSS.

3.3.5 Influence of polyelectrolytes on BSA adsorption

The idea of stabilisation of the surface of PS by its chemical modification was 

further developed here by using the adsorption of polyelectrolytes. Both types of 

polyelectrolytes, i.e. polycationic (PAH) and polyanionic (PSS), are supposed to form 

strong Coulomb interaction with the PS surface containing both OH- and H+ groups as 

respective binding centres.

To study the influence of polyelectrolytes on BSA adsorption the following 

experimental sequence was chosen:

7. Ellipsometric spectral measurements of PS in Trizma/HCl buffer solution.

2. Adsorption of either PAH or PSS for 1 0 -1 5  min by filling the cell with the 

corresponding polyelectrolyte solution followed by thorough flushing of the cell 

with Millipore water.

3. Filling the cell with Trizma/HCl buffer and ellipsometric spectral measurements.

4. Adsorption of BSA (as described earlier) followed by washing out of excessive 

non-specifically bound BSA.

5. Ellipsometric measurements in Trizma/HCl buffer.
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3.3.6 Modelling and fitting routine

The analysis of experimental spectra of the ellipsometric angle A was carried out 

by fitting the results to a five-layer model using WVASE32® software[21]. The model 

consists of an aqueous ambient and Si-substrate as top and bottom layers, respectively 

and three inner layers represented by the EMA model. The constant value of 1/3 was 

used as a default depolarization factor, as recommended in Ref.[211 for multilayer EMA 

models.

The mathematical accuracy of WVASE32® fitting is very high and exceeds the 

reasonable physical limits for the parameters obtained. In order to find the real accuracy 

the fitting was performed several times for every sample yielding slightly different 

values. Thus, the accuracy of thicknesses and material contents was found to be in the 

range of 5 -  7%.

Since the cell windows cause a constant phase shift between s- and p- 

components of polarized light, the experimental ellipsometric data were normalized by 

subtracting the A(A,) spectra associated with glass windows. The latter was found for 

every sample by comparing two A(A,) spectra measured in air: firstly, without the cell, 

secondly, in the cell.
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3.4 Total Internal Reflection Ellipsometry Detection of 

Low Molecular Weight Environmental Toxins

The main goal of this part of the work was to develop an experimental procedure 

for the registration of low molecular weight environmental toxins, particularly T-2 

mycotoxina, which is regarded as an extremely hazardous compound and, therefore, 

potential bio-warfare agent. Because of the high toxicity of T-2 mycotoxin, it was first 

decided to develop an analysis routine using much less toxic analogues, such as 

commercial herbicides simazineb and atrazinec.

A traditional immune assay approach, which is based upon specific binding of 

the above toxins to respective antibodies, was chosen for the toxins’ registration in 

conjunction with the optical technique of surface plasmon resonance (SPR). The 

method of SPR is very common for immune analyses, since specific binding of 

relatively large immune components (antibodies or antigens) causes a noticeable shift of 

the plasmon resonance. However, as has been mentioned in chapter 2.2, this optical 

technique struggles with the registration of low molecular weight compounds (in the 

range of several hundred atomic units).

Alternatively, a method of total internal reflection ellipsometry (TIRE) promises 

much higher sensitivity, which may be sufficient for the registration of relatively small 

molecules of simazine, atrazine, and T-2 mycotoxin.

This part of the work represents the descriptions of experimental procedures for 

the registration of simazine and atrazine using both SPR and TIRE methods. Later, the 

established measurements’ routine will be extended towards the registration of T-2 

mycotoxin with a more sensitive technique.

The method of TIRE has been applied for registration of the next analyte of 

interest nonylphenot', a member of the group of alkylphenols. Alkylphenols are toxic, 

carcinogenic, and have recently been found to have oestrogen mimicking behavior; for

a molecular weight of T-2 mycotoxin is 466.6 g/mol 
b molecular weight of simazine is 201.7 g/mol 
c molecular weight of atrazine is 215.7 g/mol 
d molecular weight of nonylphenot is 220.4 g/mol
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these reasons their registration in natural water resources is of great importance 

nowadays.

Immobilization of antibodies was realized by means of electrostatic self- 

assembly, a method which proved to be very successful for different bio-molecules and 

was thus adopted in different research groups (see review article by Harada and 

Kataoka[221, for instance).

3.4.1 Surface plasmon resonance: experimental set-up

A Kretschmann type SPR experimental set-up as shown in Fig.3.4-1 was 

exploited in the current study.

Figure 3.4-1 A simplified scheme of the experimental set-up for SPR measurements: 1 -  He- 
Ne laser; 2 -  aperture; 3 -  polarizer; 4 -  photo-detector; 5 -  semi-cylindrical 
lens; 6 -  gold coated glass slide; 7 -  flow reaction cell with inlet (8) and outlet 
(9) tubes. Elements 5 -  9 are placed on a rotating stage 10.

The /7-polarized HeNe laser beam (A  = 632.8 nm ) traveled through a semi- 

cylindrical prism to incident on the gold coated glass slide attached to the back of the 

prism. The prism was brought into optical contact with the glass slide via an index- 

matching liquid. The thickness of the gold layer deposited on the glass slide was about 

50 nm. The cell was attached to the gold coated glass slide via a rubber O-ring; it had 

input and output tubes enabling the injection of different liquids into the cell.
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3.4.2 Total internal reflection ellipsometry: experimental set-up

The TIRE experimental set-up (shown in Fig. 3.4-2) was based on the 

spectroscopic ellipsometer M2000-V (J. A. Woollam Co.) exploiting the rotating 

compensator principle, and operating in the 370 -  1000 nm wavelength range. The 

addition was the prism, which allowed the coupling of the light beam into the thin metal 

film, deposited on the glass slide attached to it. Similarly to the SPR, a chromium/gold 

coated glass slide was brought into optical contact with the prism via an index matching 

fluid. The choice of the prism was dictated by the conditions of total internal reflection 

on the glass/medium interface; a 68 prism was used for the measurements in aqueous 

media.

11

Figure 3.4-2 The experimental setup for the total internal ellipsometric measurements: I  -  
light source; 2 -  diffraction grating; 3 -  polarizer; 4 -  68° prism; 5 -  analyser; 6 
-  photodetector; 7 -  glass slide with chromium-gold coating; 8 -  rubber O-ring; 
9 -  syringe serves as inlet tube; 10 -  outlet tube; 11 -  the cell.

The measurements were performed in situ in a specially designed cell having a
o o

volume of about 1.5 cm , attached at the bottom of a 68 trapezoidal glass prism to the 

chromium/gold-coated side of a glass slide. The cell was sealed to the slide via a rubber
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O-ring and had input and output tubes enabling the injection of different liquids into the 

cell and, therefore, performing different chemical (bio-) reactions on the surface.

The substrates for TIRE measurements were prepared by the consecutive 

thermal evaporation of 3 -  5 nm of chromium and 25 -  30 nm of gold on clean 

microscopic glass slides without breaking the vacuum of 10‘6 Torr, as was 

recommended in Ref.[23]. The presence of the chromium layer improved the adhesion of 

gold film to the glass substrate.

3.4.3 Samples preparation

The following organic and bio-chemicals were used in the current study:

• 10 m M  Trizma-base/HCl buffer solution (pH 7.56) was used for the 

preparation of solutions of all bio-chemicals except polyelectrolyte;

• 2 mg/ml solution of poly (ally lamine hydrochloride) (PAH);

• Protein A (0.02 mg/ml) from Staphylococcus aureus;

All of the above chemicals were obtained from the Sigma-Aldrich®.

• Antiserums to simazine (as-simazine), atrazine (as-atrazine) and nonylphenot 

were acquired from the Institute of Biochemistry, Kiev (Ukraine);

• Antibodies to T-2 mycotoxin. Two types of antibodies to T-2 mycotoxin were 

used: polyclonal antibodies (poly-AB) acquired from the Institute of 

Biochemistry, Academy of Science of Ukraine, and monoclonal antibodies 

(mono-AB) purchased from Sigma-Aldrich® (monoclonal anti-T-2 toxin, clone 

T-2-50);

• The respective toxins, namely simazine, atrazine and T-2 mycotoxin were also 

obtained from the Institute of Biochemistry, Academy of Science of Ukraine. 

Nonylphenol was purchased from Sigma-Aldrich®.

Detailed information for analytes of interest is given in Table 2.4-2.

The specific reactions of binding atrazine, simazine; and T-2 mycotoxin, as well 

as previous stages of adsorption, were studied in situ with both SPR and TIRE methods. 

The specific reaction of binding nonylphenol was studied in situ with the method of 

TIRE only.
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3.4.4 Measurements routine

The measurements routines for the SPR and TIRE techniques were absolutely 

identical; for that reason, only the experimental procedure for TIRE measurements will 

be given in detail below.

In TIRE experiments all the steps of adsorption were performed in the cell by 

injecting the solutions required in the following sequence with the syringe:

Trizma/HCl buffer solution —> PAH —> protein A —» antibodies —> toxins.

The TIRE measurements were carried out after each adsorption step, and always 

in the same aqueous environment, i.e. Trizma/HCl buffer solution (pH 7.5). 

Intermediate washing in Trizma-base/HCl buffer water was carried out after each 

adsorption step, apart from that after adsorption of PAH when Millipore water was used.

The incubation time of 15 min was used for the majority of the adsorption steps, 

and TIRE spectra were recorded after each step of adsorption in the cell filled with 10 

mM of Trizma-base/HCl buffer solution.

The following routine was used for adsorption of bio-chemicals on the surface of 

chromium/gold- (Cr/Au) and pure gold- coated glass slides for TIRE and SPR 

experiments, respectively.

1. The cell was filled with Trizma/HCl buffer solution, and the initial 

ellipsometric spectrum was measured.

2. A layer of PAH was electrostatically adsorbed on the surface of the Cr/Au 

coated glass slide from its 2 mg/ml solution in Millipore water. The sample 

was kept in the above solution for 15 min and then rinsed several times with 

Millipore water.

3. A  layer of protein A was electrostatically adsorbed on the PAH layer. 

Molecules of protein A were used as intermediate agents’ for the orientation of 

antibodies with their binding sites towards the solution, as previously was 

described by Starodub et al.[24].

4. A  layer of respective antibodies to the toxin (see Table 3.4-1) was deposited on 

top of the protein A layer. Typical incubation time was 15 min.
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5. Then the coating was exposed to solutions with different concentrations of the 

respective toxin (see Table 3.4-1).

Table 3.4-1 Toxins, antibodies and their concentrations used for TIRE measurements.

Toxin Concentration Antibody Concentration

simazine 0.002 mg/ml as-simazine 0.02 mg/ml

atrazine 0.001 mg/ml as-atrazine
0.0175-0.02

mg/ml

T-2

mycotoxin

0.15 ng/ml; 1.5 ng/ml; 7.5 ng/ml; 

30 ng/ml; 150 ng/ml; 600 ng/ml; 

1500 ng/ml; 6000 ng/ml

polyclonal and 

monoclonal 

antibodies

0.02 mg/ml 

0.025 mg/ml

nonylphenol

1.2 ng/ml; 3.7 ng/ml; 7.5 ng/ml; 

15 ng/ml; 20 ng/ml; 30 ng/ml 

63 ng/ml; 100 ng/ml; 125 ng/ml; 

200 ng/ml; 250 ng/ml; 1000 ng/ml

nonylphenol

antiserum
0.025 mg/ml

Simazine and atrazine were diluted in 20 mM Trizma/HCl buffer solution (pH 

7.45-7.56). The initial solution of T-2 mycotoxin in methanol was diluted with 10 mM 

Trizma/HCl buffer (pH 7.5) to obtain desired concentrations from 0.15 ng/ml to 6000 

ng/ml. In order to wash out non-specifically bound T-2 mycotoxin, samples for TIRE 

measurements were washed with a 30% methanol/water mixture and then in 

Trizma/HCl buffer solution.

The initial nonylphenol solution in acetonitryl was diluted with 10 mM 

Trizma/HCl buffer (pH 7.56) to obtain different concentrations from 1.2 to 1000 ng/ml. 

In order to wash out non-specifically bound nonylphenol molecules, samples were 

washed with 30% acetonitryl/water mixture and then in buffer solution for TIRE 

measurements.
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3.4.5 Kinetics measurements

Not only the resulting shift in the ellipsometric spectra TfX) and A(A,) but also 

the time evolution, i.e. kinetics of T  and A, provide important information. For instance, 

analysis of the kinetics allows calculation of the adsorption and desorption coefficients 

as well as the association constant of the reaction.

The kinetics of binding of nonylphenol and T-2 mycotoxin to respective 

antibodies were studied by measuring TIRE spectra every 1 - 2 0  seconds (depending on 

the duration of the kinetics scan) during the exposure to nonylphenol (or T-2 mycotoxin) 

solution (typically for 15 -  20 min). Then time dependences of either T  or A can be 

obtained at selected wavelengths. Typically, the time dependence of T  was used, since 

T(^) spectra give a wider linear range as compared to A(X) spectra.

Such measurements were repeated for different concentrations of nonylphenol 

and T-2 mycotoxin. The analysis of binding kinetics was done following the procedure 

described in chapter 2, section 2.5.

3.4.6 Samples for AFM

Several samples (listed below) were prepared for the AFM study of T-2 

mycotoxin binding following a similar routine to the one described in detail above. 

Monoclonal antibodies to T-2 mycotoxin were immobilized on the surface of Cr/Au 

coated glass slides via the layers of PAH and protein A. Then T-2 mycotoxin molecules 

were specifically bound from its 500 ng/ml solution in Trizma/HCl buffer followed by 

washing out the non-specifically bound T-2 mycotoxin molecules in 10% methanol, 

rinsing in Millipore water, and drying with nitrogen gas. AFM measurements were 

carried out on different samples after each adsorption step:

sample N°1 bare Cr/Au surface deposited on glass slide.

sample N°2 protein A.

sample N°3 PAH + protein A.

sample N°4 PAH + protein A + monoclonal antibodies to T-2 mycotoxin 

(mono-AB).
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sample N°5 PAH + protein A + mono-AB + T-2 mycotoxin.

The same procedure was applied for samples prepared for the AFM study of 

nonylphenol binding. The antiserum to nonylphenol was immobilized on the surface of 

Cr/Au coated glass slides via the layer of PAH and protein A. Then nonylphenol 

molecules were specifically bound from its 20 ng/ml solution in Trizma/HCl buffer 

solution followed by washing out the non-specifically bound nonylphenol molecules in 

10% acetonitryl, rinsing in Millipore water, and drying with nitrogen gas. AFM 

measurements were carried out on different samples after each adsorption step: 

sample N°6 PAH + protein A + antiserum to nonylphenol. 

sample N°7 PAH + protein A + antiserum to nonylphenol + nonylphenol.

AFM images of adsorbed layers were taken using the Nanoscope Ilia instrument 

operating in tapping mode with the oscillation frequency in the range of 280 -  310 kHz 

and the scan rate of about 0.85 Hz. The tip radius was less than 7 nm (probe type was 

TAP300/RTESP, Veeco). The main focus of the AFM study was on observation of 

general features and mean roughness of the samples.

3.4.7 Real samples

The method of TIRE was applied for the detection and quantification of the T-2 

mycotoxin in food samples. Eight samples, namely: fresh" and mouldy bread; stale and 

mouldy buckwheat; mouldy fodder and maize; and fresh and stale muesli were 

immersed for 24 hours in 25% acetonitril solution (5 g of sample in 25 ml of 

acetonitril: water mixture). The following routine was used for detection of the T-2 

mycotoxin in the above extracts:

1. The cell was filled with Trizma/HCl buffer solution and the initial ellipsometric 

spectrum was measured.

a “Wholemeal” bread obtained from Tesco supermarket. The sample preparation date was the 3 days after 
the “best before” date.
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2. A layer of PAH was electrostatically adsorbed on the surface of the Cr/Au slide 

from its 2 mg/ml solution in Millipore water.

3. A  layer of protein A was electrostatically adsorbed on the PAH layer.

4. A  layer of monoclonal antibodies to T-2 mycotoxin was deposited on top of the 

protein A layer.

5. Then the coating was exposed to solutions (25% acetonitril + 75% Trizma/HCl 

buffer) with different food extracts.

The incubation time of 15 min was used for all adsorption steps, and TIRE 

spectra were recorded after each step of adsorption in the cell filled with 10 mM 

Trizma-base/HCl buffer solution with pH 7.5 + 0.1. In addition, after depositions of the 

food extract the cell was rinsed with 25% acetonitril in order to wash out non- 

specifically bound T-2 mycotoxin.
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3.5 Electrostatic Self-Assembly Technique for Protein 

Immobilisation

a. Introduction to the electrostatic self-assembly technique

In biosensors, the biological component has to be properly deposited onto the 

transducer. This process is known as immobilization^51. Several well established 

methods of immobilization of proteins[ 26 ’271 are widely exploited, such as physical 

adsorption, covalent bindings[281, entrapment^291 and a recently developed electrostatic 

self-assembly130,31,321 technique (also known as layer-by-layer assembly).

The purpose of any immobilization method is to retain maximum activity of the 

biological component on the surface of the transducer. The selection of an appropriate 

immobilization method depends on the nature of the biological element, the type of the 

transducer used, the properties of the analyte and the operating conditions of the 

biosensor[33].

The electrostatic self-assembly (ESA) technique is based on consecutive 

adsorption steps of oppositely charged polyelectrolytes. It leads to the formation of 

multilayer assemblies on a solid surface. The ESA deposition has been shown to be a 

simple and versatile method for assembling thin films[34,35’36]. By using the ESA 

technique, the multilayer films with well defined thickness, composition, and structure 

can be deposited onto the substrates, and the thickness of ESA films can be controlled 

with nanoscale precision1371.

Information about the structure of a multilayer film constructed by using the 

ESA technique can be gathered by various measurement methods such as quartz crystal 

microbalance (QCM), reflection spectroscopy, surface plasmon resonance (SPR), atom 

force microscopy (AFM), scan electron microscopy (SEM), ellipsometry[38,39,401, and 

planar waveguide[41]. A mercury probe technique was employed by Nabok and co- 

workers^21 for studying the electrical characteristics of polyelectrolyte self-assembled 

films.

a In this method the biomaterial is mixed with a monomer solution, which is then polymerised to a gel, 
trapping the biomaterial
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b. Formation o f ESA films

Polyelectrolytes are polymers whose repeating units bear either cationic or 

anionic groups. Polyelectrolyte properties are similar to both electrolytes (salts) and 

polymers (high molecular weight compounds). Like salts, their solutions are electrically 

conductive. Like polymers, their solutions are often viscous[43].

Polyelectrolytes dissociate in water into polymer chains containing ionic groups 

and counterions. They form as polycation or polyanion solutions, depending upon the 

charge of the ionic group. Attraction of different charges between the polycation 

(positive) and polyanion (negative) become a driving force for polymer film formation 

through the ESA technique[441. Electrostatic attraction allows the formation of 

multilayered films on a substrate surface by sequential dipping of the electrical charged 

substrate into the polyanion and polycation solutions. The four step basic sequence for 

the polyelectrolyte layer ([polyanion/polycation]n) deposition is illustrated by Fig. 3.5-1.

Anionic solution Rinsing Cationic solution Rinsing

Figure 3.5-1 Basic sequence of the ESA technique.

Step 1: Immersing a positively charged glass substrate in a beaker containing a

polyanion solution;

Step 2: Rinsing in deionised water or buffer solution;

Step 3: Immersing the substrate in a beaker containing a polycation solution;

Step 4: Rinsing in deionised water or buffer solution;
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It is important to rinse with water between two consecutive polyelectrolyte 

adsorptions in order to remove the non-adsorbed polymer molecules, which are loosely 

attached to the pre-adsorbed polymer layer.

The polyelectrolyte deposition process can be divided into two stages. During 

the first stage, lasting only a few seconds, the positively charged ionic groups of the 

polymer interact electrostatically with the substrate, leaving a number of positive ions 

available for further binding. The remaining adsorption sites are filled during the second 

stage of the process.

As has been mentioned above, the ESA technique has been successfully used for 

incorporation of biomolecules such as enzymes, antibodies, DNA etc. into the polymer 

matrix. Biomolecules are ideal for ESA deposition because their natural electric charge 

can be controlled by the pH of a buffer solution beyond the isoelectric point of the 

biomolecules. This technique provides a very natural environment for the biomolecules 

because the immobilization process is performed in a mild condition, and does not 

involve any modification of the biomolecule’s structures.

c. Advantages and disadvantages o f the ESA technique

The ESA has some advantages over other popular wet deposition processes, 

such as spin coating or Langmuir-Blodget (LB) methods, in the development of thin 

composite films. Spin coating is a very simple and fast technique, which forms ultra 

thin films by dispersing solutions onto rotating substrates. However, the spin coating 

technique cannot control the molecular order and the thickness of the films.

In the case of the LB technique, ultra thin films are formed by transferring a 

monolayer of ordered amphiphilic molecules from the water surface onto a solid 

substrate. The LB technique has high accuracy in controlling the film thickness, but it 

needs special instrumentation. The materials suitable for the LB preparation are usually 

limited to water insoluble components having high purity and surfactant-like 

properties1441. The layers in LB films are found to be more ordered than those in ESA 

films[451. Another drawback of the ESA technique is low deposition speed.

The ESA technique allows the fabrication of well defined layer-by-layer 

structures of ultra-thin films, without requiring complicated and expensive equipment.
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The adsorption processes are independent of the substrate size and topology. The ESA 

technique also does not require a very high purity of the solution to have a satisfactory 

multilayer deposition[44].

The benefit of the ESA technique includes a wide range of suitable components 

that can be used. Enzymes146’47,481, antibodies149,50’51’521, DNA and nanoparticlest53,54,551 

can all be assembled alternately with the oppositely-charged polyions.

Moreover, the ESA films are mechanically stable due to strong Coulomb 

interaction, both between polymer layers and between the first layer and solid substrate. 

Another advantage of the ESA is a wide range of substrates that can be used to deposit 

the ESA multilayer films, for example, quartz, glass, gold[51] or silicon.

Taking into account all these advantages the ESA technique has been chosen for 

immobilization of biomolecules on the solid substrate in this thesis.

d. ESA film s containing organic macromolecules

A  composite film can be formed with the ESA technique, since it is possible to 

incorporate into the same polymer matrix both active biomolecules and chromophore 

molecules containing ionic groups having transducing characteristics. Preferably, the 

chromophore molecule must contain more than one ionic group in a three-dimensional 

configuration. It allows its’ binding on top of the polyion layer, leaving some groups for 

electrostatic binding of the next polyion layer. This composite ESA film can serve as a 

sensing membrane, combining functions of molecular recognition and transduction, 

which is suitable for enzyme or immune sensors[56].

e. Embedding o f biomolecules into ESA film s

Protein molecules are known to have both negatively charged carboxylic acid 

groups ( -  COO~) and positively charged amino groups ( -  NH3+) in their structure. The

electrostatic balance of protein molecules depends on the pH of the buffer solution. At 

the isoelectric point, the balance is achieved, and this results in a net zero electric charge 

of protein molecules. Below this point (i.e. at acidic pH), proteins are positively charged;
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above it (i.e. at alkaline pH), negatively charged. Because of the three-dimensional 

globular structure of proteins, they automatically fulfil the main suitability criterion for 

ESA deposition[56]. A typical structure of ESA films containing proteins is shown 

schematically in Fig. 3.5-2.

protein 

poly cat ion 

polyanion 

polycation 

substrate

Figure 3.5-2 The incorporation of proteins into the ESA films (adapted from Ref.[56]).

Biomolecules and specific conditions of their ESA deposition are summarised in 

Table 3.5-1.

Table 3.5-1 Experimental data for ESA deposition of biomolecules.

Biomolecule Isoelectric point pH  fo r ESA 
deposition Electric charge

Bovine serum albumin 5.4|5/| 8.0 -

Cytochrome 10.11561 4.5 +

Urease 5.1|5S| 8.2 -

Cholinesterase 3.99159' 8.0 -

Protein A 5  7(60J 8.2 -

Immunoglobulin 6.81361 7.5 -
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3.6 Portable Planar Waveguide Enzyme Sensor Array

The proposed planar waveguide enzyme sensor array is based on two key 

elements: a planar waveguide transducer and a composite sensing membrane 

containing chromophore molecules and enzymes immobilized on nylon membranes. If 

the substratum is delivered to the system, the reaction of the substratum decomposition 

catalyzed by the enzyme takes place on the nylon membrane. The reaction is 

accompanied with pH changes in the local vicinity which in turn affect the absorption 

spectrum of the chromophore molecules. This could be registered with the sensitive 

planar waveguide transducer.

3.6.1 Planar waveguide transducer

The planar waveguides used in this study (see Fig.3.6-1) consist of a silicon 

nitride (Si3N4) core layer with a thickness of d2= 190 ±10 nm sandwiched between 

two thick silicon dioxide (Si02) layers d x = 1500±100 nm. The refractive indices are 

nx =1.46 and n2 = 2.05 for the Si02 and Si3N4 layers, respectively.

Ambient n4

—  L = 6 mm 
Membrane (% df)

S i0 2 (1.5 pm)

Figure 3.6-1 Schematic diagram of light propagation through the planar waveguide (taken 
from Ref.[61]).
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The above parameters for core and cladding layers were chosen to provide a 

single mode light propagation[62] at the wavelength of 633 nm from a HeNe laser.

A large difference in refractive indices of the Si3N4 core and SiC>2 cladding 

layers in the waveguide causes the light to propagate through the waveguide at angles 

close to the critical angle (0C *47°) and thus provides a large number of reflections.

The light intensity attenuation is still negligible if both core and cladding layers are 

transparent. However, the presence of light absorbing molecules in the cladding may 

cause the attenuation of the light intensity at every reflection due to the evanescent wave 

penetrating into the cladding. Because of a large number of reflections, the SiaN^SiC^ 

planar waveguide is exploited in this study as sensitive tool for the registration of small 

changes in the absorption coefficient. Earlier experiments showed an increase in 

sensitivity of up to 103 times in comparison to conventional UV-Vis spectroscopy[61].

3.6.2 Formation of the sensing windows

Three sensing windows of 4m m x6m m  in size, which were formed in the top 

SiC>2 layer using a wet etching technique exposed the surface of the Si3N4 layer to the 

environment. The etching solution was prepared by adding 49% hydrofluoric acid (HF) 

to water up to a desired concentration of about 5%. Etching time was about 3 min as 

shown in Figure 3.6-2.

Calibration of the etching time was done by performing ellipsometric 

measurements after a certain etching time. The obtained thickness vs. time dependence 

showed that the top SiC>2 layer was etched at the rate of 530 nm/min. During the first 3 

min the SiC>2 layer was etched completely, exposing the Si3N4 layer. A small exceeding 

of the required etching time is not critical because the etching rate of Si3N4 is much 

slower (0.99 nm/min) than that of SiC>2. The etching chemistry of silicon dioxide and 

silicon nitride are given below:

Si02 + 4HF -> SiF4 + 2H20 ,

Si3N4 +12HF -> 3SiF4+4NH3.

In addition, due to the etching process, the Si3N4 surface became positively 

charged because of the presence of Si-NH3 groups. This positive charge was required
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for the ESA deposition of the sensing membrane to start with a compound, which has a 

negative surface charge. The etching of the SisN4 layer in 5% HF acid for a few (~5 -  7) 

seconds was used time to time to "refresh" e.g. enhance the surface charge before ESA 

deposition.
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1 2 0 0 -

S i 0 2
E 1000-

SLN8 0 0 -

,« 600 -TJ
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4 6 10 12 14 16 18 20 22-2 0 2 8

Etching tim e, min 

Figure 3.6-2 Etching kinetics of the Si02/Si3N4 layers.

3.6.3 Formation of the sensing layer using ESA technique

The three sensing windows were coated with a sensitive membrane with a 

refractive index of about nf  = 1.4, which is typical for organic films. The freshly etched

(or "refreshed") SisN4 surface was first covered with the polyanionic polyelectrolyte. 

After that the sensitive film was deposited by consecutive electrostatic adsorption of 

layers of polycations and pH sensitive chromophore molecules.

Typically 3 - 4  bilayers of chromophore-polycation were deposited. Enzymes 

were immobilized on the surface of the nylon membranes from their 1 mM solution in 

Trizma/HCl buffer with pH 8.5.
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a . Chemicals

The polymers, namely poly(allylamine hydrochloride) (PAH) and 

poly(styrenesulfonate) sodium salt (PSS), were, respectively, used as polycations and 

polyanions for ESA deposition.

PAH is fully ionized at a pH lower than 7.0[63]. PAH has a positive surface 

charge, associated with NH3+ groups (see Table 3.3-1). The advantage of using PAH

was that its charge is located at the far end of the side chain, which was easily accessible 

for the compensation by other ionic molecules. It has a pH of 4.0 when diluted to a 

concentration of 2 g/1 in ultra-pure water.

PSS has a negative surface charge, delivered from SO^ groups (see Table 3.3-1).

It has a pH about of 5.5 when diluted to a concentration of 2 g/1 in ultra-pure water.

These concentrations (2 g/1) for both PAH and PSS were considered to be 

suitable to provide enough charge for ESA deposition, as was confirmed by Lvov et 

al.[641. Both polyelectrolytes were purchased from Sigma-Aldrich®.

Ultra-pure (or Millipore) water (type III laboratory-grade) was obtained by using 

the RiOs™ water purification system (Millipore Corp, Billerica, MA). The resistance of 

Millipore water is > 18 MQ. Information about purification of water based on technical 

data for the RiOs™ system[65] is given in Table 3.6-1.

Table 3.6-1 Purification of the water by RiOs™ system (after Ref.[65]).

Contaminant Rejection Passage

Ions, % -9 9 ~ 1

Organics, % >99 < 1

Particles, % >99 < 1

Microorganism, % >99 < 1

Cyclotetrachromotropylene (CTCT) was chosen as an organic indicator for the 

enzyme sensor because of its ability to change the absorption spectrum over a wide

range of pH from pH 3 to 13[66]. As shown in Figure 3.6-3, CTCT has four SO^Na*
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groups providing negative surface charges in 3D configuration required for the ESA 

deposition. The peculiarities of the structure of CTCT allow it to form complexes with 

some metal ions and pesticidest66].

The CTCT used in this study was synthesized and kindly provided by Dr. Frank 

Davis (Cranfield University, UK). The molecular weight of CTCT is 1497.05 g/mole 

and the pH was 4.4 when diluted to 10'4 M in ultra-pure water. The concentration of 

CTCT used for the sensing membrane preparation was 1 mg/ml, which was equivalent 

to ~10'4 M. A similar concentration of CTCT was used by Nabok et al.[67] to prepare 

multilayered PAH/CTCT membranes.

HO HO

Figure 3.6-3 Chemical structure of cyclotetrachromotropylene (CTCT) (after Ref.[67]).

Three types of enzymes were tested as sensitive elements in the nanocomposite 

membrane, namely urease, acetylcholine esterase (AChE) and butyrylcholine esterase 

(BChE).

Enzyme molecules (as any other proteins) are known to have both negatively 

charged carboxylic acid groups and positively charged amino groups in their structure. 

The electrostatic balance between these groups depends on the pH of the buffer solution 

in which the enzyme is kept. The enzyme molecule was electrically neutral at the 

isoelectric point, where the electrostatic balance was achieved. In this study, the 

enzymes urease and AChE  had their isoelectric points of about pH 5, while the 

isoelectric point of BChE was pH 7. Therefore, these compounds were dissolved in 1 

mM Trizma/HCl buffer solutions at pH 8.5 to make them negatively charged. This was 

necessary for the ESA deposition on the positively charged PAH layer.
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Concentrations of enzymes equivalent to 100 units of activity as recommended 

by Lvov at elJ641 were chosen (see Table 3.6-2).

Typically one unit of enzyme was sufficient to catalyze 1 pmole of the 

respective substratum per minute under standard conditions. The reactions catalyzed by 

these enzymes are given below. pH changes will occur due to the production of acidic 

or alkaline compounds during the enzyme reaction.

Table 3.6-2 Concentrations of enzymes equivalent to 100 units of activity.

Enzyme Weight activity, units/mg Concentration, mg/ml

Urease from Canavalia 

ensiformis (Jack bean)
29.5 3.39

Acetylcholine esterase (AchE) 1670 0.06

from Electric Eel 1052 0.095

Butyrylcholine esterase (BchE) 1100 0.091

from Horse Serum 1012.8 0.099

For instance, Urease is an enzyme that catalyzes the hydrolysis of urea to form 

ammonia and carbamine acid. The latter compound spontaneously decomposes to 

generate a second molecule of ammonia (NH3) and carbon dioxide (C02)[68]:

urease / P
H2N-C-NH2 + H20 ------- ► NH + H2N - <

O OH
urea carbamine acid

H2N N „,.------------------------------- ------- ► NH3 + C02
OH

Cholinesterase (ChE) hydrolyzes its natural substrate (acetylcholine for AChE 

and butyrylcholine for BChE) to choline and acetate[69]:

BC hEbutyrylcholine +  water ——-  > choline +  butyryl acid

acetylcholine +  water —AChE  > choline +  acetic acid

or
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cr c/7 ecr
(CH3)3N+-CH2-CH2-0-CO-R + H20 — ^(CHsJsNMDHr-CHa-OH + RCOO' + H+

R = CH3 : acetylcholine 
R = (CH2)2CH3 : butyrylcholine

Chemical formulas, molecular weights and concentrations of substrata used in 

this study are listed in Table 3.6-3. All substrata were dissolved in 1 mM Trizma/HCl 

buffer solutions at pH 7.5 as recommended in Ref.[61].

Table 3.6-3 Chemical formulas, molecular weights and concentrations of substrata.

Substratum Chemical
formula

Molecular
weight Concentration Corresponding

enzyme

Urea (NH2)2CO
60.07

g/mol
100 mM Urease

Butyrylcholine

[chloride]

(BCh)

C9H20NO2+(Cl)
174.26

g/mol
10 mM BChE

Acetylcholine

[chloride]

(ACh)

C7H16N 02+(C1)
146.21

g/mol
10 mM AChE

b. Enzyme adsorption on nylon membranes

A novel (relatively to the research made in 2001-2004 by S. Haron[701) 

approach in the immobilization of enzymes was exploited in this study. Enzymes were 

immobilized on disposable nylon membranes which reduce the cost of the biosensor 

device significantly. Moreover, they provide better resistance to temperature and longer 

stability than free enzymes. However, the main disadvantage of the immobilization 

process is the lower specific activity of the immobilized enzymes compared to that 

exhibited by the same amount of free enzymesf71].
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Fibrous materials, such as nylon membrane, are among the most suitable solid 

supports for immobilization of enzymes due to their porous structure, providing the 

quantity and the accessibility of the active sites necessary for high reaction rates and 

conversions.

Enzymes were adsorbed on 6x3.5 mm  pieces of BioBond™-Plus nylon 

membrane obtained from Sigma-Aldrich. Adsorption of enzymes was carried out by 

immersing the membranes into 1 mM Trizma/HCl buffer solution (pH 8.4 ±0.1) 

containing enzyme. The enzyme concentration was between -0.1 mg/ml and -3.4 

mg/ml (see Table 3.6-2) and the adsorption was conducted at room temperature for 4 

hours. After that, the enzyme-adsorbed membranes were washed in the 1 mM 

Trizma/HCl buffer having pH 7.5 ±0.1, and then dried at room temperature. The 

lifetime of the enzymes adsorbed on such membrane is about 30 -  45 daysfl.

c. Pollutants and their preparations

The following metal salts and pesticides were used to study the response of the 

planar waveguide enzyme sensors array to different concentrations of pollutants: 

cadmium chloride (CdCl2), nickel chloride (NiCl2), lead nitrate (Pb(NOs)2), 

imidacloprid, and 2,2-dichlorovinyl dimethyl phosphate (DVDP or dichlorvos). All 

compounds are highly soluble in water. The metal salts are dissociated on cations (Cd2+, 

Ni2+, Pb2+) and anions ((NO3)2-, Cl2-). Previous research1701 proved that both chloride 

and nitrate anions exhibit practically no effect on the sensing membrane, particularly on 

the activity of immobilized enzymes. Different pesticides were chosen in order to 

investigate the sensitivity of the enzyme sensors to pollutants of different toxicity.

The pollutant solutions were prepared by multiple dilution of the sample solution 

in Millipore water to achieve concentrations in the range from 100 ppm down to 0.1 ppb. 

The dilution process began with the preparation of sample solutions at a concentration 

of 100 ppm by dissolving 1 mg of the respective compounds in 10 ml of Millipore water. 

Stirring at room temperature was used to obtain a homogeneous mixture of the sample 

solutions.

a Membranes with adsorbed enzymes must be stored in the fridge at 4-8 °C
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The method of planar waveguide was applied to analyse the samples of tap water 

taken from the different places in Sheffield, UK as well as from Odessa, Ukraine.

3.6.4 ESA deposition process

All steps of ESA deposition were performed either in the multi-channel cell by 

injecting the solutions required with the syringe or by dipping the planar waveguide (see 

Figure 3.6-4) into beakers, containing the required polyelectrolyte solutions in the 

following sequence: PSS —» (PAH —> CTCT)n (where n is the number of layers).

Figure 3.6-4 Planar waveguide with three sensing windows (top view).

Intermediate thorough washing with Millipore water was carried out after each 

adsorption step in order to flush out the remaining unbound polymer. The incubation 

time of 12 -  20 min was used for the majority of adsorption steps.

The deposition process can be monitored by recording the light intensity in each 

channel, as shown in Fig. 3.6-5.

144



§3.6 Portable Planar Waveguide Enzyme Sensor Array

1400 

1300 

1200

w
|  1100 
8
■f' 1000c & c

900 

800 

700
-20 0 2 0 4 0 6 0 80 100 1 20 1 40 1 60

lime, min

Figure 3.6-5 Monitoring of the sequential electrostatic deposition of PSS-(PAH-CTCT)4 
layers.

3.6.5 Experimental set-up for a multichannel enzyme sensor 

array

All experiments i.e. enzyme reactions, effect of pollutants, as well as the process 

of electrostatic polyelectrolyte deposition, were studied in situ using a portable sensor 

array set-up, shown schematically in Figure 3.6-6«. It consisted of a fan-beam laser 

diode (Coherent) which produces a narrow line beam of 630 nm in wavelength. Then, a 

semi-cylindrical lens was used to focus the beam into a narrow horizontal line with a 

thickness of about 0.5 mm on the edge of the planar waveguide with three sensing 

windows etched in the top SisN4 layer to form three channels.

The assembly of the waveguide on the holder with the three-channel cell 

attached is placed right in front" of the CCD array photo-detector in order to avoid any 

light intensity loss. Otherwise, scattering of the light coming out from the waveguide

a The gap between the cell and CCD array photo-detector is less than 1.5 mm.
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causes both significant losses in the light intensity and smearing (and even overlapping) 

of the images of individual channels.

semi-

CCD array

outlet

f Ucylindrical lens

camera

intensity, counts

I U  I I I
Channel 1

Channel 2

Channel 3

Figure 3.6-6 a -  Schematic diagram of portable sensors array device; b -  Typical CCD array 
image of the light coming out from the waveguide.

A reaction cell (made from black plastic) with a volume of 1.5 cm was tightly 

sealed with a rubber seal having three slots, which form three waveguiding channels, 

and was placed on top of the planar waveguide. This cell, shown enlarged in Fig. 3.6-7, 

contains three channels connected parallel to each other; to provide a continuous and 

low-mixable flow of liquid through the cell with inlet and outlet tubes. The multi­

channel sensor cell is designed to accommodate replaceable nylon membranes 

containing the immobilised enzymes. This facilitates easy low-cost replacement of the 

sensitive elements. The above cell was assembled on a specially designed holder. All 

parts were manufactured in the SHU engineering workshop.

The experimental set-up was enclosed in a 20x25x45 cm metal case (see Figs. 

3.6-8a and 3.6-8b) which improved its light screening and reduced the noise level. The 

Hamamatsu (model C7557, type S7010-0906) multi-channel detector head with front 

side CCD was connected to a PC via a SCSI card.
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Typical CCD array image of the light coming out from the waveguide is shown 

in Fig. 3.6-6b. The three sections of low light intensity correspond to the etched sensing 

windows in the waveguide and thus constitute three channels.

£  JpTjS'JP P  o  p  p

Figure 3.6-7 Exploded drawing (A) and picture (B) of the flow reaction cell. 1 -  steel holder;
2 -  rubber base for planar waveguide; 3 -  planar waveguide; 4 -  mbber frame; 
5 -  disposable nylon membranes with adsorbed enzymes; 6 -  three-channel 
reaction cell; 7 -  cell's lid with inlet (8) and outlet (9) tubes.

Figure 3.6-8 Portable planar waveguide enzyme sensors array device. A — open unit: 1 -  
laser; 2 -  semi-cylindrical prism; 3 -  aperture; 4 -  reaction flow cell; 5 -  CCD 
array camera; B -  unit assembled.
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3.6.6 Measurements procedure for pollutants registration

The measurement procedure for pollutants registration was as follows. 

Disposable nylon membranes with the immobilized enzymes (namely, Urease, AChE, 

and BChE) were placed into the corresponding channels of the reactions cell. The 

channels of the reaction cell were positioned above the sensing windows on the top of 

the planar waveguide. The sensing windows of the planar waveguide were covered with 

composite sensing membrane containing PSS-(PAH-CTCT)4 layers deposited earlier by 

the ESA method (the lifetime of this reusable membrane is at least 3 weeks).

The substrata used in this study were dissolved in mildly concentrated (1 mM) 

Trizma/HCl buffer solution (pH 7.5 ±0.1) to standardise the pH at the start of the 

enzyme reactions. The buffer solution was also injected into the reaction cell before 

each measurement to stabilize the sensor response in neutral conditions.

The routine began with the registration of the sensor response to enzyme 

reactions in the corresponding substratum solution (or mixture of the substrata). Then, a 

sample solution containing only one pollutant (or mixture of two pollutants) was 

injected into the reaction cell and held there for 10 -  12 minutes.

After this inactivation process, the response to the enzyme reaction was recorded 

again under similar conditions as before. The reaction cell was rinsed with the 1 mM 

Trizma/HCl buffer solution after each step of the measurements.

Since each data recording started at a different background level of the sensor 

signal, the absolute response (AI) was defined as a difference between the initial (/&) and 

final (after saturation) (If) values of the output signal:

AI=\ lb- I f \. (3.8)

Thus, the relative response of the sensor (also called residual activity of the enzyme) 

can be calculated as,

AR = ̂ J-x l00% , (3 .9 )
AIQ

where AIQ and A/,- are the response value of the initial enzyme reaction and that after the 

inhibition process, respectively. .
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3.6.7 Software description

The original Hamamatsu software designed to record images with CCD array 

was modified to the required experimental task:

1. To measure a series of line-images of the waveguide edge after certain (variable) 

time intervals and store the obtained images. A typical “line” image is given in 

Fig. 3.6-9.

2. To select three sections of every image corresponding to three channels, and to 

store three values of the average light intensity in each channel. The resulting 

data file consisted of four columns: one was the time, the other three gave 

corresponding average light intensities in each channel.

3. To register intial and final (after a certain time) average light intensities in each 

channel.
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Fig. 3.6-9 Typical “line” image.

A more detailed description of the software as well as the full text of the 

program developed is given in Appendix A.
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3.6.8 Analysis of pollutants using an Artificial Neural Network 

algorithm

The response of the sensor array to different pollutants was analysed with the 

artificial neural network (ANN). ANN is a program, which is based on virtual “nerve 

cells” called neurons. These neurons are connected between each other in multiple ways 

to build up networks. Such networks have the capacity to learn, memorise and create 

relationships amongst the data sets. A brief introduction to the ANN basic is given in 

Appendix C.

One of the applications of ANN is as a tool for multi-component analysis 

particularly suitable for chemical- and biosensing purposes. ANN has been proven as a 

powerful analytical tool capable of recognising both the quantitative and qualitative 

composition of solutions. ANN has been successfully exploited for the determination of 

pesticides using enzyme sensors and immunosensors[72,73], for the quantification of 

metals and inorganic pollutants in groundwater[74], and for the determination of phenolic 

compounds1751.

In this study, the ANN was employed as a pattern recognition tool for data 

analysis of the developed enzyme sensors array. MATLAB software (version 6.1, 

MathWorks Inc., Natick, MA) was used for the ANN modelling, using the supplied 

functions and algorithms in the MATLAB Neural Network Toolbox' (version 4.0, 

MathWorks Inc., Natick, MA) as part of MATLAB.

Prior to ANN processing, the experimental results from the repeated 

measurements were divided into two data sets, which were used for the training and 

testing of the network models. The training was performed for 20000 repetitions 

(“epochs”) with the mean squared error (MSE) goal set to 1-10"10. For qualitative and 

quantitative analysis, eight separate network models were produced and trained.

One of the neural networks was used to classify the pollutants. This contained 

seven neurons in the hidden layer, as illustrated in Figure 3.6-10.
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Hidden layer

Output layer

Residual 
activities of \  ^Ri 

enzymes

Binary codes - 
1 > represent the

type of pollutant
■Urease

Figure 3.6-10 Neural network architecture for classifying the pollutants.

The number of neurons in the input layer was set to three, equal to the number of 

channels in the sensors array. Three neurons in the output layer were used to describe a 

three-digit binary code, representing the type of pollutants (see Table 3.6-4).

Table 3.6-4 Binary codes for representing the type of pollutants.

Pollutant Binary code

DVDP 0 0 0

Pb2+ 0 0 1

C d" 1 0 0

Imidacloprid 0 1 1

Ni2+ 1 0 1

Mixture-1 1 1 0

Mixture-2 1 1 1

The other seven network models were designed to quantify each pollutant 

(cadmium, lead, nickel, imidacloprid, and DVDP) and two binary mixtures (Mixture-1 

and Mixture-2). The topology of these network models consisted of three and one 

neuron in the input and output layer, respectively. The number of neurons in the hidden 

layer was five (see Figure 3.6-11). All network models were developed by Dr. A. 

Holloway.
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Figure 3.6-11 Neural network architecture for quantifying pollutants.
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3.7 Kinetics of Bio-reactions

a. Affinity

As has been mentioned in the Introduction, immunosensors transduce antigen -  

antibody interactions directly into physical signals1761. The antibody or immunoglobulin 

is usually described as a Y-shaped molecule with two identical binding sites for the 

antigen (Fig. 3.7-1). Each antibody recognizes a specific antigen unique to its target. 

The strength with which an antibody molecule binds an antigenic determinant is called 

its affinity.

(b) Antigen-binding Antigen-binding

B \  J *  Variable j L  / ®

\ \  h

L J

/O I I °ooc coou

Figure 3.7-1 Scheme for a typical antibody (taken from the Ref.[77]).

The antibody ( A b ) can be considered as a molecular recognition complex which 

binds reversibly with a specific antigen ( Ag ). The binding reaction may be represented 

as follows:

Ab + Ag <=> AbAg. (3.10)
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b. Kinetics

Affinity can be quantified by determining an association constant K A :

K_ [Agm(3 . 11)

A [Ag][Ab]’

where the terms in brackets represent the concentration of antibody-antigen complexes 

[AgAb], unbound antibody [Ab], and unbound ("free") antigen [A g ]. Values of K A are

in a range from about 104 to 1012 litres/mole. Immunoglobulins with K A <104 for a
r 781particular antigen would be ineffective as antibodies against the antigen1 J. The

association constant K A is related to the dissociation constant K D as

k a =
1 (3.12)

K,

The magnitude of K D describes the affinity, or ‘tightness’, of the A b - A g  binding. 

The closer K D is to zero, the higher is the affinity that characterizes the complex. 

Introducing the total concentration of antibody sites

[A b \= [A b \ + [AbAg], (3.13)

the Eq. (3.11) can be rewritten:

KA[Ab]t[Ag] (3.14)
[AbAg] =

1 + KA[Ag]

Figure 3.7-2 shows a saturation binding curve of [AbAg] versus free antigen [Ag] :

[Ab],/2

K, [Free ligand]

Figure 3.7-2 Saturation binding curve.
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The curve illustrates the effect of an increase in free antigen concentration [Ag]

on the concentration of [AbAg] complex at a constant antibody concentration [Ab]t .

When A ^ [A g ]« l, there is a near linear relationship between [AbAg] and [Ag]. The

complex concentration [AbAg] asymptotically approaches the plateau denoting total

antibody concentration [Ab]t . The antibody saturation, i.e. [AbAg]/ [Ab]t , is given by

[AbAg]= K A[Ag] (3.15)
[Ab]t 1 + K A[AgV

When [Ag] = \ l  K a (that is K D), then 50% of the antibody bindings sites are saturated. 

By plotting the ratio between bound and free antigen concentration ([AbAg]/[Ag]) 

versus bound antigen concentration [AbAg], a straight line is obtained (Fig. 3.7-3). The 

slope equals -  K A and the intercept on the ordinate gives the concentration of antibody 

binding sites ([Ab]t) [19\

<D©
UL

TJ
CZJoco

Slope = -1/K

[Ab],[Bound]

Figure 3.7-3 Plot for determination of dissociation constant K D and [Ab]t .

The affinity can also be expressed as the ratio between the kinetic constants of 

the interaction:
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where k.
M s

is the association rate constant and k„ is the dissociation rate

constant, describing the rate of formation and decay of the complex, respectively. Thus

d[AbAg]
dt

= ka[Ab][Ag]-kd[AbAg]
(3.17)

describes the complex formation as a function of time.

The antigen -  antibody (or antigen -  analyte) interaction can be monitored by 

observing changes in the biosensor response[801 (the typical experimental graph is shown 

in Fig. 3.7-4a). These measurements can be repeated for different concentration of 

analyte.
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Figure 3.7-4 Typical kinetics of sensor responses in the course of antibody-antigen binding 
for different concentrations of analyte C.
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The signal can be expressed by the equation as follows:

^  = K C (R m - R ) - k JR ,  (3' 18)
at

dR
where —  is the rate of change of the sensor signal, ka is the association rate constant, 

dt

C is the concentration of the analyte, Rmax is the maximum response corresponding to a 

saturation of binding sites, R is the amount of bound antibody measured as the 

biosensor response at time t , and kd is the dissociation rate constant. The integrated 

form of the Eq. (3.18) is:

R = k;  C, R"“ '{l- cxp[-(C • kti (3'19)
ka -C + kd

Experimental kinetic curves for different concentrations of analyte plotted in semi- 

logarithmic scale (in R(t)) yield linear dependence with the slope S (Fig. 3.7-4b):

S = C -ka +kd . (3.20)

A linear plot of S against different analyte concentrations C gives a straight line with a 

slope ka and a y-intercept kd (Fig.3.7-5). The association constant K A can be

calculated from — .
k J
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Figure 3.7-5 Graph for calculation of the association constant K A (detailed in the text).
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3.8 Summary

This chapter introduces experimental methodologies. Detailed descriptions of 

experimental routines and sample preparation procedures used in this study are given 

here.

Porous silicon (PS) matrix can be used to study molecular adsorption and to 

perform different biological reactions. The high sensitivity of ellipsometry to refractive 

index changes can be beneficiary in conjunction with PS. For this reason, the 

spectroscopic ellipsometry method has been chosen to study the adsorption of 

biomolecules (namely, bovine serum albumin as a common protein) into PS.

The recently proposed method of total internal reflection ellipsometry (TIRE) 

combines the advantages of the spectroscopic ellipsometry and the Kretschmann type 

SPR. Spectral changes caused by adsorption of low molecular weight molecules (such 

as atrazine, simazine, mycotoxin, and nonylphenol) can be registered. Since the 

sensitivity of TIRE is several times higher than that of both SPR and conventional 

ellipsometry, this method has been proposed for the detection and quantification of low 

molecular weight environmental toxins.

A concept of optical biosensors based on planar waveguides was developed 

further in this project. This development included improvements to the existing system 

allowing greater portability combined with simplicity. The set-up developed was based 

on a CCD array camera. The cell/system design allowed registration of enzyme 

reactions in all cell channels simultaneously. The use of disposable nylon membranes 

with adsorbed enzymes is considered. Pattern recognition algorithm is exploit using 

artificial neural network software to identify and quantify pollutants in water samples.

A description of the electrostatic self-assembly (ESA) technique for 

immobilization of biomolecules on a substrate was given. The application of the ESA 

technique to form multi-function sensing membranes was reviewed. The ESA method 

proved to be suitable for the formation of composite membranes for optical biosensors.

Finally, the basic principle of the kinetics of bio-reactions was given.
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Chapter 4. Results and Discussions

RESULTS and DISCUSSIONS

The experimental results and data analysis are presented and discussed here.



§4.1 Protein Adsorption into Porous Silicon

4.1 Protein Adsorption into Porous Silicon: Ellipsometric 
Study

4.1.1 Characterisation of porous silicon layers

The porous layers were characterized with respect to the pore size, porous layer 

thickness, and porosity using scanning electron microscopy (SEM), atomic force 

microscopy (AFM), and variable angle spectroscopic ellipsometry.

The SEM images in Figure 4.1-1 show a “net-like” structure of the PS surface 

with flat islands separated by deep trenches. The AFM image zoomed in on the flat top 

of the island shows a nanoporous sponge-like structure (see Figs. 4.1-2a and 4.1-2b).

Figure 4.1-1 SEM images of porous silicon (plane view): A -  scan size 20 pm; B -  a zoomed 

in image of the sample (scan size 5 pm)

B

Figure 4.1-2 Pseudo 3-D AFM images of porous silicon: A -  scan size 20 pm; B -  a 
zoomed in image of the sample (scan size 5 pm).

X 1.000 v I  150.000 nm/cH'
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The pore sizes in the range of 30-100 nm were evaluated from these images. 

The cross-section SEM image, presented in Fig. 4.1-3, allows the estimation of the pore 

depth and thus the total PS layer thickness in the range of 1 pm.

Figure 4.1-3 SEM images of cleaved PS/Si samples (cross-section view).

Mean values of the pore size and depth are summarised in the Table 4.1-1.

Table 4.1-1 Pore size and depth for PS samples (based on SEM and AFM data).

Morphology features Pore size Pore depth

“Trenches” 0.22 pm -  8.20 pm 0.50 pm -  1.53 pm

“Sponge” 30 -  100 nm 20 -  150 nm

Figure 4.1-4 shows typical ellipsometric spectra A(^) and T(^) measured at an 

angle of incidence of 68° of a porous layer with a porosity of 68% and a thickness of

0.85 pm.

Analysis of the experimental data using WVASE32® software yields the 

following five level model with three effective medium approximation (EMA) sub­

layers for porous silicon:

1. Si substrate/ 2. EMA/ 3. EMA/ 4. EMA/ 5. Ambient.
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Figure 4.1-4 Typical ellipsometric spectra A(A.) and T̂ X) of porous silicon samples without 
any adsorbent.

Each EMA sub-layer consists of silicon and voids filled with the aqueous 

ambient (Trizma/HCl buffer) with a refractive index of ft = 1.33 at A = 633 nm. The 

parameters of each layer are shown in Figure 4.1-5.

2000

1500
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$ 1000c
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Figure 4.1-5 Five-layer model (with three EMA sub-layers) of PS sample with pores filled 
with Trizma/HCl buffer solution. The numbers to the right are the thickness of 
the sub-layers.
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For every sample, the obtained values of the thickness of each EMA layer were 

kept fixed in further data fitting after adsorption. The result of fitting is mathematically 

unique. This was established by performing fitting started from different initial sets of 

parameters.

It should be noted that no reasonable fitting can be obtained either with a single 

layer or two-layer EMA model. The three-layer model is the most likely mathematical 

representation of a complex structure of porous silicon containing features in both 

micro- and nano- meter scales. The total thickness of the PS layer correlates well with 

the SEM data.

The porosity was found to decrease towards the bulk Si layer, which corresponds 

well to the PS structure, observed with SEM and AFM as well as to the results obtained 

by other research groups. The porosity of the PS layers was also determined 

independently with the gravimetrical method[1]:

P %  *100%, (4.1)
2 " p  * u * i

where AP is changes in the sample weight before and after etching; p  is the density of 

the material (Si); d is PS layer thickness; S is area of the specimen. This estimation 

yields porosity values in the range of 56-77%  (for different samples) with the accuracy 

of about 10%.

4.1.2 Adsorption of BSA: static ellipsometric study

Figure 4.1 -6a shows typical ellipsometric T̂ A,) and A(A,) spectra before and after 

adsorption of BSA into the PS layer. The observed spectral shift towards longer 

wavelengths is believed to be caused by adsorption of BSA. Because the BSA layer has 

a different refractive index to silicon a three-component EMA model with silicon, 

protein, and void should be used in the modelling.

This concept was confirmed by fitting the experimental results to a five-layer 

model: Si substrate/ l.EMA/ 2.EMA/ 3.EMAJ Ambient. An extra component appeared 

in all three EMA sub-layers (see Figure 4.1 -6b). For the data recorded after protein 

adsorption, the silicon parameters were fixed to the values found without protein.
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Figure 4.1-6a Ellipsometric 'i'QC) and A(A,) spectra before (dot) and after (line) BSA 
adsorption into the PS layer.

A Cauchy dispersion function was deployed for fitting the additional adsorbed

layer^21:

« a ) = 4 + A + ^ . ! (4.2)

where the values An= 1.396, Bn= 0.01 and Cn= 0 were fixed during fitting as well as a 

zero value for the extinction coefficient (k). This gives a value of refractive index n of 

1.42 at /I = 633 nm, which is typical for proteins and polyelectrolytes.
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The percentage of the adsorbed BSA layer was evaluated and presented on the 

diagram in Figure 4.1-6&. Small variations of ±0.005 of the parameter An did not cause 

significant changes in the results. It is logical that the presence of the adsorbed layer of 

BSA has just slightly altered the porosity of the PS. Yet, the fact that the upper PS 

layers contain more BSA than the layers below is physically likely.

The general observation is that the BSA molecules are located throughout the 

porous layer but with the larger volume fraction closer to the surface.

2000

1 5 0 0 ”

8 1000
c

5 0 0 ”

Ambient

18.33% Si
1.99% BSA

79.68% void

29.79% Si

1.49% BSA

68.72% void

45.32% Si

1.13% BSA

53.6% void

100% Si
■ i i i 1 i i i  i 1 i i i i 1 i i i  i | i  i i i | i i i i | i i i i  | i i i i | i i i i | i i  i i

533.9 A

662.8 A

399.2 A

0 10 20 30 40 50 60 70  80  90  100

material content, %

Figure 4.1-6b Five-layer model of a PS sample after BSA adsorption.

4.1.3 Influence of polyelectrolytes on BSA adsorption

The idea of stabilisation of the surface of PS by its chemical modification was 

further developed here by using the adsorption of polyelectrolytes. Both types of 

polyelectrolytes, i.e. polycationic (PAH) and polyanionic (PSS), are supposed to form 

strong Coulomb interaction with the PS surface containing both OH" and H+ groups as 

respective binding centres.

Ellipsometric A(A,) and XF(^) spectra measured on fresh PS samples (dot) and 

after adsorption of PSS/BSA or PAH/BSA into the PS layer (line) are shown in Figures
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4.1-7a and 4.1-8a, respectively. It should be noted that adsorption of either PAH or PSS 

alone does not significantly change the ellipsometric spectra, because of a very small 

thickness of adsorbed polyelectrolyte monolayers.

Similarly, the results in Fig. 4.1 -6a, both graphs in Figs. 4.1-7a and 4.1 -Sa 

showed a shift towards longer wavelengths after adsorption of BSA. However, this time 

the shift is larger, which indicates more effective adsorption of BSA on top of 

intermediate PAH (or PSS) layers. The models for BSA adsorbed on PSS and PAH 

layers, shown in Figs. 4.1-lb and 4.1-8b respectively, demonstrated that the amount of 

immobilised BSA is much larger in comparison with that on bare PS (Fig. 4.1-6b), 

which is a result of electrostatic binding between polyelectrolytes and BSA molecules.

The total amount of BSA adsorbed on PAH was higher than that on PSS. This is 

quite understandable, since BSA was deposited from the Trizma/HCl buffer solution 

having pH 7.35, which is higher than the BSA iso-electric point (pH 4.9). In these 

conditions BSA is negatively charged due to the dominance of acidic groups over amine 

groups, so that electrostatic binding is more likely on the cationic PAH layers than on 

anionic PSS layers.

In all cases the distribution of the amount of adsorbed BSA is controlled by the 

permeation of the adsorbate (polyelectrolytes and BSA) and follows the porosity of PS,

i.e. lower PS layers having low porosity contain less BSA and vice versa as the more 

porous top PS layer contains more BSA.
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Figure 4.1-7a Ellipsometric ^(A) spectra before (dot) and after (line) adsorption of PSS/BSA 
into the PS layer.
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Figure 4.1-7b Five-layer model for BSA adsorbed on the PSS layer.
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Figure 4.1-8a Ellipsometric M̂A,) spectra before (dot) and after (line) adsorption of PAH/BSA 
into the PS layer.
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Figure 4.1-8b Five-layer model for BSA adsorbed on the PAH layer.
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4.1.4 Adsorption of BSA: dynamic study

The kinetics of BSA adsorption into porous silicon were also studied in situ by 

performing ellipsometric spectral measurements continuously. Fig. 4.1-9 shows A as a 

function of time during adsorption of BSA into the PS substrate at the wavelength of 

700 nm.
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Figure 4.1-9 Kinetics of adsorption of the BSA into the PS substrate measured by in situ 
ellipsometry at a wavelength of 700 nm.

It can be seen that, the injection of BSA into the cell causes quite a substantial 

increase in A value. It should be taken into account that refractive indices of pure 

Trizma buffer and buffer solution containing BSA might be slightly different, which 

may cause a false ellipsometric response.

The whole process of adsorption lasts no more than 10 minutes. Flushing the cell 

with pure Trizma buffer solution results in a sharp drop of the signal, most likely caused 

by changes of the refractive index, followed by a slow reduction and final stabilisation 

of A in the course of washing out weakly bound excessive BSA molecules. It is believed 

that the difference between initial and final values of A represents a true response due to 

the adsorption of BSA.
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§4.1 Protein Adsorption into Porous Silicon

The influence of intermediate layers of polyelectrolyes on adsorption of BSA 

was studied with kinetic ellipsometry measurements. The results for BSA adsorption on 

PSS and PAH layers are shown in Figs. 4.1-10 and 4.1-11, respectively. In contrast to 

the results in Fig. 4.1-9, the signal goes down at every consecutive injection of solutions. 

The spikes between injections are caused by the presence of air in the cell during 

changes of the solution and flushing the cell with Millipore water. Comparison of the 

initial and final stages of adsorption on these two graphs shows that the changes in A for 

adsorption of BSA on PSS are larger than those for adsorption of BSA on PAH.

2 00 -r

175 -

150-

1 25-

w0)0 100  -

Trizma
• • • • • • 'O)0"O

<
PSS

5 0 -

BSA2 5 -
Trizma

-25
0 10 20 30 40 50

Time, min

Figure 4.1-10 Kinetics of adsorption of the PSS/BSA into the PS substrate measured by in 
situ ellipsometry at a wavelength of 700 nm.

Interpretation of the kinetic spectroscopic ellipsometry measurements is quite 

difficult. Apart from the above mentioned side effect of the refractive index of the 

environment, the response depends very much on the shape of the A(^) or spectra 

and the choice of the wavelength.
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Figure 4.1-11 Kinetics of adsorption of the PAH/BSA into the PS substrate measured in 
situ at a wavelength of 700 nm.

A schematic diagram in Fig. 4.1-12 demonstrates clearly that depending on the 

choice of the wavelength, the value of A or 'P may rise (7), fall (2) or even remain intact

(3) in the course of adsorption. From this point of view, static spectroscopic 

ellipsometry measurements together with proper fitting provide more reliable 

information on adsorption of proteins.

</>
CD<1)
O)(I)“O
< f

Figure 4.1-12 Effect of the choice of X on the kinetic ellipsometric measurement: a -  initial 
A(A,) spectrum; b -  post-adsorption spectrum.
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§4.2 Registration of low molecular weight environmental toxins with the TIRE method

4.2 Registration of Low Molecular Weight Environmental 
Toxins with the Method of Total Internal Reflection 
Ellipsometry

Typical TIRE spectra of T(X) and A(X) measured on bare chromium-gold coated 

slides are shown in Figure 4.2-1. The T([X) spectrum, representing an amplitude ratio of 

p- and s- components of polarized light (tan ¥  = Ap / As ) resembled very much the SPR

curve. While the A(A,) spectrum, representing the phase shift between p- and s- 

components (A = (pp -(ps), appeared in Fig. 4.2-1 as a nearly vertical drop in A (from

270° down to -90°) which is a new quantity that does not exist in the SPR method. 

Because of the high sensitivity of A(A.) spectra to molecular adsorption, they were 

exploited in the current work to study the specific binding of toxins.

300

4 0 -
250

200
3 5 -

150

2 0 - -50

-100

400 500 700 1000600 800 900300

X, nm

Figure 4.2-1 Typical spectra of T(A.) and A(A.) obtained by the TIRE method.

4.2.1 Simazine and atrazine registration

Typical transformations of TIRE spectra in the course of the adsorption 

sequences for atrazine and simazine are shown in Figure 4.2-2. All stages of adsorption
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§4.2 Registration of low molecular weight environmental toxins with the TIRE method

are well-resolved, with the spectral shift corresponding to the size of adsorbed 

molecules. For example, the largest shift of A(A,) spectra is caused by adsorption of quite 

large antiserum to atrazine (as-atrazine) molecules.

bare Cr/Au substrate
PAH
protein A
as atrazine
atrazine

a

O)oTD

 bare Cr/Au substrate
 PAH

protein A
 as simazine

simazine

i 1 i 1 i 1 i 1 i 1 i 1 r1
400 500 600 700 800 900 1000

X ,  nm

b
Figure 4.2-2 A typical set of (̂A.) and A(X) TIRE spectra corresponding to the following 

sequence of adsorptions: a -bare Cr/Au substrate /PAH/ as -atrazine! atrazine', b 
-  bare Cr/Au substrate /PAH/ as -simazine!simazine.

The enlargement of a section of XP(X) and A(?u) spectra (given in Fig. 4.2-3), 

shows a larger shift of A(X) curves as compared to ^ (k )  in response to adsorption of as-
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§4.2 Registration of low molecular weight environmental toxins with the TIRE method

atrazine and specific binding of atrazine. Further analysis and fitting of TIRE data were 

performed using A(X) spectra.

Similar results were obtained for simazine (see Figure 4.1-4).
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3 2 -

3 0 -

2 6 -

2 4 -
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720 760 780700 740 800 820 840 860680
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b

Figure 4.2-3 Enlargement of a section of A(A,) (a) and T(X,) (b) TIRE spectra. Numbers near 
the spectra correspond to the following sequence of adsorptions 1 -  bare Cr/Au 
substrate, 2 -  PAH, 3 -  protein A, 4 -  antiserum to atrazine, and 5 -  atrazine.
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Figure 4.2-4 Enlargement of a section of A(A,) (a) and ^(Ji) (b) TIRE spectra corresponding 
to the following sequence of adsorptions: bare Cr/Au substrate /PAH /as- 
simcizine /sim azine.

The adsorption of quite small atrazine molecules, with a molecular weight of 

215.7 g/mol, resulted in a noticeable spectral shift. In contrast to that, SPR 

measurements performed on the same samples, and following a similar sequence of 

absorptions, gave much smaller, almost unnoticeable, shifts of SPR curves, as illustrated

1 8 0



§4.2 Registration of low molecular weight environmental toxins with the TIRE method

by Fig. 4.2-5. This provided strong evidence of the high sensitivity of the TIRE method 

as compared to the conventional Kretschmann SPR technique.
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 PAH
 protein A
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 atrazine
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Figure 4.2-5 A set of SPR curves corresponding to the following sequence of adsorptions: a 
-  initial Cr/Au substrate/PAU/as-atrazine/atrazine; b -  enlargement of a section 
of the SPR spectra.

Fitting of the experimental spectra of VF(X) and A(X) was carried out using a four- 

layer model: aqueous Trizma/HCl buffer solution -  Cauchy layer -  Cr/Au substrate -  

BK7 glass. A Cauchy dispersion function (Eq. 3-6, §3.2) was deployed for the fitting of
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the adsorbed organic and biomaterial layers. The values ^ =1.396 , Bn =0.01 and 

Cn = 0  were fixed during the fitting. This gave the value of the refractive index of 1.42

at X = 633 nm, which is typical for proteins and polyelectrolytes.

The obtained thicknesses of the chromium/gold layer and all of the Cauchy 

layers are summarised in Table 4.2-1. The fitting was performed several times for every 

sample yielding slightly different values. Thus, the accuracy of the obtained thickness 

values was found to be in the range of 1 -  3%. The data presented in Table 4.2-1 show a 

consistent increase in the thickness of layers following the adsorption sequence. In the 

final step, the changes in thickness due to binding of toxins were found to be of 4.71 nm 

and 5.77 nm for atrazine and simazine, respectively.

Table 4.2-1 Results of the TIRE data fitting.

layer
content Cr/Au

PAH protein A
antiserum

atrazine
thickness,
nm

substrate to atrazine

dcr/Au 30.309+0.168 - -  • - -

dcauchy - 4.303+0.043 7.721+0.012 9.204+0.184 13.915+0.313

^dcauchy - - - - 4.711

layer
content

thickness,
nm

Cr/Au

substrate
PAH protein A

antiserum to 

simazine
simazine

dcr/Au 29.077+0.365 - - - -

dcauchy - 3.255+0.033 8.582+0.150 12.207+0.214 17.981+0.794

^dcauchy - - - - 5.774

The results of the fitting of the SPR data are presented in Table 4.2-2. A 

noticeable change in thickness of 2.731 nm due to binding of atrazine was registered. 

The obtained value does not accord with that given in Table 4.2-1 (4.711 compared to 

2.83), possibly because of the lower sensitivity of SPR measurements and difficulties in 

fitting SPR data.
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Table 4.2-2 Results of the SPR data fitting.

Cr/Au

substrate
PAH protein A

antiserum to 

atrazine
atrazine

Cr/Au

substrate

n = 0.251 n = 0.263 n = 0.260 n = 0.267 n = 0.286

k = 3.282 k = 3.312 k = 3.313 k = 3.336 k = 3.400

<P = 36.013 d = 35.475 d = 35.655 d = 35.303 d = 34.486

Organic

film

n -  1.4 n = 1.4 n = 1.4 n -  1.4 n — 1.4

d = 0.422 d = 1.952 d = 2.973 d = 6.918 d — 9.748

MSE 3.845 3.509 4.256 4.003 3.790

dd, nm - - - - 2.83

Preliminary experiments with simazine and atrazine proved the feasibility of the 

TIRE method, which could be applied for the registration of T-2 my cotoxin which has a 

larger molecular weight than simazine or atrazine.

A22 T-2 mycotoxin registration

4.2.2.1 TIRE and SPR measurements

A typical set of TIRE A(>.) spectra in the course of consecutive adsorption steps
L

of PAH, protein A and T-2 mycotoxin antibodies (polyclonal or monoclonal ), as well as 

consecutive binding steps of T-2 mycotoxin of increasing concentrations (in the range of 

0.15 ng/ml -  1500 ng/ml) are shown in Fig. 4.2-6.

All stages of adsorption are well resolved, with the spectral shift corresponding 

to the size of adsorbed molecules. For example, the largest shift of A(>o) spectra is 

caused by the adsorption of large monoclonal antibody molecules. The adsorption of 

quite small T-2 mycotoxin molecules in the lowest concentration of 0.15 nm/ml resulted 

in a noticeable spectral shift.

a The values of d  are given in nm.
b Henceforth referred as mono- or poly- AB, correspondingly.
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Figure 4.2-6 A typical set of A(X) spectra for an initial bare Cr/Au surface (7), after the 
consecutive adsorption steps of PAH (2), protein A (3), monoclonal antibodies 
(4), and after binding of T-2 mycotoxin from solutions of different 
concentrations in ng/ml: 0.15 (5), 1.5 (6), 7.5 (7), 15 (8), 75 (9), 150 (10), 300 
(11), 600 (12), 1200 (13), and 1500 (14).

A gradual shift of the A(A,) spectra was observed in the course of T-2 mycotoxin 

binding. Such experiments were repeated several times using both poly- and mono-AB. 

The set of ¥(7,) spectra (shown in Fig. 4.2-7) corresponding to the same sequence of 

adsorptions gave a much smaller spectral shift, which is in line with theoretical 

predictions (see RefsJ ’51).
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Figure 4.2-7 A typical set of VF(7) spectra for the initial bare Cr/Au surface (7), after 
consecutive adsorption steps of PAH (2), protein A (3), monoclonal antibodies
(4), and after binding of T-2 mycotoxin from solutions of different 
concentrations in ng/ml: 0.15 (5), 1.5 (6), 7.5 (7), 15 (S), 75 (9), 150 (10), 300 
(11), 600 (12), 1200 (13), and 1500 (14).

This was the case for SPR measurements performed on the same samples, 

following a similar sequence of adsorptions (see Fig. 4.2-8), which did not show a 

significant response to low molecular weight molecules, such as simazine and atrazine. 

The results of the fitting of the SPR data are presented in Table 4.2-3. A noticeable 

change in thickness of 2.731 nm due to the binding of T-2 mycotoxin (at a concentration 

of 600 ng/ml) was registered.
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Figure 4.2-8 A set of SPR curves corresponding to the following sequence of adsorptions: 
initial bare Au surface (/), after consecutive adsorption steps of PAH (2), 
protein A (3), polyclonal antibodies (4), and after binding of T-2 mycotoxin 
from solutions of different concentrations in ng/ml: 15 (5), 30 (6), 75 (7) and 
600 (8).

Table 4.2-3 Results of the SPR data fitting for T-2 mycotoxin.

Cr/Au

substrate
PAH protein A

polyclonal

antibody

T-2 mycotoxin, 

c = 600 ng/ml

Cr/Au

substrate

n = 0.228 n = 0.2399 n = 0.245 n = 0.227 n = 0.235

k = 3.397 k = 3.488 k = 3.4699 k = 3.286 k = 3.338

d“ = 34.599 d= 33.845 ^ = 33.671 cl = 35.924 c/= 35.267

Organic

film

- n = 1.404 n=  1.410 n=  1.410 1.410

- d = 4.654 d = 2.936 d= 12.143 d= 14.874

MSE 0.810 3.046 4.157 1.617 1.697

Sd, nm - - - - 2.731

a The values of d are given in nm.
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TIRE fitting of the experimental T(X) and A (X) spectra to the four layer model 

(BK7 glass -  Cr/Au layer -  Cauchy layer -  Ambient (i.e. aqueous buffer solution)) was 

carried out with dedicated WVASE32® software.

Firstly, the optical parameters (thickness d, refractive index n and extinction 

coefficient k) of the Cr/Au layer were found by fitting the respective ¥(7,) and A(A.) data 

for the bare Cr/Au coating. Then, the parameters of organic layers were determined by 

fitting respective A(X) spectra0, while the parameters for the Cr/Au layers were fixed. 

The Cauchy dispersion function was used to describe the adsorbed organic and bio­

layers. The parameters of all of the layers obtained by fitting are given in Table 4.2-4. 

The values of n and k are given at wavelength X = 633 nm, although the fitting was 

performed across the whole spectral range.

Table 4.2-4 Parameters of the four-layer model in TIRE fitting.

M layer content layer parameters comments

- AMBIENT -  glass BK7
n = 1.515 

k = 0

n and k were fixed during the 

fitting

2 . Chromium-gold substrate

n = 0.359 +0.078 

k = 2.857 + 0.114 

d ~ 29.8 + 2.6 nm

1 . Cauchy

n = 1.42 

k = 0
A n = 1.396 

B„ = 0.01

c„ = 0
d, nm

n, k, An, Bn, and Cn were fixed 

during the fitting; d was the 

subject of fitting depending on 

the type of adsorption layer 

and T-2 mycotoxin 

concentration (see Table 4.2-5 

and Fig. 4.2-9)

0.
Trizma/HCl buffer 

solution

n=  1.3326 

k = 0
n and k were fixed during the 

fitting

a Because of a limited sensitivity of both T(X) TIRE spectra and SPR curves, further experimental 
analysis was carried out using A(X) TIRE spectra.
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Since simultaneous evaluation of the thickness and refractive index of thin 

transparent films is theoretically impossible in ellipsometry[6], it was assumed that 

refractive indices of all organic and bio-organic layers were the same and equal to 1.42 

at wavelength X = 633 nm, so that all changes in adsorption layer were related to 

changes in thickness. Such an assumption is not strictly correct but is reasonable, so that 

all of the changes in the adsorption layer will be associated with the thickness. 

Following this assumption, the parameters An, Bn and Cn of the Cauchy layer were fixed 

during fitting.

The fitting yields the following values of thickness: 1.2 + 0.18 nm for the PAH 

layer; 4.23 + 1.06 nm for the protein A layer; 8.55 + 1.71 and 7.54 + 1.22 nm for the 

layers of poly- and mono-AB, respectively. Changes in the film thickness (Sc/ in nm) 

caused by binding of T-2 mycotoxin from its solutions of different concentrations are 

shown in Fig. 4.2-9 and Table 4.2-5.

The main changes in the film thickness occurred at the concentrations of T-2 

mycotoxin in the range of 10 -  200 ng/ml, when poly-AB was used, while a much 

sharper increase of the response was observed in the case of using mono-AB.

5

4

3

E
c
"O 9
CO ^  

1 

0

Figure 4.2-9 Changes in the adsorption layer thickness Sc/ caused by T-2 mycotoxin binding 
vs. T-2 mycotoxin concentration in solution. The data for both polyclonal and 
monoclonal antibodies are presented.

★ polyclonal antibodies; ® monoclonal antibodies

c, ng/ml
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At higher concentrations of T-2 my cotoxin, the saturation of the response 

observed can be caused by the saturation of antibody binding sites with T-2 molecules. 

The minimal registered concentration of T-2 mycotoxin was 0.15 ng/ml. The values of 

bd = 4 -  5 nm at saturation are larger than the size of T-2 molecules, which could be 

explained by non-specific adsorption of T-2 mycotoxin, adsorption of molecules of 

solvent (methanol, ethanol, acetonitril), or the binding of large aggregates (micelles) of 

T-2 mycotoxin molecules.

Table 4.2-5 Changes in the adsorption layer thickness bd caused by T-2 mycotoxin

binding depending on the T-2 mycotoxin concentration in solution.

T-2 mycotoxin 

concentration, ng/ml

Sd, nm 

(polyclonal antibodies)

Sd, nm 

(monoclonal antibodies)

0.15 0.170 + 0.012 0.186 + 0 .0 2

1.5 0.233 + 0.1 0.314 + 0.016

7.5 0.336 + 0.01 0.301 +0.03

15 0.992 + 0.3 3.400 + 0.34

30 1.438 + 0.264 3.875 + 0.19

75 3.381 +0.727 4.045 + 0.044

150 3.941+0.1 4.111+0.205

300 4.16 + 0.5 4.191+0.21

3000 4.643 + 0.1 4.182 + 0.21

60000 5.073 + 0.258 -

42.2.2 TIRE kinetics measurements

The study of the kinetics of antibody-toxin binding was carried out by 

measuring a series of TIRE spectra during exposure to a T-2 mycotoxin solution for a 

certain period of time (usually 1 0 -2 0  min). Then the time dependences of either VF or 

A could be obtained at a selected wavelength. Typically, the time dependence of was 

used, and the wavelength was chosen on the linear part of the VP(A,) spectra (marked on 

the graph with two crosses) closest to the SPR minimum, as shown in Fig. 4.2-10.
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Figure 4.2-10 The choice of wavelength (the dot) on the ¥(7,) spectrum for kinetics 
measurements. Crosses indicate the linear range on the (̂A.) spectra.

This provided a wide linear dynamic range for kinetics measurements. These 

measurements were repeated for different concentrations of T-2 mycotoxin, and typical 

results are presented in Fig. 4.2-11.
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Figure 4.2-11 Typical kinetics of the response in the course of binding T-2 mycotoxin to 
monoclonal antibodies and polyclonal antibodies at a wavelength of 700 nm.
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An increase in the T  value followed by its saturation is observed for both 

polyclonal and monoclonal antibodies. However, the binding reaction is happening 

faster on mono-AB (-10 min) compared to poly-AB (17 -  20 min) (see Fig. 4.2-11).

As shown in §3.7, the analysis of binding kinetics can be performed using the 

following integral equation for the sensor response^71:

R= T -  %T*" I1 ~ exP[~(C M l (4 -3)K- c + k d

where R is the response of a sensor (changes in ¥  in our case) and Rmax is the maximal 

response corresponding to the saturation of binding sites; ka and kd are, respectively, 

coefficients of adsorption and desorption; and C is the concentration of T-2 mycotoxin 

in solution.

Following the procedure described by Liu et al.m and §3.7, the experimental 

kinetic curves for every concentration C were plotted in semi-logarithmic scale (lnT^)) 

and yielded a linear dependence with the slope:

S =kaC + kd (4.4)

The obtained dependencies of S(C) for mono- and poly-AB are shown in Fig.

4.2-12.

0 .2 -

c
E

■O

+ocvIIw

0.0 - ★ poly-AB (y=0.000173x+0.05493) 
9 mono-AB (y=0.00122x+0.02938)

0 100 200 300

C(T-2), ng/ml

Figure 4.2-12 Experimental points and fitting graphs (with equations) of S=kaC+k(1 vs. 
concentration (C) of T-2 mycotoxin for mono-AB and poly-AB.
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The values of ka and kd can be obtained, respectively, from the slope and 

intercept of the linear graphs S(C) in Fig. 4.2-12. They are shown in the form of linear 

equations near respective data, and also summarized in Table 4.2-6 along with the 

association constant Ka, which is defined as a ratio of adsorption and desorption 

coefficients KA=ka/k d.

Table 4.2-6 Parameters of T-2 mycotoxin binding kinetics.

ka (mol 1 • / • s 1) M * " ') K A(moV' I)

poly-AB 1.555-103 9.1510-4 1.7-105

mono-AB 9.33-103 4.9-10'4 1.910'

The obtained values for the association constant Ka are typical for highly 

specific affinity reactions, such as antibody-antigen binding (see, for example, Ref.[7]). 

The much higher Ka value for mono-AB is possibly caused by higher specificity of T-2 

mycotoxin monoclonal antibodies, as compared to polyclonal ones.

422.3  AFM analysis of samples

The formation of large aggregates of T-2 mycotoxin (associated with 

anomalously large thicknesses of adsorbed layers, see §4.2.2.2) on the surface was 

directly observed with AFM.

The tapping mode AFM study revealed a repeatable grainy structure which 

appears in Fig. 4.2-13b after binding T-2 mycotoxin molecules. A more or less flat layer 

(with mean roughness0 Ra =0.935 ±0.137 nm) of immobilized mono-AB antibodies in 

Fig. 4.2-13a transforms into a layer with a plainly distinguishable grainy structure and 

rougher surface (with mean roughness Ra =3.046 ±0.430 nm) in Fig. 4.2-13h after

binding T-2 mycotoxin molecules from their 500 ng/ml solution.

As can be seen from the AFM images, the observed small grains of -30 nm are 

clustered on the surface to form larger aggregates of -300 nm (see Fig. 4.2-14).

a Detailed information (including the definitions used) about AFM image analysis is given in Appendix D.
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Figure 4.2-13
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AFM tapping mode images (height, pseudo-3D, and roughness) of the layer 
of immobilized monoclonal antibodies to T-2 mycotoxin (ai -  0 3 ), and the 
same layer after binding T-2 mycotoxin molecules (bi -  ba).
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Figure 4.2-14 AFM tapping mode images (section analysis) of the layer of bounded T-2 
mycotoxin molecules: a -  aggregate of micelles; b -  micelle itself.

4.2.2.4 Real samples

The main purpose of this part of the study was to investigate the possible 

occurrence of mycotoxin in animal feeds and human food. This study was divided into 

two parts: firstly, the detection of the presence of mycotoxin in the samples, and
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secondly, the quantification of the amount of mycotoxin in these samples (a detailed 

description of the sample preparation routine was given in §3.4.7).

The results revealed that all of the samples except one (namely, “fresh” muesli) 

were contaminated with mycotoxin to a greater or lesser extent (see Figs. 4.2-15 and

4.2-16). Even the “fresh bread” sample showed a small but noticeable shift in the A(k) 

TIRE spectrum (see Fig.4.2-15h).

300
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mono-AB  
 mouldy bread

2 5 0 -
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150-

w<D
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O)
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a

300
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1 50-

w
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700680 720 740660 760 780
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b
Figure 4.2-15 A  typical set of A(7) TIRE spectra for the initial bare Cr/Au surface (buffer), 

after consecutive adsorption steps of protein A, monoclonal antibodies, and 
after binding of T-2 mycotoxin from its solutions in mouldy bread (a) and 
fresh bread (b) samples.
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 buffer; PAH; protein A; mono-AB;
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b
Figure 4.2-16 a -  a set of A(A) TIRE spectra for the initial bare Cr/Au surface (1) after 

adsorption of monoclonal antibodies (2) and after binding of T-2 mycotoxin 
from its solutions in “fresh” (3) and “stale” (4) muesli samples; 
b -  a set of A(A,) spectra for the initial bare Cr/Au surface (buffer), after 
consecutive adsorption steps of protein A, PAH, monoclonal antibodies, and 
after binding of T-2 mycotoxin from its solutions in “stale” and mouldy 
buckwheat samples .

All samples contaminated with mould contained a significant amount of 

mycotoxin (Table 4.2-7). The amount of mycotoxin was determined by the
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superposition of experimental points on the calibration curve for monoclonal antibodies 

as shown in Fig.4.2-17.

Table 4.2-7 Detection and quantification of the T-2 mycotoxin in the food samples.

sample Sd, nm concentration o f T-2 mycotoxin in the sample

mouldy fodder 4.900 more than 600 ng/ml

stale bread 0.031 less than 1.5 ng/ml

mouldy bread 4.391 more than 600 ng/ml

mouldy maize 4.369 more than 600 ng/ml

fresh muesli 0 . 0 0 0 none

stale muesli 0.298 less than 1.5 ng/ml

stale buckwheat 1.199 more than 7.5 but less than 15 ng/ml

mouldy buckwheat 5.274 more than 600 ng/ml

6

5

4

c

1

0

Figure 4.2-17 Changes in the adsorption layer thickness hd caused by T-2 mycotoxin 
binding vs. T-2 mycotoxin concentration in real food samples.
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4.2.3 Nonylphenol registration

4.2.3.1 TIRE measurements

A typical set of TIRE ¥(7,) and A(7) spectra in the course of consecutive 

adsorption steps of PAH, protein A, antibodies to nonylphenol, and binding of 

nonylphenol from its 3.7, 63 and 10000 ng/ml solutions is shown in Figure 4.2-18.

4 0 -

3 0 -

c/j
CDQJ

10-
—  Antiserum 

Nonylphenol c,=3.7 ng/ml
— Nonylphenol cs=63 ng/ml 
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- 1 0 0 -

740 760680 700 720 780 800 820 840

A., nm

b
Figure 4.2-18 A typical set of TiA.) and A(A) TIRE spectra corresponding to the following 

sequence of adsorption steps: initial spectrum of Cr/Au layer (7), after 
adsorption of PAH layer (2), after deposition of protein A (3), after 
deposition of nonylphenol antiserum (4), after binding of nonylphenol from 
its solutions of 3.7 ng/ml (5), 63 ng/ml {6), and 10000 ng/ml (7).
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The spectral shift (8 ^, nm), caused by nonylphenol binding, depends on the 

concentration of nonylphenol, as shown in Figure 4.2-19. It is intriguing that binding of 

quite small molecules of nonylphenol with a molecular weight of MW = 220.39 g/mol 

shows a substantial spectral shift of about 45 nm at saturation. This effect is similar (and 

even more pronounced) to that described above upon binding of T-2 mycotoxin 

molecules.

50-

40-

E 30-
c
c<
CO

2 0 -

10-

1 10 100 1000 10000
C, ng/ml

Figure 4.2-19 A typical dependence of the spectral shift SX on the concentration of 
nonylphenol.

The values of the thickness of the adsorbed layer were obtained by the fitting of 

the experimental T(^) and A(X) spectra to the four-layer model (BK7 glass -  Cr/Au 

layer -  Cauchy layer -  aqueous buffer solution), which was carried out using the 

dedicated WVASE32® software. The fitting procedure was identical to that described 

earlier (see §4.2.2.2).

The parameters of all layers obtained by fitting are given in Table 4.2-8. The 

values of n and k are given at a wavelength of X = 633 nm, although the fitting was 

performed across the whole spectral range. The effective optical parameters of the 

Cr/Au coating were different in the two series of samples studied.

Changes in the film thickness (8 d) caused by the binding of T-2 mycotoxin from 

its solutions of different concentrations are shown in Fig.4.2-20 and Table 4.2-9.
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Table 4.2-8 Parameters of the four-layer model in TIRE fitting0.

M layer content
layer parameters

series 1 series 2

-
AMBIENT-  

glass BK7
n =  1.515;** = 0

2 .

Chromium-

gold

substrate

n = 0.263 ± 0.014 
k = 3.202 + 0.061 

d = 27.69 ± 0.74 nm

n = 0.328 ± 0.014 
k = 2.999 ± 0.053 

d = 36.38 ± 1.51 nm

1 .

Cauchy

layers:

n = 1.42; k* = 0 

A„*= 1.396; B„*= 0.01; C„*= 0 

d  is the subject of fitting depending on the type of adsorption 

layer and nonylphenol concentration

PAH d -  0.94 + 0.58 nm d=  1.57 ± 0.54 nm

protein A d = 2.97 + 1.40 nm d=  5.04 ± 1.73 nm

nonylphenol

antiserum d  =16.27 + 5.12 nm d =22.90 ± 6.07 nm

nonylphenol The results are shown on the graph in Fig.4.2-20 and Table 4.2-9

0 .

Trizma/HCl

buffer

solution

n = 1.3326 

k*= 0

Similar to earlier observations on T-2 mycotoxin, the main changes in the film 

thickness occur at the concentrations of nonylphenol in the range of 2 0  -  2 0 0  ng/ml. 

The saturation of the response is observed at concentrations of nonylphenol higher than 

2 0 0  ng/ml, which is most likely due to the saturation of antibodies’ binding sites.

The minimal registered concentration of nonylphenol was 1.2 ng/ml. The value 

of 8 d = 23 nm at saturation is much larger than the length of a nonylphenol molecule of 

about 1.5 nm. The observed changes in the adsorption layer thickness are even more

a Parameters indicated with an asterisk (*) were fixed during fitting.
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dramatic than those described earlier for T-2 mycotoxin, which allowed us to assume the 

mechanism of binding of aggregates of nonylphenol molecules.

Table 4.2-9 Changes in the adsorption layer thickness hd caused by nonylphenol 

binding dependant on nonylphenol concentration in solution.

nonylphenol 

concentration, 

ng/ml

ddy nm

1 .2 0.289 ± 0.058
3.7 0.74 ± 0.396
7.5 1.9996 + 0.3897
15 1.985 + 0.3
30 4.982 + 2.192
63 9.782 + 2.947
125 17.521+2.816
250 22.543 + 0.718
500 23.672 + 0.4

1 0 0 0 23.156 ±0.517

1 0 0 0 0 23.2 + 0.232

25-

20-

15-E
c
As
V

5 -

0-

1 1000010 100 1000

C, ng/ml

Figure 4.2-20 Results of TIRE data fitting: the 
dependence of changes in the adsorption layer 
thickness on the concentration of nonylphenol

4.2.3.2 TIRE kinetics measurements

The kinetics of the binding of nonylphenol to respective antibodies was studied 

by measuring TIRE spectra every -1.5 -3 .0  s during exposure to the nonylphenol 

solution (typically for 15 -  20 min). Then, time dependences of either 'F or A could be 

obtained at a selected wavelength. Typically, the time dependence of ¥  was used, since 

¥  (k) spectra give a wider linear range as compared to A(^) spectra.

Such measurements were repeated for different concentrations of nonylphenol: a 

typical kinetic spectra is presented in Fig. 4.2-21. The analysis of binding kinetics has 

been done similarly to that previously described for the T-2 mycotoxin routine (see 

§4.2.2). The obtained dependency of S(C) for nonylphenol is shown in Fig. 4.2-22. The 

obtained values for the coefficients of adsorption (ka) and desorption (k(i), were: 

=1.555 103 mol~l - l ’S~l and kd = 9.15-10-4 s~l , correspondingly. The association
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constant (KA), being a ratio of adsorption and desorption coefficients, can therefore be 

found as K A = 1.6 -106 m o f1 •/. The value of KA obtained for nonylphenol binding is 

typical for highly specific reactions of antibody-antigen binding.

0 10 20 30 40 50 60 70 80

41.4 -

155
41.2 -

4 1 .0 - 150 «

145

40.6 -

14040 .4 -

0 10 20 30 40 50 60 70 80

time, min

Figure 4.2-21 Typical TIRE kinetics of binding nonylphenol from its 250 ng/ml solution to 
antibodies.

0.16
y = 2.32324E-4 * x + 0.03051

0.14-

0.12  -

0 . 1 0 -

0.08-

0.06-

0.04-

0.02
1000 200 300 400 500
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Figure 4.2-22 Experimental points and the fitting graph (with equation) of a S=kaC+kd vs. 
concentration of nonylphenol.
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4.2.3.3 The model of the nonylphenol micelle

The TIRE method demonstrated anomalously large responses for the binding of 

nonylphenol molecules. Since non-specific binding of nonylphenol and T-2 mycotoxin 

molecules was eliminated by washing in 25% methanol or acetonitryl, the only 

remaining logical explanation was the binding of large molecular aggregates of 

nonylphenol molecules.

The adsoiption of solvent, i.e. methanol or acetonitryl, may also have 

contributed to the anomalous increase in both thickness and mass of adsorbed layers. 

However, a direct experimental check did not show any substantial mass changes after 

washing the samples in the above organic solvents.

The amphiphilic molecules of nonylphenol can form large aggregates, such as 

micelles, in aqueous solutions during the dilution of their initial solutions in organic 

solvents (methanol or acetonitryl). Figure 4.2-23 shows a schematic diagram of such a 

micelle of nonylphenol molecules in an aqueous medium with hydrophilic phenol 

groups on the exterior and hydrophobic alkyl chains on the interior; a certain number of 

solvent molecules can be trapped inside the micelle.

Figure 4.2-23 Schematic representation of nonylphenol micelles formed in aqueous solutions.

The mass of the micelle (M,„) can be estimated from the value of added mass 

Am = 18.3jUg / cm2 obtained from the QCM experiment (see. Ref.|S|) and the surface 

concentration of adsorbed micelles (Cm):
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M  = Am • Am, (4.5)

where Am=l/Cm is the area occupied by a single micelle specifically bound to the IgG 

molecule, e.g. an antibody, occupying the area of approximately 1 0 0  nm , so that 

Am =100 nm2. Thus M m = 18 .310“5(ytg/m2) x l0 0 1 0 ‘18(m2) = 1 .8310 '20(l:g).

The mass of the micelle, having the radius r, consists of the mass of nonylphenol 

molecules on the micelle surface ( A = 4 n r 2) and the mass of solvent trapped in the 

4 ,
volume (V = —7tr ) inside the micelle:

3
4m? 3 4nM  2

= — — r  +  r . . . .

3 A0N a ’ (4-6)

where p  = 789 (kg / m 3) is the density of ethanol, M=0.22039 (kg/mol) is the molecular

weight of nonylphenol, A0 = 0 .2 nm2 = 2-10"19m2 is the area occupied by an alkyl

chain of nonylphenol molecule in a closely packed monolayer on the micelle surface, 

and Na is the Avogadro's number (1/mol). The cubic equation (4) can be rewritten in the 

standard form:

ar3 +br2 +cr + d = 0 , (4.7)

, 4 np 4x3.14x789 3 3where a = —— = ----------------- ~ 3.305■ 10 (kg/m  ),

, 4nM 4x3.14x0.22039 n „ 1A-5 „  , 2 xb = --------=    — « 2.3-10 (kg/cm ) ,
A0N a 2 • 10 x 6.022-10

c = 0 , and

d = - M m = -3 .66 -10"20 (kg) .

Eq. (4.7) has the only physically feasible solution of r = 1.56 • 10"8m = 15.6 n m . 

Considering the length of the nonylphenol molecule, I = 1.5 nm, the exterior diameter of 

the micelle (see Fig. 4.2-23) is equal to 0  = 2r+2/ = (2x15.6) + (2x1.5) = 34.2(nm).

The obtained values of r and 0  for all three solvents used (ethanol, methanol, 

and acetonitryl) are summarized in Table 4.2-10. As one can see, the micelle size does 

not alter very much with the type of solvent. The amount of solvent trapped inside the 

micelle is not really known, so the effective value of the density can vary.
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Table 4.2-10 The size of nonylphenol and T-2 mycotoxin micelles filled with different

compounds.

Filling

medium
P, kg/m2

nonylphenol T-2 mycotoxin

r, nm 0 , nm r, nm 0 , nm

Ethanol 789 15.6 34.2 8 .8 19.6

Methanol 791.8 15.6 34.2 8 .8 19.6

Acetonitryl 780 15.7 34.4 - -

Air 1.168 28.1 59.2 13.9 29.8

The above model can be expanded to other molecules, for example for T-2 

mycotoxin. A study of T-2 mycotoxin binding showed an increase in the film thickness 

of 4.5 nm in TIRE experiments and an added mass of 3.8 pg/cm2 in QCM 

measurements[8].

T-2 mycotoxin is a hydrophobic molecule soluble in organic solvents (ethanol 

and methanol were used), and therefore prone to form aggregates (micelles) in aqueous 

solution. Although a T-2 mycotoxin molecule has a more complex 3D configuration as 

compared to a straight molecule of nonylphenol, (see Table 2.6-2) the above model can 

still be formally applied. The resulting dimensions of T-2 mycotoxin aggregates are 

presented in Table 4.2-10.

However, the micelles may not be spherical and can be bound not to one 

antibody receptor but to two or more. In fact, the obtained area occupied by a micelle is 

therefore much larger than the antibody binding site, which means that binding to two 

or more antibodies is a very likely scenario. Because of all of the uncertainties 

mentioned above, the proposed micelle model gives only a very rough estimate of its 

size.

4.2.2A AFM analysis of samples

The formation of large micelles of nonylphenol on the chromium-gold surface 

was also directly observed with AFM. Both contact and tapping modes of the AFM scan 

showed an obvious transformation from a relatively homogenous layer (mean roughness
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Ra =0.521 ±0.115 nm) of immobilized antibodies to a much more rough (mean

roughness Ra = 3.791 ± 0.351 nm) layer with distinguishing granular features after the

binding of nonylphenol molecules from their 20 ng/ml solution. AFM images reflecting 

the height and roughness of the antiserum to nonylphenol and after binding of 

nonylphenol are presented in Figures 4.2-24a and 4.2-24b, correspondingly.
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Figure 4.2-24a AFM tapping mode images of the layer of immobilized antibodies to 
nonylphenol: ai -  height, dz -  pseudo-3D, <33 -  roughness, <34 -  section 
analysis.
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Figure 4.2-24b AFM tapping mode images of bounded nonylphenol molecules: bi -  height, 
bz -  pseudo-3D, b3 -  roughness, b4 -  section analysis.

As can be seen from the particle analysis of the AFM images (Fig. 4.2-25), the 

micelles are rather flat, which could be the result of their collapse after the drying of the 

sample.
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Figure 4.2-25
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AFM particle analysis images of the layer of bounded nonylphenol 
molecules: a -  micelle itself, b and C -  aggregate of micelles.
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The observed small grains are clustered on the surface to form larger aggregates. 

Height, width, length, and diameter of the observed grains and clusters of grains are 

summarised in Table 4.2-11. This observation is in good agreement with the model 

considering limited lateral accuracy of AFM due to the finite radius ( 4 - 7  nm) of the 

AFM tips.

Table 4.2-11 Linear sizes of grains and clusters on the surface.
parameter size 1 (grains) size 2 size 3

Height, nm 5.184 + 2.157 12.926 + 2.435 22.82 + 2.60

Diameter, nm 37.614 + 4.188 219.43 ±44.65 348.465 + 32.081

Length, nm 47.621 + 6.288 272.46 + 44.51 426.48 + 39.74

Width, nm 33.058 + 2.662 196.55 + 39.18 297.42 + 75.50
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4.3 Registration of Water Pollutants Using the Enzyme 
Sensor Array

4.3.1 Registration of the enzyme reactions

The sensitivity of the SisN4 planar waveguide transducer to enzyme reactions 

was investigated in order to prove the effectiveness of the portable planar waveguide 

sensor array device as an enzyme sensor. For that reason, a test was required. The test 

experiment was divided in to two parts:

1. The effect of a substratum on the planar waveguide transducer coated 

with the organic dye/polyelectrolyte membrane was investigated.

2. Disposable nylon membranes with adsorbed enzymes were placed in the 

cell on top of the existing membrane, and the effect on the respective substratum was 

recorded again.

Following this procedure, it was established that the planar waveguide coated 

with the PSS-(PAH/CTCT)4 membrane could successfully register the respective 

enzyme reaction. As shown in Figure 4.3-1 a, in the case of the presence of the nylon 

membrane with the adsorbed AChE layer on top of the PSS-(PAH/CTCT)4 membrane", 

the output signal intensity of the planar waveguide enzyme sensor increased with the 

time of soaking in 10 mM acetylcholine chloride solution, in comparison to the one 

without the nylon membrane.

A similar effect was observed by soaking the planar waveguide with the [PSS- 

(CTCT/PAH)4 + BChE] membrane in a 10 mM butyrylcholine chloride solution. Figure

4.3-1 b shows that the output signal intensity increased with time, indicating the 

production of choline and butyryl acid during the BChE enzyme reaction (a detailed 

description of enzyme reactions was given in §3.6).

a Henceforth referred to as [PSS-(PAH/CTCT)4 + enzyme] (i.e. urease, AChE or BChE) membrane. For 
example, [PSS-(PAH/CTCT)4 + urease] membrane or [PSS-(PAH/CTCT)4 + BChE] membrane.
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Figure 4.3-1 Kinetics of the ChE reaction. On both graphs: 1 -  effect of acetylcholine (a) and 
butyrylcholine (b) on the PSS-(PAH/CTCT) 4 membrane; 2 -  effect of 
acetylcholine (a) and butyrylcholine (b) on the [PSS-(PAH/CTCT)4+ ChE] 
membrane.

Another type of enzyme reaction studied was the decomposition of urea 

catalysed by the enzyme urease. This effect was observed by soaking the planar 

waveguide with the [PSS-(CTCT/PAH )4  + urease] membrane in a 100 mM urea 

solution (see Fig. 4.3-2).
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Figure 4.3-2 Kinetics of the urease reaction: 1 -  effect of urea on the PSS-(PAH/CTCT) 4 

membrane, 2 -  effect of urea on the [PSS-(PAH/CTCT) 4 + urease] membrane.

The response of the planar waveguide device for all enzyme reactions was 

significant. Generally, the noise signal was much smaller compared to the signal level. 

This was considered adequate to provide a sufficient dynamic range for response 

recording when the planar waveguide with [PSS-(CTCT/PAH) 4 + enzyme] membrane 

was exposed to some toxic agents.

4.3.2 Registration of heavy metal ions and pesticides using the 

enzyme sensor array

A number of experiments were carried out in order to analyse the effect of lead 

(Pb2+), cadmium (Cd2+), and nickel (Ni2+) ions, and pesticides (namely, imidacloprid 

and DVDP) on the activity of the immobilised enzymes in the three-channel enzyme 

sensor array. Generally, the inhibition of the enzymes urease, AChE  and BChE by 

heavy metal ions and pesticides were detected in channels 2 , 1 and 3, respectively.

The change in the output signal intensity was correlated to the reaction of a 

particular enzyme in the channel. For example, the decrease in the intensity of the
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output signal in channel 2 indicated the decomposition of urea in this channel. However, 

the output signal intensities from channels 1 and 3 increasing with time indicated 

respectively the production of acetyl and butyryl acid during the AChE  and BChE 

reaction (see Fig. 43-3a). Obtained results demonstrated that the response of each 

channel in the sensor array was similar to the response of a “single channel” planar 

waveguide (i.e. the same enzyme was in channels 1 and 3 while channel 2 was empty 

and served as a reference).

All enzymes were exposed to different concentrations of the heavy metal ions 

and pesticides in the range from 0.1 ppb to 1000 ppb. Exposing the planar waveguide 

coated with [PSS-(PAH-CTCT)4  + enzyme] membrane to the substratum solution (or 

mixture of substrata) after the inhibition by heavy metal salts or pesticides, reduced the 

response of the enzyme reaction. Typical kinetics of the reactions of enzyme 

decomposition before and after inhibition in pollutants are presented in Fig. 4.3-3b. The 

routines for sample preparation, film deposition and measurements was described in 

detail in §3.6.

1340

1320- Channel 1: AChE

1300-

S 1280
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9 00 -

Channel 2: Urease

890 -

50 10 15 20
time, min

Figure 4.3-3a Kinetics of the enzyme reaction. Effect of mixture of substratum
(100 Mm urea : 10 mM acetylcholine : 10 Mm butyrylcholine) on the [PSS- 
(PAH/CTCT) 4 + enzyme] membranes.
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Figure 4.3-3b Typical kinetics of the reactions of enzyme decomposition in channels 1, 2 and 
3 . 1 -  initial responses and 2 -  responses after inhibition in 10 ppb imidacloprid.
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Figure 4.3-4 represents the relative responses of urease (channel 2) to different 

concentrations of heavy metal ions and pesticides. The results show that the metal ions 

strongly and irreversibly inhibited the activity of urease to different extents. The 

residual activity of urease was found to decrease from - 8 6 % down to -9% , as the 

concentration of metal ions increased from 0 . 1  ppb to 1 0 0 0 0  ppb.

As can be seen from the graph, lead ions are a stronger urease inhibitor than 

the other two metal ions. DVDP and imidacloprid showed a moderate inhibition effect 

on the enzyme urease; however, the urease activity was suppressed by DVDP more 

than imidacloprid. The toxicity of heavy metal ions and pesticides towards urease was 

found to decrease in the following order (see Table 4.3-1):

Pb2+ > N i2+ > C d2+ > DVDP > imidacloprid.

100-
90 -

80-
imidaclopFid70-

60- DVDI
"o 50 -
2

a ?  40 -  
<

30 -

Cd‘

2 0-
10-
0 -
0.01 0.1 1 10 100 1000 10000

concentration, ppb

Figure 4.3-4 Residual activity of urease as a function of the concentrations of the following 
pollutants: lead (Pb2+), nickel (Ni2+), cadmium (Cd2+), DVDP and imidacloprid.

The dependencies of residual activities of AChE and BChE on the 

concentration of heavy metal ions and pesticides are shown in Figures 4.3-5 and 4.3-6, 

respectively (obtained data also presented in Table 4.3-1). With good agreement with 

previous research (see chapter 2 ), the heavy metal ions were found to be less toxic to
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both cholinesterase enzymes than to urease. The relative responses of the sensor signals 

were found to decrease from -100% to -50% for the AChE  reaction and from -85% to 

-55%  for the BChE reaction, after being exposed to different concentrations of heavy 

metal ions. The toxicity of heavy metal ions and pesticides towards cholinesterase 

enzymes was found to decrease in the following orders:

DVDP > imidacloprid > N i1+ > Pb2+ > C d2+ for AChE  

and imidacloprid > DVDP > Pb2+ > C d2+ > N i2+ for BChE.
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Figure 4.3-5 Residual activity of AChE as a function of the concentrations of the following 
pollutants: lead (Pb2+), nickel (Ni2+), cadmium (Cd2+), DVDP and imidacloprid.
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Figure 4.3-6 Residual activity of BChE as a function of the concentrations of the following 
pollutants: lead (Pb2+), nickel (Ni2+), cadmium (Cd2+), DVDP and imidacloprid.

Table 4.3-1 Dependencies of residual activity (AR)  of urease, AChE  and BChE on

the concentration of different inhibitors.

Pollutant
Concentration 
o f pollutant, 

p p b

AChE A ^BChE ARUrease,%

Imidacloprid

0.1 78.65 + 7.9 74.23 + 7.42 100.0 + 5.0

1 68.47+ 6.9 66.02 + 5.03 93.23 + 5.04

10 61.895 + 6.2 56.94 + 2.97 79.09 + 2.58

100 41.11+4.1 45.21+4.52 71.05 ±9.897
1000 L 28.25 + 2.8 23.565 + 2.85 64.76 + 22.32

10000 — — 56.27 ±11.14

DVDP

0.1 70.92 + 3.55 65.21+5.31 84.10+15.20

1 59.05 + 4.414 62.25 + 11.16 80.185 + 14.015

10 37.852 + 6.121 53.41+5.31 78.10 + 7.81

100 24.875 ± 1.705 45.21+4.52 71.20 ±7.12
1000 3.36 + 0.4 31.86 ±2.06 51.805 ±7.685

10000 — — 28.66 + 9.00
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Pollutant
Concentration 
of pollutant, 

ppb
AChE Â BChE’̂ 0 Urease

Ni2+

0 .1 90.2 ± 2.687 85.00 + 8.48 82.37 + 5.94
1 73.52 + 1.25 73.52 + 7.44 66.26 + 0.13

1 0 65.23+7.125 71.85 + 7.23 47.72 + 3.95
1 0 0 57.68 + 5.8 73.30 + 7.32 42.80 + 4.40

1 0 0 0 49.23+4.9 72.78 + 2.095 30.22+1.72
1 0 0 0 0 — _ 26.455 + 0.1

Cd2+

0 .1 95.00 + 9.5 81.10 + 8 .1 1 85.73 + 2.47
1 92.80 + 9.28 74.00 + 7.42 75.99 + 4.69

1 0 82.58 + 8.26 69.00 + 6.91 67.40 + 6.74
1 0 0 72.897 + 7.3 68.1+6.82 58.52 + 3.91

1 0 0 0 59.87 + 5.99 65.00 + 6.53 42.05 + 3.56
1 0 0 0 0 — — 13.31 + 1.91

Pb2+

0 .1 98.70 + 9.9 78.89 + 7.91 39.10 + 5.00
1 95.00 + 9.5 64.00 + 6.42 32.69 + 2.47

1 0 81.69 + 8.2 61.28 + 6.14 27.98 + 5.88
1 0 0 67.21 + 6.7 58.80 + 5.92 23.14 + 2.46

1 0 0 0 51.87 + 5.2 55.01+5.51 9.59 + 4.65

The three-dimensional plot of residual activity of the enzymes (see Fig. 4.3-7) 

gives a visible inhibition pattern of pollutants: the areas of sensor responses to different 

heavy metal ions and pesticides are well separated, so all compounds can be easily 

distinguished according to their toxicity at different concentrations.
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Figure 4.3-7 Residual activities of urease (ARUrease), AChE (ARAChE) and BChE (ARBchE) 
corresponded to different concentrations of heavy metal ions and pesticides.

4.3.2 Registration of mixtures of pollutants using the enzyme 

sensor array

The response of the enzyme sensor array device to the mixture of pollutants 

and tap water samples from different sources was investigated in order to prove the 

potential use of it for multi-analyte detection. Two mixtures of the pollutants were 

prepared. The first mixture (Mix-1) was prepared by mixing DVDP and Cd2+. The 

second one (Mix-2), was prepared by mixing pesticide imidacloprid and Ni2+. Both 

mixtures were prepared in different concentrations ranging from 0 .1  ppb to 1 0 0 0  ppb.

Experimental results show that the inhibition effect of Mix-2 on urease and 

AChE was lower than the effect of imidacloprid or nickel alone (Figures 4.3-7# and 4.3- 

7b). On the other hand, the sensor responses to the inhibition of BChE by Mix-2 were 

found to be similar to the effect of imidacloprid alone (Fig. 4.3-7c). Obtained 

experimental data are also summarised in Table 4.3-2.
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Figure 4.3-7 Residual activity of enzymes (a -  urease, b -  AChE, and c -  BChE) after exposure 
to Mix-2.
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The effects of Mix-1 on the sensor response are shown in Fig. 4.3-8a,b,c and 

Table 4.3-2. As can be seen from Fig. 4.2-8, the mixture of DVDP and cadmium ions 

strongly suppressed the AChE activity. The inhibition of BChE by Mix-1 was slightly 

higher than that of DVDP. The sensor responses on the inhibition of urease by Mix-1 

were found to be similar to the effect of cadmium alone (Fig. 4.3-8a).

As can be seen from the graphs, the presence of cadmium ions did most likely 

not affect the activity of the cholinesterase enzymes. This result suggests that the 

residual activity of these enzymes was strongly affected by their most toxic pollutant 

present in the mixture solution. Therefore, in the binary mixture containing DVDP and 

cadmium ions, sensor responses to the urease reaction were highly influenced by the 

cadmium ions, whereas the activities of the cholinesterase enzymes were strongly 

inhibited by DVDP pesticide. The combined inhibition effects of mixtures on enzymes 

were higher than the effects of a single pesticide or heavy metal ions.

A three-dimensional plot of the residual activity for the three enzymes {AChE, 

BChE, urease) inhibited by heavy metal ions, pesticides and their mixtures taken at 

various concentrations is shown in Fig. 4.3-9. Sensor array responses to inhibition by 

Mix-1 (mixture of DVPD and cadmium ions) were near to the pesticide area, while the 

positions sensor array responses to inhibition by Mix-2 (mixture of imidacloprid and 

nickel ions) were close to the heavy metal ions area.
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Figure 4.3-8
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Table 4.3-2 Dependencies of residual activity (AR )  of urease, AChE and BChE on

the concentration of a mixture of pollutants.

Enzyme Pollutant Concentration o f  
pollutant, ppb

AR,%

Urease Mix-1: (DVDP + Cd2+)

0 .1 16.26
1 66.87
1 0 62.94
1 0 0 49.73
1 0 0 0 46.15

AChE Mix-1

0 .1 33.16
1 24.42

1 0 18.61
1 0 0 14.12

1 0 0 0 1.89

BChE Mix-1

0 .1 58.75
1 53.75

1 0 40.82
1 0 0 31.77

1 0 0 0 24.29

Urease Mix-2: .(imidacloprid + Ni2+)

0 .1 52.67
1 46.67
1 0 37.81
1 0 0 21.50
1 0 0 0 —

AChE Mix-2

0 .1 68.58
1 '52.20

1 0 45.02
1 0 0 37.82

1 0 0 0 22.44

BChE Mix-2

0 .1 —

1 62.75
1 0 58.11

1 0 0 44.50
1 0 0 0 32.99
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Figure 4.3-9 Residual activities of urease (ARUrease), AChE (ARAChE) and BChE ( A R b c iie )  

corresponded to different concentrations of heavy metal ions and pesticides.

4.3.3 Analysis of pollutants using ANN algorithm

Previous research has established that ANN based algorithms

have a high accuracy in classifying experimental data obtained from enzyme sensor 

arrays. As was mentioned in §3.6 for the analysis of pollutants based on ANN 

algorithms, the experimental data were divided into two data sets, one of them was used 

for training, and another one was used for testing the network models. Tables 4.3-4 

represent the data set used for training the network.

Classified pollutants were then quantified using individual network models. 

Despite the limited amount of data for training network models the successful 

classification and quantification of all data sets was obtained. That gave the hope that 

the neural network models could be used to analyse unknown compounds or their
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mixtures, assuming that they belonged to the group of five analytes used to train the 

models.

Table 4.3-4 Data set for training the neural network to classify the pollutants.

c,ppb
Input value Output value

Urease ARAChE &RbCIiE Binary code target analyte

0 .1 84.100 70.920 65.210 0 0 0

DVDP

1 80.185 59.050 62.250 0 0 0

1 0 78.100 37.852 53.410 0 0 0

1 0 0 71.200 24.875 45.210 0 0 0

1 0 0 0 51.805 3.360 31.860 0 0 0

0 .1 39.100 98.700 78.890 0 0 1

Pb2+

1 32.690 95.000 64.000 0 0 1

1 0 27.980 81.690 61.280 0 0 1

1 0 0 23.140 67.210 58.800 0 0 1

1 0 0 0 9.590 51.870 55.010 0 0 1

0 .1 85.730 95.000 81.100 1 0 0

Cd2+

1 75.990 92.800 74.000 1 0 0

1 0 67.400 82.580 69.000 1 0 0

1 0 0 58.520 72.897 6 8 .1 0 0 1 0 0

1 0 0 0 42.050 59.870 65.000 1 0 0

0 .1 1 0 0 .0 0 0 78.650 74.230 0 1 1

Imidacloprid

1 93.230 68.470 6 6 .0 2 0 0 1 1

1 0 79.090 61.895 56.940 0 1 1

1 0 0 71.050 41.110 45.210 0 1 1

1 0 0 0 64.760 28.250 23.565 0 1 1

0 .1 82.370 90.200 85.000 1 0 1

Ni2+

1 66.260 73.520 73.520 1 0 1

1 0 47.720 65.230 71.850 1 0 1

1 0 0 42.800 57.680 73.300 1 0 1

1 0 0 0 30.220 49.230 72.780 1 0 1
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The vitality of the neural network model was tested with unknown samples. 

Four tap water samples from different sources were investigated (description of the 

samples was given in §3.6). A pattern recognition algorithm was exploited using ANN 

software to identify and quantify pollutants in these samples. The results revealed that 

all samples contained a relatively small amount of heavy metal ions (see Table 4.3-5).

Table 4.3-5 Dependencies of residual activity ( AR ,%) of urease, AChE and BChE on

the concentration of pollutants in tap water samples.

sample

m

source AR{jrease A  R AChE A R  BChE analyte
C analyte;

ppb

l SHU, clean room, 

Millipore water
86.97 82.74 90.34 Ni2+ 0 .1 0 1

2 SHU, Lab 4L19, 

tap water
26.52 84.67 80.83 Pb2+ 998.69

3 Sheffield, UK 28.57 85.00 85.38 Pb2+ 0 .1 2 0

4 Odessa, Ukraine 67.55 59.23 44.37
Ni2+ + 

Imidacloprid
76.62

Obtained results were reasonable since the network models were trained using a 

limited amount of data and they established that the neural network models were able to 

generalize the information given and could be used to analyse unknown compounds.
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4.4 Summary

The first section (4.1) in this chapter is devoted to the adsorption of protein BSA 

into PS and provides the results of both dynamic and static spectroscopic ellipsometry 

measurements for the study of the in situ adsorption of BSA into PS. Special attention is 

paid to the study of the morphology of PS layers. The porosity and amount of adsorbed 

BSA were determined by fitting the ellipsometric data to the Bruggeman effective 

medium approximation model. The presence of intermediate adsorbed layers of 

polyelectrolytes was found to increase protein adsorption.

Section 4.2 describes results of the registration of LMW environmental toxins, 

such as nonylphenol, atrazine, simazine, and T-2 mycotoxin, with the methods of 

surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). The 

immune assay approach was exploited for in situ registration of the above toxins with 

specific antibodies immobilized onto a gold surface via a polyelectrolyte layer using the 

electrostatic self-assembly (ESA) technique. TIRE showed a higher sensitivity than the 

SPR technique. The obtained responses of the TIRE method were higher than 

anticipated for the immune binding of single molecules of nonylphenol or T-2 

mycotoxin. The mechanism of binding of large aggregates of these toxins to respective 

antibodies was suggested as a reason for this. The formation of large molecular 

aggregates of toxin molecules on the surface was later proven by the AFM study.

Section 4.3 gives the results of the registration of typical water pollutants such as 

heavy metal ions Cd2+, Pb2+, and Ni2+, and pesticides imidacloprid and DVDP with the 

planar waveguide enzyme sensor array over a wide range of concentrations (from 1 0 0 0  

ppb down to 0.1 ppb). Experimental data were analyzed with the ANN algorithm which 

allowed both the recognition of the pollutants and evaluation of their concentrations. 

The results of the registration of mixtures of pollutants and tap water samples from 

different sources using the enzyme sensor array are also presented in this section.
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Chapter 5. Conclusions and Recommendations

CONCLUSIONS

and

RECOMMENDATIONS

This chapter presents the conclusions of the research described in the thesis. 

Proposals for future work are suggested.



§5.1 Thesis Conclusions

5.1 Thesis Conclusions

5.1.1 Ellipsometric study of the adsorption of BSA into PS

The samples of porous silicon were studied with SEM and AFM techniques, 

and the morphology revealed the presence of pores having a wide range of dimensions 

from micrometers down to tens of nanometers. The method of spectroscopic 

ellipsometry was found to be suitable for studying porous silicon. The fitting of 

ellipsometric data to the three-layer EMA model yielded realistic parameters for the 

layers. The thickness and porosity obtained for the PS layers corresponded well to the 

results of SEM and gravimetry.

Adsorption of BSA into PS was studied in situ at the solid/liquid interface with 

spectroscopic ellipsometry. The results were analyzed with the help of a three-layer 

EMA model, which yielded the relative amounts of adsorbed BSA. It was found here 

that the adsorption of polyelectrolytes (either PAH or PSS) in porous silicon increased 

the amount of subsequently adsorbed BSA.

Comparison of static and dynamic spectroscopy ellipsometry measurements 

showed the advantages of the former as regards the amount and reliability of the 

information obtained.

5.1.2 Registration of low molecular weight environmental toxins 

with the method of total internal reflection ellipsometry

The low molecular weight (LMW) environmental toxins, such as herbicides 

simazine and atrazine, nonylphenol, and T-2 mycotoxin were registered with the optical 

methods of surface plasmon resonance (SPR) and total internal reflection ellipsometry 

(TIRE). The immune assay approach was exploited for in situ registration of the above 

toxins with specific antibodies immobilised onto the chromium-gold surface via a 

(poly)allylamine hydrochloride layer using the electrostatic self-assembly (ESA)
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technique. The comparison of two methods of SPR and TIRE showed a higher 

sensitivity of the latter.

The method of TIRE was proven as an excellent analytical tool for biosensing, 

particularly for the registration of LMW molecules. For example, it allowed the 

registration of T-2 mycotoxin over a wide range of concentrations from 100 pg/ml 

down to 0.15 ng/ml. The TIRE kinetic measurements allowed the evaluation of 

adsorption and desorption coefficients, and the association constants for binding T-2 

mycotoxin molecules to both poly- and monoclonal antibodies. Association constants of 

1.7-106 and 1.9-107 moV1 •/ for poly- and monoclonal T-2 antibodies, respectively, 

proved to be highly specific antibody/toxin binding reactions. Monoclonal antibodies 

appeared to be 10-fold more selective to T-2 mycotoxin than polyclonal ones, although 

polyclonal antibodies provided a wider range of linear response (0.1 -  150 ng/ml) to T-2 

mycotoxin. The obtained changes in adsorbed layer thickness of 4 -  5 nm, caused by T- 

2/antibodies binding, were larger than the actual size of T-2 mycotoxin molecules.

The same method of TIRE was applied to study the specific binding of 

nonylphenol molecules to respective antibodies. An anomalously high increase in the 

film thickness was detected. Comparison of these findings with the results of the 

previous study of T-2 mycotoxin allowed us to suggest a common mechanism of 

binding of large aggregates of LMW hydrophobic toxins, such as nonylphenol and T-2 

mycotoxin, to respective antibodies. This effect boosted the sensitivity of the biosensor 

by 3-4 orders of magnitude and allowed the exploitation of the direct immune assay 

approach. The use of the sensitive technique of TIRE makes possible the registration of 

very low concentrations of the above toxins in the sub-ppb range, which was previously 

only achievable using the competitive immune reaction approach.

The mechanism of specific binding of large aggregates of nonylphenol was 

suggested. The formation of large molecular aggregates of nonylphenol and T-2 

mycotoxin molecules on the surface was directly confirmed with AFM measurements. 

Modelling of the micelle of amphiphilic nonylphenol molecules in aqueous solutions 

yielded a size of micelles of about 34 nm, which was in good agreement with 

experimental data obtained from the AFM study. The mechanism of specific binding of 

large molecular aggregates to respective antibodies can be extended to other 

hydrophobic low molecular weight toxins, such as T-2 mycotoxin.
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5.1.3 Registration of water pollutants using the enzyme sensor 
array

The proposed sensor was based on Si0 2 /Si3N4 planar waveguide with a sensing 

window coated with electro-statically self-assembled film containing pH sensitive 

organic chromophore molecules. A disposable nylon membrane with adsorbed enzymes 

(urease, acetyl-, and butyryl- cholinesterase) was placed on the top of the composite 

film.

Enzyme reactions, as well as their inhibition by the traces of some typical 

water pollutants, such as heavy metal ions Cd2+, Pb2+, and Ni2+ as well as the pesticides 

imidacloprid and DVDP, and their mixtures were registered by monitoring the changes 

in the intensity of light coming out from the planar waveguide.

A portable prototype sensor array set-up was built comprising a fan-beam laser 

diode, a semi-cylindrical lens, a planar waveguide with a three-channel cell attached, 

and a CCD array photodetector. Dedicated software was developed for CCD image 

processing.

The pattern of sensor responses was analysed further by using the artificial 

neural network algorithm. Despite the relatively small amount of experimental data, the 

trained neural networks were able to classify and quantify the pollutants.

The prototype sensor array device provided both the recognition of water 

pollutants and evaluation of their concentration over a wide range from 1 0 0 0  ppb down 

to 0 .1  ppb.
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5.2 Recommendations for Future Work

1. One of the main targets in bio-sensing is increasing the effective 

adsorption area and thus the sensitivity. Porous silicon (PS) has surface area of more 

than 100,times larger than planar silicon samples. Physical phenomena in PS, which can 

be exploited for tranducing bio-reactions on its surface into measurable physical 

parameters include optical interferometry, photoluminescence and electroluminescence 

(EL).

The EL seems to be more attractive because of the high sensitivity of 

luminescent measurements. EL requires much less experimental efforts and could be 

recommended for the development of portable PS biosensors. Although the method of 

EL is not selective, it is very suitable for registration of the general bio-toxicity of the 

environment. Further study of EL in PS can be directed towards registration of specific 

antigen-antibody binding.

2. The method of total internal reflection ellipsometry (TIRE) was 

successfully applied for the registration of the low molecular weight toxins in water 

down to a ppb level. Future work can be focused on the development of portable and 

cost effective sensing devices based on principles of TIRE, as well as on a wider 

implementation of the TIRE method for different sensing tasks, such as:

• Application of TIRE to a wider range of toxins including mycotoxins, 

alkylphenols, pesticides and herbicides for quality control of agricultural products and 

food;

• DNA analysis directed towards the recognition of the genomic DNA of 

different species, via electrostatic adsorption of a single strand DNA (ss-DNA) on the 

surface and subsequent binding of another ss-DNA from the solution. The adsorption of 

the complementary ss-DNA should result in a significant increase in the thickness due 

to the hybridization and subsequent formation of the DNA double helix structure, while 

adsorption of non-complementary ss-DNA should yield much smaller response;
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• Determination of the organic vapours: the TIRE method should provide 

enough sensitivity to record small changes in the optical parameters of phthalocyanine 

films caused by the exposure to low concentrations (in ppm level) of the organic vapors 

such as alcohols, hydrocarbons, aromatic, etc.

• In addition, the method of TIRE can be used for evaluation of the optical 

parameters of the electrostatically assembled films containing CdS and ZnS colloid 

nanoparticles. Such nano-composite films are considered as promising candidates for 

the development of novel materials for tuneable light emitting device.

The phenomenon of specific binding of large aggregates of hydrophobic toxins 

and thus boosting the sensitivity can be widely exploited in bio-sensing. A new model, 

which takes into account the non-spherical shape of micelles and their simultaneous 

binding to several antibodies, should be developed instead of the simple model of a 

spherical micelle of nonylphenol molecules proposed in this thesis.

3. Although considerable time and efforts have been spent during this study 

for the development of a portable planar waveguide sensor array device, it is only a 

small part of a huge work. In order to overcome certain limitations and to ensure the 

ability of the device for monitoring water pollutants in a real environment, further work 

needs to be done, namely:

• The optical enzyme sensor array should be exposed to more complex 

pollutant mixtures and a larger variety of pollutants in order to further evaluate the 

ability of the portable sensor array device to identify and quantify different type of 

pollutants;

• The pattern recognition algorithm should be integrated with the portable 

sensor array device in order to have simultaneous in situ monitoring and analysis of the 

pollutants in aqueous solutions;

•  Different enzymes should be tested as sensitive elements in the nano­

composite membrane and the number of the channels in the cell should be increased.
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V U D J D

Appendix A:
A brief description of the software developed for the portable planar waveguide 

enzyme sensor array device is presented.

Appendix B:
Here the methods of external reflection ellipsometry and total internal reflection 

ellipsometry are compared.

Appendix C:
A very short introduction to the artificial neuron network is given.

Appendix D:
The data definitions and abbreviation descriptions that appear in the AFM 

images are specified.

Appendix E:
Abstracts of the published works.



Appendix A
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Appendix A

Software for portable planar waveguide 
enzyme sensor array device

1. Software overview

This software contains the following files, which are required to start it and 

control the C l551 MCD controller (see Table A l).

Table A l  Files required to start software and control the C l551 MCD controller

File Name Description

annal.exe Execution file for this software

M cdCont.dir DLL file for controlling an MCD controller

McdMain.dlF Interface DLL file for this software and an MCD controller

When this software starts up, the black DOS window as shown in Figure A l

appears on the screen.
IB 'flH H m m m , -■ ^jsjxj
I Auto [;;;ll |e |  E3| EflS a |
[System in f o :  
ScanSensor = 7

xl
S e l e c t  U n i t  ID U n i t  I n f o  m e t  i o n

<• UNIT ID 0 S e n s o r  Type CCD

UNIT ID I Nvmber o f  H - P ix e l 5 1 2 c h
UNIT ID 2 Nvm ber o f  V - P ix e l S 1 2 ch

f '  UNIT ID 3 A/D Type 1 2 b i t ,
C  UNIT ID 4

UNIT ID S
UNIT ID 6 |[_ OK |  CANCBL |

C UNIT ID 7

Figure A l  Software window.

a Supplied by Hamamatsu Photonics K. K.
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This window consists of three parts:

1. System information.

2. Measurement condition setup area.

3. Data display area.

Below a short description of each part is provided.

2. System information

2.1 Initialization.

Function Name: ScanSensor( );

Description: Check all the SCSI IDs, and confirm that the MCD controller is 

connected. If devices are connected, the return value represents the number of devices 

connected. The return value is "0" if no devises are connected.

Return Values: 1-7 : Normal completion;

0 : MCD controller not connected.

2.2 MCD Selection.

Function Name: SelectSensorUnit(Status);

Description: When multiple MCD controllers exist, it becomes necessary to 

select which is to be controlled. Running this function displays a selection dialog box 

from which the desired controller is selected. When a controller is selected, the status 

information is returned in the argument. The selected controller ID is returned with 

normal completion, and 0 xffff(-l) in the case of an error.

Return Values: 1-7 : Normal completion;

0xfff(-l): No MCD controller connected.

2.3 Temperature Monitor.

Description: Obtains the monitor status for the sensor head.

Return values: 10-bit precision between 0 and 123.

3. Measurement condition setup area

3.1 Amp Gain Control.

A2



Appendix A
Software for Portable Planar W aveguide Enzyme Sensor  Array Device

Description: Controls the gain (Low/Middle/High) for the sensor output amp in 

the MCD controller.

Recommended values: 0+3 for a bright signal and 4+6 for a weak signal.

3.2 Exposure Time Control

Description: Controls the exposure timer for the sensor.

Range : x ~ 65535 ms, x differs between types o f sensors.

Recommended value: 100- 500 ms.

3.3 Number (n) /  Time o f Measurement (t, min)

Description: Single shot measurement -  acquires one shot o f data (n = 0). 

Continuous measurement -  acquires data continuously. Only last set o f data w ill be 

saved (n > 0).

3.4 Delay time (sec)

Description: Delay time between sensor scan starts (continuous measurement).

3.5 Save Data

Description: Saves the average for three channels vs. intensity, pixels vs. 

intensity and Al = Iend -  Io for each channel data as a measurement data files. The 

maximal length of the file name is 1 0 0  characters.

3.6 Exit (Y/N)

Description: quits this software.

4. Text o f  the program (C /C++)

/ /  annal.cpp : Defines the entry point for the console application.
/ /  Hamamatsu C7020 CCD array; Head type: S7010-0906.
/ /  * 14 Feb 2005 - 27 Mar 2007*
/ /  CCD.exe

#include "stdafx.h"
#include <math.h>
#include <iostream.h>
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#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <windows.h>
#include "McdMainapi.h"

#define WORD unsigned short int 
#define LPWORD WORD*

struct tm *date_time; 
time_t timer;
time_t start_time, cur_time;

int main(int argc, char* argvf])
{

cout «  " * * * S Y  S T E M I N F O : * * * "  «  endl; 
cout «  " " «  endl;

/  /  Reading System Time 
time(&timer);
date_time=localtime(&timer); 
cout «  asctime(date_time) < <  endl;

/  /  Initialization.
/ /  Return Value: 1..7 - Normal completion; 0 - MCD controller N O T connected 

WORD n_scsi, status, scsi_id;
SENSOR_STATUS sensor_status;

/  /  Checking Connected Devices.
/  /  Return Value: if  devices are connected - 1, if  no device is connected - 0x1001 

n_scsi = ScanSensor(); 
printf( " ScanSensor =  %x\n", n_scsi); 
for( int i =  0; i < n_scsi; i+ +  ) {

status =  CheckSensor( i, &sensor_status); 
if  ( status !— 1)
{
printf( "CheckSensor[%d] = %x\n", i, status ); 
return 0;
}

}

/ /  MCD section.
/ /  Return Value: 1..7 - Normal completion; 0xffff(-l) - N o MCD controller connected 

scsi_id =  SelectSensorUnit( &sensor_status ); 
printf( " SelectSensorUnit = %d\n", scsi_id );

/ / *  S C A L E ! *
/ /  Amp Gain Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Amp Gain: (Low/Middle/High)
/ /  Status acquisition 0:xl/2; l:xl; 2:x2; 3:x5; 4:xl0; 5:x20; 6:x50; 7:xl00 

int AmpGain; 
cout «  " " < <  endl; 
cout « "  " < <  endl;
cout « " * * * M E A S U R E M E N T  C O N T R O L :  * * * " «  endl; 
cout <<" " < <  endl; 
cout <<" " < <  endl;
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Set AmpGain {Low/Middle/High} [default 1]:" «  endl; 
0: x l/2 ; " «  endl;

cout «  " 
cout «  "
cout «  " 1: xl; " «  endl
cout «  " 2: x2; " «  endl
cout << " 3: x5; " << endl
cout << " 4: xlO; " << end
cout «  " 5: x20; " «  end
cout << " 6: x50; " <<  endl
cout «  " 7: xlOO; " «  endl;
cin »  AmpGain; 
cout « "  " << endl;
status =  SetAmpGain( scsi_id, AmpGain); 
if  ( status != 1)
{
printf( "SetAmpGain = %d\n", status); 
return 0;
}

/ /  A /D  Converter Control.
/  /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - 12bit (1MHz); 1 - 16bit (250KHz) 

status =  SetADType( scsi_id, 1 ); 
if  ( status != 1)
{
printf( "SetADType = %d\n", status); 
return 0;
}

/ /  Trigger Mode Control.
/  /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - internal trigger; 1 - external trigger; 2 - external start 

status =  SetTriggerMode( scsi_id, 0); 
if  ( status !— 1)
{
printf( "SetTriggerMode = %d\n", status); 
return 0;
}

/ /  Delay Time o f  External Start Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0..65535 ms range 

status = SetDelayTime( scsi_id, 1 ); 
if  ( status != 1)
{
printf( "SetDelayTime = %d\n", status); 
return 0;
}

/ /  Trigger Polarity Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - positive; 1 - negative 

status =  SetTriggerPolarity( scsi_id, 0); 
if  ( status != 1)
{
printf( "SetTriggerPolarity = %d\n", status ); 
return 0;
}
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/ /  PULSE OUT Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - OFF; 1 - ON

status = SetShutterControl( scsi_id, 0 ); 
if  ( status != 1)
{
printf( "SetShutterControl =  %d\n", status); 
return 0;
}

/ /  Delay Time o f  PULSE OUT Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0..65535 ms range

status = SetShutterDelayTime( scsi_id, 10 ); 
if  ( status != 1)
{
printf( "SetShutterDelayTime = %d\n", status ); 
return 0;
}

/ /  Pulse Width o f  PULSE OUT Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0..65535 ms range

status =  SetShutterDurationTime( scsi_id, 1); 
if  ( status != 1)
{
printf('"SetShutterDurationTime = %d\n", status); 
return 0;
}

/ /  Polarity o f  PULSE OUT Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - positive; 1 - negative 

status = SetShutterPolarity( scsi_id, 0 ); 
if  ( status != 1)

{
printf( "SetShutterPolarity =  %d\n", status); 
return 0;
}

/ /  Sensor Type Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - InGaAs; 1 - CCD; 2 - InGaAs (Sensor head C8060/61/62) 

status =  SetSensorType( scsi_id, 1); 
i f  ( status != 1)
{
printf( "SetSensorType = %d\n", status ); 
return 0;
}

/ /  Number o f  Pixels Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: for C7020-S7010-0906
/ /  Number o f  Active Pixels (512x60); Number o f  Total Pixels (532x64) 

status = SetSensorVch( scsi_id, 64); 
if  ( status != 1)
{
printf( "SetSensorVch = %d\n", status );
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return 0;
}

status = SetSensorHch( scsi_id, 512); 
if ( status != 1)
{
printf( "SetSensorHch = %d\n", status); 
return 0;
}

/ /  Number of Summing Pixels Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: for C7020-S7010-0906
/ /  Number of Active Pixels (512x60); Number o f Total Pixels (532x64)

status = SetSummingVch( scsi_id, 64 ); 
if ( status != 1)
{
printf( "SetSummingVch = %d\n", status ); 
return 0;
}

status = SetSummingHch( scsi_id, 1 ); 
if  ( status !— 1)
{
printf( "SetSummingHch = %d\n", status); 
return 0;
}

/  /  Mode Control.
/  /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: Area scanning - 0 , line binning -1 (when using a CCD sensor head) 

status = SetModeSelect( scsi_id, 1 ); 
if ( status != 1)
{
printf( "SetModeSelect (line binning) = %d\n", status ); 
return 0;
}

/ /  Exposure Time Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0..65535 ms range 

int exposure_time; 
cout « "  " << endl;
cout << " Set Exposure Time (100..500 ms range) [default 150]: " «  endl;
cin >> exposure_time;
status = SetExposureTime( scsi_id, exposure_time); 
if ( status != 1)
{
printf( "SetExposureTime = %d\n", status); 
return 0;
}

/ /  Temperature Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: OFF - 0; ON -1  

status = SetPeltierControl( scsi_id, 0); 
if ( status != 1)
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{
printf( "SetPeltierControl = %d\n", status); 
return 0;
}

/ /  printf( "Peltier Control - OFF \n");

/ /  Peltier Power Control.
/ /  Return Value: 1 - Normal completion; and other than 1 with an error 
/ /  Status acquisition: 0 - 5V; 1 - 6V

status = SetPeltierPower( scsi_id, 0 ); 
if ( status != 1)
{
printf( "SetPeltierPower = %d\n", status); 
return 0;
}

/ /  Temperature Monitor.
/ /  Return Value: 0..1023 - Normal completion; 

status = GetTemperature( scsi_id ); 
double temp = 0.0; 
double Temp = 0.0;
double v = ( double )::GetTemperature( scsi_id) * ( 2.5 /  1023.0 );

/ /  Temperature Calculation: Sensor is InGaAs
WORD SensorType = GetSensorType( scsi_id ); 
if ( SensorType = 0 ) {

Temp = (0.737 - v ) /  0.01772;
}

/ /  Temperature Calculation: Sensor is CCD 
else if ( SensorType = 1) {

double r = 100.0 /  ((2.5 /  v ) -1 .0);
Temp = (1.0 /  (( log( r /  10.0) /  3450.0) + (1.0 /  298.0))) - 273.0;

}

if ( status >=  1023)
{
printf( "GetTemperature = %d\n", status); 
return 0;
}

printf( " Temperature (CCD head) = %lf\n", Temp );
printer V );
cout << " " << endl;

/ / * * *  MEASUREMENT and READING DATA * * *

/  /  Channels size
int channell_first_pixel; 
int channel2_first_pixel; 
int channel3_first_pixel; 
int channell_last_pixel; 
int channel2_last_pixel; 
int channel3_last_pixel;
cout «  " Channel-1 first pixel: ";
cin »  channell_first_pixel;
cout «  " Channel-1 last pixel: ";
cin >> channell_last_pixel;
cout < < " " < <  endl;
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cout << " Channel-2 first pixel:
cin >> channel2_first_pixel;
cout «  " Channel-2 last pixel:
cin >> channel2_last_pixel;
cout «  " " «  endl;
cout «  " Channel-3 first pixel:
cin »  channel3_first_pixel;
cout «  " Channel-3 last pixel:
cin »  channel3_last_pixel;
cout «  " " << endl;

for (») {
int number_of_measurement, T;
cout «  " Number (n) /  Time (min) of measurement? " ' «  endl;
cout «  " If n = 0 than singleshot measurement!" <<  endl;
cin >> T;
cout << " " «  endl;

int a;
const int arraySize = 1024;
WORD Dataf arraySize ];
const WORD NumberOfCycles = 2;
char file_name[100];
float channell;
float channel2;
float channel3;
float first_ave_data_l, raznostl; 
float first_ave_data_2, raznost2; 
float first_ave_data_3, raznost3;

int tm;
int cycle_time; 
double dif_time;
cout «  Set delay time (sec) " << endl;
cin >> tm;
cout «  " " «  endl;

cycle_time = tm + exposure_time/1000; / /  Cycle time in seconds 
number_o^measurement = (int) floor (T * 60 /  cycle_time) + 1;

cout «  "Number o f measurements: " <<  number_of_measurement «  "\n";

cout << " Input average data file name (*.dat):" << endl;
cin >> file_name; 
strcat( file_name, ".dat"); 
cout «  " " <<  endl;
FILE ^channels;
channels = fopen( file_name, "w" );

cout << " Press ENTER to start..." << endl;
getchar();
cout «  " " <<  endl;

/ /Time Measurements Unit 
time( &start_time );
for(int duration = 0; duration < number_of_measurement; duration++) { 

status = GetProfile( scsi_id, NumberOfCycles, Data ); 
time( &cur_time);
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dif_time = difftime(cur_time, start_time);

/ /  "Spectrum": pixels v intensity 
for( a = 0; a < 512; a++ )

printf( "%d\t%d\n", a, Datafa] );

if ((duration % 5) == 0)
printf("Current step: %d/%d,\n\tTime elapsed (min): %.2g\n\tEstimated time left (min):

%.2g\n",
duration, number_of_measurement, dif_time/60.0,

dif_time/60.0*(number_of_measurement-duration)/duration);

/  /  Make a delay (tm) seconds 
Sleep(tm*1000); / /  sleep for (tm) seconds

/ /  Channel-1 Average:
channell = 0.0;
for( int b = channell_first_pixel; b < channell_last_pixel; b++ ) { 

channell +=  Datafb];
}
channell /  = (channell_last_pixel - channell_first_pixel);

/ /  Channel-1 Raznost:
raznostl = 0.0;
if( duration = = 0 ) first_ave_data_l = channell;

/ /  Channel-1 Delta:
double Deltal = 0.0;
for ( int bb = channell_first_pixel; bb < channell_last_pixel; bb++ ){

Deltal += ( Datafb] - channell ) * ( Datafb] - channell );
}
Deltal = sqrt ( Deltal /  (( channell_last_pixel - channell_first_pixel) - 1));

/  /  Channel-2 Average
channel2 = 0.0;
for( int c = channel2_first_pixel; c < channel2_last_pixel; C++ ) { 

channel2 +=  Datafc];
}
channel2 /=  ( channel2_last_pixel - channel2_first_pixel);

/ /  Channel-2 Raznost:
raznost2 = 0.0;
if( duration = = 0 ) first_ave_data_2 = channel2;

/ /  Channel-2 Delta:
double Delta2 = 0.0;
for ( int cc = channel2_first_pixel; cc < channel2_last_pixel; cc++ ) {

Delta2 += ( Datafc] - channel2 ) * ( Datafc] - channel2 );
}
Delta2 = sqrt ( Delta2 /  (( channel2_last_pixel - channel2_first_pixel) -1));

/  /  Channel-3 Average
channel3 = 0.0;
for( int d = channel3_first_pixel; d < channel3_last_pixel; d++ ) { 

channeB += Datafd];
}
channeB / — (channel3_last_pixel - channel3_first_pixel);
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/ /  Channel-3 Raznost:
raznost3 = 0.0;
if( duration = = 0 ) first_ave_data_3 = channeB;

/ /  Channel-3 Delta:
double Delta3 = 0.0;
for ( int dd = channel3_first_pixel; dd < channel3_last_pixel; dd++ ){

Delta3 += ( Datafd] - channeB ) * ( Datafd] - channeB );
}
Delta3 = sqrt ( Delta3 /  ((channel3_last_pixel - channel3_first_pixel) - 1));

//Save Average Data to File
double real_data_time; 
real_data_time = duration * tm /  60.0;
fprintf( channels, "%.3f\t%.lf\t%.l£\t%.lf\n", real_data_time, channell, channeB,

channeB );

/ /  Save Average and Delta to File:
/ /  fprintf( channels, "%.3f\t%.l f\t%.l £\t%.l f\t%.l f\t%.l f\t%.l f\n", real_data_time,

channell, channeB, channeB, Deltal, Delta2, Delta3 );

/ /End of Time Measurements Unit 
}

fclose( channels);

cout << " Input 'spectrum' data file name (*.dat): " «  endl;
cin >> file_name; 
strcat( file_name, ".dat" );
FILE *data;
data = fopen( file_name, "w" ); 
for( a = 0; a < 512; a++ )

fprintf( data, "%d\t%d\n", a, Datafa] ); 
fclose( data );

if ( status != 1)
{
printf( "GetProfile = %d\n", status); 
return 0;
}

/ /Raznost I_0 - I_last: 
cout «  " " << endl; 
raznostl = channell - first_ave_data_l; 
printf("Delta I_1 = %.3f\n", raznostl);

raznost2 = channeB - first_ave_data_2; 
printf("Delta I_2 = %.3f\n", raznost2);

raznost3 = channeB - first_ave_data_3; 
printf("Delta I_3 = %.3f\n", raznost3);

cout « "  " «  endl;
cout «  " Input Delta_I data file name (*.dat):" << endl;
cin »  file_name; 
strcat( file_name, ".dat" ); 
cout << " " «  endl;
FILE *raznost;
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raznost = fopen( file_name, "w" );
fprintf( raznost, "%.3£\t%.3£\t%.3f\t", raznostl, raznost2, raznost3 ); 
fclose( raznost);

cout «  " " «  endl;
CO U t < <  " * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * "  < <  e n d l;

char bukva;
cout «  " " «  endl;
cout «  " EXIT ? (y/n)\n" «  endl;
cin »  bukva;
if ( bukva == 'y') return 1;
}

return 1;
}
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Appendix B

Total Internal Reflection Ellipsometry: 
modelling and comparison

Here the methods of external reflection ellipsometry and TIRE are compared 

by the modelling of their responses to the changes in the thickness and refractive index 

o f thin dielectric film deposited on the surface of gold.

The modelling of the response of TIRE and conventional ellipsometry to 

changes in the dielectric film thickness and refractive index was performed using the 

WVASE-32® software (J. A. W oollam Co.).

The calculations of *F and A spectra were performed for both external 

reflection ellipsometry and TIRE in both media (air and water) by solving the main 

ellipsometry equation: p  = tnxi?e,A for different thicknesses (varied from 0 to 30 nm 

with the step of 5 nm) and fixed refractive index o f the dielectric layer 

(A =1.45, B  = 0.01, C = 0) or vice-versa for the fixed thickness (d=  10 nm) and varied 

refractive index (A varied from 1.2 to 1.8 with the step of 0.1, B  = 0.01, C = 0).

The results of such calculations for the in air’ medium are shown in Figs. B l-  

B4. As one can see, the external reflection ellipsometry does not show any peculiarities 

in *F and A spectra in Figs. B1 and B2. The dependences o f 'F  and A values at the 

selected wavelength of 633 nm shown in Fig. B lc  are close to linear with the gradients 

of 0.15 and 0.63 deg/nm, respectively. This means that A is about 4 times more sensitive 

than *F to changes in the thickness o f dielectric film. The sensitivity towards changes in 

refractive index is nearly 10 times higher for A (1.2 deg/step) than for *F (0.13 deg/step) 

as shown in Fig. B2c.

Completely different behaviour of 'F  and A spectra is observed in the case of 

TIRE (see Figs. B3 and B4). Both the 'F  and A spectra show peculiarities: T (^) spectra 

(Figs. B3a and B4a) resembles typical SPR curve, with the reflected intensity reaching 

the minimum at the plasmon resonance conditions, while the A(?o) spectra (Figs. B3b
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and B4b) demonstrate a sharp drop in the phase from 270° down to -90° near the 

resonance.

The dependencies of ¥  and A values at selected wavelengths in Figs. B3c and 

B4c are much more pronounced, as compared to external reflection ellipsometry spectra 

in Figs. B lc  and B2c, yielding much higher respective gradients o f 0.67 deg/nm and 

1.13 deg/step for T  and 6.4 deg/nm and 11.7 deg/step for A.

In addition to this, the changes in the optical parameters of dielectric film  can 

be monitored by plotting the value of a spectral shift for both T  and A at selected levels 

(see Figs. B3d  and B4d). This gives the possibility o f another type o f kinetics study by 

monitoring the spectral shift in the course of a chemical (bio-) reaction. Surprisingly the 

shift in A is only slightly (1.5 to 2 times) higher that that in T .

Similar calculations have been done for the aqueous medium. The values of 

gradients and spectral shifts obtained by the modelling of T ^ )  and A(^) spectra for 

external and internal reflection ellipsometry in both air and water media are presented in 

Table B l.
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Figure B3-1
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Figure B4-1
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Figure B4-2
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Table B1 The values of gradients and spectral shifts for external and internal

reflection ellipsometry

Parameter
external reflection 

ellipsometry (in air)

TIRE 

(in air)

TIRE 

(in water)

S^P (deg/nm) 0.15 0.67 0 . 2 1

8 A (deg/nm) 0.63 6.4 2 . 1

b'P (deg/O.lstep) 0.13 1.13 1.28

SA (deg/O.lstep) 1 . 2 11.7 13.2

*P spectral shift (nm/nm) 5.6 2 . 8

A spectral shift (nm/nm) 9.0 3.4

'P  spectral 

shift (nm/O.lstep)

6.65 18

A spectral shift (nm/O.lstep) 13.0 2 0 . 6

Conclusions

The modelling of the response of external and internal reflection ellipsometry 

to changes in the thickness and refractive index of thin dielectric coating on the surface 

of gold showed that TIRE was generally 10 times more sensitive than conventional 

external reflection ellipsometry.

W ithin the TIRE method, the spectra of the phase related param eter A was 

about 1 0  times more sensitive than the spectra of the amplitude related param eter T , 

which was similar to traditional SPR curves. In other words, the phase SPR 

measurements were more sensitive than conventional SPR, and therefore can be used 

for various applications in thin film characterisation and sensing.
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Appendix C

Introduction to the Artificial Neuron Network

The ANN consists of simple processing elements or "neurons" grouped together. 

A  typical artificial neuron and the modeling o f a multilayered neural network are 

illustrated in F ig .C l. In this configuration, the information enters the network at the 

input layer and is fed forward through the hidden layer until it reaches the output layer.

Hidden layer
Input layer1

Output layer

x 2

^  output (o)

(a) Artificial neuron (b) Multilayered artificial neural network

Figure C l Architecture of an artificial neuron and a multilayered neural network (after 
Ref.[1]).

The activity o f the input units represents the raw information that is fed into the 

network. Each neuron in the input layer is connected to every neuron in the hidden layer.

The activity of each hidden unit is determined by the activities o f the input units 

and the weights of the connections between the input and the hidden units. The number 

of hidden neurons affects how well the network is able to separate the data. A  large 

number of hidden neurons will ensure correct learning, and the network will be able to 

correctly predict the data it has been trained on, but its performance on new data and its 

ability to generalize, will be compromised. W ith too few hidden neurons, the network 

may be unable to learn the relationships amongst the data and the error w ill fail to fall 

below an acceptable level. Each hidden layer neuron in turn is connected to every 

neuron in the next output layer. The behaviour of the output units depends on the 

activity of the hidden units and the weights between the hidden and output units.
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Each neuron has a certain number of inputs, each o f which have a weight 

assigned to them. The weight is an indication o f how “important” the incoming signal is 

for that input. The net value of the neuron is then calculated -  the net is the weighted 

sum of all the inputs multiplied by their specific weight.

Each neuron has its own unique threshold value, and if  the net is greater than the 

threshold, the neuron fires (output is 1), otherwise it stays quiet (output is 0). The output 

is then fed into all o f the neurons it is connected to.

The neurons in both the hidden layer and the output layer have a non-linear 

transfer function to their summed inputs. The combination of non-linear transfer 

functions and the large number of connections allows the ANN to model complex 

relationships between its inputs and outputs. The neuron output signal O  is given by the 

following relationship:

0  = f ( n e t )  = f
r  n "V

H wJx i
\J =1

(C l)

where wj is the weight factor, x; input signal, and f(net) is an activation function. The 

variable net is defined as a scalar product of the weight and input vectors:

net = wxx j + ... + wnxn. (C2)

There are many different activation functions; one of the most commonly used is 

the hyperbolic tangent:

exp(5,) -e x p (-5 ')  
f ( S ) =  — ^ ( C 3 )  

exp(S) + exp(-S )

where S  is the sum of n weighted input signals:

S = ' L WJXJ- (C4)
7=1

ANN typically requires a large set of data. Generally, the networks are trained, 

so that a particular input leads to a specific target output. During training, the weights of 

the network are adjusted to minimize the average squared error between the network 

outputs (a) and the target outputs (t), normally known as mean squared error (MSE):

MSE = ± £ ( 0 2 = - £ ( / , - a , . ) 2 . (C5)
n M n /=1

where n is the total number of the network inputs.
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The weights of the network are optimised by several different training 

algorithms, such as Levenberg-Marquardt, backpropagation, etc.r2].
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Appendix D

AFM Data Definition

The data definitions and abbreviation descriptions that appear in the AFM 

images are given below. All information is taken from "NanoScope Command

Veeco f ~ l 2  Digital
Reference Manual, v.5.12" by Metrology Group and ^■■Instrum ents

1. Image information.

Scan rate -  The Scan Rate sets the number of fast scan lines performed per second. 

N um ber o f  samples -  Number of data points collected during each upward (retraction) 

and downward (extension) travel cycle of the piezo.

2. Roughness data definition

The Roughness command generates statistics for surfaces. “Image” statistics are 

reported for the entire image. “Box” statistics are reported only for the region defined 

within a cursor box.

2.1. Image Statistics

Img. Z  range -  Maximum vertical distance between the highest and lowest data points 

in the image (same as Img. Rmax).

Img. Rm s (Rq) -  Root mean square average of height deviations taken from the mean

data plane, expressed as: R = ' I z ;
V n

Img. R a -  Arithmetic average of the absolute values of the surface height deviation

1 " i rmeasured from the mean plane: R = — V \Z\ .

Im g. R max -  Maximum vertical distance between the highest and lowest data points in 

the image.
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2.2 Box Statistics

R m s (Rq) -  This is the standard deviation of the Z values within the box cursor and is

Yz f
calculated as: R a =  J  , where Z/ is the current Z  value, and n is the number of

q V n

points within the box cursor.

M ean Roughness (Ra) -  Arithmetic average of the absolute values of the surface height

1 n i ideviation measured from the mean plane within the box cursor: R  = — V iz  .1.
n j=i 1

M ax peak  h t (Rp) -  Maximum peak height within the analyzed area with respect to the 

mean data plane.

M ax depth (Rv) -  Lowest data point in examined region.

Z range -  Peak-to-valley difference in height values within the analyzed region.

M ean -  The average of all the Z values within the enclosed area. The mean can be a 

negative value because the Z  values are measured relative to the Z  value when the 

microscope is engaged.

3. Particle analysis data

The Particle Analysis command defines particles based on the height o f pixel 

data. This analysis is designed for analyzing well isolated particles. Particles may be 

analyzed singly or in quantities. Particles in this context, are conjoined pixels above or 

below a given threshold height. The analysis includes a histogram o f particle size, 

which can be used to identify specific particles by size. Measurements on this analysis 

include: the mean area and standard deviation (sigma) of the particle sizes, the total 

number of particles, a correlation histogram, a bearing ratio curve and a depth histogram.

4. Section analysis

The Section command displays a top view image, upon which reference line may 

be drawn. The cross-sectional profiles and fast Fourier transform (FFT) o f the data 

along the reference line are shown. Roughness measurements are made o f the surface
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along the reference line defined. The Section command does not reveal what is below 

the surface -  only the profile of the surface itself.

Section Data Definitions

L  -  Length of the roughness curve.

R M S  (Standard Deviation) — Standard deviation of the Z values between the reference

I j ' C Z . - z avef
markers, calculated as follows: RM S  = cr = J — — ------ ——  , where Z, is the current Z

V n

value, Zave is the average of the Z  values between the reference markers, and N  is the 

number of points between the reference markers.

lc -  Cut-off length (in nanometers) of the high-pass filter used in creating the roughness 

curve. The FFT period is equal to lc.

R a (Mean Roughness) -  Mean value of the roughness curve relative to the center line, 

1 L
calculated as: R a = — jj/(x ) |d ^ , where L is the length of the roughness curve and f ( x )

L  o

is the roughness curve relative to the center line.

Rmax (Maximum Height) -  Difference in height between the highest and lowest points 

on the cross-sectional profile relative to the center line (not the roughness curve) over 

the length of the profile, L.

R z (Ten-Point Mean Roughness) -  Average difference in height between the five 

highest peaks and five lowest valleys relative to the center line over the length o f the 

profile, L. In cases where five pairs of peaks and valleys do not exist, this is based on 

fewer points.
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Abstracts of the published papers

1. Nabok A., Tsargorodskaya A., Holloway A., Starodub N. F., Demchenko A. 
Specific binding o f  large aggregates o f  amphiphilic molecules to respective antibodies, 
Langmuir 23 (2007) 8485-8490.

Abstract: The binding of nonylphenol to respective antibodies immobilized on
solid substrates was studied with the methods of total internal reflection ellipsometry 
(TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding 
reaction was proved to be highly specific having an association constant of KA = 1.6 x 
106 mol'1 L and resulted in an increase in both the adsorbed layer thickness of 23 nm 
and the added mass of 18.3 pg/cm2 at saturation. The obtained responses of both TIRE 
and QCM methods are substantially higher than anticipated for the immune binding of 
single molecules of nonylphenol. The mechanism of binding of large aggregates of 
nonylphenol was suggested instead. Modelling of the micelle of amphiphilic 
nonylphenol molecules in aqueous solutions yielded a micelle size of about 38 nm. The 
mechanism of binding of large molecular aggregates to respective antibodies can be 
extended to other hydrophobic low-molecular-weight toxins such as T-2 mycotoxin. 
The formation of large molecular aggregates of nonylphenol and T-2 mycotoxin 
molecules on the surface was proved by the AFM study.

2. Nabok A. V., Tsargorodskaya A. The method o f  total internal reflection 
ellipsometry fo r  thin film s' characterisation and sensing, Thin Solid Films (2007) 
accepted.

Abstract: Recently developed method of Total Internal Reflection Ellipsometry
(TIRE) represents a very successful combination of the spectroscopic ellipsometry 
instrumentation with the Kretschmann type Surface Plasmon Resonance (SPR) 
geometry of the experiment. The modelling shows much higher sensitivity of the TIRE 
method to small changes in optical parameters (thickness and refractive index) of thin 
films, as compared to both traditional external reflection ellipsometry and SPR. 
Considering another advantage of performing the measurements in media of different 
optical density (and even opaque media), TIRE becomes very convenient for different 
sensing applications in both gaseous and liquid media, as well as for thin film 
characterisation. This work presents examples of applications of the TIRE method for 
the study of DNA hybridization and the registration of low molecular weight toxins.

3. Nabok A. V., Tsargorodskaya A., Holloway A., Starodub N. F., Gojster O. 
Registration o f  T-2 mycotoxin with total internal reflection ellipsometry and QCM  
impedance methods, Biosensors and Bioelectronics 22 (2007) 885-890.

Abstract: A sensitive optical method of total internal reflection ellipsometry
(TIRE) in conjunction with immune assay approach was exploited for the registration of 
T-2 mycotoxin in a wide range of concentrations from 100 f-ig/ml down to 0.15 ng/ml. 
Association constants of 1.4-106 and 1.9-107 mol'1 s for poly- and monoclonal T-2 
antibodies, respectively, were evaluated from TIRE kinetic measurements. According to 
TIRE data fitting, binding of T-2 molecules to antibodies (at saturation) has resulted in 
the increase in adsorbed layer thickness of 4-5 nm. The QCM impedance measurements 
data showed anomalously large mass increase and film softening, most likely, due to the 
binding of large T-2 aggregates to antibodies.
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4. Nabok A. V., Tsargorodskaya A., Hassan A. K., Starodub N. F. Total internal 
reflection ellipsometry and SPR detection o f  low molecular weight environmental 
toxins, Applied Surface Science 246 (2005) 381-386.

Abstract: The environmental toxins, such as herbicides simazine and atrazine, and
T2 mycotoxin were registered with the optical methods of surface plasmon resonance 
(SPR) and recently developed total internal reflection ellipsometry (TIRE). The immune 
assay approach was exploited for in situ registration of the above low molecular weight 
toxins with specific antibodies immobilised onto the gold surface via (poly)allylamine 
hydrochloride layer using electrostatic self-assembly (ESA) technique. The comparison 
of two methods of SPR and TIRE shows a higher sensitivity of the latter.

5. Tsargorodskaya A., Nabok A. V., Ray A. K. Ellipsometric study o f  adsorption o f  
BSA into porous silicon , Nanotechnology 15 (2004) 703-709.

Abstract: The method of spectroscopic ellipsometry has been applied to study in
situ the adsorption of bovine serum albumin (BSA). The porosity and amount of 
adsorbed bsa were determined by fitting the ellipsometric data to the Bruggeman 
effective medium approximation model. The presence of intermediate adsorbed layers 
of polyelectrolytes was found to increase protein adsorption.
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